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CHAPTER I

INTRODUCTION

In this thesis the kaon and sigma meson productions in heavy ion reactions

at intermediate energies are investigated within the framework of the Quantum

Molecular Dynamics (QMD). One of the main motivations of the study is to obtain

the information of the modifications of hadron properties in dense and hot matters

and to explore the properties of nuclear matters at high densities, i.e. the nuclear

equation of state (EOS) at supra-normal densities. This issue is very important

not only for nuclear and particle physics, but also for astrophysics.

Hadrons are expected to change their masses in a nuclear matter compared

to free space. It is known from the Quantum Chromodynamics (QCD) that the

spontaneous chiral symmetry breaking is signalled by non-vanishing quark pair

condensates in vacuum (Weise, 1993). According to the Gell-Mann, Oakes, Renner

(GOR) relation (Gell-Mann, Oakes and Renner, 1968). the vacuum condensates

enter the expression of pion mass:

m2
πf 2

π = −1

2
(mu −md)〈uu + dd〉, (1.1)

where mu and md are respectively the bare masses of the u and d quarks and the

pion decay constant fπ = 93.3 MeV. For kaons the corresponding relation reads

m2
Kf 2

K = −1

2
(mu −ms)〈uu + ss〉, (1.2)

where ms is the bare mass of the strange quark. The strange quark condensate 〈ss〉
is of the same order of magnitude as the 〈uu〉 ' 〈dd〉 ' −(230± 25MeV)3 (Kogut,

Sinclair and Wang, 1991). However, an increasing density or temperature tends
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to wash out the quark condensates, and thus partially restore chiral symmetry.

Adding nucleons to the vacuum implies a change of the average scalar density. To

leading order in density (ρ), one obtains the change of the quark condensates with

density

〈qq〉ρ
〈q̄q〉ρ=0

= 1− ΣπN

m2
πf 2

π

ρ + ..., (1.3)

with the pion-nucleon Sigma term (Gasser, Leutwyler and Sainio, 1991)

ΣπN = (mu + md)〈N | q̄q | N〉 = (45± 8) MeV , (1.4)

where 〈N | q̄q | N〉 is the nucleon matrix element of the scalar quark density.

Similarly, one gets the variation of the quark condensates with the temperature

(Gasser and Leutwyler, 1987; Gerber and Leutwyler, 1989).

〈q̄q〉T
〈q̄q〉T=0

= 1− N2
f − 1

3Tf

(
T

2fπ

)2

+ .... (1.5)

Here Nf is Flavor number. It is seen from the above two equations that the quark

condensates decrease with increasing the density and temperature, indicating a

strong tendency towards chiral symmetry restoration. The change of the con-

densates by a nuclear environment will give rise to an average scalar potential

experienced by the hardron in the medium, which shifts the hadron mass from its

value in free space.

The hadron mass variation could have significant consequence if the sur-

rounding nuclear matter is extremely dense and hot. For instance, a strong mass

reduction for antikaons may favor K− condensation at high nuclear densities and

thus modified the mass of neutron stars to the values of about 1.5 times the solar

mass, which is close to astronomic observations (Bethe and Brown, 1995; Li, Lee

and Brown, 1997). It is noticed that the pion condensation is unlikely to appear

due to the Goldstone Boson nature of the pions (Dickhoff et al., 1981; Lutz, Klimt

and Weise, 1992). The idea is that, not only the quark condensates, but the pion
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decay constant is also subject to medium modifications accoding to the Brown-

Rho scaling, i.e. fπ(ρ)
fπ(ρ=0)

=
(

〈q̄q〉ρ
〈q̄q〉ρ=0

)1/2

(Brown and Rho, 1991). Thus the GOR

relation for pions remans satisfied even in the medium. As a consequence, any

significant variation of the pion mass in the medium is impossible.

It is known that the σ meson is responsible for the medium-range nucleon-

nucleon attraction (Machleidt, Holinde and Elster, 1986). and plays an important

role in the Quantum Hadrodynamics (QHD) (Walecka, 1974; Boguta and Bodmer,

1977). and the nonlinear sigma model (Petropoulos, 2004). However, the σ meson

is a broad scalar resonance, i.e. its mass mσ = 400 - 1200 MeV and its width

Γσ = 600 - 1000 MeV, indicating that it is a short-lived resonance with a lifetime

τ ≈ 10−24 second, which is the time scale of strong interactions. The large width of

the sigma meson prevents a direct measurement of its invariant mass distribution

over a non-resonant background. Thus the σ meson is commonly treated as an

effective meson, that is, as a system of two pions coupled to the I = J = 0 channel

but not necessarily bound.

Recently theoretical studies show that the σ mass (mσ) and width (Γσ)

decrease dramatically with increasing of the nuclear density (ρ) (Vicente Vacas

and Oset, 2002). This means that the sigma meson may exist in a dense nuclear

environment. There are also number of experimental efforts to evidence the exis-

tence of the sigma meson by pion (Bonutti et al., 1999; Camerini, Grion and Rui,

1993; Starostin et al., 2000). and photon (Messchendorp et al., 2002; Wolf et al.,

2000). induced reactions on nuclei. This causes great interest to explore further

the modification of sigma meson properties in nuclear medium.

The reduction of hadron masses in the medium results in a mean field

experienced by the hadrons. Such an in-medium mean field will certainly manifest

itself in heavy ion collisions and modify final state properties of the hadrons. So,
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one can extract the information on the in-medium potentials of hadrons from the

analysis of observables, which are sensitive to the change of final state properties

of these hadrons.

Heavy ion collisions at intermediate energies about 0.8 - 2 A GeV provide

the possibility to create the compressed nuclear matter with densities of about

2 to 4ρ0. Here ρ0 ' 0.16 fm−3 is the saturation density. This energy region is

close to or below the K+ production threshold for free nucleon-nucleon collisions.

Subthreshold kaon production is particularly interesting since it ensures that the

kaon originates from the high density phase of the reaction. The missing energy

has to be provided either by the Fermi motion of the nucleons or by energy accu-

mulating multi-step reactions. Both processes exclude significant distortions from

surface effects if one goes sufficiently far below threshold. It is known from the

strangeness conservation that K+ mesons, once produced, can not be absorbed by

the surrounding nucleons. This results in a rather long mean free path of about 7

fm of K+ mesons in nuclear matter and makes them a suitable ’penetrating’ probe

for the dense fireball produced in heavy ion reactions. Final state interactions such

as elastic kaon-nucleon scattering or the propagation in potentials influence the

dynamics but do not change the total yields. Therefore the Subthreshold K+ pro-

duction is an ideal tool to probe the compressed nuclear matter, i.e. to explore the

nuclear EOS at supra-normal densities, in relativistic heavy ion reactions (Aichelin

and Che Ming Ko, 1985).

This thesis is organized as follows. Given in Chapter II is a brief description

of the Quantum Molecular Dynamics. In Chapter III we study the kaon meson

production in heavy ion collisions. Chapter IV is devoted to the study of the sigma

meson production in heavy ion reactions. The final chapter of the thesis gives a

summary of the results obtained.



CHAPTER II

BRIEF DESCRIPTION OF THE QUANTUM

MOLECULAR DYNAMICS

The structure of the Quantum Molecular Dynamics (QMD) can be best dis-

cussed when we start out with the classical molecular dynamics approach (Bodmer

and Panos, 1977; Molitoris, Hoffer, Kruse and Stoecker, 1984). It is known that the

classical molecular dynamics is a N-body theory. All information about the system

is contained in the solution of the N body Liouville equation. The Boltzmann-

Uhlenbeck-Uehling (BUU) or the Vlasov-Uhlenbeck-Uehling (VUU) approaches

are genuine N-body theories. One follows the positions and momenta of all N par-

ticles and thus calculates the time evolution of the N-body density matrix. The

numerical procedure to solve these equations is to get results through averaging

over many ensembles, i.e. mixing correlations and fluctuations among different

ensembles and rendering them useless. The predictive power of the BUU or VUU

approach is therefore limited to one body observables.

Important quantum features are included in the QMD approach: collisions

among nucleons are Pauli blocked when the scattered nucleons would enter already

occupied or partially occupied phase space regions. Furthermore, the scattering

amplitude does not relate the scattering angle with the impact parameter in a

unique way: The square of the scattering amplitude is identified as a probability

distribution. The scattering angle as well as the blocking of collisions which brings

nucleons in a partially occupied phase space region are treated statistically. This

procedure destroys the time reversibility of the classical equation. However, the
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model is still the solution of the N-body equation, not a reduction to the one body

level, and also describes the time evolution of all correlations.

These microscopic models are chaotic in the sense that the two neighboring

phase space points in the AT +AP dimensional phase space diverge exponentially

as a function of time. In a quantum system we cannot determine the impact

parameter more precisely than ∆b > ~/∆P . Instead of varying the impact pa-

rameter over this region we initialize the nuclei differently by drawing different

random numbers for the position and the momentum of the particles.

To simulate heavy ion collisions in the QMD model, one faces two critical

points: the initialization of the projectile and target nuclei and the time evolution

of the AT + AP system. We start with the first point.

2.1 Initialization

When comparing quantal the time-dependent Hartree-Fock (TDHF) and

the classical (Vlasov) mean field systems one finds an almost identical time evo-

lution of the nuclear density for beam energies larger than 25 MeV per nucleon.

Although the differential equations for the time evolution of the classical and

quantal system are almost identical, this is quite surprising because of the dif-

ferent initial states. The initial density of the former calculation is given by a

Slater determinant whereas the Vlasov equation starts with point like particles

randomly distributed in a sphere of the radius r=1.14A1/3 fm, corresponding to a

normal nuclear matter density of 0.16 nucleons/fm3. From these results one has

concluded that, at the energies considered, the detailed form of the wave function

has only minor influence on the time evolution of the bulk properties of the system,

especially on the single particle observables.

In the QMD model each nucleon is represented by a coherent state of the
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form ( we set ~, c=1)

ψ(r,p0, t) =
exp[ip0 · (r− r0)]

(2πL)3/4
e−(r−r0)2/4L. (2.1)

where r0 is the time dependent center of the Gaussian wave packet in coordinate

space. The width of a coherent state increases as a function of time if it propa-

gates with the free Schrödinger equation. In the QMD model the width L is kept

constant, which means that one does not allow the spreading of the wave function.

Otherwise, the whole nucleus would spread in coordinate space as a function of

time. L is set to be L=1.08 fm2 corresponding to a root mean square radius of

the nucleon of 1.8 fm. To keep the formulation as close as possible to the classical

transport theory, one uses Wigner density instead of working with wave function.

The Wigner transformation of the coherent states is Gaussians in momen-

tum and coordinate space. Thus, the Wigner density reads

f(r,p, t) =
1

(2π)3

∫
e−p·r12ψ

(
r + r12

2
, t

)
ψ∗

(
r− r12

2
, t

)
d3r12

=
1

(π)3
exp [−(r− r0)

2/2L− (p− p0)
2 · 2L]. (2.2)

The N body Wigner density is the direct product of the Wigner densities

of N coherent states

fN(r1, ..., rN ;p1, ...,pN ; t) =
N∏

i=1

1

(π)3
e−(ri−ri0)2/2L−(pi−pi0)2·2L. (2.3)

The wigner representation of our Gaussian wave packets obeys the uncer-

tainty relation ∆rx∆px = ~/2. The density in coordinate space is given by the

momentum integral over the Wigner density,

ρ(r, t) =
N∑

i=1

δ(r− ri)

∫
fN(r1, ..., rN ;p1, ...,pN ; t)d3p1...d

3pNd3r1...d
3rN

=
N∑
i

1

(2πL)3/2
e−(r−ri0)2/2L. (2.4)



8

A random choice of the centers of the AT + AP Gaussians in coordinate

and momentum space is not sufficient to maintain the stability of the nuclei for a

sufficiently long time . Due to fluctuations, a limited sequence of random numbers

does not create the ground state of a nucleus but rather a metastable excited state

which decays by emission of nucleons. The time span for which the nucleus is

stable implies an upper limit to the excitation energy which can be tolerated.

Eigenstates of a Hamiltonian have to fulfill the uncertainty relation. The

variance ∆x∆px of two neighboring eigenfunctions is separated by ~/2, i.e., each

level fills a volume of h3 in phase space. if a system is in its ground state , the

phase space is densely filled up to a maximum value in coordinate and momentum

space, in which there has no hole. This is the property of the ground state. To

initialize the ground state of nucleus A, one first determines the position of the

nucleons in a sphere of the radius r = 1.12A1/3 fm drawing random numbers

but rejecting those which would position the centers of two nucleons closer than

rmin=1.5 fm. The next step is to determine the local potential U(r) generated by

all the other nucleons at the centers of the Gaussians. The local Fermi momentum

is determined by the relation pF (ri0) =
√

2mU(rio), where U(ri0) is the potential

energy of particle i. Finally the momenta of all particles are chosen randomly

between zero and the local Fermi momentum. We then reject all random numbers

which yield two particles closer in phase space than (ri − rj)
2(pi − pj)

2 = dmin .

Typically only 1 out of 50,000 initializations is accepted under the present criteria.

The computer time required for the initialization is short compared to the time

needed for the propagation.
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2.2 Propagation

Nuclei which have been successfully initialized are then boosted towards

each other with the proper center of mass velocity using relativistic kinematics.

The centers of projectile and target move along Coulomb trajectories up to a

distance of 2 fm between the surface of projectile and target. Because we keep

the width of the Gaussians fixed, the time evolution of the A-body distribution is

determined by the motion of the centroids of the Gaussians (ri0,pi0), which are

propagated by the Poisson brackets

ṗi0 = {ri0, H} = {ri0, T + U}, (2.5)

and

ṙi0 = {pi0, H} = {pi0, T + U}. (2.6)

Here T is he total kinetic energy and U is the total potential energy of all nucleons.

These differential equations are solved using an Eulerian integration routine with

a fixed time step ∆t,

pio(n + 1) = pi0(n)−∇ri0
Ui

(
n +

1

2

)
∆t, (2.7)

ri0

(
n +

1

2

)
= ri0

(
n− 1

2

)
+

pi0(n)

[pi0(n)2 + m2
i ]

1/2
∆t +∇pi0

Ui

(
n− 1

2

)
4t. (2.8)

The particles interact via two and three body interactions. This is essential

if the fluctuations and correlations are to be preserved. We assume that the short

range interactions between the nucleons accounts for the bulk properties. One

uses here a local Skyrme-type interaction supplemented by a long range Yukawa

interaction which is necessary to reproduce surface and an Coulomb interaction.

The total static interaction is given by

V tot = V loc + V Y uk + V Coul, (2.9)
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where the different terms are

V loc = t1δ(r1 − r2) + t2δ(r1 − r2)δ(r1 − r3), (2.10)

V Y uk = t3
e−|r1−r2|/m

|r1 − r2|/m (2.11)

with m = 0.8 fm and t3 = -6.66 MeV. These parameters give the best preservation

of the nuclear surface.

The total energy Hi of particle i is the sum of kinetic and potential energies,

Hi = Ti + Ui = Ti +
1

2

∑

j 6=i

U
(2)
ij +

1

3!

∑

jk 6=i

U
(3)
ijk . (2.12)

Ti refers to the kinetic energy of particle i and the potentials are given as

U
(2)
i (t) =

∑

j 6=i

U
(2)
ij =

∑

j 6=i

∫
fi(ri,pi, t)fj(rj,pj, t)V

(2)(ri − rj)d
3rid

3pid
3rjd

3pj

= U
(2)
i loc + U

(2)
i Y uk + U

(2)
i Coul, (2.13)

where

U
(2)
i loc = t1ρ(ri0), (2.14)

where the interaction density ρ(ri0) is

ρ(ri0) =
1

(4πL)3/2

∑

j 6=i

e(ri0−rj0)2/4L. (2.15)

The interaction density has twice the width of the single particle density.

U
(2)
iY uk =

∑

j 6=i

U
(2)
ijY uk

= t3
∑

j 6=i

eL/m2

rij/2m

{
e−rij/m

[
1− Φ

(√
L

m
− rij

2
√

L

)]

−erij/m

[
1− Φ

(√
L

m
+

rij

2L

)]}
(2.16)
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Here Φ(x) is the error function. U
(2)
i Coul is the Coulomb energy.

The three body potential with ν = 2 is given by

U
(3)
i =

∑

j,k;j,k 6=i,k 6=j

U
(3)
ijk

= t2
∑

j, k; j, k 6=i, k 6=j

∫
fi(ri,pi, t)fj(rj,pj, t)fk(rk,pk, t)

× V (3)d3rid
3pid

3rjd
3pjd

3rkd
3pk

=
t2

(2πL)333/2

×
∑

j, k; j, k 6=i, k 6=j

exp{[(ri0 − rj0)
2 + (ri0 − rk0)

2 + (rj0 − rk0)
2]/6L}

≈ t2
(2πL)333/2

∑

j, k; j, k 6=i

exp [(ri0 − rj0)
2 + (ri0 − rk0)

2]/4L

≈ t2(4πL)3ν/2

(2πL)3(ν−1)/2(ν + 1)3/2
ρν

i (ri0) (2.17)

The expectation value of the total energy is

E =
∑

i

[Ti +
1

2
U

(2)
i +

1

3!
U

(3)
i ], (2.18)

where the upper index refers to the two and three body interaction, respectively.

Next we have to determine the parameters t1 − t3. We start out from

the observation that in nuclear matter, where the density is constant, U (2) is

directly proportional to ρ/ρ0. In spin saturated nuclear matter the three body

interaction is equivalent to a density dependent two body interaction. If we assume

that the density does not vary substantially over the distance of the two body

interaction U (3) is then proportional to (ρ/ρ0)
2. This observation allows to relate

our parameters to nuclear matter properties. In nuclear matter our potential has

the form

U loc = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)2

(2.19)

This potential has two free parameters which can be fixed by the require-

ment that at normal nuclear matter density the average binding energy is 16 MeV
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and the total energy has a minimum at ρ0. The adjustment of the two parameters

fixes the compressibility as well. In order to investigate the influence of different

compressibilities one can generalize the potential to

U loc = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ

(2.20)

Now we have in addition a third parameter which allows to fix the compressibility

independently from the other quantities. This generalization can be translated

back to the nucleon-nucleon potential in a unique way by identifying ν with γ.

The parameter α contains contributions from the local two body interaction as

well as from the Yukawa potential. The latter can be obtained by the Taylor

expansion

UY uk ∼
∫

d3r

∫
d3r′

e−|r−r′|/m

|r− r′|/mρ(r)ρ(r′)

= 4πm3{
∫

d3rρ2(r) + m2

∫
d3r[ρ(r)∇2ρ(r)]} (2.21)

Here α is given by

α ∼ t1 − 4πm3t3. (2.22)

The relative weight between t1 and t2 as well as the parameter m are adjusted to

obtain reasonable binding energies of finite nuclei. One finds that t2 = 10 MeV and

m = 0.8 fm give E/A = 6-14 MeV for A 7-200. The coefficients of proportionality

between α and t1 and β and t2, respectively, are determined numerically.

However, we want to stress that for the actual propagational ways the

explicit two and three body interactions are used and not the nuclear matter

potentials. This is important since the equivalence of both is only true in nuclear

matter, not in finite nuclei. This equivalence can be used to connect the parameters

t1 − t3 with nuclear matter properties, i.e., the nuclear equation of state. For this

reason, our approach allows to investigate in detail how a given nuclear equation
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of state shows up indifferent observable in a heavy ion reaction. In nuclear matter

our two and three body interaction are up to small correction equivalent to a

density dependent interaction of the form.

0 1 2 3 4 5
ρ/ρ0
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Figure 2.1 Equation of state. The density dependence of the energy per particle

in nuclear matter at temperature T = 0 is displayed for two different sets of

parameters

In Fig. (2.1) we display the density dependence of the ground state energy

per particle in nuclear matter for two different sets of parameters. The parameters

Eq. (2.20) are given in Table (2.1).

This form of the nucleon-nucleon potential can easily be supplemented by

a momentum dependent interaction (H,S) (Aichelin, 1991; Aichelin and Stoecker,

1986; Bass, 1998). For a given compressibility this does not change the energy

in nuclear matter up to 4 times nuclear matter density, but has important conse-

quences concerning the dynamics of a heavy ion reaction. Therefore in the present
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Table 2.1 The parameters of Eq. (2.20) for the hard (H) and the soft (S) EOS.

K α β γ EOS

200 MeV -356 MeV 303 MeV 7
6

S

380 MeV -124 MeV 70.5 MeV 2 H

calculations we apply momentum dependent Skyrme force.

2.3 Collision

The scattering of nucleons in nuclear matter in the low density expansion

is described in terms of the reaction g matrix (Jeukenne, Lejeune and Mahaux,

1976).

g(E) = V + V
Q

E − e + iε
g(E), (2.23)

where the Pauli operator Q projects on unoccupied states only and e is the energy

of the intermediate state, e = p2
1/2m + p2

2/2m + U(p1) + U(p2).

In the QMD model simulations were stricted to binary collisions (two-body

level). The collisions are performed in a point particle sense in a similar way as in

the VUU or cascade code (Cugnon, 1980). Two particles collide if their minimum

distance, i.e. the minimum relative distance of the centroids of the Gaussians

during their motion, in their CM frame fulfills the requirement,

d ≤ d0 =

√
σtot

π
. (2.24)

Beside the parameters describing the NN potential, the cross sections are

another major part of the model. In principle, both quantities are connected

and can be deduced from Brueckner theory. QMD calculations using consis-

tently derived cross-sections and potentials from the local phase space distributions
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have been discussed (Jaenickea, Aichelin, Ohtsukac, Lindenc and Amand Faessler,

1992). Such simulations are time-consuming since the cross-sections and poten-

tials do explicitly depend on the local phase space population. Within the frame

work of using free cross section one may parameterize the cross section of the pro-

cesses to fit the experimental data if available. For unknown cross sections isospin

symmetry and time reversibility is assumed.

The cross section is reduced to an effective cross section by the Pauli block-

ing. For each collision the phase space densities in the final states are checked in

order to assure that the final distribution in phase space is in agreement with the

Pauli principle (P ≤ 1). Phase space in the QMD model is not discretized into

elementary cells as in one-body models like the VUU. In order to obtain smooth

distribution functions the following procedure is applied: The phase space density

P
′
i at the final states 1′ and 2′ is measured and interpreted as a blocking proba-

bility. Thus, the collision is only allowed with a probability of (1-P
′
1)(1-P

′
2). If the

collision is not allowed, the particles remain at their original momenta.

One stresses that our QMD model code has recently been extended (Uma

Maheswari, Fuchs, Amand Faessler, Sehn, Kosov and Wang, 1998; Shekgter, Chris-

tian, Amand Faessler and Krivoruchenko, 2003) to include all nuclear resonances

with masses below 2 GeV, which include 11 N* and 10 ∆ resonances. The corre-

sponding masses and decay widths are listed in Tables (2.2) and (2.3).
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Table 2.2 List of N* resonances which are included in the QMD model. The table

shows the resonance masses and the total and partial widths of the included decay

channels in MeV. For details, please see the work (Shekgter, Christian, Amand

Faessler and Krivoruchenko, 2003).

Resonance Mass [MeV] Γtot(MeV ) Nππ ∆1232π N1440π

N1440 1440 200 10 50 -

N1520 1520 125 18.75 31.25 -

N1535 1535 150 7.5 - 7.5

N1650 1650 150 7.5 15 7.5

N1675 1675 140 77 - -

N1680 1860 120 18 - -

N1700 1700 100 45 35 -

N1710 1710 110 22 22 11

N1720 1720 184(150) 67.5 15 -

N1900 1870 500 - 25 -

N1990 1990 550 137.5 165 82.5
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Table 2.3 List of ∆ resonances which are included in the QMD model. The

table shows the resonance masses, and the total and partial widths of the included

decay channels in MeV. For details, please see the work (Shekgter, Christian,

Amand Faessler and Krivoruchenko, 2003).

Res. Mass [MeV] Γtot [MeV] Nρ Nπ ∆1232π N1440π

∆1232 1232 115 ∼ 0 (–) 115 – –

∆1600 1700 200 – (–) 30 110 60

∆1620 1675 180 16.4 (–) 45 108 27

∆1700 1750 300 47.7 (30) 60 165 45

∆1900 1850 240 – (36) 72 72 60

∆1905 1880 363 (280) 307.3 (168) 56 28 28

∆1910 1900 250 – (100) 87.5 37.5 25

∆1920 1920 150 – (45) 22.5 45 37.5

∆1930 1930 250 – (62.5) 50 62.5 75

∆1950 1950 250 – (37.5) 112.5 50 50
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We take the iso-spin dependent production cross sections σNN→NR for the

∆(1232) and the N∗(1440) resonances from (Shekgter, Christian, Amand Faessler

and Krivoruchenko, 2003). These cross sections are determined within the frame-

work of a one-boson-exchange model. For the higher lying resonances parameter-

izations for the production cross-section are taken from different sources (Bass,

1998; Teis, 1997). The following baryon-baryon collisions are included: all elastic

channels, NN → NN∗, NN → N∆∗, NN → ∆1232N
∗, NN → ∆1232∆

∗ and

NR → NR′, where ∆∗ denotes all higher lying ∆-resonances. Elastic scattering is

considered on the same footing for all the particles involved. Matrix elements for

elastic reactions are assumed to be the same for nucleons and nucleonic resonances.

Thus elastic NR and RR cross sections are determined from the elastic pp or np

cross sections, depending on the total charge. Inelastic collisions are considered

according to the expression (Bass, 1998).

σ1,2→3,4 ∼ 〈pf〉
pis

|M(m3,m4)|2 (2.25)

pi and 〈pf〉 are the momenta of incoming and outgoing particles in the center of

mass frame. In the case that final states are resonances, the phase space has to

be averaged over the corresponding spectral function

〈pf〉 =

∫
p(
√

s,mN , µ) dWR′(µ) (2.26)

with dWR′(µ) given by the corresponding Breit-Wigner distribution.

dWR(µ) =
1

π

µΓR(µ)dµ2

(µ2 −m2
R)2 + [µΓR

tot(µ)]2
, (2.27)

where µ and mR are the running and pole masses, respectively. Γ(µ) is the mass

dependent resonance width. In the general case that both final states in Eq. (2.25)

are resonances the averaging of pf is performed over both resonances,

〈pf〉 =

∫
p(
√

s, µ, µ′) dWR(µ) dWR′(µ
′) (2.28)
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The integrations are performed over kinematically defined limits. M in Eq. (2.25)

is the matrix element of the cross-section and the proportionality sign accounts for

possible overall isospin coefficients. For most of the cases we use expressions for

the matrix elements from (Bass, 1998). However, parameterizations of the matrix

elements are given in (Teis, 1997). we make use of these expressions. This is in

particular the case for reactions where resonances contribute to the dilepton yield.

e.g. the cross-section for the reactions NR → NR′ is determined from the known

channels NN → NR and NN → NR′ by

σNR→NR′ = I
0.5(|MNN→NR|2 + |MNN→NR′|2)2(2JR′ + 1)

16πpis
〈pf〉 . (2.29)

In Eq. (2.29) I is an isospin coefficient, depending on the resonances’ types, and

JR′ denotes the spin of R′.

For all resonances we use mass-dependent widths in expressions Eq. (2.29-

2.28), namely

Γ(µ) = ΓR

(
p

pr

)3 (
p2

r + δ2

p2 + δ2

)2

. (2.30)

In Eq. (2.30) p and pr are the c.m. momenta of the pion in the resonance rest

frame evaluated at the running and the resonance pole mass, respectively. δ = 0.3

is chosen for the ∆1232 and δ =
√

(mR −mN −mπ)2 + Γ2/4 for the rest of the

resonances. The inclusive π−p and π+p cross sections are shown in Fig. (2.2).

The fit to the data including the sum over all resonances is of similar quality as

in (Teis, 1997; Bass, 1998) and reproduces the absorption cross section up to pion

laboratory momenta of 1-1.5 GeV. At higher energies string excitations start to

play a role (Bass, 1998). Backward reactions, e.g. NR → NN , are treated by

detailed balance

σ3,4→1,2 ∼ |p1,2|2
|p3,4|2σ1,2→3,4, (2.31)

where the proportionality sign is due to overall isospin factors. The expressions
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for the momenta of incoming (outgoing) particles are calculated according to Eqs.

(2.29) and (2.28), respectively. Pion-baryon collisions are standardly treated as

two-stage processes, i.e. first the pion is absorbed by a nucleon or a baryonic

resonance forming a new resonance state with subsequent decay. The pion ab-

sorption by nucleons is treated in the standard way (Uma Maheswari, Fuchs,

Amand Faessler, Sehn, Kosov and Wang, 1998; Teis, 1997; Bass, 1998) and the

pion absorption by resonances is proportional to the partial decay width of the

reverse process (Teis, 1997).

σπR→R′ =
2JR′ + 1

(2Sa + 1)(2Sb + 1)

4π

p2
i

s(ΓR′→Rπ)2

(s−m2
R′)

2 + sΓ2
R′

. (2.32)

The decay of baryonic resonances is treated as proposed in (Danielewicz and Pratt,

1996; Larionov, Effenberger, Leupold and Mosel, 2002), i.e. the resonance life time

is given by the spectral function

τR(µ) = 4πµ
dWR(µ)

dµ2
. (2.33)

Here we use constant widths when considering resonance decays. The decay

channels, which are taken into account, are listed in Tables (3) and (4) together

with their corresponding branching ratios. For the mass systems under considera-

tion pion multiplicities are reasonably well reproduced by the present description,

e.g. inclusive π+ cross sections in C + C reactions were recently measured by the

KaoS Collaboration and the experimental results can be reproduced by the present

description within error bars (Fuchs, 2006).
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Figure 2.2 Inclusive π−p and π+p cross sections obtained by the sum over all

resonances which are taken into account in the present description



CHAPTER III

KAON MESON PRODUCTION IN HEAVY

ION COLLISIONS

3.1 Kaon covariant dynamics

Properties of kaons in dense hadronic matters are very important for a

better understanding of both the possible restoration of chiral symmetry in dense

hadronic matters and the properties of nuclear matters at high densities.

Due to its relativistic origin, the kaon mean field has a typical relativistic-

scalar-vector-type structure. For the nucleons such a structure is well known from

Quantum Hadron Dynamics (Serot and Walecka, 1986). This decomposition of the

mean field is most naturally expressed by an absorption of the scalar and vector

parts into effective masses and momenta, respectively, leading to a formalism of

quasifree particles inside the nuclear medium (Serot and Walecka, 1986).

From the chiral Lagrangian the field equations for the K± mesons are de-

rived from the Euler-Lagrange equations (Li, Ko and Bao-An Li, 1995; Li and Ko,

1995)

[∂µ∂
µ ± 3i

4f ∗2π

jµ∂
µ + (m2

K −
∑

KN

f ∗2π

ρs)]φK±(x) = 0. (3.1)

Here the mean-field approximation has already been applied. In Eq. (3.1) ρs is

the baryon scalar density, jµ is the baryon four-vector current, f ∗π is the in-medium

pion decay constant. Introducing the kaonic vector potential

Vµ =
3

8f ∗2π

jµ, (3.2)
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Eq. (3.1) can be rewritten in the form (Fuchs, Kosov, Faessler, Wang and Waind-

zoch, 1998; Zheng, Fuchs, Faessler, Shekhter, Yan and Kobdaj, 2004)

[(∂µ ± iVµ)2 + m∗2
K ]φK±(x) = 0. (3.3)

Thus, the vector field is introduced by minimal coupling into the Klein-Gordon

equation. The effective mass m∗
K of the kaon is then given by (Schaffner, Bon-

dorf and Mishustin, 1997; Fuchs, Kosov, Faessler, Wang and Waindzoch, 1998;

Fuchs, Faessler, Wang and Gross-Boelting, 1999; Fuchs, Faessler, Zabrodin and

Zheng, 2001; Zheng, Chu, Fuchs, Faessler, Xiao, Hua and Yan, 2002; Zheng,

Fuchs, Faessler, Shekhter, Yan and Kobdaj, 2004)

m∗
K =

√
m2

K −
∑

KN

f ∗2π

ρs + VµV µ. (3.4)

Due to the bosonic character, the coupling of the scalar field to the mass term

is no longer linear as for the baryons but quadratic and contains an additional

contribution originating from the vector field. The effective quasiparticle mass

defined by Eq. (3.4) is a Lorentz scalar and is equal for K+ and K−. In nuclear

matter at rest the spatial components of the vector potential vanish, i.e., V = 0,

and Eq. (3.3) reduces to the expression already given in (Li, Ko and Bao-An Li,

1995; Li and Ko, 1995). However, Eq. (3.3) generally account for the correct

Lorentz properties which are not obvious from the standard treatment of the kaon

mean field (Li, Ko and Bao-An Li, 1995; Li and Ko, 1995; Ko and Li, 1996;

Bratkovskay, Cassing and Mosel, 1998; Li, Lee and Brown, 1997; Li, Ko and Bao-

An, 1997).

The covariant equations of motion are obtained in the classical (test par-

ticle) limit from the relativistic transport equation for the kaons which can be

derived from Eq. (3.3). They are analogous to the corresponding relativistic equa-
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tions for baryons and read (Fuchs, Kosov, Faessler, Wang and Waindzoch, 1998;

Zheng, Fuchs, Faessler, Shekhter, Yan and Kobdaj, 2004)

dqµ

dτ
=

k∗µ

m∗
K

,
dk∗µ

dτ
=

k∗ν
m∗

K

F µν + ∂µm∗
K . (3.5)

Here qµ = (t,q) are the coordinates in Minkowski space and F µν = ∂µV ν − ∂νV µ

is the field strength tensor for K+. For K− where the vector field changes sign.

The equation of motion are identical, however, F µν has to be replaced by −F µν .

The structure of Eq. (3.5) may become more transparent considering only the

spatial components

dk∗

dt
= −m∗

K

E∗
∂m∗

K

∂q
∓ ∂V 0

∂q
± k∗

E∗ × (
∂

∂q
×V), (3.6)

where the upper (lower) signs refer to K+ and K−. The term proportional to the

spatial component of the vector potential gives rise to a momentum dependence

which can be attributed to a Lorentz force, i.e., the last term in Eq. (3.6). Such

a velocity dependent (v = k∗/E∗) Lorentz force is a genuine feature of relativistic

dynamics as soon as a vector field is involved.

If the equation of motion are, however, derived from a static potential

U(ρ,k) = ω(ρ,k)− ω0(k) =

√
k2 + m2

k −
ΣKN

f ∗2π

ρs + V 2
0 ± V0 −

√
k2 + m2

K (3.7)

as given in (Zheng, Fuchs, Faessler, Shekhter, Yan and Kobdaj, 2004), the Lorentz-

force (LF) like contribution is missing. Non-covariant treatments are formulated

in terms of canonical momenta k instead of kinetic momenta k∗ and then the

equations of motion read

dk

dt
= −m∗

K

E∗
∂m∗

K

∂q
∓ ∂V 0

∂q
± vi

∂Vi

∂q
, (3.8)

where v = k∗/E∗ the kaon velocity.
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In order to account for energy-momentum conservation it is useful to for-

mulate the mass-shell condition, Eq. (3.3), in terms of the canonical momenta

0 = k∗2µ −m∗2
K = k2

µ −m2
K − 2mKUopt, (3.9)

with

Uopt(ρ,k) = −ΣS +
1

mK

kµV
µ +

∑2
S −V 2

µ

2mK

., (3.10)

Here we introduced the total scalar kaon self-energy ΣS = m∗
K −mK . Since Uopt

is a Lorentz scalar it can also be absorbed into an effective mass

m̃K(ρ,k) =
√

m2
K + 2mKUopt(ρ,k), (3.11)

which sets the canonical momenta on the mass-shell

0 = k∗2µ −m∗2
K = k2

µ − m̃2
K . (3.12)

By definition m̃K is a scalar but in contrast to m∗
K whose analogy is the Dirac mass

in the case of nucleons. m̃K absorbs the full optical potential and corresponds at

zero momentum to the energy ω.

3.2 Kaon production in the QMD model

Kaons have been considered as one of the best probes to study dense and

hot nuclear matters formed in relativistic heavy ion collisions. In particular at

incident energies below the production thresholds in free space K+ mesons are

created in the early and high density phase of such reactions. K+ meson cannot

be absorbed by the surrounding nucleons due to the strangeness conservation.

This results in a rather long mean free path of about 7 fm in nuclear matters and

makes it a suitable penetrating probe for the dense fireball produced in heavy ion

reactions.
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In the kaon production the baryon dynamics are treated within the frame-

work of the QMD model. One uses the standard momentum dependent Skyrme

interactions corresponding to a soft/hard nuclear equation of state (K=200/380

MeV) for the baryon interactions. For the determination of the kaon mean field

we adopt the corresponding covariant scalar-vector description of the nonlinear σω

model. Following Brown and Rho, we use
∑

KN= 450 MeV, f ∗2π = 0.6f 2
π for the

vector field and f ∗2π = f 2
π for the scalar part given by −ΣKN/f ∗2π ρs. This accounts

for the fact that the enhancement of the scalar part using f ∗2π is compensated

by higher-order correction in the chiral expansion (Brown and Pho, 1996). This

parametrization is denoted as Brown and Rho parametrization (BRP), which has

already been used in our previous investigations (Fuchs, Kosov, Faessler, Wang

and Waindzoch, 1998; Fuchs, Faessler, Zabrodin and Zheng, 2001).

The K+ creation mechanism is treated as described in the work (Fuchs,

Faessler, Zabrodin and Zheng, 2001) where one uses the improved cross section of

the works (Sibirtsev, 1995; Tsushima, Sibirtsev, Thomas and Li, 1999; Tsushima,

Sibirtsev, Thomas and Li, 1999) for the baryon induced K+ creation channels

BB → BY K+ see Fig. (3.1) and the one of the works (Tsushima, Huang and

Faessler, 1995) for the pion induced channels πB → Y K+. Here B stands for a

baryon which can be either a nucleon or a nucleon resonance N, ∆, and N∗, and

Y for a Λ or a Σ hyperon. The kaon production is treated perturbatively and

does generally not affect the reaction dynamics (Ko and Li, 1996; Fuchs, Faessler,

Zabrodin and Zheng, 2001).

The shift of the production thresholds of the kaons by the in-medium poten-

tials are taken into account as described in (Fuchs, Faessler, Zabrodin and Zheng,

2001). The threshold condition for K+ production in baryon induced reactions
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Figure 3.1 Diagrammatic representation of the reaction BB → BY K+

reads then

√
s ≥ m̃B + m̃Y + m̃K , (3.13)

where
√

s is the center-of-mass energy of the colliding baryons. m̃K is given by

Eq. (3.11). The momenta of the outgoing particles are distributed according to

the three-body phase space

dΦ3(
√

s, m̃B, m̃Y , m̃K) = dΦ2(
√

s, m̃B,M)dM2Φ2(M, m̃Y , m̃K). (3.14)

The two-body phase space in Eq. (3.14) has the form

Φ2(
√

s,m1,m2) =
πρ∗(

√
s,m1,m2)√

s
, (3.15)

where

p∗(
√

s, m1,m2) =

√
(s− (m1 + m2)2)(s− (m1 −m2)2)

2
√

s
(3.16)

is the momentum of the particles 1 and 2 in the center of mass c.m. frame.

Eq. (3.14) corresponds to a distribution of the particle momenta according to an

isotropic three-body phase space. However, in (Li, Lee and Brown, 1997; Li, Ko

and Li, 1997) a parametrization of the form

dΦ3(
√

s, m̃B, m̃Y , m̃K) = dWK(
√

s, m̃B, m̃Y ,MK)dM2
KΦ2(

√
s−MK , m̃Y , m̃B),

(3.17)
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has been suggested where the kaon momentum p is distributed according to

dWK '
(

p

pmax

)3 (
1− p

pmax

)2

, (3.18)

with pmax = p∗(
√

s, m̃B + m̃Y , m̃K) the maximal kaon momentum in the BB c.m.

frame. MK =
√

p2 + m̃2
K in Eq. (3.17). The parametrization of Eq. (3.17)

has been motivated by analyzing corresponding pp → pΛK+ data (Li, Lee and

Brown, 1997; Li, Ko and Li, 1997) and shifts the kaon spectrum to lower momenta

compared to an ideal three-body phase space. The optical potentials of the baryons

which enter via m̃B, m̃Y are taken from the soft/hard EOS versions of the σω model

(Ko and Li, 1996). The hyperon fields are thereby scaled according to SU(3)

symmetry UY
opt = 2

3
UB

opt. Since the m̃′s depend on the final state momenta the

determination of dΦ3 is a self-consistency problem which is solved by iteration. The

same procedure is applied to the two-body-phase space in pion induced reactions.

The rescattering of the K+ mesons with baryons and the Coulomb interaction are

taken into account. The electromagnetic interaction is treated analogously to the

strong interaction, i.e., by adding F µν
el = ∂µAν−∂νAµ given by the electromagnetic

vector potential to Eq. (3.5).

3.3 Results and discussions

In order to study first the influence of covariant dynamics on the K+ in-

plane flow we consider the 1.93 A GeV 58Ni + 58Ni collisions at impact parameter

b ≤ 4 fm, corresponding to the FOPI centrality . Shown in Fig. (3.2) is the K+

transverse flow as a function of the scaled rapidity Y 0 (Y 0 = Ylab/YCM − 1) in

1.93 A GeV 58Ni + 58Ni reactions. In the figure the full squares represent the ’95

data set from FOPI (old data) (Ritman and FOPI Collaboration, 1995), and the

full and open circles stand for the ’99 data from FOPI with improved statistics
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Figure 3.2 The K+ transverse flow as a function of rapidity in 1.93 A GeV Ni

+ Ni reactions (Zheng, Fuchs, Amand Faessler, Shekhter, Srisawad, Kobdaj and

Yan, 2004).

(Hermann and FOPI Collaboration, 1999) and their reflections at midrapidity,

respectively. The theoretical results are given by the BRP with a soft EOS. The

open down triangles stand for the calculated results with UK and the Lorentz-

force LF contribution, the open up triangles for the results without UK , and the

stars for the results with UK but without LF. One sees that around midrapidity

the two calculations with UK&LF (static potential plus Lorentz force, open down

triangles) and without UK (open up triangles) almost coincide. The result without

UK , i.e., only including the kaon rescattering effect, predicts a slightly positive

flow. The result with UK&LF leads to a very small antiflow. Around midrapidity

both calculations agree with the data within error bars. However, at spectator

rapidities the two results with UK&LF and without UK differ substantially from

each other. With respect to the old data set both calculations, i.e., with UK&LF

and without UK , agree with experiment within error bars since both reproduce the
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nearly vanishing side flow signal of K+’s around midrapidity. This means that the

old data can be reproduced without need for an in-medium kaon potential (David,

Hartnack and Aichelin, 1999). However, the new data with much small error bars

are only in agreement with those calculations which treat the kaon potential in

the covariant kaon dynamics. This indicates that it is necessary to include the

in-medium kaon potential in order to describe the new data for the K+ transverse

flow.

From Fig. (3.2) it is seen that the strongly repulsive static potential tends to

push the kaons dramatically away from the spectator matter, leading to a strong

antiflow around midrapidity (stars). The effect of the LF contribution in the

covariant kaon dynamics pulls the kaons back to the spectator matte, resulting in

a finally reasonable pattern of the K+ transverse flow, which is in good agreement

with the FOPI data. This feature of the LF contribution can also be seen in

the calculations performed by the BRP with a hard EOS. This illustrates that

the LF like contribution, originating from spatial components of the vector field,

provides an important contribution to the in-medium kaon dynamics in heavy ion

collisions. Kaons are produced in the early phase of the reaction where the relative

velocity of projectile and target matter is large. Thus the kaons feel a nonvanishing

baryon current in the spectator region, in particular in noncentral collisions. This

contribution dramatically counterbalances the influence of the repulsive potential

on the K+ transverse flow, leading to a reasonable fit to the FOPI data. This

also shows that one can use the data of the K+ transverse flow to extract the

information on the in-medium K+ potential.

The excitation function of the K+ cross sections in inclusive Au + Au and C

+ C reactions are shown in Fig. (3.3). Calculations are performed with bmax = 11

fm for Au + Au and bmax = 5 fm for C + C and are normalized to the experimental
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Figure 3.3 The K+ excitation functions in Au + Au (scaled by 10−1) and C + C

reactions are compared to the KaoS data. Calculations include an in-medium kaon

potential. For C + C results without in-medium kaon potential are also shown

(Fuchs, Amand Faessler Zabrodin and Yu-Ming Zheng, 2001).
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reaction cross sections. Calculations include an in-medium kaon potential. For C

+ C calculations without in-medium potential are also shown. It is seen that

the results without kaon potential overestimate the data, while those with kaon

potential are in good agreement with the data. This means that including of the

in-medium K+ potential reduces the kaon yield, leading to a better fit to the data.

This comparison supports again the existence of such a repulsive K+ potential.

The results for K+ kinetic energy spectra in Ni + Ni collisions at 0.8, 1.0 and

1.8 A GeV are shown in Figs. (3.4), (3.5) and (3.6), respectively. Calculations are

performed using a soft nuclear EOS. The squares are the results with a in-medium

K+ potential, the circles stand for the ones without the in-medium K+ potential.

Diamonds are the Kaos data (Barth and Kaos Collaboration, 1997). One can see

that the results without the in-medium K+ potential give the slope of the K+

kinetic energy spectra smaller than the experimental ones in the low c.m. kinetic

energy region. The repulsive potential accelerates kaons and push they to the

larger c.m. kinetic energy region during their propagation, leading an increase of

the slope of the K+ kinetic energy spectra, which goes close the data ones. This

feature is also seen clearly in Figs. (3.7), (3.8) and (3.9) when a hard nuclear EOS

is used. This indicates again that the K+ meson is a good probe to extract the

information on the in-medium K+ potential.

In Figs (3.10), (3.11) and (3.12) show the K+ production cross sections in

Ni+Ni collisions at 0.8 , 1.0 and 1.8 A GeV with a soft/hard EOS and including the

in-medium kaon potential, respectively. The error bars are given by the statistics.

One sees from these figures that the agreement with data is good when a soft

EOS is used. On other words, the KaoS data for the K+ production in Ni + Ni

reactions strongly support the scenario with a soft EOS. It illustrates that the K+

meson is a suitable tool to probe the nuclear equation of state at high densities.
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Figure 3.4 Inclusive K+ production cross section for Ni + Ni collisions at 0.8

GeV/nucleon as a function of the c.m. kinetic energy. Calculations are performed

using a soft nuclear EOS with and without kaon potential.
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Figure 3.5 Inclusive K+ production cross section for Ni + Ni collisions at 1

GeV/nucleon as a function of the c.m. kinetic energy. Calculations are performed

using a soft nuclear EOS with and without kaon potential.
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Figure 3.6 Inclusive K+ production cross section for Ni + Ni collisions at 1.8

GeV/nucleon as a function of the c.m. kinetic energy. Calculations are performed

using a soft nuclear EOS with and without kaon potential.
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Figure 3.7 Inclusive K+ production cross section for Ni + Ni collisions at 0.8

GeV/nucleon as a function of the c.m. kinetic energy. Calculations are performed

using a hard nuclear EOS with and without kaon potential.
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Figure 3.8 Inclusive K+ production cross section for Ni + Ni collisions at 1

GeV/nucleon as a function of the c.m. kinetic energy. Calculations are performed

using a hard nuclear EOS with and without kaon potential.
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Figure 3.9 Inclusive K+ production cross section for Ni + Ni collisions at 1.8

GeV/nucleon as a function of the c.m. kinetic energy. Calculations are performed

using a hard nuclear EOS with and without kaon potential.



39

0 0.2 0.4 0.6 0.8
Ecm

kin
 (GeV)

1

10

100

1000

10000

E
d3 σd

E
d3 σd

p3 [µ
b/

(G
eV

2 /c
3 )]

hard EOS, with pot
soft EOS, with pot
data

Figure 3.10 Inclusive K+ production cross sections for Ni + Ni collisions at 0.8

GeV/nucleon as a function of the c.m. kinetic energy. Calculations are performed

with an in-medium kaon potential and a hard/soft nuclear EOS.
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Figure 3.11 Inclusive K+ production cross sections for Ni + Ni collisions at 1

GeV/nucleon as a function of the c.m. kinetic energy. Calculations are performed

with an in-medium kaon potential and a hard/soft nuclear EOS.
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Figure 3.12 Inclusive K+ production cross sections for Ni + Ni collisions at 1.8

GeV/nucleon as a function of the c.m. kinetic energy. Calculations are performed

with an in-medium kaon potential and a hard/soft nuclear EOS.



CHAPTER IV

SIGMA MESON PRODUCTION IN HEAVY

ION COLLISIONS

4.1 Sigma meson production in elementary reactions

One of the scheming properties of the Roper is its two-pion decay mode

(Hernandez, Oset and Vicente Vacas, 2002). According to the Particle Data Group

it has a 30 − 40 % branching ratio into Nππ and a small fraction about 5 − 10

% going to N(ππ)I=0
s−wave . This scalar-isoscalar mode plays a very important role

in all reactions involving two-pion production close to threshold. This isoscalar

mode is a resonant state in the ππ channel which can be associated with the

scalar iso-scalar σ meson. The reason is that the contribution from the nucleon

intermediate states cancels at threshold when the direct and crossed terms are

taken into account. This has been shown explicitly in the pion-induced two-pion

production (Oset and Vacas, 1985; Sossi, Fazel and Johnson, 1993; Bernard, Kaiser

and Miesner, Ulf, 1995; Jensen and Miranda, 1997), the photon-induced two-

pion production (Tejedor and Oset, 1994; Tejedor and Oset, 1996) and two-pion

production from nucleon-nucleon collisions (Alvarez-Ruso, Oset, and Hernander,

1998; Alvarez-Ruso, 1999; Alvarez-Ruso, 2001).

The chiral symmetry is conserved if one assumes that the quark masses

are zero. Since it is known that quarks have finite masses, this symmetry is

spontaneously broken. This explains the existence of the pion and governs most

of the low energy phenomena in hadron physics. An important consequence of the
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spontaneous breakdown of a symmetry is the existence of a massless mode, the so

called Goldstone-Boson. In our case, one obtains the pion as a Goldstone Boson

and its chiral partner, the σ meson.

If chiral symmetry were a perfect symmetry of QCD, the pion would be

massless. Since chiral symmetry is only approximate, we expect the pion to have

a finite but small mass, compared to all other hadrons. This is indeed the case.

Low energy/temperature hadronic processes are dominated by pions and

thus all observables can be expressed as an expansion in pion masses and momenta.

This is the basic idea of chiral perturbation theory, which is very successful in

describing threshold pion physics.

At high densities and/or temperatures one expects to ‘restore’ chiral sym-

metry. It means that the state at high density/temperature possesses the same

symmetry as the Hamiltonian. As a consequence of this so called “chiral restora-

tion” we expect the absence of any Goldstone modes and thus the pions. If it still

present, it should become massive as well as its chiral partner the σ meson. To

create a system of restored chiral symmetry in the laboratory is one of the major

goals of the relativistic heavy ion experiments

The hadronic environment for relativistic heavy ion collisions is character-

ized by high temperatures (T ∼ 170 MeV) and low baryon densities (ρ ≤ 0.2ρ0),

ρ0 = 0.16 fm−3 is the saturation density of nuclear matter which is reached in the

interior of heavy nuclei such as Pb. Such conditions are created in the collisions of

heavy nuclei at the accelerator facilities at CERN/Geneva and at the “Relativistic

Heavy Ion Collider” RHIC at Brookhaven/USA. In relativistic heavy ion collisions

the environment can in first approximation be treated as a hot pion gas.

At intermediate energy heavy ion reactions, e.g. at the GSI/Darmstadt,

the scenario is complementary: the temperatures are moderate (T∼ 50 MeV) and
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the baryon density is large (ρ ≤ 3ρ0).

Detailed experimental and theoretical investigation of kaon production at

intermediate energies shows clear indications for such a scenario. For vector-

mesons ρ and ω strong in-medium effects can also be expected.

For the σ-meson, which is not directly related to the phenomenon of chiral

restoration, the experimental situation is not so clear. The σ is a broad resonance

and the pole mass is even not precisely determined. Therefore the σ meson is

very difficult to identify from the experimental side. σ meson production has

not yet been measured in heavy ion reactions. Recently, σ meson production has

been measured in pion and photon induced reactions on nuclei (Messchendorp,

Janssen, Kotulla, Ahrens, et al., 2002). The existing data provide first indication

for a mass shift of the σ in heavy nuclei (Bonutti , Camerini, Fragiacomo, Grion,

et al., 1996). There has an experimental program to measure this mass shift also

in proton-nucleus collisions in Jülich. The aim of the present work is to make a

prediction for such reactions and to investigate the possibility for the observation

of such mass shifts.

4.2 ππ interaction

In the model of Oset and Coworkers (Vicente Vacas and Oset, 2004) one

considers only the scalar isoscalar (σ) channel and follows the simple method of

the work (Oller and Oset, 1997) for ππ interaction in vacuum (Chiang, Oset and

Vacas,1998; Oset and Vacas, 2000) and in the nuclear medium, which leads to

modifications of the σ mass and width in a dense nuclear environment. In the

following the approach of the work (Vicente Vacas and Oset, 2004) is shortly

outlined.
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4.2.1 ππ interaction in Vacuum

The ππ interaction in nuclear matter has been calculated in the framework

of a chiral unitary approach which generates the f 0 and σ resonances, and repro-

duces well the meson-meson phase shifts in vacuum. The pions undergo multiple

scattering which is accounted for by means of the Bethe-Salpeter (BS) equation,

which guarantees unitary, matching the low energy results to chiral perturbation

theory (χ PT) predictions. We consider two coupled channels, ππ and KK̄, and

neglect the ηη channel which is not relevant at the low energies we are interested

in.

The BS equation is given by

T = V + V GT (4.1)

Eq. (4.1) is a matrix integral equation, which involves the two meson one loop

divergent integral. The diagram represented by this equation is depicted in Fig.

(4.1), where V and T appear off shell. V is the bare ππ interaction, taken from

chiral perturbation theory, T is the T-matrix which contains the full sum of ladde

diagrams. G is the two-pion propagator. However, for this channel both functions

can be factorized on-shell out of the integral. The remaining off-shell part can be

absorbed by a renormalization of the coupling constants (Oller and Oset, 1997;

Nieves and Arriola, 1999). The VGT originally inside the loop integral becomes

the product of V, G and T with V and T the on-shell amplitudes independent of

the integration variables. Thus, the BS equation becomes purely algebraic. the

2π propagator G is given by the expression

Gii(P ) = i

∫
d4q

(2π)4

1

q2 −m2
1i + iε

1

(P − q)2 −m2
2i + iε

, (4.2)

where P is the momentum of the meson-meson system. This integral is regularized
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with a cut-off Λ=1.03 GeV adjusted to fit to the π−π phase shifts. The potential

V appearing in the BS equation is taken from the lowest order chiral Lagrangian,

L2 =
1

12f 2
π

〈(∂µΦΦ− Φ∂µΦ)2 + MΦ4〉, (4.3)

Where the the symbol 〈〉 indicates the trace in flavour space, fπ = 93 MeV is the

pion decay constant, and Φ and M are the pseudoscalar meson and mass SU(3)

matrices, respectively. This model reproduces well phase shifts and inelasticities up

to about 1.2 GeV. The σ and f0(980) resonances appear as poles of the scattering

amplitude. The coupling of channels is essential to produce the f0(980) resonance,

while the σ pole is little affected by the coupling of the pions to KK (Oller and

Oset, 1997).

+ + + ...

Figure 4.1 diagrammatic representation of the BS equation for ππ scattering in

vacuum.

4.2.2 ππ interaction in nuclear medium.

As we are mainly interested in the low energy region, which is not very

sensitive to the kaon channels, we will only consider the nuclear medium effects

on the pions. These are medium effects which appear in the intermediate state in

the pion ladder. The main changes of the pion propagation in the nuclear medium

come from the p-wave self energy, produced basically by the the coupling of pions

to particle-hole (ph) and Delta-hole (∆h) excitations. For a pion of momentum q

the self-energy Π(q), which the pions require through this coupling to nucleon-hole
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and Delta-hole state is given by

Π(q) =
(D+F

2f
)2−→q 2U(q)

1− (D+F
2f

)2gU(q)
, (4.4)

where the Landau-Migdal parameter g = 0.7, U(q) is the Lindhard function, (D

+ F ) = 1.257. The expressions for the Lindhard functions are taken from (Oset

and Fernndez de Crdoba, 1990). Thus, the in-medium BS equation is given by

the diagram of Fig. (4.2), where the solid line bubbles represent the ph and ∆h

excitations.

+ + + + ...

(c) (d)(a) (b)

Figure 4.2 Terms of the meson-meson scattering amplitude accounting for ph and

∆h excitations

In fact, as it was show in (Chanfray and Davesne, 1999). the contact terms

with the ph and ∆h excitation of diagrams in Figs. (4.2) (b), (c) and (d) cancel

the off-shell contribution of the meson-meson vertices in Fig. (4.2). Therefore,

at the first order in baryon density, we are left with simple meson propagation

corrections, which can be readily incorporated by changing the meson vacuum

propagators to the in-medium ones.

At low densities, the σ meson can only decay into two pions: σ → π + π.

Therefore we have a threshold at E = 2mπ. The results for the σ pole position

are shown in Fig. (4.3) for densities up to 1.5ρ0. The corresponding broadening

of the in-medium widths are shown as well. Note, however, that the calculation is

more reliable at low densities because some contributions of order ρ2 or higher are

missing. We find that both mass and width decrease dramatically with increasing
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of density, reaching a mass around 280 MeV and a similar width at 1.5ρ0. At large

densities the 2ph pieces of the pion self energy become relevant decreasing further

both mass and width. The results in Fig. (4.3) can be cast in terms of an effective

potential, which can be approximated by

Vσ = a
ρ

ρ0

+ b(
ρ

ρ0

)2, (4.5)

with a = -358 - i108 MeV and b = 140 + i23.6 MeV. The in-medium potential Vσ

given by Eq. (4.5) is used in our calculations.

Since the σ meson is an unstable particle, the potential Vσ is imaginary.

The real part of Vσ provides the mean field, which leads to the mass shift of the σ

meson inside the medium. The imaginary part determines the decay width Γ(ρ).

0 0.5 1 1.5
ρ/ρ0

0

100

200

300

400

500

E
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y 
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eV

)

Mass
Γ/2

Figure 4.3 σ mass and half width as the functions of the nuclear density. Dashed

lines include also the 2ph pion selfenergy pieces.



49

4.3 Sigma meson production in the QMD model

In the QMD model the sigma meson is produced via the decay of nucleon

resonances N∗

N∗ → Nππ (4.6)

with corresponding branching ratio. The N∗’s can be created via NB1 → B2N
∗,

where Bi stands N or 4, and πN → N∗. we take nucleons and the resonances

∆(1232), N∗(1440), N∗(1520), N∗(1650) and N∗(1680) into account. In the N∗ →
Nππ decay the pion pair can occur in an isospin singlet s-wave state (ππ)I=0

s−wave

with corresponding branching ratio. This state has the same quantum numbers as

the σ-meson and is therefore identified with the σ-meson. The σ-mass is randomly

chosen according to the Breit-Wigner distribution

dWσ(µ) = α
µΓ2

σdµ

(µ−mσ)2 + µΓσ

, (4.7)

where mσ is the pole mass and µ the running mass of the σ-meson, Γσ is the σ-

width. The normalization constant α is determined by the available phase space,

i.e. the mass of the decaying N∗ resonance:

1

α
=

∫ mR−mN

2mπ

dWσ(µ), (4.8)

where mR is the resonance mass and mN is the nucleon mass. Here one can see

that the σ-meson can be assigned a value between the two-pion-threshold and the

resonance mass minus nucleon mass. The resonance decays according to:

N(t) = N(0)e−∆tΓ/γ. (4.9)



50

The σ meson is a very broad scalar resonance, its life time is very small. It

mainly decays into two pions in free space

σ −→ ππ (4.10)

4.4 Results and discussions

The sigma mesons created during the collision, propagate inside the nucleus

and decay after a short time inside the nucleus. The sigma meson can not be

detected directly in an experimental setup, but there are indications towards its

existence through the information collected from two pions that are measured in

coincidence. During the QMD simulations every sigma and pion that is created is

stored in some array and its evolution is followed through the end of the reaction.

So we are able to get the whole number of ππ that are a direct product of the

sigma decay.
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Figure 4.4 The distribution of the π number produced in the p + A reactions

with A being 12C, 40Ca and 208Pb at the incident energy 1.5 GeV at the impact

parameter b = 0.



52

In Fig. (4.4) shows the distribution of pion number produced in 1.50 GeV

p + A (12C, 40Ca and 208Pb) reactions at the impact parameter b = 0. The solid

curve represents the total π number, the dashed and dot curves give the number of

pions from σ meson decay without and with medium modifications, respectively.

It is seen from this figure that the dashed and dot curves are about one order

lower then the solid one in magnitude. This means that a large number of pions is

produced, but only a few come from the σ meson decay. The results with medium

modification show an even larger decrease in magnitude towards numbers of 1π,

2π and 3π, indicating the medium effect. One can also see a little the dependence

of nucleus size on the produced pion numbers.
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Figure 4.5 The σ meson creation and decay as the function of the nuclear density

(ρ) in the p + A reactions with A being 12C, 40Ca and 208Pb at the incident energy

1.5 GeV at the impact parameter b = 0.
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In Fig. (4.5) shows the σ meson creation and decay as the function of the

nuclear density without and with medium modifications. One sees from this figure

that the features of the σ creation as the function of the nuclear density are weakly

dependent on the nuclear medium. However, properties of the σ meson decay are

significantly influenced by the nuclear medium. Without medium modifications

most of σ mesons decay at the density close to zero and it is weakly dependent on

the size of nucleus, while the decay mainly occurs at densities about ρ0 and depend

obviously on the size of the nucleus when including the medium modifications.

Because σ is a short lived resonance with life time ≈ 10−24sec and the in-medium

σ potential is attractive and probably binds the σ inside the nucleus, the σ may

decay at a higher density. It has to be noted that the incident proton leads

to fluctuations of the densities. Thus compressing the nuclear matter to higher

densities is locally possible. Therefore, the σ mesons may create and decay at

densities above ρ0, which is the maximal density inside the nucleus.
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Figure 4.6 The σ creation and decay probabilities as the function of time (fm/c)

in the p + A reactions with A being 12C, 40Ca and 208Pb at the incident energy

1.5 GeV at the impact parameter b = 0.
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The probability distributions of the σ meson creation and decay in the

p + A reactions with A being 12C, 40Ca and 208Pb at the incident energy 1.5

GeV at the impact parameter b = 0 are given in Fig. (4.6). It shows that the

probability distributions of the σ meson creation and decay without and with

medium modifications are almost peaked at time ≈ 9 fm/c and its width increases

with increasing of the size of nucleus A. The creation and decay times are shifted

by about 5 fm/c when the nucleus changes from light 12C to heavier 208Pb. As can

been seen from this figure, most σ meson are created early and decay relatively

later.
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Figure 4.7 The invariant-mass distribution of the sigma mesons produced in the

p + A reactions with A being 12C, 40Ca and 208Pb at the incident energies 0.85

GeV and 1.5 GeV. Solid lines: produced σ without medium modifications of the σ

meson. Dashed lines: measured σ without medium modifications of the σ meson.

Dot Dashed lines: produced σ with medium modifications of the σ meson. Dot

lines: measured σ with medium modifications of the σ meson.
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The solid curves and dot-dashed curves in the top of in Fig. (4.7) are the

produced sigma mesons in 12C without and with medium modifications, respec-

tively. We can see that the invariant mass distribution of sigma meson production

shifts to the low invariant mass region due to the medium modifications. The den-

sity dependence of the σ mass shifts the curve to the low mass region when medium

effect are taken into account. The dashed curves and dot curves in the figure are

the measured sigma mesons without and with medium modifications, respectively.

We can see also the same results for the shift of the measured sigma cross sec-

tion to the low invariant mass region due to the medium modifications. In the

second and third rows of Fig. (4.7) one sees the same results for 40Ca and 208Pb,

respectively. The data points display a distinctive A dependence: the increase of

A is followed by increase of the production cross sections. It is also shown in this

figure that the cross section increase towards high energy is observed. The total σ

production cross section increases with incident proton energy by about one order

of magnitude when the proton energy increase from 0.85 to 1.5 GeV
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Figure 4.8 Ratio of the sigma cross sections in various collisions. Solid lines:

produced σ without medium modifications of the σ meson. Dashed lines: measured

σ without medium modifications of the σ meson. Dot Dashed lines: produced σ

with medium modifications of the σ meson. Dot lines: measured σ with medium

modifications of the σ meson.
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Shown in Fig. (4.8) are the ratio of the σ cross sections in various reactions.

It is found from the larger values of the sigma production ratios σ(p + Pb)/σ(p +

Ca) and σ(p + Pb)/σ(p + C) that the σ meson production in p + A collisions

is strongly medium dependent. Without additional medium effects the ratio is

almost constant as a function of the invariant σ mass when the shift of the σ mass

is taken into account.

The ratios for the measured sigma show a significant enhancement at low

invariant masses if the medium modification is considered. It indicates that the

produced σ meson decaying in a denser medium experience a stronger mass shift

towards lower masses since the medium is more dense in a heavier nucleus. It

should be stressed that this mass shift is an experimentally accessible observable

in the final state pion pairs which did not suffer reabsorption and rescattering by

the surrounding nucleons. The ratio of measured sigma from various reactions

opens the possibility to address experimentally the mass shift of the σ in a dense

nucleus environment. In the other word, one can use the ratio of measured sigma

from various reactions as a sensitive probe to extract the information on the in-

medium σ potential.



CHAPTER V

SUMMARY

This thesis is a theoretical study of the kaon and sigma meson produc-

tions in heavy ion reactions at intermediate energies. The major purpose of the

present study is to extract the information on the modifications of hadron prop-

erties in dense and hot nuclear matters and to explore the nuclear equation of

state (EOS) at high densities. This issue is very important not only for nuclear

and particle physics, but also for astrophysics. The medium dependence of the

hadron properties is associated with the fundamental symmetries of the Quantum

Chromodynamics (QCD), i.e. chiral symmetry and its breaking. The in-medium

properties of strange hadrons belong to an issue which has significant implication

on astrophysics concerning the evolution of neutron stars.

We describe the time evolution of the colliding nuclei within the framework

of the Quantum Molecular Dynamics (QMD), in which the nucleon is described by

a Gaussian wave packet with a constant width L. The time evolution of the N-body

distribution is determined by the motion of the centroids of the Gaussians (ri0,pi0),

and the propagation of the Gaussians is described by the Poisson brackets. Two

sets of parameters for the hard and soft equation of state (EOS) are used. One

includes nucleons, deltas ∆, the nucleon resonances N∗ and ∆ resonances up to 2

GeV.

In this thesis we consider the bombarding energies of 0.8 - 2 GeV per

nucleon for K+ meson production. This energy region is close to or even below

the production threshold of the K+ meson in free nucleon-nucleon collisions. It
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is thus expected that the K+ meson is a very ideal tool to probe the in-medium

kaon potential and the nuclear EOS.

The variation of the hadron mass in a nuclear environment is related to a

mean field experienced by the hadrons. The collective motion of the hadrons is

very sensitive to the mean field. In the present study we have analyzed the K+

in-plane flow and the kinetic energy distributions of K+ production cross sections.

For the kaon mesons inside the nuclear medium a quasi-particle picture including

scalar and vector field is adopted. It is found that a Lorentz force from spatial

component of the vector field provides an important contribution to the in-medium

kaon dynamics and strongly counterbalances the influence of the vector potential

on the K+ in-plane flow. The FOPI data can be reasonably described using the

in-medium kaon potentials based on effective chiral models. The information on

the in-medium K+ potential extracted from the kaon flow and the K+ production

cross section as a function of their center-of-mass kinetic energy is consistent with

the knowledge from other sources. On the other hand, it is confirmed that data

of the K+ production cross sections are better described when a soft EOS is used.

It is known that the σ meson is responsible for the mid-range nucleon-

nucleon attraction and pays an important role in the Quantum Hadrodynamics

(QHD) and the nonlinear sigma model. However, the σ meson is a broad scalar

resonance and mainly decays into two pions in free space. Thus the σ meson is

commonly treated as an effective meson, that is, as a system of two pions coupled

to the I = J = 0 channel but not necessarily bound. Although the σ meson is

not directly related to the phenomenon of chiral restoration, recently theoretical

studies have shown that the σ mass mσ and width Γσ decrease dramatically with

increasing of the nuclear density ρ. This also means that the sigma meson may

exist in a dense nuclear environment. There are also number of experimental efforts
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to evidence the existence of the sigma meson by pion and photon induced reactions

on nuclei. This causes great interesting to explore further the modification of sigma

properties in nuclear medium. We investigate the sigma production in 1.5 GeV

proton colliding on nuclei of 12C, 40Ca and 208Pb. The simulation results indicate

a distinctive A dependence of the sigma production, that is, the increase of A is

followed by an increase of the production cross sections. It is found that the σ

production in proton induced reactions is strongly medium-dependent, and the

produced σ mesons decaying in a denser medium experience a stronger mass shift

towards lower masses. This mass shift is an experimentally accessible observable

in the final state pion pairs which did not suffer reabsorption by the surrounding

nucleons. It is pointed out that the ratio of the measured sigma cross sections

as a function of the sigma invariant-mass from various reactions can be used as a

sensitive probe to extract the information on the in-medium σ potential.
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