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Collective modes of a layered electron gas are characterized by the presence of
acoustic branches in addition to the usual optical plasmon branch. The influence of
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ence of the inverse dielectric function has been reported. Using a plasmon exchange
model in the modified Eliashberg theory for strong coupling superconductors, the
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CHAPTER I

INTRODUCTION

1.1 A brief history of high-temperature superconductivity

After superconductivity was discovered by H. K. Onnes in 1911, many conduc-
tors were discovered and the critical temperature rose year by year. More than 2000
superconducting materials had been discovered by 1975, and the critical temperature,
T., had reached 22.3K with the discovery of Nbs;Ge in 1973. After that, however, no
higher critical temperature was obtained for more than 10 years.

A new era in superconductivity opened when J. G. Bednorz and K. A. Miiller dis-
covered a sharp drop in the resistance of La, Ba CuO, at a temperature of approxi-

mately 30 K (Bednorz and Miiller , 1986). They continued their study of this novel
material in order to be certain that the resistivity change they had observed reflected a
transition to the superconducting state. By October in the same year they had obser -

ved the Meissner effect, and so established that the new material was indeed a super-
conductors. A month later, Jorgensen and his colleagues (Jorgensen et al., 1987) con-
firmed the Bednorz- Miiller results while their work was further supported by experi-
ments by Zhou and his colleagues (Zhou et al., 1989). In the following month, in a
collaborative effort led by Chu (Chu et al., 1987), a new member of this high tempe-

rature superconductor (HTS) was discovered, YBa,Cu,O, , which possessed a T, of

over 90K. Thus within a year of the original discovery the superconducting transition



temperature had increase by a factor of three, and it was clear that a revolution in su-
perconductivity had begun.

Within the next six years a number of additional families of high temperature su-
perconductors were discovered. These included T1- and Hg- based systems which had
maximum T.’s of 120K and 160K respectively. All shared the feature which appeared
responsible for the occurrence of HTS, the presence of planes containing Cu and O
atoms, which are separated by bridging materials which act as charge reservoirs for
the planes. The physical properties of these compounds were also investigated very
intensively, and it was confirmed that in all cuprate superconductors the superconduc-
tivity occurred in very thin layers including Cu-O planes. Some of various isolation

planes between the Cu-O planes are shown in Figure 1.1.

Cu-0 plane 4

(a) Cu-0 plane Lan=1) (b)
e

Isolution
e
Lo planes
Cu o
b 0 e

[ Cu- O plane

Cu-0
planes

Figure 1.1 Diagram of Cu-O planes with various isolation planes between the Cu-O
planes (Burns, 1992).



There have in the past ten years been many attempts to obtain high-temperature
superconductivity in materials other than cuprates. Superconductivity was observed in
alkali-ion doped Cgo at 33K (Haddon et al., 1991), and in MgB, at 39K (Nagamatsu et
al., 2000). But the superconductivity in both these materials is explained by the BCS
theory, so it can be said at present that all the non-BCS superconductors belong to
cuprate family. We therefore need to find new non-BCS superconductors outside the
cuprate family if we raise the critical temperature beyond room temperature. Room

temperature superconductivity is still a dream of many scientists, but there is no

guideline to reach it at present. Nowadays, La-based (T, = 30K), Y-based (T, = 90K),

Bi-based (T, = 120K), and Hg-based (T, = 134K) cuprates are the high temperature

superconductors most frequently studied.

The theory of low temperature superconductivity has been well understood since
the so-called BCS theory was put forward in 1957 (Bardeen et al., 1957). It is based
on a peculiarity of the interaction between 2 electrons in a crystal lattice. However
BCS theory does not explain successfully the high temperature superconductivity and
its precise mechanism is still a mystery. What is known is that the composition of the
copper-oxide materials has to be precisely controlled if superconductivity is to occur.
YBa,Cu,0, can be regarded as being derived from semiconducting YBa,Cu,0, by
doping with O, charge carriers formed by oxidation. However the crystal is not comp-
letely saturated with oxygen atoms, and there are a number of vacancies in the lattice.
Thus the actual superconducting material is often written as YBa,Cu,0, ;, where o

must be less than 0.7 if the material is to be superconducting. The reason for this is

still not clear, but it is known that the vacancies occur only in certain places in the



crystal, the copper oxide planes and chains, giving rise to a peculiar oxidation state of
the copper atoms, which somehow leads to the superconducting behaviour.

Recent research trends to high temperature superconductivity are divided into
three categories.The first is revealing the fundamental principles in superconductivity,
the second is investigating the properties of the superconductors, and the third is
applying them to practical uses. First, to explain the cause of high temperature super-
conductivity, there are promising theories such as marginal Fermi liquid, spin-bag,
electron’s valence bond fluctuation theory, and antiferromagnetic fluctuation theory.
These theories are continuously varied, changed, and developed by other theorists.

Amongst theories above, Anderson’s theory (Anderson, 1987) which is based on
the separation between spin and charge brought up some doubts when applied to two
dimensional case although it is plausible in one dimension. Meanwhile, the antiferro-
magnetic fluctuation theory led by Pines (Pines, 1990) cannot deal microscopic phe -
nomena since it is based on macroscopic phenomenology. It is still in question if the
theory of Scalapino (Scalapino, 1987) which form d-wave symmetry would explain
high-temperature superconductivity. Since the discovery in 1911, classical supercon-
ductivity has been understood in the BCS theory proposed by Bardeen, Cooper, and
Schrieffer in 1957. But fundamental understanding of high temperature superconduc-
tivity is still not clear after its discovery.

Second, the comprehension about its properties is continuingly being deepened.
Mean field of the Ginzburg-Landau theory could be applied to ideal clean type A
superconductors. However, it is also significant to understand double mixture state for
this state is applied to high temperature superconductivity which forms a vortex glass

state because of its strong thermal fluctuation under impurity or disorder. It is essen —



tial to comprehend phase transition of this state for its physical consequence.

There has been great effort to synthesize a new HTS such as that having an
infinite number of CuO, planes, or that based on Bi, Y, Hg and its modified forms.
Recently, the study on properties of Ag-based superconductors which were manufac-
tured under high temperature and high pressure, and the study on KyCg¢y which were
obtained by putting impurity in Fullerin Cq are going on.

Third, applications of superconductivity are remarkable. One of the most pros-
pective applications is on microwave communication. The reason is that electric
current consuming using superconductor is much smaller than that by other materials,
beside it could be applied directly to microwave generator, filter, resonator, low noise
oscillator, etc.

This period of rapid discovery may well continue for some time. While it is
certainly early to review any aspect of these novel materials, intense effort has been
turned toward the understanding of their electronic structures and properties, and it is
useful to collect the results and contemplate their implications. Developing a clear
understanding of the electronic structure of these high-T. materials is central not only
to identifying the pairing mechanism, but also to describing the host of other essential,
and often unusual properties displayed by these materials. Although a complete
understanding of the important electronic properties would include the electronic
response to perturbations of various kinds, this is an area in which little detailed work

has been done.
1.2 Characteristics and properties of HTS

Some common characteristics of HTS are that they are ceramic, flaky oxides,

which are poor metals at room temperature and are difficult materials with which to



work. They contain few charge carriers compared to normal metals and display highly
anisotropic electrical and magnetic properties which are remarkably sensitive to oxy-

gen content. While superconducting samples of the 1-2-3 material, YBa,Cu,0,__, can

be easily made in a microwave oven, single crystals of the high purity required to de-
termine the intrinsic physical properties of these systems are exceedingly difficult to
make.

Various techniques have been adapted or developed successfully for the synthe-
sis and fabrication of high quality HTS in various forms. They are from polycrystal to
single crystal, from bulk to thin film, and from disk to wire, for scientific pursuit and
device development. Some highlights are:

(1) More than 120 non-metallic HTS have been found with T.>s above 23K, the
record for the conventional intermetallic superconductors. They fall into three diffe -
rent compound groups, namely, the cuprate, the bismuthade, and the fullerite. All su-
perconductors with T¢’s above the liquid nitrogen boiling point of 77K are cuprates
which have a distinct layered structure.

(2) These HTS are usually characterized by a low carrier concentration of ~
10°' /em®, short coherence lengths of 10x10~* cm and ~ 3x10~* cm, along and perpen-
dicular to the CuO, -layer, respectively, and a large penetration depth of ~3000x107*
cm.

(3) The T, has risen rapidly t o the current record of 134 K[in(HgBaZCa2 -

Cu, Oy, ; (Hg-1223)] at ambient pressure and 164K at 30GPa in the last ten years.

(4) The upper critical field Hc; has exceeded 150T[inYBe12Cu3O7 (YBCO)] .

(5) The critical current densities (J.’s) at77K in zero external field achieved are:



~5x10° A/cm?, in YBCO thin films; ~10° A/cm”in YBCO/Ni flexible tapes; ~ 8x
10°A/cm? in YBCO melt-texture bulk; and ~ 6X10*A/ cm”in Bi,Sr,Ca, ,Cu O,

(BSCCO) tapes. J. decreases with externally applied field. However BSCCO (at
4.2K) and YBCO (at 77K) out perform the best conventional Nbs;Sn (at 4.2K) at high
field.

With the continuing improvement in sample preparation and the successful
development of new characterization techniques in recent years, experimental results
from different groups converge and exhibit high quality enough for empirical rules to
be drawn and theoretical models proposed to be tested. Some of the highlights are as
following:

(1) All curates HTS have a layered structure and can be represented by a generic
formula A_E,R,  ,Cu, O

[A -m2(n—1)n— E] with a stacking sequence of

2n+m+2

m (AO)-layers inserted between 2(EO)-layers on top of n CuO, —layers interleaved by
(n-1) (R)-layers, where A, E, and R are various cations. Layers of these compounds
can be grouped into two blocks: the charge-reservoir block (CRB) of [(EO) (AO)y,
(EO)] and the active block (AB) of {(CuO,) [(R) (CuO;)]s.1}. The CRB provides the
sources of charge carriers for the AB which is considered to be the main component
for superconductivity in the compound. As a result, a great majority of the theoretical
models are built on a 2D-electron system in the CuO,-layers.

(2) All cuprate HTS can be derived from their corresponding anti-ferromagnetic
insulating parents via the so-called modulation doping over a very limited range. This
is by introducing to or removing carriers from the AB without inducing in AB defects
via anion or cation substitution, and / or addition or removal in the CRB. The

overwhelming majority of HTS and all those with T.’s above 30K are hole-doped,



although HTS can be electron-doped. The compounds usually undergo the transfor-
mation with hole-doping: antiferromagnetic insulator — superconducting metal -
non-superconducting metal and thus form a very interesting schematic phase diagram.
The detection of antiferromagnetism of short correlation length deep into the super-
conducting doping-region has been one main inspiration for the magnetic supercon-
ducting mechanism proposed.

(3) T, for all cuprate HTS varies almost universally with the carrier concentra-

tion per unit Cu-ion, p, as T, =T.™ [l —82.6(p—p, )1 , where T is the maximum

T, of a compound system when optimally doped at p = po which is~ 0.16. Super-
conductors with p < py are called underdoped and those with p > py called overdoped.
This Te-p correlation has been the most effective guide to optimizing T, of a com-
pound. Few theoretical models advanced to date, while recognize the great signifi-
cance of p; have dealt with the approximated quadratic dependence of T, on p.

(4) Hole-doped cuprate HTS, when p is equal or close to po, exhibit salient fea-
tures in many of their normal-state properties that are not in complete agreement with

predictions of the well-accepted Fermi-liquid theory for metals. For instance, the

resistivity (p) decreases linearly as temperature decreases. The Hall resistivity (p,, )

also shows a strong temperature dependence which diminishes as the sample is made
non-superconducting by changing its doping. For underdoped samples, anomalies are
detected in measurements of magnetic susceptibility, thermal power, and nuclear
magnetic resonance, attributed to the possible formation of a spin-gap below the
characteristic temperature Ts.

(5) HTS display basically the same general magnetic phase diagram [H (T)] as

the conventional low temperature superconductors, which is defined by the lower



critical field [H,], the irreversibility field [Hi(T)] and the upper critical field [He(T)].
The region underneath H;(T) is the Meissner state that between H;(T) and Hi(T) the
vortex lattice state and that between H;(T) and He,(T) the vortex liquid state. J. be-
comes zero above Hi(T). Because of the high T, and high He,; of HTS, the phase-space
between H;(T) and Hc,(T) is greatly expanded and thus reveal readily some features,
which may or may not be unique to HTS. These features have been ascribed to the
large fluctuation effect associated with weakly pinned magnetic fluxoids due to the
quasi-2D nature of HTS.

(6) The holes in HTS form pairs below T, with a total spin S = 0, and the evi-
dence from experiments shows that this superconducting pairing state has an angular
momentum L= 2, i.e., d-pairing. Magnetic pairing mechanism has long been predicted
to give rise to a d-pairing, although other causes of non-magnetic origin have also
been proposed.

It is instructive to contrast the properties of HTS and low temperature supercon-
ductors (LTS), which have important bearing in developing a comprehensive micros-
copic theory. It is easier to compare the similarities and differences of HTS and LTS

in tabular form as shown below:
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Table 1.1 Comparisons between HTS and LTS (Chu, 2004).

HTS LTS
Similarities
p=0(when H<H;) yes yes
Meissner state (whenH <H)) yes yes
Charge-carrier pairing yes yes
Ginzburg-Landau theory applicable applicable
Differences
T < 164K < 23K
Coherence length ~10"cm ~107cm
Carrier concentration ~10"'cm™ ~10%cm™
Penetration depth long short
Type all some
Structure ~ 2D 3D
Anisotropy large small
Fluctuations large small
Normal state properties abnormal normal
Magnetic properties complex less complex

Pairing symmetry d S
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Because of the properties discussed above, HTS can transmit a large electric
current without loss at low frequencies and with only a small loss at high frequencies,
trap and shield a strong dc magnetic field, shield an electromagnetic signal at high fre-

quency display a drastic p -change near T, and exhibit novel behaviour when made

into tunnelling junctions. Many application concepts have exploited one or more of

these characteristics. Many prototype devices have been build and tested successfully.
1.3 Development of theoretical models

After the discovery of the high-temperature superconductivity in cuprates, many
kinds of theoretical models of the mechanism of the high-temperature superconducti-
vity were proposed, but even today there is no consensus among theoretical physic-
ists.There are so many various kinds of interactions in such complicated systems;
electron-phonon interactions, spin-spin interactions, charge density waves, spin densi-
ty waves, and so on. It may be considered that we are just beginning to understand the
physics of these complex systems. Explaining this phenomenon clearly will take a
long time.

There is, also, no consensus among theorists as to how to develop a more detai-
led theoretical description of the cuprates. The approaches which have been tried can
be classified as top-down or bottom-up. In a top-down approach, one chooses a model
early on (the Hubbard model is a typical example), develops solutions for alternative
choices of model parameters, and then sees whether the solutions lead to results
consistent with experiment. In a bottom-up approach one begins with the experimen-
tal results, and attempts to devise a phenomenological description of a subset of the
experimental results. One then explores alternative scenario, until one arrives at a sce-

nario and associated microscopic calculations which are consistent with experiment.
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Then, and only then, does one search for a model Hamiltonian whose solution might
provide the ultimate microscopic theory.

The theory of high temperature superconductivity has proven to be elusive to
date. This is probably as much caused by the fact that in these complex materials it is
very hard to establish uniquely even the experimental phenomenology, as well as by
the evolution of many competing models, which seem to address only particular as -
pects of the problem. The Indian story of the blind men trying to characterize the main
properties of an elephant by touching various parts of its body seems to be particularly
relevant. It is not even clear whether there is a single theory of superconductivity or
whether various mechanisms are possible. Thus it is impossible to summarize, or even
give a complete general overview of all theories of superconductivity. The general
view point (determined by majority vote) seems to be that low temperature supercon-
ductors are phonon mediated whereas high T, ones are somehow “unconventional”
and anisotropic, although the origin of the anisotropy remains controversial. Because
of this, numerical studies in well-defined theoretical models may prove to be particu -
larly illuminating and may help uncover the essence of superconductivity.

In the next section a simple model will be reconsidered to describe the HTS
where the plasmons are assumed to be the attractive bosons in the pairing effect. The
plasmon exchange model has indeed been presented and discussed by several authors
as soon as the HTS were discovered. It is to be stressed that the high T; in the new
materials is due not to the plasmon mechanism itself. It has been realized that the
phonons could also play a major role in the pairing effect as they do in the normal
superconductors. On the other hand, there is experimental evidence that the electron-

phonon interaction is very important, but it is not sufficient to lead to the observed
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high T.. This coexistence concept has received experimental support.
1.4 Concept of plasmon exchange model

Concerning with exchange by phonons and plasmons, one should note that these
are not hypothetical, but real excitations. At the same time, the high anisotropy of the
new oxides, caused by the presence of layer and chain structures, makes the plasmon
mechanism very favourable. The behaviour of plasmons in quasi-low-dimensional
materials, their dispersion relations, etc., differ in a striking way from those in the
usual 3D systems. The electron-phonon interaction (EPI) leads to the appearance of
an effective attraction between electrons. The interaction of an electron with the rest
of the Fermi sea is a more complicated phenomenon than EPI. Namely, this interac-
tion is not only responsible for the usual screening, but, in addition, it contains a dyna-
mic part. This dynamic part corresponds to the collective motion of electrons with
respect to the lattice or to the relative motion of two groups of carriers in a system
with two energy bands. Plasmons are the quasi-particles describing such collective
motion, and in this case, they are similar to phonons which are the quasi- particles
describing the collective excitations of the lattice.

As mentioned earlier this approach is based on the concept of coexistence of the
phonon and plasmon mechanisms. This concept is receiving various experimental
support. Experimental data on thermal conductivity, photo-induced IR absorption,
isotope shift, sound attenuation, etc., show that the electron-phonon coupling plays an
important role.

The increase of the thermal conductivity at temperatures T < T, means that the
phonons make a major contribution to the total thermal flow, and the electron-phonon

interaction is a main relaxation mechanism (Morelli et al., 1987). The analysis of the
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photo-induced IR absorption gives direct evidence for strong electron-phonon coupl-

ing in the high-T. oxides (Kim et al., 1987). The isotope shift T, ~M which has been

observed experimentally is also an important manifestation of the electron-phonon
coupling (Cohen et al., 1987).

The presence of the isotope shift is definite evidence of the contribution of EPI,
although the question of the strength of EPI cannot be answered from the value of o
alone. There are other experimental indications of strong electron-phonon coupling,
such as ferroelectricity of the materials and drastic change of the phonon dispersion
relation caused by the superconducting transition.

It is believed that strong electron-phonon coupling is very important for high T,
but, nevertheless, it is not sufficient and there is a need for an additional mechanism
(Kresin, 1987; Ashkenazi et al., 1987; Ruvalds, 1987). Such a conclusion can be
drawn from the analysis of neutron spectroscopy and tunnelling data.

Since many of the recent discovered superconducting materials have a layered
structure. The layers are composed of Cu-O planes (or sheets) separated from each
other by planes of various other oxides and rare earths as shown in Fig.1.1. The elect-
rons interact with each other within the same layer as well as from layer to layer via
an effective interaction involving plasmon exchanges among all layers. The CuO,
layer is assumed to form a two-dimensional electron gas (2DEG) and that two electr-
ons in a given layer can interact attractively by plasmon exchanges either within that

layer or via the various neighbouring layers. An isolated layer has only one plasmon

mode with a dispersion relation®, oc q"?. Interlayer interaction leads to a noticeable

modification of the pure two-dimensional (2D) dispersion relation, namely, to the

formation of plasmon bands. Nevertheless, anisotropy results in a picture which
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differs in a striking way from the isotropic three-dimensional (3D) case. In addition,
the maxima of the plasmon density of states are shifted toward the boundaries of the
plasmon branches, which enhances the electron-plasmon coupling considerably.

It is the layered nature of the superconducting cuprates which confines the
collective motion of the electrons predominantly to the planes and leads to the

unusual features of its plasmon spectra. In addition, in the YBa,Cu,0, materials the

appearance of one-dimensional chain structures introduces quasi-one-dimensional
collective modes with similar unusual properties.

Indeed, it is a well-known fact that the spectrum of a layered electron gas (LEG)
contains low-energy electronic collective modes, often called acoustic plasmons with

a dispersion relationw_ oc q. That such modes could not be observed experimentally

at finite q so far is related to the fact that the only technique known to date to determi-
ne the plasmon energy as a function of its wave-vector (i.e., electron energy loss
spectroscopy), has a resolution of 0.2-0.5 eV at best ( Niickeret al., 1989; Stockli et
al., 2000). It remains thus an experimental challenge to measure collective charge
excitations down to very low energies and finite q. It is also worth noting that the
largest contribution of acoustic plasmons to physical quantities such as the condensa-
tion energy is expected to come from finite but rather small values of q with respect to
the Fermi wave-vector. To study the effect of acoustic plasmons on superconductivity
requires thus to probe finite q’s.

Low energy electronic collective modes matter for superconductivity because
they can act as intermediate bosons providing an effective attractive interaction bet-
ween quasi-particles (Bill et al., 2000). Therefore, their importance is not limited to

HTS. Organic or chalcogenide materials are other examples of layered systems that
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undergo a superconducting phase transition. It is thus of fundamental interest to get
insight into the relationship between acoustic plasmons and superconductivity.
The conventional theory of superconductivity has mostly dealt with 3D isotropic

systems. In this theory the Coulomb repulsion is described by a static pseudopotential

" and its value is reduced because of the well-known logarithmic factor In(E/o)

where E is an electronic energy and o is a characteristic bosonic (e.g. phonon) ener-

gy. Such a static approach is justified by the large value of the plasmon frequency
®, (q = 0) = (47me2 / m)l/2 which ranges between 5eV and 30eV. Such high energies

imply a perfect, instantaneous screening of the Coulomb interaction.

Layered conductors have a structure of the plasmon spectrum that differs funda-
mentally from 3D metals. In addition to the high energy “optical” collective mode
mentioned above, the spectrum contains also an important low-frequency part or
acoustic plasmons (Kresin and Morawitz, 1988). The screening of the Coulomb inter-
action is incomplete and the dynamic nature of the interaction becomes important. As
a result, the interplay between the attractive interaction and the Coulomb term is more
subtle than introduced in the conventional theory of superconductivity (Bill et al.,
2003). It is on this screened Coulomb term and its interplay with the electron phonon
mechanism that will be used to describe the superconducting state of layered conduct-
ors. It is assumed that the phonons themselves provide the pairing so that at T= 0 K
the compound is in the superconducting state. In other words, the presence of phonons
is sufficient to overcome the static Coulomb repulsive interaction. Within this
scenario the dynamic screening acts as an additional factor. Therefore, in the absence

of the plasmon term we obtain the conventional Eliashberg equations.
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To study the impact of dynamic screening on the superconducting state we need

to calculate the dielectric function, which contains the polarizabilityH(q, (Dn). In

particular, to obtain T., we have to determine these functions at finite temperatures

and all values of (q, con) . The full temperature, frequency and wave-vector dependen-

ce of dielectric function and the effect on T, will be studied in this research.



CHAPTER Il

ELECTRONIC EXCITATION SPECTRUM

2.1 Dielectric function and plasmons

A plasmon or a plasma excitation is a fundamental elementary excitation of an
electron system or any charged-particle system. It is the collective normal mode of
charge-density oscillation in the free-carrier system, which is present both in classical
and quantum plasma. Studying the collective plasmon excitation in the electron gas
has been among the very first theoretical quantum-mechanical many-body problems
studied in solid-state physics dating back to the early 1950s.

The collective motion of electrons corresponding to the density fluctuation is a

wave motion with frequency o, , called plasma oscillations. When the interaction bet-

ween particles is short ranged, frequency of oscillations with long wavelength are
always proportional to the inverse wavelength as in sound waves. In contrast, charge
density fluctuation can exert the long-range Coulomb force on each other, however
for apart they appear. As a consequence the frequency remains finite in the limit of
long wavelength.

In one-component plasma model, the electrons are considered in a background
of positive ions forming a cloud of neutralizing charges. Being neutral, the response
of plasma to an external electric field is characterized by a dielectric function. In ge-

neral this is a function of position in the system and time. Therefore, its Fourier trans-
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form ¢(q,®) is a function of wavenumber ¢ and frequency . This function relates
the dielectric displacement vector D(d, ») to the electric field E(d, ) by the equa -
tion

D (4, 0)=¢(q,0)E(d, ) (2.1)
The dielectric displacement is determined through Poisson’s equation by a test charge

density while the electric vector depends not only on the test charge but also on the

charge fluctuations induced by the test charge. Therefore,

]!

id.0(, ) = 4mp, (G, 0) (2.2)
iG.E(0,0)=4r| p, (G, 0)+(p(d.0)) |
where p, (G, ) is a test charge density and p(d, ) is the fluctuational (variational)
charge density.
The average density (p) may be represented by the free particle polarization

function given by

f —f
2 3J. ) (Sk? dk
(2n)° 7 gy, —& t@+i0

11(q,0) =

(2.3)

where ¢, is the kinetic energy and f (g, ) is the Fermi distribution function. The factor

2 is due to spin, and the imaginary notation i6 in the denominator means that it is
brought to zero after integration. The dielectric function is then given by

6 0) =
4= TNV @@ 0) 24)

where V(q) = (2.5)
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is the Fourier transform of the Coulomb potential. The dielectric function thus obtain-
ed represents a result based on the random-phase approximation (RPA).
In Eq. (2.4), V (q) is the bare Coulomb potential. In a self-consistent approach

this potential is replaced by V(q) /€ . In this case the dielectric function is given by

&(q,w) =1-V(a)I1(g, ®) (2.6)
The polarization function corresponds to three dimensions. The static polariza-

tion function](qg,0)is called Lindhard’s function. The Lindhard model is used for the
free electron gas where the wavefunctions are plane waves and the energies are

e, =h’k’/2m. The occupancy of the states is determined by the Fermi distribution
function f (e, ) at the temperature T = 0. The 3D analytic expression for the polariza-
tion function is given by

H(q,O)zzL;[l—%(s_ijln

s?+2s
s?2—2s

S

} 2.7)

where s=q/k. is a dimensionless parameter and ke is the Fermi wave-vector. The

polarization function depends on dimension.
The RPA dielectric function has been used frequently, but it does not provide a
good approximation for large g. Therefore, the dielectric function given by Eq. (2.4)

is modified such that

V(@)I1(g,0)
1+ V(9)G(q,0)I1(g, )

e(q,0)=1— (2.8)

where G(q,®) is a correction function. This function is unknown, but it is expected to
approach 1 for g — 0 because the RPA is generally good in this limit.

The dielectric function can vanish at a plasmon frequency that depends on g.
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The equation
e(q,,) =0 (2.9)

provides a plasmon dispersion relation. For three dimensions, the plasmon in the long-

wavelength limit is well defined and is given by

4rne? )’
‘Dp{ m j (2.10)

where n is the electron density and typical values of 7w, are in the range 10-20 eV.

The long-wavelength response of a 3D electron liquid is dominated by a strong reson-
ance at the plasma frequency w, . The system will oscillate with this frequency with-
out a driving external field. The restoring force is given by the internal field set up by
the disturbance in the charge distribution. At shorter wavelengths, the plasma oscilla-

tions show dispersion, i.e., their frequency depends on the wave number g. At not too

short wavelengths, the dispersion relation can be expanded as follows:
®,(q)=w, +ag’ +... (2.11)
where the dispersion coefficient is given by o = 3k?2 /10m2mp in the Lindhard approx-
imation (RPA).
The dielectric function is imaginary because of the small imaginary number in

the integrand. Note that

i 1 .
=P=—ind 2.12
X+i0 X ' (X) ( )

where P stands for taking the principal value and the symbol i6 is a small imaginary
part which is brought to zero after it has been used.

The real part of the dielectric function is related to screening. In general, the real
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part is large for small o, indicating that screening in the static case is effective. The
imaginary part is related to the Coulomb energy and describes the creation of real
excitations of the system. In the dielectric response Im1/e describes the density fluc-

tuation spectrum of the system.

The real part of the Lindhard dielectric function had been shown to be

2 2 2 2
Sl(q’m)=1+2me k. me i{kz(q moaj }n|2qkp+q (Zm/h)o)|

_F
nh® q° " mh? q®| © ‘—quF +q° —(Zm/h)co‘
2.13)

+me2i e [d,mo ’ In| 2qu+q2+(2m/h)m|
m?q*| " |2 hoq ‘—quF+q2+(2m/h)w‘

In particular, for the static case we have

(2.14)

2 2 2
2me* k N 2m(z % ki—q— In 2K. +q
wh° g 2k. —q

£ (0,0)=1+

_F
2

nh® q 4

The imaginary part of the Lindhard dielectric function is

ame” o if < 2k, and 0 < (2m/ 7)o < 20K, —

2 2
&,(0,0)=1{"% i3 kﬁ—(ﬂ—mgj }f 20k, g2 <(2m/ )< 2qk. +q>  (2.15)

0 in the other cases

The (q, ) plane of the imaginary part of the Lindhard dielectric function is shown in

Fig.2.1.
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2k, q

Z—m(o > 20K, +0°
h

Figure 2.1 Imaginary parts of the Lindhard function. The dashed line, where

Simultaneously &, (q,®) and €, (q,®) vanish, gives the dispersion curve of

plasmon mode (Grosso and Parravicini, 2000).

It is seen from Fig. 2.1 that the (g, ©) plane is divided into 4 regions. The imagi-

nary part e, (q,m) vanished in regions | and 1V, while it is different from zero only in
regions Il and I11. It depends linearly on ® in the region Il and quadratically in the
region I11. Note that in the regions | and IV electron-hole single particle excitations of

wave-vector g are not possible (and thus €, vanishes there).
Introducing the dimensionless quantity x = q/ 2k, the real part ¢, (q,0)=¢(q)

for the static case given by Eq. (2.14) can be recast in the form

s(q)=1+l;—iFF(x) (2.16)

where the function F(x) is given by
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1-x2

F(x):1+ In| 2%
24X

1-x

(2.17)

and k3. =4ne’D(E.)is the Thomas-Fermi screening wavevector and D (E¢) is the

density of states at the Fermi energy.

For small q(q < 2k ), we have x < 1andF(x)~1, therefore the Lindhard func-

tion gives the same result as the linearized Thomas-Fermi theory.

For large q(q > 2k. ), we have x >1 and F(x) ~1/3x?, then the Lindhard func-

tion has the asymptotic behaviour

LT

e(q)—>1 ]

A decrease of s(q)—l as g assure a well-behaved screening charge density at the
origin.

For intermediate g (q ~ 2kF) the Lindhard dielectric function is continuous for
q ~ 2k, but with a logarithmic singularity in the derivative i.e.,de(q)/dg~—w. The
singular in reciprocal space generates oscillation of the screening charge in real space
known as Friedel oscillations.
2.2 Plasmons in two dimensions

The collective behavior in plasmons of lower dimensionality is quite different
from that in 3D systems. The differences occur because the electric fields remain 3D
while the induced charge densities have reduced dimensionality. The 2D plasmon is
another different type of plasmon, the charge density distribution of which is restric-

ted in 2D space and thus shows very different electrodynamic properties compared

with those of 3D plasmons.
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The static polarization function in 3D case given by Eq. (2.7) is different from

that in 2D case. For 2D system at T = 0, it is given by

1 1 §<2
,0 =
MM(a.0) on 1—(1—45-2)”2 5> 2

For 1D system, the static polarization is given by

s?+2s
s —2s

1
H(q,O):mln

(2.18a)

(2.18b)

Figure 2.2 illustrate the Lindhard approximation for one-, two-, and three-dimensional

cases of the static polarization function]1(q,0) in units of [1(0,0). The 1D curve with

a divergence at q =2k. shows relatively the strongest response to the test charge. In

2D case, the derivative of H(q,O) is singular atq =2k, and the 3D curve has an

inflection point. In these two cases, the response is strongest for g = 0. In all three

cases, [1(q,0) approaches 0 asq — .
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Figure 2.2 Lindhard approximation for static polarization in

one-, two-, and three-dimensional electron gas.

The Fourier transform of the Coulomb potential is also quite different from that

in 3D case which is given by Eq. (2.5). In 2D case, it has the form

B 2mne’

V(q) (2.19)
and the Fermi momentum is
ke =(2nn)"* (2.20)

For two dimensions, the plasmon dispersion relation at absolute zero is given in

the long-wavelength limit (q — 0) by

omne? \(. 3
mp=[ qJ (1+§aoqj (2.21)

m

Hence, a 2D plasmon is not defined in this limit. Here a, is the Bohr radius.
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For electrons in the inversion layer, an effective Bohr radius must be used. It is
given by

a4 = K" 1
° me? g,

(2.22)

where ¢ is an effective dielectric constant m”is an effective mass and g, is the val-

ley degeneracy.

In practice, a system like an inversion layer is not a truly 2D system. We shall
therefore comment on the effect of a finite width of the layer and give the results for
the quasi-2D electron liquid.

For a 2D classical electron gas between Si and SiO; in a MOSFET, the disper-

sion relation for small g is given by

ne2 1/2
= 2.23
where g = %[as +&,, cOth (qd) | (2.24)

g, and g,, are the dielectric constants of Si and SiO, layers respectively, and d is the

thickness of the oxide layer. The dispersion curve vanishes in the long-wavelength
limit. This is a 2D characteristic that has been confirmed by experiment.
The special feature of the 2D system is that the plasmon dispersion at long-

wavelengths is proportional tog”? rather than being constant as in 3D case. Collective

or plasmon modes of a 2D electron system have been known for many years to give
an excitation spectrum that starts at zero energy, rather than at a finite energy as for
bulk or surface plasmons. This was verified first for electron on liquid helium and

later for electron in inversion layers. The plasmon dispersion of 2D system in classical
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limit is given by (Fetter, 1974a)

2 1/2
wp:(Znn:e qj (1+3q/k, )" (2.25)

where k, =2nne’/k,T is 2D Debye screening constant.

The specific theoretical issue is that the plasmon frequency w, is exactly known
only at long wavelength(q — 0). At finite g, away from the long-wavelength limit,

there are several corrections to the plasmon dispersion mp(q)arising from (finite
wave vector) response, local-field corrections, finite temperature, and other mecha-
nisms relevant to the specific electron system being studied.
2.3 Plasmons in layered systems

Electronic collective modes are notably different in layered systems as compar-
ed to 3D metals. A 3D electron gas has one degenerate “optical” plasmon branch with
o, # 0. In addition to this branch (corresponding toq, =0), layered systems display
“acoustic” branches for all values ofq, > 0. Here, g, is the wave vector normal to the
conducting sheets. A layered conductor is characterized by a highly anisotropic plas-

mon band mp(q,qz) without a gap at g = 0 except for the single branch for which

q, =0 (g is a 2D wave vector in the plane of the sheets).

The detailed distribution of electric field intensities of the layer plasmons for a
general value of ¢, is very complicated due to interference from the contributions
from different layers. It is physically instructive, however, to note that the upper and
lower extrema of the plasmon branches correspond to physically transparent field

patterns. The former (g, =0) has the carriers in adjacent sheets and hence the entire

layered array moves in-phase against the uniform background- a type of motion which
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for phonons is called acoustic- while it here leads to the highest frequency mode- the

bulk plasmon. The latter ( g, ==/L where L is the interlayer distance) has electrons

on adjacent sheets moving out-of-phase against each other- a type of motion which
for phonons leads to an optic mode. Note that these qualitative notions are interchan-
ged here because for phonons one consideres the center-of-mass motion of the ions
against one another, and the optic modes arise from having at least two atoms per unit
cell. For the layer plasmons considered here the carriers are moving in the direction of

the layers only against the uniform background density.

The band-width of the plasmon band, which is o, at q = 0, collapses to zero for

g of order 1/L, and the singular upper and lower boundaries coalesce into the single-

layer plasmon.

Two factors due to interlayer interactions affect the plasmon dispersion relation.
First, the interlayer Coulomb interaction plays an important role. Second, one should
consider interlayer transitions of the electrons, the importance of this factor increases
with decreasing interlayer distance. It has been shown (Grecu, 1973) that introduction
of a single hopping term for the electronic motion perpendicular to the layers
introduces a finite gap at q = 0. Because of the small density of states in that region,
we confine ourselves to pointing out that the major features of the layer plasmon
bands, in particular, their singularities at their upper and lower boundaries, are not

expected to be affected by inclusion of a small hopping term in the z-direction.

As a result, the polarization operator [] has the same form as in the 2D case, but

the Coulomb potential V is different because of the Coulomb interlayer interaction.
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Layered systems are characterized by a plasmon band sz(q,qz) where

(9,q,) are wave vectors in the planes and perpendicular to them. The z axis is chosen

to be perpendicular to the layer. The collective excitation spectrum of the layered

electron gas is shown in the Fig. 2.3.

(o) * Plasmon Bands

- (9,q,) Electron — Hole Pair Excitations

K, 2k, q

Figure 2.3 Plot of the various plasmon branches and electron-hole pair excitation as a

function of q (absolute value of in-plane wave vector) and g, for a layered electron
gas (Kresin and Morawitz, 1988).

The values of Q are restricted to lie between the upper and lower branches.
These branches correspond to g, =0and g, =x/L for the upper-most and the lowest

branches, respectively. In addition, we note that these boundary modes correspond to

in phase motion of electron on different planes (g, =0) and out-of-phase motion

(g, =m/L) on adjacent planes.
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The upper branch correspond to 3D behavior, and the dependence of Q(q,O) IS
similar to the behaviour of the usual 3D sample. On the other hand, the behaviour of
the lowest branch Q(q, /L) is entirely different. It is important to note that in the
limit g, >1/L the interlayer interaction does not play an important role, and we are
dealing with a two-dimensional dispersion relation® ~ q. There is a crossover from
3D to 2D behaviour in the regionq, ~1/L. This crossover corresponds to a maximum

in the density of states (Landau and Lifshitz, 1976). This can be seen by considering
the dependence of the plasmon frequency Q on one less variable and, hence, the
derivative with respect to this variable goes to zero. This leads to an effective increase
in the density of states in this region.

Therefore, interlayer interaction leads to the formation of a highly anisotropic

plasmon bandQ(q,qz). A very important feature of this band is the nonuniform dis -

tribution of the density of states. Indeed, the dispersion relation Q(q,qz) is described

by the following equation (Morawitz et al., 1993):

F(y.2)

Q. (y,z)=v3iy? ’ 2.26

(yiz)=vey +v§+2F(y,z)/y (2:26)

where F(y.z)= __sihy (2.27)
coshy—cosz

v is proportional to the Fermi velocity, y=qL andz=q,L.

It is easy to see that the derivative 0Q, /dq, vanishes atq, =0, £ /L. The sin-

gularity (6£2+/f5qz)_l implies a singularity in the plasmon density of states at both



32
boundaries. This singularity is transformed into a sharp peak if we take into account a

small interlayer hopping term.

Hence, we see that the plasmon density of states has two peaked regions. The
sharp increase of the density of states near the lower boundary is particularly impor-
tant for the superconducting state in the layered superconductors.

The upper branch, Q2 , and the lowest branch, Q , of the layered electron gas in

the plasmon region are shown to be (Molozovsky et al., 1993)

2 1/2
Q. =(2“r:e qJ (coth L/2)"* (2.28)

which is the purely optical plasmon frequency, and

2 1/2
Q :(an:e qj (tanth/2)1/2 (2.29)

which is the proper acoustic plasmon frequency.

The Q_ plasmon involves charge fluctuations in the planes which, in the long-

wavelength limit, are completely out of phase with each other. Consequently, in this

limit, the Q_ mode involves no net charge fluctuation and hence will not be excited
by an electromagnetic wave. This feature is ultimately the reason why the Q. mode is
acoustic, with its energy going to zero. Even more interesting is the role that the Q2

mode might play as a new source of an attractive interaction between electrons in the

CuO, sheets and hence high-temperature superconductivity.



CHAPTER 111

TEMPERATURE AND FINITE-WAVE VECTOR

EFFECTS ON PLASMON DISPERSION RELATION

IN LAYERED CONDUCTORS

3.1 Interaction potential

Consider a layered system consisting of stacks of conducting sheets of CuO,
which have a significant number of free charge carriers (electrons). These conducting

sheets are along the z-axis and separated by dielectric spacere,,. A series of identical

CuO; planes are separated by the interlayer distance L. The description of layered
conductors can be made by neglecting the small interlayer hopping in a first approxi-
mation. The electrons in a CuO, plane interact via the Coulomb interaction with char-

ge carriers both within and between the planes. The resulting potential has a particu-

larly strong influence in the long-wavelength limit(q — 0).
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spacer

&

Figure 3.1 The layered electron gas model with two conducting sheets along z-axis

and separated by dielectric spacer with dielectric constante,, .

The effective interaction between charge carriers is given by

Viao)= ;ZE(,CQ)

(3.1)

where ¢ is the wave vector along the plane and V, (q) is the bare Coulomb potential

between the charge carriers. The functione(q, co) is the longitudinal dielectric function

for a single band of charge carriers.

The Fourier transform of the Coulomb potential along the plane is

2 2
V.(anr) =" =exp(-alr-r) (32)

M

where r and r' are the coordinates of the planes and are discrete variables. The elec-
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trons are assumed to be confined only in the conducting CuO, planes. In terms of the

interlayer spacing L it is convenient to express.

=jL andr, =jL
where jand j' denote the indices for the CuO, planes.

The bare Coulomb potential between the electrons in the r—r’ representation

for fixed wave vector g becomes

V. (q,r=r)=V,(a,j.])

2me’

(3.3)

exp(-qlj-J|L)

M

The effective interaction potential between electrons can be conveniently described by

the perturbation approach and is

V(@ i)=V(aii)-2Ve(a i ], (a0)V(goei]) (3.4)

o

]

where [](q, ) is the polarizability function for the j" layer. Since the system is trans-

lationally symmetric along the z-direction, we use following transformation

V(qz):ZV(j—j’)exp[i(j—j’)L]qz (3.5)
.y L p-n/L Loy
and V(]—j)zz—n . V(a,)exp[-i(j~])q,L]da, (3.6)

where g, is the wave vector perpendicular to the plane. Performing the Fourier trans -

formation of Eq. (3.4) and keeping in mind that the perioditicity of the layer is inde -

pendent of j, the result is
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ZeXp[ 0,2, — CI|Z|<| ]
R(a.q,)

V(a,q,,
(0.0:00)= ey e(q q,,®

B 2me?
geyve(a.d,, ©)

3.7)

The functionR(q,q, ) is defined as the layer form factor, introduced by Fetter (Fetter,

1974a) in the hydrodynamic treatment of the layer plasmon dispersion and is

sinh(qL)
cosh(qL)—cos(q,L)

R(g.0,)=

(3.8)

The dielectric function for the layered system is then written in its general form as

8(q’qz’m)::l'_vc(CI!QZ)I_[(CI!('O) (39)
2me’
where V. (9,9,)= - R(a,q,) (3.10)

The plasmon spectrum of a layered conductor is determined by the poles that corresp-

ond to the zeros of the real- frequency dielectric function
1-V,(9,9,)Rell(q,0)=0 (3.11)
The temperature effect on the plasmon dispersion relation comes from the Rel]
(q,0) in Eq. (3.11).
Note that the layer form factor R(q,qz) given by Eq. (3.8) is applied only to the
conducting CuO, layers which are stacked along the z-axis and separated by dielectric

spacer with dielectric constante,,. This layered electron gas model can be applied to

the high-temperature oxides such as lanthanum cuprates, layered organic supercon-
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ductors, intercalated metal halide nitrides, etc. Other different structures such as a
superlattice with a basis of two different kinds of metallic sheets (Bi-O and Cu-O

sheets) and a coupled sheet-chain system (Y-Ba-Cu-O superconductors) will have
different forms of R (q,q, ).

The characteristic curve of the layer form factor R(q,q, )as a function of gL for
five values of q,L is shown in Fig. 3.2. It is found that for large separation between the
planes gL >>1 the functionR(q,q,)=R(Q)—1 and V,(q,q,)=V,(Q) reduces to
that of a 2D Coulomb potential. For long in-plane wavelengths (gL <« 1) ,R(Q)—>
2q/|Q?|Land V, (Q)diverges as1/|Q|*for|Q| — 0in agreement with the 3D Coulomb

interaction.
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Figure 3. 2 Characteristic curves of the layer form factor R (qL,qu) .
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3.2 Polarization as a function of temperature

The polarization propagator of a single layer takes the well-known form (Fetter

and Walecka, 1971),

o d’p | f(p+d)-f(p)
M(a.0)= LI—TJZ (275)2{hco+i11—8m+srJ (3.12)

where f (p) is the Fermi-Dirac distribution function ande, = 2°p?/2m . The factor 2 is
due to spin degeneracy.

To find the real part and imaginary part of the polarization propagator, it is easi-

er to rewrite Eq. (3.12) as

[(a.0)=-2f d;pz f(p){ : - : } (3.13)

(2m) ho+in—g,+¢,, ho+in-g,  +¢
The real part of [1(q, ) is then

-2

(2n)

1 1

dezpf(p){ - } (3.14)

hco—sp +&, 4 hco+8p —€,.q

Rell(q,0)=

where P is the principal value.

2

Since € q—E, =2;-l—m(q2 —2pqcoso)
hZ
€, — €, = —%(q2 +2pgcos)

Equation (3.14) then becomes
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2m T 1 1
Re ,0)=———— | dpf do - 3.15
(a.0) hzq(zn)z'[ P (p)l Lose—A cose—B} (315
where A:(m+ﬂj£sE (3.16)
hq 2)p p
{@_ﬂjlz_ (3.17)
nq 2)p p

27
] . do
Consider the angular integral, 1,(0)= | ——.
. : :(0) !cose—A
i0 . 1 1
Letz=e", dz=izd0 and cos(9=E Z+= |, then
z

dz
4.(6) :Tgs 72 -2zA+1°

c

Poles of the angular integral are atz, , = A++/A%*—1. Now, suppose A >1 then|zl| >1,

|z,| <1 and since z,.z, =1 it is seen that only z, lies inside the unit circle|z|=1. The

residue is , and hence

Z,—%,

—27 —27p

|1(9):\/A2 1 :\/az—pz

Similarly, suppose B > 1, then

2n
) (6) _ J- de —27 —27p

2C0s0-B B2 -1 Jo?—p?

For|A, B| <1, itis easily seen thatl, =1,=0. Also for B <-1i.e., for large g, I, has
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the same value as given above except for a change of sign. We will not consider this

case because it involves large g limit.
In general the Fermi function f (p) is a function of temperature defined by

1
f(p) =T (3.18)

where B=1/k,T, p is the chemical potential and k; is the Boltzmann constant. It is

simpler to scale the parameters at finite temperature as follows:
X=plk., t=T/T.,z=x*/t,and a.=Bp (3.19)

where K. is the Fermi momentumT_ is the Fermi temperature, X, z and t are dimen-

sionless variables. The Fermi function then becomes

1
f(X) = 3.20
( ) ex /t-a +1 ( )
or f(z)= - (3.21)
et 41 '

The degeneracy parameter, a., is determined from the condition that the total number

N is fixed.

The value of the Fermi momentum k. in terms of the electron density can be

expressed at absolute zero as

N=2>1-=
p

2A
(2n)°

N k2
A 2=
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Thus, ke =(2mn)"* (3.22)

However, the areal density, n, at finite temperature can be evaluated by

N d’p K2 %
n=—=2 f =—F|xf(x)dx
A~ ey OV = X100
:nt_[f(z)dz
0
Hence, 1=_[ Z,dz
t e +1
or a=In[e -1] (3.23)

It is seen that for any given density and temperature, the ratiot =T/ T_ fixes the dege-
neracy parameter a. and thus f (z). Unlike 3D case, o can be expressed in closed form
in 2D system.

Using the above angular integral 1,(6) and the notations for parameters at finite

temperature, the first term of Eq. (3.15) can be written in the form

-m kFﬁJ- dz 1
(e

hquC 2 z-a +1) (azltki _2)1/2

Similarly for the second term in Eq. (3.15), thus the real part of [1(q,®) becomes

ReT1(q, ) = —— kFﬁfe & : :

- - 3.24
an 2 e+l (@2 -z) (bP/tkE-z) (524

This place an upper limit on z integral to be&, and &_for the first and the second term



of Eq. (3.24) respectively where

a’ b

& =—5 and & =—>

tk2 tk2
or €. 1 mo £
- tlngke 2K
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(3.25)

Since the Fermi function at low temperature limit is quite different from that at

high temperature, these two limits will be considered separately in the next two

sections.

3.3 Low temperature limit

In the low temperature limit, it is necessary to consider 3 cases:

1.§_ >a, obviously &, > o automatically

2. £, <o

3.& <aand &, >a

Casel. £, >a

Consider the integration
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Let z—a=x forl, and ao—z = x for I3, then

Lol = —dx 1 _i‘[“ dx 1
2 " X+1\/F;_+x—oc 0 ex+1\/g_—x—a

- T dx 11 .\ I dx 1
N e+l & —a+rx Jo —a-x| L e+l g —a+x

0

Since the last term is exponentially negligible, then

,_ ,2+,3z_{j“e;ﬂ§1[ J;—[(l @J[laJﬂ}

0

Also, since & —a is very large, this approximation will be

e J;—a {T;il{l_%&X—a}l_%[ax—aj“}}

0

2

1 Txdx T 1

(F;_—oc)m Oex 1 _E(é_—oc)m

~
~

A similarly for the integration of z from 0 to &, . Equation (3.24) becomes

(28 -2E +2E —a -2t ~a)+

-m k.t
R ,®) = E
eH(q (D) rqn 2

2 1 1 ]} 326



2
5ot a7 s
where €, = g > :1 M J_ri zi
B tk; t| ngk: 2k t
and A = Mo J_ri
- hoke 2k

(ij (if >2‘3| i.e., small g limit)
and the approximation

£, —a z%[Ai -1]

will be used, then Eq. (3.26) becomes

Rell(q,0)= %ﬁ{ki{(Af —1)1/2 -(A2 —1)1/2}+

hq

The term in the bracket can be approximated as follows:

11 1 1 1( 1 1
R A e o oy

+n2—[(Ai —1)73/2 (A2 —1)3/2}} . for Moy d

(3.27)

g
2

45
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and (AZ-1) 7" (A1) "~ AA _3_q(hqu T

Collecting these terms we, therefore, obtain the real part of the polarization propaga-

tor in the case &, > o as

Re[l(a, @)= mke | G (hij2+ 3,7t
’ ngr| 2k, \ meo 8

Case 2. &, <a

q’ ( k.
jk_immj } (3.28)

This condition of &, <a is equivalent to mo , 9

<1. Equation (3.24) be -
gk: 2K

comes

Rel(q,w) = -m kF\/frf dz 1 _‘} dz 1 ]

rqn 2 e+l —z e+l JE ~z

The first integral can be approximated as follows:

let a—z=x

‘jﬁ % dz 1

-z Imj £, -7

~2,JE, + jm

Put &, —a+X=Y, the second term of the last equation becomes
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&, & —a-y
e>"*7d _
I Y _ gtie

[ e[y e e

&

Similarly for the z-integration from 0 to&_. Hence

ReH(q,O))% il kFg/?[z\/E—z\/g_F\/EeQ—a_\/Eei—a]

h°qn

«/f t

| AL A \F ‘“(eé—e@)}

=—mk ie mo ¢ +2mcoe qg Mo N
nqn " |k. \hgk. 2k, ) hok. 2k, hgke

2 2 _ mt
+|:eA It eA,/t]e 1t N }

2

For the casei > Mo
2k

F aKe

, the lowest order of the real part of polarization propagator

has the approximated form as

-mk: 2mo
n*qn hok.

Rell(q,0)~

which is a negative quantity. Hence, there is no plasmon mode in this case.

Case3. { <aand &, >a

An analysis similar to the one given above shows that Re[1(q,®) is also negat-

ive in this case and hence there is no plasmon mode too.

Therefore, the real part of the polarization propagator which is to be used for the

calculation of plasmon dispersion relation is given by Eq. (3.28) only.
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3.4 High temperature limit
In high temperature limit, we approximate the Fermi function by Boltzman fun-

ction. Thus, Eq. (3.24) becomes

— kFﬁ af -z 1 1
ReH(q,m)=%Te [e dz{\/a = —z}

where e* ~¥

The first integral can be evaluated as

&, 2
=ije‘Z (1+i+§z—+ sz, provided &, >1
0

+

~ L (1+ 21 3 ] (to the order of e > and a%)

Similarly for the z-integration from 0 to&_, hence,

Ren(q’)mk\f{ 13 1 3}

\/_+ 2&3/2 4&5/2 \/__ 2&3/2 4&5/2

Consider the following terms:
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2 \1 2 \1
_ i Mk (1+ hq j _(1_ g ) ]
mo 2mm 2mom

B 2 2
CJp ke, nqt g }
mo 2mom 2mom

19’k
=_\/E mzsz
3 2 2
and %—%ztﬁ(m—kj 1- S -1- S
| mom 2mom 2mo

41,3 45

m*w’

Substituting these values into the above equation, the high temperature limit of

the real part of polarization propagator will be

2k2 3 hZ 2k2
ReH(q,w):%(HEt m‘ﬂw;j (3.29)

3.5 Plasmon dispersion relation in layered superconductors

The plasmon dispersion relation in layered system is determined by the poles
that correspond to the zeros of real-frequency dielectric function and given by Eq.

(3.11), i.e.,
1-V,(9,9,)Rell(q,0)=0

where the bare Coulomb potential V, (q,q, ) is given by Eq. (3.10). The real part of the

polarization propagator at low temperature limit is given by Eqg. (3.28) and by Eq.

(3.29) for the high temperature limit.
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At low temperature limit, the plasmon dispersion relation becomes

o (4% (L 3 7t Hg
mp—[gML ](thqu(Q){ljt(‘lJr 2 Jmez} (3.30)

wheree. = #°k? / 2m is the Fermi energy. The dispersion relation consists of two parts.

The first part, that appears as prefactor of Eq. (3.30), comes from the modified Cou -

lomb interaction given by Eqg. (3.10) with the layer form factor R(q,q,) given by Eq.

(3.8). This part reflects the finite-thickness effect of a layered system. Since V, (Q) =

V, (q,q, ) diverges asl/|Q|2 for|Q| — 0in agreement with the 3D case, therefore the

prefactor of Eq. (3.30) at g, =0 and gL <1 reduces to the value 4rne” / ,,Lm of 3D

optical plasmon. On the other hand, forq,L=n andgL «1, the prefactor of Eq.
(3.30) becomes a function of g* and the plasmon dispersion reduces to the acoustic
plasmon(cop oc q). The plasmon band is, therefore, confined between the upper branch
withq,L = 0and the lower branch withq,L = . Since for large separation between the
planes(qL >1),V, (Q) reduces to the 2D coulomb interaction, then the prefactor of

Eq. (3.30) becomes the value 2rne’q/e,,m of 2D case. Figure 3.3 shows the charac-

teristic curves of the layer plasmon dispersion in unit of the usual optical mode

mip zmi(qzo,qz =0)=4e’s./¢,L.

The second part of the layer plasmon dispersion at low temperature limit is the

terms in bracket of Eq. (3.30). This part comes from the 2D nature of the polarization

propagator [1(g,®) given by Eq. (3.28). It contains the finite-wave-vector (higher
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order in q) effect and the temperature effect. AtT =0K, the effect of the leading

higher order in g, which is(3/4)a%*q/me?®, in agreement with the term (3/4)(q/q.;)

reported by Hwang and Sarma (Hwang and Sarma, 2001) and the previous work
(Rajagopal, 1977). The electronic excitation spectrum for the layered systemat T =0

is shown in the Figure 3.2(b) and shows similar curves that reported by the others

(Bill et al., 2003).The finite-temperature effect, which is(n2t2/4)h2q/me2, is quite

small and negligible for t=T/T. «1 as seen in Figure 3.2 (c)-(f) and confirmed by

Hwang and Sarma (Hwang and Sarma, 2001).

From Egs. (3.8), (3.10) and (3.29) we obtain the plasmon dispersion at high tem-

perature limit:

. _[4€% ) L 3, 'q
mp_[ j(th]qR(Q){Hzt } (3:31)

eyl me

Since the finite-temperature effect comes from the 2D nature of H(q, 0)) which is the
term (3/2)thzq/me2 in the bracket of Eq. (3.31). Fort >1, this term is in agreement
with the term 3q/k, calculated by Fetter (Fetter, 1974b) for the classical electron sur-
face layer (k, = 2nne* /k,T is the 2D analog of the Debye — Hiickel screening cons -
tant). This term is also in agreement with the term (3/2\@)(T/TF)(q/rs) reported by

Hwang and Sarma (Hwang and Sarma, 2001) for a very-low-density electron system

on the surface of liquid helium. It must be noted that this result is valid only in a very

narrow range of q due to the condition&, >1or(me”/Aqt) <1. Sincet>>1, this expre-
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ssion limits the range of q values very near zero. If &, >1 is not satisfied we do not

get any plasmon mode as may be easily seen by the explicit calculation.

It is easily seen from Figure 3.3 that the inclusion of the second term in the
dispersion relation makes the slope of the acoustic plasmon increase significantly. The
finite-wave-vector effect is therefore, important at low temperature limit. The tempe-
rature dependence shows a smaller effect compare to the effect by higher order in g.
The dispersion relation at high temperature limit given by Eq. (3.31) is proved to be
valid compared with the classical limit of the 2D system such as the system of elec-
trons on the surface of liquid helium, but valid only in a very narrow range of g near

Zero.
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Figure 3. 3 Layer plasmon dispersion as
given by Eq. (3. 30) for which:

(@) containing only the first term

(b) with the second term att=0
(¢)-(f) with the second term at various

small t

(f)

q,L=0
q,L=mn/10
q,L=n/5
q,L=n/2
q,L=m
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CHAPTER IV

FULL TEMPERATURE, FREQUENCY AND WAVE
VECTOR DEPENDENCE OF DIELECTRIC FUNCTION

IN LAYERED SUPERCONDUCTORS

4.1 Screening of the Coulomb interaction

It is known that the bare Coulomb interaction, V(q) = 4ne’ /q°, is not the actual

interaction between any two electrons. In fact, the interaction between any two
electrons will be far weaker because all of the other electrons will act to screen the
Coulomb interaction. The correct strategy for dealing with electrons with Coulomb
interaction is to do perturbation theory in the screened Coulomb interaction. In a
metal, the screening is complete; the bare Coulomb potential is modified into a

screened Coulomb potential with the following peculiar properties: (i) The screened
Coulomb field is cut off at a characteristic distance of the order ofk.*. (ii) Weakly

decaying long-range oscillations of electron density occur (Friedel oscillations). (iii)

The change of electron density must be finite at the origin.

To understand qualitatively the highly effective shielding in metals, the Thomas-
Fermi model has been used. This simple model illustrates the basic physics in the low
g, o limit and explains quite well the exponential screening at intermediate distance.

It fails in predicting finite induced charge at the origin and long-range oscillations. To
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understand the physics atq — 2k, we have to use more sophisticate approximations
such as the RPA.

In the Thomas-Fermi model, the bare Coulomb interaction has been replaced by

a screened Coulomb interaction:

2 2
471;3 247te : (4.1)
q q° + ki
—krer
or 1 - ¢ (4.2)
r r

Thus, the bare long-range Coulomb interactione® /r is transformed into an exponenti -

ally damped interaction with screening lengthl/k,., wherek,.is the inverse of the

Thomas-Fermi screening length. For a free-electron gas, one has

kF

2
kTF = _
dg

(4.3)

alsd

wherea, =7’/ me’is the Bohr radius. The static dielectric functione(q,m=0)=¢(q),

which is known as the Thomas-Fermi dielectric function has the form

2
kTF

> (4.4)
q

e(q) = 1+

However, the Thomas-Fermi dielectric screening needs improvements to provide the
correct behaviour of the induced electron charge density at small and large distances.
A more refined result may be obtained by replacing the bare Coulomb interaction by

the sum of the bubble diagrams, known as the RPA approximation. The effective

interaction, Vi (q,®) is
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Vv
- @) (4.5)
1-T1(g,0)V(q)
where [1(q,®) is the particle-hole bubble. For small g and © =0,
Ane’
VA (Qo=0) = ——— 4.6
o (q@ ) q2+Q$F (49)

which is the same as the Thomas-Fermi result and the dielectric function is given by

Eq. (4.4). However, foro=0, the RPA result contains additional information about
the dynamics of the electrons. Also, forq — 2k, the RPA result contains information
about the Fermi surface. For w0 andq — 2k, the RPA approximation can be call-

ed into question.

The dynamic (w = 0) dielectric function for q = 0 is given by

2
e(0,0) = 1+m—g (4.7)
®

where m§ = 4mne® / m is the plasma frequency and the dynamic dielectric function is

exact in the limit g = 0 and o> 0 ( Nozie're and Pines, 1989). Eq. (4.7) can be recogn-

ized as the Drude model for the dielectric function of a free-electron gas.

Screening of the Coulomb interaction takes very different forms in layered con-
doctors and 3D isotropic metals. The description of layered conductors can be ma-
de by neglecting the small interlayer hopping in a first approximation. On the other
hand, it is essential to take into account the screened interlayer Coulomb interaction

which has an important dynamic part. It is known that for usual 3D materials this
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interaction can be consider in the static limit since electronic collective modes are
very high in energy of the optical plasmon energies of the order 5-30 eV in metals.
Such high energies imply a perfect, instantaneous screening of the Coulomb interac-

tion. Therefore, the Coulomb repulsion enters the conventional theory of supercon-

ductivity as a single static pseudopotential " .

The situation is very different in layered conductors. Layered conductors have a
structure of the plasmon spectrum that differ fundamentally from 3D metals. In addi-
tion to the high energy optical plasmon mode, the spectrum contains also on important
low-frequency part or the acoustic plasmons. The screening of the Coulomb interac-
tion is incomplete which is a result from the layered structure. The dynamic nature of
the Coulomb interaction becomes important since the response to a charge fluctuation
is time dependent and hence the frequency dependence of the screened Coulomb
interaction. As a result, the interplay between the attractive interaction and the Cou-
lomb part is more subtle than introduced in the conventional theory of superconducti-
vity. The dynamic screening in layered systems can lead to a Coulomb-induced en-
hancement of the superconducting pairing and might be an essential addition to the

usual electron-phonon contribution.

The electronic screening of the Coulomb interaction in the layered conductors is

described by the dielectric function €(q,q,,,,T) written in its most general form as

e(0,9,,@,,T) = 1-V,(a,9,)I1(q,»,, T) (4.8)

2me?

where V,(a.q,) = R(a.9,) (4.9

em
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B sinh(qL)
R(0.0.) = cosh(gL)—cos(q,L) (4.10)
) _f (5
and I1(q 2_|' * o, _F)M _(Z:) (4.11)

q is the in-plane wave vector, q, is the wave vector perpendicular to the plane and two
conducting planes are separated by spacer with dielectric constant ¢,, and L is the

interlayer distance. This model of the layered conductor has been shown in Figure 3.1.

The layer form factorR(q,qz)has a characteristic curve as shown in Figure 3.2. To

study the impact of dynamic screening on superconducting state we need to calcu-late

the dielectric function, Eq. (4.8) which contains the polarizationl"[(q,qz,oan). To

obtain T, we have to determine these functions at finite temperatures. In general, the

proper account of dynamic screening requires to consider all three parameters of the

polarization.

In this chapter we will consider the static polarization separately from the dyna-

mic one. Numerical results will be reported and the analytical limits will be discussed.
4.2 Static polarization

The static polarization corresponds to the term n = 0 in Eq. (4.11), i.e.,

(9,0, =0,T)=TI(q,T) —2j d’p T(p+0)=F(p) (4.12)

) €~ &pug

By transformation p+g— k for f(ﬁ+€1) and ¢, and the transformation p — —p

for f(p) and &, using the fact that &, =&, andf (—p)="f(p), then
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(2m) € ~ &g
2m ¢ T de
= f —_— 4.13
hznzq!;p (p) p! 2pcos0—q (4.13)

Consider the angular integral

2n

'(B)ZIL: le—e
© 2pcosO—q gy acosf-1

wherea=2p/q. Now, let z=¢e" and cosezi(u1

), it follows that
y4

2i dz
——<f> >
eg) o)
Z—— | +|1-—
a a

It is easily seen that the poles of the integral are at the point

1/2
z:lii(l—izj for a’>1
a a
1/2
:li(iz—lj for a’<1
a \a

For a* >1, the residue Res, (1) for z :1/a+i(1—1/a2)l/2 is 1/2i(1-1/a)"* whereas

1/2

the residue Res_(1) forz=1/a—i(1-1/a’) " =-Res, (1). Since the sum of the re-

sidue is zero then there is no contribution to the integration froma® >1.
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Now, fora” <1, the poles are atz,, =1/a¥(1/a’ —1)1/2 . Sincez,.z, =1, only the
polez, lies inside the unit circle|z| =1and the maximum value of a is unity. It follows
that the upper limit of the p-integration of Eq. (4.13) is g/2. Also, since the residue for
z,is equal to-1/2(1/a’ —1)1/2, then the value of 1(0)is equal to—-2r/ (g —4p° )"’

and Eq. (4.13) becomes

_—4m ‘¢ _pf(p)dp

I1(a,T) 0 ) (g ap ) (4.14)
As before, it is simpler to scale the parameter at finite temperatures as follows:
x=p/ke., y=q/k., t=T/T. and a:Bp:In[el“—l]
The static polarization, then, becomes
[1(y1) - —24m V2 xf (x)d>§/2 (4.15)
hng (y2—4x2)
where f(x)=1/(e" " +1) (4.16)

The variation of H(y,t) for various y and t is shown in Figure 4.1 where the unit that

h?=2m=1 and e® =2 have been used.



t=0.01

0] 1 2 3 4 5
y

Figure 4. 1 Variation of static polarizability with y =q/k. for varioust=T/T.. At t=0, it is constant of the value

-0.159 up to y = 2 and drastically change to zero for large y. At higher temperatures they tend to be a function of t
alone for small y and a function of y alone for large y.
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Since the static polarization is a function of scaled wave vector y and the scaled

temperature t, we will consider 4 limits of this function
a. Low temperature, small y limit
b. Low temperature, large y limit
c. High temperature, small y limit, and
d. High temperature, large y limit

4.2.1. Low temperature, small y limit

Let x>/t =z and the Fermi function can be split to

and with the unit #*> =2m =1 and e* = 2 then Eq. (4.15) becomes

T o g

Tyl o e+l [y -4tz

At low temperature the second integral can be approximated to y/2t e* anda ~1/1t,
thus it can be approximate to zero, while the first integral gives the valuey/2t . Hence

the polarization in this limit will be

T1(v.1) - ;_15 —0.159 (4.17)

t—0 T

y—0
4.2.2. Low temperature, large y limit

For small t and large y, the upper limit of the integration, y* /4t , can be appro -

ximated to oo. Thus
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y % (ez’“ +1)(y2 —4tz)1/2

The integral can be carried out by using the Sommerfeld method (Sommerfeld

and Bethe, 1933) and has the value:

a 2
H(y,t):;—; {J‘g(z)dz+%d%—(zz)‘ + higherterm}
0 z=a

—t| 1 2 t

where g(z) =1/(y2 —4tz)1/2. The second term in the bracket goes to zero for small t

and large y. Thus,

L (1—«/1—4/y2) ~ (4.18)

my

[T(v.1)

t—0 T
y—o

which is a function of y only.
4.2.3. High temperature, small y limit

In the high temperature limit the Fermi function can be approximated by the

Boltzmann distribution function, i. e.,

f(x)= 1/(ex2“‘°‘ +1) ~ %e‘xz“ where  e* ~1/t

The polarization in this limit becomes

12 _x2
2 7 x e X tdx

oyt 0 (1—4x2/y2)1/2
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Let 2x/y=u and expanding the exponential value as

e7y2u2/4t —1- y2U2 y2U4 .
4t 32t
L y2u?
4t

The polarization in this limit then becomes

1% udu  y2} uidu
lt - -
H(y ) 2mt _‘([\/1_u2 4t ‘! 1_u2 }

_l,y

 2nt 6t
[T(y.t) ~ 1 (4.19)
t—>oo ZT[t
y—0

which is approximately a function of temperature alone.
4.2.4. High temperature and large y limit

Similarly to the case (4.2.3), we have

—1 fueY*dy
H(y't) - ot .! (l_uz)uz

Since 1/(1—u2)1/2 ~ 1+£u2 then
2
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= __]; (1_§8y2/4tj
y 2

[T(y.t) ~ ~Umy (4.20)

tow
y—ow

It is to be noted from Eqgs. (4.18) and (4.20) that asy — «, the value of the pola-
rization can be approximated to be a function of y only and goes to zero slowly for
large y. Thus, the values in the two limits are almost flat which can be seen from
Figure 4.1.

We then conclude that in the low temperature limit(t —>O), the polarization is

approximately constant with the value of -0. 159. This constant agrees quite well with
that calculated by the previous work (Maldague, 1978) or the recent work (Bill et al.,

2003). The values are drastically change for y> 2 and go to zero asy — «. If one
evaluate the dielectric function,a(q,m:O), by using Lindhard’s formula, then it is

found that the behaviours of 2D case is quite different from 3D case. In 2D case, the

polarization is exactly constant at T = 0 up toq =2k, whereas it has a logarithmic
slope atq =k, in 3D case (Ziman, 1964). In the low temperature limit, the polari-
zation decrease as1/q’in 2D case but it is proportion tol/q* forq > k. in 3D case. At
higher temperature the curves converge slowly in 2D case and the sharpness near
q = 2Kk, is disappears.

4.3 Dynamic polarization

The dynamic polarization corresponds to the term n =0 in Eq. (4.11). It must be

noted that the name is correct only for T = 0. At finite temperature the frequencies o,
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are related with 3, however, we still use the same name. From Eq. (4.11), we have

dp f(p+d)-f(p)
2n)" ihe, — (8,4~ )

H(q,wn,T)=—2I(

-2

_ 2 - - :
~(2n) Id PT(P) [ihmn +(epg—ep) i, +(8f’gf’*q)]

2n
g+2pcoso
— =M ot (p)dp [ do
n* h’q }[p (p) cp }[ (q+2pcosB)’ +(2ma, / 1q)’

-m 7 T 1
=———|dppf do : 4.21
h’m’q !,- PP (p)J; {(q+2pcose)+i(2mcon/hq)+cc} (4.21)

where cc denotes its complex conjugate.

Consider the angular integral,

2n
1,(0)= J‘ [q +2pcosO+i(2ma, /hq)]_1 do

0
1 % 1
=— [(A+cos0)‘do
2p 0
where A=q/2p+imoe, /hpq
Let z=€" and cose=%(z+1/z), then

1,(0) :%ﬁ( >+ 2Az+1)  dz

/ .
There are two poles atz,, :—AJ_r(AZ—l)lz. Sincez,.z, =1, one root z,=—A+

/2 .. .- . -
(A2 —1)1 must be inside the unit C|rcle|z| =1, while the other root z, be outside the
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unit circle. Hence

1 2 -
|p<-[>[z 2,)(z-12, ] dz _EZ nzl —%(Az—l)l/2

Similarly for its complex conjugate denoted by I, (6),

(A"Z _1)-1/2

T
Iz(e) = E
where A" =q/2p-imo, / ipq

The total angular integration then becomes

|(9)= |1(9)+ Iz(e)

oz { (A2 1) + (A" —11)/12’2 }
P (A1) (A7 -1)]

Now, let

A?-1 = R%e? = (q/2p)" —(mo, /7ipq)’ —1+imo, / ip?

A? -1 = R?e = (q/2p)2—(mcon/hpq)z—l—imcon/hp2
) ) 2 9 1/2
where R? = [{(q/Zp) —(mo, /7pq) —1} +(mmn/hp2)}
(A2-1)" +(A?-1)"" = R(e"+e™) = 2Rcos¢

(A 1)(a* 9] - R

where tan 2¢ = (mmn /hpz) / [(q/Zp)2 —(ma, /hpq)2 —1}
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Finally, the angular integral becomes
2 1/4
1() = 4ncosd / [(q2 —4p® —4m’w} 11°q°) + (16 M e /hz)}

and the dynamic polarization reduces to

—4m T pf(p)cosddp

H(q,mn,T) = — 12
hmq [(qz —4p* +4m’ e’ /7/22q2)2 +(16 m’e’ /hz)}

(4.22)

Again, with the same notation as before;
x=plke , y=q/k. , t=T/T. , o = Buzln[el“—ﬂ and o, = 27n/ph,

Also together with unit #*> =2m =1 has been used, then the dynamic polarization in

convenient form for numerical evaluation is

H(y,n,t)z—gj xf(X)Cosq:dx - (4.23)
™o [(y4—4x2y2—4n2n2t2) +(4nnty2) }
anmty®
h tan 2¢ = 4.24
where  tan 2¢ VR (4.24)
1
f(x) = —— 4.25
( ) ex /t—a +1 ( )

Note that the upper limit of the p-integration is oo in contrast to the value y/2 for
the case of static polarization. Both of the polarizations are the function of y and t but

independent of the density of electron gas.

Graphs of [1(y,n,t) versus y for different values of n and some fixed t values

are shown in Figure 4.2 (a)-(j ). Itis equal to zero at y = 0 for all temperatures and

n’s which can be proved as follow. By geometry and Eq. (4.24) we have
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y* —4x’y® —An’n’t?
[(y“ —4x%y* — 4n2n2t2)2 + (4n7rty2 )2}

cos 2¢ = (4.26)

1/2

Aty =0, cos 2¢=-1 orcos ¢$=0, then the polarization given by Eq. (4.23) is equal to

Zero.

At very low temperature (t ~ 0.01) it abruptly increases (negative side) with y
to different values for different n up toy ~ 2, and then decreases rapidly to zero for
y > 2. The behaviour of the polarization for y > 2 at fixed t for different values of n
is identical. At high temperatures, the sharpness of the curves aroundy~2 are

broaden and the peaks are shifted to higher values of y.
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10

t=0.03

(b) y=a/ke

Figure 4.2 Dynamic polarizability in RPA as a function of y=q/k.

for various values of nand t = T/Te.
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Figure 4.2 (Continued)
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As before, we will consider four limits of the dynamic polarization.
4.3.1 Low temperature, small y limit

At low temperature and small y, cos 2¢ given by Eq. (4.26) can be approximated

to
—(4x7y* +4n’n’t?)
CoS 2¢ ~ > pe—Tr
[(4x2y2+4n2n2t2) +(4nnty”) }
2_2:2,,4
z_1+1 n“n°ty :
2 (x2y2 n nzﬁztz)
and since cos2¢ = 2cos” ¢—1, then
CoS¢ = 1y [1/(1+ xzyzlnznztz)]
2 nmt

The dynamic polarization, therefore, reduces to

2 7 xf(x)cosddx
y,nt ——

2 2_2,27TM2

4xy +4nnt]

O ey

T

(nntj I [1+(xy/nrct) le

Let x*/t =z, a = y’/n°r’t then

M(y.nt) = _%T i(_Z)dz

where g(z) = (1+ az)_S/2 . Using Sommerfeld approximation
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_al @ 2
[I(y.nt) ~ 4—2 J' g(z)dz+%%z)

|

= | 1-(1+an) "+ ag (1+aa )5’2}

- ;—i [ 1—{1+(y/nnt)z}_”1

TT(v.n.t) z;—l[l—{1+(y/nnt)z}m} (4.27)

y—0 T
t—0

Note that the polarization is also dependent on n, and if n = 0 it reduces to the

value —1/2n of the static case.
4.3.2 Low temperature, large y limit

In this limit cos2¢ can be approximated as

1/2
C0S2¢ ~ (y4 —4x2y2) ly? [(y2 —4X% —4n*n’t® | y? )2 +(4nnt)2}

Q
-

or cos ¢ ~ 1, then the polarization becomes

(y,nt) =~ ==
yn !; y 4xy)1/2

Let x°/t = z and using Sommerfeld expansion, we have

|

i -2 oo 29
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where 9(z) = (1-4tz/y’ )71/

Finally, we get

-1 \12 )
[T(y.nt) ~ g[l—(l—My ) } ~ ~1/my (4.28)

t—0
y—x©

which is independent of integer n as we expect and has the same form with Eq. (4.18)

of the static case.
4.3.3 High temperature, small y limit

The value of cos 2¢ in this limit can be approximated as
2 2 1/2
cos 2¢ ~ —(4n2n2t2 +4x2y2) / [(4n2n2t2 +4x2y2) +(4nnty2) }

= —1+n’n’t’y* /2(x2y2 +n°r’t’ )2

-1

or cos ¢ = (y*/2nnt) [1+(xy/nnt)2}

The polarization becomes

cosq)dx
[4x2y +4n°n } 2

5
Hy,nt —;_([

At high temperature, the Fermi function f(x) ~ %e‘xz“

-y> 7 xe ™" dx
H(y’n’t) ~ ysts 5 73/2
0 [l+(xy/nnt)}

2n’w
N —y2 to 3y
2n’n 2 An*e?

¢
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or [T(y.n.t) ~ —y*/4n*m’t? (4.29)

t—wo
y—0

4.3.4 High temperature, large y limit

Since cos 2¢ ~ 0 or cos¢ ~1/~/2 and f(x) ~ %exz“, then

2 7 X )cos ¢ dx
H N, t -
y T ! 2y n t”2
or [T(y.n,t) ~ -1/ ZTty(ZHTCt)l/Z (4.30)

t—w
y—©

which is a very small quantity
4.4 Evaluation of the dielectric function in its full form

To study the impact of static and dynamic screening in the layered system we

need to calculate the dielectric function given by Eq. (4.8). In particular, to obtain T,

of HTS we have to determine these functions at finite temperatures. Since the inverse

s‘l(q,qz, n,t) of the dielectric function is the quantity that enters the vertex I', =
V,(9,0,)/€(9,q,,n,t) the result of this quantity is shown separately between the sta-
tic and dynamic cases.

4.4.1 Static case

The static polarization, which enters in the static case of the dielectric function

is given by Eq. (4.15). The result is shown in Figure 4.3 for the same values of para -

meters as in Figure 4.2
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Figure 4.3 Inverse dielectric function of layered electron gas for static case.
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4.4.2 Dynamic screening

The dynamic polarization given by Eq. (4.23) is used for the evaluation of the

dielectric function necessary to study the dynamic screening. The inverse

e (0,0,,0,,T) of the dielectric function as a function of y =q/k_ at various t and n

is shown in Figure 4.4. Note the strong g and o, dependence of the function at finite

temperatures. This shows the necessity to consider the dielectric function in its full
form to study the dynamical screening of the Coulomb interaction. Also note that the

inverse dielectric function is zero (perfect screening) only in the static limit
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A few important properties of the inverse dielectric function will be pointed out.

The function is bounded for all g and®, . For high frequencies and / or large wave

vectors, the inverse dielectric function goes tol. This means that the Coulomb interac-
tion is unscreened and thus long-range in these limits. However, the unscreened li-
mits are shifted to larger wave vectors with the increasing of frequencies and tempera-

tures. At sufficiently high frequencies, the inverse dielectric function takes the form

T N

lim ¢*(q,9,,0,,T) ~ 1- (4.31)

®p —>00

R

which is the so-called Drude limit (Nozie'res and Pines, 1989) where oofj =

o’ (q=0,q, =0)is the usual 3D optical plasmon. It is only at zero frequency or in the

static case (n = 0) that the Coulomb interaction is perfectly screened and the inverse

dielectric function takes the form of the Thomas-Fermi type.
1 ) 271!
£(0,9,,0, =0,T) = [ 1+k2 /|0,q,] } (4.32)

Wherek,, is the Thomas-Fermi screening wave vector which is given by k. =mao? /
2h° for the layered system.

The full temperature, frequency and wave-vector dependence of the dielectric
function describing the screening in layered superconductors will be useful to study
the effect onT,. The additional impact of dynamic screening on pairing in layered
superconductors had been discussed (Bill et al., 2003). Three classes of layered super-

conductors had been studied: metal-intercalated halide nitrides, layered organic ma-

terials and high- T oxides. They showed that the plasmon contribution is dominant in
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the first class of layered materials. They obtained T,~24.5K which is very close to
the observed value T, =25.5K. In the absence of the plasmon contribution they ob-
tained T «1K . For the layered organic superconductors, they obtained T, =10.4K
while in the absence of acoustic plasmons they obtain T*" =6.3K . Therefore, 40% of
the value of T_is due to the pairing of electrons via the exchange of acoustic plasmon.
In the case of high- T, oxides they obtained T,=36.5K which is close to the experi-
mental value T, =38K.. In the absence of the screened Coulomb interaction they ob-
tained T =30K , thus about 20% of the observed value of T, is due to acoustic plas-

mons. Thus the dynamically screened interlayer Coulomb interaction has been shown

to be important for superconductivity in the cuprates.

In the next chapter the evaluation of the T_ of these materials will be considered.



CHAPTER V
CALCULATION OF CRITICAL TEMPERATURE OF

LAYERED SUPERCONDUCTORS

5.1 Strong-coupled superconductors
The BCS theory provides a complete though approximate theory of both thermal
as well as dynamic properties of superconductors in the weak coupling limit. Accord-

ing to the BCS theory, the transition temperature T_ depends upon the product

A= N(0O)V (5.1)
of the single spin density of states at the Fermi surface N (0) with the pairing potential
V, and a cutoff frequency of order the Debye frequency 6,. When A is small, in prac-
tice less than 0.25, the BCS theory predicts that

T, = 1.140, exp(-1/1) (5.2)
In this same weak-coupling limit, the gap at zero temperature is given by

2A(0)/k,T, = 3.53 (5.3)
which is frequently used as a test for the applicability of the BCS model.

Generalizations of the BCS treatment concentrate on two main problems:

(1) inclusion of the repulsive Coulomb interaction between the electrons, and

(2) extension of the BCS theory to the situation with arbitrarily large electron-phonon

coupling by generalizing the treatment of normal metals, with electron-lattice interac-



90

tions incorporated in a systematic fashion. Both of these factors have been included in
the Eliashberg approach to superconductivity (Eliashberg, 1966).

The Coulomb repulsive interaction reduces the effective attractive interaction
between the electrons, so that instead of Eq. (5.2) one obtains in the BCS approxima-

tion

T, = 1.1460, exp(— ] (5.4)

A—p
where u" is the so-called pseudo-Coulomb potential (Morel and Anderson, 1962).
The Eliashberg correction to the BCS theory must be evaluated numerically. Exten-
ding this idea so that comparison to experiments could be made, Mc Millan (1968)
calculated the self-energies of normal and paired electrons and used a dimensionless

electron-phonon coupling parameter,
r=2] o (0)F(o)— (5.5)

where o’ (o) is the average electron-phonon interaction at frequency o, F(®) is the

phonon density of states, and o, is the maximum phonon frequency. (Note: this o’

has nothing to do with the o associated with the isotope effect). Equation (5.5) should
be general and apply for any boson—-mediated pairing, not just phonon-mediated pai-

-1

ring. The @™ in A increases the importance of the low-frequency bosons with respect

to those at higher frequency. He numerically solved the finite temperature, nonlinear

Eliashberg equations finding T, for various classes of strong-coupled superconductors.
From these solutions, he constructed an approximate equation that relates T_ to a small

number of parameters by the form
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T, = o gyp) - 1'?4(1+k) (5.6)
1.45 J—u (1+0.621)

The most interesting feature of McMillan’s expression is the fact that the phonon
contribution is effectively reduced by 0.62u*A . This arises because the time correla-

tion between paired electrons are distorted by the repulsive Coulomb interaction so
that in the presence of the Coulomb interaction a member of a pair cannot take full

advantage of the attractive lattice polarization produced by its partner.
Due to the screening by the other electrons, the effective Coulomb repulsion p*

differs from the instantaneous Coulomb repulsion p by the relation

LR SN ) (5.7)
[ [ (Dph

where o, can be taken as the plasma frequency w,, or the Fermi energy ¢, whereas

®,, corresponds to the high-frequency cutoff of the phonons or Debye frequency.

ph
Usually p*is in range 0 — 0.2 and p*~ 0.1 being the typical value for most super-
conductors.

One should mention a very important feature of the phonon-mediated electron
pairing. Namely; the transition temperature is proportional to the Debye temperature
0, . Hence, T, given by Eq. (5.4) depends on the mass M of the atoms composing the

lattice. In the simplest situation we expect thatT, ~ M™"?

. If the Coulomb repulsion
between electrons is taken into account, then the relation isT,~ M~ where o is obtai-

ned by using Eq. (5.6) and was shown by Mc Millan to be
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1 . (1+2)(1+0.621)

2 (5:8)
2| [r-w(1+062)]

In the strong coupling limit (x 21) the exponent . is largely reduced from its initial

value of %. Therefore, if the value of o is small, one may interpret this fact as either
the evidence for strong electron-phonon coupling or that a new nonphonon mecha -
nism is needed to explain superconductivity.
5.2 Coexistence of the phonon and plasmon mechanisms

A simple analytical expression describing T_ for any strength of the electron-

phonon coupling . is derived directly from the Eliashberg equation (Kresin, 1987a).

It is given by

T - 0.25® (5.9)

c 1/2
[ezmeﬁ _1]

where (7)=< (,)2>1/2, <w2> = Idm o’ (w)F(o)w, F(o) is the phonon density of states;
a’ () describes the electron-phonon interaction. The effective interaction strength is

A—w

A = 5.10
T Le2p +apt(R) (5.10)

The function t() is defined graphically for all’A, but analytically for A<1 and for

A>1 only.
Let us apply Eq. (5.9) to the La-Sr-Cu-O system in order to estimate the value of

A, - According to data obtained by neutron inelastic spectroscopy, the phonon densi-
ty of states F(w) in the La, ,Sr,,CuO, system exhibits two sharp peaks at o, =100K

and w, ~ 200K . Therefore, it is reasonable to putew=150K. Let p"=0.1 and o’ (o)
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can be determined by the tunneling spectroscopy technique, then from Eq. (5.9) we

obtain , ~5. This means that we require very strong electron-phonon coupling to
account for the experimentally observed T, ~ 40K . However, from measurements of
the energy gap and the ratio3 = 2A(0)/T, that depends on the value of A shows that
B<5. This implies that & for the system does not exceed the value 2, = 2, which is
not sufficient to provide the experimentally observed T, ~ 40K and the corresponding
value 2, = 5. Hence, we come to the conclusion that the electron-phonon interaction

plays an important role in the La-Sr-Cu-O system but, nevertheless, there is need for
an additional mechanism of attraction between the carriers.

As mentioned earlier that the electron-plasmon interaction is believed to be an
additional mechanism which, jointly with the strong electron-phonon coupling, is
responsible for high-T_ superconductivity. The concept of coexistence means that the
electron-phonon plays an important role. The Coulomb repulsion is overcome mainly
by the electron-phonon interaction. As for the plasmon contribution, the electron-
plasmon interaction provides an additional mechanism of electron-electron attraction,
and in the presence of electron-phonon interaction it leads to an additional increase

inT,. For a rough estimate the expression for T_ can be written in the form (Kresin,

1987h):

(T) o
T, =T [iJ (5.11)

where S (5.12)
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and T is the critical temperature in the absence of the plasmon mechanism. One
can see that the large value of plasmon energy @, make the plasmon contribution no-
ticeable, even for small’A . For example, if & ~ 2(this value corresponds to 2A(0)/
ksT, ~5) andr, ~0.3,®, ~ 60 meV, we obtain T ~ 22K and T, ~ 38K . If we use
an experimental value of 1eV for the bulk plasmon frequency (Sulewski et al., 1987),
which is a lower limit for the 3D to 2D crossover, we estimate a A, 0.2 for T ~

38K. It is clear that an increase of m,, results in a decrease of & ;. Plasmon —induced

pairing can, therefore, make a noticeable change in T, relative to T”" even for small
values of % and it arises from the large value of the plasmon frequency.

Using the plasmon exchange model, the T, observed in the thallium-based and
bismuth-based compounds was shown (Bose and Long, 1990) to increase with the
number of CuO layers per unit cell, which is in agreement with observed result. The
thallium-based compound with only one CuO layer per cell has a T, of 80K; with two
CuO layers its T, is 105K, whereas with three CuO layers it is raised to 125K. Similar
conclusions have also been drawn for the bismuth-based compounds.

The Eliashberg model, on the basis that the attractive interaction is provided by
the plasmon mediated effective interaction between charge carriers, has been develop-
ed (Longe and Bose, 1992a) to calculate the critical temperature in high- T, supercon-

ductors. The effective interaction between the electrons are described within the RPA.

This interaction can be written in the standard form

2

V(g,0) = V,(a)| 1+ T da, 20, (9,9,)[M(9.9.)

(5.13)
—n/L wz_w; (q’qZ)
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whereV, (q) = 2ne*/¢,,q is the bare 2D Coulomb interaction, o, (q,q, )is the plas-

mon frequency and ‘M(q!qz)z-

Indeed, it has been shown (Allen and Dynes, 1975) that if the effective interaction

between electrons in a superconductor can be written as given by

Eq. (5.13), then the parameters A and <c02> can be obtained from

h = N(0)<2‘£AE+:2:;2> (5.14)

and o) = N(O)<2‘M(q1qz)

o, (a.,)) (5.15)

where N(0)is the density of states of the electrons at the Fermi surface and (...)

indicated that an average of the expression is taken over the Fermi surface. Hence, the
frequency ® is given by the square root of the ratio of (5.15) and (5.14). Equations

(5.14) and (5.15) had been shown (Longe and Bose, 1992b) to be

2kF

(5.16)

qud 4k20 )”2

2N(0) 27ne? Zdeq qV,(q)coth(Lq)
3 (4kl2: _q2)1/2

and o) = (5.17)

T g,m

First it is interesting to note that), as given by Eq. (5.16), does not depend on
the interlayer distance L. This is due to the analytic properties of the RPA potentials
given by Eq. (5.13). Another important point has to be noted. The integrals (5.16) and
(5.17) diverge for small momentum transfers q. The technique to address this difficul-

ty is to introduce a finite q,, (replacing 0) as the lower limit of integration in the two

equations to obtain finite results. Physically one would expect that the effective range
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of qg,, should be of the order of inverse coherence length&, since charge carriers at
distances larger than& do not contribute significantly to Cooper pairing. Therefore,
one can write g, = 1/& and thus T, must obviously depend on the value of& .

It is also interesting to note that even though integrals (5.16) and (5.17) diverge

for smallq,, , but their ratio(i.e.< (02>) however does not. On the other hand, forq,, lar-
gei.e.q, — 2k, < w2>tends rather slowly to the upper limit 2k o coth (2k.L) ~ 2k.c

where ¢ = 2rne? /g,,m". Hence the range of variation of <0)2> as a function of g, is

not very extended. This is not the case for A which diverges linearly for smallq,, .
As before, it is simpler to scale the parameter,y =q/k.. Then Egs. (5.16) and
(5.17) become

2me® 1 ¢ dy

A = N(0 (5.18)
( ) ey TK; ket y(l—y2/4)l/2
2ne’ coth(k.L
Mo?) = N(0) 2 % (5.19)
Em T ke (1—y /4)
m*
h N(0) = 5.20
where (0) - (5.20)
2ne’n
o= 2T (5.21)
gyM
and k2 = 2mn (5.22)

It is seen from Egs. (5.18) and (5.19) that the two parameters obviously depend

on the dielectric constant ¢,,, the effective mass m", the surface number density n of

the electron gas ( or equivalently the Fermi wave vector k. and hence the Fermi ener-
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gy &.) and the coherence length &. The Coulomb repulsion parameter n* depends on
other boson frequencies and like many other investigators its numerical value is cho -
sen to be 0.1. However, its value is still a matter of discussion and will be a second
parameter to be varied around 0.1. Substituting these values of ®, A and " in the Mc
Millan’s equation and the Kresin’s equation forT_, the critical temperature of the
cuprate superconductors will be obtained and discussed.

5.3 Critical temperature of La,,Sr,,.CuO,

In this section we will focus on the La, 4 Sr,,.CuO, for which most parameters

have been determined and it deserves special attention because of the simplicity of its
structure. This system plays a role similar to the hydrogen atom in atomic physics. It
is the best test system for understanding the basic principles of high-temperature
superconductivity.

Followings are the normal state parameters (Bill et al., 2003):

the interlayer distance L=65A
the Fermi wave-vector ke = 35x10" cm™
the dielectric constant ey = 5-10
the effective mass m" =17 m,
the coherence length £ =35A

and the Coulomb pseudopotential is taken to be pu* = 0.1 (here, m, being the mass of

the bare electron)
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Two equations, Mc Millan’s equation and Kresin’s equation, will be used for the

calculation of T, of this material. The Mc Millan’s equation for the plasmon exchan-

ge model is similar to Eq. (5.6) and has the form

© 1.04(1
T, = iexp - 0 (+2) (5.23)
1.45 A—p (1+0.621)

where the Debye frequency 0, is replaced by the average frequency of plasmon, the
exchange of which is responsible for superconductivity.

The Kresin’s equation for the plasmon exchange model to calculate the value of
T, is given by Eq. (5.9), i.e.,

0.25®

where the effective interaction strength A, is given by Eq. (5.10), i.e.

dyg = )
M le2u e (M)

and the analytical expression for the functiont(k) is given (Long and Bose, 1992b) by
t(r) = 0.75+0.8/(1+1)—-0.12(A-0.5) (5.24)
The results of T, obtained by these two equations will be compared with the

recent work by Bill et al. (2003). We will start with the calculation of A and ® given
by Egs. (5.18) and (5.19) respectively. As can be seen from the given parameters that

the value of dielectric constant g,, is in range 5-10, and Land ® obviously sensitive
to this choice of ¢, . We, therefore, calculate the values of A, @ and then T” by using
different values ofe,,. The result is shown in Table 5.1. The finite-wave vector

(higher order in q) effect of plasmon dispersion relation given by Eq. (3.30), which is
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the term(3/4)7*q/ me*, on T is also shown in the table. It is seen that the values of
TP obtained by using Kresin’s equation are higher than that by using McMillan’s

equation and the finite-wave vector effect enhances the values of T” significantly.
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Table 5.1 The calculated values for T” as obtained from Kresin’s equation (T and T_,) and from McMillan’s equation (T_,and T,,).

T,and T, are the values without the finite-wave vector effect whereas T_, and T_, are the values including that effect.

By Kresin’s equation By McMillan’s equation
€y T, T, T, T,
(eV) (K) (eV) (K) (eV) (K) (eV) (K)

5 0.0117898 136.821 0.0126273 146.54 0.0112205 130.213 0.0120175 139.463
6 0.004993 57.943 0.00534767 62.059 0.00460658 53.459 0.0049338 57.256
7 0.00198005 22.978 0.0021207 24.610 0.0017475 20.279 0.00187163 21.720
8 0.00072192 8.377 0.00077320 8.973 0.00059975 6.960 0.00064236 7.454
9 0.00023725 2.753 0.00025411 2.948 0.00018176 2.109 0.00019467 2.259

10 0.00006867 0.797 0.00007355 0.854 0.00004722 0.548 0.00005057 0.587
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As reported by Bill et al. (2003), the experimental value of T of La,gSr,; -
CuO, isT,® 38K . Their numerical result is T, =36.5K whereas in the absence of
acoustic plasmon it isT™ = 30K . Therefore, the value of T_ due to acoustic plasmons
isT? =6.5K . The expected result (due to acoustic plasmons) to fit the experimental
value is T” ~ 8K . It is seen from table 5.1 that the expected results correspond to the
dielectric constant ¢,, =8(8.38K and 8.97K by Kresin’s equation, 6.96K and 7.45K

by Mc Millan’s equation). These results are quite different from the values that cor-

respond to ¢,, =7 ande,, =9. It is, therefore, necessary to obtain T” that correspond
to the dielectric constant arounde,, =8. The result is shown in Table 5.2. It is seen
from Table 5.2 that the appropriated value of the dielectric constant is €,,=8.0

foru”=0.1.
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Table 5.2 The calculated values for T" as obtained from the same process of Table 5.2 with dielectric constant around €,, =8

By Kresin’s equation By McMillan’s equation

€ M Tc1 TcZ Tc3 Tc4

V) () V) () V) () V) (K)

7.5 0.00120965 14.0379  0.00129557 15.0351  0.00103812 12.0473  0.00111186 12.9031
7.75 0.00093736 10.8781  0.00100395 11.6508  0.000791967  9.19075  0.000848223 9.8436
8 0.00072192 8.3779 0.00077320 8.9730 0.000599759  6.96018  0.000642362 7.4545
8.25 0.00055241 6.4107 0.00059165 6.8661 0.000450694  5.23028  0.000482708 5.6018

8.5 0.00041983 48721 0.00044965 5.2182 0.000335921  3.89835  0.000359782 4.1752




103

Finally, to find the proper value of effective repulsive strength p* (rather than 0.1)
that fit the expected result of T" ~ 8K, we use it here as a second parameter varying
from 0.07 to 0.13 in steps of 0.01. The critical temperature T as a function of the
dielectric constant ¢,, for 7 values ofu”is shown in Table 5.3 and Figure 5.1. It is
seen from the figure that the proper value of ¢,, and p* that fit the expected result of

TP ~8K are g, =8.0andp’ = 0.1.
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Table 5.3 The calculated values for 17 (in Kelvin, K) as a function of ¢,, by using

Kresin’s equation for various values of effective repulsive strength aroundp” = 0.1,

The Kresin’s equation without finite-wave vector effect has been used.

em
iy 75 7.75 8.0 8.25 8.5
0.07 32.286 26.591 21.845 17.899 14.625
0.08 24.980 20.211 16.296 13.091 10.477
0.09 18.940 15.018 11.853 9.310 7.274
0.10 14.038 10.878 8.378 6.411 4.872
0.11 10.141 7.654 5.731 4.255 3.131
0.12 7.116 5.210 3.776 2.706 1.917

0.13 4.830 3.414 2.381 1.637 1.109
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W =008

0, =0.13 o |
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Figure 5.1 The critical temperature as a function of dielectric constant €, for seven values of

electron-electron repulsive strength u”, varying from 0.07 to 0.13 in steps of 0.01.
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CHAPTER VI

DISCUSSION AND CONCLUSION

The purpose of this research is to study the impact of plasmon exchange mecha-
nism on high temperature superconductivity in layered superconductors. Particular
emphasis is set on the temperature effect and finite-wave vector (higher order in q)
effect on plasmon dispersion relation in layered system. The particular emphasis is
also set on the dynamically screened Coulomb interaction and the calculation of criti-

cal temperature of layered superconductor, i.e., La, &Sr, ,sCu0O, .

The plasmon exchange model has been proposed and discussed by several
authors as soon as the high temperature superconductivity were discovered. This is
because many of the discovered superconducting materials have a layered structure. It
is believed that the layered nature of the superconducting cuprates which confines the
collective motion of the electrons predominantly to the planes and leads to the un-
usual features of its plasmon spectra. The spectrum of a layered electron gas contains
low-energy electronic collective modes called acoustic plasmons with a dispersion

relation w, o«cq that differs fundamentally from 3D metals. The screening of the Cou-

lomb interaction in this system is incomplete and the dynamic nature of the interac-
tion becomes important. As a result, the interplay between the attractive interaction
and the Coulomb term is more subtle than the BCS theory. The electronic screening
of the Coulomb interaction is described by the dielectric function which contains the

polarization propagator. To obtain the critical temperature we have to determine these
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functions at finite temperatures. In this research, the static polarization is evaluated
and analyzed separately from the dynamic one. The inverse of the dielectric function
is evaluated numerically and the results can be compared with the previous work.

The plasmon dispersion relation in the layered superconductor is determined by
the poles that correspond to the zeros of the real part of dielectric function. The layer
form factor given by Eq. (3.8) which reflects the layered nature of the system is ap-
plied only to this layered electron gas model. Other different structures will have
different form factor. The temperature effect and the finite—wave vector effect comes
from the 2D nature of the polarization propagator given by Eq. (3.28). Numerical
result shows that the finite-wave vector effect makes the slope of the dispersion
relation inc- rease significantly. This effect is, therefore, important at low temperature
limit. The temperature effect is quite small and can be negligible in this limit. The
dispersion relation at high temperature is proved to be valid and comparable with the
classical limit such as the system of electrons on the surface of liquid helium.

The dynamical screening of the Coulomb interaction is an essential feature of
layered structure that provides for an additional contribution to the pairing. The pola-
rization that enters in the calculation of the dielectric function has a static characte-
ristics differ from the dynamic one. The static polarization in the low temperature
limit is approximately constant with the value of -0.159 and drastically changes to

zero for =2k, . At higher temperature the curve converge slowly and the sharpness
near q=2K_. is disappear. The dynamic polarization is equal to zero at y=q /k. =0

for all temperatures and n’s. At very low temperature it abruptly increase with y up to

y = 2 and then decreases rapidly to zero fory>2. At higher temperatu-res, the curves

are broaden and the peaks are shifted to higher values of y. The different
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characteristics between static and dynamic polarizations causes the different curves of
the inverse of dielectric function. The inverse dielectric function is shown to be zero
only in the sta - tic case which means perfect or complete screening. The dynamic
polarization leads to strong g and «, dependence of the inverse dielectric function at
finite temperatu- res. This is the reason why it is necessary to consider the dielectric
function in its full form to study the dynamical screening of the Coulomb interaction.
Using the plasmon exchange model in the framework of the Eliashberg theory
for strong coupling superconductors, the plasmon contribution to the critical tempera-
ture T” could be obtained. In this model the plasmons are assumed to be the attractive
bosons in the pairing effect. The effective interactions between the electrons are des-
cribed within the RPA. The electrons interact with each other within the same layer as
well as from layer to layer via an effective interaction involving plasmon exchanges
among all layers. Eliashberg’s equation for the calculation of T_has been modified
into the McMillan’s equation and Kresin’s equation. These two equations contain two
basic parameters to be evaluated, A and®. The quantity A represents the attractive
strength between electrons, which in this model is essentially mediated by plasmons.
The quantity o is the average value of the frequency of the plasmons, the exchange
of which is responsible for superconductivity. Both A and® obviously depend on the
dielectric constante,, , the effective massm”, the Fermi wave-vectork_, the interlayer
distance L, and the coherence length & (to specify the lower limit of integration for A

and®). The third parameter enters in the two equations for T” is the Coulomb repul -

sion strength u*. This parameter is generally not well known, but one knows that it is
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limited by the conditionO< p*<0.5. Many other investigators take its numerical
value to be 0.1. In this work, p"is kept as an undefined parameter around 0.1.

A specific cuprate superconductor, La, ,Sr,,.CuO,, for which most parameters
have been determined, is selected for the calculation of T”. Since the experimental
value of T, of this material is T, ~38K and the phonon contribution to the T_is shown

to be T™ =30K, hence the plasmon contribution should beT” ~8K. Indeed the

critical temperature is sensitively dependent on parameters mentioned above.

However, only ¢,, is not known precisely and the value of p”should be tested around
the value of 0.1. Variation of ¢,and p’shows that the proper values of them for
TP ~8K are ¢, ~8andp’ ~ 0.1.

The plasmon exchange model is very simple since the microstructure of the

superconductors is completely neglected. The model is characterized by four parame-

ters only. For reasonable values of these parameters the calculated value of T"'is

found to be in reasonable agreement with the experimental values of the materials. In
the case of high-temperature oxides, the contribution of low-energy plasmons to the
criti- cal temperature is significant but not dominant. The phonon contribution is still
largest in this model. In some classes of layered superconductors, the acoustic
plasmon contribution are shown to be dominant or of the same order by phonon

contribution.
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APPENDIX

SOMMERFELD METHOD

Integrals of the Fermi-Dirac form

(o) = [ dz 9(2) (A1)

occur throughout the many topics in theoretical physics. Fora < 0, integrals of this
type can usually be evaluated by elementary methods. In case with high degeneracy
(o> 0)and with g (z) slowly varying near z =o. and having a Taylor series expans-
ion with a reasonable radius of convergence about that point, it is frequently possible

to use the Sommerfeld method to obtain an asymptotic expansion in ascending powers

of temperature.

The Fermi function f(z) =1/(e“‘ +1) can be rewritten as

= =1- (A-2)

R o S -G |
1 (g, 9@ 7, 9(2)
__([g(z)dz — '([dz = + idz e (A-3)
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For the third term in (A-3), letz =z —a., then

z 41

% g(a+Z)
_.([dz -

Using these terms then Eq. (A-3) becomes

_0‘ “ ,,g(oc+z")_°o ,g((x—z') “ ,g((x—z')
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g(z)dz+]§dz [9(a+2)-g(a-2)] ;(_1)n+1 o

where the last integral can be neglected since o >0.

Expanding g(a+2)—g(a—2z)in Taylor series, then

" g™ (a) 1T ome e
(o) = }[g(z)dz+22 (2m—+1)' > (-1) _([dz z""e

m=0 n=1

or

() = [o(e)de23 () | G ()

where B,,,,is Bernoulli number; B,=1/6, B,=1/30.
Equation (A-4) may be rewritten as
I(a) = (mesecnD)g(z) (A-5)
where the operator wcsc D indicates the Laurent expansion of the cosecant about zero

with
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and — =1]dz A-6
S j (A-6)

Suppose thatg(z)=z*?, using Eq. (A-4) we have

[ 3/2dZ T 3127 4 3 1/2“ 77T4 —3/2_317T6 72 _
e’ 0 2 6 960 10752

0

Occasionally, a calculation at non-zero temperature requires the evaluation of a
Fermi-Dirac integral, for which the integrand does not satisfy the two conditions men-
tioned above. For example, g (z) may oscillate rapidly or may have an inopportunely
situated branch point. In such circumstances, ordinary methods may fail. A useful tec-
hnique involves converting the real integral into a complex integral by substituting the

representation for the Fermi function,

1 l b+io

f(z) = o b:[w (nescnt)e ™ dt (A-7)

where 0<b< 1.

This representation possesses enough algebraic flexibility to permit the reduce-
tion of Fermi integral to tabulated Laplace transforms and their inverses, or at worst,
to a tractable exercise in residue theory. In some cases exact evaluation in terms of ta-

bulated mathematical functions is possible. For example, the familiar integral

de
eZ o

I, (o) (A-8)

v+1

O gy 8

can be expressed in terms of confluent hypergeometric functions. However, this
common integral satisfies the second condition above and can be evaluated in the high

degeneracy limit by Eq. (A-5).
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