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ones. Unlike the Lorentz transformations, which are linear in character, the present
ones are necessarily non-linear. For completeness these fully relativistic
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over a specific point of a moving ruler, it is shown how the Lorentz contraction may be
visible about such a point. The complexity and highly non-trivial aspect of the latter
arises because a Doppler-like effect for scale is observed, which, in general, masks the
Lorentz contraction. Finally a resolution of the long standing so-called “train” paradox,
having its roots in the early work of Terrell and Weisskopf and emphasized by
Mathews and Lakshmanan almost thirty years ago, is provided for the first time.
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Chapter I
Introduction

There are many experiments which verify the time dilation predicted by
relativity involving the decay of elementary particles, e.g., Bailey et al. (1977) and in a
beautiful experiment by Hafele and Keating in 1972 using (caesmic) clocks, which
clearly show the  “slowing down of time” of moving objects. No physicist in his right
mind would doubt another important consequence of relativity - that is of the so-called
Lorentz contraction. As the legendary physicist R. P. Feynman puts it in his famous
lectures on physics (1965): “All the physicists who could not accept relativity are now
dead”.  Unlike the time dilation effect, the actual visibility of the Lorentz contraction
itself in experiments remains undisputably a great challenge. Even the theoretical
description of the simplest experiment of photographing the Lorentz contraction turned
out to be far from obvious. As early as 1922, Lorentz (1931) stated that this
contraction could be photographed. There are indications, as pointed out by Terrell
(1959), that even Einstein left us with this impression. In 1960, Weisskopf  (1960, cf.
1961), in his early review in Physics Today, on this states: “We all believed that,
according to special relativity, an object in motion appears to be contracted in the
direction of motion”. The word “appears” has caused a lot of confusion in the physics
literature over the years.

In a truly remarkable paper of Terrell in 1959, the latter has investigated the
visibility of the Lorentz contraction. The main contribution of Terrell to this
fundamental problem was the following: in order to see an object, unlike measuring its
length, all the light rays coming from the object to the observation point have to reach
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this point simultaneously. That is, in order that the light rays reach the observation
point simultaneously, they have to leave the different parts of the object at different
times due to the finite speed  c of the propagation of light itself. The latter fact is
referred to as the time-delay mechanism. This looks so simple today that it is
surprising that it took over a half of a century since Einstein’s work, before any
statements were made about the visual appearance of the Lorentz contraction. [It is
worth recalling that in measuring the length of an object one determines the positions
of its extremities simultaneously, unlike the seeing of an object]. Ever since, the visual
appearance of relativistically moving objects, with its associated time delay
mechanism, has been justifiably referred to as the Terrell Effect. Since the appearance
of Terrell’s paper (1959) and Weisskopf’s review paper in 1960, many papers (e.g.,
YngstrÖm, 1962; Scott and Viner, 1965; Scott and Driel, 1970; McGill, 1968;
Mathews and Lakshmanan, 1972; Hollenbach, 1976; Hickey, 1979) have been
published on the subject, and more papers will undoubtedly continue to appear (e.g.,
Burke and Strod, 1991; Howard et al.,1995), on this challenging, and certainly very
intriguing and fascinating problem. The earlier studies (e.g., Terrell, 1959; Weisskopf
1960; Penrose 1959)  did not pay detailed attention to the method of observation which
was particularly illuminated later in (e.g., Scott and Viner, 1965; McGill and Driel,
1968; Mathews and Lakshmanan, 1972; Hollenbach, 1976; Hickey, 1979), and
generalized with a more precise definition of the relativistically  moving object as
projected on a two–dimensional surface (the latter being particularly emphasized in
Hickey’s paper in 1979) as on a photograph.

For orientation, we recall the strategy in the study of the Terrell effect is to
consider all the rays “emerging” from the object to reach the observer simultaneously.
In this work, we consider the latter to be infinitesimal as a point. When all the light
rays from the object reach the observation point, this aperture is instantaneously
closed. All the light rays are then collected on a sensitive detecting plate (plane)
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perpendicular to the optic axis of observation. We consider the object under study
fixed in a frame 'F  in relative motion to the observation frame F  along the x-axis.

As stated about the word “appears” or the statement “appears as on a
photograph” have caused some confusion over the years. To be precise, the latter are
meant in the following manner in the present investigation and are based on taking into
account these three points:
(1) Terrell’s observation that different points on the object, in relative motion, must
“emit” light at different times in order to reach an observation point simultaneously,
(2) the Lorentz transformations,
(3) the piercing of these light rays an appropriate 2D-plane in the observation frame.

The necessarily non-linear transformations resulting from the application of the
above three points will be referred to as the non-linear Terrell transformations.

One of the most puzzling aspects about the earlier investigations, concerning
this problem, is the so-called “train” paradox. This paradox has its roots in the early
work of Terrell (1959) and Weisskopf (1960,1961), and was emphasized by Mathews
and Lakshmanan (1972) almost thirty years ago. In its simplest terms, the paradox
arises in the following manner. One often reads in the above quoted papers that an
object appears to be rotated when in motion relative to an observation frame due to the
fact that different points on the object must “emit” light at different times in order to
reach an observation point simultaneously. Such an inference seems to indicate that a
rectangular block, for example, sliding on (smooth) rails and the edges of its bottom in
contact with them, appear off of them due to the relative motion with the rails
stationary relative to the observer and hence the paradox – [as a train, for example, off
of the rails]. The same reasoning may be applied, as shown in an illuminating
application given in this thesis (see, e.g., Fig. 4.1(b) also (a)), Fig. 4.4.(b)), to an object
with a horizontal flat top touching a “smooth” flat horizontal stationary plane. Again
this rotational effect would seem to imply, in particular cases, as if one end of the
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object has miraculously broken and gone through the flat plane due to the relative
motion. Although the demonstration of the absence of a paradox seems non-trivial, a
rigorous and complete resolution of the long standing “train” paradox will be given.

The purpose of this thesis is to give a complete derivation of the explicit (non-
linear) transformations arising from the application of the three points mentioned
earlier which may be applied to any object, in relative motion, no matter how
complicated the object is. As already mentioned above, these transformations will be
appropriately referred to as the non-linear Terrell transformations. The closest
investigation to these transformations was given by Hickey (1979) which, however,
applies methods of mapping out the tangents to points on the object. The latter also
provides no room for resolving the “train” paradox. For completeness and for a
comparative study with the fully relativistic case we also specialize these
transformations to the Galilean case by formally incorporating into them the finiteness
of the propagation speed c  of light (the so-called time delay mechanism). Three major
applications of the derived transformations are given corresponding to a set of houses,
to a pyramid and to a train. These applications clearly and quite generally explain the
roles of the transformations and the physical consequence of the Lorentz contraction
when the Terrell effect is taken into consideration. These figures constitute an integral
part of this investigation. A very important contribution of this work is to provide a
resolution of the long standings “train” paradox. It is also explicitly shown how the
Lorentz contraction may be visible by concentrating over a specific point of a rapidly
moving ruler.

The plan of the thesis is as follows. Chapter II deals with the intricacies of the
Galilean and Lorentz transformations starting from the very basics of relativity. This
chapter will be essential in all of our subsequent analysis. In Chapter III, we provide
the complete non-linear Terrell transformations for both the Galilean and relativistic
cases spelling out all of the fine details. Chapter IV deals with the very important



5

applications of these transformations to the set of three objects mentioned above. This
chapter is appropriately entitled: “Applications and Comparative Study – Seeing is
Believing”, and is an integral part of the thesis. The resolution of the long standing
“train” paradox is provided in Chapter V. This chapter also contains some pertinent
analytical properties of the non-linear transformations which help us understand more
clearly their applications to the corresponding figures given in Chapter IV. The final
chapter, Chapter VI, deals with our conclusion and summarizes some of our results.



Chapter II
The Galilean and Lorentz Transformations

2.1 Introduction
The purpose of this chapter is to give a brief introduction to those aspects of

special relativistic physics and closely related aspects culminating into the famous
Lorentz transformations and their classical counterparts, the Galilean transformations.
This is essential in our subsequent analysis and for our very basic understanding of the
subject.

For the description of processes taking place in nature, one must have a system
of references.  By a system of reference we understand a system of coordinates serving
to indicate the position of a particle in space, as well as clocks fixed in this system
serving to indicate the time.

There exist systems of references in which a freely moving body, i.e., a moving
body, which is not acted upon by external forces, proceeds with constant velocity.
Such references system, are said to be inertial.

If two reference systems move uniformly relative to each other and if one of
them is an inertial system, then clearly the other is also inertial (in this system too
every free motion will be linear and uniform).  In this way we can obtain arbitrarily
many inertial systems of reference, moving uniformly relative to one another.

Experiment shows that the so-called principle of relativity is valid. According
to this principle all the laws of nature are identical in all inertial systems of reference.
In other words, the equations expressing the laws of nature are invariant with respect
to transformations of coordinates and time from one inertial system to another. This
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means that the equation describing any law of nature, when written in terms of
coordinates and time in different inertial reference systems, has one and the same
form.

The interaction of material particles is described in ordinary mechanics by
means of a potential energy of interaction, which appears as a function of the
coordinates of the interacting particles. It is easy to see that this manner of describing
interactions contains the assumption of instantaneous propagation of interactions. For
the forces exerted on each of the particles by the other particles at a particular instant
of time depend, according to this description, only on the positions of the particles at
this one instant. A change in the position of any of the interacting particles influences
the other particles immediately.

However, experiment shows that instantaneous interactions do not exist in
nature. Thus a mechanics based on the assumption of instantaneous propagation of
interactions contains within itself a certain inaccuracy. In actuality, if any change takes
place in one of the interacting bodies, it will influence the other bodies only after the
lapse of a certain interval of time. It is only after this time interval that processes
caused by the initial change begin to take place in the second body. Dividing the
distance between the two bodies by this time interval, we obtain the velocity of
propagation of the interaction.

We note that this velocity should, strictly speaking, be called the maximum
velocity of propagation of interaction. It determines only that interval of time after
which a change occurring in one body begins to manifest itself in another. It is clear
that the existence of a maximum velocity of propagation of interactions implies, at the
same time, that motions of bodies with greater velocity than this are in general
impossible in nature. For, if such a motion could occur, then by means of it, one could
realize an interaction with a velocity exceeding the maximum possible velocity of
propagation of interactions.
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Interactions propagating from one particle to another are frequently called
“signals”, sent out from the first particle, and “informing” the second particle of
changes, which the first has experienced. The velocity of propagation of interaction is
then referred to as the signal velocity.

The special theory of relativity asserts that the speed of light (in vacuum) is the
same in all inertial frames. Thus the velocity of propagation of interaction is a
universal constant. This constant velocity of light is usually designated by the letter c ,
and its exact numerical value is

smc /1099792458.2 8×= .

The large value of this velocity explains the fact that in practice, classical
mechanics appears to be sufficiently accurate in most cases. The velocities with, which
we have occasion to deal with in every day life are usually so small compared with the
velocity of light. The assumption that the latter is infinite does not materially affect the
accuracy of the results.

The combination of the principle of relativity with the finiteness of the velocity
of propagation of interactions is called the principle of relativity of Einstein (it was
formulated by Einstein in 1905). In contrast to the principle of relativity of Galileo,
which was based on an infinite velocity of propagation of interactions.

The mechanics based on the Einsteinian principle of relativity (we shall usually
refer to it simply as the principle of relativity) is called relativistic. In the limiting case
when the velocities of the moving bodies are small compared with the velocity of light,
we can neglect the effect on the motion of the finiteness of the velocity of propagation.
Then relativistic mechanics goes over into the usual non-relativistic mechanics, based
on the assumption of instantaneous propagation of interaction; this mechanics is called
Newtonian or classical. The limiting transition from relativistic to classical mechanics



9

can be produced formally by taking the limit ∞→c  in the formulae of relativistic
mechanics.

In classical mechanics distance is already relative, i.e., the spatial relations
between different events depend on the system of reference in which they are
described. The statement that two non-simultaneous events occur at one and the same
point in space or, in general, at a definite distance from each other, acquires a meaning
only when we indicate the system of reference which is being used.

On the other hand, time is absolute in classical mechanics; in other words, the
properties of time are assumed to be independent of the system of reference; there is
one time for all reference frames. This means that if any two phenomena occur
simultaneously for any one observer, then they occur simultaneously also for all
others. In general, the interval of time between two given events is assumed to be
identical for all systems of reference in classical mechanics.

It is easy to show, however, that the idea of an absolute time is in complete
contradiction to the Einstein principle of relativity. For this it is sufficient to recall that
in classical mechanics, based on the concept of an absolute time, a general law of
combination of velocities is valid, according to which the velocity of a composite
motion is simply equal to the (vector) sum of the velocities which constitute this
motion. This law, being universal, should also be applicable to the propagation of
interactions. From this it would follow that the velocity of propagation of light must be
different in different inertial systems of reference, in contradiction to the principle of
relativity. In this matter experiment completely confirms the principle of relativity.
Measurements first performed by Michelson (1887) showed, in particulars complete
lack of dependence of the velocity of light on its direction of propagation; whereas
according to classical mechanics the velocity of light should be smaller in the direction
of the earth’s motion than in the opposite direction.
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Thus the principle of relativity leads to the result that time is not absolute. Time
elapses differently in different systems of references. Consequently the statement that a
definite time interval has elapsed between two given events acquires meaning only
when the reference frame to which this statement applies is indicated. In particular,
events, which are simultaneous in one reference frame, will not in general be
simultaneous in other frames.

      2.1.1 Intervals
In what follows we shall frequently use the concept of an event. An event is

described by the place where it occurred, and the time when it occurred. Thus an event
occurring in a certain material particle is defined by the three coordinates of that
particle and the time when the event occurs.

It is frequently useful for reasons of presentation to use a fictitious four-
dimensional space, on the axes of which marked three space coordinates and time. In
this space events are represented by points, are called world points.  In this fictitious
four-dimensional space there corresponds to each particle a certain curve, called a
world-line. The points of this line determine the coordinates of the particle at all
moments of time. It is easy to show that to a particle in uniform rectilinear motion
there corresponds a straight world-line.

We now express the principle of the invariance of the velocity of light in
mathematical form. For this purpose we consider two reference systems K  and 'K

moving relative to each other with constant velocity. We choose the coordinate axes so
that the axes X  and 'X  coincide, while theY and Z  axes are parallel to 'Y  and 'Z ;
we designate the time in the systems K  and 'K  by t  and 't .

Let the first event consist of sending out a signal, propagating with light
velocity, from a point having coordinates 111 zyx  in the K  system, at time 1t  in this
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system. We observe the propagation of this signal in the K  system. Let the second
event consist of the arrival of the signal at point 222 zyx  at the moment of time 2t .
The signal propagates with velocity c; the distance covered by it is therefore )( 21 ttc − .
On the other hand, this same distance equals [ ]2

1
2

12
2

12
2

12 )()()( zzyyxx −+−+− .
Thus we can write the following relation between the coordinates of the two events in
the K  system:

0)()()()( 2
12

22
12

2
12

2
12 =−−−+−+− ttczzyyxx .             (2.1)

The same two events, i.e., the propagation of the signal, can be observed from
the 'K  system:

Let the coordinates of the first event in the 'K  system be 1111 '''' tzyx , and of
the second: 2222 '''' tzyx . Since the velocity of light is the same in the K  and 'K

systems, we have, similarly to Eq.(2.1):

0)''()''()''()''( 2
12

22
12

2
12

2
12 =−−−+−+− ttczzyyxx . (2.2)

If 1111 tzyx  and 2222 tzyx  are the coordinates of any two events, then the quantity

[ ]2
1

2
12

2
12

2
12

2
12

2
12 )()()()( zzyyxxttcs −−−−−−−= , (2.3)

is called the interval between these two events.
Thus it follows from the principle of invariance of the velocity of light that if

the interval between two events is zero in one coordinate system, then it is equal to
zero in all other systems.
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If two events are infinitesimally close to each other, then the interval ds

between them is

222222 dzdydxdtcds −−−= . (2.4)

The form of expressions Eqs.(2.3) and (2.4)  permit us to regard the interval,
from the formal point of view, as the distance between two points in a fictitious four-
dimensional space (whose axes are labeled by ,,, zyx  and the product ct ). But there is
a basic difference between the rule for forming this quantity and the rule in ordinary
geometry: in forming the square of the interval, the squares of the coordinate
differences along the different axes are summed, not with the same sign, but rather
with varying signs. (The four-dimensional geometry described by the quadratic form
Eq.(2.4) was introduced by H. Minkowski, in connection with the theory of relativity.
This geometry is called pseudo-Euclidean, in contrast to ordinary Euclidean geometry)

As already shown, if 0=ds  in one inertial system, then 0' =ds  in any other
system. On the other hand, ds  and 'ds  are infinitesimals of the same order. From
these two conditions it follows that 2ds  and 2'ds must be proportional to each other:

22 'adsds = , (2.5)

where the coefficient a  can depend only on the absolute value of the relative velocity
of the two inertial systems. It cannot depend on the coordinates or the time, since then
different points in space and different moments in time would not be equivalent, which
would be in contradiction to the homogeneity of space and time. Similarly, it cannot
depend on the direction of the relative velocity, since that would contradict the
isotropy of space.
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Let us consider three reference systems K , 1K , 2K , and let v1 and v2 be the
velocities of systems 1K  and 2K  relative to K .

We then have:
2
11

2 )( dsvads = , 2
22

2 )( dsvads = . (2.6)

Similarly we can write
2
212

2
1 )( dsvads = , (2.7)

where v12 is the absolute value of the velocity of 2K  relative to 1K . Comparing these
relations with one another, we find that we must have

)(
)(
)(

12
1

2 va
va
va

= . (2.8)

But v12 depends not only on the absolute values of the vectors v1 and v2, but also on the
angle between them. However, this angle does not appear on the left side of formula
(2.8). It is therefore clear that this formula can be correct only if the function )(va

reduces to a constant, which is equal to unity according to this same formula.
Thus,

22 'dsds = , (2.9)

and from the equality of the infinitesimal intervals there follows the equality of finite
intervals: 'ss = .

Thus we arrive at a very important result: the interval between two events is the
same in all inertial systems of reference, i.e., it is invariant under transformation from
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one inertial system to any other. This invariance is the mathematical expression of the
constancy of the velocity of light.

Again let 1111 tzyx  and 2222 tzyx be the coordinates of two events in a certain
reference system K . Does there exist a coordinate system 'K , in which these two
events occur at one and the same point in space? We introduce the notation

2
12

2
12

2
12

2
121212 )()()(, lzzyyxxttt =−+−+−=− . (2.10)

Then the interval between events in the K  system is:

2
12

2
12

22
12 ltcs −= ,

and in the 'K  system

2
12

2
12

22
12 ''' ltcs −= ,

whereupon, because of the invariance of intervals,

2
12

2
12

22
12

2
12

2 '' ltcltc −=− ,

If two events occur at the same point in the 'K  system, that is, we require 0'12 =l , then

0'2
12

22
12

2
12

22
12 >=−= tcltcs .

Consequently a system of reference with the required property exists if 02
12 >s , that is,

if the interval between the two events is a real number. Real intervals are said to be
timelike.



15

Thus, if the interval between two events is timelike, then there exists a system
of reference in which the two events occur at one and the same place. The time which
elapses between the two events in this system is

c
s

ltc
c

t 122
12

2
12

2
12

1
' =−= . (2.11)

If two events occur in one and the same body, then the interval between them is
always timelike, for the distance which the body moves between the two events cannot
be greater than 12ct , since the velocity of the body cannot exceed c . So we always
have

1212 ctl < .

Let us now ask whether or not we can find a system of reference in which the
two events occur at one and the same time. As before, we have for the K  and 'K

systems 2
12

2
12

22
12

2
12

2 '' ltcltc −=− . We want to have 0'12 =t , so that

0'2
12

2
12 <−= ls .

Consequently the required system can be found only for the case when the
interval 12s between the two events is an imaginary number. Imaginary intervals are
said to be spacelike.

Thus if the interval between two events is spacelike, there exists a reference
system in which the two events occur simultaneously. The distance between the points
where the events occur in this system is

12
2
12

22
1212' istcll =−= . (2.12)
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The division of intervals into spacelike and timelike intervals is, because of
their invariance, an absolute concept. This means that the timelike or spacelike
character of an interval is independent of the reference system.

Let us take some event O  as our origin of time and space coordinates. In other
words, in the four-dimensional system of coordinates, the axes of which are marked

,,,, tzyx  the world point of the event O  is the origin of coordinates. Let us now
consider what relation other events bear to the given event O . For visualization, we
shall consider only one space dimension and the time, marking them on two axes (Fig.
2.1). Uniformly rectilinear motion of a particle, passing through 0=x  at 0=t , is
represented by a straight line going through O , and inclined to the t axis at an angle
whose tangent is the velocity of the particle. Since the maximum possible velocity is
c , there is a maximum angle, which this line can subtend with the t axis. In Fig.2.1,
the two lines representing the propagation of two signals are shown

             Fig. 2.1. The light cone

(with the velocity of light) in opposite directions passing through the event O  (i.e.,
going through 0=x  at 0=t ). All lines representing the motion of particles can lie
only in the regions aOc  and dOb . On the lines ab  and cd , ctx ±= . First consider

Absolute
  future

AbsolutelyAbsolutely
separated separated

Absolute
    past

a c

O

d b
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events whose world points lie within the region aOc . It is easy to show that for all the
points of this region 0222 >− xtc . In other words, the interval between any event in
this region, and the event O  is timelike. In this region 0>t , i.e., all the events in this
region occur “after” the event O . But two events which are separated by a timelike
interval cannot occur simultaneously in any reference system. Consequently it is
impossible to find a reference system in which any of the events in region aOc

occurred “before” the event O , i.e., at time 0<t . Thus all the events in region aOc

are future events relative to O  in all reference systems. Therefore this region can be
called the absolute future relative to O .

In exactly the same way, all events in the region bOd are in the absolute past
relative to O ; i.e., events in this region occur before the event O  in all systems of
reference.

Next consider regions dOa  and cOb . The interval between any event in this
region, and the event O  is spacelike. These events occur at different points in space in
every reference system. Therefore these regions can be said to be absolutely remote
relative to O . However, the concepts “simultaneous”, “earlier”, and “later” are relative
for these regions. For any event in these regions there exist systems of reference in
which it occurs after the event O , systems which occurs earlier than O , and finally
one reference system in which it occurs simultaneously with O .

Note that if we consider all three space coordinates instead of just one, then
instead of the two intersecting lines of Fig. 2.1, we would have a “cone” represented
by the equation 022222 =−++ tczyx  in the four-dimensional coordinate system

,,,, tzyx  with the axis of the cone coinciding with the t  axis. (This cone is called the
light cone.) The region of absolute future and absolute past are then represented by the
two interior portions of this cone.

Two events can be related causally to each other only if the interval between
them is timelike; this follows immediately from the fact that no interaction can
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propagate with a velocity greater than the velocity of light. As we have just seen, it is
precisely for these events that the concepts “earlier” and “later” have an absolute
significance, which is a necessary condition for the concepts of cause and effect to
have meaning. A remarkable property of the Minkowski space-time is that the
triangular inequality, known to hold in Euclidean space, is reversed (Manoukian, 1993)
for three causally related events and lies in the heart of the twin “paradox” problem.

      2.1.2 Proper Time
Suppose that in a certain inertial reference system we observe clocks which are

moving relative to us in an arbitrary manner. At each different moment of time this
motion can be considered as uniform. Thus at each moment of time we can introduce a
coordinate system rigidly linked to the moving clocks, which with the clocks
constitutes an inertial reference system.

In the course of an infinitesimal time interval dt (as read by a clock in our rest
frame) the moving clocks go a distance 222 dzdydx ++ . Let us ask what time
interval 'dt  is indicated for this period by the moving clocks. In a system of
coordinates linked to the moving clocks, the coordinates are at rest, i.e.,

0''' === dzdydx . Because of the invariance of intervals

22222222 'dtcdzdydxdtcds =−−−= ,
from which

22

222

1'
dtc

dzdydx
dtdt

++−= .
But

2
2

222

v
dt

dzdydx =++ ,

where v  is the velocity of the moving clock; therefore
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221' cvdt
c
ds

dt −== . (2.13)

Integrating this expression, we can obtain the time interval indicated by the
moving clocks when the elapsed time according to a clock at rest is 12 tt − :

∫ −=−
2

1

22
12 1''

t

t

cvdttt . (2.14)

The time read by a clock moving with a given object is called the proper time
for this object. Formulae (2.13) and (2.14) express the proper time in terms of the time
for a system of reference from which the motion is observed.

As we see from Eq.(2.13) or (2.14), the proper time of a moving object is
always less than the corresponding interval in the rest system. In other words, moving
clocks go more slowly than those at rest.

Suppose some clocks are moving in uniform rectilinear motion relative to an
inertial system K . A reference frame 'K  linked to K is also inertial. Then from the
point of view of an observer in the K  system the clocks in the 'K  system fall behind.
And conversely, from the point of view of the 'K  system, the clocks in K  lag. To
convince ourselves that there is no contradiction, let us note the following. In order to
establish that the clocks in the 'K  system lag behind those in the K  system, we must
proceed in the following fashion. Suppose that at a certain moment the clock in 'K

passes by the clock in K , and at that moment the readings of the two clocks coincide.
To compare the rates of the two clocks in K  and 'K  we must once more compare the
readings of the same moving clock in 'K  with the clocks in K . But now we compare
this clock with different clocks in K . Then we find that the clock in 'K  lags behind
the clocks in K  with which it is being compared. We see that to compare the rates of
clocks in two reference frames we require several clocks in one frame, and one in the
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other, and that, therefore, this process is not symmetric with respect to the two
systems. The clock that appears to lag is always the one, which is being compared with
different clocks in the other system.

If we have two clocks, one of which describes a closed path returning to the
starting point (the position of the clock, which remained at rest), then clearly the
moving clock appears to lag relative to the one at rest. The reverse reasoning, in which
the moving clock would be considered to be at rest (and vice versa) is now impossible,
since the clock describing a closed trajectory does not carry out a uniform rectilinear
motion, so that a coordinate system linked to it will not be inertial.

Since according to special relativity, the laws of nature are the same only for
inertial reference frames, the frames linked to the clock at rest (inertial frame), and to
the moving clock (non-inertial) have different properties and the argument, which
leads to the result that the clock at rest must lag is not valid.

The time interval read by a clock is equal to the integral

∫
b

a

ds
c
1 ,

taken along the world line of the clock. If the clock is at rest then its world line is
clearly a line parallel to the t  axis; if the clock carries out a nonuniform motion in a
closed path, and returns to its starting point, then its world line will be a curve passing
through the two points, on the straight world line of a clock at rest, corresponding to
the beginning and end of the motion. On the other hand, we saw that the clock at rest
always indicates a greater time interval than the moving one. Thus we arrive at the
result that the integral

∫
b

a

ds ,
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taken between a given pair of world points, has its maximum value if it is taken along
the straight world line joining these two points. (It is assumed, of course, that the
points a  and b , and the curves joining them are such that all elements ds  along the
curves are timelike. This property of the integral is connected with the pseudo-
Euclidean character of the four-dimensional geometry. In Euclidean space the integral
would, of course, be a minimum along the straight line.

2.2 The Galilean  Transformations
Let us begin with motions having constant velocities, as they are described by

the Galilean relativity. Since we deal with constant relative velocity between the
observer and the observed system, the corrections to the description according to
Einstein will be those emerging from the special theory of relativity

Consider a bus parked at a station. Let us designate the point where the  rear
edge of the bus is as point O . Two observers are supposed to report on the motions
which take place in the system: observer A sits in the bus and observer B stands
paralleled to A outside the bus. It is clear that as long as the bus is parked, the reports
of both observers will be identical. Suppose now that the bus (moves with a constant
velocity u , passing B at time 0=t ). If the bus moves along a straight line, we can
perform all our measurements along the line of the motion of the bus. Let us designate
this line as the x-axis with coordinate points labeled by x . Until the time 0=t , the
point marked by O  was the same point for the two observers: it was the point where
the rear edge of the bus was. On the other hand if the bus is moving, observer A will
assign it to the rear edge of the bus (which moves together with him) while observer B
will assign it to the point on the ground where the rear edge of the bus was while the
bus parked. To avoid confusion, let us mark the rear edge of the bus by 'O  and O  will
designate the point marked by observer B. The point 'O  will be the origin for the
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measurements of observer A, and all his measurements will be related to this point.
(The same will be true for all the observers who stay with him in the moving system,
the bus). The point O  will be the origin for the measurements of observer B, and for
the measurements of all the observers who stay with him in the rest system, the earth.
From now on, we shall treat the earth and all the objects attached to it as the rest
system and the bus, and all the objects staying in it as the moving system. All the
entities determined by the observers staying in the moving system will be designated
by a prime )(' .

At the moment 0=t both points O  and 'O  coincide )'( OO = . If we ask
observer A to designate his position, he will report that, according to his
measurements, he is located at some distance from point 'O . Let us designate this
distance by 'x . On the other hand, when observer B marks the position of observer A,
he will report the distance of observer A from the point O . Let us call this distance x .
How do the distances x  and 'x  related to each other? The distance x  includes the
distance 'x , and in addition it includes the distance of the rear edge of the bus from the
starting point. This additional distance is the distance between O  and 'O , and it is
equal to the speed of the bus times the duration of the motion (the velocity is constant,
and the motion began at 0=t ), which is tu ⋅ :
Therefore

utxx −=' . (2.15)
The interrelation between x  and 'x  is symmetric, and hence:

utxx += ' , (2.16)
and

'yy = , (2.17)
'zz = , (2.18)

'tt = . (2.19)
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How will the two observers report on velocities? Suppose a ball is rolling in the
bus with linear velocity 'v   (relative to the bus), and in the same direction of the bus
motion. It is clear that observer A will report that the ball moves (relative to him) with
velocity 'v . The velocity of the ball as measured by observer B, however, consists of
the sum of the velocity of the bus, and the velocity of the ball relative to the bus:

uvv += ' , (2.20)
and of course:

uvv −=' . (2.21)

Eqs.(2.15) to (2.21) are called the Galilean transformations for the position and
velocity or the transformations which connect one inertial frame with another. Eqs.
(2.20) and (2.21) give “the law of addition of velocities.” They can be obtained from
equations (2.15) and (2.16) by differentiating them with respect to time which means,
by calculating the rate of change of the position on the condition that the time in the
moving bus and on the earth, are the same. Stating that the time is an absolute entity
(the time is the same in both systems and is independent of the measuring system) is
actually a hidden assumption, which lies at the basis of Newtonian mechanics. During
the hundreds of years since Newtonian mechanics was formulated, and until the
beginning of the twentieth century, this assumption was considered a self-evident one,
and even today it is commonly accepted intuitively. Actually, one of the biggest
difficulties in studying the STR (special theory of relativity) is to accept the conclusion
that time is not an absolute entity, and that the results of time measurements depend
upon the motion of the observer. Research on the evolution of the concept of time, and
its measuring was conducted by Professor G. Szamosi from the University of Windsor,
Ontario, Canada, and published in his book “The Twin Dimensions” (1986).
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Until the end of the nineteenth century, there seemed to be no difficulty with
Galilean transformation equations and they suited the observations well. As was later
discovered, the reason for this fact was that all the phenomena investigated were
concerned with low velocities, except for the light motion. As for measurements
concerned with light velocity, the degree of accuracy was so low that the
contradictions between these equations, and the observations were not observed. The
problems arose when equations (2.20) and (2.21) were used in accurate experiments
concerning the motion of light.

When one wants to relate these equations to light motion, one has first to
determine what light is: is it a wave phenomenon or a corpuscular one? If the light is a
corpuscular phenomenon, then its velocity (like the velocity of all other particles)
depends upon the velocity of the light source. In such a case, by using the additional
law for velocities one finds that the velocity of light relative to the observer equals the
velocity of the light relative to the source, plus the velocity of the source relative to the
observer.

If light is a wave phenomenon, then its additional law for velocities should be
that of waves. When a wave moves in a medium, its velocity is defined relative to the
medium, and is determined by the properties of the medium. The wave velocity as
measured by an observer is equal to the sum of the wave velocity relative to the
medium and the velocity of the observer relative to the medium. At the beginning of
the nineteenth century, it was established experimentally that light is a wave
phenomenon, and hence people expected that the Galilean additional law of velocities
for waves would be the correct law to use for light motion. The acceptance of the
assumption that light is a wave phenomenon implied also the assumption that there is a
medium in which the light moves as a wave. This medium was termed “the Ether,” and
it was assumed that it fills the whole space, and that it can be considered as an absolute
rest system to which the motions of all objects can be related. Towards the end of the
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nineteenth century, scientists believed that light is a wave moving in the ether, and it
was concluded that its motion could be treated according to the addition law of
velocities for waves.

In 1887 the famous experiment of Michelson and Moreley was performed. In
this experiment the scientists tried to measure the velocity of the earth relative to the
ether, where the technique of the experiment was based on the addition law of
velocities for light. The degree of the precision of the experiment was very high, and
significant results were expected. Yet the results of the experiment were null: no
velocity of the earth relative to the ether was observed. Since then, the same
experiment was repeated again and again with higher and higher precision, but always
the same null results were obtained: the ether, to which the motion of the earth was
supposed to be related, was not found. The results of this experiment were considered
a mystery; the one that bothered Einstein greatly as he took his first steps in science.

The answer to the mystery was given by Einstein in 1905 in the form of the
STR. This theory was based on two assumptions:

1. The validity of the principle of relativity that all inertial frames are
equivalent.

2. The speed of light in vacuum is constant, and is the same in all systems
moving with constant velocities.

The acceptance of the second assumption implies that the addition law for
velocities should be corrected in such a way that the velocity of light will remain the
same on transforming from one system to another. For this purpose, the transformation
Eqs. (2.20) and (2.21) were also corrected. From this modification it followed that
time could not be an absolute entity, and that the time duration, measured for some
given event, depends upon the situation of motion of the observer. (Actually, Einstein
arrived first at the conclusion that the solution of the contradiction might be obtained
only after abolishing the hidden assumption that time is an absolute entity. The
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correction of the equations was already done by him on the basis of the relativistic
character of time.)

2.3 The Lorentz Transformations
Our purpose is now to obtain the formulae of transformations from one inertial

reference system to another, that is, a formula by means of which, knowing the
coordinates  tzyx ,,, , of a certain event in the K  system, we can find the coordinates

',',',' tzyx  of the same event in another inertial system 'K .
In classical mechanics this question is resolved very simply as shown in the

previous section. It is easy to verify that this transformations, as was to be expected,
does not satisfy the requirements of the theory of relativity; violates the constancy of
the speed of light, and it does not leave the interval between events invariant.

We shall obtain the relativistic transformations precisely as a consequence of
the requirement that they leave the interval between events invariant.

The interval between events can be looked upon as the distance between the
corresponding pair of world points in a four-dimensional system of coordinates.
Consequently we may say that the required transformation must leave unchanged all
distances in the four-dimensional ,,,, ctzyx  space. But such transformations consist
only of parallel displacements, and rotations of the coordinate system. Of these, the
displacement of the coordinate system parallel to itself is of no interest, since it leads
only to a shift in the origin of the space coordinates, and a change in the time reference
point. Thus the required transformation must be expressible mathematically as a
rotation of the four-dimensional ,,,, ctzyx  coordinate system.

Every rotation is the four-dimensional space can be resolved into six rotations,
in the planes tztytxxzzyxy ,,,,,  (just as every rotation in ordinary space can be
resolved into three rotations in the planes zyxy,(  and )xz . The first three of these
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rotations transform only the space coordinates; they correspond to the usual space
rotations.

Let us consider a rotation in the tx  plane; under this, the y  and z  coordinates
do not change. In particular, this transformation must leave unchanged the difference

22)( xct − , the square of the “distance” of the point ),( xct  from the origin. The
relation between the old, and the new coordinates is given in most general form by the
formulae:

ψψ sinh'cosh' ctxx += , ψψ cosh'sinh' ctxct += , (2.22)

where ψ  is the “angle of rotation”; a simple check shows that in fact
222222 '' xtcxtc −=− . Formula (2.22) differs from the usual formulae for

transformation under rotation of the coordinate axes in having hyperbolic functions in
place of trigonometric ones. This is the difference between pseudo-Euclidean and
Euclidean geometry.

We try to find the formula of transformations from an inertial reference frame
K  to a system 'K  moving relative to K  with velocity v along the x  axis. In this case
clearly only the coordinate x  and the time t  are subject to change. Therefore this
transformation must have the form of Eq.(2.22). Now it remains only to determine the
angle ψ , which can depend only on the relative velocity v.

Let us consider the motion in the K  system of the origin of the 'K  system. For
0'=x , formulae (2.22) take the form:

ψsinh'ctx = , ψcosh'ctct = , (2.23)

or dividing one by the other,
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ψtanh=
ct
x , (2.24)

But tx /  is clearly the velocity v of the 'K  system relative to K .
So

c
v=ψtanh . (2.25)

From this

221
sinh

cv

cv

−
=ψ ,

221

1
cosh

cv−
=ψ . (2.26)

Substituting the latter in Eq.(2.22), we find:

( )
222

1

1
,'',',',''

cv
x

c
v

ttzzyyvtxx
−

=




 +===+= γγγ . (2.27)

These are the required transformation formulae. They are called the Lorentz
transformations, and are of fundamental importance for what follows.

The inverse formulae, expressing ',',',' tzyx  in term of ,,,, tzyx  are most
easily obtained by changing v  to -v (since the K system moves with velocity -v relative
to the 'K  system). The same formulae can be obtained directly by solving equation
(2.27) for ',',',' tzyx .

It is easy to see from Eq.(2.27) that on making the transition to the limit
∞→c , the formulae for the Lorentz transformations actually go over to the Galilean

transformations.
For cv >  the coordinates tx,  in Eq.(2.27) are imaginary; this corresponds to

the fact that motion with a velocity greater than the velocity of light is impossible.
Moreover, one cannot use a reference system that is moving with the velocity of light
as in that case the denominators in Eq.(2.27) would go to zero.
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For velocities v  small compared with the velocity of light, we can use in place
of Eq.(2.27) the approximate formulae:

'',',',''
2

x
c
v

ttzzyyvtxx +===+= . (2.28)

Suppose there is a rod at rest in the K  system, parallel to the x-axis. Let its length,
measured in this system, be 12 xxx −=∆  (x2 and x1 are the coordinates of the two ends
of the rod in the K  system). We now determine the length of this rod as measured in
the 'K  system. To do this we must find the coordinates of the two ends of the rod ( 2'x

and 1'x  ) in this system at one, and the same time 't , i.e., simultaneously. From Eq.
(2.27) we find:

( ) ( )'','' 2211 vtxxvtxx +=+= γγ . (2.29)

The length of the rod in the 'K  system is '
1

'
2' xxx −=∆ ; subtracting 1x  from 2x  we find

( )'xx ∆=∆ γ .

The proper length of a rod is its length in a reference system in which it is at
rest. Let us denote it by xl ∆=0 , and the length of the rod in any other reference frame

'K  by l . Then

γ
0ll = . (2.30)

Thus a rod has its greatest length in the reference system in which it is at rest.
Its length in a system in which it moves with velocity v is decreased by the factor 

γ
1 .

This result of the theory of relativity is called the Lorentz contraction.
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Since the transverse dimensions do not change because of its motion, the
volume ν  of a body decreases according to the similar formula

γ
νν 0= , (2.31)

where 0ν  is the proper volume of the body.
From the Lorentz transformation we can obtain anew the results already known

to us concerning the proper time. Very briefly, suppose a clock to be at rest in the 'K

system. We take two events occurring at one, and the same point ',',' zyx  in the 'K

system. The time between these events in the 'K  system is '
1

'
2' ttt −=∆ . Now we find

the time t∆  which elapse between these two events in the K  system. From Eq.(2.27),
we have






 +=





 += '',''

222211 x
c
v

ttx
c
v

tt γγ , (2.32)

or, subtracting one from the other,

'12 tttt ∆=∆=− γ , (2.33)

in complete agreement with Eq.(2.13).
Finally we mention another general property of the Lorentz transformations

which distinguishes them from the Galilean transformations. The latter have the
general property of commutativity, i.e., the combined result of two successive Galilean
transformations (with different velocities v1 and v2) does not depend on the order in
which the transformations are performed. On the other hand, the result of two
successive Lorentz transformations do depend, in general, on their order. This is
already apparent purely mathematically from our formal description of these
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transformations as rotations of the four-dimensional coordinate system: we know that
the result of two rotations (about different axes) depends on the order in which they are
carried out. The sole exception is the case of transformations with parallel vectors v1

and v2 (which are equivalent to two rotations of the four-dimensional coordinate
system about the same axis).



Chapter III
Non-Linear Terrell Transformations

3.1 Introduction
The purpose of this chapter is to provide a complete derivation of the

transformations resulting from the applications of the following three points:
(1) Terrell’s observation that different points on the object, in relative motion to the
observation frame, must “emit” light at different points in order to reach an
observation point simultaneously. That is, distant points, to the observation point, must
“emit” light prior to those closer points.
(2) The Lorentz transformations (and then of the corresponding Galilean
transformations).
(3) The piercing of these light rays an appropriate 2D-plane in the observation frame.
This is illustrated in Fig. 3.1 below. The optic axis is perpendicular to this plane and is
taken parallel to the xy-plane. O denotes the observation point.

Fig. 3.1. Top view: O  denotes the observation point at a vertical distance h above the origin of
the observation frame. The plane is fixed in the observation frame and is perpendicular to the
optic axis.

x

y
optic axis

Outline  of object “photographed” in
question in relative motion to the
observation frame

O

projection on a 2D-plane
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n
r

Fig. 3.2. The UV-plane shown in 2 dimensions (the top view).

As mentioned above, the optic axis is taken to be parallel to the xy-plane. We
denote by (x,y,z): the coordinates point on the object as given in the observation frame.
The axes of the projection plane are denoted by U and V. The U-axis is parallel to the
xy-plane, and the V-axis, is parallel to the z-axis, is perpendicular to it. We denote by

),,( 00 hyx : the coordinate point specifying the tip of the optic axis in the observation
frame. From the figure we get

1

1

0

0
0tan

x
y

x
y

==θ , (3.1)

or
2
12

0

2
02

1 x
x

y
y = , (3.2)

and
22

1
2
1 dyx =+ . (3.3)

Where d is the distance from the observation point to the origin of the UV-plane along
the optic axis.

x

y (x,y,z)
(x0,y0,h)

θ
θ0

U

O
o

optic axis

d

(x2,y2,z2)

point on object

(x1,y1,h) projection plane
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Solving Eqs.(3.1) to (3.3) for  1y  and 1x , we get

d
yx

y
y

2
0

2
0

0
1

+
= , (3.4)

and
d

yx

x
x

2
0

2
0

0
1

+
= . (3.5)

According to Fig.3.2, we may use the Pythagoras theorem to obtain the
following equation in the xy–plane:

2
2

2
2

2
12

2
12

2 )()( yxyyxxd +=−+−+ . (3.6)

Upon expanding Eq.(3.6), we get

022 2
2

2
2

2
112

2
2

2
112

2
2

2 =−−+−++−+ yxyyyyxxxxd , (3.7)

022 2
1

2
11212

2 =++−− yxyyxxd . (3.8)

Upon substituting Eqs.(3.3), (3.4) and (3.5) into Eq.(3.8) we obtain

 0
22 2

2
0

2
0

02

2
0

2
0

022 =+
+

−
+

− d
yx

dyy

yx

dxx
d ,

0
22

2
2
0

2
0

02

2
0

2
0

022 =
+

−
+

−
yx

dyy

yx

dxx
d , (3.9)
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which leads to
0

2
0

2
0

02

2
0

2
0

022 =
+

−
+

−
yx

dyy

yx

dxx
d . (3.10)

Again according to Fig.3.2,

2

2tan
x
y

x
y ==θ , (3.11)

or

y
x

yx 22 = . (3.12)

Simplifying Eq.(3.10) gives

0
)(

2
0

2
0

02022 =
+

+
−

yx

yyxxd
d ,

2
0

2
0

02022 )(

yx

yyxxd
d

+

+
= , (3.13)

or

0

02
2
0

2
0

2 y

xxyxd
y

−+
= . (3.14)

Insert  2x , as given in Eq.(3.12), to obtain

2
0

0

0

2
0

2
0

2 y
y
x

y
x

y

yxd
y −

+
= , (3.15)
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with the solution

00

2
0

2
0

2 yyxx

yxyd
y

+
+

= . (3.16)

Next solve for 2x  by inserting  
x
y

xy 22 =  into Eq.(3.14). This gives

00

2
0

2
0

2 yyxx

yxxd
x

+
+

= . (3.17)

From Fig.3.2  we can write the following  expression for U :

2
12

2
12

2 )()( yyxxU −+−= . (3.18)

Expanding Eq.(3.18), gives

2
112

2
2

2
112

2
2

2 22 yyyyxxxxU +−++−= .  (3.19)

Insert Eqs.(3.4), (3.5), (3.16) and (3.17) into Eq.(3.19) to obtain the following
chain of equalities :

2
2
0

2
0

2
0

2
0

2
0

0

00

2
0

2
0

2
00

22
0

2
0

2
2 2

)(

)(
d

yx

x

yx

dx
yyxx

dyxx

yyxx

dyxx
U

+
+

+
⋅

+
+

−
+
+

=

2
2
0

2
0

2
0

2
0

2
0

0

00

2
0

2
0

2
00

22
0

2
0

2 2

)(

)(
d

yx

y

yx

dy
yyxx

dyxy

yyxx

dyxy

+
+

+
⋅

+
+

−
+
+

+ , (3.20)
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2
2

00

222
0

22
0

22
0

22
0

)(

)(
d

yyxx

dyyxyyxxx
−

+
+++

=

2
00

22
0

2
00

22
0

222
0

22
0

22
0

22
0

)(

)2()(

yyxx

dyyyyxxxxdyyxyyxxx

+
++−+++

=

2
00

2
00

22
0

22
0

)(

)2(

yyxx

dyyxxxyyx

+
−+

= ,

or

00

00 )(
yyxx

dyxxy
U

+
−

= . (3.21)

Given the U-coordinate value corresponding to a point on the object. To find
the V-coordinate value corresponding to a point on the object we refer to the figure
(Fig.3.3) below.

Fig. 3.3.  Projection onto the UV-plane as shown in the actual 3D configuration .

O

(x,y,z)

z

Optic axis

h

V

y

(U,V)

(x0,y0,h)
(x,y,h)

x

B
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O

Ad
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From the above figure we can write

222)( yxBO += , (3.22)
222)( UdAO += , (3.23)

and

BO
AO

hz
V =
−

, (3.24)

Inserting Eqs.(3.22)  and (3.23) into (3.24), gives

)(
22

22

hz
yx

Ud
V −

+

+= . (3.25)

Insert Eq.(3.21) into (3.25) to obtain

)(
22

2
2

00

002

hz
yx

d
yyxx
yxxy

d

V −
+









+
−

+

= , (3.26)

( )
)(

)(

)(
222

00

22
00

2
00

2

hz
yxyyxx

dyxxyyyxxd
−

++

−++
=

( )
)(

)(

2)2(
222

00

22
0

2
00

2
0

22
0

2
00

2
0

22

hz
yxyyxx

dxyyxxyyxyyyyxxxxd
−

++

+−+++
=

)(
)(

)(
222

00

2
0

22
0

22
0

22
0

22

hz
yxyyxx

xyyxyyxxd
−

++

+++
=
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)(
)(

))((
222

00

2
0

2
0

222

hz
yxyyxx

yxyxd
−

++

++
= .

Finally we get the projection on the V-axis to be

)(
)(

00

2
0

2
0 hz

yyxx

yxd
V −

+
+

= . (3.27)

Note : h is the height where the “observation point” is located along the z-axis.

We now consider the unit vector n, perpendicular to the UV-plane, specifying
the direction of the optic axis:

            α

Fig. 3.4. Normal vector to the UV-plane.

We can express the formula of U in terms of the unit vector n by dividing
Eq.(3.21) by 2

0
2
0 yx + , to get

d

yx

y
y

yx

x
x

yx

x
y

yx

y
x

U





















+
+

+

+
−

+
=

2
0

2
0

0

2
0

2
0

0

2
0

2
0

0

2
0

2
0

0

, (3.28)

x-axis

n
n
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According to Fig.3.2, may express the unit vector n to the projection plane as

n )0,sin,(cos)0,,(0,, 212
0

2
0

0

2
0

2
0

0 αα==













++
= nn

yx

y

yx

x  , (3.29)

or
 αcos

2
0

2
0

0
1 =

+
=

yx

x
n       and    αsin

2
0

2
0

0
2 =

+
=

yx

y
n . (3.30)

Where α  denotes the angle between the unit vector n and the x-axis.
Substituting Eq.(3.30) into Eq.(3.28) we obtain

d
ynxn
ynxn

U 





+
−

=
21

12 . (3.31)

Similarly for the V  formula we get

)(

2
0

2
0

0

2
0

2
0

0

2
0

2
0

2
0

2
0

hz

yx

y
y

yx

x
x

yx

yx
d

V −

+
+

+

+

+

= , (3.32)

21

)(
ynxn
hzd

V
+
−= , (3.33)

Different values for 1n  and 2n , such that 1)()( 2
2

2
1 =+ nn , specify different

orientations of the projection (observation) UV-plane.
Now we have to express the ),,( zyx values in terms of the )',','( zyx values

with the latter corresponding to the point on the object in its proper, i.e., rest frame.
The relative motion is taken equivalently as follows. Either the object is moving,
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relative to the observation frame, along the x-axis to the right with speed v  or the
frame is moving, relative to the object, to the left with the same speed.

3.2 Relativistic Transformations on the Projection Plane
Consider the proper inertial frame 'F  of an object and an observational inertial

frame F with relative speed v , the proper frame 'F of the object is moving to the right
of the x-axis. Let )',','( zyx , ),,( zyx denote, respectively, the corresponding labelings
of an arbitrary point on the object. The observation point O is at a height h, along the
z-axis (see Fig.3.5), above the origin O  of the F frame. When the origins ',OO , at

0',0 == tt , of the ',FF  frames coincide, the observer at O sees these origins coincide
he takes a snap shot of the object. Since the observer at O sees the origins coincide
only at a later time equal to ch / , the time that light was emitted from ),,( zyx to reach
O is given by

c
h

c

hzyx
t +

−++
−=

222 )( , (3.34)

Fig. 3.5. The origins of the proper frame of the object and observation frame are shown to
coincide. Object at rest in the 'F frame. When the observer sees the origins O  and 'O coincide (at
time 0' == tt ), he takes a “snap shot” of the object.

O ,O'

y , y'

x, x'

z , z'

h
h

O
h
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we now recall the inverse of the Lorentz transformations (see Eq.(2.27))

)(' vtxx −= γ , (3.35)

yy =' , (3.36)

zz =' , (3.37)

To solve for x  in terms of ',',' zyx we insert Eqs.(3.34), (3.36) and (3.37) into (3.35),
to get
























 −++
−−=

c

hzyx

c
h

vxx
222 )'('

' γ , (3.38)

expanding, and simplifying Eq.(3.38), we get

222 )'(')'( hzyxhxx −++−=+− γβγβγ . (3.39)

Squaring both side of Eq.(3.39) , we get

0))'('()'()'(2 22222222 =−++−+++− hzyxhxhxxx βγγβγβγγ . (3.40)

From the definition  
222 1

1

1

1

β
γ

−
=

−
=

cv
,

and  
2

2

1
1
β

γ
−

= ,



43

we obtain

2
2 1

1
γ

β =− . (3.41)

Upon using Eqs.(3.40) and (3.41) we may write

[ ] 0)'(')'()'(2 222222 =−+−+++− hzyhxxhxx βγγβγβγ , (3.42)

to obtain

[ ]2222222 )'(')'()'()'( hzyhxhxhxx −+++−+±+= βγγβγβγγβγ , (3.43)

[ ]222222 )'(')')(1()'( hzyhxhxx −+++−±+= βγγβγγβγ , (3.44)

From the identity 222 1 γβγ =− , Eq.(3.44) can be rewritten as

222 )'(')'()'( hzyhxhxx −+++±+= γβγβγβγ , (3.45)

[ ]222 )'(')'()'( hzyhxhxx −+++±+= γββγβγ . (3.46)

Since the motion of the object, relative to the observation frame is to the right we have

[ ]222 )'(')'()'( hzyhxhxx −+++−+= γββγβγ . (3.47)
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In conclusion, the Lorentz transformations, reduce to

[ ]















==
=

=
=

−+++−+=

hzz

zz

yy

yy

hzyhxhxx

00

00

222

'

'

'

'

)'(')'()'( γββγβγ

 (3.48)

Upon substituting Eq.(3.48) into Eqs.(3.31) and (3.33) we get

[ ]
[ ] d

nynhzyhxhx

nynhzyhxhx
U 














+−+++−+

−−+++−+
=

21
222

12
222

')'(')'()'(

')'(')'()'(

γββγβγ

γββγβγ , (3.49)

[ ] 21
222 ')'(')'()'(

)'(

nynhzyhxhx

hzd
V

+−+++−+

−=
γββγβγ

. (3.50)

The expressions for U and V in Eqs.(3.49), (3.50)  provide the mapping of a
point  )',','( zyx  on the object onto the UV-plane in the observation frame. We
specialize below the above general formulae to particular cases of interest.
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3.3  Galilean Transformations, with  no  Time Delay
In this case we have simply to take the limit ∞→c . That is we have the

formulae
d

nynx
nynx

U 





+
−

=
21

12

''
'' , (3.51)

and

21 ''
)'(

nynx
dhz

V
+
−= . (3.52)

Where the primed variables denote points on the object in its proper frame where
the object in question is fixed. The above corresponds simply and formally to no
relative motion of the observation frame relative to the object in question.

  3.4 Galilean Transformations, with Time Delay
For the Galilean transformations, which involve the time-delay mechanism (c

is finite but large), we have to set the Lorentz factor equal to one (γ =1).
Thus in the UV-plane, according to Eqs. (3.49) and (3.50), we may write

[ ]
[ ] d

nynhzyhxhx

nynhzyhxhx
U 














+−+++−+

−−+++−+
=

21
222

12
222

')'(')'()'(

')'(')'()'(

βββ

βββ , (3.53)

and

[ ] 21
222 ')'(')'()'(

)'(

nynhzyhxhx

hzd
V

+−+++−+

−=
βββ

. (3.54)
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  3.5 The Relativistic Case
For the fully relativistic theory involving the Lorentz transformations and time

delay, the U and V variables are as already derived,

[ ]
[ ] d

nynhzyhxhx

nynhzyhxhx
U 














+−+++−+

−−+++−+
=

21
222

12
222

')'(')'()'(

')'(')'()'(

γββγβγ

γββγβγ , (3.55)

and

[ ] 21
222 ')'(')'()'(

)'(

nynhzyhxhx

hzd
V

+−+++−+

−=
γββγβγ

. (3.56)

Unlike the Lorentz transformations ),,,()',',','( zyxtzyxt → , the
transformations ),()',','( VUzyx → , given in Eqs.(3.55) and (3.56), are obviously non
– linear.

In the next chapter we will use all of the above formulae to carry out a detailed
comparative study.



Chapter IV
Applications and Comparative Study - Seeing is

Believing

In this chapter, we make a systematic use of the projection of the 3D objects
onto the UV-plane, in relative motion, as described in the previous chapter. The UV-
plane is fixed in the observation frame. The object is assumed to move to the right with
speed cβ or equivalently that the observation frame is moving to the left with the same
speed as the physical situation may dictate. We study objects, which are rich enough in
structure for a detailed conclusive analysis. We consider speeds given through =β 0,
0.3, 0.5, 0.8, 0.9, 0.99, 0.999, respectively. The unit vector specifying the direction of
the optic axis is denoted by n where n )0,,( 21 nn= , 1n  and 2n  (see Eq.(3.30)) and α
denotes the angle of the optic axis to the x-axis. Throughout this chapter, the distance
d  from the projection plane to the observer is chosen equal to 0.7 units.

We provide three applications. For greater generality, we consider the optic
axis, specified by the unit vector n, parallel to the xy-plane, to take three different
directions corresponding to the angles o90 , o86 and o94 . Pertinent remarks
concerning these figures will be made in Chapter V when some important analytical
properties of the non-linear Terrell transformations will be established as well as
establishing of the long standing resolution of the “train” paradox.

In the figures we note that the crossed small circle denotes the origin of the
UV-plane. On the other hand the small crossed lines denote some point, such as a mid
point on the object. When these two location-points objects are at different positions
for 0=β  versus 0≠β , this is simply a confirmation of the famous “aberration of
light”.
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4.1 Application I

Fig. 4.1. Set of houses for : (a) o90=α . (b) o86=α . (c) o94=α , where n )0,sin,(cos αα= .
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      4.1.1 Galilean Treatment with Time Delay

Fig. 4.2.  Galilean, with time delay: 3.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .
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Fig. 4.3. Galilean, with time delay: 5.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .
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Fig. 4.4.  Galilean, with time delay: 8.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .
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Fig. 4.5.  Galilean, with time delay: 9.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .
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Fig. 4.6.  Galilean, with time delay: 99.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .
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Fig. 4.7. Galilean, with time delay: 999.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .
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      4.1.2 Relativistic Treatment

Fig. 4.8.  The relativistic case: 3.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .
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Fig. 4.9.  The relativistic case: 5.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .



Fig. 4.10.  The relativistic case: 8.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .
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Fig. 4.11.  The relativistic case: 9.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .
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Fig. 4.12.  The relativistic case: 99.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .
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Fig. 4.13.  The relativistic case: 999.0=β . Set of houses for: (a) o90=α . (b) o86=α .
(c) o94=α , where n )0,sin,(cos αα= .
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4.2 Application II

Fig. 4.14. Pyramid for: (a) o90=α . (b) o80=α . (c) o100=α , where n )0,sin,(cos αα= .
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      4.2.1 Galilean Treatment with Time Delay

Fig. 4.15. Galilean, with time delay: 3.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α , where n )0,sin,(cos αα= .
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Fig. 4.16. Galilean, with time delay: 5.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α , where n )0,sin,(cos αα= .
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Fig. 4.17. Galilean, with time delay: 8.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α , where n )0,sin,(cos αα= .
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Fig.4.18. Galilean, with time delay: 9.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α , where n )0,sin,(cos αα= .
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Fig. 4.19 Galilean, with time delay: 99.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α , where n )0,sin,(cos αα= .
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Fig. 4.20 Galilean, with time delay: 999.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α , where n )0,sin,(cos αα= .
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      4.2.2 Relativistic Treatment

Fig. 4.21. The relativistic case: 3.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α , where n )0,sin,(cos αα= .
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Fig. 4.22. The relativistic case: 5.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α , where n )0,sin,(cos αα= .
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Fig 4.23.  The relativistic case: 8.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α , where n )0,sin,(cos αα= .
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Fig. 4.24.  The relativistic case: 9.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α , where n )0,sin,(cos αα= .
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Fig. 4.25. The relativistic case: 99.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α , where n )0,sin,(cos αα= .
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Fig. 4.26.  The relativistic case: 999.0=β . Pyramid for: (a) o90=α . (b) o80=α .
(c) o100=α ,where n )0,sin,(cos αα= .
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4.3 Application III

Fig. 4.27. Train for : (a) o90=α . (b) o87=α . (c) o93=α , where n )0,sin,(cos αα= .
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      4.3.1 Galilean Treatment with Time Delay

Fig. 4.28.  Galilean, with time delay: 3.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .
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Fig. 4.29. Galilean, with time delay: 5.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .
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Fig. 4.30. Galilean, with time delay: 8.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .
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Fig. 4.31. Galilean, with time delay: 9.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .
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Fig. 4.32.  Galilean, with time delay: 99.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .
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Fig. 4.33.  Galilean, with time delay: 999.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .
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      4.3.2 Relativistic Treatment

Fig. 4.34. The relativistic case: 3.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .
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Fig. 4.35. The relativistic case: 5.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .
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Fig. 4.36. The relativistic case: 8.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .
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Fig. 4.37. The relativistic case: 9.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .
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Fig. 4.38. The relativistic case: 99.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .
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Fig. 4.39. The relativistic case: 999.0=β . Train for: (a) o90=α . (b) o87=α .
(c) o93=α , where n )0,sin,(cos αα= .



Chapter V
Resolution of the Long Standing “Train” Paradox and

Some Pertinent Analytical Properties of the
Non – Linear Terrell Transformations

This chapter involves in the resolution of the long standing “train” paradox
already mentioned in our introduction. This paradox has its roots in the early work of
Terrell (1959) and Weisskopf (1960, 1961), and was emphasized almost thirty years
ago by Mathews and Lakshmanan (1972). The “train” paradox is resolved by proving
that any point on the object at rest )0( =β , which touches any horizontal line parallel
to the x-axis (direction of motion) remains in contact with this same line when also the
object is in motion )0( ≠β . This chapter is also involved with some pertinent
analytical properties of the non-linear Terrell transformations, which give further
insight into the applications carried out in Chapter IV and show why some lines are
deformed and where the so-called Lorentz contraction is hiding in these figures.

Fig. 5.1. A given horizontal line parallel to the 'x -axis. The point )',',( zya on the object, for
0=β , touches the line at P.

z'

x'

y'

P: (a,y',z')

a
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5.1 Resolution of the Long Standing  “Train” Paradox
To bring out the physics of the resolution of the “train” paradox we consider

first the situation of no relative motion of the object and the observation frame: 0=β .
The situation with 0≠β  is considered afterwards.

According to Fig.5.1 and Eq.(3.49), we can write the equation of  U  at points
)',','( zyx  and )',',( zya , respectively, as
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According to Eq.(3.50), we can also write the equation for V at points
)',','( zyx  and )',',( zya , respectively, as
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Upon comparison of Eq.(5.3) and Eq.(5.7) we see that
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Consider the term   aa U
y

nhz
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Insert Eq.(5.10) into Eq.(5.9), to obtain
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which is the equation of a straight line in the UV-plane with slope  
'
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y
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Now we consider the cases with 0≠β . To this end we evaluate the
expression:
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occurring on the right-hand side of Eq.(5.11), with U  as given in Eq.(3.49) with
0≠β . According to Eqs.(3.49) and (3.50)  we may write aU  and aV  as
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set
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We may write in short aU  and aV as:
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and
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Upon substituting aU  into the expression (5.11a) we get

'
)'(

'
)'( 21

y
hzdn

U
y

nhz
a

−
+

−
−=

'
)'(

'
'

'
)'( 2

21

121

y
hzdn

d
nynX
nynX

y
nhz

a

a −
+

+
−−

−=












+

+
+−−= 2

21

2
121

'
'

'
)'(

n
nynX

nynnX
y

hzd

a

a












+

+++−−=
21

2
221

2
121

'
''

'
)'(

nynX
nynnXnynnX

y
hzd

a

aa

[ ]21 ''
')'(
nynXy

yhzd

a +
−=

21 '
)'(
nynX

hzd

a +
−=

[ ] 21
222 ')'(')()(

)'(

nynhzyhaha

hzd

+−+++−+

−=
γββγβγ

. (5.16)

Upon comparing Eq.(5.16) with Eq.(5.15) and using the definition of Xa below
Eq.(5.13), we conclude that the point (Ua,Va) lies on the same line in Eq.(5.11) for

0≠β  as well.
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For example, refer to Fig.4.1(b) (also Fig.4.1(a)), and consider an imaginary
straight line joining the tips of the three roofs as drawn in the observation frame. Now
consider the corresponding case for 8.0=β  in Fig.4.4(b). Here one has the impression
that the tip of the roof of the first house on the left has cut through and passed through
this line. The proof provided above shows that the tips of the roofs of all the three
houses remain always in contact, for 0≠β , as well, with the straight line but at
different points for 0=β  and 0≠β  due to the relative motion.

5.2 Expansion and Contraction of  Approaching and Receding
      Objects – A Doppler-Like Effect for Scale

Fig. 5.2. Approaching and receding objects.

Consider two rulers of equal proper lengths, each moving to the right with
speed v , with one approaching and one receding from an observer. The end points of
the ruler on the left are labeled by 1, 2, and the end points of the one on the right are
labeled by 3, 4. Due to the time delay mechanism light must be “emitted” from end
point 1 first then from point 2, which in the mean time has moved to point 2', in order

observer

1' 21 2' 3 43' 4'
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to reach simultaneously the observer. That is, the ruler on the left appears to
correspond to the extended object (1,2') rather than the object (1,2). This phenomenon
works against the so-called Lorentz contraction due to relativity. On the other hand,
the object on the right appears to correspond to the contracted object (3',4) rather than
to the object (3,4). This works together with the Lorentz contraction. To get the full net
contribution, in general, one, however, has to use the exact transformation in Eq.
(3.47).

To get further insight into the above Doppler-like effect for scale it is worth
reconsidering the transformation rule in Eq.(3.47). Consider an infinitesimal
partitioning of a very long ruler of parts equal each in length to 'x∆  in the ruler’s
proper frame. Consider parts of the moving ruler to the left of and parts to the right of
the observer

   'x∆           'x∆

Fig. 5.3. Portions of a ruler approaching to and receding from an observer.

If Lx∆  and Rx∆  are the infinitesimal portions on the left hand side and the right
hand side, respectively, to the observer, then according to Eq.(3.47) we can write for

observer

v v
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an infinitesimal portion x∆  in the observation frame by differentiating that equation to
obtain
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The latter may be rewritten as
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Using the identity  21 γβ
γ

γ =− , Eq.(5.18) can be rewritten as
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We see in Eq.(5.20) that the first term is the Lorentz contraction and the last
term is a term which incorporates time delay. Next we can write the expressions for

Lx∆  and Rx∆  which obviously depend on the sign of the 'x  where the sign will be
negative for 'x  on the left-hand side and positive for 'x  the right-hand side of the
observer:
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We now consider two extreme points of the very long ruler, that is, for which
|'| x  is very large. In this case Eqs.(5.22) and (5.23) may be, respectively, rewritten

approximately as
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Eq.(5.24) clearly shows how an additional expansion occurs to the left which works
against the Lorentz contraction. Similarly, Eq.(5.25) clearly shows how an additional
contraction occurs that works with the Lorentz contraction. In the latter case it is worth
noting that we may rewrite

[ ] 0)1(1
' >−−∆=∆ ββ

γ
x

xR & , (5.26)

for 1<β . We also note, in particular, that for the extreme points

0'2 >∆=∆−∆ βγxxx RL . (5.27)

For other points of |'| x  one has to rely on the exact expressions Eqs.(5.22) and (5.23).
A beautiful demonstration of this Doppler-like effect for scale is given in the

application to the train compartments (c.f., Fig.4.38).
The old fundamental and critical question now comes to haunt us: Can we

photograph the Lorentz contraction? To answer this question explicitly we set the
observer at the origin O of his coordinate frame, i.e., set 0=h , and consider a ruler
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moving to the right of the x-axis with speed such that at its bottom edge 0' =z  and 'y

is arbitrary but fixed. To this end, Eq.(3.55) gives to the corresponding U-values of its
bottom edge:

[ ]
[ ] 21

22

12
22

''''

''''
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d
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−+−
=

βγ

βγ . (5.28)

(Also 0=V ). Accordingly,
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For 1,0 21 == nn
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'
''

''
'

22
x

yx

xx
d
U

y ∆













+
−+

∆
=

∆
βγβ

γ
. (5.37)

Since 1
''

'
22

<
+ yx

x , we infer that about the point β=
+ 22 ''

'

yx

x , for a given β ,

γ
'

'
x

y
d

U
∆=∆ , (5.38)

which, apart from the trivial scaling factor 'yd  , is the famous Lorentz contraction.
That is, about a certain point of the object the Lorentz contraction is visible on our UV-
plane.
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                                          22 '' yx +

           θ

Fig. 5.4.  Line making an angle )(cos 1 βθ −= with the 'x -axis in the proper frame.

To find this critical point on the ruler, at which point the Lorentz contraction is
visible, we draw a line making an angle )(cos 1 βθ −= with the 'x -axis before setting
the ruler to move with a given speed β  (see Fig.5.4). This line will cross a point on
the lower side of the ruler and defines this critical point. By partitioning the ruler with
small intervals of lengths 'x∆ , Eq.(5.38) shows that the Lorentz contraction is visible
about the critical point upon comparison with the stationary case

'
'

x
y
d

U ∆=∆ ,   for  0=β . (5.39)

This also provides a test for the comparison of the Galilean case to the
relativistic. The Galilean case coincides with that of Eq.(5.39) even for 0≠β  since γ

is effectively set equal to one in Eq.(5.38).

y'

x'x'
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5.3 The Curving-Up of Lines Perpendicular to the Direction of
      Motion

Fig. 5.5.  Lines perpendicular to the direction of motion.

As a consequence of time-delay resulting from the fact that light has to be
“emitted” from end point 1 before the end point 2, a line perpendicular to the direction
of motion necessarily appears curved with end points 1, '2  rather than 1, 2. The same
analysis applies to the line with end points 3, 4 on the right of the observer. This
curving up of lines perpendicular to the direction of motion is well illustrated in our
applications carried out in Chapter IV. Compare, for example, the illustrations in
Fig.4.10 with the corresponding ones in Fig.4.1. It is precisely because point 1 appears
ahead of point 2 for any two lines perpendicular to the 'x  axis along the 'y and 'z axes,
that an object, due to its relative motion and time delay, appears to be rotated (with
deformations) about the latter two axes and hence the “train” paradox.

Now we discuss in detail the curving up of these lines analytically. According
to Eqs.(3.49) and (3.50), with 1,0 21 == nn , we may write

[ ]
'

)'(')'()'( 222

y

hzyhxhx

d
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=
γββγβγ , (5.40)

and

4'

observer

4

3 3'

2'2

1 1'
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[ ]

'
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hz
d
V −= . (5.41)

For a line parallel to the 'z -axis and hence, in particular, perpendicular to the
'x -axis (direction of motion) we have that 'x  and 'y  are some constants, and 'z  is a

variable. Thus from Eq.(5.40) we have
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Upon inserting Eq.(5.41) into Eq.(5.42) we get
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We rewrite Eq.(5.43) as
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Eq.(5.44) is the equation of a hyperbola with the focal points lying on the
horizontal U-axis. Thus we conclude that a line parallel to the 'z -axis and hence
perpendicular to the direction of motion becomes a portion of a hyperbola in the U-V
plane as shown in Eq.(5.44)

Now we consider the other case of a line perpendicular parallel to the 'z -axis
and hence, as before, perpendicular to the direction of motion (the 'x -axis). In this
case 'x and 'z  are some constants and 'y is a variable. From Eq.(5.41) we may solve
for 'y as follows:

[ ]
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' . (5.45)

Upon inserting Eq.(5.45) into Eq.(5.40) to obtain
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To study the analytical structure of Eq.(5.49), we consider a rotation of the U,V
axes by some angle α . That is, we write

αα sin'cos' VUU += , (5.50)

αα cos'sin' VUV +−= , (5.51)

Insert Eqs.(5.50) and (5.51) into Eq.(5.49) and solve for α  self consistently to obtain

[ ]αααα cos'sin'sin'cos' VUAVU +−=+

222222 )cossin''2cos'sin'( DVUVUC +−+− αααα , (5.52)
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222222 )cossin''2cos'sin'( DVUVUC +−+− αααα , (5.53)

Upon squaring the above equation we have
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[ ] 22 cossin)cos)(sinsin(cos''2 DCAAVU =+−++ αααααα , (5.55)
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To solve for α , we set the coefficient of the ''VU term equal to zero and obtain
a conic section:

2
2

2
1

2 '' DSVSU =+ , (5.56)
where
        ααα 222

1 sin)sin(cos CAS −+=    and    ααα 222
2 cos)cos(sin CAS −−= ,

and for the coefficient of the ''VU  term we have
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Solving for the angle α  we get
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Now we use Eq.(5.58) to simplify the expressions for S1 and S2 in Eq.(5.56). To
this end

ααααα 22222
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On the other hand, from Eq.(5.58) we obtain 
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Thus Eq.(5.58) can be rewritten as
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αcot12 AS −= . (5.62)

Finally Eq.(5.56) can be written as

222 )cot1(')tan1(' DAVAU =−++ αα . (5.63)
If

0tan1 <+ αA ,
that is,

1tan −<αA ,

1tan >− αA ,
then

0cot >− αA ,
and we have

0cot1 >− αA ,

and Eq.(5.63) specifies the equation of a hyperbola. On the other hand if
0tan1 >+ αA ,

     1tan −>αA ,

  1tan >− αA ,
then
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α
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α
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1
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α

α
2tan

1
1cot1 +<− A ,

and we obtain quite generally

α
α

2sin
1

cot1 <− A .

Accordingly, Eq.(5.63) will specify portions of a rotated hyperbola or a rotated ellipse
as the case may be.

5.4 Critical Speeds for Expansions Versus Contractions
By comparing Figs.4.8 - 4.13 we infer that some critical speed occurs below

which expansion occurs in the direction of motion and above which the situation is
reversed and contraction occurs. These figures seem also to indicate that such a critical
speed occurs as a common critical speed, simultaneously, for both U and V. That is

0=
= critical

d
dU

βββ
, (5.64)

implies that
0=

= critical
d
dV

βββ
, (5.65)

for the same critical value of criticalββ = . To prove this we carry out the derivatives
βddU , βddV  explicitly.
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Set [ ]222 )'(')'()'( hzyhxhxF −+++−+= γββγβγ .

Then we may rewrite Eq.(5.66) as
d

nyFn
nyFn

U
21

12

'
'

+
−

= , (5.67)

( ) ( )

( )2
21

112221

'

''

nyFn

d
dF

nnyFn
d
dF

nnyFn
d

d
dU

+

−−+
= ββ

β
, (5.68)

( ) ββ d
dF

nyFn

dy
d
dU

2
21 '

'

+
= . (5.69)

Similarly, we may rewrite
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which establishes the statements given through Eqs.(5.64) and (5.65).
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For example consider the lowest point (-150,50,0) on the left-hand side of the
house on the left in Fig.4.1(b). A plot of U/d and V/d versus β  are given, respectively,
in Fig.5.5(a) and Fig.5.5(b).

(a) (b)

Fig. 5.6.  Critical speed at point (-150,50,0) is equal to 0.857493. (a) Graph of U/d versus β .
(b) Graph of V/d versus β .



Chapter VI
Conclusions

By taking into account the following three points:
(i) Terrell’s basic observation that different points on an object must “emit” light at
different times in order to reach an observation point simultaneously,
(ii) the Lorentz transformations of relativity, and
(iii) the piercing of these light rays an appropriate 2D plane (the UV-plane) in the
observation frame,
the mapping onto such a 2D plane was derived, which may be applied to any object no
matter how complicated, which is in relative motion to the observation frame at
arbitrary speeds ( cβ ) including extreme relativistic ones. These transformations are
given explicitly by

[ ]
[ ] d

nynhzyhxhx

nynhzyhxhx
U 














+−+++−+

−−+++−+
=

21
222

12
222

')'(')'()'(

')'(')'()'(

γββγβγ

γββγβγ , (3.49)

[ ] 21
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−=
γββγβγ

. (3.50)

Here ( ',',' zyx ) denotes any point on the object in its proper frame. The motion is
along the positive x-axis for the object relative to the observation frame. The U and V
axes specify the axes of the 2D plane at rest in the observation frame. The orientation
of this plane, at a distance d from the observation point, is specified by a unit vector n

)0,,( 21 nn= , perpendicular to the UV-plane, and gives the direction of the so-called
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optic axis. The optic axis is taken to lie parallel to the xy-plane. h denotes the position,
along the z-axis, of the observation point above the origin (see Fig.3.3). Unlike the
Lorentz transformations ),,,()',',','( zyxtzyxt → , the present transformations

),()',','( VUzyx → are necessarily non-linear. We appropriately refer to these
transformations as non-linear Terrell transformations. Several applications of these
transformations were provided in Chapter IV. By formally setting 1→γ  in these
transformations we obtain the corresponding Galilean ones which, however, take into
account the finite propagation speed of light. In particular, it was shown in Chapter V
that any straight line parallel to the x-axis (specifying the direction of motion) remains
necessarily a straight line in the UV-plane. This property was used to resolve the so-
called “train” paradox, emphasized in the literature almost thirty years ago. By
rigorously establishing the fact that any point of the object in contact with any given
line parallel to the x-axis for 0=β  necessarily stays in contact with this line for

0≠β  as well in the UV-plane. This point is non-trivial due to the fact that lines
perpendicular to the 'x -axis necessarily curve-up due to the time-delay mechanism
(the Terrell effect), and thus give the impression of an object to be rotated (with
deformation), and off of a track stationary relative to the observation frame. The
curving up of straight lines perpendicular to the direction of motion was first
established intuitively, by using the time-delay mechanism and then analytically
providing rigorously conic-sections (Eqs.(5.44), (5.63)). Due to the time-delay mecha-
nism, a Doppler-like effect was established for scale showing that the partitionings of a
ruler, for example, become, in general, expanded (!) when approaching the observer
and contracting (!), in general, when receding from the observer. The former case
works against the Lorentz contraction, and the latter one works together with the
Lorentz contraction. This Doppler-like effect thus masks, in general, the visibility of
the Lorentz contraction. We were able to show, in a rather direct way, that upon
marking a specific critical point on a moving ruler, depending simply on its speed cβ ,
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the Lorentz transformations may be actually visible about a small interval around this
critical point which would provide a discrimination between the Galilean and the
relativistic transformations at high speeds for which 1>>γ  as observed on our
projection plane.
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