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Chapter 1

Introduction

The consistent description of the structure and interactions of hadrons is
one of the major research areas in nuclear and particle physics. One of the main
research directions is the search for the manifestation of elementary quarks and
gluons in strong interaction processes. There is no doubt that Quantum Chromo-
dynamics (QCD) is the fundamental theory of strong interactions, which at least
in the perturbative domain, that is for large momentum transfers Q?, is confirmed
in a rather impressive manner. However, in the so-called confinement regime at
low momentum transfers Q? the properties of QCD are only understood partially
in a somewhat qualitative manner. Now perturbative physics dominates and hence
traditional approaches in solving QCD cannot be applied. Based on the lack of
exact solutions of QCD in the non-perturbative region the main ansatz consists of
the development of effective models. The main recipe in constructing these models
consists of reducing the elementary degrees of freedom of QCD and introducing
effective interactions, characteristic of the fundamental theory.

Our understanding of the structure of hadrons is based to a large extent
on the theoretical concept of the constituent quark model. Thereby, quarks and
antiquarks form the relevant degrees of freedom, where for example baryons are
made up of three of these constituent quarks put together by confinement. In
a next step it was realized that chiral symmetry, considered to be one of the
best symmetries of the strong interaction, is violated by the quark confinement

mechanism.



The problem of chiral symmetry breaking is resolved by introduction of
Goldstone boson fields in consistency with chiral symmetry. The Goldstone bosons,
like the pion, reflect the presence of the sea quarks, which in addition to the
valence quarks, should be present. Modern theories which attempt to describe
the structure of baryon should contain both feathers of low-energy QCD, such as
confinement and chiral symmetry.

The study of the electromagnetic form factors of baryons is a very important
first step in understanding their internal structure. At present, electromagnetic
form factors and related properties (magnetic moments, charge and magnetic radii)
of the nucleon have been measured precisely, but for the hyperons data rarely exist
with the exception of the magnetic moments. Recently, the charge radius of the X~
has been measured (Eschrich et al., 2001; Adamovich et al., 1999) and therefore
gives a first estimate of the charge form factor of the hyperon at low momentum
transfers.

The theoretical description of electromagnetic form factors was performed
in detail within approaches of low-energy hadron physics: QCD Sum Rules, Chi-
ral Perturbation Theory, relativistic and non-relativistic quark models, QCD-
motivated approaches based on solution of the Schwinger-Dyson/Bethe-Salpeter
and Faddeev equations, soliton-type models, etc. Since the early eighties chiral
quark models (Théberge, Thomas, and Miller, 1980, 1981; Théberge and Thomas
1983; Thomas, 1984; Oset, Tegen, and Weise, 1984; Tegen, 1990; Chin, 1982; Di-
akonov, Petrov, and others, 1984, 1986, 1988, 1989; Gutsche, 1987; Gutsche and
Robson, 1989), describing the nucleon as a bound system of valence quarks with
a surrounding pion cloud, play an important role in the description of low-energy
nucleon physics. These models include the two main features of low-energy hadron

structure, confinement and chiral symmetry.



With respect to the treatment of the pion cloud, theses approaches fall es-
sentially into two categories. The first type of chiral quark models assumes that
the valence quark content dominates the nucleon, thereby treating pion contribu-
tions perturbatively (Théberge, Thomas, and Miller, 1980, 1981; Théberge and
Thomas 1983; Thomas, 1984; Oset, Tegen, and Weise, 1984; Tegen, 1990; Chin,
1982; Gutsche, 1987; Gutsche and Robson, 1989). Originally, this idea was formu-
lated in the context of the cloudy bag model (Théberge, Thomas, and Miller, 1980,
1981; Théberge and Thomas 1983; Thomas, 1984). By imposing chiral symmetry
the MIT bag model (Chodos et al., 1974) was extended to include the interaction
of the confined quarks with the pion fields on the bag surface. With the pion cloud
treated as a perturbation on the basic features of the MIT bag, pionic effects gen-
erally improve the description of nucleon observables. Later, similar perturbative
chiral models (Oset, Tegen, and Weise, 1984; Tegen, 1990; Chin, 1982; Gutsche,
1987; Gutsche and Robson, 1989) were developed where the rather unphysical
sharp bag boundary is replaced by a finite surface thickness of the quark core. By
introducing a static quark potential of general form, these quark models contain a
set of free parameters characterizing the confinement (coupling strength) and/or
the quark masses. The perturbative technique allows a fully quantized treatment
of the pion field up to a given order in accuracy. Although formulated on the
quark level, where confinement is put in phenomenologically, perturbative chiral
quark models are formally close to chiral perturbation theory which is applied on
the hadron level.

Alternatively, when the pion cloud is assumed to dominate the nucleon
structure this effect has to be treated non-perturbatively. The non-perturbative
approaches are based for example on these Diakonov, Petrov, and others (1984,

1986, 1988, 1989), where the chiral quark soliton model was derived. This model



is based on the concept that the QCD instanton vacuum is responsible for the
spontaneous breaking of chiral symmetry, which in turn leads to an effective chiral
Lagrangian at low energy as derived from QCD. The classical pion field (the soli-
ton) is described by a trial profile function, which is fixed by minimizing the energy
of the nucleon. Further quantization of slow rotations of this soliton field leads
to a nucleon state, which is built up from rotational excitations of the classical
nucleon. On the phenomenological level the chiral quark soliton model tends to
have advantages in the description of the nucleon spin structure, that is for large
momentum transfers, but has some problems when compared to the original per-
turbative chiral quark models in the description of low-energy nucleon properties.

As a further development of chiral quark models with a perturbative treat-
ment of the pion cloud (Théberge, Thomas, and Miller, 1980, 1981; Théberge and
Thomas 1983; Thomas, 1984; Oset, Tegen, and Weise, 1984; Tegen, 1990; Chin,
1982; Gutsche, 1987; Gutsche and Robson, 1989), we extended the relativistic
quark model suggested by Gutsche (1987) and Gutsche and Robson (1989) for the
study of the low-energy properties of the nucleon (Lyubovitskij, Gutsche, Faessler
and Drukarev, 2001). Compared to the previous similar models of these Théberge,
Thomas and Miller (1980, 1981), Théberge and Thomas (1983), Thomas (1984),
Oset, Tegen, and Weise (1984) and Tegen (1990) our current approach contains
several new features: i) generalization of the phenomenological confining poten-
tial; i) SU(3) extension of chiral symmetry to include the kaon and eta-meson
cloud contributions; iii) consistent formulation of perturbation theory both on the
quark and baryon level by use of renormalization techniques and by allowing to
account for excited quark states in the meson loop diagrams; iv)fulfillment of the
constraints imposed by chiral symmetry (low-energy theorems), including the cur-

rent quark mass expansion of the matrix elements (for details see Lyubovitskij,



Gutsche, Faessler and Drukarev (2001)); v) possible consistency with chiral per-
turbation theory. In the following we refer to our model as the Perturbative Chiral
Quark Model (PCQM).

The PCQM is based on an effective chiral Lagrangian describing quarks as
relativistic fermions moving in a self-consistent field (static potential). The lat-
ter is described by a scalar potential S providing confinement of quarks and the
time component of a vector potential 7V responsible for short-range fluctuations
of the gluon field configurations (Liischer, 1981) (see also recent lattice calcula-
tions (Takahashi et al., 2001)). The model potential defines unperturbed wave
functions of quarks which are subsequently used in the calculation of baryon prop-
erties. Baryons in the the PCQM are described as bound states of valence quarks
surrounded by a cloud of Goldstone bosons (7, K, 1) as required by chiral symme-
try. Interaction of quarks with Goldstone bosons is introduced on the basis of the
nonlinear o-model (Gell-Mann and Lévy, 1960). When considering mesons fields
as small fluctuations we restrict ourselves to the linear form of the meson-quark in-
teraction. With the derived interaction Lagrangian we do our perturbation theory
in the expansion parameter 1/F (where F' is the pion leptonic decay constant in
the chiral limit). We also treat the mass term of the current quarks as a small per-
turbation. Dressing the baryon three-quark core by a cloud of Goldstone mesons
corresponds to the inclusion of the sea-quark contributions. All calculations are
performed at one loop or at order of accuracy O(1/F?, 7, m,). The chiral limit
with m, ms — 0 is well defined.

In these Lyubovitskij, Gutsche, and Faessler (2001), Lyubovitskij, Gutsche,
Faessler, and Drukarev (2001), Lyubovitskij, Gutsche, Faessler, and Vinh-Mau
(2001), Lyubovitskij, Wang, Gutsche, and Faessler (2002), Simkovic et al. (2002)

and Pumsa-ard et al. (2003) we developed the PCQM for the study of baryon



properties: electromagnetic form factors of the nucleon, low-energy meson-baryon
scattering and o-terms, electromagnetic excitation of nucleon resonances, etc. In
this Lyubovitskij, Gutsche, and Faessler (2001) the PCQM has been applied to
study the electromagnetic form factors of the nucleon and the results obtained are
in good agreement with experimental data. In this work we extend the PCQM to
study the electromagnetic form factors of hyperons and give predictions with re-
spect to future measurements of their magnetic moments, radii and the momentum
dependence of form factors.

We proceed as follows. In chapter II we introduce the PCQM and describe
the basic notions of our approach. In chapter I1I we present the analytic expressions
for the charge and magnetic form factors of the baryon octet. Chapter IV contains
a summary and the discussion of the numerical results for their magnetic moments,
charge and magnetic radii, and the momentum dependence of the form factors in

comparison to the experimental data.



Chapter 11

The Perturbative Chiral Quark Model

2.1 Effective Lagrangian and zeroth order properties

The following considerations are based on the perturbative chiral quark model
(PCQM) (Lyubovitskij, Gutsche, and Faessler, 2001; Lyubovitskij, Gutsche,
Faessler, and Drukarev, 2001). The PCQM is a relativistic quark model which

is based on an effective Lagrangian Leg = LI + £, 5p. The Lagrangian includes

the linearized chiral invariant term £Y7 and a mass term £, sp which explicitly

mv
breaks chiral symmetry

1 N

L = 9@ 19—V 50)] wla) + S0P
@5 2y ), (2.)
Lysp = —ba)Mu(a) — STr{#()M], 2.2

where r = |Z|; v is the quark field; d is the matrix of the pseudoscalar mesons; S (r)
and V/(r) are scalar and vector components of an effective, static potential provid-
ing quark confinement; M = diag{m, 1, m,} is the mass matrix of current quarks
(we restrict to the isospin symmetry limit with m,, = my = 1m); B is the quark con-
densate parameter; and F' = 88 MeV (Lyubovitskij, Gutsche, and Faessler, 2001;
Lyubovitskij, Gutsche, Faessler, and Drukarev, 2001; Gasser, Sainio, and Svarce,
1988) is the pion decay constant in the chiral limit. We rely on the standard picture

of chiral symmetry breaking (Weinberg, 1979; Gasser and Leutwyler, 1984, 1985)



and for the masses of pseudoscalar mesons we use the leading term in the chiral
expansion (i.e. linear in the current quark mass): M? = 2mB, M = (m + m,)B,
M? = 2(m + 2m,) B. Meson masses satisfy the Gell-Mann-Oakes-Renner and the
Gell-Mann-Okubo relation 3M; 4+ M? = 4Mj;. In the evaluation we use the follow-
ing set of QCD parameters (Gasser and Leutwyler, 1982): m =7 MeV, m/m = 25
and B = M2, /(2m) = 1.4 GeV.

To describe the properties of baryons which are modelled as bound states
of valence quarks surrounded by a meson cloud we formulate perturbation theory.
In our approach the mass (energy) m%™ of the three-quark core of the nucleon is
related to the single quark energy & by my"™ = 3&y. For the unperturbed three-
quark state we introduce the notation |¢y > with the appropriate normalization

< ¢olpp >= 1. The single quark ground state energy & and wave function (WF)

uo(Z) are obtained from the Dirac equation
—i@ -V 4 BS(r) + V(r) — & | ue(Z) = 0. (2.3)

The quark WF u,(Z) belongs to the basis of potential eigenstates (including ex-
cited quark and antiquark solutions) used for the expansion of the quark field
operator 1(z). Here we restrict the expansion to the ground state contribution
with ¥(z) = bouo () exp(—i&ot), where by is the corresponding single quark anni-
hilation operator. In Eq. (2.3) the current quark mass is not included to simplify
our calculational technique. Instead, we consider the quark mass term as a small
perturbation.

For a given form of the potentials S(r) and V(r) the Dirac equation in
Eq. (2.3) can be solved numerically. Here, for the sake of simplicity, we use a

variational Gaussian ansatz for the quark wave function given by the analytical



form:

1
. T
uo(Z) = N exp {——1 XsXfXe (2.4)
ipd-Z/R

where N = [7%/2R3(1 + 3p%/2)]7"/? is a constant fixed by the normalization con-
dition [ d®zul (Z)uo(Z) = 15 xs Xs> Xe are the spin, flavor and color quark wave
functions, respectively. Our Gaussian ansatz contains two model parameters: the
dimensional parameter R and the dimensionless parameter p. The parameter p can
be related to the axial coupling constant g4 calculated in zeroth-order (or 3g-core)

approximation (Lyubovitskij, Gutsche, Faessler, and Drukarev, 2001):

) 2p° 9142y
—2 (1= = 2.5
where
99,4 1
A 2.6
10 2 (2:6)

The parameter R can be physically understood as the mean radius of the three-
quark core and is related to the charge radius (r%)" , of the proton in the leading-
order (LO) approximation as
2 5 2

b=y 1= P (-3) 2.7
In our calculations we use the value g4 = 1.25 (Gasser, Sainio, and Svarce, 1988) as
deduced from chiral perturbation theory in the chiral limit. We therefore have only
one free parameter, that is R. In the final numerical evaluation R is varied in the
region from 0.55 fm to 0.65 fm, which is sufficiently large to justify perturbation

theory.
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2.2 Renormalization of the PCQM and perturbation the-

ory

We consider perturbation theory up to one meson loop and up to terms linear
in the current quark mass. The formalism utilizes a renormalization technique,
which, by introduction of counterterms, effectively reduces the number of Feynman
diagrams to be evaluated. For details of this technique we refer to Lyubovitskij,
Gutsche, and Faessler (2001) and to appendix B. Here we briefly describe the basic
ingredients relevant for the further discussion. We define the renormalized current

uark masses, m” and m! and the renormalization constants, Z and Z, as :
Y S Y

3 2 oo
0

B m mF

9 6 1
< ezt e ) 2
Me T T ﬁ <7T—?’>2 /0°° A" Froen (27) {w?j(QPQ) " w2(p2)} - (29)

Z = 1- % g—A 2 Ooodpp‘*FwNN(p )

1
< \atm " e ) 210
Z, = 1-— % (5_;)2 /OOO dpp* Fxnn (p?) {wi’:(QpZ) - w;pz) } . (2.11)
For a meson with three-momentum p the meson energy is we(p?) = /M2 + p?

with p = |p] and Fyyn(p?) is the 7NN form factor normalized to unity at zero

recoil (p'=0) :

Fovn(p?) = oxp (-pgfg) {1 + p2§2 (1 - 3%) } . (2.12)

By adding the renormalized current quark mass term to the Dirac equation of

Eq. (2.3) we obtain the renormalized quark field ¢" as :

Ui (3 myi) = boug (75 my) exp[—i&g (m;)t], (2.13)
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where ¢ is the flavor SU(3) index. The renormalized single quark WF u(Z; m})

and energy & (m]) are related to the bare expressions uy(Z) and & as :

up(Zymy]) = ug(Z) + dug(d; my), (2.14)
E(mi) = &+ & (m]), (2.15)
where
. 1,212 =
— m; pR 3PP T 0 =
Su(Zm) = _ 2.16
o (T3 m;) 2 1+ 3p2 (H%pz gt ) ul@), (2.16)

6&(mi) = ym;. (2.17)

Introduction of the electromagnetic field A, into the PCQM is accomplished by
adding the kinetic energy term and by standard minimal substitution in the La-

grangian of Eq. (2.1) and Eq. (2.2) with

" — Dyt =0,Y" +ieQAN", (2.18)

8;L(I)i — D,uq)z = (‘LCI)Z +e |:f3ij + fi\/%] A“(I)j, (219)

where Q is the quark charge matrix with Q=diag{2/3,—-1/3,—1/3} and f;, are
the totally antisymmetric structure constants of SU(3). The renormalized effective
Lagrangian is obtained from the original one of Eqgs. (2.1-2.2) by replacing ¢ with
1", adding the counterterms and by standard minimal substitution. From this we

derive the renormalized electromagnetic current operator as :
I = Jyr + Jo + 0y (2.20)

It contains the quark component jf;r, the charged meson component j§, and the

contribution of the counterterm §jy;. :

1

3
o g fsij O.0"P .
]<1> - f31]+\/§ 7 7

= [rid"nt —ntidtnT + K0P KT — KTio K™, (2.22)

]fZ = Py QY" = = [2ﬁrfy“u7" —d"yHd" — §T”y“sr} , (2.21)
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5 = T2 - 1row
1
3

[W(Z )y — d(Z — )yd — § (2, — 1)7“57"] . (2.23)

Following the Gell-Mann and Low theorem (Gell-Mann and Low, 1951) we

define the expectation value of an operator O for the renormalized PCQM by
<O>=Pcgy S0 / iy TIC (20) L (2)Ol6y 5P . (2.24)
n!
n=0

In Eq. (2.24) the superscript B indicates that the matrix elements are projected on
the respective baryon states, the subscript c refers to contributions from connected
graphs only and the renormalized strong interaction Lagrangian L5 which is

r o

treated as a perturbation, is defined as

Lot = L 4 5L, (2.25)
where
£ = 0 @)in " sy (@) (2.26)

dL" is the strong interaction part of the counterterms (see details in appendix
B) at one loop to the order o(1/F?) using Wick’s theorem and the appropriate
propagators.

For the quark field we use a Feymann propagator for a fermion in a binding

potential.

iGy(w,y) = < ool T{Y(@)9(y)} o >
= 00— Yo) D Ua(F)Ta (e r07w0)

60 — y0) 3 vs(@)Ts () 0w (2.27)
B

Up to the order of accuracy we are working in, it is sufficient to use Gy(x,y)

instead of Gyr(z,y) where the renormalized quark fields are used. By restricting
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the summation over intermediate quark states to the ground state we get

iGy(z,y) — G (z,y)

=

= uo(Z)uo(¥) exp[—i&(zo — ¥0)|O(T0 — o) (2.28)

Such a truncation can be considered as an additional regularization of the quark
propagator, where in case of SU(2)-flavor intermediate baryon states in loop-
diagrams are restricted to N and A.

From our previous works (Lyubovitskij, Gutsche, and Faessler, 2001;
Lyubovitskij, Gutsche, Faessler, and Drukarev, 2001; Lyubovitskij, Gutsche,
Faessler, and Vinh-Mau, 2001; Lyubovitskij, Wang, Gutsche, and Faessler, 2002;
Simkovic et al., 2002; Pumsa-ard et al., 2003) we conclude that the use of a trun-
cated quark propagator leads to a reasonable description of the experiment. In
Pumsa-ard et al. (2003) we included for the first time excited quark states in the
propagator of Eq. (2.24) and analyzed their influence on the matrix elements for
the N — A transition considered. We included the following set of the excited quark
states: the first p-states (1p;/2 and 1ps)s in the non-relativistic notation) and the
second excited states (1ds/s, 1ds/2, and 2s1/9). Again, the Dirac equation is solved
analytically for the same form of the effective potential Vop¢(r) = S(r) +~°V(r)
as was done for the ground state. The corresponding expressions for the wave
functions of the excited quark states are given in appendix A.

In Pumsa-ard et al. (2003) we demontrated that the excited quark states
can increase the contribution of the loop diagrams but in comparison to the lead-
ing order (three-quark core) diagram this effect was of the order of 10%. In the
context of the electromagnetic properties of baryons, we also estimated the effect
of excited states, which again is of the order of 10%. However, there are quanti-
ties (like, e.g., the charge radius of neutron) which are dominated by higher order

effects. Particularly, in the SU(2) flavor limit there is no three-quark core diagram
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contributing to this quantity. Only meson-loop diagram contribute to the neutron
charge radius in the context of the PCQM and, therefore, the effects of excited
states can be essential. In this work (see in chapter IV) we discuss the effects
of excited states only for the neutron charge radius. We found that these effects
considerably improved our prediction for the neutron charge radius which is close
to the experimental result.

For the meson fields we use the free Feymann propagator for a boson with

iDNij(x —y) = <OT{®i(z)®;(y)}|0 >

d*k  exp|—ik(z —y)]
_ 527»/(%)42. T e (2.29)




Chapter 111

Electromagnetic form factors of the baryon octet

We define the electromagnetic form factors of the baryon in the Breit frame,

where gauge invariance is fulfilled (Lyubovitskij, Gutsche, and Faessler, 2001;
Miller and Thomas, 1997; Lu, Thomas, and Wiiiams, 1998; Ivanov, Locher, and
Lyubovitskij, 1996; Ernst, Sachs, and Wali, 1960; Sachs, 1962). In this frame
the initial momentum of the baryon is p = (E, —¢/2 + &), the final momentum
is p = (E,q/2 + ﬁ), and the four-momentum of the photon is ¢ = (0,¢) with
p’ = p+ ¢. For identical baryons we have A = 0. With the space-like momentum
= ¢, we define the Sachs charge GE and

transfer squared given as Q? = —¢?

magnetic G, form factors of the baryon as

/ C.T A q_' A
< Bu(5 + D)POB—5 +8) > = xpy x5.GHQ), (3.)
B/,g A B, g A - T/M B (02). .
<ByGEAIOIB(—5+8) > = Xy, 2 rxn GR(@). (32)

Here, J°(0)and J (0) are the time and space components of the electromagnetic
current operator; xp, and XLS, are the baryon spin WF in the initial and final
states; op is the baryon spin matrix. Electromagnetic gauge invariance both on
the Lagrangian and the baryon level is fulfilled in the Breit frame (Lyubovitskij,
Gutsche, and Faessler, 2001).

At zero recoil (¢* = 0) the Sachs form factors satisfy the following normal-

ization conditions:

G3(0) = Qg, G2 (0) = pg, (3.3)
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where (g and pup are charge and magnetic moment of the baryon octet, respec-
tively.

The charge and magnetic radii of baryons are given by

6 d
P2 VB _ —GE(Q? 3.4
< E,M> G§7M(O> dQQ E,M( ) 0?0 ( )
For neutral particles (g = 0) the charge radius is defined by
()P = —6-2GR@)| 3.5)
E dQQ FE Q2:0

In the PCQM the charge and magnetic form factors of the baryon octet are given

as

2 .,

[ —iq-x

XxGEQ?Y) = <<;so\zm / S(t)d*wvd z, ... d*z,e ™
n=0

X TILY (x) .. L ()57 ()] | o >7, (3.6)
. . > .
t WB X4 B2\ _ l 4 4 4 —igw
U GRQ) = <¢o\;a/6<t>d wd'ey . dr,e
< T @) L@l ST (37)

The relevant diagrams contributing to the charge and magnetic form factors are
indicated in Fig. 3.1. In the following we give the analytical expressions for the

respective diagrams.

1. Three-quark diagram (3q):

LO
+ Gy (Q7)

3q

NLO

Gem(@)| = GEu(QY) : (3.8)

3q 3q

LO

where G ),(Q*)|  are the leading-order (LO) terms of the three-quark

3q
NLO

diagram evaluated with the unperturbed quark WF uo(Z); G ,(Q?) is

3q
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Z —1

Figure 3.1: Diagrams contributing to the charge and magnetic form factors of
the baryon octet: three-quark diagram (a), three-quark counterterm diagram (b),
meson-cloud diagram (c), vertex correction diagram (d), and meson-in-flight dia-

gram (e).



a correction due to the modification of the quark WF ug(Z) — uf(Z; m})

referred to as next-to-leading order (N LO):

LO LO
GR(Q°) al GR(Q%)|
3q 3q
LO m LO
Gu(Q?) = 0 —=G(QY)
3q my 3q
NLO NLO
GR(Q%) = (a3 +aze) GR(@Q)|
3q 3q
NLO m NLO
Gu(Q?) = (b7 +bje) —GL(Q%)|
3q mn 3q
where
LO 2 p2 2 QQRQ
e - o (9E) (- ).
5(Q") N ! 1+3p° 4
NLO 2 2 23
) o L ovre
3¢ 4 4(1+2p%)
L (LT Rt @R 2)
- p )
1+ 3p2 4
LO 2 12
R*\ 2mypR
wl? - (L)
w(Q7) N Xp 4 1+ %pz
@) = | ke (Q2R2 25
P R AN R T

(3.9)
(3.10)
(3.11)

(3.12)
(3.13)

(3.14)

(3.15)

) . (3.16)

and € = m”/m". The constants a? and bP are given in Table 4.1 and Ta-

ble 4.2 respectively. When using isospin symmetry we use for mpg, the baryon

masses, following values

myxop

m, = m, = 0.938 GeV,
My+ = Myo = 1.189 GeV7
1.115 GeV,

m=o = Mz=- = 1.321 GeV,

1
5 (mg + mA) = 1.152 GeV.

(3.17)
(3.18)
(3.19)
(3.20)

(3.21)



2. Three-quark counterterm (CT):

GE(QY)

G (@)

cT

cT

ad(

A

Z=1)+af(Z, - 1) Gh(QY)

LO

3q

9

B2 = 1) + 052, 1)) TR @)

3. Meson-cloud diagram (MC):

GE(QY)

G (@)

where

MC

MC

waN(p27 Q27 I)

th(p®, Q% x)

th(p*, Q% x)

MC

MC

Dy'™ (p?, Q% x)

Ce'™ (r*, Q% )

o ()" [ [ e (7 o)

fWNN(an Q27 x)tg<p27 Q2a l‘)

)

MC

3 9A>2 > 4/1 2
T e d dz(1 —
07" (WF /O e z(1 —a%)

waN(an Q27 x)tf/[(an Q27 27)

)
MC

3q

LO

FwNN(p2)F7rNN(p2 + Q2 + 2p\/@l’),

ay O (", Q% 7) + a5 Ok (p*, Q% ),

by D (p*, Q% x) + b5 DR (p*, Q% ),

1

wi (pPP)wi? (p? + Q% + 2p\/Q%x)

2Dg'" (p*, Q°, x)

wg' (1) + wg (p? + Q% + 2p\/Q%x)

4. Vertex-correction diagram (VC):

Gp

(@)

(@)

vC

Ve

GH(Q%)

9
200

—EGh(Q7)

my
9
200

(

(

94
TF

94
TF

LO

3q

2 o
> /0 dpp4F 73NN(p2)tg(p2)

LO

3q

2 (o)
) | P 7))

Y

vC

vc

Y
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(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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where
BN = W) W) el W0, (333)
BN = WWGR) W) WY, (334)
Walp?) = w%zﬂ). (3.35)

5. Meson-in-flight diagram (MF):

GB(Q?) = 0, (3.36)

MF

QA /
= — B dpp/dxl—a:)
. 100

X Fann(0®, Q% )ty (0%, Q°, @)

G (Q%)

, (3.37)

MF

where

= by DZ(p*, Q% ) + b, DE(p*, Q% x).  (3.38)
MF

th(», Q% x)

The magnetic moments pp of the baryon octet are given by the expression (in

units of the nucleon magneton /)

_ LO 1 ) bB bB 1 ga 2 Ood 4F 2 le kQB k3B
pp = pp |1+ (2+3€)—m(ﬁ> ; pp” Frnn(p7) T ws

T Wi ’UJ%
ms g_A>2 ood o 2 @ @ 3.39
50 <7TF /0 by Fon(p) wﬁ—i_wﬁ( ’ (3.39)
where
LO
2 R
ph _bB GP P(0)] = ppIiEET (3.40)
3q 1+2p

is the leading-order contribution to the baryon magnetic moment. The factor

2 — 3p2
5= —m"R —2p2
(510

defines the NLO correction to the baryon magnetic moments due to the modifica-

(3.41)

tion of the quark WF (see Eq. (2.16)). The constants k? are given in Table 4.3.



Chapter 1V

Results and Discussion

4.1 Numerical Results

Numerical results for the magnetic moments, charge and magnetic radii of the
baryon octet are given in Tables 4.4, 4.5 and 4.6, respectively. The total contribu-
tions to the electromagnetic properties are separated into two parts: the leading-
order (LO) one due to the three quark core contribution and the next-to-leading
order (NLO). The NLO contribution includes the corrections due to the renor-
malization of the quark WF (NLO;3q), the three-quark counterterm (CT), the
meson-cloud diagram (MC), the vertex-correction diagram (VC), and the meson-
in-flight diagram. The range of our numerical results is due to variation of the size
parameter R in the region 0.55 - 0.65 fm. The mesonic contributions to the baryon
magnetic moments are of the order of 20 - 40 % (except for =~ they contribute only
3 %). Hence, meson cloud corrections generate a significant influence on baryon
magnetic moments. Our results for the baryon magnetic moments are in good
agreement with the experimental data. Mesonic contributions to the charge radii
of charged baryons are also of 20 - 40 % (except for Z~ where they contribute less

than 1 %). We predict that

(2 > 2 > (2 > ()T (4.1)
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Our result for the proton and ¥~ charge radii squared are in good agreement
with the experimental data. In the isospin limit the three-quark core does not
contribute to the charge radii of neutral baryons. Only the meson cloud generates
a nonvanishing value for the charge radii of these baryons. Since we restrict the
quark propagator to the ground state contribution the meson-cloud effects give a
small value for the neutron charge radius squared.

We found that the result of the neutron charge radius can be improved by
including excited states in the quark propagator. In Table 4.5 we give a comparison
of our results for the neutron charge radius squared with the experimental value.
The value, where the quark propagator is restricted to the ground state, is indicated
by (r2)"(GS). Contributions from excited states (we have used the 1p'/2, 1p%/2,
1d3/%, 1d°/? and 25'/? states) are denoted by (r2)"(ES). Exemplified for the neutron
charge radius, we conclude that excited state contributions can also generate sizable
corrections when the LO results are vanishing. In a further effort we intend to
improve our calculations to the whole baryon octet by adding the excited states to

the quark propagator. For X%, A and Z° we predict that their charge radii squared

have a positive sign and follow the pattern

() > () () (4.2)

The mesons also play a very important role for the baryon magnetic radii where
they contribute up to 50 %. Our result for the magnetic radius of =~ is quite
small compared to the other’s because the meson-cloud contribution comes with
a negative sign. Results for the magnetic radii squared of the proton and neutron
are in good agreement with the experimental data.

The Q?-dependence of the charge and magnetic form factors are shown in
Figs. 4.1, 4.2, 4.3, 4.4 and 4.5. In Fig. 4.2 we compare our result for the neutron

charge form factor to the experimental data varying the parameter R. Results are
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Table 4.1: The constants a? for the charge form factors G2 of the baryon octet.

p ln| St | 20| S| A | 2| = [ XA

e 1 ]0o] 1 | o101 o01]-1]o0
ar| 1 | 0| 4/3|1/3]|-2/3|1/3]2/3|-1/3| 0
as| 0 | 0 |-1/3|-1/3|-1/3|-1/3|-2/3|-2/3| 0
as| 1 |-1] 2 | o | 20| 1]-1]o0
as| 2 1] 1 | 0o | 1|0 |-1]-21]0
ag | 1/21 1] 0 |1/2] 1 |1/2] 0 |1/2] 0

ar | -1 [-1]-1/3|-1/3|-1/3|-1/3|1/3 | 1/3 | 0

as | 1/6 | 0| 0 |-1/6|-1/3|-1/6|-1/3|-1/2| 0

given for the case, where the quark propagator is restricted to the ground state.
We separate the graphs for the charged and neutral baryons by using a proper
normalization and compare to the experimental dipole fit, originally obtained for

the nucleon given by (Thomas and Weise, 2001)

1

Gp(Q*) = :
} [1+$]2

(4.3)

4.2 Summary

We apply the PCQM to calculate the charge and magnetic form factors of the
baryon octet up to one loop perturbation theory. Furthermore, we analyze the
magnetic moments, charge and magnetic radii. We demonstrated that meson cloud
corrections play a sizable and important role in reproducing the experimental val-
ues both for magnetic moments and for the charge/magnetic radii. The magnetic

moments of the baryon octet can be reproduced rather well. Also, charge and
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Table 4.2: The constants b? for the magnetic form factors G%; of the baryon octet.

P n | 2t | 20 | 2| A | 20| = | ¥A
by 1 [-2/3| 1 1/3 | -1/3 | -1/3 | -2/3 | -1/3 | -V/3/3
by | 1 | -2/3] 8/9 | 2/9 |-4/9| 0 | -2/9 | 1/9 | -v/3/3
bs | 0 0 | 1/9 | 1/9 | 1/9 | -1/3 | -4/9 | -4/9 0
by | 1 -1 | 4/5 0 |-4/5| 0 | -1/5 | 1/5 |-2/3/5
bs | 4/5 | -1/5| 1 3/5 | 1/5 |-3/5| -1 | -4/5 | -v/3/5
be | 1/18 [ 2/9 | 0 | -1/9 | -2/9| 0 0 | 1/18 |-v/3/18
br | 1/9 | 1/9 | 5/27 | 5/27 | 5/27 | -1/9 | -5/27 | -5/27 0
bs | -1/18 | 1/27 [ -2/27 |-1/27| 0 |2/27| 1/9 | 5/54 | \/3/54
by | 1 -1 0 0 0 0 0 0 | -V3/3
bo| O 0 1 1 1 -1 -1 -1 0

Table 4.3: The constants kP for the magnetic moment up of the baryon octet.

pl n| Xt |22 | A|[E0|Z| XA
ki |26] 21 | 24 | 24| 24 |30 6 | 24
ky |16 | 21 | 50/3 |14 | 22 | 0 | 25 | 32 | 18
ks | 4| 4 |16/3| 8 | 0 |16] 12|20 | 4
ky |11 ]-11| 4 3 -41-3]-1]11]-4/3
ks | 4| -1 11 | 6| 7 |-6|-11|-10] -V3
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Table 4.4: Results for the magnetic moments up of the baryon octet in our model
calculation. The total result (Total) consist of the leading-order (LO) contribu-
tion due to the three-quark core and the next-to-leading-order (NLO) one due to
the summation of the meson-cloud effects. The corresponding experimental data
(Hagiwara et al., 2002; Eschrich et al., 2001) are given in the last column (in units

of the nucleon magneton puy).

LO NLO Total Exp
tp 1.80 £ 0.15 | 0.80 + 0.12 | 2.60 £ 0.03 2.793
L -1.20 + 0.10 | -0.78 £ 0.12 | -1.98 £+ 0.02 -1.913

s+ 228 £0.19 | 047 £0.10 | 2.75 £ 0.09 | 2.458 £ 0.010
50 0.76 £ 0.06 | 0.29 &= 0.07 | 1.05 £ 0.01 —

s~ -0.76 £ 0.06 | -0.32 £ 0.02 | -1.08 £ 0.05 | -1.160 £+ 0.025
A -0.71 £ 0.06 | -0.18 £ 0.09 | -0.89 £ 0.03 | -0.613 = 0.004
=0 -1.69 £ 0.14 | -0.05 £ 0.11 | -1.74 £ 0.03 | -1.250 £ 0.014
== -0.85 £ 0.07 | 0.17 £ 0.07 | -0.68 £ 0.01 | -0.651% 0.003

|psoa| | 1.28 £ 0.11 | 0.62 £ 0.09 | 1.89 £+ 0.01 1.61 £ 0.08
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Table 4.5: Results for the charge radii squared (7“]25>B of the baryon octet. Other-
wise, LO and NLO contributions are indicated as in Table 4.4. Experimental data

(Hagiwara et al., 2002 ) are given in the last column (in units of fm?).

LO NLO Total Exp
(r2)? 0.60 £ 0.10 | 0.12+0.01 | 0.724+0.09 | 0.764+0.02
(r2)"(GS) 0 -0.043 + 0.004 | -0.043 + 0.004
(r2)"(ES) 0 -0.068 + 0.013 | -0.068 + 0.013
(r2)"(Total) 0 -0.111 + 0.014 | -0.111 + 0.014 | -0.11640.002
(r2)=" 0.60 + 0.10 | 0.21 + 0.004 | 0.81 % 0.10 —
(r2)™ 0 0.050 + 0.010 | 0.050 + 0.010 -
(rz)> 0.60 £ 0.10 | 0.11 +£0.03 | 0.71 +0.07 | 0.61 + 0.21
(rz) 0 0.050 + 0.010 | 0.050 + 0.010 —
(r2)= 0 0.14 £ 0.02 | 0.14 £ 0.02 —
()= 0.60 + 0.10 | 0.02 +0.03 | 0.62 + 0.07 -
(r3)™ 0 0 0 -
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Table 4.6: Results for the magnetic radii squared <T]2V[>B of the baryon octet. Total
result consists of LO and NLO contributions as in Table 4.4. Experimental data
(Simon et al., 1980; Kubon et al., 2002)are given in the last column (in units of

fm?).

LO NLO Total Exp

P 0.37x0.09 | 0.37£0.02 | 0.74=x 0.07 | 0.74%0.10
" 0.33£0.08 | 0.46x£0.01 | 0.79£ 0.07 | 0.76+0.02
0.45£0.10 | 0.19£0.02 | 0.64=£ 0.08 —

0.39£0.10 | 0.30£0.03 | 0.69£ 0.07 —

(rir)

(ris)

(ris)

(rir)

(r2,)”" | 0.38+0.08 | 0.40+0.01 | 0.78+ 0.07 —
(2" ] 0.4440.12 | 0.2140.07 | 0.65+ 0.05 -
(r2)% | 0.5240.12 | 0.02£0.05 | 0.54+ 0.06 —
(r2)* | 0.67+0.17 | -0.350.13 | 0.32+ 0.04 —
(rir)

0.36£0.09 | 0.39£0.02 | 0.75£ 0.07 —




GL(Q%)

28

1.00 T T T

0.75

0.50

0.25

0 0.25 0.50 0.75 1.00

Q* (GeV?)

Figure 4.1: The charge form factors G2(Q?) for B = p, ¥, ¥~ and 2~ for R =
0.6 fm compared to the dipole fit Gp(Q?). For X~ and =~, the absolute value of

GE(Q?) is shown.



GE(Q%)

29

0.10
N R = 0.55 fm
——R = 0.60 fm
0.075} ! T ft =065 fm
1 - ° MAMI-1
- | o MAMI-2
1 " MAMI-3
o MAMI-4
0.05 F L : ) A MIT
_ | %
0.025} 1
0.00 '
0 0.25 0.50 0.75 1.00

Q? (GeV?)
Figure 4.2: The neutron charge form factors G7(Q?) for different values of R =
0.55, 0.6, and 0.65 fm. Experimental data are taken from Ostrick et al. (1999),

Becker et al. (1999), Meyerhoff et al. (1994), Herberg et al. (1999), Eden et al.
(1994).
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Figure 4.3: The charge form factors GE(Q?) for B =n, 3° A and Z° at R = 0.6

fm.
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Figure 4.4: The normalized magnetic form factors G¥,(Q?)/up for B = p, ¥+, ¥~

and 2~ at R = 0.6 fm in comparison to the dipole fit Gp(Q?).
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magnetic radii are explained with the PCQM, when the LO contribution, that is
the valence quarks, dominates. As soon as the LO result vanishes, meson cloud
corrections which then control the observable tend to be sensitively influenced by
the possible contributions of excited states in the loop diagrams. We demonstrated
this effect for the case of the neutron charge radius, where inclusion of the excited

states tend to improve the model result.
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Appendix A

Solutions of the Dirac equation

We start with the static potential of the form V¢ = S(r) + vV (r) where

S(r) and V(r) are given by

_ 1—3p? P 2
S(r) = R +2R3T

1 2
143 L P e
2pR 2R3

Vir) = & (A.1)

The quark wave function wu, (%) in the state o with the eigen-energy &, satisfies

the Dirac equation
[—i@ -V 4 BS(r) + V(r) — Ealua(T) = 0 (A.2)

where r = |Z| and u, (%) is in the form

. 9a(r) R
Uo(Z) = Ny Va(P)X £ Xe (A.3)
i - ffoz(r>
where 7 = Z/|Z| and
(T le+1/2 r’ —2;;2 A4
9a(r) = R.) "1 (ﬁ)e o (A.4)
For j=1+1/2
r . +3/2, T +3/2, T _
R =pe () |G+ L) | o (A5)
and for j =1—1/2
-1 2 2 2
r 1. .- T _ T .
) == () |01 = PG + i | R,

(A.6)
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a = (nljm) is the state with the quantum number n, [, j, and m with n =
1,2,3,...50 =0,1,2,...;5 =l+5and m = —j,—j+1,...,5 — 1, represent
the principle, the orbital angular momentum, the total angular momentum and
its projection in the z-direction, respectively. LF(z) is the associated Laguerre

polynomial

n

L) = 3 (~1)"

m=0

(n+k)!
(n —m)!(k + m)!m!

™. (A7)
The angular dependence of the wave function, Vo (7) = Vim;(7), is
R r .. .
Vimg (7) = D (I m] jm) Vi, (7)X 11, (A.8)
my,ms

where V,,;(7) is the usual spherical harmonic. The coupling between the orbital,
Yim,(7) and the spin x L, angular momentum are determined with the help of
the Clebsch-Gordan coefficients (Imygms|jm). The flavor and the color part of

the wave function are represent by x; and x., respectively. The normalization

constant is obtained from the condition

/000 Brul (F)ua(T) =1 (A.9)

which gives

o (2n + 21)! 1172
N, = {2 AntH1/2) 12 p3 T 1)!{1 +p22n +1— )} (A.10)

The other two parameters R, and p, are in the form

R, = R(1+A&pR)™Y4, (A.11)

Pa = p(%f (A.12)

which are related to the Gausian ansatz parameters p, R, and A&, is the difference

between an energy in the state a and the ground state energy, A&, = &, — &.
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A&, depends on the quantum numbers n and [ and is related to the parameters p

and R by

3013 Ly_r 12
(Afa+ ) (A + —5) = gn+21 = 1% (A.13)

The ground state (1s'/2), we label as & = 0 — (n = 1,1 = 0,5 = 1/2). The

ground state energy is & and the ground state wave function, uy (), is given by

2 1
Uo(f) = Ne 2r2 XsXfXes
ipd - Z/R

3p2 -1/2



Appendix B

Renormalized PCQM Lagrangian

B.1 Perturbation theory and nucleon mass

Before setting out to present the renormalization scheme of the PCQM, we first
define and discuss the quantities, relevant for mass and wave function renormal-
ization. Following the Gell-Mann and Low theorem (Gell-Mann and Low, 1951)
we define the mass shift of the nucleonic three-quark ground state Amy due to

the interaction with Goldstone mesons as

Amy = V< ¢o Z ;_nl /ié(h)d%l---d%nT [L1(21).-Lr(zn)] Do >iv . (B.1)
n=1

In Eq.(B.1) the strong interaction Lagrangian L; treated as a perturbation is

defined as

£1(x) = —D(@)in* 25 () (a) (B2)

and subscript c¢ refers to contributions from connected graphs only. We evaluate
Eq.(B.1) at one loop to order o(1/F?) using Wick’s theorem and the appropriate
propagators. For the quark field we use a Feymann propagator for a fermion in a
binding potential. By restricting the summation over intermediate quark states to

the ground state we get

iGy(z,y) < GolT {¢(x)(y)} b >

= uo(Z)to () exp [i&(zo — y0)] O(z0 — Yo). (B.3)



45

For meson fields we use the free Feynman propagator for a boson field with

d*k  exp[—ik(z — y)]
2m)% M2 — k2 —ic

i (z — y) =< 0|T®;(x)®;(y)|0 >= 5”-/ (B.4)

Superscript N in Eq.(B.1) indicates that the matrix elements are projected on
the respective nucleon states. The nucleon wave function |V > is conventionally
set up by the product of the SU(6) spin-flavor WF and SU(3). color WF (Close,
1979), where the nonrelativistic single quark spin w.f. is replaced by the relativistic
ground state solution of Eq.(2.4). Projection of one-body diagrams on the nucleon

state refers to

3
XL 7 X ke — < N3O > (B.5)

i=1

where the single particle matrix element of the opertors I and J, acting in flavor
and spin space, is replaced by the one embedded in the nucleon state. For two-body
diagrams with two independent quark indices ¢ and j the projection precription

reads as

3
XX T X exs @ XX B R I8 T xpxs — < NI (L)Y @ (1) VN >
i#]
(B.6)

The total nucleon mass is given by my, = m{“+ Amy. Superscript r refers to the

renormalized value of the nucleon mass at one loop, that is the order of accuracy
we are working in. The diagrams that contribute to the nucleon mass shift Amy
at one loop are shown in Fig.B.1: meson cloud (Fig.B.1a) and meson exchange
diagrams (Fig.B.1b). The explicit expression for the nucleon mass including one-

loop corrections is given by

my = myC+ Amy =3(E +ym)+ Y dyII(Mg)  (B.7)
S=m,Kn
171 6 1
ith d7, = — d¥ = —d" = —d~. B.8
Wit Gy 100 N T 1N T mriN (B8)
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Figure B.1: Diagrams contributing to the nucleon mass: meson-cloud diagram (a),

meson exchange diagram (b).

where d% are the recoupling coefficients defining the partial contribution of the ,

K, and n-meson cloud to the mass shift of the nucleon. For the following it is also

useful to separately indicate the contributions to d% from the meson cloud, df}MC
and the meson exchange diagrams, d%EX:
GO o= S o= 2 e = D
400 400 400
and dy™t = %, V=0, 4t = —%. (B.9)

The self-energy operators I1(M32), corresponding to meson cloud contributions with

definite flavor, differ only in their value for the meson mass and are given by

nos) - - (4 720 (B.10)

For a meson with three-momentum 7 the meson energy is we(p?) = /M2 + p?
with p = |p] and Frnyy(p?) is the tNN form factor normalized to unity at zero

recoil (p? = 0):

Frnn(p?) = exp (—pr2> {1 + ngg <1 - %) } . (B.11)
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Finally, the effect of a finite current quark mass m on the nucleon mass shift is
taken into account perturbatively (Lyubovitskij, Gutsche, Faessler, and Drukarev,

2001 ), resulting in the linear term 3ym in Eq. (B.7)

B.2 Renormalization of the PCQM

To redefine our perturbation series up to a given order in terms of renormal-
ized quantities a set of counterterms 0L has to be introduced in the Lagrangian.
Thereby, the counterterms play a dual role: i) to maintain the proper definition of
physical parameters, such as nucleon mass and, in particular, the nucleon charge

and ii) to effectively reduce the number of Feynman diagrams to be evaluated.

B.2.1 Renormalization of the quark field

First, we introduce the renormalized quark field " with renormalized mass M" |
substituting the original field 1. Again, we restrict the expansion of the renormal-

ized quark field to the ground state with
¥ (z;mi) = boug (T my) exp (—i&g (my)t) (B.12)

where ¢ is the SU(3) flavor index; £ (m]) is the renormalized energy of the quark

field in the ground state obtained from the solution of the Dirac equation

—id -V + Bm} + BS(r) + V(r) — E(m5) | up(ml) = 0. (B.13)

Using the derivations of the Eq. (B.7), the renormalized mass m] of the quark field
is given by

1 .
m, = mi=m"=m-—im=m+ — Z dYMOTI(ME),
3’7 S=m,Kn

2 T ok .
my = me = 0my =+ o [dﬁMCH(M;) +2dFMCTI(M2) |, (B.14)
Y
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The meson exchange contribution will be included when introducing nucleon renor-

malization. For the quark mass we will use in the following compact notation:

M" = diag{m",m",;m.} and oM = diag{ém, dm,Ims}. (B.15)

The solutions of Eq.(B.13), & (m]) and uj(Z; m]), are functions of m]. Obviously,
the difference between nonstrange and strange quark solutions is solely due to the
flavor dependent quark mass m/. In the limit m] — 0 the solutions for nonstrange
and strange quarks are degenerate: &(0) = & and u{(Z;0) = uo(Z). For the

renormalized wave function uj(Z; m}) we again consider the Gaussian ansatz

» 2 1
ug(Z;mi) = N(m!)exp —c(mf)—2 XsXfXxe  (B.16)
AL ipmpa /R

with normalization

/ Brun (Zm?ub(Fm]) = 1. (B.17)

In Eq.(B.16) the functions N(m}), ¢(m}) and p(m]) are normalized at the point

)

m; = 0 as follows:
NO)=N, c0)=1,  p(0)=p (B.18)

The product p(m])c(m}) can be shown to be m/-invariant and we therefore obtain

the additional condition
p(my)e(my) = p (B.19)

Treating m] as a small perturbation, Eq.(B.13) can be solved perturbatively, re-

sulting in:

Ey(m) =& + 6&(m]) and wug(@;m]) = uo(Z) + dug(Z;m;) (B.20)
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where

0&(m) = ymi& + 6&(m;) and
. m! pR + 241p2 72
Sul (T m’) — i B.21
ug(Z;my) 5 1+%p2(1+2,0 R2+7 uo (7). ( )

For our set of model parameters the ground state quark energy &, is about 400

MeV and for the energy corrections 6&; relative to & we obtain

~ 14% and

‘M ~ 18%. (B.22)

)

’ 6E(m7)
0

Given the small corrections expressed in Eq.(B.22), the perturbative treatment of

a finite (renormalized) quark mass is a meaningful procedure.

B.2.2 Renormalized effective Lagrangian

Having set up renormalized fields and masses for the quarks we are in the po-
sition to rewrite the original Lagrangian. The renormalized effective Lagrangian

including the photon field A, is now written as
;ull - £Z} + E(D + Eph + ﬁ:nt <B23)

The renormalized quark Lagrangian £, defines free nucleon dynamics at one-loop

with

Ly = Ly + Ligyy

ve = V@g - M = S(r) =1 "V(r)]Y (2)

3

7
Lisyp = e ) W (@)in’ Ay (z) +CKZ (@) A" ()]
=4

1=1

e [T (2)in Ay ()2, (B.24)

The parameters 6. M of Eq.(B.15) guarantee the proper nucleon mass renormaliza-

tion due to the meson cloud diagrams of Fig.(B.1a). The terms contained in L5
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are introduced for the purpose of nucleon mass renormalization due to the meson
exchange diagram of Fig.(B.1b). The corresponding renormalization parameters

Cr, ci and ¢, are deduced from Eqs.(B.7) and (B.9) as
9 (2n R

= —— 2 __TI(M32). B.2
The free meson Lagrangian Lg is written as
8
1
Lo=—5 > ®i2)(d0 + M) () (B.26)

ij=1
where O = 9”9, and M} is the diagonal meson mass matrix with
M2 = ML = M2 = M2, M? = M% = M2, = M2 = M2,
Mgz = M, (B.27)
88 n: .

For the photon field A,, we have the kinetic term

Lpnh = _EF#V(J:)FHU(%) with F, = 0,A,(x) — 9, Ay, (B.28)

The renormalized interaction Lagrangian L] , = L7,

.+ L0 contains a part due to

the strong

r
Estr

= L5+ oL (B.29)
and the electromagnetic interaction
L =L+ oL, (B.30)

The strong interaction term L5 is given by

£ =~ (@)in* N sy () (B.31)

The interaction of mesons and quarks with the electromagnetic field is described

by
8

L = —eA, (@) (@ QU (2) — eAu() 3 {f:m n

1,7=1

f8ij
V3

+ —AZ(x)AZ 2 (). (B.32)

| 20,0
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The term L™ is generated by minimal substitution with

0" — D" = 00" +ieQAN",

Jsij
aucbi — DM(PZ = 8M(PZ + e |:f3ij —|— % AM(P]'. (B33)

The set of counterterms, denoted by L5 and 6£¢™, is explicitly given by

&cstr — 5£itr+5£§tr+6£§tr’
with
0L = P(a)(Z = 1) [id — M —S(r) =1V (r)] ¢"(2),

0Ly = =Y (@) MY (x),

3

SLT = e Y @A @ e Y[ A (@)

i—1

— [ ()i A" ()],
and

0L = —eAu(2)Y"(2)(Z — )Y QY" (x). (B.34)

Here, Z = diag{Z 7, Zs} is the diagonal matrix of renormalization constants (Z
for u, d-quark and Z; for s-quark). The values of Z and Z, are determined by the
charge conservation condition. The simplest way to fix Z and Z, is on the quark
level. The same set of values for Z and Z, is also obtained when requiring charge
conservation on baryon level. Results for Z and Z, will be discussed below.

Now we briefly explain the role of each counterterm and why the set of
constants Z and Z, is identical in 6£5" and §£™. The counterterm 6L is in-
troduced to guarantee charge conservation. The counterterm L5, containing the
same renormaliztion constants Z and Z, as in 6£°™, is added to fulfil electromag-
netic local gauge invariance on the Lagrangian level. The same term also leads to

conservation of the vector current (baryon number conservation). Alternatively,

dL™ can also be deduced from 0£5" by minimal substitution. In covariant the-
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ories the equality of the renomalization constants in L5 and L™ is known as
the Ward identity. The counterterms 0£5" and dL5" compensate the contribu-
tions of the meson cloud (Fig.B.1a) and meson exchange diagrams (Fig.B.1b) to
the nucleon mass m’y (The contribution of meson cloud and exchange diagrams is

already taken into account in the renormalized quark Lagrangian L)).

B.2.3 Renormalization of nucleon mass and charge

Now we illustrate the explicit role of the counterterms when performing the cal-
culation of the nucleon mass and the nucleon charge. The renormalized nucleon
mass mjy is defined by the expectation value of the Hamiltonian H;, (as derived
from the Lagrangian Efp) averaged over state |¢py > and projected on the respective

nucleon states:
mhy = < ¢y /5(t)d4x7-{fp(x)\¢o >N (B.35)

By inclusion of the counterterms the strong interaction Lagrangian L£j; should give
a zero contribution to the shift of the renormalized nucleon mass at one loop, that

18
2 .,
r N ¢ 4 4 str str N
smhy = < ¢0|ZE/5(t1)d Ty .. dre, T (2y) .. L3 (2,)]|d0 >V,
n=1 ’
= V< go| — %/5(751)d4$1d4$2T[£i”($1)£fW($2)]|¢o >,

3
—N< o / S(t)d*x Y oLy (x)]go >N= 0. (B.36)
i=1
The propagator of the renormalized quark field " is given by
iGyr(z,y) = < ¢o|T{Y"(2)0" (y)}do >
= ug(Z)up(¥) exp[—i&g (xo — yo)0(x0 — yo)- (B.37)

It differs from the unperturbed quark propagator iGyr(z,y) by terms of order 7",

which in turn only contribute to the two-loop calculations. Thus, to the order of
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accuracy we are working in (up to one-loop perturbation theory) it is sufficient to
use the unperturbed quark propagator iGy(z,y) instead of the renormalized one.
To prove Eq.(B.36), we first note that the contribution of the counterterm

dL5" is equal to zero due to the equation of motion Eq.(B.13), that is
Ne oo / S(t)d*z6 L5 ()| o >N = 0. (B.38)

The counterterms §L£5" and L5 compensate the contribution of the meson cloud

(Fig.B.1a) and exchange diagrams (Fig.B.1b), respectively, with

S nl = 5 [ Bt d T () £ ) 0 >

_Ne ol / S [5LI () + 6L3 (2)]|do >N = 0, (B.39)

hence Eq.(B.36) is fulfilled. The calculation of the nucleon mass m/ at one-loop
can then either be done with the unrenormalized Lagrangian L.;; or with the
renormalized version L%, Eq.(B.23). Both results for m} are identical and are
given by Eq.(B.7).

Now we consider the nucleon charge and prove that the properly introduced
counterterms guarantee charge conservation. Using Noether’s theorem we first de-
rive from the renormalized Lagrangian Eq.(B.23) the electromagnetic, renormal-

ized current operator:
= Jyr T Jo + 0y (B.40)

It contains the quark component j%,, the charged meson component 74 and the
J g ®
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contribution of the counterterm &3y :

_ 1 -
jf/ﬁr = YPYrQY" = 5[2177“2[ —d"y"d" — 5"y,
A [f3ij + fi\/’é} 0t = [r id'rt —ation” + KTi0" K+ — KTi0" K|,

and

Ofyr = V(Z - DY = %[2(2 — D) — (Z = D) d A — (Zy — 1)57Hs").

(B.41)

The renormalized nucleon charge ()} at one loop is defined as

2 .
Q?V = N< ¢0| Z % /5(t1)d4x1 [ d4an[£itr(x1) L ﬁi”@n)]?@)“% >i\f
n=1 ’

(B.42)

Charge conservation requires that the nucleon charge is not changed after renor-

malization, that is

1 for N=p (proton)
N=Qn= (B.43)
0 for N =mn (neutron)

Thereby, (Qn is the nucleon charge in the three-quark core approximation, which
is defined as the expectation value of the quark charge operator Q, = [ APz (x)

taken between the unperturbed 3qg-states |¢g >:

Ox = < oy / 5(t2)d w0 (x) o > . (B.44)

Eqgs.(B.42) - (B.44) completely define the charge conservation condition within our

approach.
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oLy oLy

() (d)

Figure B.2: The self-energy diagrams, (a) - (b) and diagrams produced by the

counterterm dL5, (c) - (d)
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5L5" 5L3"

(c) (d)

Figure B.3: The meson exchange current diagrams, (a) - (b) and diagrams pro-

duced by the counterterm 0L5", (c) - (d)
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From nucleon charge conservation at one loop we obtain a condition on the
renormalization constant Z. To fix the constant Z; we should consider the charge
conservation of baryons containing s-quarks, e.g. X *-baryon. In the one-loop ap-
proximation following diagrams contribute to the nucleon charge Q% (see Fig.3.1):
three-quark diagram (Fig.3.1a) with insertion of the quark current jZ” three-quark
diagram (Fig.3.1b) with the counterterm § jZT (three-quark counterterm diagram),
meson-cloud diagram (Fig.3.1c) with the meson current j, vertex correction dia-
gram (Fig.3.1d) with the quark current jgr, self-energy diagrams (Figs. B.2a and
B.2b) and exchange current diagrams (Figs. B.3a and B.2b) with insertion of the
quark current jf;r. We also obtain a set of diagrams (Figs. B.2a, B.2b, B.3a, and
B.3b) generated by the counterterms L5 (x) and dL5"(z). The contribution of
the counterterm 0L5 (x) is equal to zero due to the equation of motion (B.13). By
definition of the counterterms 6 L5 (z) and § L5 (), the self-energy and the meson
exchange current diagrams of Figs. B.2a , B.2b, B.3a, and B.2b are compensated
by the counterterm diagrams of Figs. B.2c ; B.2d, B.3c , and B.3d respectively.

The contribution of the three-quark diagram (Fig.3.1a) to the nucleon

charge is trivially given by

No= < ¢0‘/ x]w z)|go >V= Q. (B.45)

The three-quark counterterm diagram (Fig.3.1b) is simply related to the one of

Fig.3.1a with:

(2 -1)< ol / e (1) >V= (2 - 1)Qn.  (B.A6)

The meson cloud diagram (Fig.3.1c¢) generates the term

e 27 /9ga )2/ ) 2 4y

O=7,K
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where

2 _
3 for N=p

Qo

for N=p

Kic _

T;C

—2 for N=n

3 for N=n

win

The contribution of the vertex correction diagram (Fig.3.1d) is given by

) 27 1ganN? [ qq);d
rid 472 2 N
(e £ dpp* F B.48
N 100 (ﬂ'F) /0 pp" Fryn(P7) Z wé(pQ) ( )
d=7,Kn
where
%for N=p —% for N=p %for N=p
md Kid nd __
dn = Ay = v Ay =
%for N =n —% for N=n 0 for N=n

To guarantee charge conservation, the sum of meson-cloud and vertex correction

diagrams
N QY+ QY =0. (B.49)

The last requirement fixes the value of the renormalization constant Z at one loop

to

. 27 19aN2 [, 4o oo 1 2 1
7= ——<—>/ dpp*F .
400 \xF/) J, PP wn (P) wi(p2)+3w?<(p2)+9w3(p2)

(B.50)

In the two-flavor picture, that is when we restrict to the pion cloud contribu-
tion only, we obtain a value of Z = 0.9 + 0.02 for our set of parameters. The
contribution of kaon and 7-meson loops to the constant Z is strongly suppressed
due to the energy denominators in Eq.(B.50). In the three-flavor picture we get

7 = 0.88+£0.03, which deviates only slightly from two-flavor result. The minor role

of kaon and n-meson loop contributions to nucleon properties was also found in our
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previous analysis of meson-nucleon sigma-terms (Lyubovitskij, Gutsche, Faessler
and Drukarev, 2001). As already mentioned, the renormalization constant Z is
fixed from the charge conservation of baryons containing strange quarks (e.g. X*-

baryon). Here we obtain the analytical result:

27 2 [ 4 4
Zo=1- = (%) /0 dpp* P2 (07) {3@{@2) + 5230 } . (B51)
In the SU(3) flavor symmetry limit (m, = mg = ms) both renormalization con-
stants Z and Z, are degenerate. Again, charge conservation within our approach
is fulfilled both on the quark level (when we directly calculate the charge of u, d
or s-quark at one loop) and on the baryon level. With the value of Z being close

to unity for our set of parameters the perturbative treatment of the meson cloud

is also justified.



Appendix C

The electromagnetic form factors in Breit frame

We use the kinematic notation p' = (E,q/2), p = (E,—q¢/2), ¢ =p —p = (0,9)
and Q? = —¢?> = @. The electromagnetic current operator for the baryon J* can

be written as

(B THO)B®) = a5 @) |7 FE @) + T2 EP @) | up(p)

2mB
—ap () FE(E) + (" = 5 + PV} @un()
= i (P FP ) + P ) - o0 + 0V FR(@un (C1)
k ) %
B(p, s) B'(p, ')

Figure C.1: The elastic electron-baryon interaction
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where
up (p)ic" qup(p)
— / 1 7 oy /
= g /(p) —5(7 V=A@ = p) | us(p)
1 — / i VM VM /
= —§uBf(p)[{(2g — ) =D, —
{7y = (26" — ")} po]us(p)
1 / /1 Vol M " BV
= =5 () (20" = 29707 + 29" = 29"y us(p)
= —up/(p) [p" — mpy* + p" — y*mplup(p)
= ap (p') [2mpy" — (0" + p)*] u(p) (C.2)
with
up/(V'py —mp) = 0— upy'p, =mplp (C.3)
(v'p, —mp)lug = 0—~'pup = mpup (C4)

We define the Sachs form factors following

GRQY) = FP(@)+ 1 B (@) (C.5)

Gu(@) = FP()+FP () (C.6)



GE(Q?) and G5, (Q?) are given separately as

(B'(0)|J°(0)|B(p)) = {F(¢®) + FS (¢*) Yup (p')7 us(p)

~ B BB (@)as () us(p)

E E
= {FP(®) + FP(A) e — —F2(»)—xxs
mpg mp

NN
- m—zB)Fz (@) Ixixs

={F (") +(1

2

q
~FP ()1 xs

— FB 2
{ 1<Q)+4mB

= GR(QY)X] s
(B'(0)|J(0)|B(p)) = {FF (¢*) + FF (¢*)}Yap (¥)Tup(p)
i&B X (j

= {FP(¢*) + F2 ()}, 5
mp

S

+ ’LO_"B X (7
X

__ B 2
- GM(Q )Xs 2mB
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(C.7)



Here we have used the free solutions of the Dirac equation

up(p)

up (p')us(p)

1 [E
N Ye, N — M
F(=q/2) 2mp

E+mp
7-q/2
Nyt (1, =242
Xs ( E+m3>
5 .qd/2 1 0
N <17_; q/ )
+mp 0 —1
1
X Xs
& (=q/2)
E—I—mB
E+mp |- (- q/2)
omp (E+mp)2) "
m% +2Bmp + (B> - ) |
QmB(E+mB) Xsr X

m% + 2Emp + mQBXT \
QmB(E + TTLB) s'As

X0

NZXT, (1 _L‘T/Q) 1 Ys
s " E+mp G-(~q/2)

E+m5

E+mp 4 (1+((5@/2)2> s

QmB s' E—i—m3)2

E? 4+ 2Emp + (m% + %)

T
QmB(E—i—mB) XS/XS

E

—XZ’XS
mp
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(C.9)

(C.10)

(C.11)

(C.12)
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. 7. q/2 0 o
i (0 )yun(p) = N (1,292
E+mp —ot 0

ag-(—a/2 g-a/2 .
— N2Xi/ {O_’L ( Q/ )+ q/ O,'L}Xs

E+m3 E+mB

1

= X '@ D+ (E Do},
1 J J

= T Xs{ an —I—(Iqja}xs
1 J J

= imp Xs( o'o! +olo )q]XS
1 z]k k jzk k

= Amp Xs ( + 1€ )QJXS
1 Z]k k j’Lk k

= T ——x} (i + i) gixs
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Appendix D

Calculation of the diagrams for the charge form

factor

D.1 Three-quark diagram

XLxsGE( Q2

— (4| / 7 QI ()" () - o)
= (6ol [ 01 ne ™ Qg (e S e el )

~ (lth | [ i@ (et o] i) (0.1

Figure D.1: The three-quark diagram
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where

V(zymy) = boug(@; my) exp[—i&; (my)t], (D.2)
up(Zymg) = [1+ z(m])]uo(Z) (D.3)
m;  pR s tar 7 0)
= 5 S D.4
up! (F mpug(Fmy) = uf () [1+ 2(m))]* ue(Z)

= ub(@)uo(T) + 2u(F)z(m] uo(Z) + o(m;?)  (D.5)

D.1.1 Leading order term (LO)

LO
AnGEQ)| = @io | [ Ead@u@e] ww® 0
3q
LO
By choosing the initial and the final state as the spin-up state, GZ(Q?) is
3q
obtained as:
LO LO
Gp(@)] = a/GL(Q) (D.7)
3q 3q




67

where

LO

8

/ Prul( D@ = b Gh(Q?)

3q

B Q2R2 p2 Q2R2
= exp(— 1 )(1_1+%p2 1 > (D.8)

a = (¢olbbx} Qxsboldo)”

= (B(ID_ Q0)IB(M) (D.9)
2/3 0 0
Q = 0 —1/3 0 (D.10)

0o 0 -1/3

D.1.2 Next-to-leading-order term (NLO)

NLO L
XhxGE(Q?) = {¢o|b)Q; {2 / dPrul(2)z(m] Juo(F)e' ™ | bo|do)qD.11)
3q
NLO NLO
GE(Q% = (af +afe)Gh(QY) (D.12)
3q 3q
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where
NLO
2 / drul(F)z (M ue(D)e ™ = xhx,Gh(Q%)
3q
_ QR*\ . Q°R’p
= exp(— 1 )m4(1+%p2)2
L+ 70>+ 2p" Q*R?
x( [y - p) (D.13)
mg
€ = s (D.14)
a3 = (dolbhx} Qxsboldo)”®
3 A
= (B(MIY_Q@)IB(M) (D.15)
i=1
a5 = (dolbhx} Qexsboldo)”
3
= (B(]Y_ Q:(1)|B(1)) (D.16)
=1
2/3 0 0
Q = 0 —1/3 0 (D.17)
0 0
00 0
Qs = 00 0 (D.18)
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Z-1

Figure D.2: The three-quark counterterm diagram

D.2 Three-quark counterterm

nGHE)| = (o / dhre™% - (2)(Z — 17° Qu(a) : [o)®
— (6olB(Z - 1)Q, { / d?’mg(f)uo(f)eiﬁ} bol)? (D.19)
LO
GRQY| = |af(Z - 1) +af(Z - 1)] Gh@Y (D.20)
cT 3q

D.3 Meson cloud diagram
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Figure D.3: The meson cloud diagram

XGR(Q?)
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S F
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We use the wave function and the Feymann propagator for fermion and for boson

following;:

Ya(?) = batla(T)e! (D.22)
iGy(x,y) = (b T{(2)¥(y) } o)
= ) ua(B)ta (e 0O (g — yo) (D.23)

iAij(z —y) = (0T{Pi(x)P;(y)}0)

d*k  exp[—ik(z — y)]
D.24
5”/ 2m)4 M2 — k? — ie ( )
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fSZj
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X {/ d3$2@a(52)2’75S<r2)u0(f2)eiEQ'fQ} (f 3ij + ) )‘J

0 kg
k2 " -
[k + A&q — in][(k9)? — wi (k3) + de][(kD)? — wi (K5) + ie]
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(67

— ISV
e = WWOM{))@XS/

Xi/Xng(Cf)

) /d3k R (K') Ra(k2) [—i( fai; + B2)ANG - Ko - Ky
2 =
[wa (k3)

b A& [wo(F2) + A& W (B2) + wo (o))

XX 5 Xsboldo) (D.27)

where

/dgm_ta(f)i755(r)u0(f)e_ig'f = Ra(k)x}/xi,ﬁ . EXfXS, k= |IZ| (D.28)

To simplify our expression , we define x = cos = | ﬂl k P = |k2| Q = |q] and
2

y = |q+ k| =P+ Q2+ 2pQu, (D.29)

00 1 2
/d3k2 = / pzdp/ dx/ do, (D.30)
0 -1 0

= (Tt k) - ky 417 - (Tx Ky), (D.31)

Colg®(p*, Q% x) = 2Do 0" , (D.32)
“ we (p?) + we (p? + Q% + 2pQx)

ning (,.2 2 _ 1
Dplg*(p”, Q% x) = YA ETNAR (D.33)

The integration over the ¢-angle makes the second term on the right hand side of

Eq.(D.31) vanish, so we keep only the first term that equals p* + pQz. We also



74

define the following symbols

“ fSi]

tp(p*, Q% ) <¢0|bon/Xs[ (f3ij+ \/5))\/\] 2 (0%, Q% )X pxsbo| o)

MC

=Zc&}®,j<p2,@2,x><8|;[ o + fﬁ) (N (R)][B),

ij=1

= a0y Corx (0%, Q% @) + a5’ Co i (1*, Q°, ) (D.34)

and

Va(p®, Q% x) = Rl(y)Ra(p). (D.35)

The final expression is obtained by

o 1 o0 1
= — d 2/ dx(p* + pQx
. 2nF)? /0 | (p° + pQx)

«

GR(@")

Va(p?, Q% 2)te(p?, Q% x) (D.36)

MC

If we restrict the quark propagator to just only the ground state( o = 0), we have

3
Ro(p) = Z%FWNN(p2)J
2 2 2 12
p°R p°R 5
Fonn(p?) = — 1 1—— D.37
v (p°) eXp( 4){+ S < 39,4)} (D.37)
a=0
and the charge form factor from the meson-cloud diagram GZ(Q?) is given by
MC
GE(Q? = —<—> / dpr/ dz(p* + pQx
aen| = g () [ )

anNN(anQ2>$)tE(P2>Q2ax) (D38)

where

Fann(p,@,2) = Fonn(p®)Frnn(y?). (D.39)



7?
°® 7 e

N .
N .
N B
~ k -

Figure D.4: The vertex correction diagram

D.4 Vertex correction diagram
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If we restrict the quark propagator just only to the ground state( « =0, § = 0),
voo(Q?) = /dgxug(x)uo(x)ei‘ﬁ
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and the contribution to the charge form factor from the vertex correction diagram

00
GE(@?)

is given by
148

” Lo 9 rgan2 [ 00
500 \nF dpp* F2yy (0)t5(0")| (D.AT
200 (ﬂ)/o PP Eon )t ()| (DAT)
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Appendix E

Calculation of the diagrams for the magnetic

form factor

The diagrams contributing to the magnetic form factor are the same ones as

for the case of the charge form factor and the meson-in-flight diagram in addition.

E.1 Three-quark diagram

1 X
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where
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E.1.1 Leading order term (LO)
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By choosing §= qj — & X §= —03qi + alql;;, then

(BISS QW) < 1B) = —q(BIY. QUs(0) B +a(B Y Q@) (0)| B

3

= —q(B]Y_ Q(i)os(i)| B)i (E-4)

i=1
o1 is spin-flip operator and in our case the final state and initial state are the same
spin state, so that the second term on the right-hand side vanishes. By the same

way we get

1q . 1q .
——chfgxsz + —Xifngsk

1 Z&B X J .
2mB s 2mB 2mB

!

S

1q A
= — 2 xllagxsz (E.5)

Usually, we choose the final state and initial state as the spin-up state so that the

expression is written as.

LO s LO
GHEQ)| = G (@) (E6)
3q N 3q
where
LO
2mnpR Q*R?
D 2 _ NP _ E
@) = Trses(-45) (©.7)

3

b= (B(NIY_ Q)as(i)|B(1)) (E.8)

=1
E.1.2 Next-to-leading-order term (NLO)

From Eq.(E.1) and Eq.(E.3), the next-to-leading-order-three-quark contribution

for the magnetic form factor is obtained as

i&B X J NLO
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E.2 Three-quark counterterm
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E.3 Meson cloud diagram
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where
0 1
falky) = — — P a—— ————(B.21)
[k3 + A&, — in][(k3)? — W¢j<k2) + ie][(k2)? — Wq>i(k5l2) + ie]
7TZ |:1 + %}
/ dks fo(k3) = oo, G, ) (E.22)

wo, (B2)wa, (73) [wéj(ﬁg) n Aga} [w@(/&; + Aé‘a]

After we substitute Eq.(E.22) into Eq.(E.20), the expression is given as

X! 2mB XSGM(Q ) e (27T)3F2 <¢0|bOXf'Xs/ d k2 9
| RUF) Ra) [y + GNNNG - #ad -Fo

) = )
wa, (k3)wa, (K'3)[wa, (k3) + Aa][wa, (K'3) + A&]

A&,
x |1+ N ) Xszb0’¢0>B
W, (k%) +w‘1>¢(k,2>
_ 1 <¢|bT T T/ood 4RT()R()/1d _'(f.._|_&>/\.)\.
- (27TF)2 0 OXf/XS/ 0 pp o ) a\D . X [/ 3ij \/g 7\

X {%(1 —2?)(Fx §) +x(p+ Qx)cj] Dova, (1%, Q% 1) x pxsboldo)? (F.23)

1

— _ Gk o _ ko _ L _
where we define x = cosf = PR p= ol p = |ks|, Q@ = |q] and
y =7+ ka| = /12 + Q2+ 2pQx, (E.24)

00 1 27
/ BPloky = / pPdp / dx / dop, (E.25)
0 —1 0
27

— —

/O%dqzﬁﬁ [6-1925-192} :/ dop [5-(cf+ Eg)a-kz]

0

=2r Bp(l — 2%)(¢ x @) + x(p? +an:)@1 (E.26)
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Da,q>ij (p27 Q27 ZL’) = D(l),lcbij (p27 Q27 x)Dij@ij (pzu Q27 I) [1 + Aa,q)ij] (E27)

AE
As POR0) - o E.28
@, (0, Q%) wa, (p?) + wa, (P? + Q* + 2pQ) (2

By choosing ¢ to piont in the y-direction and restricting the initial and final state

to the spin-up state, then

TiEBXJ _ —1q » E.29

Thus, on the right-hand-side of Eq.(E.23) we need only to calculate the x-

component.
4 gp )| = sl [ " dpp Rl (1) Ra () / da
2mp MC (27T ) O 0 “ : -1
ij o
x {(fgz-j + %)MJ} T2 = 2o, (07, Q% 0)xpxcbolo)” - (E.30)
@ 5m o0
B 2 _ B 4 ot
Gh(@)| = gk | Rl R)
1 [e%
< [ s - el QM) (E.31)
-1 MC
where
“ _BZ sz
B2 Q% )| = (polbixtxl [— faig + 22 AA}
M( ) MO < 01Y f 10 ( 3ij \/g) 3

XDa,ql'ij (p27 Q27 x)XfX5b0|¢O>B

: - 2 szy
ZZ 0, (P, Q% 2)(B(D| 5 <f3U o (BRI ()| BT).

= bleDa77r(p2a Q27 ZL’) + b5BD047K(p27 Q27 I) (E32)
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If we restrict the quark propagator just only to the ground state(a = 0), the

a=0
magnetic form factor from the meson-cloud diagram G%,(Q?) is given by
McC
o0 3mp (ga\? [T !
(@) = —— (—) / dpp4/ dr(1 — 2?)
M MC 40 ﬂ—F 0 1
a=0

x Fann (P2, Q% 2)t5 (0, Q% 2) (E.33)

MC
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Vertex correction diagram
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1198 X4 B (02
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= Gl [k
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~ 2n)iFe yF2@d%Xﬁ&k/dWBZWNGMQaﬁkw[/dHVMk%
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where

=g, p=Ikl, (E.36)

l/fm&@%d)'ﬁ:u&xamawx (E.37)

10y — L E.38

K = T AE, — ) (0 T A& —in)[(OF — R ) 1 ig )

0 0y _ —l — 8
J R = e T e TG T R e

G k)@ xP@G-k)=—(k-k)Gxq) + 2k x (G- k) (E.40)
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Again, by putting ¢ in the y-direction and restricting initial and final state to
the spin-up state, on the left-hand side of Eq.(E.35) we have the result as in
Eq.(E.29), but on the right-hand side depends on the term of Eq.(E.40). If we
integrate Eq.(E.40) over the solid angle of k-space the second term vanishes, so

that we can ignore this term and rewrite Eq.(E.35) as

o a aﬁ S o)
Ty @) = G lelhad | @ BV @Rt W )
X\ QNiozx £ Xsboldo)” (E.41)
0‘5 1 e} 0‘/6
GHQ)| = Ve @y | ' RLORIGGY)|  (E42)
Ve TF)? Jo ve
where
af
th()| = —{bolbhx bl A QAW (0?)x pxsbolbo)”
vCe
8 3
= > W) (B()I[- QA (k)os(k)| B(1)),
=1 k=1
= VEWO(p?) + bW (p?) + BE WP (pP), (E.43)
afB/ 2 1
Wg (p) = (E.44)

wa (p?)[wa (p?) + A&y [wa (p?) + AL

If we restrict the quark propagator only to the ground state (« = 0,5 = 0) our

expression is reduced to following form.

00 LO 9 ga 2 o 00
GB(Q? = mpGB(Q? — | = / dpp* 2y v (05, (0%)| (E.45
| = mGh@)| 5 (7F) P )| (B9
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Figure E.1: The meson-in-flight diagram

where
LO

Voo (Q%) = G (Q7) (E.46)
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E.5 Meson-in-flight diagram
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V3 w, (k3) w2 (K ;)

J

To simplify the expression, we define © = cosf = |§\EE22|’ p= |k, Q =|q] and

y = [k =7+ ka| = /P2 + Q2 + 2pQx, (E.50)

[#nta= [ [ aps (E.51)
0

_ / 0p p (G- F2) G Fo) + (- D / dp p (G- Fo) (E.52)

J

The first term on the right hand side of Eq.(E.52) depends on the pair of two-body

3>

1
(G - o) = 7Tp/ dx {(1 —2?)[oki+ o2 ] + x2af’nk} (E.53)

1

3

operators, o3 0% | i =1,2 3. For this operator the result vanishes, so that we can

n

keep only the second term. We do the same process as we have done for Eq.(E.30)



then the expression is shown as
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