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Figure 1.2 The predicted heat of formation of titanium-aluminium compounds. 

  

 with L1 The studies on TiAl3 2 structure have been carried out by several 

groups. Kogachi and Kameyama (1995) studied site occupancies by Cr in the L12 

compound TiAl3. The lattice constant is found to steadily increase with an increase in 

Ti-content for 9, 11 and 13% Cr alloys. Changes in the lattice constant may be 

explained by the atomic size effect, i.e. the replacement of smaller Al atoms by larger 

Ti atoms. 

 The authors also found that the occupation of the Al-site by Al atoms 

decreases linearly with the increase in Ti and Cr contents. Some Al atoms are 

substituted on the Ti-sites. In ternary L12 alloy, ternary atoms usually occupy the Al-

site when the Ti content is low. However at 13% Cr, some Cr atoms also occupy the 

Ti-sites. The defect that is caused by ternary atoms occupying the host atom sites is 

called the antisite defect.   
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 Nic and Mikkola (1999), who studied the site occupancy in cubic TiAl3-Cr 

alloy using an X-ray diffraction method, found a small amount of Cr substitution, but 

no Al substitution, on the Ti-sites, and observed that most of the Cr atoms are on the 

Al-sites. Increasing number of Cr causes more Cr to occupy the Ti-sites, displacing 

some Ti atoms to the Al-sites, thus creating more antisite defects. The antisite defects 

are the primary point defects in cubic L12 ordered alloys, constitutional vacancies are 

not important. However defects can influence mechanical properties of intermetallic 

alloys.  

 Tian and Nemoto (1997, 2000a, 2000b) studied Ag-modified cubic     L12-

TiAl3, which contains second phases consisting of tetragonal L10-TiAl(Ag) and  

D023-Ti5Al11 structures, respectively. They found that for alloys containing the L10-

TiAl(Ag) second phase, the crystal structures of L10-TiAl(Ag) and L12 -Ti(Al,Ag)3 

are both based on the f.c.c. structure. The lattice misfits are anisotropic in [100], [010] 

and [001] directions due to the tetragonal structure of L10-TiAl(Ag) precipitate. The 

lattice parameters of L10-TiAl(Ag) and L12-Ti(Al,Ag)3 were measured, using X-ray 

powder diffraction method, in order to determine the lattice misfit between the 

precipitate and matrix. The measured lattice parameters are a = 0.3995 nm and c = 

0.4063 nm for L10-TiAl(Ag) phase and a = 0.4003 nm for the L12 -Ti(Al,Ag)3. 

 The growth of L10-TiAl(Ag) precipitates is restrained in the [001] direction of 

the L12 matrix due to the larger misfit in this direction and this leads to a morphology 

of plate-like precipitates parallel to the {001} planes of the matrix lattice at initial 

aging time. The orientation relationship between the L10-TiAl(Ag) precipitates and 
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the L12 -Ti(Al,Ag)3 matrix is described as (001)p//(001)m, [100]p//[100]m, where m 

denotes the L12 -Ti(Al,Ag)3 matrix and p denotes the L10-TiAl(Ag) precipitates. 

 Microstructure development during aging in such alloy system was found to 

be mainly controlled by coherency stresses across the precipitate/matrix interface. 

Although the linear elastic theory can explain the deviation of the habit plane from 

{001}, the surface energy and interaction between precipitates are also important 

factors affecting the precipitate morphology. 

 For alloys containing the D023-Ti5Al11 second phase, the measured lattice 

parameters are a = 0.3993 nm for the L12 -Ti(Al,Ag)3 matrix and a = 0.3917 nm and c 

= 0.4131 nm for D023-Ti5Al11 phase. By TEM observation and a comparison of the 

observed results with the prediction of the linear elastic theory, the D023-Ti5Al11 

precipitates formed in L12-Ti(Al,Ag)3 matrix during aging has a thin-plate multi-

domain morphology. The multi-domain structures look like a sandwich composed of 

regularly spaced alternating thin {110} layers. 

 The habit plane of the thin plates which make up the multi-domain structures 

of the D023-Ti5Al11 precipitates is {110} type of the L12 matrix. The multi-domain 

structures can be considered as twin structures with the tetragonal axis of the twin I 

parallel to the [100] direction and that of twin II parallel to the [010] direction of the 

matrix. The relative orientation of the D023-Ti5Al11 precipitates and the L12 -

Ti(Al,Ag)3 matrix is described as (100)Ip//(001)m, near [001]Ip//[100]m, 

(100)IIp//(001)m, near [001]IIp//[010]m, where Ip and IIp denote D023-Ti5Al11 

precipitates for twin I and twin II, respectively, and m denotes the L12-Ti(Al,Ag)3 

matrix. 
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 Mabushi et al. (1996), who investigated the effects of manganese on the 

formation of the ternary L12 compound in TiAl3-based alloys, found that there were 

many types of second phases possible in the L12 matrix depending on the amount of  

Mn concentration. These phases are TiAl, TiAl2, Ti2Al5, TiAl3 , Al8Mn5 and TiAlMn. 

Porosity was observed together with the Al8Mn5 phases after homogenization. 

However there was no porosity when the TiAlMn phases are formed. It was found 

that the ternary L12 phase containing Mn had some bend ductility at room 

temperature. The studies of dislocation structure in polycrystalline L12 Mn-modified 

TiAl3 deformation shows no superlattice intrinsic stracking fault couple dislocations. 

This confirms that in Mn-modified TiAl3 superdislocations are antiphase boundary-

couple.  

 The TiAl2 has a 1-dimensional antiphase domain structure (1d-APS) of the 

Ga2Hf type base on L12 structure was observed by Miida (1986). The characteristic 

feature of the electron diffraction pattern of the TiAl2 phase is the appearance of two 

orthogonal sets of small satellite spots around the diffracted spots of the matrix. The 

TiAl2 compound with the Ga2Hf type structure was confirmed by the study of Wu and 

Pope (1994). The TiAl2 precipitates have a thin plate-like structure lying parallel to 

the cube planes of the L12 matrix.   

 From the study of Manyum and Taylor (2002), an addition of 10 at.%Mn into 

TiAl3, the D022 structure is transformed to the L12 structure by ~70% and an 

unidentified second phase with dendritic structure occur (Fig. 1.3). This may be due 

to an excessive concentration of Mn. From X-ray analysis the second phase is seen to 
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consist mainly of Mn and some Al. Some porosity was observed.  In addition, the 

material is found to be very brittle and it is difficult to prepare samples for 

characterization. In their study, polycrystalline sample were used.  

 

100 µm
 

Figure 1.3 SEM micrograph showing second phases. 

 

 from D0 The objective of this study is to try to change the structure of TiAl3 22 

to L12. It is hoped that the addition of about 7 at.%Mn will eliminate the second phase 

from the system. The structure, along with the micro- and nanostructure of the new 

compound will be studied. It is also hoped that the material will be more ductile. 

Single crystal of TiAl3-Mn will be used because second phase precipitates in single 

crystal specimens were usually more easily to recognize than those in polycrystalline 

materials. The disordering of the TiAl3-Mn crystal is studied using a ball milling 

process. 



   

CHAPTER II 

EXPERIMENTAL PROCEDURE 

 

2.1 Preparation of single crystal 

       2.1.1 Feed material preparation 

The starting material was taken from a button ingot, 25 at.%Ti, 65 at.%Al,           

10 at.%Mn nominal composition supplying by TIMET UK Limited. Its microstructure 

and chemical composition were studied by Manyum and Taylor (2002). Their study 

suggests that reduction of Mn to about 7 at.% may cause the second phase to 

disappear. Therefore a new composition alloy was prepared for this study. 

Initially, a new compound of 25 at.%Ti, 68 at.%Al, 7 at.%Mn was prepared 

from the alloy mentioned above by addition of high purity Ti and Al to reduced the 

concentration of Mn to about 7 at.%. The combination was then mixed using a ball 

milling process and subsequently arc-melted to make a new composition alloy. The 

alloy was triple melted in Ar atmosphere to reduce inhomogeneities and possibility of 

cracking. It is a polycrystalline material with a rod shape of about 70 mm long and 

non-uniform diameter of about 10 mm along the rod. The material was then 

chemically polished to remove any surface impurities. This material was used as a 

feed material for growing single crystal. 

Since no particular orientation of TiAl3 single crystal was preferable, for 

convenience a single crystal of TiAl with approximately 6 mm diameter available in 

the laboratory was used as a seed crystal. The axial orientation of the TiAl crystal was 
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near the [001] direction. The orientation was determined using the Laue X-ray 

method. 

 

       2.1.2 Crystal growth 

A single crystal was grown using a NEC SCN35HD Image Furnace, which 

enables a crystal to be produced by the floating zone technique at the Department of 

Materials, University of Oxford. Figure 2.1 shows a schematic diagram of the 

apparatus. A single crystal is formed when a polycrystalline feed rod is melted and 

solidified in a controlled manner by passing a molten zone slowly along the length of 

the bar. The orientation of solidified material is controlled by the seed which is a 

single rod of known orientation. A molten zone is produced by focusing radiation 

from two halogen lambs using two gold-plated ellipsoidal reflecting mirrors. The feed 

and seed materials are attached to upper and lower vertically shafts respectively, 

which move up and down a common axis through the operation of a harmonic drive 

system and enable the material to be a positioned at the foci of the reflecting mirrors. 

The material can be melted when radiation from the lamps is sufficient. The growth 

process occurs inside a quartz tube that can be pumped down to  mbar using a 

turbo molecular vacuum pump backed by a rotary pump, thus, growth can be carried 

out in a vacuum or in a gaseous atmosphere. A video camera and TV monitor are used 

to view the molten zone during growth single crystal. 

61 10−×

The feed material was suspended from the upper shaft by spark-drilling a hole 

with 1 mm diameter through the top of the feed bar and inserting a Mo rod through 

the hole. Mo wire is then attached to the rod to form a loop allowed the feed bar to be 

simply hung from a hook screwed to the shaft. Seed was held in a ceramic holder  
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which screwed into the lower shaft via a stainless steel holding piece. 

 

Lower Shaft

Upper Shaft

Oil Seal
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Figure 2.1 Schematic diagram of the NEC SCN35HD Image Furnace. 
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Initially, a molten zone is formed when the tip of the seed and the feed bar are 

brought close together at the foci of the ellipsoidal mirrors. The current to the halogen 

lamps is increased until the material melts and the two pieces become joined by a 

molten pool of material. The single crystal is produced by slowly pulling the seed 

away from the molten zone while the feed bar is lowered into the zone. Molten 

material attached to the seed solidifies as heat is lost through conduction into the 

lower shaft and by radiation. The feed and seed are rotated in opposite directions so 

that the molten zone is evenly heated, although the rotation acts to stir and 

homogenize the liquid. The rates at which the two shafts are moved can be reduced to 

less than 1 mm/hr and can be independently controlled. The machine can be used for 

reshaping an ingot or even growing long thin crystals from relatively short, even 

irregular lumps of material. By simple measurement of the profile of the feed ingot 

before loading the furnace, and elementary calculation, a skilled operator is able to 

pull out long and uniform crystal by making gradual changes in the pulling rate which 

is monitored and displayed digitally. 

To ensure that the solid-liquid interface moves at the same speed as the lower 

shaft and the heat flow in and out of molten zone remains in equilibrium, the length of 

the molten zone is monitored using a video camera. A graduated scale visible on the 

monitor enables precise determination of the zone length. 

Single crystal was grown in an atmosphere of purified Ar gas. Before purging 

with Ar, the grown chamber was pumped down to 61 10−×  mbar to remove as much 

oxygen as possible. Two inert gas purification units operating in parallel reduce the 

oxygen content of the Ar to very low levels. After the Ar has flowed through the 

chamber, it exits the system via a simple airlock to prevent back diffusion of oxygen. 



 

12

Flow of gas is essential to prevent the build up of evaporation on the quartz tube in 

the region of the molten zone, which would restrict heating. 

 

2.2 Preparation of thin foils and chemical analysis 

After crystal growth, both TEM and SEM samples (∼0.6 mm thick) were cut 

perpendicular to the crystal rod using a wire cut machine. To make TEM samples, a 

disc was glued on a Gatan disc grinder using superglue. After about 30 minutes the 

sample was ground on silicon carbide papers using the paper grades 500, 1000 and 

1200, respectively, to produce disc ∼0.3 mm thick. To take the sample out, the glue 

was dissolved by immersion in acetone. The smooth surface of the sample was then 

glued on the disc grinder and ground to the thickness of about 0.1 mm. A few TEM 

samples with 3 mm diameter could be cut from each disc using a Gatan ultrasonic 

disc cutter. Final thinning was done in a tenupol apparatus using 20% nitric acid in 

methanol as an electrolyte at temperatures between –20 and – 40°C and 12 volts 

potential. 

For each optical and SEM sample, a disc was mounted into a conductive 

substance and then ground on fine silicon carbide papers following by grinding on 

Md-Nap paper using alumina past with the grain size reduce from 1.0, 0.3 and 0.05 

µm, respectively. After optical and SEM observations, the samples were used for 

chemical analysis. 

 

2.3  Characterization 

After crystal growth, the Laue X-ray method was used to check the axial 

direction of the rod crystal. A BRUKER X-ray Diffractometer D5005 was used to 
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study the structure of the crystal. The microstructure of the crystal was studied using 

optical, scanning and transmission electron microscopes.   

Optical microscopy study was carried out using an Olympus microscope with 

Normarski interference contrast. Microstructures of the samples were characterized 

using a JEOL 2010 and a Philips CM200 transmission electron microscopes operating 

at 200 kV and fitted with a goniometer stage capable of tilting a sample ±60° in any 

direction. Hitachi S4500 and JSM6400 scanning electron microscopes were used also. 

The chemical compositions of the matrix were measured using WDS 

technique. A Cameca SX50 microprobe analyzer was used with a beam size of 0.7 

µm and a step size of 0.5 µm. 

 

2.4  Disordering experiment 

Disordering of the alloy due to a mechanical milling process was studied. A 

stainless steel vial with an inside diameter of 46 mm and a hard steel ball of 10 mm 

diameter were used. About 5 g of the crystal was crushed into powder particles in the 

ball mill. An X-ray diffractometer was used for structural characterization after 

milling for 10 minutes up to 15 hours. Usually ball milling causes the temperature to 

increase and if the temperature gets too high the machine automatically stops. For   

milling times of 1 hour and longer, milling had to stop every 30 minutes to let the 

temperature low down and re-starting the milling process again after 30 minutes. 

 

 

 



 

14

 

CHAPTER III 

EXPERIMENTAL RESULTS 

 

3.1 Single crystal of Ti-Al-Mn alloy 

 Figure 3.1 shows the NEC SCN35HD Image Furnace machine used to 

grow single crystals of Ti-Al-Mn alloy. Figure 3.2 shows the feed material after  arc-

melting. One end of the feeding rod was spark-drilled to make a hole for the insertion 

of a Mo rod as mentioned in Chapter II. Figure 3.3(a) shows the feed and seed 

materials, which are attached to upper and lower vertical shafts respectively. In this 

study the feed and seed materials were rotated in the opposite direction so that the 

molten zone is evenly heated at the rate of 8 rpm and at the pulling rate of 6 mm/h. 

Since the diameters of the feed material was not uniform and also bigger than the 

seed, the feeding was done at a very slow rate and required adjustments in order to 

keep the solid-liquid interface moving at the same speed. At the end of growing 

process, the feeding material and the crystal were melted apart from each other as can 

be seen in Fig. 3.3(b). Figure 3.4 shows the as-grown crystal, which has a rod shape 

of 6 mm in diameter and 130 mm long. Note that the seed crystal is on the right side 

in the picture.  
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Figure 3.1 The NEC SCN35HD Image Furnace machine. 

 

a spark-drilled hole

 

Figure 3.2 The feed material after arc-melting. 
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crystal rod

 

(b) 

      Figure 3.3 (a) The positions of the feed and seed materials in the crystal growth machine. 

                      (b) The rod crystal after growth. 
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seed

 

Figure 3.4 The as-grown crystal. 

Figure 3.5 shows the diagram of the X-ray Laue method used to determine the 

crystal orientations. The result from X-ray Laue photographs are shown in Fig. 3.6(a), 

which shows that the rod was a single crystal after growth. A stereographic projection 

analysis shows that its axial orientation is close to the [100] direction in a standard 

reference triangle as shown in Fig. 3.5(b). 

 

                       

Crystal axis

Film

Crystal rod
  X-ray

 

                                   Figure 3.5 The diagram of the X-ray Laue method. 
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(a) 

001 100

110

 

(b) 

                   Figure 3.6 (a) X-ray Laue photograph of the material. 

                                     (b) Orientation of the crystal in a standard reference triangle. 

 

 



 

19

3.2 Sample preparation and chemical analysis 

Figure 3.7 shows the samples cut from the rod crystal using a wire-cut 

machine. Some samples were broken, as indicated by the arrows in the figure, during 

the cutting process due to brittleness. Therefore, the condition for cutting, such as the 

speed and current had to be optimized to minimize the breaking of the samples. These 

discs were there used to make specimens for the microscopy studies and chemical 

analysis. Figure 3.8 shows an example of the specimens used for optical and scanning 

electron microscopy studies. 

 

 

 

Figure 3.7 Samples from the as-grown crystal. 

 

Table 3.1 shows the chemical contents of the crystal measured by the Camica 

SX50 microprobe analyzer.  Twelve values of Ti, Al and Mn contents in atomic 

percent unit were measured over the cross-sectional area of one sample. Similar 

results were obtained using different specimens. The average contents are 67.3, 26.5 

and 6.2 atomic percents for Al, Ti and Mn respectively. 
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sample
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Figure 3.8 Optical and SEM specimen. 

 

 Table 3.1 Chemical compositions of the crystal. 

Atomic percent 

No. Al Ti Mn 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

67.13 
67.00 
67.19 
67.31 
67.15 
67.31 
67.11 
67.29 
67.37 
67.66 
67.29 
67.34 

26.56 
26.67 
26.82 
26.61 
26.51 
26.39 
26.69 
26.48 
26.57 
26.38 
26.35 
26.46 

6.32 
6.33 
6.00 
6.08 
6.34 
6.30 
6.20 
6.23 
6.07 
6.97 
6.36 
6.21 

Average 67.26 26.54 6.20 
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3.3 Characterization 

        3.3.1 X-ray diffraction 

 The BRUKER X-ray diffractometer model D 5005 with wave length 1.54 Å 

was used to study the structure of the crystal.  Figure 3.9 shows the diffracted peaks 

from powder sample. After some analysis, the plane index (h k l) that corresponds to 

each peak in the XRD pattern can be found.  
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Figure 3.9 The XRD pattern of sample. 

 

The procedure to obtain (h k l) is summarized in table 3.2(a). Table 3.2(b) 

shows a few plane indices that do not give zero structure factor for f.c.c. lattice 

(Kittle, 1991).   
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Table 3.2 (a) The samples of the indices of f.c.c. lattice, which provide non zero  

                      structure factor. 

(h k l) 2 2h k l2+ +  

 
(111) 

 
3 

(200) 4 

(220) 8 

(222) 12 

(311) 11 

(331) 19 

(333) 27 
  

 

                (b) The summary of the procedure used for calculate (h k l) from Bragg  

                      law , and hkl2d sin nθ = λ hkl 2 2

ad
h k l

=
2+ +

. 

 
Peak No. 

 
2θ 

 
2sin θ  

2sin
0.114

θ  
2sin 3

0.114
∗θ

×  
 

2 2h k l2+ +  
 

(h k l) 

 
1 

 
39.5 o

 
0.114 

 
1.00 

 
3 

 
3 

 
(111) 

2 46 o 0.153 1.034 4.04 4 (200) 

3 67 o 0.305 2.068 8.04 8 (220) 

4 80.5 o 0.417 3.066 10.98 11 (311) 

5 85 o 0.456 4.00 12 12 (222) 
      
 * Note that other numbers cannot provide sensible 2 2h k l2+ + . 
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 Figure 3.10 shows the X-ray diffraction pattern of the crystal with the plane 

indices. The pattern shows the Bragg peaks (111), (200), (220), (311) and (222) as the 

evidence of the f.c.c. structure. A superlattice peaks (100) and (110) relatively low in 

intensity, are also visible. This X-ray spectrum together with the TEM diffraction 

pattern, which is described in the next section, indicate that the cubic titanium 

trialuminide has an ordered L12 structure. There is no clear peak arising from other 

phases. As can be seen in the SEM micrograph, the matrix contains no dendritic 

structure of the second phase as found by Manyum and Taylor (2002). Although TEM 

results show that the matrix contains fine precipitate particles of TiAl2 (Ga2Hf type 

structure), their volume fraction is very small. The figure suggests that there may be a 

small peak of the second phase at 2θ around 67, 80 and 85 degrees. However, X-ray 

diffraction investigation around these areas still shows no clear peak of the second 

phase as can be seen in Fig. 3.11. The lattice parameter calculated from 

2 2 2

h k l
n h k la

2sin
λ + +

=
θ

 , with λ = 1.54 Å and n = 1, is 3.947 Å as seen in Table 3.3. 

An example of the L12 matrix containing second phase of D022 structure can be seen 

in the study of “ Disordering and reordering of an TiAl3-Mn-Nb alloy” by Che, Wang, 

and Hu (1995) as shown in Fig.3.12. 
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Figure 3.10 X-ray diffraction pattern of the crystal. 
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Figure 3.11 X-ray diffraction pattern around 2θ = 67o, 80o and 85o
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Table 3.3 The summary of the calculation of the lattice parameter for the XRD peaks. 

 
Peak No. 

 
(h k l) 

 
2θ 

 
θ 

2 2 2

h k l
n h k la

2sin
λ + +

=
θ

  ( Å) 

 
1 

 
(111) 

 
39.5 o

 
19.75 o

 
3.947 

2 (200) 46 o 23 o 3.941 

3 (220) 67 o 33.5 o 3.946 

4 (311) 80.5 o 40.25 o 3.952 

5 (222) 85 o 42.5 o 3.948 

Average
 

                   3.947 ± 0.004 

 

                

20 40 60 80
2θ (degree)

 

Figure 3.12 The XRD pattern of L12 and D022 phases (Che et al. (1995)). 

    

3.3.2 Optical and scanning electron microscopy 

No second phase was found under the optical investigation. However, some 

cracks and pores were observed as seen in Fig. 3.13. The optical micrograph shows 

the trails of cracks joint between pores. It is difficult to determine when these cracks  

occurred during the process. They might be created during crystal growth due to the 

solidification process or, they might occur during the specimen preparation. 
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Figure 3.14 shows a typical SEM micrograph of the single crystal. Since the 

SEM specimens were cut perpendicular to the rod crystal, different areas across the 

rod crystal can be observed. No second phase precipitates were observed using SEM. 

Again, pores were observed also, but their volume fraction was small. 

 

500 X

 

Figure 3.13 Optical micrograph showing trails of cracks joining between pores. 

 

 

Figure 3.14 A typical SEM micrograph showing pores. 
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         3.3.3 Transmission electron microscopy 

TEM examination also shows that the crystal has a cubic L12 structure. Figure 

3.15 shows a selected area diffraction (SAD) pattern taken from a TEM specimen 

prepared as described in Chapter II along the [001] zone axis. The planes to diffract 

from the crystal must be perpendicular to the zone axis. This pattern is diffracted from 

an f.c.c. single crystal.  

                            
a

b

90o

 

Figure 3.15 A selected area diffraction pattern along the [001] zone axis. 

 

From the diffraction pattern, the spots form a square lattice. The ratio of the 

principal spot spacing is defined as the ratio of the distance to the two nearest 

diffraction spots in different directions, in this case a and b, the ratio of this pattern is 

1:1 and the angle between them is 90o.  From the table, we see that this means the 

zone axis is the [100] system.                                                     

The zone axis was specified further after indexing the spots. For an f.c.c. 

crystal, mixing of even and odd is not allowed by considering the structure factor but 

might be due to supperlattice diffractions. The allowed diffraction spots must be  
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perpendicular to the zone axis [001] so that 

                               [h k l] [001] 0⋅ = . 

By using the transmission spot [000]. The spots that could be consistent are: 

[100] [001] 0⋅ =     [010] [001] 0⋅ =  

[200] [001] 0⋅ =     [020] [001] 0⋅ =  

[200] [001] 0⋅ =     [020] [001] 0⋅ =  

[110] [001] 0⋅ =     [220] [001] 0⋅ =      etc. 

The spots [100] and [010] are lowest order and should be chosen to index the 

principal spots unless the diffraction pattern has supperlattice spots in which case the 

[200] and [020] should be chosen for the principal spots instead. Because a and b 

make a right angle then the next step is to check the angle between the planes. The dot 

produce of two normalized vectors equals the cosine of the angle between them. To 

normalize vectors we multiply by the factor 2 21/ h k l2+ + . 

                     1 1[200] [020] 0 cos
2 2

⋅ = = θ  

So θ is 90o. The indexing of a diffraction pattern must also satisfy the right 

hand rule, where the zone axis is toward to the electron gun, therefore the spot at a is 

[200] and that at b is [020]. 

The supperlattice spots between [200] with [000] and [020] with [000] are 

[100] and [010] respectively.  

For indexing another principal spot the value h increases by 2 with each step  

down the column from [000] and decreases by 2 with each step up the column from [000] 

while k increases by 2 with each step rightward along the row from [000] and decreases 

by 2 with each step leftward along the row from [000] and the last indices in (h k l) are 0. 
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Figure 3.16(a) shows an indexed selected area diffraction pattern. Figure 

3.16(b) shows a bright field (BF) image corresponding to Fig. 3.16(a). The SAD 

pattern is the superimposed reciprocal lattice of the matrix and the two orthogonal sets 

of precipitates. The SAD pattern of the matrix is consistent with the [001] zone of the 

f.c.c. structure. The fundamental reflections are indexed. The positions of the spots for 

the ordered L12-TiAl3 unit cell are indexed in the lower left quadrant of the pattern. A 

few diffraction spots from precipitate are indexed in the top right quadrant of the 

pattern.  

 The two orthogonal satellite spots in Fig. 3.16(a) observed parallel to the 

<100> directions are the diffraction spots from the precipitates. These are TiAl2 

precipitates usually found in L12-TiAl3 alloys. Wu and Pope (1994) have studied in 

the TiAl2  phase  using Fe- and Cr-stabilized L12-TiAl3 single crystals. It has a 

tetragonal structure of the Ga2Hf type structure. The structural relationships between 

the precipitates and the matrix together with the effects of the precipitates on the 

mechanical property of the alloys were reported. Similar TEM results were obtained 

by Potez, Lapasset, and Kubin (1992), in Cu-modified L12-TiAl3 and by Tian and 

Nemoto (1997, 2000a, 2000b) in Ag-modified L12-TiAl3. They found from the study 

of electron diffraction patterns that the orientation relationship between the 

precipitates and the matrix can be described as 

(001)p//(001)m, [100]p//[100]m and plate//{100}, 

where m and p denote the matrix and precipitate, respectively. 
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      Figure 3.16 (a) SAD pattern of the matrix and precipitates. The zone axis of the  

                               matrix is [001]. 

              (b) A BF image of the area used to obtain the SAD pattern in (a),  

        B = [001]. 
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Figures 3.17(a) and (b) show the crystal structure of the L12-TiAl3 and TiAl2, 

respectively. The TiAl2 structure can be derived from the L12 structure by a 

combination of translations of the {100} planes along one of the cube edges. By doing 

this, we can modify the stacking sequence of the {100} planes of the L12 structure 

from alternating mixed planes having the composition of TiAl and pure Al planes, 

TiAl/Al, into pairs of mixed planes alternating with a pure Al plane, TiAl/TiAl/Al. 

It can be seen in Fig. 3.16(b) that TiAl2 precipitates about 0.1 µm thick lie 

parallel to the (100) and (010) cube planes of the matrix. Figure 3.18(a) shows a dark 

field (DF) image from a diffraction spot of the TiAl2 precipitates. Figure 3.18(b) 

shows the condition of SAD pattern near the [001] zone axis and the diffraction spot, 

indicated by an arrow next to the 100 superlattice reflection spot from the matrix, 

used to obtained the DF image in Fig. 3.18(a). Fringes can be seen, for example, at A. 

These fringes show the antiphase domain boundary of the precipitates since the image 

was obtained from the spot arises from ordering structure of the precipitates. These 

fringes are called π fringes which give symmetric fringes in DF and BF and 

complementary BF/DF pairs.  

Figure 3.19 shows a higher magnification of the precipitates. This is a BF 

image obtained near the [001] zone axis. Two features were observed in these 

precipitates. Firstly, there were steps on some of the precipitates, see for example at A 

These steps probably occurred when the plate precipitates continued to grow thicker 

on the {100} cube planes of the matrix. The other feature observed was that some of  

these precipitates can continue to grow into other precipitates that lie on other {100} 

planes of the matrix, see for examples at B. However, usually, these precipitates seem 

to stop growing when they reach another precipitate as can be seen at C. The fringes 
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observed are again due to the order structure of the precipitates. 

 

                       

Al atom

Ti atom

 

                                (a)                                       (b) 

Figure 3.17 Crystal structures of (a) L12-TiAl3 and (b) TiAl2 (Ga2Hf type). 
 

Some area between the precipitates in Fig. 3.16(b) seems to be empty, 

however, it actually contains fine precipitates as seen in Fig. 3.20(a). This TEM image 

looks like a BF image but is in fact a DF image taken from three diffraction spots near 

the [011] zone axis as indicated in the SAD pattern in Fig. 3.20(b). The three spots 

consist of a (100) spot from the matrix and two spots from the precipitates that are on 

both sides of the matrix spot. 
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                                                                 (a) 

 

                                                              (b) 

        Figure 3.18 (a) A DF image showing TiAl2 precipitates, B = [001]. 

                           (b) A SAD pattern and the diffraction spots used to obtain the image 

                                 in (a). 
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Figure 3.19 TEM BF image showing a higher magnification of Fig. 3.18(a) 

 

200 nm

100

 

(a) 

Figure 3.20 (a) A DF image showing fine precipitates. 
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(b) 

Figure 3.20 (b) SAD pattern and diffraction spots used to obtain the image 

                          in (a).  

 

3.4 Disordering of the compound 

 Figure 3.21 shows the X-ray diffraction spectra obtained from the powder of 

the crystal after ball milling for 10 min, 1 h, 5 h and 15 h, respectively. It can be seen 

that the (111), (200), (220) and (311) fundamental peaks of the f.c.c. lattice broaden 

and decrease in intensity as the milling time increases. The low intensity superlattice 

(100) and (110) peaks become invisible after 5 h milling which means that the matrix 

becomes disordering. After 15 h milling the powder material becomes almost 

amorphous. 
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Figure 3.21 X-ray diffraction patterns after milling for difference period of time. 
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CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

 

Most experimental techniques were carried out using conventional methods. 

However, although crystal growth was carried out using the commercial machine, it is 

difficult to grow a long and uniform diameter crystal rod partly because the feeding 

material was not uniform. Fluctuations in the size of the molten zone can be caused by 

inhomogeneous feed material, with varying solute concentration leading to a variable 

melting point. The length of the feed bar also affects the zone size; as the feed bar is 

consumed, the surface area from which radiation of heat can occur is reduced. This 

results in an increase in temperature of the molten zone and an increase in zone 

length. To obtain a crystal of a uniform diameter, it is necessary to make adjustments 

in the rate at which the feed bar is lowered into the molten zone. 

 The results of X-ray diffraction pattern and TEM study confirm that the 

prepared material has an ordered L12 structure. Although only the superlattice (100) 

and (110) peaks with very low intensity were observed in the X-ray spectra, it is 

believed that if the experiment was carried out in an evacuated chamber, more 

superlattice peaks may be visible. This is because the background intensity is reduced 

due to air scattering on the beam path. 

 Although the crystal structure is changed from the tetragonal to cubic 

structures by alloying with Mn, the material is still very brittle, which means that other 

factor(s) other than its crystal structure control the brittle to ductile transformation. 
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From the SEM result, it is possible to eliminate the second phase with 

dendritic structure in the L12-TiAl3 matrix by controlling the amount of the Mn 

concentration. However, it seems that the reduction of the second phase causes the 

porosity to increase in the matrix as seen in Fig. 3.14. 

TEM observation shows fine precipitates of a plate-like of the TiAl2 particles. 

This is not unexpected since TiAl2 has a tetragonal structure of Ga2Hf type which can 

be constructed from the f.c.c. lattice. The precipitation of TiAl2 phase has been 

observed in most L12-TiAl3 compounds stabilized with Fe, Cu, and Ag (Wu and Pope, 

1994).  

 In the present work millings were carried out in the ambient pressure which 

means that oxidation may occur and other oxide second phases may form as the 

temperature increases during the milling process. However, the X-ray diffraction 

results show that no other second phase apart from the L12-TiAl3 matrix phase was 

observed, even the spectrum of the TiAl2 phase was not visible. If there was any oxide 

phases occurring during the process, their volume fraction must be very small and 

thus not in the visible in the X-ray diffraction patterns. 
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