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KEM PUMSA-ARD: PROTON-PROTON HIGH-ENERGY ELASTIC
SCATTERING IN MESON EXCHANGE MODEL.:

THESIS ADVISOR: YUPENG YAN, Ph.D. 76 PP. ISBN 974-7359-61-8

The high-energy proton-proton elastic scattering is studied for a large energy
region (s from 552.3 to 3906.3 GeV?) in the one-body-exchange model. By fitting the
theory to the experimental data, an estimate is made of the various coupling constants.
The main features of the experimental data, the three slopes at different momentum
transfer regions and the dip-structure, are well repeated. The study indicates that the
quark-antiquark sea interaction is dominant for the high-energy proton-proton elastic
scattering over the direct quark-gluon interaction even for high momentum transfers.
The proton is an object composed of two components: a core with a size less than 0.3
fm in radius in which three quarks of point-like are confined, and a surrounding
quark-antiquark sea. The quark-antiquark sea may present different distributions and
hence different sizes for different interactions with a size around 0.7 fm in radius for

the strong interaction and a size around 0.8 fm for the electromagnetic interaction.
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Chapter 1

Introduction

Proton-proton elastic scattering has been studied over forty years, mainly in
1970°s. There is a huge number of high-quality experimental data available in the
market, but the theoretical understanding of the reaction is very poor. The theo-
retical study of the nucleon-nucleon scattering is still on the model level, such as
geometric model (Serber, 1963; Hansen and Kisch, 1977), meson-exchange model
(Landshoff, 1974; Gibbs and Loiseau, 1994) and quark model (Brodsky, Carlson,
and Lipkin, 1979; Farrar, Gottlieb, Sivers, and Thomas, 1979). The geometric
model is just a semi-classical one, but fits the best the unpolarized differential
cross section data of the proton-proton elastic scattering, compared to other mo-
dels. The quark model, the best candidate of the strong interaction, based on
Quantum Chromodynamics (QCD), sounds the best. Unfortunately, however, the
quark model yields the poorest explanation of the experimental data. The meson-
exchange model lies just between other two models, neither as fundamental as
the quark model nor as phenomenological as the geometric model, understands
experimental data better than the quark model. For all the models mentioned
above, considering only the unpolarized experiments, the most difficult problem is
the dip-structure of the proton-proton invariant differential cross section. Up to

now, only the geometric model can reproduce this structure in part.
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In the present understanding, nucleon is a bound state of three quarks, or
say, a “bag”, in which three quarks are confined. Around such a bag there exists
a quark-antiquark sea which is usually called meson cloud. The strong interaction
between nucleons arises not only from the direct interaction of valence quarks inside
nucleons, but also from the sea quark interaction. The sea quark interaction might
be “parameterized” to the interaction of meson-exchange. The important question
is : How large is the bag within the nucleon? If the bag is large, there will be
small space for the quark-antiquark sea, which means that the interaction due to
the meson cloud is small. On the other hands, if the bag is small, there will be
plenty of space available for the quark-antiquark sea, and the interaction arising
from the meson cloud will be prominent. In the MIT bag model (Chodos, Jaife,
Johnson, Thorn, and Weisskopf, 1974) the bag is in the order of 1.0 fm and the
meson cloud is treated as a perturbation, which results in that the effect of the
meson exchange for the nucleon-nucleon is small. In the little bag model (Brown
and Rho, 1979), the bag is about 0.35 fm and the effect of the exchange meson is
significant. The cloudy bag model (Thomas and Theberge, 1951) with the size of
the bag about 0.80 fm lies between the MIT bag model and the little bag model.

The concept of meson exchange for the strong interaction was first pro-
posed by Yukawa in 1935. Yukawa's one-pion-exchange theory was extended to
multi-pion-exchange and even heavier mesons soon after the pion was discovered,
Various meson exchange models have proposed to describe the strong interaction
between nucleons at low and medium energies. The most famous models are the
Paris potential described in the work of Cottingham, Locombe, Richard, and Mau

(1973) and the Bonn potential as reviewed by Machleidt, Holinde, and Elster
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(1987), which are consistent with the low and medium energy nucleon-nucleon re-
actions. Models in the meson exchange theory are still under improvement and
even development for both the low and high energy nucleon-nucleon strong in-
teraction. In the high energy sector, models are developed mainly on the line of
multi-boson-exchange, which are usually very complicated.

Our main purpose of this study is to understand the differential cross section
of the proton-proton elastic scattering process at the high energy regime in the
one-boson-exchange (OBE) theory which is successfully describes the scattering
process at low and intermediate energy, and reveals the radii of the three-quark
kernel and the meson cloud. In this work, we will treat the nucleon as a composite
structure of the quark kernel and the meson cloud described above. The interaction
between protons is mainly contributed by the meson cloud interaction (or say, sea-
quark interaction) which can be “parameterized” into the meson-exchange.

The outline for this thesis is as following: In Chapter II we give a brief
review of the idea of the meson exchange proposed by Yukawa, and also give some
general ideas about the present model. The formulation for the proton-proton
elastic differential cross section is given in Chapter IIl, and the theoretical study
is presented in Chapter IV. Finally, in Chapter V, deals with conclusions and

discussions.
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Chapter 11

The Meson Exchange Model

In this chapter, we introduce the model of exchanging massive mesons res-
ponsible for the strong interaction between nucleons. We shall begin with analyzing
the experimental data in high energy scattering process. The experiments in high
energy scattering process reveal that there should be two different components
which contribute to the size of nucleon. That is the structure of nucleon can be
viewed as composed of, the 3-quark core (also called kernel) which has the small
radius within nucleon and the meson cloud which surrounds the kernel, extending
to some distance. Next, we consider the historical idea of the exchange of mesons in
the strong interaction first proposed by Yukawa. The interaction between nucleons
will be shortly discussed in the framework of meson-exchange model and also the
exchange of a photon in the electromagnetic interaction for the charged-nucleons.
Evidences from scattering process pointed to the existence of the meson exchange

between nucleons are also discussed.,

2.1 Nucleon Structure and Nucleon-Nucleon In-
teraction

The only way to study into the detailed structure of nucleon is to bom-

bard particles (usually of smaller size) onto nucleons, then collect and analyze
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the scattered particles. The higher the incident energy of the projectile has, the
deeper structure of nucleon would be revealed. The subtle structure of nucleon
is mainly established in scattering experiments at high energies. Shown in Fig.
2.1 is the observed invariant differential cross section, da /dt of the proton-proton
elastic scattering at an energy s = 3906.3 GeV? (see Appendix A for the defini-
tions of Mandelstam variables s, t and u). It is clearly seen in the plots in Fig. 2.1
that there exist three different slopes at different regions of |t| values, which may
indicate that the proton has compound structure.

At very low momentum transfer regime (very small |t|) shown in Fig. 2.1(a),
the interaction is mainly the electromagnetic interaction. Thus, the slope at very
small |t| corresponds to the proton electric and magnetic form factors which have
been well established in high energy electron-proton collisions. A size parameter
of proton extracted from the proton electric form factor is about 0.8 fm.

The electromagnetic interaction contribution drops to ~ 1% of the observed
differential cross section, so the second slope (0.01 < |t| < 1.5 (GeV /c)?) stems
mainly from the strong interaction. The experimental data analysis results in
a size parameter of proton around 0.7 fm. At large momentum transfer (|t >
1.5 (GeV/c)?), the third slope is observed, which is, of course, due to the strong

interaction, and corresponds to a proton size about 0.3 fm.
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do/dt [mb/(GeV/c)’]

1000.00 —
| s =3906.3 GeV’
100.00 —
10.00 T I T ]
0.00 0.02 0.04

[t] [(GeVic)’]

(a)

Figure 2.1 The plots of do/dt vs. |t| at s = 3906.3 GeV? (a) in the small ||
region and (b) in the large |t| region. The solid lines just for eyes-guidance to the

different slopes. Data are taken from Schopper (ed.), 1930, pp.284-286.
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do/dt [mb/(GeV/c)?]
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1E+2
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0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00
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(b)

Figure 2.1 (continued)
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Theoretical understandings of the slopes mentioned above, or the size pa-
rameters, fall mainly into two groups:

(i) The 0.8 fm proton size corresponds to the meson cloud, and the 0.7 fm size to
the outer size of the proton (the bag of three quarks) while the 0.3 fm may be the
size of whatever constituents the proton contains.

(ii) Both the 0.8 fm and 0.7 fin proton sizes correspond to the meson clouds, but
with different distributions (see Chapter IV). The 0.3 fm size is for the three-quark
core of the proton.

In experiment no free quark has so far been observed, so it is difficult to say
that quarks are point-like objects or objects with structure (finite size). But deep
inelastic electron-nucleon, neutron-nucleon and nucleon-nucleon collision experi-
ments favor that quarks are point-like. Based on a large number of high energy
elastic and inelastic reactions, we may picture nucleon as an object depicted in
Fig.2.2, which is composed of a core (with a size f; ~ 0.3 fm) in which three
quarks of point-like are confined and a surrounding quark-antiquark sea (with a
root-mean-square radius Rz ~ 1 fm, depending on the interactions). The quark-
antiquark sea may present different distributions hence different sizes for different
interactions (for example, the electromagnetic and the strong interactions).

From our point of view of the nucleon picture, the first slope of the ob-
served differential cross section in Fig. 2.1 stems mainly from the electromagnetic
interaction of the quark-antiquark sea and the second slope is mainly contributed
by the strong interaction of the quark-antiquark sea while the third slope in the
large momentum transfer region might be due to both the quark-antiquark sea

interaction and quark-gluon interaction. In our work, the quark-antiquark strong
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interaction is parameterized as meson exchanges.

Figure 2.2 The picture represents the detail structure of the nucleon.

2.2 Meson Exchange in Strong Interaction

First, let us see some important evidences from the observation in nuclear
experiments. Those evidences dig historically hint that the meson exchange is at
least an effective mechanism that responsible for the nuclear strong interaction.

(i) The saturation of nuclear force within nuclei: If is well known that the
distribution of nuclear matter within nuclei is fairly uniform up to the edge of the
nuclei. Also, the binding energy per nucleon is relatively constant in intermediate
and heavy nuclei. This means that nucleon interacts to the other neighboring
nucleons in the manner that if there are too much separation, they attract each
other, and when they are too close they repel. The final result is the saturated
configuration of the nucleon distribution in nuclei. The reminiscent to the situation
in atomic physics is the forming of a diatomic molecule from two atoms by covalent

bonding. These two atoms share the electrons (exchange of electrons between these
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two atoms) by keeping the separation between them at a certain distance. If they
are too close, they repel each other back to the equilibrium position. If they are too
far away, they attract each other to an appropriate distance. At the equilibrium ,
the molecule is saturated. That is, if there is another atom nearby this molecule,
since there is no room available for the sharing electron scheme to occur, this
molecule will interact weakly with that adjacent atom. This situation gave us the
confident about the meson exchange mechanism between nucleons within nuclei.
(i1) The high energy proton-neutron scattering: Another important evidence
for the meson exchange in the strong interaction between nucleons came from the
high energy proton-neutron scattering experiments, see Stone, Chanowski, Gray,
Gustafson, Jones, and Longo (1977). There is always a strong backward peak
(scattering angle § ~ 180°) in the differential cross section. It seems impossible
since there is no identity effect as in proton-proton elastic scattering which ensure
the backward-peak near 180°. However, this can be understood by using the meson
exchange model to describe such process. The point is that the proton and neutron
exchange something and result in changing of the positions between them. That
is the incoming proton (neutron) becomes the outgoing neutron (proton). Thing
exchanged by them must has charge in order to change the characteristics between
those two nucleons. These charged-particles are the charged-mesons such as 7~ or

7+, etc. This process is known as “the charge exchange” (CEX).
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The idea of meson exchange responsible for the strong interaction was first
proposed by the Japanese physicist, Hideki Yukawa in 1935. The exchanged par-
ticle proposed by Yukawa has its mass lie between those of the electron and the
nucleon. The idea for the strong interaction between nucleons is that one of the

nucleons emits a particle, denoted by z
Ny = Ny + =z,
then another nucleon absorbs the particle =
Ny 4+ = N,

It is the same idea as that of photon exchange in the electromagnetic interaction.
[t is impossible in classical mechanics that the particle Ny (V) emits (absorbs)
another particle r without losing any energy. Fortunately, the uncertainty principle
in quantum theory solves the problem by allowing the particle r to exist in the
time interval, At.

In order to estimate the mass of particle z, let us assume further that
particle » has a speed nearly to the speed of light, e. The distance that particle x

can travel is

fic he

=cAfg — =
ft=c AE mye?’

(2.1)

where the uncertainty principle, At = %, and the mass-energy relation for particle
r, AE = m,c? are used. If we regard that the range of strong interaction between

nucleons is roughly about the size of the nucleon, say R ~ 1 fm, by following this

scheme we can roughly deduce that the mass of the particle z is

mz 2~ 200 MeV. (2.2)

Copyright 2000 Suranaree University of Technology



12

Since this mass lies between the mass of the electron and the nucleon. The parti-
cle x is called “meson”, precisely m-meson or pion. (From the Greek word “meso”
which means middle.) In 1936, one year after the Yukawa’s proposal, C.D. An-
derson discovered such intermediate-mass particle in the cosmic ray experiment.
However, this particle did not interact strongly with the nucleon and could not be
the exchanged particle mentioned by Yukawa. This particle is actually known as
“muon” and classified as a lepton, not as the meson. The success in finding the
pion was accomplished in 1947 by C.F. Powell. This pion has the mass of about
140 MeV and has the same properties as Yukawa predicted. Due to the fantastic
idea that the exchange pion is responsible for the strong interaction, Yukawa was
awarded the Nobel Prize in Physics in 1948,

The model originally proposed by Yukawa has been extended by many physi-
cists over decades, Not only pion is included in the model, but the heavier mesons
like w- and p-mesons and even multiple meson-exchanges are also included as re-
viewed in the work of Machleidt et al. (1987).

In next chapter, we will start to construct the transition amplitudes for the

proton-proton elastic scattering from the relevant Feynman diagrams.
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Chapter 111

Formulation

In Chapter I, we have introduced the idea of exchanging massive particle
in strong interaction. We are now ready to construct, from the Feynman diagram,
the transition amplitude, hence the differential cross section, for the proton-proton
scattering process based on the meson exchange model. First of all, we will make
our conventions in the framework of the center of mass system. In order to con-
struct such transition amplitude, all we need to know is the interaction Lagrangians
for the system of the exchanged-particle and the proton. In this work, we consider
the electromagnetic and strong interactions for the proton-proton elastic scattering
process. As for the strong interaction, it is believed that the sea-quark interaction
is dominant over the direct quark-gluon one since the process is elastic. The sea-
quark interaction is parameterized to the meson-exchange processes in the work.
In principle one should include all the mesons which have a strong coupling to nu-
cleon, but in this work we consider only the lightest and the second lightest mesons.
Our preliminary study suggests that the important particles for the proton-proton
interaction are the mesons w(140), w(780), a(980), p(770), f2(1270), and w(1420)
(the numbers in the parentheses represent the rest masses of the particles in unit

of MeV /c?).
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Since the proton-proton elastic scattering includes the identity particle ef-
fect, one must consider both the direct diagram and the cross diagrams in the
Feynman diagrams, as shown in Fig. 3.1. The total transition amplitude is the
sum of the transition amplitudes for all of the meson-exchange diagrams, both the
direct and the cross ones. Then, the invariant differential cross section de /dt can
be deduced from the total transition amplitude.

There are two classes of free parameters involved in this work, that is, the
coupling constants and the cutoff parameters. A coupling constant tells us how
strong the interaction mediated by a meson is while a cutoff parameter contains the
information of the size of proton. These unknown parameters will be determined
by fitting with the experimental data at a large energy regime from s = 500 to
s 22 4000 GeV?2,

First, we will start with a discussion of the two-particle scattering process in
the center of mass system, then come to the derivation of the proton-proton elastic
differential cross section. Finally, various Lagrangians and transition amplitudes

will be worked out.

3.1 Center of Mass System
The Feynman diagrams of two-particle scattering processes
1+2—=+3+4 (3.1)

are shown in Fig. 3.1 (Fig. 3.1(b) should be included if the two incoming particles
are identical) where p; and A; represent respectively the energy-momentum four-

vector and the spin of the i** particles. The direction of the propagation in
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Pa, A3 P4, A
I
P1s A () Pz Aa
3, A3 Ps A
q=ps+P1
pzs }'-’2 pzs }‘-2

(b)

Figure 3.1 The Feynman diagrams for the proton-proton elastic scattering (a)

the direct diagram and (b) the cross diagram.

time is chosen to be in the upward direction. For proton-proton elastic scattering,
it is convenient to work in the center-of-mass (CM) system using the Mandelstam
variables (see Appendix A). In the center-of-mass system, the Feynman diagrams
in Fig. 3.1(a) and 3.1(b) correspond respectively to the reactions illustrated in
Fig. 3.2(a) (the direct process) and in Fig. 3.2(b) (the cross process). Since the
two protons involved are identical, one has no chance in experiments to distin-

guish whether the particle observed in the direction @ is initially the particle 1 or
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the particle 2. In practical calculation, a coordinate system is chosen so that the
scattering plane is the z-z plane and the momentum p; of the incoming particle
1 is in the +z direction. Therefore, in the CM system, the incoming particle 2
has the momentum p in the —z direction with the same magnitude as that of the

particle 1, that is, j; = —ps.

3.2 The Differential Cross Section

One of the important observables extracted from the scattering experiment
is the differential cross section which tells us the probability to find the scattered
particles of certain states in a particular direction of space. The total cross section
(derived theoretically by integrating the differential cross section over angles) which
is the probability to find the scattered particles of certain states in all the direction
might be understood as the effective size of the target as seen by the incident
particle. Therefore, from the knowledge of cross sections one may extract the size
of particles involved in a scattering process. The cross section, do, is defined in

the symbolic form as

T2
do = %cf@, (3.2)

where 1" is the invariant amplitude which is directly related to the S-matrix.
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(a)

(b)

Figure 3.2 The CM system for the elastic scattering process 1 +2 —+ 3 +4,

(a) the direct diagram and (b) the cross diagram.
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For the proton-proton scattering and the normalization conditions used in
this work (see Appendix B), the element of the S-matrix for the transition from
initial state ¢ with the total energy-momentum F; to the final state f with the

total energy-momentum Py can be expressed as

S_f,' = {Zf]S]‘L'}

M M M My 1/?
§H(P; — P,) (EEEE) I o3

i

(27)?

= 8-

where M is the proton mass. The incident flux, F', can be obtained from

E\ By

F = |&—# bz
Ay

(3.4)

Note that, this definition of F" works for the collinear scattering such as in CM sys-
tem. The Lorentz invariant phase space factor, d@), (also called dLips) is expressed
by

;11{16}‘3‘,1 ;‘ifdsp.q,

dQ = (2r)*¢"(P; — P, . 3.5
Q = (2n)'6( Py }Eglfzw)-’* E(27) (35)
In the case of unpolarized scattering, one has
oz L 2 -
|ITP=< 3 |1Tul (3.6)
ArAzAzdg
where T}; is defined by

Th =gl >

— {J'L;;Jq |TI|}L1}||2 = . (3?:]

From (3.2}, (3.4), and (3.5), the unpolarized differential cross section da/df} for
the proton-proton elastic scattering is derived as (see also Appendix C)

do 1 Mi]

dQ ~ (4r)? E2 4 2

Apdaldaig

| T_f,' P, {38]
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where E is the energy of the projectile. In term of variable t, the differential cross

section, do/dt, can be obtained from (3.8) by

do 7 do
TRy
1 M*x¢
= = | Ty |*. (3.9)
CEZET N

Since there are two possible spin-states for each proton, there are totally sixteen
possible configurations for 7;. We need to consider all these sixteen terms. Due
to the special invariant properties for the NN interaction, namely, the parity con-
servation, the conservation of total spin, and the time-reversal, we can reduce
these sixteen terms to only five terms which are linearly independent. The parity

conservation leads to

< }1".;}14|T|}L|}1'2 == —)l_j,? —}L4|T| — :’u,—aﬁlg =,

the conservation of total spin leads to

< A324|T[Ellg =< A4AJ|T|}12}|1 =

and the time-reversal leads to

< }1?}4|T|}L]}Lg =< }ll}ﬁz|.T|}l3)L4 pe

By using the above symmetries, the sixteen terms can be classified as

I =<++|T|++>=<-—|T|- - >,
Ih=<4++|T|——>=< - —|T|++ >,
Ii=<+-|T|+=->=<—+|T| -+ >,

Ti=<+—-T|=4+>=<—4|T|+ - >,
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.T5

<++ [T+ -—>=<++|T|-+>=<+—-|T|++>=<+-|T|-->

= <—+H[T|++>=< —+|T| = = >=< = = |T| = >=< = — [T + — >,

where + (—) denotes the spin up (down) state. Therefore, (3.9) can be rewritten

a5

de 1 M* . : .
7=y I P+ P+ B+ TP 4 T ), (3.00)

or in terms of the Mandelstam variables

do 1 M .
T = a2 B PB4 TP T 44 T ). (3.11)

All that we need to compute are Ty, T3, T3, Ty, and T, only one for each term,

for example;
Nh=<++|T++ >,
Ty=<+4++|T|- - =,
Ti=<+-—|T+ - >,
T ={+—!T1|—+},

T=<4++|T|+->.

The way to compute these terms is the subject of next section.
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3.3 Lagrangian
The Lagrangian for the system considered here may be written as
L= £:\’ + -'E"‘r + J‘:s + £j:!.% + I:v + E."u'h""f + ENN& + ENN;.;: + ENNL':

where Ly, Lo, Ly, Lps, and L, are free Lagrangians for nucleon, 5, scalar meson,
pseudoscalar meson, and vector meson, respectively. The interaction Lagrangians,
LnNyy LNNsy EnNps, and Ly, are for the NN+, NNs, NNps, and N Nv coupling,
respectively.

The general form of the interaction Lagrangians, as mentioned in the work
of Machleidt et al. (1987), for the interactions between nucleons and mediated

meson can be written as

Lj‘ir."lrﬁ - gs&ﬂ'ﬁw {3]2}
— fp" T |
ENN;[J,: - IS {J’ap@ps: (313:]
Mgs
.I:N."-'tl = th-;hfyifﬁbi + %;:T.'-F‘fr;w'{.'l){auiﬁf':: — aytf?,f}.. {‘314}

where Cyne, Lanps, and Ly, are the interaction Lagrangians density for the
nucleons-scalar meson {spin-0 meson with even parity), nucleons-pseudoscalar me-
son (spin-0 meson with odd parity) and nucleons-vector meson (spin-1 meson with
odd parity) interactions, respectively. Since proton is a charged-particle, the elec-
tromagnetic interaction should also be considered as well as the strong interaction.
We will first study the proton-proton electromagnetic interaction Lagrangian, then

introduce the interactions for the proton-proton-meson systems , one by one, from
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the lowest to the highest masses of the mesons involved. Shown in Table 3.1 are
some properties of the mesons inveolved in this work.

It is tedious (if not hard) to explicitly work out the differential cross seec-
tion do/dt since we consider the one-body exchanges of photon and six mesons,
which leads to a large number of cross terms. For the complete version of the
differential cross section, we would just interpret the total amplitude in terms of
the Dirac four-spinors, propagators and form factors. The tedious calculation of
the differential cross section from the amplitudes will be left to the computational
calculation which gives rise to the same result obtained by hand, but much more

easier.

Table 3.1 Properties of selected mesons in this work™

Particle mass [MeV] IG(JPC)
m 140 17(0~ )
p 770 1+(1-)
w 780 0-(1=7)
ol 930 0+(0*+)
f2 1270 0F(2++)
w 1420 0=(177)

*Note Particle Data Group,Review of Particle Physics, Eur. Phys. J. C 3, 1998,
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3.3.1 Photon Exchange

For the electron-photon-electron interaction, as shown in Fig. 3.3(a),

the current is simply

;b

3% = —eu(p )y u(p). (3.15)

But for the proton-photon-proton interaction shown in Fig. 3.3(b), since proton
has structure, one must use a modified form of the above current. The current
for the proton-photon-proton interaction may take the form (see Appendix D for

details)

F
I = ea(p)(F + Fa)y* = 52 + p*)Ju(p), (3.16)

where M is the proton mass, F; and F, are independent form factors related to

the electric form factor Gr(¢*) and the magnetic form factor Gy(g?) by

2

- q , -
GE{QZ} — F] + AM? f"-},._ (31 r]
Gulg®) = Fi+ F, (3.18)

where ¢* is the square of the momentum transfer. The proton electric and magnetic
form factors are well established by the experiments. The explicit form of the

Gel(q?) is (see Griffiths, 1987, p. 267)

2

-2
Ge(g®) = (1 . D%) (3.19)

(}'M{qi} has the same form as Ggfqﬁ] except a multiple constant, that is

Gulq®) = nGe(q®) = (1 + K)Ge(q?). (3.20)

% is the anomalous magnetic moment. The value of &, is 1.79 for the proton and

fy 15 —1.91 for the neutron.
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Follow the standard Feynman rules and use the current in (3.16) and the

photon propagator in the Feynman gauge,

—ig,.
Aulg?) = qﬂ“ .. (3.21)

one can easily write the amplitude, in term of Mandelstam variables, for both the

direct diagram and the cross diagram, as follows

2
s e Y _ i
Tf:rm = T[ﬁa{jﬁm Az)l 1;:“1@1:«1"-1:'][“4[}741)*4]] Iz”i'{f?:h;’tz]']-.
e . .
T,:rm = ;[ﬁ«:fjﬂq-. MJI aulinlp1, J‘l}][ﬁJ%IIPS: Az)l ff“i[?’m }tzj]:

with the vertex functions

1 1 }.1
]-_‘l,'.a = (Pl + }'2)’)’# - ﬁ{?]p + PS;:}-:
£z

l2 = (F1+ B2y — 5

{P?u + p4p}?
. F
l 3 = {F] + FZ}TJL o :}%(Plﬂ + Ptij

. i F:
[y = (F1 4 'F'ﬂ]’]’p - ﬁu"?:a + Pay)-

Thus, the total amplitude of the first-order proton-proton electromagnetic inter-

action is

. direct TErOss
T, = Tdret 4
2

- EE“[“"J{PSv As)Cigun (pry A [ta(pa, Aa) T3 ua(pa, Az)]

2
_%[ﬁ-ﬂ:ph }14]]13;:111 (1, A ]'] [ﬁ:a(:ﬁ‘sﬁ 33}“11“2 (Pza iz]]- (32?)

T'he presence of the minus sign in the second term is due to the interchange of the

identical protons.
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p
T, P, 0
p
(c)

Figure 3.3 (a) e” e™ v vertexine™ +e~ — €™ +e™, (b) ppy vertex in electromag-
netic interaction in p + p — p+ p, and {c) pp-meson vertex in strong interaction

in meson-exchange model.
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3.3.2 7 Meson Exchange

7 meson 15 a pseudoscalar particle with the mass m, = 140 MeV.
The interaction Lagrangian for the m-meson exchange is

SFN.-‘.": TE"I\-,;";-'“F?;-’ . 3#{51.. (3.23]

Lyng =
T

where 7 = (71, 7%,7%) are the Pauli matrices
= , To= , o= (3.24)

The 7 meson propagator is

Alg) = B (3.25)

¢ —m
The amplitudes obtained from the above Lagrangian and propagator are

2 2
irec Gepr ‘Lfr{t = 5
Toree = —"—rfz . ?':‘33 [@3(p3, Az )7 vu(pr — pa) ur(py, Ay )]

* [ﬁ"{ph }‘4]7579“}2 - Pd}pu?{?l: A?J]a

2 + 7
cross Qopn I‘I",T i 4 5
I - ::Er i _(ﬁji-[tu[m.. )7 v (pr — pa) ua(pr, M)

x [ts(pa, Aa)y (P2 — ps) ua(pa, Az)],

where F(t) and F(u) are form factors for the NNw system. The form of F(t)
and F'(u) will be discussed in next chapter. The total amplitude for the 7 meson

exchange is thus

; direct i
T, = sz + li;r::ss

2 2
= —ﬁim[ﬁz(ﬁm )'-SJT'ET;:I:PI - PJ]FHI(PHAI}]

mi t —m?
X [ta(Pay Aa) Y 70 (P2 — pa)*ua(pz, A2)]

m2 u —m?

m

[ﬁ4(P41 )'14}75*!; (Pl — pa)fui(p1, A }]

x[@3(p3, As)* 7 (P2 — ps) ua(pa, 2. (3.26)

Copyright 2000 Suranaree University of Technology



3.3.3 p Meson Exchange

g meson is a vector particle with the mass m,

interaction Lagrangian for the p-meson exchange is

= — T ]. T
-I:_l\r,“u'p = Ei',\’.-*.'plf"‘.r';:"-" N f.?-";lff‘ + Eg:\'—_ﬁrﬁ?ﬂ;?g#“

x (4G, — 83 - 7

with the propagator

{ Quv — ‘?Mquj

2
?’]‘1 TFIP

Aulg) =

= 770 MeV.

]
-1

The

(3.27)

(3.28)

Assuming that, we can neglect the last term on the right hand side of (3.28), in the

presence of the form factors, since it is an “off-mass shell” term which is expected

to have no contribution to the differential cross section. Therefore, the amplitudes

are

e , r'*{
direst g, by [1;3 P'3 )'-ﬂrj,;ul Pr, A :I]

% [ialpa, Ju]lf‘é‘uz(m, Aa )]s

Tcroas 2 P:az I: u :I

q
PPP .y,

o
* [%{Fz, }la}f‘fﬂzi}?za }12]]1

where the vertex factors ['y,, T'a,. [a,, and Ty, are (see also Appendix D)

SopelP1 + pa)yu
.) 1_;’ )

-, f {P? + 3'3’4:'

Fap = (L4 fops)vu — - IM '

- fopo(P1 + Pa)
s = {l + frﬂﬂ)"fﬁ - Lfﬂf_

= fepe(p2 + p3)
I p = “ + fw.ﬂ]'}'# - %1

Flp = (l'i'fppﬁ]’fu_
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and fopo = g,.,,/Gppp- The total amplitude for the p meson exchange is thus

_ ndirect Cross
T, = Tt T

F2(t) i .
gﬁpp f _j? m? [ﬁ'3{P3r }‘HJFIIEHI [Ph )"1:'] [u-i{p‘i-. :M'-IIFE u?{Pia }‘2}]

[

, Fp(u)

_gwwu — [ﬂ-4{j34, }l4}f|a#t£| (p1, A1)

o

x [us(ps, As )G ua(p2, Az)]. (3.29)

3.3.4 w Meson Exchange

w meson 1s a vector particle with the mass m, = 780 MeV. The

interaction Lagrangian for the w exchange is

Lopw = Goputruduth (3.30)
with the propagator
—1 9uqy P
Aunlg) = p— (G — *:13, ). (3.31)
The amplitudes are
direct 2 Ff{f] - - m
T, = -‘:’ppwm[“ﬂpasAalﬁ'ﬁu-l{ﬁia}tl}][“d}?%J‘ﬂ’:r' uz(pa, Az)],
cross 2 FQ{H’} = m
1, = gppwu — m? {1!:4[;-‘4, Ayt (prs 3“1}][%3(?3-. Az)y U?{Pia}iﬁjL

The total amplitude for the w meson exchange is thus

Tw — Td{reci _l'_T:*ms.s
. Fit)

ppu

f — 2 [tta(ps, As)vaui(pr, M) (G4l ps, Ag)v¥ua(pz, Az)]

2 Fj(“)

gPPW

[@a(pas Aa)yura(pr, )] [ta(pa, Az )y ua(pe, A2)]. (3.32)

u—m?
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3.3.5 o Meson Exchange

o meson (or fy meson) is a scalar particle with the mass of 980 MeV.

The interaction Lagrangian for the o meson exchange is

Lopo = Gppa Wb s (3.33)
with the propagator
A= s (3:34)
The amplitudes are
Tt = ~Ghpe E‘{?E‘%["]S{Pm AaJur(prs A [@a(pa, Ag)ua(pa, A2)],
T7* = —g, :j{:;}g [Za(pay AdJur(pr, M )l[Ta(ps, As)ua(p2, A2)).

The total amplitude for the ¢ meson exchange is thus

_ rpdirect T oSS
T, = T;7+T;

, F?
~Gppa 7 E:jg [@a(pa, As)ur (pr, Al [Ea(ps, Ad)ua(pa,s Az)]

F?(u
+ gwu i(mjz [@a(pa, Aa)ur(pr, A)][ta(ps, Aa)ua(pa, A2)]. (3.35)

3.3.6  f5(1270) Meson Exchange

f2 meson is a spin-2 particle with the mass my, = 1270 MeV. The

interaction Lagrangian for the f; meson exchange is (Yan and Tegen, 1996)

Lyngp = 1@!?.-\.’.&';2(&‘7“3 h—d w’}*“i;‘}tﬁfjcu+mé’,w,xf_rg{'*#‘a"ﬂ?f'f‘

— @YY — GO + 8HF VY ) . (3.36)
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The propagator for f; is (Nath, 1965)
1

‘rlu,- " = 17
Mg {q:] 1;"2 Tnfi

2
[Q'J-t.ﬂqm + Gueup — Egpk.gﬂ'i
+{g,upqhq|-: + g.‘.“i‘?i-"q,ﬂ + Qup@gﬁ'x + TernGuis
3 3 4
_Tjﬂw%qn - iﬂﬁﬁ%‘?v”mi + iqqu’qPqﬁan?q]' (3.37)

Supposing that only the first three terms in (3.37) contribute to the differential

cross section, because of the same reason as for the vector boson, then the ampli-

tudes are
rec 'Fz Iit} s
Ti b= —waf:,r,—f}mf_ [tta(pa, As]rm“ 1(p1, Av)]
ﬂ l { les J‘
> ##ﬂﬂ[u'i Pﬁh 4} HZ{PZ: 2}]%
CroEs F { }
‘:_ir; = _g;p_fz_-‘_u hr n? [t4(pa, A ) i’*‘.lu uy(py, ]]
Fi

X—J\‘lm-rpﬁ.[US{pi )‘3}[‘( pew UE{P?‘J }"2}]?

with the vertex factors for the f; meson exchange (see Appendix D)

(1] v 1 1 } ) ) )
F H = ﬁ |:.I"-""l + }?3} 21;1{2 fpp_fz{pi‘pl + pgf?s - p;pl -+ pfp\jjj
F['I]Lw . 1 . " 1 - v y .

- ﬁj (P‘; +P“:I - 2i1f2fﬁp.fz(pﬂp2+p4p4 —|—p{fp2 +p2p4}
][JJ#E-' - 1 Bl o y 1 v ) . L

e = oar! (py +P4]“..—gfppfz(mp| + papy + pipy + e,

2M 2M

{4} u . ' b 1 1 b 1 1 v

where fi.r, = g,.7,/9pps,. The total amplitude for the f, meson exchange is thus

sz — Tdtrem! T,;—,-w,
F?(t 5
= —Gnny s [ua{m, Xa) D uy (py, M)
xﬂwm[mfm,:’t L% (pa, A2)]

2

Fi(u) .
+y§f—'hu n? 7 [ta(pa, Ju]'r{a}ﬂ u(pr, A
F]

X Awoel@3(P3, A3) L0 uz(pa, As)). (3.38)
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3.3.7 w(1420) Meson Exchange

w(1420) meson is a vector particle with the mass M, = 1420 MeV.
The interaction Lagrangian for the w(1420) meson exchange is the same as the

p(770) meson, except that the mass in the propagator must be changed from m P

to ﬂffw .

ﬂ - T = TJ—‘ i I‘ [
NNw(1420) = GNNw(14200W7uT * @ 400)¥ + m’gf'\-'_.\,rw[mgu]ﬁ"ﬂ';m
X (0“6 1420) = 0" Dlfra20)) - T (3.39)
with the propagator

_ ;‘ N Gty
al‘-p.::':‘ff:' qz _ ﬂ‘ff, [g,u.:; 11{3 J {34{]}

and the amplitudes are

| F2 L oo(t)
direc w1420 _
Tw{l-ﬂtﬂj = .‘?ﬁp;,(mzujt{—_ﬁ';?“{“aiﬁz )ta]r;#“lfi’-"la A1)

x [@a(pas M) T3 wa(pas A2)).

cross b f‘12(1420]|:u) _ ’
wil4zo) = ﬂppw{uzﬂ}wlud[l’h)*4]1-‘3#“1{35'11}‘1}]

% [@3(pa, As) T us(pa, X))
with the vertex factors

 Jopwi1a20)(p1 + pa)
2M
B fppw{l-i?ﬂ]{p‘z + Pa )y
2M '
~ Jopwtrazo)(P1 + Pa)a
2M '
Soputraz0)(p2 + p3)u
2M '

[y = (14 fopeqiazo) s

r;:u = (l'i'fpp-.,(lunj)’fr'a

I

3 — (l'l*fppwrmzuﬂ’:r'#

11;# = (1+ fpw[mzu))"fp =

Copyright 2000 Suranaree University of Technology



32

where f prw(1420) = ﬂ;wﬁjazn]ff Yppw(1420)-
Hence, the total amplitude for the w(1420) meson exchange is
T,,-(qu] = Tjiﬁia} + T:ﬁ;;t}}
9 k 3[1420)“]

= gppwmzmw[ﬁa(?% As)Tua(prs A

" [U-4IIP4, AA)F;PUE{PE: ’1"2}]

: FZ1420)(1)
~Gpputrizoy oy l4(pas M) (o, M)

X [ita(p3, Aa )T a2, o). (3.41)

So far we have derived all the amplitudes for each exchanged particle. The

total amplitude we need is just the sum of all the individual amplitudes,
T = 1.+ T, + Tﬂ +T,.+7T, + 'I:fz + Tw{l-ﬁﬂj: (342)

which can be pictorially represented as in Fig.3.4. This is the amplitude we
need in constructing the differential cross section. By calculating the five terms
11,713,715, Ty, and T5 mentioned in the previous section, the differential cross sec-
tion for the proton-proton elastic scattering can be obtained from (3.10) or (3.11).
Listed here are all the free parameters for the total amplitude

(i) For m meson : g2, /47, A,

(ii) For p meson : g2 /47, A,, and fp,,

(iii) For w meson : g7, /47, A,

(iv) For o meson : ggwﬂvr, As

(v) For f; meson : gﬁphfﬂlﬁ, Ap,, and fo.p,

(vi) For w(1420) meson : gﬁw[mmﬁlm AL(1420), and fopu(1a20)

Copyright 2000 Suranaree University of Technology



33
which are the coupling constant, the cutoff parameter, and the ratio of the cou-
pling constants, respectively. The next step is to fit these free parameters from

the theoretical consistency with the experimental data, which will be discussed in

the next chapter.
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Figure 3.4 The pictorial representing the contribution to the total amplitude

from each particle exchange amplitude.
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Chapter IV

Proton-Proton Elastic Scattering

in Meson Exchange Model

We consider first the proton-proton elastic scattering with very low momen-
tum transfer (small [¢]), then proceed with the higher |¢| involved in a large energy
region, s = 552.3 to 3906.3 GeV?. Finally, the radii of proton are extracted from

the theoretical predictions.

4.1 Proton-Proton Scattering with Small

Momentum Transfer

For very small [t| region, the do/dt is known to be dominated by the electro-
magnetic interaction. The differential cross section for the one-vy exchange process

can be easily derived as follows:

do 7 _ a?Fit) 4w

dt T T16st? s —4M?
xTr{"(y - psy + M)T" (v - pp + M)}

Tr{liu(v - ps+ MU (v - po + M)}
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EH - azf‘"ﬁ(t] b

p = Taa q_4w_}|[64M4—ﬁ4w?e+lﬁs + 64 f,,, M*t + 16st
8 2 2
+327 t—Tf+8t2+3‘?fmt + 7212 t2+33 3 2 gsfl g
SR A [t e g o Bt
M? M? M# M? M‘* YT
dralGL(t
- pzlf ]'__ (4.1)

where o = e*/47. I'y, and T'y, are defined by

. Sopr(p1 + p:
Il# = (1 +Jrnr>*r}':f'u— —pW{h pJ)P‘

2M ’
Jopnlp2 + p
F2.u = (1+fpm}’}'p_%ﬁﬁ

where f,., = 1.79 (see also section 3.3.1). Note that, for small |¢|, Fy(t) = Gg(t).
Shown as dashed lines in Fig. 4.1 are the contributions of the one-y exchange to
the differential cross section of the high energy proton-proton elastic scattering at
energies s = 552.3 and 942.5 GeV®. It is found that the contribution of the elec-
tromagnetic interaction drops rapidly as |t| increases. The theoretical prediction is
only about 1% of the experimental data for |t = 0.01 (GeV/c)?, and about 0.1%
for [t| = 0.05 (GeV/c)®. It is clear that one has to include the strong interaction
for the high energy proton-proton elastic scattering even with very low momentum
transfers. The momentum transfer involved is so low that the meson cloud (quark
see) interaction should dominate the strong interaction. It is reasonable to assume
that only the lightest mesons, the pseudoscalar meson m(140), the vector mesons
p(770) and w(780), and the scalar meson o(980) are mainly responsible for the
strong interaction at small | | region. Let us study the differential cross sections
due to the exchange of these mesons. We need to consider here only the direct

process since the contribution of the cross diagram is largely suppressed for small

|£].
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For the 7 exchange, the differential cross section is derived as

do (7 G:p Fi(t) 4w
[ — T - . ;1. . A
dt T6s(t —m2y2s —aagz L (v o+ M)Du(y - ps + M)}
xTr{Ca(y - p2 + M)Ta(~ - ps + M)}
B 1 ﬁer;prﬂf" $2
a s(s —AM?)(t — m2)?
16m Gy M4
- S (4.2)

where Gppr = g,pr /V4AT is the coupling constant and F(t) is the form factor. For
very small | ¢ |, Fi(t) =~ 1. Note that, in the derivation of the above expression we

have used
v = ys7u(p — pa)*,
Iy = vy.(p2 — pa)*,

and the approximation that s > 4M? and [t| << 1. It is found in (4.2) that the
pion-exchange contribution is very small for low ||,

For the w exchange, the differential cross section is

do ) G () 4r
- = -l -.,1 Y TN J.}'jf ) L A
dt 165(t —m2)2 s — 4M? r{vu(y o+ M)y (y-ps + M)}
xTr{y"(v-p2 + M)y (5 - pa + M)}
An G
= pow _.’Hd . ﬂr a . 2 42
lﬁﬁl{s—riMZj{g_mi):r'iﬁ’i 64M*s + 165° + 165t + st*)
4G
= m:w ’ (4.3)

Notice that the w exchange gives rise to a constant contribution to the pp differ-

ential cross section do /dt.
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For the p exchange, we have

dor #) Gl L) 4

dt T T6s(t—m2)s—4 7 ATy s+ M)T (v - po + M)}

xTr{T"(y - ps + M)T™ (5 - py + M)}

GEOF(E) ir
= G GAM? — 64M%s + 165% + 641, M*t + 165t
165(t — m2)? —yvEl 1657+ 64 pp, M7t +

8f2 5% P
+: ﬂfﬁw - —hE— st szmf? + 7207+ 8262 1L 8fE 4
"-; PRP _1 :Fﬁﬂz PPP ‘ fr?“.:-td' + Prﬂ f;pp‘“]
M 2 M? M 4 M? M 4 4 M
4w (G
) %, (4.4)
m,
where we have used
Jopaln + ps)
Ilu = {1+J'rﬂp.ﬂj I _Lw “'-
= ..llr {Pz +P4:|
[ o — [I! + fFFP}T.Il — ﬂr‘u
Just as expected, the p contribution is similar to that of the w exchange.
For the o exchange, we have
de ') I.P F3(t) 47
A - ~Tr{(y-pr 4+ MY~ -ps + M
dt 16s(t —m2)2s —aap2 L P M)y ps + M)
<Tr{(y-pe+ M)y 2 + M)}
4

- Gl dr (4M? — 1)?
165(t —m2)?s — 4M?2
4m G M*

Az —;"’ - (4.5)

EEM,

It is obvious that for small || and high energies, the o contribution is negligible.

As the 7 and o contributions are ruled out, the vector-meson-exchange con-
tributions, which are approximately constants as shown above, must be significant
for small momentum transfer. However, a study of the high energy neutron-proton

scattering reveals that the coupling constant of the N Np is much smaller than that
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of the NNw system. (Yan and Tegen, 2000) Therefore, one may conclude that,
in addition to the 5 exchange, the w exchange is the only significant process for
the high energy pp scattering at low momentum transfers. Shown as solid lines in
Fig. 4.1 are the theoretical predictions to the pp scattering. do/dt in the model
includes both the v and w exchanges with the coupling constant of N Nw taking

the value

2
o _ 935 (4.6)
4

In the model, we just let the N Nw form factor to be 1 and the coupling constant
of NNw fitted to the experimental data.

It is found in Fig.4.1 that the experimental data are well reproduced for low
momentum transfers except for the region from |t] 2 0.001 (GeV/c)? to |t 2 0.02
(GeV/c)®. That is, the Coulomb interaction region and the strong interaction
region for small |¢| are well understood in the simple model (4w exchanges). The
theoretical prediction for the pp differential cross section at the Coulomb-strong
interference region is not in a good agreement with the experimental data. It might
be necessary to employ higher-order diagrams to understand the pp differential

cross section in the electromagnetic-strong interference region.
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do/dt [mb/(GeV/c)?]

10.000.00 —3
: s =552.3 GeV?
1.000.00 —
100.00 —
- \
- ,
7 e
e \
10.00 — DR
lﬂﬂ T ' T [ T r T ] T l

0.000 0.002 0.004 0.006 0.008 0.010
|t] [(GeVic)’]
(a)
Figure 4.1 The do/dt due to the y exchange and the v + w exchange for (a)
[t] < 0.01{(GeV/c)?, s = 552.3 GeV?, (b) [t| < 0.1(GeV/c)?, s = 552.3 GeV?, (c)
|t] < 0.01{GeV/c)?, s = 942.5 GeV?, and (d) |t| < 0.1(GeV/c)?, s = 942.5 GeV?2.

Data are taken from Schopper (ed.), 1980, pp. 269-276.
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do/dt [mb/(GeV/c)?]
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41
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Figure 4.1 {continued)

Copyright 2000 Suranaree University of Technology

—
0.10



do/dt [mb/(GeV/c)’]
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Figure 4.1 (continued)
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do/dt [mb/(GeV/c)]
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Figure 4.1 (continued)
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4.2 Proton-Proton Scattering with Large

Momentum Transfer

For large momentum transfer, the form factor F(t) (and F(u) as well) can
not approximated to be 1 as in the previous section. Unlike in the electromagnetic
interaction, the problem of nucleon form factors is still an open question in the
strong interaction. There are many possible choices for the nucleon form factors,
for example, one may employ the monopole, dipole, and exponential forms. In this
work, we study all the three form factors. The monopole and dipole form factors

may take the form (Machleidt et al., 1987)

A2 —m2\"
Fn.{f} _ (L_l'-") . (4?:]

.ﬂ‘lki -
where m,, is the mass of the exchanged particle, and A, is the cutoff parameter.
n=1and n = 2 give rise to the monopole and dipole form factors, respectively.

For the exponential form, we use the following form
Fo(t) = exp(t/A2). (4.8)

All of the form factors mentioned above have been employed to fit the experimental
data in the theoretical model. It is found that the exponential form is clearly
favored by the set of experimental data included in our analysis.

The theoretical fitted curves are presented in F ig. 4.2, where the exponential

form factor is employed and the cutoff parameters are set as follows:
Ar=A= A, (4.9)
and

.'"llg — .-'qln_f'.2 = ;'JL;".{I.Q(}} {41“:]
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The best fit to the existing high energy pp elastic data at a large energy range
(s =552.3 to s = 3906.3 GeV?) gives the following set of coupling constants and
size parameters, see Table 4.1.

(4.9) and (4.10) result initially from the consideration that T, p and w be-
long to the lightest meson group while o(980), f,(1270) and w(1420) are in the
second lightest group. The argument in (4.9) and (4.10) is supported by the ex-
isting data. If one let all the cutoff parameters independently free in the fitting to
the experimental data, it may be found that A,, A, and A, get very close to the
values, and so do A,, Ay, and Asf1420)

Table 4.1 The set of parameters best fitted to the experimental data in this work.

Particle gt /Ar A [GeV] f
7(140) 0.174 0.700 .
p(770) 0.003 0.700 7.620
w(780) 2.092 0.700 -
(980) 5.672 1.560 :
f2(1270) 1.654 = 10—° 1.560 0.078
w(1420) 0.012 1.560 3.074

Fig. 4.2 show that the experimental data are well reproduced in the present
model, which includes only the lowest order Feynman diagrams for 4 and meson
exchanges without the quark-gluon interaction involved. It is found that for lower
|t| region (|t| < 1.5 (GeV/c)?) 7, p and w are the main contributors while the

heavier mesons o(980), f2(1270) and w(1420) play an important role for higher |¢|
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([t] = 1.5 (GeV/c)*). Without these heavier mesons, it is impossible to reproduce
the large |t| data. The dip-structure at |¢| ~ 1.5 (GeV/c)? for all the energies
involved here results from the destructive interference between the contributions

of the two meson groups.

4.3 Proton Size

The size of proton could be extracted from form factors since a form factor
is just the momentum-space representation of a coordinate space distribution. One
can easily derive the proton size parameter (mean-square-radius) using the well

known expression

. dF{Q‘QJ
2 F.
<t m= 5( ?q‘ qq_ﬂ, Ifi,ll}

The electromagnetic form factors of nucleon have been confirmed taking the

form

1

O e

(4.12)

with A* = 0.71 GeV? and the momentum transfer g = py — pi. for a large energy
region. The form factor corresponds to an exponential distribution in coordinate

space

p(r) = pge™" (4.13)
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do/dt [mb/(GeV/c)?]
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(a)

Figure 4.2 The do/dt in the one-body-exchange model (solid line) versus the ex-

perimental data for (a) s = 552.3 GeV?, (b) 5 = 942.5 GeV?, (c) s = 1998.1 GeV?,

(d) s = 2787.8 GeV?, and (e) s = 3906.3 GeV? Data are taken from Schopper

(ed.), 1980, pp. 269-236.
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do/dt [mb/(GeV/c)*]

1E+3

1E+2
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10

1E-§ T ] T II I [ I | T | 1 _i
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(b)

Figure 4.2 (continued)
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do/dt [mb/(GeV/c)?]
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Figure 4.2 (continued)
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Figure 4.2 (continued)
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do/dt [mb/(GeV/c)’]
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Figure 4.2 (continued)
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with a root-mean-square radius

< r? sl 2~ 0.80 fm. (4.14)

ok

The form in (4.13) seems to reveal that the charge-magnetic-moment distribution
stems from the Coulomb-like interaction, V(r) ~ 1 /r.
We come to the proton-proton scatfering. In the center-of-mass system, one

has

i:—-{j'z:—{ﬁ_ir—ﬁ,-]z. (4.15)
Thus the vertex function in (4.8) is
F(t) = F(§) = /N (4.16)

which corresponds to a distribution in coordinate space as follows

p(r) = poe V" (4.17)

An interaction of the form V(r) ~ r? could lead to this type of distributions.
The cutoff for the 7 exchange corresponds to a size parameter (see Table

4.1)

2

1/2_ ﬂ _ V6

=7 A 070GeV

- 22 (L69 fm, (4.18)

while the f, exchange corresponds to
V6
L.56GeV
0.31 fm. (4.19)

< p2 12 _

&

It is difficult to say that the size 0.31 fm does correspond to the quark core since it

can also be an inner meson cloud. However, we can surely point out that the size of
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the quark core (if any) is smaller than 0.3 fm, and proton is likely to be composed
of at least two components: the three-quark core and the quark-antiquark sea
surrounding the core.

The quark-antiquark sea itself may have two faces. For the electromagnetic
interaction collision it has a distribution of the form e=Ar (from an interaction of
Coulomb-like V/(r) ~ 1/r) with a root-mean-square radius of about 0.8 fm while
for the strong interaction collision it has a distribution of the form e~A’r* (from
an interaction of the form V(r) ~ r?) with a root-mean-square radius of about
(~ 0.7 fm). The so-called meson cloud might be refer to only the quark-antiquark
distribution probed by the strong interaction collision.

The three-quark core has the distribution of the form e=**" which stems
from an interaction of the form V(r) ~ r?, with the root-mean-square radius less

than 0.3 fm.
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Chapter V

Discussion and Conclusion

Here in the last chapter, we give some points to serve as the discussion and

conclusion of the work,

9.1 Conclusion

5.1.1 The Model

The model is based on the assumption that proton is composed of at
least two components, the quark core and the quark-antiquark sea, and the high
energy proton-proton elastic scattering is dominated by the quark sea interaction.
The assumption itself stems from the analysis of the existing experimental data.
The quark sea interaction is here “parameterized” into meson exchange. In this
model, only the lowest order processes are considered with the exchanges of v for
the electromagnetic interaction, and m(140), p(770), w(780), a(980), f2(1270), and
w(1420) for the strong interaction. The contribution of quark-gluon interaction is

excluded in the model.

5.1.2 Theoretical Differential Cross Section

The theoretical results for the differential cross section of the high

energy pp elastic scattering consistently reproduce the existing data in a large
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energy region. The most significant features of the experimental data, the dip-
structure and the different slopes, are well reproduced in the model. For the lower
|t| region (|t| < 1.5 (GeV/c)?) the dominant process is the w exchange while the
presence of the heavier mesons f, and w(1420) is crucial for higher | ¢ | region

(Jt] > 1.5 (GeV /c)?).

5.1.3 Structure of Proton

The analysis of the form factors of proton in Chapter IV reveals that
two different components exist within proton. The first component might be the
quark core with a size less than (.3 fm, the second is the quark-antiquark sea
which has a size around 0.7 fm probed in the strong interaction collision and a size
around 0.8 fm probed in the electromagnetic interaction collision. That the quark
core (if any) is smaller than 0.3 fm is in line with the little bag model introduced

in Chapter 1.

5.2 Comments on the Results

9.2.1 The w(1420) Coupling Constant

As shown in (3.39) for the Lagrangian of N Nw(1420) coupling, there
is an additional i involved in the Lagrangian, to prevent the gFEWfl‘l'ﬂU] /47 from
being negative value. It might be the case that the w(1420) exchange introduced
in this work represents a combined effect. That is, the contribution is not due
to the w(1420) exchange alone, but due to other meson exchange, multi-meson

exchange, and gluon exchange as well as the w(1420) exchange.
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5.2.2  Coulomb-Strong Interference Region

As mentioned in Chapter IV, the model can not give a satisfactory
prediction for the pp differential cross section at the electromagnetic-strong inter-
ference region around |t| = 0.01 (GeV/c)®. The momentum transfer involved is S0
small that the direct quark core interaction is not expected. It is likely that the
higher-order diagrams, for example, the two-photon-exchange process should be

added to the processes in Fig. 3.4 for constructing the total amplitude.
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Appendix A

The Mandelstam Variables

For the scattering process
1+2—3+4, (A1)

the Mandelstam variables are defined by

s = (pr+ p2)?, (A.2)
t=(ps—p)?, (A.3)
u=(ps—m)*, (A.4)

where p; is the energy-momentum four vector. The three variables are not inde-

pendent, but obey a relation that

s+t+u = (p+p)l+p-p)l+p—-p)

= (pi +2p1-p2+p3) + (P = 2p1 - pa+ pi) + (i — 2p1 - pa + )
3 A 2 pE P WDy D — D D — Dy - s

= opy+py+p3+py+EAprpe—prpa— P pa)

= 3pi+pi+pi+pi+2p(p2—ps—pa)

= 3pi+pi4pitpi—2p

2 2 2 2
= pirtpatpstp

2 2 2 2
= mj+m; + m3;+ mj.
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That is

4
s+t4+u=> mi. (A.5)

=1
In the center-of-mass system (denoted as CM from now on) as shown in Fig.
3.2, for the elastic scattering process of two equal-mass particles, we may write s,

t, and u in the explicit form as follows:
s = (pt+p)
= (Bi+ Ba)' = (A + )
= (2E)?
= E.., (A.6)

where E,., 1s the total energy in the CM system, and E the energy of each particle

as

E =/p* +m?. (A.7)

For the other Mandelstam variables t and u, we have
t = (ps—p)
= (Bs—E) — (- 71)°
= —(p5+ P — 21 - ps)

= —2p*(1 — cosf), (A.8)

u = (pi—p)
= (E-i - El]'2 - (374 —ﬁf
= —(Fh+ 7t — 261 - )

= —2p*(1 + cosf). (A.9)
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Appendix B

The Dirac Spinor

The free spin—% particle satisfies the free Dirac equation
(190, —m) =0, (B.1)
where i is running from 1 to 4 and the 4* are the 4 x 4 matrices with the properties

(%) =1
(1) = =1 where i =1,2,3

T+ =0 for p# v
We can summarize the above set of equations to be
{77} = 20", (B.2)

where ¢"* is the element of the matrix g defined as

\
r;1 0 0 0
0 -1 0 0
g= . (B.3)
0 0 10
L0 0 0 -1
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The explicit representation of the v* matrices is not unique. In this work we use

one of the two most popular forms listed, see below:

; I 0
Y = . (B.4)

0 =1

. 0 of
4= | (B.3)

—at 0

. 01

o = . (B.6)
10
0 —

o’ = , (B.7)
t 0
1 0

o = (B.8)
0 -1

7 =4, (B.9)

,.Ir.-z'f — _,]_z'; i = 1‘2,3‘ [B]D}

4 = 170 23 (B.11)
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which has the explicit form
¥ = . (B.12)
The solutions of the Dirac equation take the general form
¥ = Au(p)e™"* + Bu(p)e™™ (B.13)
with u(p) and v(p), the Dirac spinors, satisfy the equations

(v*Pu — m)u(p) =0,

(v*pu + m)u(p) =0, (B.14)

which are indeed the Dirac equation in momentum space. By solving the above

equations, one may derive the explicit form of the Dirac spinors as follows:

: ; Al
W (p) = [ E™ (B.15)
2m 1 re g
B (P 7))
and
1 = =y g
- E+m _.m(P‘U])"
v(p) = . (B.16)

2m

}Li
where E = /F2 + m?, and A are 2-spinors with i = 1,2. Usually, A' are chosen
to be the eigenfunctions of the ¢ or the helicity operators h = p- &/[p|. The

normalization constant 4/ E?% is chosen so that the Dirac spinors are normalized

according to

a(p)u(p) = &, (B.17)

o (p)w(p) = —dy;, (B.18)
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where

i = ul’, (B.19)

5 = vly®. (B.20)

T'he completeness relations for the Dirac spinors are

.. . ~ - p+
Z 'ui”(pfj'u[']lipjl — % ':Hj”
=112 m
)l p) = L2 99
tZL_; (p)o"(p) " (B.22)
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Appendix C

Differential Cross section

The cross section, do, is represented by

_ TP

d
o A

d0, (C.1)

where T' is the invariant amplitude, F is the incident flux, and d@ is the Lorentz
invariant phase space factor. (see also Halzen, and Martin, 1984, chap.4; Kaku,
1993, chap.5 and chap.6; Ryder, 1994, section 6.10)

First, Let us derive the explicit form of the incident flux F' in the CM system
for the elastic scattering of two equal-mass particles. The energy of a particle, with

the rest mass M moving with the velocity @, is (in natural unit, i = ¢ =1)

E = M
= ! W (C.2)
= a=a" 2
In term of momentum p and rest mass M
E = (p* + MY)Y/? (C.3)

Squaring both sides of (C.2) and (C.3), we get

1
l—ﬁi’Mz = P+ M

M? = (1= (" + MY

PFpt+ M) = p°
=
- P 1
'L"'E = F I:(:f"i]
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or in term of vector

. P
==
E
hence, in the center-of-mass system
|ti—ta| = [vi|+]0:]
TANTY
F, E;
Therefore, from the definition of the flux, F,
E, E;
F =6 - 0| ——,
19 =% | 357

we obtain

AT AN

- U TR uM

ALY
M? M?

_ Egp

MY

where E; = E; + E; = 2E is the initial energy of the two-particle system.

The invariant phase space d) in the CM system can be written as

M l'fj Pa ;Hrip P

dQ = (2m)%W (P, - P)

69

(C.6)

(C.7)

(C.8)

Es(27)% E4(27)3
= M §(E3 + By — Ey — E2)89 (s + py — py — p2)d*pad®ps
(27)2 EaEy ' ‘
— _ B E
o) BB, (et B B Ba)
1 4M?
= Gy 5 p*dpdQ(Ey — E;).

From E; = E3 + Eq = 2(p* + M*)'/?, one derives

dp  (p*+ M2
"tP
T B
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or

E
LiE;, (C.10)

dp =
P=

hence

M 2
1 MpdEy o o

2r)?  E (Ey = E)

- [zi}z %dﬂ. (C.11)
Finally, from (C.1), (C.8) and (C.11), we get
do = “‘;—,F{@
_ [E;Fg I 2 do (C.12)
or
do _ 1 MY 0 (C.13)
a0~ (47)? B2
For unpolarized scattering, | T |* should be replaced by
ITPs: Y [ Tul, (C.14)
4 Arhzhadg

where

Ty = <f|T]i>

= {:}L3A1|.T|.l1/‘jl'3 s

is the transition amplitude from state i to state f. A; is the spin state of the i*"

particle. Then, (C.13) becomes

do 1 M*1 o
o Gy, &, 1Tl (€.15)

Azt
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It is more convenient to use the invariant differential cross section do /dt in

terms of the Mandelstam variables,

io_ i o o
dt — dQ dt’ (C.16)
where
dfl  sinfdfdo
di dt
= Eﬂsinﬂ@. (C.17)

dt
From (A.8) in Appendix A, after differentiate t with respect to 8, we have

dt o ;
i —2p*sind. (C.18)

Thus, from (C.17) and (C.18), we have

df} T
T o (C.19)

Since t is always negative, however, we usually plot the differential cross section

with respect to | ¢ | {or —t) instead of t itself. Conventionally, we just express the

differential cross section do/dt in the form

do T do .
i = ) (C.20)

with the minus sign ignored.
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Appendix D

Vertex Functions for NN~ ,NNp

and NN fy Systems

D.1  Vertex Function for NN+ Coupling

The general current for the electromagnetic interaction between protons

may take the form

g Iy,
J¥ = eu(p')[Fiy" + ﬁw"“c}y]u{p], (D.1)

where g, = p|, — p. is the momentum transfer during interaction, M is the proton

mass, F; and F; are independent form factors and
L1 i L b B Ty ¢
ot = 5{“:“"}' —7"9"). (D.2)
The vertex function in the square bracket of (D.1) might be simplified in the way

that the o, is not involved. We start by consider the term io*¥q,, that is

- — e :
uicgu = uie™plu — uio"”

1— T A ]'— 4 B iry 3
= =" =Y, + 5" =1

Pt

—_ 'ﬁ.l{":r'p"f“ . g_r:l/}p:{u ___ ﬁ(,.lr.#,.rp' _ g;u")ppu
= (May*u — ap™u) + (Muybu — up”u)

= 2MuvPu — a(p™ + p*)u (D.3)
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or

|

u(p )y ulp) = —=alp')(p' + p)* + e (p" — p).]ulp). (D.4)

'l.\.':'

M
(D.4) is also known as Gorden decomposition.

In the above derivation, we have used the following relations for u(p) and u(p’)
(1P — Mu(p) = 0, (D.5)

a(p)(y*p, — M) = 0. (D.6)

Thus, (D.1) becomes

P,
B i
J¢ = ealp)[Fiy* + EHM “qu]ulp)
Fy ‘
= eu(p')[Fiy" + mr)m — (p™ + p*)u(p)
. o, -
= eu(p')[(Fi+ F2)v" - 2.,:,(?:" + p)]ulp). (D.7)

Hence, one may express the vertex function in the form

F; .
Fiy + 5-ic™ (5, — p,) = (Fy + Fa)y* —

'!r"z Ik N
A7 —=(p"™ + p"). (D.8)

2M

D.2 Vertex Function for NNp Coupling

The Lagrangian for the N Np coupling takes the form

Lopp = ool 1utbds + ip:; Lo, w00l — 0¥ ¢l), (D.9)
where 7, is defined by
1 )
Ty = a[’.'f.'.a’fr-r - ’}'vﬁfﬁ}' LDID)

The vertex function can be obtained from the Lagrangian by eliminating all the

fields. Since there is no operator acting on ¢ and ¥*, we can eliminate ¢» and
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immediately and we get

" 9 i " 9
FopoVuPp + 4?:'{;5#?{3“ -0 {Pf;] = Gppa Py ;{; 0
L1 gf <y (b
= ooV, + 5 O (—ig") 4,
where we have used the relation
J,ma“th; = awa*‘v;};
= —0,,0"". (D.11)

Thus, after eliminate ¢, the vertex function for the NNp coupling becomes

!

oy .
GppeYe — 2;,;”’“*"? (D.12)

In the same way as for the N N~ coupling, we derive
io,q" = (p, + p.) — 2M~,. (D.13)

Thus, from (D.12) and (D.13), the vertex function for the NNp coupling is ex-

pressed as

g, g,
Gppp e — pr;fgwq = {gFPP + g:ﬁpp }’:"# - ;;;; {P:, + Pv:]

f pa
S 2M

= Gopol(1 + fopo) 1 — 57 (P, + 1)), (D.14)

where fo,, = gpp.ﬂflfgppp

D.3 Vertex Function for NN f, Coupling

The Lagrangian for the NN f; coupling takes the form

= L A« T 1 T v
Lopr, = Iﬁgwh(w’r”a b — 0 YY)D + Wg;phh#‘@”@ Y —

R 2 0 (D.15)
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Considering d“¢:(p) = —ip*y(p) and 8“¢(p') = ip“(p'), the vertex function for

the NN f; coupling is derived as follows:

I(p,p) =

Vg Jeesa 7" (=107) = (P "] + Jwggpph[[thf )(—ip*)

—(ip")(=ip”) — (ip")(—ip”

)+ (ip™)(ip")]

1 L L 1 I i
= Egppfz[?#[p "|"Pj )] - W E g;::-fz [pup +ptp”
+pppfu+pfgpﬂ’]
g .|r In fLe f
= Sy +p") - p”zlfp P+ pp”

+p"p"™ + P,

where fo.p = Gonts! Gopfa

e e
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