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Photoemission experiments have been used to verify theoretical explanation
for physical properties of many materials. For example, interesting properties of
metallic nickel, i.e. seemingly contradictory nature between electrical conduction and
magnetism, which is studied in this thesis work, could be explained by photoemission
experiments. Through photoemission experiments, the 3d-4s hybridization and very
high density of 3d states can be demonstrated clearly. The hybridization results in the
contribution of 3d holes to electrical conductivity, and the high density of state gives
rise to a very high effective mass. These findings verify theoretical explanation for
poor electrical conductivity of metallic nickel. In addition, spin-polarized
photoemission shows the existence of molecular field, which is the theoretical essence
for ferromagnetism. The discrepancies between experimental and theoretical results

are also discussed in this thesis.
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Chapter 1

Introduction

Understanding of the electromagnetic properties of metals is quite important for
finding novel ways to utilize them. Among various metals, nickel has quite interesting
characters regarding electrical conductivity and magnetism. On the one hand it is not
such a good conductor as a simple metal. This suggests that the number of itinerant
electrons as energy-band electrons is not large or the mobility of conduction electrons
is small. On the other hand the localized spins are supposed to bring about its
ferromagnetism below a rather high Curie temperature. Thus, metallic nickel appears
to present a good example for understanding the cause of seemingly contradictory
nature as electrical conduction versus magnetism. In a simple mind, the interesting
characters of nickel seem to be caused by the partially filled 3d band. We should
know the electronic structure in order to clarify such nature of nickel. This kind of
study also helps understanding the properties of other interesting materials which
show more sophisticated phenomena.

A number of different experimental techniques can be used to obtain
information about the electronic structure of materials, including the distribution of
states as a function of energy (the density of states) and of crystal momentum (band
structure). Many of these techniques are optical in nature: We utilize the interaction
between photons and electrons system. In addition, by measuring the number of
electrons generated by the photoelectric effect (photoemission) as a function of
emission angle, the electronic band structure, £(k), can be traced out experimentally.
So far, a large number of experimental and theoretical investigations of the electronic
structure of nickel have been reported. Many of them are related, directly or
indirectly, with photoemission phenomena. In the present thesis, an overview of the

existing photoemission data on nickel is perform.
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1.1 Photoemission Spectroscopy

Photoemission, the emission of electrons from a material caused by absorption
of photons, was discovered by Hertz (1887) in the study of the electromagnetic
waves. In the following years, the phenomena associated with this effect had puzzled
people till Einstein explained the threshold energy of emitted photoelectrons found in
metals by the quantum nature of light. The distinctive energy relation giving the

maximum kinetic energy of a photoelectron excited with fixed photon energy is given

as
E... —hw—ed. (1.1)

Where €, ,icw and e¢ are the maximum kinetic energy of photoelectrons, the

photon energy and the work function of an emitting solid.
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Figure 1.1. Energy diagram for
photoemission (photon in, electron out)

(Himpesl, F.J. 1995)

Figure 1.2. Energy diagram for core-level
photoemission. The core-hole decays by the
Auger process (left) or by the fluorescence

emission (right) (Himpesl, F.J. 1995)

In the initial state of photoemission, there is a solid in the ground state with an

energy E, with N electrons and a photon with an energy of 7. In the final state of

Copyright 2000 Suranaree University of Technology




photoemission, there is a solid system with a different energy E . In this final state,
there is the solid of (N —1) electrons with total energy £, (N —1)and a photoelectron

with energy & in the solid. The energy conservation principle restricts the relevant

energies as

E +thw=E
¢ ! (1.2)
=E,(N-D+eg,
If the photoelectron comes out of the solid , the kinetic energy &, of the photoelectron

measured outside the solid is given as

£, =€, —ep, (1.3)

where e¢ is the work function of the solid. Here we implicitly assigned the zero

energy level to be at the vacuum level. The relation (1.3) indicates that the

photoelectron loses its kinetic energy by an amount e¢ when it leaves the solid. This
is caused by the retardation of photoelectrons by the ionized solid. In a different
viewpoint, it is understood that the kinetic energy of a photoelectron outside the solid
is zero at the vacuum level. This situation is dependent on the method of the
measurements. If the sample is grounded, the zero potential level is at the vacuum
level. If a retardation voltage, V', , is applied to the sample, the vacuum level is pulled
down below the zero potential level by an amount equal to eV, . In any cases, the
Fermi level is located below the vacuum level by an amount e .

We define the binding energy of the emitted electron as

g, =E,(N-1)-E,. (1.4)

From (1.2), (1.3) and (1.4), we have

Copyright 2000 Suranaree University of Technology



, —hw—¢, —e (1.5)

The relation shown in equation (1.2) through (1.5) is illustrated in Fig.1.1. The figure
is self-explaining.

There are other electron- and photon-emission phenomena related to
photoemission. They are shown schematically in Fig. 1.2. When an electron is excited
from the core level to the conduction state, a hole is left in the core level. Then, it is
possible that a valence or outer-core-level electron fills the hole level and an electron
in the valence or outer core level is excited. The energy conservation is satisfied in
this process and it is called the Auger process (left). It is also possible that the
fluorescence (right) process occurs instead of the Auger process.

The process of photoemission can be explained by the three-step model, which
is extremely useful to interpret photoemission experiments. In the first step, an
electron in a solid is excited by absorbing incident photons. In the second step, the
photoexcited electron travels through the sample to the surface with or without the
secondary electrons generated by electron-electron inelastic scattering. Finally, in the
third step, the photoelectron escapes through the surface into the vacuum where it is
detected. Fig.1.3 shows the three-step process.

The advance in the ultra-high vacuum (UHV) technique has greatly promoted
the development of photoemission spectroscopy (PES). It is because the
photoemission process is quite surface-sensitive. We know a photoelectron can lose
energy by creating electron-hole pairs or plasmons during its escape. These processes
actually limit the escape depth. The escape depth is defined as the mean free path, A,
of photoelectrons reaching the surface without being scattered. In general, the escape

depth is only of the order of a few Angstrom. The escape depth of the electrons is
mainly determined by electron-electron collisions. The inverse escape depth A™'is
described by the mean free electron-electron distance r,, which is roughly equal for

all materials, and Lbach, H. (1977) obtained

AIDIZO ry % In[( )/ 1’;’" r21, (1.6)
kin
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Three Step Model
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Figurel.3 Photoemission spectra as illustrated in terms of the three-step
process 1) photoexcitation of an electrons; 2) travel to the surface with
concomitant production of secondaries (shaded); 3) penetration through
the surface (barrier) and escape into the vacuum (Hufner, S. 1996)

where a, =0.5294, R =13.6eV and r, is measured in units of the Bohr-radius a,.

Therefore, almost all materials show a similar energy dependence of the mean
electron escape depth. This means that any spectroscopy of the solid surface involving
only the electrons from a very thin layer of the sample. Thus, if one wishes to study
the bulk properties of the solid, one has to work with atomically clean surface.
Investigations of surface states or adsorbed molecules require UHV conditions to
prevent interference from adsorbed contaminants.

In PES, for different research purposes, excitation light with different energies
is adopted. In the ultraviolet photoemission spectrocopy regime (2w 5eV to 100eV,
UPS), it is predominatlyk -conserving or “direct” transitions that are excited in a
solid. Here Kk is the electron wave vector and 7k is equal to the crystal momentum of

the electron. From the energy and momentum distribution of the electrons, and with
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some reasonable assumptions, one can determine the electronic dispersion curves

&(k) in the solid. In the X-ray photoemission spectroscopy regime (#w =1000eV,

XPS), one can observe photoionization of core levels. Their energies depend on the
chemical state of the sample. During the last two decades, synchrotron radiation has
emerged as a powerful and convenient excitation source in photoemission
experiments. It has a number of desirable properties as:

1. A continuous spectral distribution from the infrared region into the X-ray region;

2. High intensity;

3. A high degree of polarization (completely linearly polarized in the plane of orbital
and elliptically out of the plane);

4. A pulsed time structure given by the orbital frequency of the circulating electron
bunch.

The use of synchrotron radiation in photoemission experiments enhanced the
range of observation considerably. For instance, the continuous spectrum enabled the
continuous change in the excitation energy. Thus, we can carry out the resonant
photoemission measurements. The tunability of excitation energy also makes it
possible to carry out the normal emission angle-resolved photoemission
measurements. By scanning excitation energies, the energy band mapping is
achievable. The polarization nature is used to sort out the transitions through the
polarization selection rule. The soft x-ray region is exploited by using synchrotron
radiation.

It is interesting to know what kind of information can be gained by this

technique. In principle, the hamiltonian, H™, for the interaction between electrons

and electromagnetic radiation with the vector potential A can be written as
int 1
H™ =——(A[P+P[A) (1.7)
2mc
where P is the momentum operator of an electron. Let £, and E, denote the

energies of the final states | f > and the initial states |z> , respectively. The transition

probability between initial and final states is given by Fermi’s Golden Rule as
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2 "
W, =7"\<f,u a" g>‘25(Ef ~E, - hw). (1.8)

For convenience, the transition matrix element is written as M ,

M (g, ,hw) =(f|H™

g) (1.9)

Assuming that the matrix element M , does not vary much with 7w and &, and can

be replaced with its average value, M ., at fixed 7w one obtain the intensity of

photoelectrons as

N(e.hw) OM ,|'S 8(E, - E, -hw)d(e -&,) (1.10)

Here, we define initial one-electron energy as
E,=E,(N-1)+¢, (1.11)

where E, (N —1) is the total energy of the (N —1) electrons except the i-th electron in

the ground state and €, is the energy of the i -th electron.

Using (1.2) and (1.11), we can rewrite the photoelectron intensity distribution

as

N(e.hw) O|M 'S 8(E, ~E, ~haw)d(e+E,(N -1~ E,)

fgzz O(E+E (N-D)-E, ~hw) (1.12)

=11, e -&, ~hw+(E,(N-1)-E,(N -1)
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The energy, E,(N —1), defined as
E;(N-)=E (N-1)-E,(N-1) (1.13)

is called the relaxation energy. If the relaxation energy is small, (1.12) is proportional

to the one electron density of states defined as
D(g) = 25(5—5,-) (1.14)

The function, D, (€), defined as

D, (&)=Y |(/Ir|e) 8(E, ~ E, ~nw)d(e -¢,) (1.15)

is called the optical density of states. The first factor in the summation will be
explained later. The optical density of states given in (1.15) is nothing but the

photoelectron intensity distribution N(&,,Aw) or N(€,,Aw) that is called the energy
distribution curve if it is illustrated as a function of &, or €,.

The argument described above indicates that the distribution of photoemitted
electrons is approximately proportional to the density of states (DOS) in a simplified
picture. Thus, we measure a density of states, or rigorously the optical density of
states, in the photoemission experiments. If electrons with different angular
momentum are involved, the spectrum includes the contributions from the various

angular momentum states with different strengths, because M , depends on the

angular momentum of the initial state.

We should remark that the expression of transition matrix element M ,is a

special from of a more general expression. In the general case, the transition matrix

element is given by

T, =(f|T]g) (1.16)

Copyright 2000 Suranaree University of Technology



where the 7 is transition operator and defined as

1

T:VT+VT Nt
hw+E, —H, -V, +i0

v, (1.17)

Here V, is the perturbation operator, H, is the quantized hamiltonian of the electron

system without the perturbation terms causing the electronic transition and 0 is a
positive infinitesimal. We can obtain the T matrix by solving Lippman-Schwinger
equation or solving Schrodinger equation formally using the one-particle Green
function.

int

Not only the direct electron-photon interaction H™ but also the Auger
interaction ¥, contribute to the perturbation. Because the Auger matrix element is
much larger than that of the dipole matrix element for the optical transition in some
cases, it is reasonable to retain H™ only to the first order and leave ¥, to the infinite

order, then we have

T :Hint +VA 1 — Hinl
hw+E, —H, -V, +i0

(1.18)

In the case where the resonant excitation is predominant, the relaxation of the
intermediate excited states is incomplete.

One of the successful applications of photoemission is the study for metallic
nickel. In the present thesis, we will see the good agreement between experimental
results and theories. More details about photoemission spectroscopy will be given in

the next two chapters.
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Chapter |1

Photoemission Spectroscopy and Electrical
Conductivity of Metallic Nickel

In solid physics, people regard that the metallic bonds hold the metallic atoms
together to be metal. Metals are characterized by high electrical conductivity, and a
large number of electronsin a metal are free to move about. The electrons available to
move about are called conduction electrons which are from the valence electrons of
the atoms. The netallic bond is just the electrostatic force between the free electrons
pool and the ions. So, metals usually adopt close-packed structures. For example, the

cubic close-packed ( face-centered cubic, f.c.c.) arrangement occurs in metallic nickel.

2.1 Energy Band Theory

In classical theory of metals, the properties of metals could be explained by their
valence electrons. Valence electrons were considered to behave within a metal in a
way corresponding to gas molecules in a container, obeying the same laws. This
implies that the electrons are free, have a continuous energy distribution and can be
described by the classical, Maxwell- Boltzmann statistics. But it provides an incorrect
temperature dependence of the electrical resistivity and the heat capacity. The
disparity between the heat capacity and the electrical resistivity reveals an inherent
inconsistency in this theory. In quantum mechanics not every value of the energy is
allowed, and the continuous distribution of energies is replaced by a discrete set of
allowed energy levels. The energy distribution at a finite temperature is given by
Fermi-Dirac statistical mechanics.

Copyright 2000 Suranaree University of Technology



11

First, let us consider the valence electrons in a metal. For convenience, we
suppose that the electrons are confined to a cube of edge inter-distance L and the

potential tends to infinity. The Schrodinger equation for a free eectron in three

dimensionsis

. ﬁﬂzy(x, y,2) = EY (x,Y,2) (2.1)
2m

Obvioudly, the differential equation (2.1) is separable. Thus, we separate variables
to get

Y (%,y,2) =1 (1 (Y)i 5(2) (22)

Substituting (2.2) into (2.1), we find that Schrodinger equation (2.1) is written into

N 2.
i g (9 =0
|

M dX2

1d3 ,0) ., 2 _

: dyzz +kjj 2(y) =0 (23)
i1dj.(2 ., .

i ——*KJj ;(2=0

todz? J2(2)

if the following conditions are satisfied:
h2
E:—(kf+ky2+kf). (2.4
2m
For convenience, we define k as follows:
th 2 h2

= (KEKKD). (2.5)

The solutions of (2.3) are given as
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1i.(9=Ae""+Be™
ii2(9=Ae" +Be™ (2.6)
s =Agh B

where A and B, (a=x,Y,z) are constants to be determined by the boundary
conditions. We set up a redlistic boundary condition known as the box normalization.

According to it, solutions should satisfy the boundary conditions. at x=0and x=L,

11.=0
ij ;=0 27)
1j5=0

L isthe length of the solid cube. Then we obtain

A=-B (2.8)
and
isnk,L=0
l -
1an k,L=0 (2.9
ldank,L=0

From (2.9), k, should satisfy the following conditions:

LY
i L

1 n

K, _nb (2.10)
: L

ik, =2

f° L

wherethe n,, n , n, are integers. So, the eigenfunction of an electron is
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13

Y =Csdnk,xsnk ysnk,z. (2.12)

Where C isnormalization constant.

The energy of electronis

h2
E= n? +n? +n?). 2.12
8mL2( , Fno+n;) (2.12)

Asaresult of the trandational symmetry of acrystal, the eigenfunction should satisfy
the periodic boundary condition as

j.@+a)=j,@) . (213)

Where a isthe lattice constant. By the repeated applications of the condition, (2.13),
we have

j.@+tNa)=j, @) (214)

If N atomsexistinthe a direction of the cube, L isequa to Na.
The condition (2.14) is satisfied, if the following relations hold:

isnk,Na=0
i (2.15)
jcosk, Na =1
Thus we have
pn, _p, N
kK, =——=—(—— (2.16)
Na a N/2
N N N N
n, =-—,- — 41 300050, %000 — - 1 — 21
LTS > (2.17)
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(2.16) and (2.10) are equivalent to each other, if we take the valuesof n, in (2.10) as

n, = 0,1 2, x0000 N

or

n, =0, -1 - 2 %000 - N

In this case, (2.10) is written as

k =

a

o | T

(=) (2.18)

a
N
Since we take both positive and negative values of k, €** and e are equivalent.

Thuswetake only +k termin (2.6) as the eigenfunctions without losing generality,
namely,

Y = Ael. (2.19)

Here, A isthe normalization constant.
It is clear, that the wave function represents a running plane wave. If we define

the momentum as p = 7ik , the relation between the kinetic energy and the momentum
is satisfied. Note that we are dealing with a nearly free electron and the potentia is

amost zero, since n, isaninteger. It isobviousthat Dn, =1, then we have

Dk = (%p)% (2.20)

Because N isavery large number of the order of 102, Dk isvery small and k is
practically continuous.
In the ground state of a system of N free electrons the occupied orbits may be

represented as point inside a sphere in k space and we should note that the energy is
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equal if k| is equal. The energy at the surface of the sphere is the Fermi energy; the

wave vectors at the Fermi surface have a magnitude k. such that

E, =— K2 . (2.21)
m

: Dn
If n, changesby Dn,, corresponding k, changesby 2—: Na . If the number of the

pointsin the k spaceischanged by Dn, xDn, >Dn,, the corresponding volume in the

k spaceis changed by

(Na) \%

The Fermi sphere has volume 4pk,§/ 3, then, the total number of orbits in this sphere

is

3
N = 2v(2V)3 4p§F = 31-\!2 K. (2.23)
P

Here the factor 2 is from the spin degeneracy.
One point in the k space corresponds to one state. The total number of states up

to the values of the momentum, kisgiven as

N, =k = (2T %% (2.24)
P P n

By the definition of density of states, the number of states, D(E), per unit energy

range is
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D(E) = — =——(=)*E” = constant” E* (2.25)

dE 2p? h®

Fig 2.1 showsthe relation between D(E) and E. In the figure, two cases are shown.

Oneisthat for zero temperature, the other is that for a finite temperature T . At finite

temperature, the Fermi-Dirac distribution function f (E,T) is multiplied,

f(E,T)=

14 e(E-Er)/keT

1 (2.26)

Here k; isthe Boltzmann constant. At zero temperature, the states below the Fermi

level are completely occupied, since f (E,0) =0. Ata a finite temperature, the states

near and above the Fermi level are partially occupied and the state near and below the

Fermi level are partially unoccupied. The energy range where this occurs is confined

to

DE » k, T

The free electron gas model has been considered the electrons within the metal

are in a constant internal potential. It is equivalent to the case that the constant

potential is zero. However, the potential within a metallic lattice is not constant.

Demiby of ucbitals, relative swale

Figure 2.1 Dendty of nearly-free electron
states as a function of the energy in three
dimensions. The dashed curve represents the
densty f(E,T)D(E) of filled orbitals at a
finite temperature (f(E,T)denotes the
Fermi-Dirac distribution function), kT is

smal in comparison with E_.. The shaded
area represents the filled energy states at zero
temperature. (Kittle, C. 1986 pp.133)
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As used aready the one electron potential in a crystal has the tranglational
symmetry, as

V(r+a)=V(r) (2.27)
The Schrodinger equation reads

2

[- —NZ+V(D)]Y (r) =EY (r) (2.28)
2m

If the potential satisfies the trandational symmetry condition as (2.27), the Floque

theorem and the Bloch theorem tell us that the solution of (2.28) has the form
Y (r) = Aeu, (k) (2.29)

Here k issmilar to k, showing up in the free electron approximation described

earlier. More definitely it has the form.

Kk =kb, +k,b, + kb, (2.30)
ki :ﬂ
L

(i=1 2 3 (2.31)

i a, a,
ib, = -
T a >(a,2 as)
! a &
IMo =~
T a, >(a3 al)
i b. = a_ a
3T T - N
a; Xa,” a,)

(e

(2.32)

——

Here a,, a,, a, are the unit vectors of the crystal lattice; b,, b, and b, arethe unit

vectors in the reciprocal lattice. A general reciprocal lattice vector is defined as
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The function given by (2.29) is called the Bloch function. The eigen energy isa
functionof k , as

E=E, K) (2.33)

It isshown that E isaperiodic function of k and satisfies the periodic boundary
condition in the reciprocal lattice as

E,(k)=E,(k +G,) (2.34)

If we compare (2.31) with (2.16) or (2.18), we see k changes almost continuousdly.

18

The energy asafunction of k iscalled the energy band, since the energy of an

electron in the periodic lattice seeing the one electron potential has a width
determined by the dependence of E on k . The finite range of the energy appears
since E(k) isaperiodic function of k .

Theregioninthe k space defined as

(yp]
=
H

(2.35)

N

LloP|oe|o
th h

w?\_ ~

th h
LlopL|oP|o

—p—l ] ——r— —r —

is caled the first Brillouin zone or just the Brillouin zone. The energy band and the

Bloch function have the periodicity of G, defining the Brillouin zone. Because of

this periodicity, the energy bands can be reduced into the first Brillouin zone. The
band gaps are illustrated in Fig. 2.2

The density of states in the energy band picture is given as
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' e,
forbidden

8 %a 2n/a 3aja &

Figure2.2 Diagram of the energy band. Note that the
higher the energy of the band the large its width in

energy. (Myers, H.P. 1997)

N 2/ E+E
D(E)=—-=
©7 % ™ py W

_ .Y ds
@2p)° Ygrad, E(K)

dk®

(2.36)

where the integration is to be carried out on the equi-energy surface in the Brillouin

zone. By a simple calculation, we can show that an energy band splits into two energy

levels at the zone boundary where k; equalsto + P . The energy separation thereis

called the band gap.

One can distinguish insulator and metal from their band structure. If the valence
electrons exactly fill one or more bands, leaving others empty, the crystal will be an
insulator. If a crystal has an even number of valence electrons per primitive cell, it is
necessary to consider whether or not the bands overlap in energy. If they do so, then
instead of one filled band giving an insulator, we can have two partly filled bands
giving ametal as shown in Fig 2.3.
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Figure2.3 Occupied states and band structures giving (a) an
insulator (b) ametal or a semimetal because of band overlap and ()
ametal because of electron concentration. The illustration is made

for the reduce zone. (Kittle, C. 1986 pp.178)

In the case of Ni, the 3d band is not completely filled, it is a rather narrow band,
since d-electron wavefunction do not spread so far out as s-electron functions, and
interactions between d electrons on adjacent atoms are smaller than those between s
electrons. The narrow 3d band is overlaped by the broad 4s band, and the 3d band
gives a high magnitude of density of states D(E) asshownin Fig 2.4.

A E
s
N | | 4S
3} @Zzzzz77 N\ 30
D(E) «— a, —>a

Figure 2.4 Energy bands of nickel. To the right is shown the bandwidth of
4s and 3d dtates as functions of interatomic distance a(a, is the value for
solid nickel). To the left is shown D(E), the shaded area indicating the
filled parts of the bands. (Bleaney, B.l. 1992)
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2.2 Electric Conductivity

It's well known that metals have electrical resistivity. In perfect crystals, the
motion of electrons is in perfectly periodic lattices, which can be expressed by the
Fourier transform of Bloch function

Y (r) =€*"u, (k) (2.37)

There is no damping term and the wave function does not decay. But in practical
crystals, the impurity, defect, imperfection and phonon will distort the periodic
potential and interact with the conduction electrons to prevent the free motion.

The equation of motion experienced by a free electron subject to applied electric
and magnetic field is

F:me%:-e(E+v’ B) (2.38)

where the veocity, v, is identified with the group velocity of the wave packet
namely:

v, = Rowk) = (YR, E(K) (2.39)

here k, E(k) and w(k) are wave vector, eectron energy and frequency, respectively.

In considering the electrical conductivity, the magnetic field is assumed to be zero.
Because of the existence of scattering, the electrons can not be accelerated without
limit. These scattering events cause a reversal in the electron momentum and hence

act like a damping force in the equation of motion. If it is assumed that, a every

scattering event, the extra drift velocity v, (=(v- v,,), where v, is the equilibrium

thermal velocity) imparted by the eectric field, is removed on average, with t being
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the average time between electron collisions, then the equation of motion can be

modified by the addition of a damping term, m,v,, /t ,

m, (% +‘:—d) =_gE+V B) (2.40)

The quantity t is also caled the electron relaxation time. This situation can be
described as follows: First an electron is moving in the crystal with velocity equal to
its equilibrium speed, the thermal velocity. Under the action of the electric field, the
electron is accelerated toward the applied electric field and its velocity increases.

After a period of t, the electron is scattered and loses its velocity gained by the
acceleration due to the applied field. The amount of the loss in the velocity is

proportional to that of the gained velocity, the drift velocity. The probability that this

velocity loss occur is 1/t .

In zero field, the mean therma electron velocity v associated with the

equilibrium Fermi-Dirac distribution must be zero. However, when an eectric field is
applied, there is afinite drift velocity v, . At the equilibrium state, d%t =0. Then we

obtain for the B =0 case

v,=-2LE (2.41)
m

e

The electrical current density is | =- env. Where n is the electron density, thus, the

d.c conductivity s can be written as
s=—— (2.42)

where the m, is effective mass. The effective mass appears because the motion of

electrons in solid is in a periodic potential. An electron in a crystal can not strictly be
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treated in isolation (it forms a system jointly with the lattice), the momentum of such
an electron is not a true momentum, but a crystal momentum and, as such, momentum
may be transferred freely between electron and lattice. The effective mass is defined
by

g @I’EG
= 12E U deE .
dk?

(2.43)

Thus, clearly, the electric resistivity is depended on the relaxation time and
effective mass which are determined by electronic structure of a particular material.
Now, let's look into photoemission experiment, the useful means to obtain the
information of electronic structure or band structure. (Daniel D.Pollack 1990,1993
and Elliott, S. 1996)

2.3 Theories of Photoemission Spectr oscopy

We have presented the theoretical formulae describing the photoemission
spectra. In what follows we will discuss the electronic states of Ni in relation to the
energy band nature and the deviation from it. Thus, we start with modifying the
general formulae given in (1.15) to be adequate for the energy band state. Since we
will deal with the one electron state, we naturally assume that the relaxation energy,

Ex(N - 1), is small. Then we look into the transition matrix element part. First we

assume that the fina state eigen function and the initial state eigen function are given

as

Y >=[m>]Y (N-1)> (2.44)
Yy >=[1>]Y (N-1)> (2.45)
Here | m> denote the state of a photoelectron with a kinetic energy e, inside a solid

and |i > denotes the state of an electron in the ground state with an energy €. For
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smplicity, we ignore the Auger operator V, inthe T matrix. Taking into account the

fact that the electron-photon operator H'™ consists of the linear combination of one-

electron operator p, the transition matrix element is written as

<Yf |T|Yg >:<Yf |Ap|Yg >

. (2.46)
=<Y(N-D[Y (N-D>>x<mp,|i>
Here we defined the operator p,, as
p, = AP (2.47)

In the case where the relaxation associated with the emission of a photoelectron is

smal, Y (N - 1) ishardly different from Y (N - 1) . Therefore we have
KY,(N-D]Y (N-1)>=1. (2.48)
From the definitions given in (1.4) and (1.11), we have

e =-¢e, (2.49)

if the relaxation energy is ailmost zero. Thus, the photoelectron intensity distribution is

given as
N(emw) = A§ [(mip, i) d(e, - & - iw)d(e+e,).  (250)

Here we use the energy band model to describe one-electron states which are

described as
fim=|ck’)

2.51
)= -
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i em :eck'

i : (2.52)

16 = -6«

Here we use k' and k only in the first Brillouin zero. In the case it is a well-known
fact that transition matrix element is not zero only if the following condition is
satisfied:

k'=k- G (2.53)

Thus, (2.50) is written in the energy band picture described in the reduced zone

scheme as

N(g.7W) = g I<ck'lp, [v.k > d(k'-k - G)x
cK'v,k,G . (254)

d(eck' -Gy - hW) >d(e/k +eB)

In practice, %wis large for the excitation in the soft x-ray region as compared with
the binding energy |e, |. Then there are conduction states, c, satisfying the
momentum conservation (2.53) for any v and k . Therefore, we write | aw- e;,k'>
instead of |c,k'> and ignore the selection of special bands c. Thus, making

summation over k' and ¢, weobtain

N(g. i) = A [<hw- &, k - Glp, |v.k >F d(g, +&,). (255)

vk,G

This formula describes the essence of the photoelectron spectroscopy of the energy
band.

In angle integrated mode measurements, photoel ectrons with all possible crystal
momenta k are collected. This mode of measurement is realized by using a sample
consisting of randomly oriented small grains like one deposited by the vacuum
evaporation method. The transition matrix element can be replaced with its average

over all possible k as
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A [<hw- e, k- Gp, [v.k >=|M, (aw) [ (2.56)

v,k,G

Here it is taken into account that the transition matrix element is very much dependent

on the orbital symmetry, the azimuthal quantum number |. The valence band density
of statesis given as

D(e,)=a D, (&) (2.57)

Thus, we approximate the intensity distribution given by (2.55) as
N(e,.7iw) = AQ [M, () D, (&;) - (2.58)

The relaxation energy is not always small and (2.48) is not always satisfied.
So, under this condition, the one-electron approximation does not hold and we have to
make the many- electron approximation. It should be pointed out that the relaxation
effects are brought about the many-electron interaction based on the exchange and
Coulomb interactions. The typical example is the occurrence of the satellite lines.
Another example of the break down of the simple one-electron picture described by
(2.50) is the thing that the Auger interaction V, cannot be ignored. In this case, the
resonant photoemission occurs.

Not only the intrinsic many-electron interactions pertuning to the optical
excitations but also another source causes additional lines in a photoemission
gpectrum. A photoexcited electron travels a relatively long way from the place, at
which the electron is excited to the surface. It is possible to excite other electrons
existing in the solid. Such a satellite has a definite structure when the primary
photoelectron excites plasmons. These extract satellites are called the plasmon
satellites.
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2.4 Energy Analysis of Photoelectron

A very important measurement in photoemission experiment is the energy
analysis of photoelectron. A photoemission experiment is carried out as follow:
M A sample is exposed to monochromatic excitation light with an energy 7w.
(i) Photoel ectrons are emitted from the sample.

@)  The kinetic energies of photoelectrons are analyzed. Photoelectrons with a

kinetic energy of e, are selected and its intensity defined as the number of
photoelectron, N(e, ), emitted forward a specia direction set up by structural

instrumental arrangement is measured.

(iv)  The instrument to select photoelectrons according to their kinetic energies is
called the energy analyzer.

) The kinetic energy to be measured is changed and the intensity of the

photoelectrons is measured. The curve showing N(g ) versus e, is cdled the
energy distribution curve. The energy distribution curve is aso caled the
photoemission spectrum.
(vi)  The intensity of photoelectrons is also dependent on the excitation energy.
Thus, the energy distribution curve is written as
N(e ,nw) versus g,
(i) If e isfixed and the photon energy is varied, the resulting spectrum
N(e ,nw) versus e,
is called the partial photoyield spectrum.

(viii) I al photoelectrons with different kinetic energies are collected as
N (7w) = N (g, iw)de, , (2.59)
resulting spectrum

N(e ,7w) versus e,
is caled the total photoyield spectrum.
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Figure 25. Experimentad arrangement for
measuring the kinetic energies of photoelectrons.
€, : Kinetic energy in afree space.

V; : Retardation voltage.

V, : Voltage applied to energy analyzer
electrodes.

In fig 2.5, the principle of the photoelectron energy anaysis is shown. First,
suppose the sample is electrically grounded. If photoelectrons leave the sample with a

kinetic energy e, the energy is equivalent to a potential energy corresponding to
e =bV (2.60)

e "

In practice, we use an energy analyzer of the electrostatic type. It consists of a

pair of electrodes to form an electrostatic field with a potential V. A more detailed
description of the energy analyzer will be made later.

We use an electrode giving aretardation field V, in front of the entrance dlit of
the energy analyzer. Then, photoelectron loses the energy equal to eV, before it

arrives the entrance dlit of the energy analyzer. The energy analyzer is designed that

photoelectron with an energy equals to aV, can pass through it. a is a constant

determined by the structure and the size of the energy analyzer. Thus, we have the
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contact potential V. exists between the sample surface and the analyzer system. This

contact potential retard photoelectrons by and energy equal to €V, . Thus, we have

g - eV, - eV, =aV,. (2.61)

However the sum of the work function of the sample and the contact potentia
between the sample surface and the analyzer system is equal to the work function of

the analyzer system ¢ . which is practically that of the material forming the

retardation e ectrode. Thus, we have

6 - (6 .- §)=ev, +av, (2.62)

Using (1.5) we get

W-e,- 6 - (6 ,-6)=eV ray, (263

then we have

e, =hw-¢ .- eVy-aV, (2.64)

It should be remarked that the binding energy of photoelectrons can be
measured by scanning either V., or V, and it is independent on the work function of
the sample. Since constants a and € _ can be obtained separately, we can obtain €,
from (2.64).

Four different types of energy analyzer are shown schematically in Fig 2.6. In
the figure, panel (&) shows the parallel plate energy analyzer. The electric field pulls
the electrons toward the positive electrode direction and they make parabolic
trgjectories in the analyzer field. If the potential formed by the electrodes is fixed and
the distance between the entrance and exit dits is fixed then the energy of electrons
that can pass the analyzer field is decided. This is the principle of the energy analysis.
Other types of the analyzer, (b) the hemispherical type, (c) the cylindrical type and (d)
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the cylindrical mirror type, select the electron energy by the similar principles. The

characteristics of these types energy analyzer are shown in Table 2.1

Table2.1

Some important characteristics of electrostatic electron energy analyzer. Only the 1%
order values of the energy resolving power are indicated.

\T@ Parallel Plate Spherical Cylindrical
Characteristics
1 | Focus condition Incident angle 45° | Deviation angle 180° Deviaion angle
127°

2 Energy for the L R, R R,

' =eV, — =eV,/(=%- = =eV,/ 2In(—=%

central orbit S P55 & p/ R R & p/ n( R
3 | Resolving power De, 2w De, 2w De, 2w
& L & R & R

: Distance between the entrance and exit dit.
: Radius of the central orbit.
: Energy corresponding to the central orhit.

I‘0

Ro

eo

R, : Radius of the inner electrode.
R, : Radius of the outer electrode.
VP
w

. Potentia difference between two e ectrodes.
: Sit width.

The values of energy resolving power in the 1% order approximation are
presented there. In the higher order approximation the resolving power is dependent
on the square of the angular divergence of the electrons incident on the analyzer. The
energy corresponding to the central trajectory is proportional to the potential applied
to the analyzer electrodes. The proportionality constant is determined by the analyzer
geometry. Another distinctive aspect is that the resolving power is constant, which is
also decided by geometrical parameters.

Detectors of photoelectrons are electron multipliers. In an electron multiplier,
an electron hits the electron target and generates secondary electrons. A secondary
electron produced is accelerated between adjacent electrodes and hits the neighboring
electrode, where it produces more than two secondary electrons. By successive
repetition of this secondary electron generation, the number of electrons generated
comes up to he values of 10°, and they are detected as a pulse current. If the electrode
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Figure 2.6. Principle of operation of electron energy analyzer.
(a) Parald plate energy analyzer.

(b) Hemispherical energy analyzer.

(c) Cylindricd energy analyzer.

(d) Cylindrical mirror energy anayzer.
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Figure 2.7. Principle of operation of electron multipliers.
(a) Photoelectron multiplier tube.

(b) Channeling electron multiplier.

(c) Multi channel electron multiplier.
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Figure 2.8 Photoemission detection.

is designed just as a tube where the potential gradient is imposed by flowing small
current across a high resistivity.

The device like this is called channeling electron multiplier. The principle of
the electron multiplier is shown is in Fig 2.7. If very thin channeling electron
multipliers are board together, it can be used for two dimensiona detection. The
deviceis also shown in Fig 2.7.

The current pulses are counted and taken as the photoelectron numbers. The
electronic system for the photoelectron detection is shown in schematically Fig 2.8.
No further explanation of the circuit is made here.
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2.5 Photoemission Spectroscopy of Metallic Nickel

We will see the experimental results of the photoemission spectra of metallic
nickel. From periodic table, we know that the electronic configuration of Ni atom is
1s%25%2p°3s?3p°3d®4s? with 5 spin-up and 3 spin-down electrons in the 3d orbit. The
XPS spectra of the 3d, 3p, 3s, 2pi1» and 2ps;, levels of Ni metal are shown from
Fig.2.9. They are the spectra of the valence band and the core level with binding
energies lower than 1000ev. The values of the binding energy are shown below each
spectrum. The XPS spectra cannot be measured with an energy resolution better than
about 0.8eV. This is because the intensity of x-rays used for exciting photoelectrons,
either AIKa, (1.468keV) or MgKa, ; line (1.257keV), is not strong enough for them
to be monochromatized to a narrow line. Even if the monochromatization with a
resolving power of 5000eV is realized, the resulting resolution is about 0.25¢V.

In the core level lines, the multiple structures are expected to be observed. In the
case of the 3p spectrum, the coupling between the 3d electrons and 3p holes through
the exchange interaction can give rise the multiple splitting observable with as low
resolution as 1.0eV. In the 3p spectrum shown in Fig.2.9, such structures are not
found. It may be ascribed by the fact that 3p electrons in metallic nickel are itinerant
to a considerable extent and not much localized so that the exchange integral between
the 3p and 3d states is not large enough to cause the observable multiple splitting, the
main line peak around 66eV has the composite structure. It is caused by the spin-orbit
splitting of the 3p-hole level; the 3p;, is expected to occur at 66.2eV and 3p;), at
68.0eV.

Figure 2.9 shows the existence of a satellite line around 6eV below the main
line. In the valence shell spectra, a feature is found 6eV below the main band.
Wertheim and Hner showed that similar features also occur in the spectra of core
level lines in Fig 2.9. There were a lot of arguments concerning the origin of the
feature. In the figure, features aligned on the vertical line designated as satellite are
the features under question. Since the features are common among various core level

lines, their origins were considered to be practically the same.
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Figure 2.9. XPS spectra of the
3d, 3p, 3s, 2psp, and 2py,, levels
of Ni metal. The main lines have
been lined up to demonstrate the
constant distant of the satellite
position. ( H#er , S. 1975)

The feature is now called the 6eV satellite or the two-hole bound state satellite.

Some explanations were represented in the past. One of the explanations is impurity.

But the high quality sample preparation and chemical analysis of the surface expels it.

Another explanation is band structure effects. But the data of angle—resolved

photoemission spectroscopy disagree with this idea. Also people regarded the idea

that the structure is the plasmon sideband. It is the most possible reason owing to the

character of a metal. It is further plausible, because the feature is common among all

the core level lines. However, the loss function, as measured by optical means or by

electron energy loss experiments does not show any structure at energy around 6eV.

Therefore, the only possible explanation in terms of final state effects is left.

Figure 2.10 gives a schematic band structure of nickel metal in the initial state,

are partially filled and the parts of the bands are located above or under Fermi level.
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Figure2.10. Schematic density of states of Ni, indicating the origin of the
main line and the satellite for core ionization (c); The initial state is c3d"*4s’
and the two final state are ¢'3d’4s' (satellite) and ¢'3d'%4s (main line); ¢
denotes a core level, ¢ ' a core hole.

In the final state of the photoemission from a core level, a hole exists in the core level
and this alters the valence state considerably, because the core hole potential changes
the valence state in a way that extra electron-electron interaction is generated in a

comparatively localized state. In the sense of equations (2.44) and (2.45), the many

electron state,

W (N- 1)> , 1s different from |W (N - 1)>. By solving many-electron

hamiltomian, one can prove that there are two many electron final states with eigen

energies E, and E, where

E, =E, +6el . (2.65)
The transition to the E, state generates the feature at a binding energy higher than E,
band by 6eV. The occurrence of the two final states is explained by the states, but it is

qualitatively understandable as follows: In the atomic level notation, the ground state

configuration of the nickel atom in the metallic state is 3d°4s. This means that the
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energy band of nickel is filled up to the state in which average change density of
nickel is such that 9 electrons in the 3d orbitals and 1 electron in the 4s orbital. Since
the 3d band is filled up with 10 electrons per atom, the 3d’ state is equivalent to the
one-hole state in the 3d band. As far as the electronic configuration is concerned, the
3d%4s” state is also possible. According to the existing solid state data such as the
magnetization, the Mossbauer effect, the neutron diffraction and the specific heat,
show that the number of average 3d electrons per atom is slightly larger than 9, the
3d°4s configuration is dominant in the ground state. This means that the state

generated by the 3d’4s' configuration has the energy higher than 3d*4s” ground state.

Thus we assume the ground state |Wg (N —1)>, in which a core electron is

missing, to be
W, (N -1))=[3d"4s) = ¢, (2.66)

In the final state, the perturbation due to the existence of the core hole occurs.
Because of the correlation potential caused by a core hole, the state originate in the

3d%4s” configuration mixes into the (N —1) state. Thus,

W (N -1))=d|¢,)+b]9,) (2.67)

|9,) =|3d"4s7) (2.68)

Let the hamiltonian in the ground state be H,and the corresponding eigen energy be

E, . Then we have

DHo|¢1> = E1|¢1>

(2.69)
Ho|6,) = E,|$,)

In the final state, the hamiltonian is changed to
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H=H, +MH (2.70)

where AH is the correlation energy caused by the core hole. The hamiltonian equation

is
H|W, (N -1)) = E|W¥ (N -1)) (2.71)

Therefore,
(H, +DH)(a|$,) +b|¢,) = E(ald,) +b]¢,))  (2.72)

Then the secular equation to solve (2.72) is

E1 +AH11 —E Ale
=0 (2.73)
AH,, E,+AH,, - F
E <¢1 |AH|¢1> =AH,
0 <¢2|AH|¢2> =AH,, (2.74)
o, I0H| ¢, ) = AH,, = (¢, |AH|9,) = AH,, = A

If we put

JE, +0H,, = E,
[, +AH, = E, (2.75)
d E,-E =5
The secular equation (2.73) is written as
BB B (2.76)
A E,-E
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A
(A
E 2 AH 22 5E2
E, T g E
11 A
—)A
( 5)

Figure 2.11 Energy diagram for the
solutions of Shr&linger equation

~ A
£ =E +(HAE,

Oor E, —(%)A =F_

OOodcl—

Here the assumption is made that

[k, > E,
O
0o >>A

The final state eigen functions are

w_;(N—1)=(§)|¢l>+ 1—(§)z|¢2>
AH]I

¢ E=E,=E, +DH,, +(

Yo (N-1)= 1—(%)2|¢.>—(§)|¢2>
AHI]

o O D]]\QQDD]]D

Ez _El +AH22 _AHII

%for E=FE =E +AH, —(

Ez _E1 +AH22 _AHII

(2.77)
(2.78)
)’AH,,
(2.79)
)’AH |,
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If the state is ‘3d 94s> in the ground state with energy E|, the spectral weight for the

transition to F, state is given as

Copyright 2000 Suranaree University of Technology



E 1 E 2
seen il > 8
E_ ........................... 2, E+
pal )
// -
0 7/ o L >

Figure 2.12 Diagram for the transition from initial states
to the two calculated energy states.

(w; v =W, - 1)>‘2 =|(w; v —1)\361794s>‘2

A (2.80)
— (252
( 5)
Similarly, the spectral weight for the transition to £_ is given as
_ 2 _ 9 2
(wr v =p|w, (V=) =[(w; (v =D3d"4s)
A (2.81)
=1-(3
o
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In the explanation described above, the core hole generated play a role to

provide the perturbation for exciting the E”state. Its effect manifests itself as AH and

thus as A above. We will come back to this point later.

In the case of the valence shell excitation, the situation appears to be more

complicated, since the hole is incorporated by a photon in the valence shell. Then the

two base states describing the final state could be

H¢,)=|3d")

%¢2> = ‘3d84s> (2.82)
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instead of ‘3d 94s> and ‘3d84s2> in innershell excitation. The all other mathematical

treatments are the similar to those described above and the results are the same as
those given by equations (2.78) and (2.79). The spectral weight is not so simple as
those equations (2.80) and (2.81). In order to show the concept only, we ignore

rigorousness and assume that the ground state eigenfunction is given as

W, ) =al4s)¢,)+ Bl3d)[9,)

2.83
= a|4s)|3d°) + B|3d)|3d" 4s) 25
and the final state eigenfunctions are given as
Wr)=le, )| W (N=1) for E" state .50
E‘W}>Z|£,{>‘W}(N—l)> for E” stat ’ '
the transition matrix elements are given as
N 2 A A
(w7 frlw, ) =l dielas] ) +[8] delpl3a)f a-cpn oo
for the transition g - E*
~ 2 2 A A 2 A
(W [r]w,)| =lal’ e, lpl4s) @ =G+ 1B e pl3d) )7 (2.86)

for the transition g — E~

Here we ignored the cross terms

a’Ble, [pl4s) (g, |p|3d>(%) 1- (%)2 +c.c.

In many cases, the cross terms are small. If the cross terms are not negligible, the
interference effect follows. Since the ground state can be described by the energy
band picture, decomposition as shown in (2.83) comprises many terms. In the case of

the atomic spectra and the crystal field spectra, where the multiple coupling and/or the
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crystalline field effect dominated, coefficients a and finclude the factors like the
Clebsch-Gordan coefficients, 6j-symbols and the coefficients of fractional parentage
appear
ground state  final state
(3d’4s)0M 3d’4s) +e - (3d’°) +e
- (3dt4s)+e
(3d4s)OM  (3d4s) +e
(3d3d4s) +e
(362 *4s) +e

For the valence shell state, we postulated so far that there are two basic final state
configurations, 3d° and 3d*4s. However, this has to be considered more carefully.
First the configuration is for one Ni atom. So we have not taken the solid state effect
at this stage. Second the satellite splitting is governed by the quantity designated as
0 . We have not taken insight in this quantity. Third, the theoretical foundation of the
two different final states is not given.

In the present argument, the ground state, 3d°4s, represents the many-electron
state generated by energy band electrons. Thus the corresponding eigen energy has
just a single value given by the sum of all the electrons occupying the band. The
situations for the two final states, 3d’ and 3d®4s, are more or less similar. However the
eigen energy for them is not a single value. The value spreads since there are many
3d’ and 3d%4s states with different 4s™ states, the hole states in the conduction bands.

This aspect is better understandable if we consider the hole states. The ground
state is described as the one 3d-hole state 3 d , since the 4s band is only half filled and
do not consider the unfilled part as the hole state. If an incident photon ejects a 4s
electron form the sample, a 4s hole, 4 5, is added to the sample. If a photon ejects a 3d
electron, a 3d hole is added. Obviously, there are two distinctly different cases. The
added hole can migrate in the crystal jumping from site to site, since it occupies the
energy bands. The state like this is represented as ( 3d3d4s ). In this state, 3d holes are

moving independently of each other.
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Suppose two 3d holes exist on the same lattice site. The holes repels each

other by the electrostatic repulsion. Particularly, the exchange interaction increases

the state energy by an amount denoted so far as 0 or J . If such two holes exist at one
lattice site, conduction electrons approach the site to screen the extra change
incorporated by two holes. In the balance of the exchange repulsion and the screening
by conduction electrons, the two holes can be kept located at the same lattice site

forming a stable state. This state is called the two-hole bound states and represented

as 3d*4s here.

The most important issue in the argument of the 6eV satellite is to prove that the
two-hole bound state does exist. This has been carried out many authors. Their
arguments are based on the Hubband model. Thus they started with the view that 3d
electrons are itinerant. The exchange interactions in the system with one hole per
atom at the beginning generate poles in the spectrum function, the green function, that
leads the peaks in the spectrum function. One of them gives a peak about several
electron volts below the main peak. The treatments like this show not only the
existence of the satellite but also the existence of a stable two-hole state or a single
site. They also show that the electronic structure of metallic nickel in the final state of
photoemission cannot be well explained in terms of the energy band picture only.

The 6¢eV satellite in the core level line can be explained similarly. However there
is an essential difference in one issue. The aspect which is similar to the case of the
valence shell spectrum is that the occurrence of the satellite is the reflection of the
energy state of the valence electrons. The aspect that is quite different is that both the
satellite and main line are the line spectra. This shows that the valence shell energy
state should be treated as an atomic states. The strong correlation interaction caused
by the core hole changes the valence shell state in a way the itinerant nature is lost
and the state under problem is localized on the atom where the core hole is located. If
the atomically localized nickel electrons seeing the core hole potential take the
configuration 3d*4s?, the important interaction between 3d electrons is the exchange
interaction. This explain the two-hole bound state satellite occurs at the same energy

apart from the main line. In this 6eV satellite state, the energy band picture collaps
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completely. This type of the many-electron interaction is brought about by the
photoproduced hole.

In the argument of the 6eV satellite of nickel, some seemingly different
qualitative interpretations are proposed. They explain a property of photoexcitation.
As we have seen already, the satellite is a result of the interaction between localized
electrons in an atom of metal and this interaction occurs only in the final state in the
photoemission process. Thus, the spectral feature like this is mentioned to be caused
by “the final state interaction” or, using a term from the atomic spectrum not quite
appropriately, “the post collision interaction.” As mentioned already, this is a typical
example of “the collapse of the energy band picture.”

We have seen that the core level satellite is caused by the core hole potential
suddenly generated by photoexcitation. It changes the outershell electronic structure
so that they are more localized on the core hole site and the correlation interaction is
enhanced. Just for the convenience for the explanation, we suppose the final state
interaction is that a 3d electron is excited to the unoccupied 4s level. In analogy to a
similar excitation in the case of the photoemission spectra of some rare gases, we call
this the shake up transition. We take the process as if an electron is being lifted up
during the course of the shaking of the orbit by the incident electromagnetic
oscillatory field of a photon. In this sense, the satellite is called the shake up satellite.

Since the 6eV satellite appears as if a level exist 6eV below the level leading to
the main line and this lowering of the level is caused by the photoproduced core hole.

Therefore, the satellite is often called the shake down satellite. As mentioned already,

movile and immovile 3d holes are generated by photoexcitation: 3d3d and 3d’. In
case of immovile holes, the two bound holes, they attract more conduction electrons
to screen the pair. In this sense, the satellite is called the well-screened peak by some
authors. On the other hand, the main line is called the poorly screened peak. The
shake-up, the shake-down and the well screened peaks are just the name given
without a well established quantum mechanical treatment. The two-hole bound state
and the theoretical calculation based on the many-electron quantum mechanics are the
correct one. The idea of the two-hole bound state was first proposed by N. F. Mott
long time ago. He referred to the energy band calculation by J. Kanamori as the basis

of the concept.
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In practice, the hamiltonian of the system is given as

it Ll i

H=Y &,d,d,+UY d\d dd, . (2.87)
ko i

Here €,, is the energy of a conduction electron, d,, and d, are the creation and
annihilation operators of the conduction electron. Here we consider d electrons are
also itinerant. d_ is the creation and annihilation operators of the electrons bound on

the nickel atom where the photoproduced hole is located. The hamiltonian can be
solved the most simply by adopting the random phase approximation. U 1is the
exchange energy between d electrons bound on the extra hoe site. This equation is
solved under the assumption that two holes exist in one site. Different authors have
used different types of the Feynmann diagrams, but for the final result they have
obtained are not much different. The spectrum function leads to the density of state

(Green’s function) is given as

Jio

£-€,—Sko,e)+i0"

(ko,8)= =3 (1= fi) v

k' 1 + UGI(()a,k'U (8 + gk'a )

0 _ fk+q fk'—q
Gka,k‘a - Z c-¢

N+
T kig ~Epoq ~10

G(ko,¢) =

(2.88)

D]]I:II:ID@JI]]]I:II:II:I

Here f,, 1s the Fermi-Drack distrbution function. The density of states is given as

D(e) = :—TIm z G(ko,¢) (2.89)

the pole in the Green function is obtained by solving

£E-¢&,-Sko,e)=0 (2.90)
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Figure 2.13 The result of numerical
calculation.

thus the poles are given as the cross points between two curves

o= 5(ko, ) 2.91)
[W=E&~ &,

Fig 13 shows the result of numerical calculation of the curve w = S(ko,&)and with
that of w =€ —¢,, . Circles in the curve show the cross points. This one point present

the location of the main band (center gravity!) and other two the satellites. Third line
corresponding to the pole has recently been found, although the peak intensity is very
weak. In this way multihole bound state satellite has been theoretically established.

In order to show the more convincing evidence to support the two-hole
assignment for the 6-ev satellite in valence band of Ni metal, we have to mention
resonance photoemission briefly here. The use of energy tunability of synchrotron
radiation is crucial for performing the resonant photoemission, which is a

phenomenon that the ionization cross sections of outershell electrons are enhanced

Copyright 2000 Suranaree University of Technology



46

enormously for excitations above the threshold of an innershelle excitation. The
fundamentals of the resonance mechanism was worked out by Fano for suggesting the
line shape of the autoionization spectrum. The main part of the valence band
photoemission in the transition metal is brought about by the photoionization of the

3d electron. In the atomic notations, the transition is written as

3p°3dY O 3p°3d"'el. (2.92)

The final state, 3p°3d " '€l , can be reached by the transition as

3p°3dY O 3p°3d" OFFL 3p°3d el (2.93)

If the two processes, the photoabsorpton of the 3p electron and the subsequent Auger
transition, occur instantanously, the transition looks like one given as (2.92) as whole,

and the situation is the resonance between the innershell excitation 3p — 3d and the
outshell excitation 3d — &€/. As a result, the ionization cross section of the 3d
electron is enhanced above the threshold for the 3p — 3d excitation. In this case,

what gives rise to the resonance is the second term of the T-matrix operator given as
(1.18).

In the process expressed as (2.93), the state, 3p°3d""', is an intermediate state.
Let us refer to the basis function of such an intermediate state as |Wu> . Since all the
states accessible directly by optical excitations can be the intermediate states, the

intermediate state a set of basis functions as {|W¥,),

W )}. Then, from (1.18) and

(2.50), we have

;WM
{-H-V,

(W, |p. wg>+;<wf AR ﬁh@.)ﬂ (2.94)

N(&,,Nw) :AD;| (W, |p.] wg>+z (W, |7, w, ),

(W, |p|W,) [ <O(E, ~E, +nw)(E, ~E, (N =) +¢,)

A pe

{=nw+E, +i0" (2.95)
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Figure 2.14 Schematic illustration of the resonant photoemission
processes, expressed as the propagation of the state occurring in the
transitions. V and C stand for the valence level and the core level,
respectively.

The terms in the first factor in (2.94) have straight forward meanings. They are
illustrated in Fig 2.14. Each state is represented by hypothetical energy levels, where
V stand for the valence level, C for the core level, black dots for electrons, white dots
for holes, thin arrows for transitions, and thick arrows for propagations. Encircled
capital letters represent operators, where G stands for ({ —H —V,)™". Then first line
in the figure corresponds to the first term in the first factor in (2.94), the second line to
the second term, and the third line to the third term. The second and the third lines
represent the resonance. The optical absorption bring about the intermediate state, the
propagator G transfer the intermediate state to other intermediate state, and finally the
Auger process carries the state to the final goal.

The line shape is approximated by the line shape function known as the Fano

(Fano, U. 1961) line shape. It is given as
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_(e+g)’
fe) =50 (2.96)
g =079 (2.97)
r
M =1(¢) (2.98)

where nw; is a photon energy equal to the binding energy of core level (near which

the resonance is investigated), g is a parameter for the particular core level and V' (€)

represents the interaction potential between the core hole and the outershell electron. For

the transition between 3p and 3d, the parameters ¢ and I are given as

q= Bdlp.3p) (2.99)

(3 p,gz|e%2 13d,3d)(e1|p.|3p)

r= 7T<£l,3p|e% 13d,3d) (2.100)
12

Resonant photoemission is very useful to draw out the partial density of states
curve with a specific symmetry. This is a typical analysis using difference spectrum
which is formed by subtracting the off-resonance spectrum from the on-resonance
spectrum. The analysis of the resonance process itself is also quite interesting from
the view point of physics about the interaction of radiation with condensed matter.

Figure 2.15 shows us the valence-band PE of Ni metal with photon energy
around the 3p core level binding energy. It is clear that the 6-ev satellite is enhanced
at the photon energy 67eV around 3p threshold. At this photon energy direct
photoemission from the valence band (assuming screening by 4s-electron) may be
described by (omitting the work function)

3d° +Nw - 3d°[4s]+e [E,, =NW(E;,)~E

(valence)]

sat

([4s] is a 4s screening electron). This is the 6ev satellite.
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Figure2.15. Valence-band PE of
Ni metal with photon energies
around the 3p core level binding
energy (Eg=67¢eV). The
resonance enhancement of the
satellite (hatched area) (Eg=6eV)
is clearly seen at Nw L167eV .
The diagrams on left-hand side
indicate the process involved in
direct PES  (bottom) and
resonance PES (top). (Guillot, C.
1977

In addition, this photon energy can excite an electron from 3p shell into 3d hole

just above the Fermi energy in Ni metal and a excited state is formed. The excited

state can decay by an Auger process. It leads to the same final state (3d%[4s]) and

gives electrons with the same kinetic energy as direct photoemission. We express this

process (omitting the work function)

3p°3d’ +nw - 3p 3d"° UL 3p°3d°[4s]+e [E,, = E;, — E,, (valence)]

The intensity of the 6ev satellite below the valence band as a function of photon

energy is also showed by Figure 2.16.
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If we arrange an experimental system in which a crystalline sample with a
definite crystal plane as the surface and its orientation is fixed in space relative to an
energy analyzer and the direction of incident light, we can carry out a typical Angle
resolved photoemission (ARPES) and map the dispersions of energy bands. The
energy states of metal are characterized by the single-electron energies &€ and their
wave vectors k, which the &£(k) relation is the band structure. PES measures
transitions between states in occupied and empty bands. These transitions are vertical
in a reduced zone scheme (energy and wave vector conservation by neglecting the
photon momentum) and called vertical or direct transitions. In this process, a
reciprocal vector G is involved, then, the momentum of potoexcited electron k should

be written as
k'=k+G.

Consider the third step in three-step model, the transmission of the photoexcited

electrons into vacuum must satisfy the condition

A2 5 0 (2.101)
2m
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Angular Resoived Photoemission Spectroscopy|ARPES)
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Figure 2.17 Definition of the parameters in an angle-resolved PE (ARPE)
experiment; N : photon energy, A : vector potential of the radiation, W : angle of
incidence of photon, 8 : polar angle of the detected electrons, ¢ : azimuthal angle of

the detected electrons with respect to the crystal axes, AQ: detector acceptance
angle. ( Hffner ,S. 1996 pp.362)

The transmission leaves the parallel component of the wave vector conserved
p,/n=k', =k, +G, (2.102)
Here p is the momentum of the photoelectron in vacuum, k,is the parallel

component of the wave vector k of the photoexcited electron. So, the kinetic energy

outside the crystal is determined by
n’ P
g, =—kj +(=2)°] (2.103)
2m n

where the p,/n is the perpendicular component of the electron vector in the vacuum.
It is clear, that an experiment taken at any k, does not allow the determination of the

full wave vector k of the crystal state, because k; remains undetermined. According

to this, we have

k= %,/zm(eu —e)sin® (2.104)
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where the 8 is the polar angle determined by the direction of the photoelectron as
shown in Fig 2.17, the Angle-resolved photoemission experimental scheme. Thus the

dispersion of the energy band is obtained, as

£, =€,(k,). (2.105)

Suppose, for example, photoelectrons with high energies just as the XPS case.

Then, in the first Brillouin zone, there are many equi-energy surfaces € ,. which have
the same energy as &, +nw. Thus, there are many cross lines between the equi-
energy surfaces €, and the equi-energy surfaces £ . If we draw vectors from the

origin to these cross lines, we obtain wave vector k' satisfying the energy

conservation given by

E, =€, tnNw. (2.106)

If we add various G to the vectors obtained above, we have the wave vectors k'
satisfying both the energy and the momentum conservation given by (2.53) and
(2.106). Since we have many equi-energy surfaces and G, we have many different
final-state k' vectors occurring near the same direction. With a finite angular and
energy resolution, different k' vectors bing oriented comparatively closely can not be
resolved. For small excitation energies, the transition matrix element occurring in
(2.54) is small for the transitions in which G is not vanishing. If G =0, the number
of k satisfying both (2.53) and (2.106) is limited, and ARPES makes sense. The
interpretion of the experiment is also illustrated in Fig 2.18.

For metals, the current band structure calculations give reasonable results. But
very convenient step consists in approximating the calculation final states by a free-
electron parabola. This process can be iterated using the experimental data to adjust
the zero of the final state parabola. In a standard method, the only way to change k in
order to map the band structure is to change the electron detection angle 6 with

respect to the surface normal. The analysis of the data is mostly done by so-called
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“structure plots”. In its simplest form this means that one calculates the band structure

for the energy and angles used in the experiment and compares an experimental E(6)
with the theoretical E(0). Figure 2.19 shows the results of an experiment with Ne

radiation (Nw =16.85¢V ) for Ni (110) crystal. The electron detection angle was tilted
towards the [111] and [100] direction. The points in Fig 2.19 are directly taken from
the EDCs. The theoretical curves were obtained by using a band structure
paramatrized in an interpolation scheme for the occupied bands and a free electron
final state. The final result of this procedure is presented in Figure 2.20.

We can find from (a) the best fit experimental band structure as obtained
from the procedure just outlined and compares it to the available normal emission
data obtained using synchrotron radiation. In the right hand panel (b) the experimental
band structure is compared to a theoretical one. The deviation between theory and
experiment, especially for the d-band width, is quite large. It is believed to come from
a considerable final state interaction. But, it is still clear that the density of 3d states is

much higher than the density of 4s states. ( H&fner , S. 1996 and Huff, W.R.A. 1997)
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Figure 2.19 “Structure plot” of the valence band of Ni obtained with Nw =16.85¢} from a
Ni(110) crystal; the electron detection angle is tilted toward the [111] direction and the [110]
direction. The hatched bands are obtained using and interpolation scheme to fit a band
structure of Ni to the data points (open dots); the width of the “bands” reflects a 4eV
broadening (lifetime) introduced into the final state. (Martensson, H. 1984)
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Figure 2.20 “Experimental” band structure of Ni derived with the procedure
outlined in Fig2.11 (full curves) (a). Comparison with normal emission PES data
(open dots) (b) (dotted curves) calculated band structure. (Martensson, H. 1984)
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2.4 Electric Conductivity of Metallic Nickel

All photoemission spectrum showed above tell us the fact that for transition
metal elements, they are different from normal metals because of the incompletely
filled d level in the crystalline state. Particularly for nickel, the 4s electrons can
occupy the empty 3d band with a appropriate probability and the 3d band appears a
very large density of states.

According to the facts of nickel, from (2.42), the electric conductivity should be

written as:

2 2
_ nee*Te +nhe*Th (2.107)

m mgy,

se

where the n, and n,are 4s-electron and 3d-hole density. The 7, and T, are

relaxation time of 4s-electron and 3d-hole. The m_, and m,, are effective masses of

4s-electron and 3d-hole. Let’s consider the scattering probability of 4s-electron and

3d-hole. (Fang, J-X 1983 and Elliot, S.R. 1998) These are:

LIS (2.108)
T

and

S i (2.109)
Th Thdd Thds

where the subscripts ss, sd, dd and ds denote the scattering between s-s, s-d, d-d and
d-s. Because the density of 3d states is much higher than the density of 4s states, we

have

(2.110)
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then
%:TL+%=% @.111)
Obviously,
T, <7, (2.112)

Also, from the high density of 3d states, we can obtain m,, >>m_, by (2.43). So,

the 3d holes of nickel give a very small contribution to the electric conductivity. That
is why Ni has high resistivity than normal metals and even the neighbor copper which

has completely filled d band.
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Chapter I11

Photoemission Spectroscopy and
Magnetism of Metallic Nickel

Magnetic materials are widely used in our daily life and the most important class
of magnetic materials is the ferromagnets. Ferromagnetic materials have two
important characteristics: (1) relatively large magnetizations may be induced in them
spontaneously or by comparatively low external fields and (2) these materials may
retain their magnetizations when the field is removed. However, there are only few
ferromagnetic elements in the periodic table, iron, cobalt, nickel and several of
lanthanides. In order to satisfy the demeans for different applications, the study of the
mechanism of ferromagnets became an important and interesting work. Being one of
the simplest ferromagnets, the study of nickel is very representative and significant.
Let’s review some theories and concepts about magnets first before photoemission

experiment in this chapter.

3.1 Magnetism of Metallic Nickel

As we know, the present of a magnetic material will influent the magnetic flux

density, thus the relationship among the magnetization  , magnetic susceptibility

and macroscopic magnetic field intensity  is

(3.1a)
orin C.G.S

(3.1b)
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Where is the permeability of free space. Substances with a negative magnetic
susceptibility are called diamagnetic. Substances with a positive susceptibility are
called paramagnetic.

For paramagentic materials, the magnetic moment of an atom or ion in free space
is given by

(3.2)

where the total angular momentum is the sum of the orbital and spin
angular momenta.

The constant  is the ratio of the magnetic moment to the angular momentum,
is called the gyromagnetic ratio or magnetogyric ratio.  is called the factor or the

spectroscopic splitting factor is defined by

(3.3)
For a free atom the factor is given by the Lande equation
(3.4)
The Bohr magneton is defined as in CGS and in SI. It is closely

equal to the spin magnetic moment of a free electron.
In a magnetic field an atom with angular momentum quantum number  has
equally spaced energy levels. The magnetization for ~ atoms per unit volume

given by

(3.5)

where the Brillouin function is defined by

(3.6)
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For , we have

(3.7)

We adopt the second order approximation, then

(3.8)
and the susceptibility is

(3.9)
Here is the effective number of Bohr magnetons, defined as

(3.10)
and the Curie constant

(3.11)

The form (3.9) is known as the Curie law.

In contrast to paramagnetic materials, ferromagnetic substances may be
maximum magnetical (reach saturation magnetization) in small or negligible fields at
normal temperatures. Weiss hypothesized that the reason of spontaneous magnetic
moment in ferromagnet is an internal interaction which tends to line up the magnetic
moments parallel to each other. This interaction is called exchange field (molecular

field). Such a field could be given by the relationship
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(3.12)

where is a constant (mean field constant), independent on temperature. If there is a

applied field with paramagnetic susceptibility ~ , one has
(3.13)
The paramagnetic susceptibility is given by the Curie law . Compare
(3.12) with (3.13), we find
(3.14a)
orin C.G.S
(3.14b)
Detailed calculations predict
(3.15)
at temperature very close to . The reciprocal susceptibility of nickel is plotted in
Fig3.1.
From (3.14) and (3.11), we may determine the value of
(3.16)
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Figure3.1 Reciprocal of the
susceptibility per gram of
; nickel in the neighborhood of
[ the Curie temperature (358 0c)
' The density is . The dashed
| line is a linear extrapolation

from high temperature. (Kittle,
C. 1986. Pp.425)

<
Fd
1 |
& | |

#
fr;"rl

EIE]

950 450

Tl'lll[ll'l.lhlr'-.— im

i

Attempts to calculate this exchange field by methods such as the classical

Lorentz internal field are too small by a factor of . Thus, the internal field cannot

be ascribed to simple magnetic dipole interactions. The modern explanation of
exchange field is described under quantum theory. The molecular field postulated by

Weiss was “explained” by Heisenberg. Two electrons of spin  and  are postulated

to have a potential energy, in units of , of

(3.17)

Where is the exchange integral that is related to the overlap of the charge

distributions and  is the angle between their spin vectors.

Ferromagnetism arises from parallel spin ( ) and a positive

Negative values of  describe the situation for the antiparallel spin configurations of

antiferromagetic

and ferrimagnetic materials. Valueof

correspond  to

diamagnetism.
As can be seen from (3.17), the exchange energy and consequently the exchange
forces arise from nearest-neighbor interactions. The Pauli principle excludes two

electrons of the same spin from being at the same place at the same time. It does not
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exclude two electrons of opposite spin. Thus the electrostatic energy of system will
depend on the relative orientation of the spins. The difference in energy defines the
exchange energy. In the other word, According to the Pauli exclusion principle, only
two electrons of opposite spin occupy a give state. Changes in the relative directions
of two interacting spins must results in changing their spatial charge distributions.
One way to picture this is to consider each state as an “orbit”. The average “radius” of
the “orbit” of an electron with parallel spin will be different from that of one with an
antiparallel spin. A reversal of one of the spin must change the orbit of the other
electron and the redistribution of the charges give their energy of interaction. For

nearest neighbors with parallel spin, this energy is given as (Daniel D.pollack

1990,1993)
(3.18)

For ferromagnetism , the magnetic moment for one spin, in unit of

(3.19)

Recalling that the product of molecular field and is energy, it follows that
(3.20)
is the energy at the Curie temperature. By means of (3.18) and (3.20),

(3.21)

For spontaneous magnetization, . In order to relate this to the given

nearest neighbors, this must be in terms of the corresponding atomic volume . Thus

(3.22)
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Substitute (3.22) into (3.21)

(3.23)
Which is reduced to

(3.24)
Then we substitute (3.16) into (3.34) again,

(3.25)
For ferromagentism, the above equation may be reduced, for , to

(3.26)

In case of f.c.c crystal, the  is 12 and

Figure3.2 Schematic diagram of the
exchange integral as a function of the
Ni ad ratio of half of the interionic distance
o FERRO to the “radius” of the d band for

ANTIFERRO &'y ferromagnetic elements compared to
M that of Mn. (Daniel D.Pollack 1990

~dg pp-514)

+lp Co
Fa

Another useful result of the exchange theory is postulated by H.Bethe that s
a function of , where s the average “radius” of the d shells and is the one-

half of the distance between the nuclei of two atoms. So ferromagntism is present
when the interionic conditions optimize the overlap of parallel d-level spins. Fig.3.2

shows the relative values of Gd, Ni, Co and Fe, which is known as Bethe-slater
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curves. J.C.Slater considered that had to be approximately equal to, but not too
much greater than 3.0 for ferromagnetic behavior. His findings show in Tablel.

Metal Cr Mn Fe Co Ni Gd
2.60 | 294 | 326 | 3.64 | 3.94 3.1

Table 3.1. (Slater, J.C. 1930)

The alignment of the unbalanced spins gives rise to the magnetic properties of
material. The examination of the exchange energy requires a model in which each d
band is treaded as two half-band. The electrons in each half-band all have spins of the
same direction and all opposite to those in the other half-band. In the
nonferromagnetic transition elements, the number of spins in each half-band are
equal, in the absence of an external magnetic field, and no net spin imbalance exists.
These elements are paramagnetic. Another transition elements like iron, cobalt and
nickel contain incomplete 3d levels. The resulting spin imbalance arising form
different numbers of electrons in each half-band is responsible for the ferromagnetic

behavior of each element.

Fihure3.3 Density of states
curves for the half-bands of
- opposite  spin.  (Daniel
= D.Pollack 1993 pp.324)

This is shown schematically in Figure.3.3 For the case of nickel, it has the free-
atom electronic configuration 3d*4s” and the Fermi level lies in the d-band, in contrast
to the case of non-magnetic Cu (3d'°4s') where Fermi level lies midway in the s-band,

above the, now-filled, d-band. Of the ten conduction electrons per nickel atom, five

completely fill the lower 3d  sub-band, but only 4.46 electrons occupy the upper 3d
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Figure3.4 In Ni, the exchange interaction causes a displacement in energy of the 3d
density of states according to the electron-spin direction, but a negligible
displacement of the 4s states spin states. The gap, , is the energy separation
between the Fermi level and the upper edge of the majority-spin band. Of the 10

electrons per atom, 5 completely fill the lower 3d band and 4.46 occupy the upper
3d band; the remaining 0.54 of an electron per atom is in the 4s band. Thus, there
is a net magnetic moment of 0.54 per atom due to the imbalance in the 3d spin
populations. (Elliott, S.R 1998 pp.615)

band; the remaining 0.54 of an electron is distributed (approximately equally)
between the 4s and 4s  bands (for which the exchange splitting is negligible).
Thus, there is a net magnetic moment of 0.54 per atom (pointing in the [111]
direction) resulting from the difference in the populations of spin-up and spin-down
3d-electrons ( or equivalently the presence of the 0.54 of a hole in the 3d band). This
value is close to the absolute-zero value of atomic magnetic moment for Ni of 0.6

, the small difference being due to orbital angular momentum contributions. See

Figure3.4.

Assume that one half-band contains n more electrons than the others. In terms of

the Weiss field

(3.27)

and the internal molecular field is given by
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(3.28)

where the is the molecular field. By summing the tendency for parallel spin

formation, exchange energy can be expressed:

(3.29)

It is treated as a constant, the transfer of electrons form spin up to spin down

effectively lowers the energy of the top of the density of states of the spin up half-

band and raises that total difference in the energy between the bands is

(3.30)

The excess number of electrons, n, now equals 2. Because the first half-band lost an

electron and the second half-band gained an electron, so

(3.31)

The decrease in is a result of the transfer of an electron from one half-band to

another of opposite spin. For this to be the case for spontaneous electron transfer.

(3.32)

In addition, from the equation about nearly free electron

(3.33)

we can easily find the solution
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Then the energy difference along the wave vector s

(3.35)

So that the effects of changes in the direction of magnetization are given by

(3.36)

67

They become functions of the wave vectors. That wave vector providing the

optimum lowering of  (greatest negative value of

direction of easiest magnetization in the
crystal, and is the anisotropy energy.
This explains why the spontaneous
magnetizations of nickel are different for

different crystal directions as indicated in

Fig3.5.

B0 1 1
aof UM
T ___..-'-"_
M 4001 D100y
300
200
100
0 I N
0 100 210 J00H

Figure3.5 Magnetization curves of
nickel. The easiest directions for
spontaneous magnetization are those
with the largest values o M for H=0.
(Daniel D.Pollock 1993 pp.327)
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3.2 Photoemission Spectroscopy of Metallic Nickel

We have mentioned the general theories, which give us the physical
explanation for magnetism, especially in ferroemagnetism. From photoemission
spectroscopy, a good agreement is presented. Polarized photoelectron spectroscopy is
employed. There are two modes in which a PE experiment can produce a spin
polarization of the photoemitted electron. One can use unpolarized light to excite
polarized electrons in a sample or employ circularly polarized light to excite transition
between states that are split by spin-orbit interactions, there by obtaining spin-
polarized electrons in the final state. In order to detect electron spins, we use either
the Mott scattering technique or the low energy electron diffraction technique. In both
methods, a target material is bombarded with electrons to be analyzed and scattered or
diffracted electrons are detected. If incident electrons are spin polarized, the intensity
of scattered electrons is not uniform along all direction in space. In the case of the
Mott scattering, electrons are first accelerated up to about 100keV and then hit the

target usually made of Au foil. The number of electrons scattered to the left

direction by a fixed angle is different from that  scattered to the right direction

by the same angle , then the spin polarizability is given as

(3.37)

Here is a quantity called the Sherman function and is known for typical target

materials. The spin polarization is defined as

(3.38)

with and being the number of up- and down-polarized electrons. The density

of states for electrons with up-spins and that with down-spins
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Figure3.6  Photoemission just
above the threshold ( )
for Ni. Under these conditions
only minority spin (spin down)
photoelectrons can be observed.
(Eib, W. 1976)

are obtained from the spin polarizability and the density of states without

spine analysis, as

(3.39)

(3.40)

thus, we are able to obtain spin resolved DOS curves or EDC’s from the spin
polarizability and spin unresolved DOS curves or EDC’s.

Figure.3.6 shows the schematic density of states of ferromagnetic Ni. This is an
oversimplification (rigid band splitting) and overlook the exchange the wave vector
dependence of the exchange splitting energy. A critical test was made by measuring
the spin polarization of electrons photoemitted for Ni near the photothreshold. The
results are shown in Fig.3.7. We can find that the spin polarization of the 3d
photoemission was measured as a function of the incident photon energy. When the
photon energy is sufficiently close to the work function (so that the photoelectron is
excited from the state sufficiently close to . It also means minorty-spin electrons
are excited with a high probability) the “observed”  is negative, at a value of photon
energy which is much smaller than the estimated from the band theory. It was show
by Moore and Pendry that in order to reproduce the experimental  versus photon

energy relation the exchange splitting obtained form self-consistent energy band
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Figure3.7 Measurement of the spin
polarized PE from Ni(100) at T=273K.
Near threshold a negative spin polarization
is observed as expected (Fig.3.6). On
increasing the photon energy one also
probes the states further below Er and thus
the resulting spin polarization becomes
positive. (Eib, W. 1976)

calculations, because of the electron correlation effect is not taken into account

sufficiently in the energy band theory. ( , S 1996)

Himpsel (1979) observed the angle-resolved photoelectron spectra from the
valence band of Ni, and succeeded to obtain experimentally the energy dispersion of
3d and 4s electrons along several high-symmetry axes in the wave vector space. They

estimated the exchange splitting from their experimental energy separation of a
pair of exchange-split branches near the L3 point and obtained eV, in good
agreement with the given by Moore and Fendry. (Akio Kotani 1987 and Greber,
T. 1997)

Recall the 6-ev satellite, which we have mentioned in the pervious chapter, it
shows a resonance enhancement at the 3p photothreshold because direct
photoemission and the Super-Koster-Kroning Auger decay in the valence band. For
the case of Ni, the Auger electrons should be polarized, as can be understood with reference
to Fig.3.8 .

At threshold photoabsorption ( ) only spin-down (minority)
electrons are photoexcited, since only the spin down band has empty states at the
Fermi energy. These results in an intermediate “spin-up” polarized state with a “spin-
down” hole in the 3p shell. The deexcitation process leads to the final 3d® state in the

valence band, takes place via the emission of two electrons out of the valence band.
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Figure3.8 Spin polarization for the 6eV satellite in Ni metal measured at threshold for the
photoexcitation of Ni 3p electrons ( ). At threshold there are only empty
minority states in Ni metal, and thus only minority holes are produced in 3p shell:

which leads to the decay

One should thus measure a positive (spin-up) spin polarization.
(Feldkamp, L.A 1979)

Since the Auger electrons lead to a singlet (S=0) final state and only spin-down
electrons can go into the 3d° state, spin-up electrons must be ejected. As the data in
Fig3.9 demonstrate, a positive spin polarization ( ) is indeed observed
experimentally. This provides further evidence to support the picture of the nature of
the 6ev satellite in Ni metal.

Although less directly, the same kind of information has been obtained from a
normal (non-spin-ploarized) PE experiment. Two spectial spectra are given in
Fig.3.10. In this case one must assume from the out set that the small splitting
observed is due to the exchange splitting of the band, since the experiment itself
cannot discriminate between spin-up and spin-down electrons. These spectra are also
satisfied the relation shown in Fig 3.5.

So, it is clear that the exchange splitting is observed very well in photoemission

spectroscopy. It supports the theoretical explanation for ferromagentism.
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Figure3.9 Measurement of the spin polarization of the 6eV satellite at
threshold ( ). (a) EDC at resonance; (b) polarization (positive)
as measured; (c) polarization corrected for background. (Raue, R 1983)

Figure3.10 Analysis of high-
resolution spectra of Ni. The larger
binding energy component shows a
greater width due to the larger
Auger decay rate. (Heimann, P.
1981)
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Chapter 1V
Conclusion

Photoemission Spectroscopy has been used for the studies of the electronic
structure of materials. We found that the reported PES of metallic nickel convincingly
supports the theoretical explanation about its poor electrical conductivity and
ferromagnetism. These physical properties are determined by the electronic structure
essentially, which is difficult to investigate through another experiments.

From the core-level and resonance photoemission spectroscopy, the spectrum, 6-
ev satellite, demonstrates the two-hole can be scattered into 3d band by electron-
electron interaction. Therefore, both the 4s electrons and 3d holes give the
contribution for the electrical conductivity. Further information is obtained by
angular-resolved spectroscopy. Metallic nickel has a narrow 3d energy band with a
very high level lies within them. Theoretical analysis regards that the narrow 3d band
leads a large effective mass of 3d-hole and a short relaxation time. These satisfy the
fact that nickel has high electrical resistivity.

Modern photoemission techniques open a new way to investigate a material
involving quantum numbers. The imbalance of electron spin in the 3d band of nickel
is shown by so-called spin-ploarized photoemission spectroscopy. The exchange
energy which is various with the crystallchraphic direction is also visible, whereas we
found that the exchange splitting energy is only a half of the theoretical calculation
because of the defect in the energy band theories. But is could not affect our
understanding for the ferromagnetism of nickel, which is that the spontaneous
magnetic moment appears in the absence of an applied magnetic field due to the spin-
up and spin-down bands are shifted with respect to one another by the exchange
splitting below the Curie temperature.

In the present thesis, we mainly overviewed the application of PES in metallic
nickel due to limited space. Despite the limitation, the advantage of PES is still shown
greatly. It is very helpful for us to understand and investigate other materials,

especially the alloys and compounds of transition metals.
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Appendix A

Brillouin Zone of the Three Low-Index Face of Face-

Centered Cubic (fcc) Crystal Face

Brillouin gave the statement of the diffraction condition that is most widely used
in solid state physics, which means in the description of electron energy band theory
and of the elementary excitations of other kinds.

Reciprocal Lattice to fce Lattice

The primitive translation vector of the fcc lattice of Fig. Al are
a —la(A+2)' a —la(f&+2)' a —la(f(+A)
175 y » Ty ) 375 Y.

The volume of the primitive cell is
V=la, [a, xa,| = %a?

The primitive translation vectors of the lattice reciprocal to the fcc lattice are

b, =TV )(k+§+2); b, =T )X-§+2);

b, =T )E+§-12).

These are primitive translation vectors of a bcc lattice, so that the bec lattice is

reciprocal to the fcc lattice. The volume of the primitive cell of the reciprocal lattice is
21/\3
4( a) .
The shortest G ’s are the eight vectors

(2%Xi§(i§fii)
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The boundaries of the central cell in the reciprocal lattice are determined for the most
part by the eight planes normal to these vectors at their midpoints. But the corners of
the octahedron thus formed are cut by the planes that are the perpendicular bisectors

of six other reciprocal lattice vectors:

(2%)(i 2%) (2%)& 2¥); (2% Xi 22).

Figure Al. Primitive basis vectors
of the face-centered cubic lattice.

Note that (2% XZ&) is a reciprocal lattice vector because it is equal to b, +b; . The
first Brillouin zone is the smallest bounded volume about the origin, the truncated
octahedron shown in Fig. A2. The six planes bound a cube of edge (4%)3. (See

Kittel, C. 1986, Chapter 2)

Figure A2. Brillouin
zones of the face-
centered cubic lattice.
The cells are in
reciprocal space, and
the reciprocal lattice is
body centered.
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BRILLOUIN ZONE OF THE FCC LATTICE

[641)
kl

[111]

y
(679
[100
J {1g]
Figure A3. Some symmetry points in Brillouin zone:
r X K L
Wave vector k 2—"(0, 0, 0) 2—”(1, 0, 0) 2—"(3, i, 0) 2_"(1, l, l)
a a a 4 4 a 2 22

Some points on the symmetry axises:
A > A\

Wave vector k 2—7-[(5, 0, 0) 2—”(0, o, 0) E()\, A, 0)
a a a

0<d<l1 0<a<i 0</\<l
4 2

SURFACE

c \NORMAL
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