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ABSTRACT 

This paper proposes a method to obtain optimal 2nd-~rder approx- 
imation preserving prefilters for a given orthogonal unbalanced 
multiwavelet basis. This procedure uses the prefilter construction 
introduced in [3]. The prefilter optimization scheme exploits the 
Taylor series expansion of the prefilter combined with the multi- 
wavelet. Using the DGHM multiwavelet with the obtained optimal 
prefilter, we find that quadratic input signals are annihilated by the 
high-pass portion of filter bank at the first level of decomposition. 

1. INTRODUCTION 

One of the most important properties of multiwavelet is its approx- 
imation order. In the case ofcompactly supported multiwavelets, 
this corresponds to the property of polynomial reproduction. Since 
the multiwavelets have more than one scaling functions, the di- 
lation equation becomes the dilation equation with matrix coeffi- 
cients. Thus, in applications, one must associate a given discrete 
signal into a sequence of length-r vectors (where r is the num- 
ber of scaling functions) without losing some certain properties 
of the underlying multiwavelet. Such a process is referred to as 
prefiltering or multiwavelet initialization. One prefiltering method 
for the DGHM multiwavelet suggested by Geronimo is to create a 
function with vector sequence of length T based on the interpolat- 
ing property of the DGHh4 scaling functions. It yields a prefilter 
which is approximation order preserving but not orthogonal. In 
[3], Hardin and Roach develop a theory for constructing prefilters 
which preserve both orthogonality and approximation order up to 
order 2. It has been shownin [ l ,  3, 71 that choosing a prefilter 
is a crucial step which significantly affects the performance of the 
multiwavelet filter bank. In this paper, we use the results in [3] to 
construct the orthogonal length-3 approximation order preserving 
prefilter. Since an infinite number of such prefilters can be con- 
structed, we propose a criterion to find the optimal prefilter for 
a given orthogonal multiwavelet basis. The criterion exploits the 
Taylor series expansion of the prefilter combined with the multi- 
wavelet. 

2. MULTIWAVELET PRELIMINARIES 

Let @ denote a compactly supported orthonormal scaling vector 

@ = ( $ l ,  $2, .  . . , $ P ) r  
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where T is the number of scalar scaling functions. Then +(t )  sat- 
isfies a two-scale dilation equation of the form 

@ ( t )  = &C h(n)@(2t  - n) (1) 
n 

for some finite sequence h of r x T matrices. Furthermore, the 
integer shifts of the components of form an orthonormal system, 
that is 

(2) 

Let Vo denote the closed span of { @ I ( .  - n)  I R E Z ,  r! = 
1,2 , .  . . , T }  and define V, = {f($) I f E Vo}. Then ( y ) j E ~  
is a multiresolution analysis of L2(R) [ 5 ] .  Note we choose the 
decreasing convention Vi+] C V, . 

Let Wj denote the orthogonal complement of V, in I$- I .  

Then there exists an orthogonal multiwavelet q=($', $', . . ., 
+)')T such that {+'(. - n)  I 1 = 1,2,. . . , T and n E Z }  fonns 
an orthonormal basis of WO. Since WO C V-1, there exists a 
sequence g of r x T matrices such that 

< 4l(. - n),q4'(. - n') >= 61,1t6n,n!. 

(3) 
n 

Let f E VO, then f can be written as a linear combination of 
the basis in Vo. 

f ( t )  = c o ( k ) T + ( t  - k )  (4) 
k E Z  

for some sequence CO E 12 ( Z ) T .  Since Vo = VI @ Wl,  f can also 
be expressed as 

f ( t )  = - 1 c ~ 1 ( k ) ~ @ ( -  t - k )  + - 1 x d l ( k ) T * ( -  t - k ) .  
2 Jz k € Z  

2 Jz k € Z  

( 5 )  
The coefficients c1 and dl are related to C O  via the following de- 
composition and reconstruction algorithm: 

c1 ( k )  = h,(n)co(2k + n)  ( 6 )  

di(k) = g(n)cn(2k: + n)  (7) 

77 

n 

n n 
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Fig. 1. Multiwavelet filter bank. 

Let Q ( z )  be the z transform of the matrix-valued sequence q. 
If Q ( z )  can be written in the form 

m 

& ( z )  = C q , z - "  = q1z-l + ... + qmz-m 
n=l 

where ql and qm # 0, then Q ( z )  is said to have a length of 
(m  - 1 + 1). 

3. MULTIWAVELET PREFILTERS AND OPTIMIZATION 
CRITERION 

The block diagram of a multiwavelet filter bank can be shown as 
in Figure 1 where Q ( z )  and P ( z )  represent the prefilter and the 
postfilter, respectively. Vector sequence x is obtained by the fol- 
lowing operator. Define the operator D, : RZ + (R')' which 
partitions a scalar sequence into a sequence grouped in vectors of 
length r as follows. Given a scalar sequence z (n) ,  n E Z, then 
x = D,( z )  is given by 

The block diagram of the high-pass portion of the analysis 
multiwavelet filter bank is shown in Figure 2a. By using the first 
Nobel Identity, the block diagram in Figure 2a is equivalent to the 
one shown in Figure 2b. Let 

w1 ( z )  zo 

WTk) 

W ( z )  = ( ; ) = G(l/z')Q(z') ( i ) . (9) 

Then from Figure 2b, we see that V ( z )  = W ( z ) X ( z ) .  The energV 
compaction ratio is defined as the ratio of the total energy of the 
output from the high-pass portion of the analysis filter bank and 
the total energy of input signal. Then, if X ( z )  is stationary, V ( z )  
is stationary as well. So the total energy of V ( z )  is 2r times the 
energy of U ( z ) .  Thus the energy compaction ratio is obtained by 

Zr--l 

Energy compaction ratio = 

J I ~ ( e j " ) l ~ ( I ~ 1 ( e j ~ ) 1 ~  + . . . + IWr(eJw)12) dw - 
2r J IX(eJw)l2dw 

Fig. 2. (a) Block diagram of high-pass portion of analysis filter 
bank. (b) Equivalent system. 

The energy compaction ratio can be used to see how effectively 
the high-pass portion of the orthogonal filter bank annihilates the 
input signal. Thus, the smaller the ratio, the better the energy com- 
paction. 

It is known [4] that if @ is compactly supported, @ has approx- 
imation order p if and only if there exist vector coefficients a, (k) 
such that 

tn = a n ( k ) T @ ( t  - k) , n = 0, ..., p - 1 (,IO) 

where a, = (a; a: ... Furthermore, it follows from (10) 
that the high-pass filter g annihilates a, for n = 0,1, . . . , p  - 1, 
i.e., 

(11) 
where g ( k )  = g ( - k ) .  

Let S : C(R) + RZ be the sampling operator S(f) = 
( f ( 3 ) ) n E ~  and let A : C(R) -+ (R')' be defined by A(f)  = 
+D,(S(f)). Letrr,(t) := tn anda, := A(7rn). 

A prefilter Q ( z )  with impulse response q is said to be a p t h -  
order approximation preservingprefilter for  @ if [ 3 ]  

q*a, =a,modspan{ao,  ...,a,- I}, n=O , . . . ,  p-1 .  (12) 

k 

4 *an  = 0, n = 0,1,  . . . p  - 1 

Note: f = g mod L if and only i f f  - g E L. 

Lemma 1 Suppose @ has approximation order p and q is a p"- 
order approximation preservingprefilter for a. Let W ( z )  be given 
by (9). Then, W(")(1) = 0 for n = 0, ..., p - 1. (Here W(")  
denotes the nth derivative of W.) 

Proof : Let w be the inverse Z-transform of W (2) and let pn = 
S(T,). Then, by the first Nobel Indentity, (-1 v)(w * p , )  = 4 * 
q * D,(pn). Since a ,  = A(7rn) = D,(p,)  and an = q * a,, we 
have(Jr)(w*p,)  =g*a,and,hence,by(ll),(Jr)(w*p,) = 
0 for n = 0, ..., p - 1. The shift invariance of 7r, then implies 
w * p ,  = 0 for n = 0, . . . , p  - 1. 

(-1)" 
Therefore, (w *p,)(O) = E, w(k)(O - k)" = 

w ( k ) k n  = 0 for n = 0, ..., p - 1. Thus, 

C w ( k ) ( a o + u i k +  ...+ a,-ikP-') = 0 (13) 
k 

for any ai E R. Since W ( z )  = E, ~ ( k ) z - ~ ,  we have 

w ( ~ ) ( I )  = w(k) for n = o (14) 
k 
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Table 1. Optimal prefilter coefficients for the DGHM multiwavelet 

' Co(1) Ci(1) Cz(1) Q(1) Q(1) 
a 0 0 0 j0.40825 -1.17113 
b 0 0 0 -i0.40825 0.01706 

0.312146768057 -0.1 11458514406 
-0.526851707882 0.188123391564 
0.48532840003 1 -0.584495 172202 
0.584495 172202 0.48532840003 1 
0.188123391564 0.526851707882 
0.1 11458514406 0.312146768057 
0.0093901 10250 -0.067942050642 

c 
d 

0.002264535743 -0.0 16385026 171 
0.992593475574 -0.098895392339 

0 0 0 -j0.40825 0.37899 
0 0 0 -j0.40825 3.81684 

0.098895392339 0.992593475574 

0.067942050642 0.0093901 IO250 
-0.0163850261 71 -0.002264535743 

-0.626283326739 0.299036923482 
0.632561984796 -0.302034848716 
0.155 146499297 0.05399965 1374 

0.3020348487 16 0.632561984796 
0.299036923482 0.626283326739 
0.247052825476 0.164291 I69222 
0.78956473061 3 0.525063870525 
0. IO8909066323 0.03 I74265981 8 

0.053999651374 -0.155146499297 

0.03 I7426598 18 -0.108909066323 
-0,525063870525 0.789564730613 
0. I6429 1 169222 -0.247052825476 

b 0 
c 0 
d 0 

w ( n ) ( l )  = E u , ( k ) ( - k ) ( - k  - I )  ...(- k - ( n  - 1)) 
I; 

Thus, from (13), (14) and (15), i t  is clear that 

w ( ' ~ ) ( I )  = o for 72 = O, . . . , p  - I .  

0 0 -j0.25148 0.44090 
0 0 j0.69748 -2.08410 
0 0 72.61059 -3.52904 

Sincc the spectra of most natural signals are concentrated 
around zero frequency, a natural way to obtain a small energy com- 
paction ratio is to find a prefilter such that W ( e J w ) * W ( e - l w )  is 
zero and as flat at zero frequency as possible. Now consider the 
Taylor series expansion of I+'($") about w = 0: 

m 

W ( e J " )  = c e n d "  (16) 
.=n 

w(") 
where en is the T x 1 vector given by en ( 2 )  = -, i = 
I, . ._, T .  For a prefilter 4: we let m = m(q) denote the index of the 
first nonzero coefficient C~,, in ( 1  6). If has approximation order 
p and q is p f h  -order approximation preserving, then, by Lemma I ,  
c o  = c1 = ... = cP-l = 0 and so we have m,(q) 2 p .  Observe 
that 

which leads LIS to consider the following: 
Optimization Criterion. Given a collection L of prefilters, let 

w ( e J w ) ' w ( e J w )  = c;cm Jm + O(w""') 

be the largest possible 'rn for any of the prefilters in L.  If q is a prc- 
filter with m,(q) = 7 / 2 [ ,  that also minimizes I/cm,, 11' = c,,,, e,?,,, 
then we say that q is optimal (with respect to L).  

Table 2. Taylor series coefficients co(1) - c4(l) of W(ej") using 
the optimal prefilters in Table 1. 

We next apply the optimization criterion to find the optimal 
length-3 approximation order preserving prefilter for the DGHM 
multiwavelet. For the DGHM multiwavelet (T = 2), WI (ej") and 
I.IJ2(ejw) are the Fourier transform of the prefilter combined with 
the antisymmetric and symmetric wavelets, respectively. Since the 
multiwavelet has approximation order 2, and CI are zero vec- 
tors. Note that, from observation, c2 (1)  is automatically zero for 
the DGHM multiwavelet. Following the optimization criterion, 
we then search for a prefilter that minimizes lc2(2)I2. Using the 
prefilter construction given in [3], we found several prefilters such 
that c2(2) was zero as well. This implies that quadratic input sig- 
nals are annihilated by W ( e j " ) .  Table 1 gives the optimal prefilter 
coefficients. Tables 2 and 3 show the Taylor series coefficients 
co (1) - e4 (1) and CO (2) - c d  (2) using the obtained prefilters, re- 
spectively. 

4. RESULT WITH IMAGE COMPRESSION ALGORITHM 

In this section, we apply the multiwavelet filter bank to the im- 
age compression algorithm using the obtained optimal length-3 
approximation order preserving prefilters. The image compression 
scheme used in this paper is an adaptation of the binary-uncoded 
SPIHT algorithm of [6] which exploits the zero-tree structure of 
wavelet coefficients. The results were obtained with gray-scaled, 
8 bpp, 512x512 Lena image. We first obtain the results of the 
image compression using DGHM multiwavelet with the optimal 
prefilters. Table 4 shows the PSNR of the decompressed Lena : 

image at different bit rates. From the image compression results 
and the Taylor series coefficients of the optimal prefilters, it can 
bc seen that the best prefilter amoung the obtained optimal pre- 
filters (prefilter b) is the one that has small nonzero Taylor series 
coeffcients at the low order of w. In [3], six possible length-3 
quasi-interpolation prefilters and four possible length-2 approxi- 
mation order preserving prefilters for the DGHM multiwavelet are 
given. We next compare the result with the optimal length-3 quasi- 
interpolation prefilter and the optimal length-2 approximation or- 
der preserving prefilter. Additionally, comparisons are made with 
the Daubechies-4 scalar wavelet which has the same approxima- 
tion order ( p  = 2).  Table 5 shows the PSNR of the decom- 
pressed Lena image using the DGHM multiwavelet with various 
prefilters and the D-4 scalar wavelet. Figure 3 shows the frequency 
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Table 4. PSNR comparison of decompressed Lena image using 
optimal prefilters. 

Optimal prefilters I CPR I a I b l c l  d I  

Table 5. PSNR comparison of the decompressed Lena images us- 
ing the DGHM multiwavelet and the Daubechies-4. 

responses of W,(ej")  and W,(ej") when Q ( z )  is the optimal 
length-3 approximation order preserving prefilter (prefilter b) and 
compares with the responses when Q ( z )  are other prefilters. The 
result of image comression agrees with the frequency responses in 
Figures 3 which show that the frequency response of the optimal 
length-3 approximation order preserving prefilter is the flattest at 
low frequency. 

5. CONCLUSIONS 

This paper has developed an optimization criterion to find the op- 
timal 2"d-order approximation preserving prefilter for a given or- 
thogonal multiwavelet basis based on the taylor series expansion 
of the prefilter combined with the multiwavelet. The results show 
that the DGHM multiwavelet with the obtained optimal prefilter 
outperforms other prefilters which were included in this study and 
the D-4 scalar wavelet with the same approximation order. 
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