LIST OF FIGURES

Figure		Page
1.1	Research methodology	3
2.1	Schematic of plunge pool	8
2.2	Surface roughness profiles in variation systems, the bars represent	
	intervals of 5, 10, 15, 20, 25 and 30 mm, from left to right	15
2.3	Simulation of fragment transports in different points of slope height	16
2.4	Rock degradation concept. Samples A, B and C (a) represent uniform	
	texture. Samples D, E and F (b) represent weathered zone outside	
	and fresher matrix inside	16
2.5	Regression of durability with expansive clay (a), and the total amount	
	of clay minerals (b) for all rock types	18
2.6	Percentage of passing materials with a function of grain sizes	19
2.7	Relative of clay contents and chlorite in sandstones with variation	
	of stages	19
2.8	Geometrical shape parameters of spherical (a), cubic (b) and	
	triangular prism (c)	21
2.9	Petrographic images of intergranular fracture (a), and intragranular	
	fracture (b) in sandstone	22
2.10	Influence of cycles to matrix content and porosity of sandstones	25
2.11	Water content in a function of time duration	26
2.12	Percentage of variation properties with a number of wetting and	
	drying cycles	26

Figure	gure	
0.12	Calkatian tunia atau ulia augus	20
2.13	Saltation trajectory diagram	
2.14	Eroded mass in a function of total energy dissipation	30
3.1	Geological map of sample collecting area	33
3.2	Representative of specimens at initial condition of PWSS (a), PPCS	
	(b), and PPSS (c) with dimensions. Dash lines show alignment of	
	bedding planes	34
3.3	Examples of PPCS specimens prepared for dry testing	35
3.4	Sample preparation for XRD analysis of PWSS (a), PPCS (b) and PPSS	36
3.5	Closed-up images of specimens (right) and petrographic images	
	under cross polarized light (left) of PWSS, PPCS and PPSS. Quartz	
	(Qtz), Calcite (Cal), Calcrete (Calc), Muscovite (Mus) and Biotite	
	(Bio)	37
4.1	Diagram representing one test cycle	38
4.2	Slake durability index test apparatus	41
4.3	3D schematic diagram for durability test	41
4.4	Cross section and side view of drum with rotational direction	42
4.5	Dimension parameters for roundness (a) and sphericity (b)	43
4.6	Classifications for surface roundness and sphericity	43
5.1	Initial cubical specimens and representative images of specimens	
	after subjected to 20 (b), 40 (c), 60 (d) and 80 (e) test cycles	46

Page	ure	Fi
48	Fragment roundness as a function of test cycle (N) measured every 20 days, classified in accordance with Hryciw et. al. (2016). Open points represent dry testing and solid points represent wet testing.	5.
49	Fragment sphericity as a function of test cycle (N) measured every 20 days, classified in accordance with Hryciw et. al. (2016). Open points represent dry testing and solid points represent wet testing	5.
5.0	dry and wet tests as a function of test cycle (N). Open points	5.
	represent dry testing and solid points represent wet testing Passing weight (a) and passing weight percent (b), as a function of test cycle (N). Open points represent dry testing and solid points represent wet testing	5.
		5.
57	Volumatic percent of decreasing minerals for PPCS fragments under dry condition after subjecting to 80 test cycles (Cal=calcite, Fsp=feldspar group, Clays=clay minerals, and Mica=biotite and muscovite)	5.
58		5.

Figur	e	Page
5.9	Densities of fragments as a function of test cycle (N) for PWSS, PPCS, and PPSS specimens after subjecting to 20, 40, 60, and 80 test cycles. Open points represent dry testing and solid points represent wet testing	61
6.1	Normalized fragment sizes for PWSS, PPCS and PPSS specimens before testing and after test cycle 20, 40, 60, and 80	63
6.2	Total volumatic percent and calculated porosity (n_c) as a function of test cycle (N) for PWSS, PPCS, and PPSS after test through 80 cycles. Open points represent dry testing and solid points	
6.3	represent wet testing	
6.4	Normalized densities as function of test cycle (N) for PWSS, PPCS, and PPSS after subjecting to 20, 40, 60, and 80 test cycles. Open points represent dry testing and solid points represent wet testing. Significant reduction of PPSS densities are shown with the labels	
6.5	Accumulative passing weight percent (P_A) as a function of test cycle (N). Dry testing (open points) and wet testing (solid points). Lines are fitted by $P_A = \alpha \cdot N + [1-\exp(-\delta \cdot N)/\beta]$	70
7.1	Scrubbing and colliding processes between fragments (a) and between fragments and inner drum surface (b)	

Figur	re	Page
7.2	Accumulated energy (E) as a function of test cycle (N). Dry and wet	
	testing shown as solid lines and dash lines. They are fitted by	
	$E=A\cdot N^B$	75
7.3	Specific energy for PWSS, PPCS and PPSS specimens as a function	
	of equivalent radius (r_i)	77
7.4	Accumulated Energy for PWSS, PPCS, and PPSS specimens with	
	cobbles disintegrated to smaller sizes	78
7.5	Energy for PPSS specimens under wet condition to disintegrate as a	
	smaller size, The classification is followed the unified soil	
	classification system, USCS	79