
AN APPLICATION OF IMAGE PROCESSING AND MACHINE
LEARNING FOR RICE VARIETIES CLASSIFICATION

PIYANART BOONRAMART

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Mathematics
Suranaree University of Technology

Academic Year 2023

การประยุกต์ใช้การประมวลผลภาพร่วมกับการเรียนรู้เครื่อง
เพื่อจำแนกพันธุ์ข้าว

นางสาวปิยะนารถ บุญระมาตร

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาคณิตศาสตร์ประยุกต์
มหาวิทยาลัยเทคโนโลยีสุรนารี

ปีการศึกษา 2566

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Jessada Tanthanuch, my
thesis advisor, for his guidance and support throughout this research. His expertise and
advice were invaluable in helping me to complete this thesis.

I would also like to thank my family and friends for their encouragement and
support. Their belief in me helped me to stay motivated throughout this challenging
process.

Finally, I would like to thank Suranaree University of Technology for providing me
with a scholarship that allowed me to pursue my graduate studies. This scholarship gave
me the opportunity to focus on my research and to complete this thesis.

I am grateful for the support of all of these individuals and organizations. Their
contributions made this thesis possible.

Piyanart Boonramart

CONTENTS

Page
ABSTRACT IN THAI . I
ABSTRACT IN ENGLISH . II
ACKNOWLEDGEMENTS . IV
CONTENTS . V
LIST OF TABLES . X
LIST OF FIGURES . XIII

CHAPTER
I INTRODUCTION . 1

1.1 Research Objective . 3
1.2 Scope and Limitations . 3
1.3 Research Procedure . 3
1.4 Expected Result . 4

II LITERATURE REVIEW . 5
2.1 Digital Image Processing . 5

2.1.1 Edge Detection . 5
2.1.2 Ridge Detection . 7
2.1.3 Texture Detection . 8
2.1.4 Histogram Equalization . 9
2.1.5 Image Enhancement . 10

2.2 Machine Learning . 11
2.3 Machine Learning Algorithms for Classification 11

2.3.1 Decision Tree . 11
2.3.2 Naïve Bayes . 13
2.3.3 K-Nearest Neighbors . 13
2.3.4 Support Vector Machine 14

VI

CONTENTS (Continued)

Page
2.3.5 Gradient Boosted Tree . 16

2.4 Performance indicators of classification model 17
2.4.1 Confusion Matrix . 17
2.4.2 Accuracy . 18
2.4.3 Precision . 19
2.4.4 Recall . 19
2.4.5 F1-score . 20
2.4.6 Cohen’s Kappa Coefficient 21

2.5 K-fold Cross Validation . 22
2.6 Related Research . 22

III RESEARCH METHODOLOGY . 25
3.1 Data Collection . 25
3.2 Reduce Background Noise . 26
3.3 Image Processing . 27
3.4 Feature Extraction and Normalization of Dataset 27
3.5 Machine Learning Modeling . 29
3.6 Evaluate the Performance of the Model 30

IV RESULTS AND DISCUSSION . 31
4.1 Noise Reduction of Image Background 31
4.2 Results from Image Processing of Rice Grains 32
4.3 Performance Evaluation of Data from Image Processing Combined

with Various Machine Learning Techniques 39
V CONCLUSION . 43
REFERENCES . 46

VII

CONTENTS (Continued)

Page
APPENDICES

APPENDIX A THE RESULTS TABLE OF THE PERFORMANCE OF MACHINE
LEARNING MODELS . 52
A.1 The Results of the Performance of Canny edge

detection . 53
A.2 The Results of the Performance of Sobel edge

detection . 55
A.3 The Results of the Performance of Ridge detection 58
A.4 The Results of the Performance of Texture de-

tection . 60
A.5 The Results of the Performance of Histogram

equalization . 63
A.6 The Results of the Performance of Enhance-

ment by Laplacian filter 66
A.7 The Results of the Performance of Enhance-

ment by Gaussian blur 69
A.8 Performance Evaluation of Machine Learning

Models Using Image Processing Datasets 72
APPENDIX B APPLICATION OF PYTHON CODE IN IMAGE PROCESS, FEA-

TURE EXTRACTION AND MACHINE LEARNING MODELING . . 75
B.1 Cropped Rice Grain Images By Python Code in

Jupyter Notebook 76
B.2 Processed Crop Rice Grain Images by Python

Code in Jupyter Notebook 78
B.3 Processed Image using Canny Edge Detection by

Python Code in Jupyter Notebook 79

VIII

CONTENTS (Continued)

Page
B.4 Processed Image using Sobel Edge Detection By

Python code in Jupyter Notebook 80
B.5 Processed Image using Ridge Detection By

Python code in Jupyter Notebook 81
B.6 Processed Image using Texture Detection By

Python code in Jupyter Notebook 82
B.7 Processed Image using Histogram Equalization,

By Python code in Jupyter Notebook 84
B.8 Processed Image using Laplacian Filter (Image

Enhancement) by Python code in Jupyter Note-
book . 85

B.9 Processed Image using Gaussian blur (Image En-
hancement) by Python code in Jupyter Notebook 87

B.10 Example of Shape Feature Extraction by Python
Code in Jupyter Notebook 89

B.11 Example of Texture Feature Extraction by
Python Code in Jupyter Notebook 92

B.12 Example of Data Normalization by Python code
in Jupyter Notebook 95

B.13 Example of Decision Tree Modeling by Python
Code in Jupyter Notebook 96

B.14 Example of Naïve Bayes Modeling by Python
code in Jupyter Notebook 97

B.15 Example of K-Nearest Neighbors Modeling by
Python code in Jupyter Notebook 99

B.16 Example of Support Vector Machine Modeling
by Python code in Jupyter Notebook 101

IX

CONTENTS (Continued)

Page
B.17 Example of Gradient Boosted Tree Modeling by

Python code in Jupyter Notebook 103
CURRICULUM VITAE . 105

LIST OF TABLES

Table Page
1.1 Price of Rice per Metric TON (Thai Rice Exporters Association, 2024). . 2
2.1 Interpretation of Cohen’s Kappa (McHugh, 2012) 21
3.1 The main functions for each image processing method. 27
3.2 Table of Shape Features and Texture Features. 28
3.3 Indicators for Evaluating Performance. 30
4.1 The Performance of Canny Edge Detection Dataset with Various Ma-

chine Learning Techniques. 39
4.2 The Performance of Sobel Edge Detection Dataset with Various Ma-

chine Learning Techniques. 40
4.3 The Performance of Ridge Detection Dataset with Various Machine

Learning Techniques. 40
4.4 The Performance of Texture Detection Dataset with Various Machine

Learning Techniques. 41
4.5 The Performance of Histogram Equalization Dataset with Various Ma-

chine Learning Techniques. 41
4.6 The Performance of Enhancement by Laplacian filter Dataset with

Various Machine Learning Techniques. 42
4.7 The Performance of Enhancement by Gaussian Blur Dataset with

Various Machine Learning Techniques. 42
A.1 Decision Tree with Canny edge detection. 53
A.2 Naïve Bayes with Canny edge detection. 53
A.3 K-NN with Canny edge detection. 54
A.4 Gradient Boost Tree with Canny edge detection. 54
A.5 Support Vector Machine with Canny edge detection. 55
A.6 Decision Tree with Sobel edge detection. 55

XI

LIST OF TABLES (Continued)
Table Page
A.7 Naïve Bayes with Sobel edge detection. 56
A.8 K-NN with Sobel edge detection. 56
A.9 Gradient Boost Tree with Sobel edge detection. 57
A.10 Support Vector Machine with Sobel edge detection. 57
A.11 Decision Tree with Ridge detection. 58
A.12 Naïve Bayes with Ridge detection. 58
A.13 K-NN with Ridge detection. 59
A.14 Gradient Boost Tree with Ridge detection. 59
A.15 Support Vector Machine with Ridge detection. 60
A.16 Decision Tree with Texture detection. 60
A.17 Naïve Bayes with Texture detection. 61
A.18 K-NN with Texture detection. 61
A.19 Gradient Boosted Tree with Texture detection. 62
A.20 Support Vector Machine with Texture detection. 62
A.21 Decision Tree with Histogram Equalization. 63
A.22 Naïve Bayes with Histogram Equalization. 63
A.23 K-NN with Histogram Equalization. 64
A.24 Gradient Boosted Tree with Histogram Equalization. 64
A.25 Support Vector Machine with Histogram Equalization. 65
A.26 Decision Tree with Enhancement by Laplacian filter. 66
A.27 Naïve Bayes with Enhancement by Laplacian filter. 67
A.28 K-NN with Enhancement by Laplacian filter. 67
A.29 Gradient Boosted Tree with Enhancement by Laplacian filter. 68
A.30 Support Vector Machine with Enhancement by Laplacian filter. 68
A.31 Decision Tree with Enhancement by Gaussian blur. 69
A.32 Naïve Bayes with Enhancement by Gaussian blur. 70
A.33 K-NN with Enhancement by Gaussian blur. 70

XII

LIST OF TABLES (Continued)
Table Page
A.34 Gradient Boosted Tree with Enhancement by Gaussian blur. 71
A.35 Support Vector Machine with Enhancement by Gaussian blur. 71
A.36 The Performance of Image Processing Datasets with Decision Tree. . . 72
A.37 The Performance of Image Processing Datasets with Naïve Bayes. . . 73
A.38 The Performance of Image Processing Datasets with K-Nearest Neigh-

bors. 73
A.39 The Performance of Image Processing Datasets with Gradient

Boosted Tree. 74
A.40 The Performance of Image Processing Datasets with Support Vector

Machine. 74

LIST OF FIGURES

Figure Page
2.1 Example of Sobel Edge Detection. 6
2.2 Example of Ridge Detection Done by Python code. 8
2.3 The components of Decision Tree. 12
2.4 Support Vector machine for Multi-class clssification. 15
2.5 Gradient Boost Tree. 17
3.1 A collection of five rice varieties. 26
3.2 Noise in the background of rice grain image. 26
3.3 Procedure for Classification Model Creation. 29
4.1 Reducing noise in the background of rice grain image. 31
4.2 Rice grains processed with the Canny Edge Detection method. 32
4.3 Rice grains processed with the Sobel Edge Detection method. 33
4.4 Rice grains processed with the Ridge Detection method. 34
4.5 Rice grains processed with the Texture Detection method. 35
4.6 Rice grains processed with the Histogram Equalization method. . . . 36
4.7 Rice grains processed with the Enhancement by Laplacian filter

method. 37
4.8 Rice grains processed with Enhancement by the Gaussian Blur method. 38

CHAPTER I
INTRODUCTION

In Thailand, the delicate white grains of rice are not just a humble staple food, but
the very lifeblood of the nation. Rice cultivation runs deep in Thai history and culture,
and its export forms a cornerstone of the nation’s economic prosperity. In 2023, Thailand
proudly sent over 8.8 million tons of rice across the globe, generating a staggering 178
billion baht in revenue (Thai Rice Exporters Association, 2024). This remarkable figure
underscores the immense importance of rice to the Thai economy, providing livelihoods
for countless farmers, fueling diverse industries, and driving national growth. However,
ensuring rice exports meet the stringent quality and standards of importing countries is
crucial for maintaining this economic engine.

Due to the different varieties of rice, there are varying prices, as shown in Table 1.1.
This is where meticulous export standards come into play, meticulously crafted by the
Department of Agriculture to encompass physical, chemical, and microbiological aspects
of the precious grain. Furthermore, accurate classification of rice varieties is paramount,
as each distinct type carries its own value. From the sought-after aroma of Jasmine rice
to the versatility of Hom Mali, precise identification determines its rightful place in the
export ladder.

Presently, computer vision, image processing, artificial intelligence (AI) and ma-
chine learning (ML) play a significant role in our daily lives, leading to increased conve-
nience. These technologies are being applied across various domains, assisting in agricul-
tural management planning, designing and analyzing operations to maximize agricultural
production efficiency. Additionally, they are utilized for image analysis of agricultural pro-
duce, aiding in crop planning and harvesting. Emerging technologies like AI and ML are
revolutionizing rice classification, providing unparalleled accuracy and speed. Their ca-
pacity to analyze grain characteristics using image and video data streamlines the sorting
process, reducing human effort and costs. The potential of AI and ML in the Thai rice

2

Table 1.1 Price of Rice per Metric TON (Thai Rice Exporters Association, 2024).

Type Price (US Dollar/MT)
White Rice

Thailand 5% broken 655
Vietnam 5% broken 639-643
Pakistan 5% broken 637-641
Thailand 25% broken 617
Vietnam 25% broken 612-616
Pakistan 25% broken 585-589

Fragrant Rice
Thailand Hommali 100% 883
Vietnam Jasmine 715-719
Pakistan basmati 2% broken 950

industry is immense, offering improvements in quality control, efficiency, and ultimately
enhancing national competitiveness. However, it is a race against time as Thailand grap-
ples with challenges such as global competition, volatile prices, and the persistent threat
of climate change. Understanding the multifaceted importance of rice to the Thai econ-
omy and exploring the innovative solutions like AI and ML classification becomes vital as
we navigate the future of this precious resource.

Based on the discussion above, this thesis aims to explore how the application
of image processing, coupled with machine learning, can effectively classify 5 types of
rice grains: Arborio, Basmati, Ipsala, Jasmine, and Karacadag, based on photographs of
individual rice grains. The study seeks to determine the most efficient approach in terms
of classification accuracy and processing time. The results of this research endeavor
can potentially enhance the efficiency of rice grain classification, thereby contributing to
further advancements in this field. This journey to secure Thailand’s place as a global
rice leader demands not only continued technological advancements but also a deep
appreciation for the cultural and economic significance of this humble, yet mighty grain.

3

1.1 Research Objective

1. To apply mathematics, combined with image processing and machine learning al-
gorithms, to classify rice varieties from images.

2. To evaluate the performance of the proposed method for classification.

1.2 Scope and Limitations

1. The data set used in this study was publicly available data from muratkoklu of
Dr.Murat Köklü, retrieved from https://www.muratkoklu.com/datasets.

2. The features used for image processing of grain rice images are Sobel Edge Detec-
tion, Canny Edge detection, Ridge Detection, Texture Detection, Equalization His-
togram, Enhance image by using Laplacian filter, Enhance image by using Gaussian
Blur filter.

3. The techniques for solving the classification problem in this study consist of the
Decision Tree, Naïve Bayes, K-Nearest Neighbors, Support Vector Machine, Gradient
Boosted Tree.

4. Use Python language program version 3.11.1 to process images, extract features
and create the classification models and evaluate the performance of the models,
working on Lenovo DESKTOP-A3APD4J, Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz
2.71 GHz, 4GB RAM with Microsoft Windows 10 Operating System, and NB109-2565-
052 HP Probook 440 G8 Notebook PC, 11th Intel(R) Core(TM) i5-1135G7 @ 2.40GHz
2.42GHz with Microsoft Windows 11 Operating System.

1.3 Research Procedure

The research work proceeds as follows:

1. Study the mathematical knowledge of the features used in image processing to
apply them to classification models.

4

2. Study machine learning and classification algorithms.

3. Perform image processing with features by Python language program for use in
classification.

4. Put the images obtained from the image processing into the Python program to
classify the rice varieties and find the performance of the model.

1.4 Expected Result

Achieve a high-performance model through the integration of image processing
and machine learning techniques, enabling the classification of rice varieties from images
of milled rice grains.

CHAPTER II
LITERATURE REVIEW

This chapter provides an overview of the basic concepts of digital image pro-
cessing and its methods. Including the concept of machine learning. Its techniques and
performance indicators of classification models.

2.1 Digital Image Processing

Digital image processing is the manipulation and analysis of digital images using
various algorithms and techniques to extract information, enhance quality, or perform
specific tasks. It involves acquiring digital images through sensors or cameras, prepro-
cessing them to remove noise or artifacts, and applying operations such as filtering, edge
detection, segmentation, and feature extraction to achieve desired results. Digital im-
age processing finds applications in fields such as medicine, remote sensing, surveillance,
computer vision, and multimedia.

2.1.1 Edge Detection

There are various methods for edge detection; however, in this study, we are
particularly interested in Sobel Edge Detection and Canny Edge Detection. Both methods
are popular for their straightforward algorithms and high efficiency in edge detection.

• Sobel Edge Detection

The Sobel Edge Detection method detects the edge of an image using two 3×3
templates (Wikipedia, 2024). If we define A as the source image, the horizontal
difference (Gx), and vertical difference (Gy) are as follows:

Gx =

1 0 −1

2 0 −2

1 0 −1

 ∗ A and Gy =

1 2 1

0 0 0

−1 −2 −1

 ∗ A, (2.1)

6

where ∗ denotes the 2-dimensional signal processing convolution operation.
Find the magnitude gradient:

|G| =
√

G2
x +G2

y (2.2)

and the gradient direction is

θ = arctan
(
Gy

Gx

)
. (2.3)

Figure 2.1 Example of Sobel Edge Detection.

• Canny Edge Detection

The Canny edge detection operator was developed by John F. Canny in 1986 and
uses a multi-stage algorithm to detect a wide range of edges in images (Reddy et
al., 2016).

The steps of Canny edge detection algorithm are as follows:

1. Removing the noise by applying a Gaussian filter, which Gaussian filter formula
can write as below:

G(x, y) =
1

2πσ2
(e−

x2+y2

2σ2),

where x is the variable on the x-axis, y is the variable on the y-axis, and σ is
the deviation.

2. Find the gradient of the image.

3. Find the gradient magnitude (2.2) and the direction of the edge same as Sobel
edge detection (2.3).

7

4. Remove pixels that are not considered part of the edge.

5. Track the edge by hysteresis that rejects the edge pixel which is weak and not
connected to the strong edge pixel.

2.1.2 Ridge Detection

Ridge detection, in the context of image processing, is the technique of identifying
and locating linear features in an image that resemble ridges, like the prominent lines
or elongated structures within the image. It is distinct from edge detection, which aims
to find abrupt changes in intensity between adjacent pixels, as ridges often have gradual
intensity variations along their course (Shokouh et al., 2021).

Ridge detection with adaptive thresholding is a method that aims to detect ridges
(or edges) in an image by applying a threshold that varies across different regions of
the image, and the steps of ridge detection with adaptive thresholding algorithm are as
follows:

1. Preprocessing:
Convert the input image to grayscale if it is not already in grayscale.

2. Gradient Calculation:
The gradient magnitude G(x, y) and gradient direction θ(x, y) of the image using
a suitable edge detection operator, such as Sobel or Prewitt operators.

3. Compute Local Threshold:
For each region, a local threshold is calculated based on the statistical properties of
pixel intensities within that region. Common statistical measures used for threshold
calculation include the mean, median, or standard deviation. The goal is to set a
threshold that is sensitive to the local characteristics of the image, allowing for
better detection of ridges or edges across different regions.

4. Apply Adaptive Thresholding:
The key of this step is to dynamically determine a threshold for each pixel based

8

on its local neighborhood.Different methods exist such as hysteresis thresholding,
mean subtraction with offset, Gaussian weighted mean.

5. Post-processing:
Optionally,apply common techniques include morphological operations like dila-
tion or erosion to refine the detected ridges or edges.

Figure 2.2 Example of Ridge Detection Done by Python code.

2.1.3 Texture Detection

Texture detection is an intriguing automated process that goes beyond identifying
color or intensity variations within an image. It involves extracting essential details about
the repetitive structures and arrangements that define the unique textural characteristics
of a surface. This capability opens up diverse applications, including medical imaging
for detecting abnormalities, remote sensing for classifying land cover in satellite imagery,
industrial inspection for quality control, content-based image retrieval for finding visually
similar images based on texture, and robot vision for guiding interactions with objects
based on texture cues.

At the heart of texture detection, Gabor filters, named after Dennis Gabor, Gabor
filters act as the workhorses in this process, providing a symphony of frequency and ori-
entation information that enhances the precision of texture detection algorithms across
various applications. A Gabor filter, employed in image processing, serves various pur-
poses such as edge detection, texture analysis, feature extraction, and disparity estima-
tion. Functioning as a bandpass filter, it selectively permits frequencies within a specified

9

range to pass through while suppressing others. This characteristic makes it well-suited
for scrutinizing specific features in an image without being inundated by extraneous infor-
mation.

Conceptually, a Gabor filter can be envisioned as a sinusoidal wave, representing
the desired frequency, modulated by a Gaussian function, which signifies localization. This
amalgamation enables the filter to respond to particular frequencies within a confined
area of the image. By adjusting the parameters of the sinusoidal and Gaussian compo-
nents, we can craft Gabor filters with diverse characteristics (Shah, 2018).

2.1.4 Histogram Equalization

Histogram equalization is an image processing method employed to enhance con-
trast by expanding the intensity range. The objective is to achieve a balanced spread of
pixel intensities, using all available brightness levels. This is achieved by applying a custom
function that translates each pixel’s original brightness to a new one (Nikhil, 2023).

LetH(i) be the histogram of the image, where i is in the range [0,L] (the intensity
levels) and let n be the total number of the pixels in the image, the histogram equalization
basic algorithm involves the following step:

1. Compute the histogram of the input image. The histogram represents the distribu-
tion of intensity values in the image.

2. Calculate the cumulative distribution function (CDF) from the histogram. The CDF
represents the cumulative sum of histogram values,

CDF(i) =
i∑

j=0

H(j).

3. Normalize the CDF to map the values to the range [0, L-1], where L is the number
of intensity levels,

CDFnorm(i) =
⌊CDF(i)−min(CDF)

n− 1
× (L− 1) + 0.5

⌋
,

where min(CDF) is the minimum non-zero value of the cumulative histogram and
L is the number of intensity levels.

10

4. Map Intensity Values: For each pixel in the input image, replace its intensity value
with the corresponding normalized CDF value,

Iequalized(x, y) = CDFnorm(I(x, y)),

where I(x, y) is the intensity value of the pixel at position (x, y) in the image.

2.1.5 Image Enhancement

Image enhancement refers to a set of processes aimed at improving its overall
quality and visual appeal. This can involve various techniques depending on the type of
image and the desired outcome. Some filters for image enhancement are presented as
the following:

1. Laplacian filter
The Laplacian filter, classified as a second-order derivative filter, assesses the rate
of change of the first derivative within an image. To put it more plainly, it accentu-
ates regions where neighboring pixel intensity values experience swift alterations,
rendering it a potent instrument for identifying edges (NV5 Geospatial Software,
2023).

To illustrate, envision rolling a marble across an image. It would seamlessly traverse
areas characterized by gradual intensity changes but encounter obstacles at sharp
edges, unveiling their precise locations. In a comparable manner, the Laplacian
filter operates by pinpointing intensity “bumps” that serve as indicators of edges.

2. Gaussian Blur
Gaussian blur is a fundamental image processing technique used to reduce noise
and soften harsh edges, often serving as a pre-processing step for various image
analysis tasks (Deng and Cahill, 1993).

11

2.2 Machine Learning

Machine learning (ML) is the operation the computer system uses the data for
learning by itself with the aim of detecting relationships within the data by computer.
It uses programmed algorithms that receive and analyze input data to predict output
values within an acceptable range. As new data is fed to these algorithms, they learn and
optimize their operations to improve performance, developing ‘intelligence’ over time.
ML is separated into 4 categories, which are supervised learning, unsupervised learning,
semi-supervised, and reinforcement.

Supervised learning is a popular method in machine learning. This operator pro-
vides the machine learning algorithm with a known dataset that includes desired inputs
and outputs, and the algorithm must find a method to determine how to arrive at those
inputs and outputs. While the operator knows the correct answers to the problem, the
algorithm identifies patterns in data, learns from observations, and makes predictions.
The algorithm makes predictions that are corrected by the operator, and this process
continues until the algorithm achieves a high level of accuracy/performance. Supervised
learning can solve regression, classification, and forecasting problems (Wakefield, 2022).

2.3 Machine Learning Algorithms for Classification

2.3.1 Decision Tree

A decision tree (DT) is a popular machine learning algorithm used for both classi-
fication and regression tasks. It is a tree-like model where each internal node represents
a decision based on a specific feature, each branch represents the outcome of the deci-
sion, and each leaf node represents the final decision or the target variable. The goal of a
decision tree is to recursively split the dataset into subsets based on the most significant
features, ultimately creating a tree structure that can be used for making predictions.

The components of a decision tree include the root node, internal nodes,
branches, and leaf nodes. The root node is the topmost node that represents the initial
decision based on the most significant feature. Internal nodes represent decisions based

12

on features, branches represent the possible outcomes of the decisions, and leaf nodes
represent the final predicted values or classes.

Decision trees use various splitting criteria to determine the best feature to split
on at each internal node. Two commonly used criteria are information gain and gain ratio.
The information gain of dataset S is calculated using the following formula:

Information Gain (S) = Entropy of T − Mean Information Requirement

= −
∑
j

pj log2(pj)−
k∑

i=1

PiHS(Ti), (2.4)

where pj is the proportion of members in class j relative to the total number of members
in a sample class, Pi is the proportion of instances in the ith sub-dataset, HS(Ti) is
Entropy before classifier of S by the ith subset of the training dataset T .

Information Gain measures the reduction in entropy or surprise by splitting a
dataset according to a given value of a random variable. To normalized information
gain, we will use gain ratio and the gain ratio formula is as follow:

Gain Ratio =
Information Gain

Entropy . (2.5)

Figure 2.3 The components of Decision Tree.

13

2.3.2 Naïve Bayes

Naive Bayes (NB) is a probabilistic machine learning algorithm for classification that
works well with both binary (two-class) and multiclass (more than two classes) problems.
It’s often praised for its simplicity, efficiency, and effectiveness in situations with high-
dimensional data (Farid et al., 2014).

The mathematical foundation of Naive Bayes for multiclass classification relies on
Bayes’ theorem and the assumption of feature independence and for multiple classes
(c1, c2, ..., ck) where ci represents the ith class in a set of possible classes, the posterior
probability for each class is calculated based on the formula:

P (ci | x) =
P (ci)P (x | ci)

P (x)
,

where P (ci | x) is Posterior probability of class ci given features x,
P (ci) is the prior probability of class ci,
P (x) is the prior probability of observing features x.

2.3.3 KNearest Neighbors

K-Nearest Neighbors (K-NN), a non-parametric, instance-based classification
method, is suitable for diverse data types (Wang et al., 2023). In multi-class situations, it
determines the class label of a new data point by aggregating the majority vote from its
K nearest neighbors within the training dataset.

Algorithms of K-Nearest Neighbors are as following:

1. Let training data D = { (x1, y1) | i =1, ..., n }, where xi is a data point in the feature
space and yi is the class label corresponding xi and xnew as a new data point.

2. For each training data point xi, calculate the distance d(xnew, xi) using the distance
metric (usually Euclidean distance).

3. Sort the training data points based on their distances to xnew in ascending order
and select the K closest points as the neighbors.

14

4. Count the frequency of each class label among the K neighbors and assign the
class label with the highest frequency to xnew.

5. predicted class label for xnew.

2.3.4 Support Vector Machine

Support Vector Machines (SVM) are versatile supervised learning models exceling
at classification tasks (Madzarov et al., 2008). In binary classification, the input space is
denoted by X , and the binary class labels, represented as either 1 or -1, are denoted by
Y (Cortes and Vapnik, 1995), the equation of the hyperplane separating the classes can
be written as:

wT · x+ b = 0,

where w refers to the weight vector, b refers to the distance of the hyperplane from the
origin along the normal vector w, which y and w satify the following inequality:

yi(w
T · xi + b) ≥ 1,where i = 1, ..., n.

The distance between a data point xi and the decision boundary can be written
as:

di =
wT · xi + b

∥ w ∥
,

where ∥ w ∥ refers to the Euclidean norm of the weight vector w.
In SVM, the objective function aims to maximize the margin between the decision

boundary (hyperplane) and the support vectors while minimizing the classification error.
This can be formulated as the following constrained optimization problem:

minw,b
1

2
∥w∥2 + C

n∑
i=1

max{0, 1− yi(w
T · xi + b)}

subject to yi(w
T · xi + b) ≥ 1, where C is the regularization parameter controlling the

trade-off between maximizing the margin and minimizing the classification error.
The training process involves solving this optimization problem to find the optimal

hyperplane parameter w and b. For prediction, SVM evaluates the sign of the decision

15

function as
f(x) = sign(wT · x+ b),

where f(x) represents the decision function. The sign of f(x) determines the class label
for a new data point x.

When it comes to multiclass classification, SVMs offer two main strategies:

1. One-vs-One (OvO)
The OvO approach is a multi-class classification strategy that leverages binary classi-
fication algorithms. In this approach, for a dataset withN classes, N(N−1)

2
individual

binary classifiers are trained. Each classifier is trained to distinguish between one
specific class and all other classes combined.

2. One-vs-All (OvA)
In N -class problems (where N is greater than 2), multiple sets of binary classifiers
called SVMs are built. Each SVM is trained to recognize one class against all others.
During recognition, a test example is given to all these SVMs, and it is assigned the
label of the class with the highest confidence score among all classifiers.

(a) One-vs-One approach. (b) One-vs-All approach.

Figure 2.4 Support Vector machine for Multi-class clssification.
source: https://www.baeldung.com/cs/svm-multiclass-classification

In summary, SVMs for multiclass classification employ strategies like OvO or OvA
to extend binary classification to multiple classes. The mathematical foundation involves
finding hyperplanes that effectively separate different classes in feature space, and the
choice between OvO and OvA depends on factors such as simplicity and computational
efficiency.

16

2.3.5 Gradient Boosted Tree

Gradient Boost Tree (GBT) (Natekin and Knoll, 2013) is a machine learning tech-
nique for classification and regression that produces a strong learning model from the
combination of multiple weak learning models, which are typically decision trees. All
trees are connected in series. And each tree attempts to minimize errors or residuals of
the previous tree. That is, we want to reduce the loss function. The final model takes the
results of each step to make it effective for the learning model. This makes this algorithm
highly accurate.

In the gradient boosted tree algorithm, Friedman’s Gradient Boosted algorithm is
employed. The input dataset is denoted as (xi, yi)

n
i=1, where n represents the number

of samples, and it undergoes M th iterations. The weak learning model is represented by
F (x), and the loss function is denoted as L(y, F (x)).

Algorithms of Gradient Boosted Tree are as following:

1. Initialize F0(x) with a constant, where γ is the constant value being optimized for,
and

F0(x) = argminγ
n∑

i=1

L(yi, γ). (2.6)
2. For m = 1,...,M

(a) Calculation for pseudo-residual:

ri,m = −[
∂L(yi, F (xi))

∂F (xi)
]F (x)=Fm−1(x), i = 1, ..., n. (2.7)

(b) Prepare new data {xi, ri,m}ni=1 and build Rj,m, for i = 1, 2, ...,m.

(c) For j = 1, ..., Jm ,

γj,m = argminγ
∑

xi∈Rj,m

L(yi, Fm−1(xi) + γ). (2.8)

(d) Adjust the model:

Fm(x) = Fm−1(x) + v
Jm∑
j=1

γj,mI, x ∈ Rj,m (2.9)

where v is learning rate, I is indicator function.

3. The result will be in form FM(x).

17

Figure 2.5 Gradient Boost Tree.
source: https://pub.towardsai.net/gradient-boosting-technique-b3dbb7069b74

2.4 Performance indicators of classification model

2.4.1 Confusion Matrix

A confusion matrix is a table that shows the performance of a classification model
by comparing its predictions to the actual values. It is a useful tool for visualizing the
model’s performance and understanding the types of errors it makes. The performance
of a classification algorithm is summarized by indicating the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) predictions.

1. True Positives (TP) refer to the cases where the model predicted the class correctly,
and the actual class is also that class.

2. True Negatives (TN) refer to the cases where the model predicted the class correctly,
and the actual class is not that class.

3. False Positives (FP) refer to the cases where the model predicted the class incor-
rectly as positive, when it is actually negative.

4. False Negatives (FN) refer to the cases where the model predicted the class incor-
rectly as negative, when it is actually positive.

18

In a multi-class classification problem, the confusion matrix becomes a square
matrix, where each row and column corresponds to a class, and the elements represent
the counts of true positives, true negatives, false positives, and false negatives for each
class (Grandini et al., 2020).

Let the confusion matrix is a N×N matrix where N is the number of different
class labels ci (i = 1, 2, ..., N).

2.4.2 Accuracy

Accuracy is a basic indicator. It is the overall percentage of correct predictions.
In multi-class classification, the accuracy can be calculated by considering the

accuracy of each class and the overall accuracy (Grandini et al., 2020), which can be
calculated using the following formula:

Percent of Accuracyci =
TPci + TNci

TPci + TNci + FPci + FPci
× 100. (2.10)

For overall, the accuracy can be calculated as

Percent of Accuracy =

N∑
i=1

TPci
N∑
i=1

(TPci + TNci + FPci + FNci)

× 100, (2.11)

where:
Accuracyci is the accuracy of class ci,
Accuracy is the overall accuracy,
TPci is the number of true positives for class ci,
TNci is the number of true negatives for class ci,
FPci is the number of false positives for class ci,
FNci is the number of false negatives for class ci,
N is the total number of classes.

19

2.4.3 Precision

Precision is the ratio of correctly predicted positive observations to the total pre-
dicted positives. High precision means your model rarely makes false positives, which is
crucial when false positives have high costs.

In multi-class classification, the precision can be calculated by considering the
precision of each class and the overall precision (Grandini et al., 2020), which can be
calculated using the following formula:

Percent of Precisionci =
TPci

TPci + FPci
× 100. (2.12)

For overall, the precision can be calculated as

Percent of Precision =

N∑
i=1

TPci
N∑
i=1

(TPci + FPci)
× 100, (2.13)

where:
Precisionci is the precision of class ci,
Precision is the overall precision.

2.4.4 Recall

Recall is the ratio of correctly predicted positive observations to all actual posi-
tives. High recall means the model captures most of the relevant cases, important when
missing positives is costly.

In multi-class classification, the recall can be calculated by considering the recall
of each class and the overall recall (Grandini et al., 2020), which can be calculated using
the following formula:

Percent of Recallci =
TPci

TPci + FNci

× 100. (2.14)

20

For overall, the recall can be calculated as

Percent of Recall =

N∑
i=1

TPci
N∑
i=1

(TPci + FNci)

× 100, (2.15)

where:
Recallci is the recall of class ci,
Recall is the overall recall.

2.4.5 F1score

F1-score or F-measure is a harmonic mean of precision and recall, balancing both
aspects. It provides a single score that balances precision and recall, which can be useful
when there is an uneven class distribution.

In multi-class classification, the F1-score can be calculated by considering the F1-
score of each class and the overall F1-score (Grandini et al., 2020), which can be calculated
using the following formula:

Percent of F1-scoreci =
2× Precisionci × Recallci
Precisionci + Recallci

× 100. (2.16)

For overall, the F1-score can be calculated as

Percent of F1-score =
2× Precision× Recall
Precision+ Recall × 100, (2.17)

where:
F1-scoreci is the F1-score of class ci,
F1-score is the overall F1-score.

21

2.4.6 Cohen’s Kappa Coefficient

Cohen’s Kappa coefficient, often referred to as simply “Kappa” is a statistical mea-
sure that assesses the level of agreement between two raters or more raters classifying
items into categories. It accounts for the possibility of agreement occurring by chance and
provides a more robust evaluation of inter-rater reliability than simple percent agreement.
Kappa (K) is a value between -1 and 1 which negative values imply less agreement than
chance (Cohen, 1960).

The formula for Cohen’s Kappa is as follows:

Percent of K =

(
P0 − Pe

1− Pe

)
× 100, (2.18)

where P0 is the observed agreement between raters,
P1 is the expected agreement between raters.

Table 2.1 Interpretation of Cohen’s Kappa (McHugh, 2012)

Value of Kappa (%) Level of Agreement % of the data that are Reliable
0-20 None 0-4
21-39 Minimal 4-15
40-59 Weak 15-35
60-79 Moderate 35-63
80-90 Strong 64-81

Above 90 Almost Perfect 82-100

22

2.5 Kfold Cross Validation

K-fold cross-validation is a widely employed method to assess the efficiency of
machine learning models, aiming to gauge their ability to generalize to new and unseen
data (Brownlee, 2023).

The process unfolds as follows:

1. Divide the data into K roughly equal-sized folds.

2. For each fold:
Train the model on the data in K-1 folds (training set).

3. Evaluate the model’s performance on the remaining fold (test set).

4. Calculate the average performance metric across all K folds. This provides a more
robust estimate of the model’s generalization error than a single split of training
and testing data.

2.6 Related Research

Aki, Güllü, and Uçar (2015) proposed a method to classify rice grains into four
types, namely Baldo, Osmancik, Yesemin, and broken grain. This study uses image pro-
cessing combined with 13 techniques of machine learning, that is Nearest Neighbor with
Generalization, Decision Tree with Naïve Bayes, Normalized Gaussian Radial Basis Func-
tion Network, KStar (Instance-based classifier), Best-First Decision Tree, Bagging, Random
Forest, J48, IB1 (Nearest-Neighbour classifier), IBk (K-Nearest Neighbours classifier), JRip
(Propositional Rule Learner, Repeated Incremental Pruning to Produce Error Reduction)
and Naïve Bayes. Starting with extracting features related to geometric shapes from each
grain image. Each grain has six features and then trains the features using machine learn-
ing techniques. The technique that gave the highest accuracy was Nearest Neighbor with
Generalization, where the average real-time accuracy was calculated as 90.5%.

Zareiforoush, Minaei, Alizadeh, and Banaka (2016) proposed the use of computer
vision as a feature extraction method and feature selection, combined with the meta-

23

heuristic method. Four types of milled rice grains were analyzed: high-processed sound
grains, high-processed broken grains, low-processed sound grains, and low-processed bro-
ken grains. The four metaheuristic methods are artificial neural networks, support vector
machines, decision trees, and Bayesian networks. The technique that gives the highest
accuracy is ANN, with an accuracy of 98.72%.

Rexce and Usha Kingsly Devi (2017) demonstrated the classification of thirteen
types of rice grains through a computer vision system utilizing image acquisition, image
preprocessing, and segmentation methods. Feature extraction was then employed to
extract 57 features from each rice grain image. The metaheuristic techniques utilized in-
cluded artificial neural networks, support vector machines, Bayesian networks, and deci-
sion trees, each achieving classification accuracies of 92.307%, 90.384%, 82.629%, 59.615%
respectively.

Cinar and Köklü (2019) proposed the identification of two rice cultivars, Osmancik
and Cameo species, from 3,810 images based on seven morphological features: area,
perimeter, major axis length, minor axis length, grain distortion, surface eccentricity, con-
vex area, and the ratio of rice shape area to the frame of the considered image. Logistic
Regression, Multi-Player Perceptron, Support Vector Machine, Decision Tree, Random For-
est, Naïve Bayes, and K-Nearest Neighbors achieved accuracies of 93.02%, 92.86%, 92.83%,
92.49%, 92.39%, 91.71%, and 88.58%, respectively.

Cinar and Köklü (2021) utilized various statistical methods, such as analysis of
variance (ANOVA), the Chi-squared method, and the gain ratio method, to identify effective
features extracted from images for the purpose of improving rice variety classification.
The study involved analyzing 15,000 images of each rice variety (Karacadag, Jasmine,
Ipsala, Basmati, and Arboio), totaling 75,000 images. From these images, a total of 106
features were extracted, including 12 morphological features, 4 shape features, and 90
color features.

Cinar, Köklü, and Taspinar (2021) conducted a study on the classification of rice
varieties. They developed Python programs to apply machine learning algorithms, artificial
neural network algorithms, and deep neural networks for identifying rice varieties using
the 106 features extracted from the dataset. Their approach was compared with the

24

Convolutional Neural Network method for characterizing and classifying rice grains from
images. The study revealed that employing the Convolutional Neural Network resulted
in higher performance.

Cinar and Köklü (2022) conducted a classification study involving five rice varieties:
Karacadag, Jasmine, Ipsala, Basmati, and Arborio. They employed seven machine learning
techniques, namely Logistic Regression, Multilayer Perceptron, Support Vector Machine,
Decision Tree, Random Forest, Naïve Bayes, and K-Nearest Neighbor, using MATLAB pro-
grams to classify rice based on data. The classification was performed on 106 features of
all five rice varieties, with each feature set categorized as follows: morphological features,
morphological and shape features, color features, and all features combined. The highest
accuracy achieved was 99.91%, obtained by Multilayer Perceptron when using the feature
set comprising all features.

CHAPTER III
RESEARCH METHODOLOGY

This chapter presents the steps used in image processing. Including extracting
features from images. as well as modeling and classification techniques. The procedure
consists of 6 steps:

1. Data collection;

2. Reduce background noise;

3. Image processing;

4. Feature extraction and Normalization of dataset;

5. Machine Learning modeling;

6. Evaluating the performance of the model.

3.1 Data Collection

The dataset used in the study of rice grain variety classification was obtained from
https://www.muratkoklu.com. It is a dataset called Rice Image Dataset which consists of
75,000 images of rice grains. Each image has a resolution of 250x250 pixels. The dataset
includes images of 5 different rice varieties: Karacadag, Jasmine, Ipsala, Basmati, and
Arborio. There are 15,000 images for each variety. The images of each variety are stored
in a separate subfolder, for a total of 5 subfolders.

26

(a) A Arborio rice grain. (b) A Basmati rice grain. (c) A Ipsala rice grain.

(d) A Jasmine rice grain. (e) A Karacadag rice grain.

Figure 3.1 A collection of five rice varieties.

3.2 Reduce Background Noise

After the data collection process, it was found that each rice grain image had noise
around the grains, as shown in figure 3.2.

Figure 3.2 Noise in the background of rice grain image.

Therefore, the noise was removed by cropping the images to only include the rice
grains.The cropped rice grain images were then placed on a black background of 250x250
pixels, which is the same size as the original images, using a Python program on Jupyter
Notebook.

27

3.3 Image Processing

In this step, 75,000 images of rice grains in the folder will be processed using
the following methods: Canny Edge Detection, Sobel Edge Detection, Ridge Detection,
Texture Detection, Histogram Equalization, Laplacian Filter Enhancement, and Gaussian
Blur Enhancement. The goal was to extract the edges and details of the rice grains in
each image using the Python programming language on Jupyter Notebook.

The main library used for image processing is OpenCV. The main functions used
for image processing in each method are shown in Table 3.1.

Table 3.1 The main functions for each image processing method.

Image processing methods Main functions
Canny Edge Detection cv2.Canny()
Sobel Edge Detection cv2.Sobel()

Ridge Detection filters.apply_hysteresis_threshold()
Texture Detection cv2.getGaborKernel()

Histogram equalization cv2.equalizeHist()
Enhancement by Laplacian filter cv2.Laplacian()
Enhancement by Gaussian Blur cv2.GaussianBlur()

3.4 Feature Extraction and Normalization of Dataset

In this step, we used a Python program to extract both shape and texture features,
image name, and rice variety from the processed images in all 7 folders. Then, the
extracted features were stored in an excel file (.xlsx file). The shape and texture features
of interest are listed in Table 3.2.

After extracting the image features, we used a Python program to normalize the
data and store the normalized dataset in the original .xlsx file format. This was done to
reduce the complexity and organize the dataset. The details of the Python code used
for data normalization can be found in Appendix B.7.

28

Table 3.2 Table of Shape Features and Texture Features.

Shape features Texture features
Area Correlation

Perimeter Dissimilarity
Extent Energy

Convex Area Entropy
Aspect Ratio Contrast

Kurtosis Homogeneity
Skewness Uniformly
Major Axis Mean
Minor Axis Variance

Standard Deviation Skewness
Peak Value Kurtosis

Max Gray Value
Min Gray Value

Edginess
Normalized center of mass

Eccentricity
Solidity

Compactness
Shape Factor

Equivalent Diameter
Entropy

29

3.5 Machine Learning Modeling

To create a classification model We use the normalized feature data of image pro-
cessing according to the methods described in Section 3.2 to build models, 5 models per
dataset, for a total of 35 models, with every model performing a 10-fold cross validation
and evaluate the performance of the model. The classification model steps are shown
in Figure 3.3.

Figure 3.3 Procedure for Classification Model Creation.

30

3.6 Evaluate the Performance of the Model

To ensure accurate predictions and identify areas for improvement, we evaluated
the performance of the model. The indicators used for evaluation in this study are shown
in Table 3.3. A Python program was used to calculate the values of each metric.

Table 3.3 Indicators for Evaluating Performance.

Indicators
1 Accuracy
2 Precision
3 Recall
4 F1-Score
5 Cohen’s Kappa

In addition, the time taken for the model to classify each image was recorded.

CHAPTER IV
RESULTS AND DISCUSSION

This chapter presents the results of reduce noise in background images, image pro-
cessing of rice grain images using 7 image processing methods and the results of evaluating
the performance of the machine learning model using the data obtained by extracting
features from the images processed by each method.

4.1 Noise Reduction of Image Background

Due to the noise in the rice grain images, as shown in Figure 4.1 (a), a Python
program was used to preprocess the images before cropping. First, the background was
filtered to black using a thresholding technique. Then, the area around the rice grains
was cropped to reduce the noise in the images. The result of the preprocessing step is
shown in Figure 4.1 (b).

Then, a Python program was used to place the cropped images on a black image
of 250x250 pixels in the center of the image to match the original image. The result is
shown in Figure 4.1 (c).

(a) Noise Occuring in Image. (b) The cropped rice grain. (c) Denoised image.

Figure 4.1 Reducing noise in the background of rice grain image.

The details of the Python program for noise reduction and placing the rice grain
images on the black image can be found in Appendices B.1 and B.2.

32

4.2 Results from Image Processing of Rice Grains

Using a Python program on Jupyter Notebook, we processed rice grain images
to extract features using the following 7 image processing methods: Canny Edge Detec-
tion, Sobel Edge Detection, Ridge Detection, Texture Detection, Histogram Equalization,
Laplacian Filter Enhancement, and Gaussian Blur Enhancement.

The result images of each image processing method are shown in Figures 4.2 - 4.8.

(a) A Arborio rice grain. (b) A Basmati rice grain. (c) A Ipsala rice grain.

(d) A Jasmine rice grain. (e) A Karacadag rice grain.

Figure 4.2 Rice grains processed with the Canny Edge Detection method.

33

(a) A Arborio rice grain. (b) A Basmati rice grain. (c) A Ipsala rice grain.

(d) A Jasmine rice grain. (e) A Karacadag rice grain.

Figure 4.3 Rice grains processed with the Sobel Edge Detection method.

34

(a) A Arborio rice grain. (b) A Basmati rice grain. (c) A Ipsala rice grain.

(d) A Jasmine rice grain. (e) A Karacadag rice grain.

Figure 4.4 Rice grains processed with the Ridge Detection method.

35

(a) A Arborio rice grain. (b) A Basmati rice grain. (c) A Ipsala rice grain.

(d) A Jasmine rice grain. (e) A Karacadag rice grain.

Figure 4.5 Rice grains processed with the Texture Detection method.

36

(a) A Arborio rice grain. (b) A Basmati rice grain. (c) A Ipsala rice grain.

(d) A Jasmine rice grain. (e) A Karacadag rice grain.

Figure 4.6 Rice grains processed with the Histogram Equalization method.

37

(a) A Arborio rice grain. (b) A Basmati rice grain. (c) A Ipsala rice grain.

(d) A Jasmine rice grain. (e) A Karacadag rice grain.

Figure 4.7 Rice grains processed with the Enhancement by Laplacian filter method.

38

(a) A Arborio rice grain. (b) A Basmati rice grain. (c) A Ipsala rice grain.

(d) A Jasmine rice grain. (e) A Karacadag rice grain.

Figure 4.8 Rice grains processed with Enhancement by the Gaussian Blur method.

39

4.3 Performance Evaluation of Data from Image Processing Com
bined with Various Machine Learning Techniques

From the processed and normalized image feature datasets, 7 datasets were used
to create 5 classification models each, for a total of 35 models. The performance of each
model was evaluated using the accuracy, precision, recall, and F1-score metrics.

The time taken for each model to classify was also recorded. The results are
shown in Tables 4.1-4.7.

Table 4.1 The Performance of Canny Edge Detection Dataset with Various Machine Learn-
ing Techniques.

Machine
learning
Model

Accuracy Precision Recall F1-Score Kappa Time (second)

DT 95.15% 95.15% 95.15% 95.14% 93.93% 168.97
NB 88.13% 88.04% 88.13% 87.94% 85.16% 13.68
K-NN 96.92% 96.93% 96.92% 96.92% 96.15% 32.05
GBT 97.15% 97.15% 97.15% 97.15% 96.44% 5886.94
SVM 97.61% 97.61% 97.61% 97.61% 97.02% 413.03

40

Table 4.2 The Performance of Sobel Edge Detection Dataset with Various Machine Learn-
ing Techniques.

Machine
learning
Model

Accuracy Precision Recall F1-Score Kappa Time (second)

DT 95.55% 95.55% 95.5% 95.54% 94.44% 60.29
NB 84.76% 84.85% 84.76% 84.40% 80.95% 4.91
K-NN 96.30% 96.32% 96.30% 96.29% 95.37% 13.15
GBT 97.76% 97.76% 97.75% 97.75% 97.20% 9168.98
SVM 98.68% 98.67% 98.67% 98.67% 98.35% 136.21

Table 4.3 The Performance of Ridge Detection Dataset with Various Machine Learning
Techniques.

Machine
learning
Model

Accuracy Precision Recall F1-Score Kappa Time (second)

DT 94.79% 94.78% 94.78% 94.78% 93.48% 35.72
NB 88.81% 88.73% 88.81% 88.69% 86.01% 5.24
K-NN 95.52% 95.53% 95.52% 95.52% 94.40% 11.21
GBT 96.81% 96.81% 96.81% 96.81% 96.01% 2639.67
SVM 96.45% 96.45% 96.44% 96.44% 95.56% 207.60

41

Table 4.4 The Performance of Texture Detection Dataset with Various Machine Learning
Techniques.

Machine
learning
Model

Accuracy Precision Recall F1-Score Kappa Time (second)

DT 92.94% 92.93% 92.93% 92.93% 91.17% 42.02
NB 85.53% 85.50% 85.53% 85.41% 81.92% 4.16
K-NN 94.39% 94.45% 94.39% 94.37% 92.98% 9.64
GBT 96.24% 96.24% 96.24% 96.23% 95.30% 4845.29
SVM 95.42% 95.42% 95.42% 95.41% 94.28% 276.62

Table 4.5 The Performance of Histogram Equalization Dataset with Various Machine Learn-
ing Techniques.

Machine
learning
Model

Accuracy Precision Recall F1-Score Kappa Time (second)

DT 93.47% 93.46% 93.46% 93.45% 91.83% 60.40
NB 87.04% 87.10% 87.04% 86.98% 83.80% 4.25
K-NN 95.47% 94.65% 94.57% 94.57% 93.22% 9.77
GBT 96.79% 96.79% 96.79% 96.79% 95.99% 4869.08
SVM 96.12% 96.13% 96.12% 96.12% 95.16% 258.16

42

Table 4.6 The Performance of Enhancement by Laplacian filter Dataset with Various Ma-
chine Learning Techniques.

Machine
learning
Model

Accuracy Precision Recall F1-Score Kappa Time (second)

DT 93.74% 93.74% 93.73% 93.73% 92.18% 60.86
NB 87.39% 87.44% 87.39% 87.32% 84.23% 4.21
K-NN 95.25% 95.32% 95.25% 95.24% 94.06% 9.25
GBT 96.88% 96.88% 96.87% 96.87% 96.10% 5177.58
SVM 95.65% 95.66% 95.70% 95.65% 94.56% 256.39

Table 4.7 The Performance of Enhancement by Gaussian Blur Dataset with Various Ma-
chine Learning Techniques.

Machine
learning
Model

Accuracy Precision Recall F1-Score Kappa Time (second)

DT 93.53% 93.51% 93.52% 93.52% 91.92% 49.53
NB 85.63% 85.94% 85.63% 85.63% 82.03% 3.99
K-NN 82.54% 82.91% 82.54% 82.65% 78.17% 9.45
GBT 96.83% 96.82% 96.82% 96.82% 96.03% 4992.54
SVM 97.03% 97.03% 97.03% 97.03% 96.29% 213.79

Remark: Bold and underlined text indicates the highest values of accuracy, precision,
recall, F1-score, and Cohen’s kappa with the fastest classification time (second).

CHAPTER V
CONCLUSION

This research evaluated the effectiveness of various techniques for rice variety
classification using 250x250 pixel rice grain images. Image processing and machine learning
were employed with a substantial dataset encompassing 75,000 images, consisting of
15,000 images for each of five diverse rice varieties: Arborio, Basmati, Ipsala, Jasmine, and
Karacadag. To extract valuable information from the images, 32 features, including both
shape and texture characteristics, were extracted from each image.

The best performing classification model utilized Sobel edge detection for image
processing and the Support Vector Machine (SVM) technique for classification. It achieved
an accuracy of 98.68%, precision of 98.67%, recall of 98.67%, F1 score of 98.67%, and
Cohen’s kappa of 98.35%.

Compared to previous research, the proposed method outperformed many stud-
ies or achieved comparable performance. Notably, Zareiforoush et al. (2016) obtained an
accuracy of 98.72% for classifying four rice varieties, while Cinar and Köklü (2022) achieved
an accuracy of 99.91% for classifying five rice varieties using a higher number of features
(106 features compared to 32 features in this study). This suggests that increasing the num-
ber of features or adjusting the parameters in this research could potentially improve the
performance.

Although Sobel edge detection with SVM achieved high accuracy, it is important to
consider the processing time of the model. Sobel edge detection with SVM takes longer
than other methods (136.21 seconds). Another high-performing method is Sobel edge
detection with Gradient Boosting Trees, which achieved an accuracy of 97.76%. However,
it has the longest processing time among all the models (9168.98 seconds). In contrast,
Gaussian blur image enhancement with Naive Bayes had the shortest processing time
(3.99 seconds), but its performance was moderate. Ultimately, the choice of the most
suitable approach hinges on the specific application’s priorities.

44

Overall, this research demonstrates the effectiveness of image processing and
machine learning techniques for rice variety classification, paving the way for further ad-
vancements in rice grain analysis and prediction, and contributing to improved efficiency
and quality control in the rice industry.

REFERENCES

REFERENCES

Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based learning algorithms. Machine
learning, 6(1), 37-66.

Aki, O., Güllü, A., and Uçar, E. (2015). Classification of Rice Grains Using Image Process
ing and Machine Learning Techniques. Paper presented at International Scientific
Conference “UNITECH 2015”, 20 – 21 November 2015, Gabrovo: 352-354.

Aznar, P. (2020, 02/12/2020). Decision Trees : Gini vs Entropy. Retrieved from
https://quantdare.com/decision-trees-gini-vs-entropy/

Brownlee, J. (2023). A Gentle Introduction to kfold CrossValidation. Retrieved from
https://machinelearningmastery.com/k-fold-cross-validation/

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and
regression trees. Chapman & Hall.

Chicco, D., and Jurman, G. (2020). The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation. BMC genomics,
21(1), 1-13.

Cinar, I., and Koklu, M. (2019). Classification of Rice Varieties Using Artificial Intelligence
Methods. International Journal of Intelligent Systems and Applications in Engineering
(IJISAE) 7(3), 188–194.

Cinar, I., and Koklu, M. (2021). Determination of Effective and Specific Physical Features
of Rice Varieties by Computer Vision in Exterior Quality Inspection. Selcuk Journal of
Agriculture and Food Sciences (SJAFS) 35(3), 229-243.

Cinar, I., and Koklu, M. (2022). Identification of Rice Varieties Using Machine Learning Algo-
rithms. Journal of Agricultural Sciences (Tarim Bilimleri Dergisi) 28(2), 307-325.

47

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and psycho
logical measurement, 20(1), 37-46.

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-
297.

Deng, G. and Cahill, L.W. (1993). An adaptive Gaussian filter for noise reduction and edge
detection. Proceeding of Nuclear Science Symposium and Medical Imaging Confer
ence, 3, 1615 - 1619. doi : 10.1109/NSSMIC.1993.373563.

Deng, N., Tian, Y., and Zhang, C. (2012). Support vector machines: optimization based
theory, algorithms, and extensions: CRC press.

Dimitoglou, G., Adams, J., and Jim, C. (2012). Comparison of the C4.5 and a Naive Bayes
Classifier for the Prediction of Lung Cancer Survivability, arXiv, 4, Retrieved from
https://arxiv.org/abs/1206.1121.

Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., and Herrera, F. (2018). Learning
from imbalanced data sets (Vol. 10): Springer Science+Business Media.

Farid, D., Rahman, M., and Al-Mamun, M. (2014). Efficient and scalable multiclass clas
sification using naïve Bayes tree. Paper presented at 2014 International Conference
on Informatics, Electronics and Vision (ICIEV 2014), Dhaka, Bangladesh

García, S., Fernández, A., Luengo, J., and Herrera, F. (2010). Advanced nonparametric
tests for multiple comparisons in the design of experiments in computational in-
telligence and data mining: Experimental analysis of power. Information sciences,
180(10), 2044-2064.

Ghosh, A., Sufian, A., Sultana, F.,Chakrabarti, A., and De, D. (2020). Fundamental Concepts
of Convolutional Neural Network. Recent Trends and Advances in Artificial Intelli
gence and Internet of Things, 519-567

Grandini, M., Bagli, E., and Visani, G. (2020). Metrics for Multi-Class Classification: an
Overview. arXiv, 8, Retrived from https://arxiv.org/ftp/arxiv/papers/2209/2209.08699.

48

He, H., and Ma, Y. (2013). Imbalanced learning: foundations, algorithms, and applications.
Wiley-IEEE Press.

Hearst, M., Dumais, S.T., Osman, E., Platt, J., and Scholkopf, B. (1998). Support
vector machines. Intelligent Systems and their Applications, 13, 18 - 28. doi :
10.1109/5254.708428.

Kass, M., Witkin, A., and Terzopolous, D. (1988). Snakes: Active Contour Models. Interna
tional Journal of Computer Vision 1(4), 321-331

Koklu, M., Cinar, I., and Taspinar, Y. S. (2021). Classification of Rice Varieties with Deep
Learning Methods. Computers and Electronics in Agriculture 187(2021), 1-8.

López, V., Triguero, I., Carmona, C. J., García, S., and Herrera, F. (2014). Addressing imbal-
anced classification with instance generation techniques: IPADE-ID. Neurocomputing,
126, 15-28.

Madzarov, G., Gjorgjevikj, D., and Chorbev, I. (2009). Multi-class Classification using Support
Vector Machines in Binary Tree Architecture. IEEE EUROCON 2009(pp. 288-295). Russia,
doi: 10.1109/EURCON.2009.5167645.

McHugh, M. (2012). Interrater reliability: the kappa statistic. Retrieved from
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052/.

Saritas, M., and Yasar, A. (2019). Performance Analysis of ANN and Naïve Bayes Classification
Algorithm for Data Classification. International Journal of Intelligent Systems and
Applications in Engineering 7(2), 88–91.

Natekin, A., and Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neu
rorobotics, 7, 21. doi : 10.3389/fnbot.2013.00021

Neapolitan, R. E., and Jiang, X. (2018). Artificial Intelligence: With an Introduction to Ma
chine Learning. (2 ed.) CRC Press.

49

Nikhil, G. S. (2023). Histogram Equalization — Everything you need to know. Re-
trived from https://nikhilgandhudi.medium.com/histogram-equalization-everything-
you-need-to-know-dd5e41a47da8.

NV5 Geospatial Software, (2023). Apply Laplacian Filters, Retrived from
https://www.nv5geospatialsoftware.com/docs/LaplacianFilters.html.

Quinlan, J. (1986). Indroduction of decision trees machine learning. Boston (NL): Kluwer
Acad. Publ, 1(86-106), 650.

Quinlan, J. R. (1993). C4. 5: programs for machine learning: Morgan Kaufmann Publishers
Inc.

Reddy, R., Nagaraju, C., and Reddy, I. (2016). Canny Scale Edge Detection. International
Journal of Engineering Trends and Technology. doi : 10.14445/22315381/IJETT-
ICGTETM-N3/ICGTETM-P121.

Rexce, J., and Usha Kingsly Devi, K. (2017). Classification of Milled Rice Using Image Pro-
cessing. International Journal of Scientific & Engineering Research.

Rokach, L., and Maimon, O. (2005). Data mining and knowledge discovery handbook.
Springer Science+Business Media.

Sá, A., Almeida, A., Rocha, B., Mota, M., Souza, J., and Dentel, L. (2011). Lightning forecast
using data mining techniques on hourly evolution of the convective available poten
tial energy. Paper presented at the Brazilian Congress on Computational Intelligence,
Fortaleza, November.

scikit-learn. (2022). PrecisionRecall. Retrieved from https://scikit-learn.org/stable/auto-
examples/model_selection/plot_precision_recall.html

Shah, A., (2018), Through The Eyes of Gabor Filter. Retrieved from
https://medium.com/anuj_shah/@through-the-eyes-of-gabor-filter-17d1fdb3ac97.

50

Shokouh, G. S., Baptiste, M., Xu, B., and Montesinos, P. (2021). Ridge Detection by Image
Filtering Techniques: A Review and an Objective Analysis. Pattern Recognition and
Image Analysis. 31, 551-570. doi : 10.1134/S1054661821030226.

Singh, S., and Gupta, P. (2014). Comparative study ID3, cart and C4. 5 decision tree algo-
rithm: a survey. International Journal of Advanced Information Science and Tech
nology (IJAIST), 27(27), 97-103.

Taunk, K., De, S., Verma, S., and Swetapadma, A. (2019). A brief review of nearest neighbor
algorithm for learning and classification. Paper presented at the 2019 International
Conference on Intelligent Computing and Control Systems (ICCS).

Thai Rice Exporters Association (2024), F.O.B. Prices. Retrieved from
http://www.thairiceexporters.or.th/

Wakefield, K. (2022). A guide to the types of machine learning algorithms and their appli
cations. Retrieved from https://www.sas.com/en_gb/insights/articles/analytics/mac-
hine-learning-algorithms.html

Wang, Z., Xu, H., Zhou, P. and Xiao, G. (2023). An Improved Multilabel k-Nearest Neighbor
Algorithm Based on Value and Weight. Computation 2023, 11, 32. doi : 10.3390/com-
putation11020032

Sobel operator. (2024). Retrieved February 5, 2024 from Wikipedia:
https://en.wikipedia.org/wiki/Sobel_operator

Zareiforoush, H., Minaei, S., Alizadeh, M. R., and Banaka, A. (2016). Qualitative Classification
of Milled Rice Grains Using Computer Vision and Metaheuristic Techniques. Journal
of Food Science Technology, 53(1). 118-131.

APPENDICES

APPENDIX A
THE RESULTS TABLE OF THE PERFORMANCE OF MACHINE

LEARNING MODELS

53

A.1 The Results of the Performance of Canny edge detection

The classification results using the feature dataset from Canny edge detection and
various machine learning techniques are shown in tables A.1-A.5.

Table A.1 Decision Tree with Canny edge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13908 35 15 149 898 92.40% 92.69% 92.54
Basmati 35 14533 0 431 1 95.09% 96.89% 95.98
Ipsala 27 0 14883 88 2 98.90% 99.22% 99.06
Jasmine 196 715 150 13930 9 95.40% 92.87% 94.06
Karacadake 885 0 0 4 14111 93.94% 94.07% 94.01
Accuracy 95.15%
Kappa 93.93%
Time 168.96s

Table A.2 Naïve Bayes with Canny edge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 12933 85 0 295 1687 86.69% 86.22% 86.45%
Basmati 317 13348 26 1308 1 86.64% 88.99% 87.80%
Ipsala 59 9 14874 58 0 92.85% 99.16% 95.90%
Jasmine 498 1965 1120 11079 338 86.80% 73.86% 79.81%
Karacadake 1112 0 0 24 13864 87.25% 92.43% 89.76%
Accuracy 88.13%
Kappa 85.16%
Time 13.68s

54

Table A.3 K-NN with Canny edge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 14061 1 0 104 834 96.12% 93.74% 94.92%
Basmati 12 14742 0 246 0 97.08% 98.28% 97.67%
Ipsala 15 1 14922 62 0 99.73% 99.48% 99.60%
Jasmine 63 442 41 14449 5 97.19% 96.33% 96.76%
Karacadake 477 0 0 6 14517 94.54% 96.78% 95.65%
Accuracy 96.92%
Kappa 96.15%
Time 32.6705s

Table A.4 Gradient Boost Tree with Canny edge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 14219 9 7 137 628 95.73% 94.79% 95.26%
Basmati 43 14697 1 259 0 97.67% 97.98% 97.82%
Ipsala 11 0 14924 65 0 99.67% 99.49% 99.58%
Jasmine 93 142 41 14522 21 96.87% 96.81% 96.84%
Karacadake 488 0 0 8 14504 96.69% 96.69% 96.26%
Accuracy 97.15%
Kappa 96.44%
Time 5886.94s

55

Table A.5 Support Vector Machine with Canny edge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 14357 1 0 69 573 96.64% 95.71% 96.17%
Basmati 5 14709 0 286 0 98.03% 98.06% 98.05%
Ipsala 6 0 14956 38 0 99.83% 99.71% 99.77%
Jasmine 54 294 25 14624 3 97.38% 97.49% 97.43%
Karacadake 434 0 0 0 14565 96.20% 97.10% 96.65%
Accuracy 97.61%
Kappa 97.02%
Time 413.03s

A.2 The Results of the Performance of Sobel edge detection

The classification results using the feature dataset from Sobel edge detection and
various machine learning techniques are shown in tables A.6-A.10.

Table A.6 Decision Tree with Sobel edge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13920 10 6 181 883 92.65% 92.82% 92.72%
Basmati 16 14630 1 350 3 96.61% 97.53% 97.07%
Ipsala 6 1 14900 92 1 99.02% 99.33% 99.17%
Jasmine 221 501 141 14107 30 95.58% 94.05% 94.81%
Karacadake 862 2 0 29 14107 93.90% 94.05% 93.97%
Accuracy 95.55%
Kappa 94.44%
Time 60.29s

56

Table A.7 Naïve Bayes with Sobel edge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 12429 543 0 445 1583 86.43% 82.86% 84.61%
Basmati 781 13255 17 931 16 83.32% 88.37% 85.77%
Ipsala 1 26 14755 218 0 94.12% 98.37% 96.20%
Jasmine 220 2085 905 9459 2331 82.73% 63.06% 71.57%
Karacadake 949 0 0 380 13671 77.67% 91.14% 83.87%
Accuracy 84.76%
Kappa 80.95%
Time 4.91s

Table A.8 K-NN with Sobel edge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13822 0 1 87 1090 95.75% 92.15% 93.91%
Basmati 23 14730 1 245 1 96.75% 98.20% 97.47%
Ipsala 12 5 14876 107 0 99.25% 99.17% 99.21%
Jasmine 130 490 111 14245 24 97.00% 94.97% 95.97%
Karacadake 449 0 0 2 14549 92.88% 96.99% 94.89%
Accuracy 96.30%
Kappa 95.37%
Time 13.15s

57

Table A.9 Gradient Boost Tree with Sobel edge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 14336 2 0 113 549 97.30% 95.57% 96.43%
Basmati 26 14770 0 204 0 98.02% 98.47% 98.42%
Ipsala 4 0 14928 68 0 99.75% 99.52% 99.63%
Jasmine 78 25 38 14579 10 97.39% 97.19% 97.29%
Karacadake 288 1 0 5 14706 96.34% 98.04% 97.18%
Accuracy 97.76%
Kappa 97.20%
Time 9168.98s

Table A.10 Support Vector Machine with Sobel edge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 14703 1 2 40 254 98.62% 98.02% 98.32%
Basmati 0 14758 0 242 0 98.66% 98.39% 98.52%
Ipsala 3 0 14966 31 0 99.87% 99.77% 99.82%
Jasmine 39 200 17 14743 1 97.92% 98.29% 98.10%
Karacadake 163 0 0 0 14837 98.31% 98.91% 98.61%
Accuracy 98.68%
Kappa 98.35%
Time 136.21s

58

A.3 The Results of the Performance of Ridge detection

The classification results using the feature dataset from Ridge detection and vari-
ous machine learning techniques are shown in tables A.11-A.15.

Table A.11 Decision Tree with Ridge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13822 36 44 200 898 91.60% 92.15% 91.87%
Basmati 40 14442 2 516 0 95.45% 96.28% 95.86%
Ipsala 45 1 14855 99 0 98.61% 99.03% 98.82%
Jasmine 258 653 163 13908 19 94.39% 92.72% 93.55%
Karacadake 925 0 0 12 14063 93.88% 93.75% 93.82%
Accuracy 94.79%
Kappa 93.48%
Time 35.72s

Table A.12 Naïve Bayes with Ridge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 12404 9 1 948 1638 88.22% 82.69% 85.37%
Basmati 781 13255 17 931 16 87.22% 93.15% 90.09%
Ipsala 1 26 14755 218 0 95.50% 98.28% 96.87%
Jasmine 220 2085 905 9459 2331 84.63% 77.93% 81.14%
Karacadake 949 0 0 380 13671 88.06% 91.99% 89.98%
Accuracy 88.81%
Kappa 88.81%
Time 5.24s

59

Table A.13 K-NN with Ridge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13628 4 9 167 1192 93.36% 90.85% 92.09%
Basmati 19 14658 0 323 0 96.42% 97.72% 97.o6%
Ipsala 65 1 14850 84 0 99.59% 99.00% 99.29%
Jasmine 91 540 52 14311 6 96.08% 95.41% 95.74%
Karacadake 795 0 0 10 14195 92.22% 94.63% 93.41%
Accuracy 95.52%
Kappa 94.40%
Time 11.21s

Table A.14 Gradient Boost Tree with Ridge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 14144 22 15 159 660 95.22% 94.29% 94.75%
Basmati 44 14661 0 295 0 97.28% 97.74% 97.51%
Ipsala 35 0 14893 71 1 99.54% 99.29% 99.41%
Jasmine 129 388 54 14424 5 96.41% 96.16% 96.29%
Karacadake 502 0 0 12 14486 95.60% 96.57% 96.09%
Accuracy 96.81%
Kappa 96.01%
Time 2639.67s

60

Table A.15 Support Vector Machine with Ridge detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 14081 4 13 245 657 95.07% 93.87% 94.47%
Basmati 5 14493 0 502 0 97.26% 96.62% 96.94%
Ipsala 52 1 14883 64 0 99.65% 99.22% 91.87%
Jasmine 203 403 40 148352 2 94.63% 95.68% 95.15%
Karacadake 470 0 0 4 14526 95.66% 96.84% 96.25%
Accuracy 96.45%
Kappa 95.56%
Time 207.60s

A.4 The Results of the Performance of Texture detection

The classification results using the feature dataset from Texture detection and
various machine learning techniques are shown in tables A.16-A.20.

Table A.16 Decision Tree with Texture detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13411 95 12 232 1205 89.13% 89.41% 89.27%
Basmati 79 14270 6 638 7 93.41% 95.13% 94.27%
Ipsala 12 2 14813 171 3 98.26% 98.82% 98.54%
Jasmine 315 901 243 13493 48 92.56% 89.95% 91.24%
Karacadake 1230 8 1 54 13707 91.29% 91.38% 91.33%
Accuracy 92.94%
Kappa 91.17%
Time 42.02s

61

Table A.17 Naïve Bayes with Texture detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 11806 561 0 559 2074 82.43% 78.71% 80.53%
Basmati 995 12943 2 953 107 82.60% 86.29% 84.40%
Ipsala 23 19 14772 186 0 95.19% 98.48% 96.81%
Jasmine 212 2118 745 11267 658 84.78% 75.11% 79.65%
Karacadake 1268 28 0 325 13361 82.48% 91.14% 85.65%
Accuracy 85.53%
Kappa 81.92%
Time 4.19s

Table A.18 K-NN with Texture detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13067 12 0 163 1758 93.18% 87.11% 90.04%
Basmati 48 14546 0 400 6 96.04% 96.97% 96.50%
Ipsala 20 5 14888 87 0 99.03% 99.25% 99.14%
Jasmine 191 583 146 14020 60 95.35% 93.47% 94.40%
Karacadake 698 0 0 99 14269 88.67% 95.13% 91.78%
Accuracy 94.39%
Kappa 92.98%
Time 9.64s

62

Table A.19 Gradient Boosted Tree with Texture detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13909 13 0 176 982 94.97% 92.73% 93.38%
Basmati 42 14616 0 340 2 97.88% 97.44% 97.26%
Ipsala 5 0 14905 90 0 99.45% 99.37% 99.41%
Jasmine 129 425 82 14348 16 95.72% 95.65% 95.69%
Karacadake 561 2 0 36 14401 94.00% 96.01% 94.99%
Accuracy 96.24%
Kappa 95.30%
Time 4845.29s

Table A.20 Support Vector Machine with Texture detection.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13746 23 0 174 1057 93.68% 91.64% 92.65%
Basmati 35 14579 0 383 3 95.94% 97.19% 96.56%
Ipsala 1 4 14917 78 0 99.45% 99.45% 99.45%
Jasmine 134 588 83 14137 58 95.37% 94.25% 94.80%
Karacadake 758 2 0 52 14188 92.70% 94.59% 93.63%
Accuracy 95.42%
Kappa 94.28%
Time 276.62s

63

A.5 The Results of the Performance of Histogram equalization

The classification results using the feature dataset from Histogram Equalization
and various machine learning techniques are shown in tables A.21-A.25.

Table A.21 Decision Tree with Histogram Equalization.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13483 132 5 317 1063 89.24% 89.89% 89.56%
Basmati 116 14417 7 409 51 95.37% 96.11% 95.74%
Ipsala 15 3 14795 184 3 97.51% 98.63% 98.07%
Jasmine 417 520 364 13617 82 93.18% 90.78% 91.96%
Karacadake 1078 45 2 87 13788 92.00% 91.20% 91.96%
Accuracy 93.47%
Kappa 91.83%
Time 60.40s

Table A.22 Naïve Bayes with Histogram Equalization.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 12325 255 0 572 1848 80.56% 82.17% 82.17%
Basmati 1192 12304 6 1084 414 90.09% 82.03% 85.87%
Ipsala 23 13 14790 174 0 95.09% 98.60% 96.81%
Jasmine 681 1086 758 12141 334 85.68% 80.94% 83.24%
Karacadake 1078 0 0 199 13723 84.09% 91.49% 87.63%
Accuracy 87.04%
Kappa 83.80%
Time 4.25s

64

Table A.23 K-NN with Histogram Equalization.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13132 41 2 248 1577 92.27% 87.55% 89.85%
Basmati 228 14477 0 171 124 96.84% 96.51% 96.68%
Ipsala 16 11 14894 79 0 98.75% 99.29% 99.02%
Jasmine 332 410 187 13983 88 96.42% 93.22% 94.79%
Karacadake 524 10 0 21 14445 88.98% 96.30% 92.50%
Accuracy 94.57%
Kappa 93.22%
Time 9.77s

Table A.24 Gradient Boosted Tree with Histogram Equalization.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13993 15 0 206 786 95.15% 93.29% 94.21%
Basmati 77 14716 1 179 27 98.20% 98.11% 98.16%
Ipsala 4 2 14897 97 0 99.45% 99.31% 99.38%
Jasmine 157 247 81 14490 25 96.64% 96.60% 96.62%
Karacadake 475 5 0 22 14498 94.54% 96.65% 95.58%
Accuracy 96.79%
Kappa 95.99%
Time 4869.08s

65

Table A.25 Support Vector Machine with Histogram Equalization.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13955 40 0 175 830 94.48% 93.03% 93.75%
Basmati 58 14646 2 2227 67 97.35% 97.64% 97.49%
Ipsala 0 6 14907 87 0 99.49% 99.38% 99.44%
Jasmine 155 314 74 14336 121 96.00% 95.57% 95.78%
Karacadake 683 39 0 109 14249 93.33% 94.99% 94.16%
Accuracy 96.12%
Kappa 95.16%
Time 258.16s

66

A.6 The Results of the Performance of Enhancement by Laplacian
filter

The classification results using the feature dataset from Enhancement by Laplacian
filter and various machine learning techniques are shown in tables A.26-A.30.

Table A.26 Decision Tree with Enhancement by Laplacian filter.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13464 56 10 322 1148 88.96% 89.76% 89.36%
Basmati 66 14623 10 258 43 96.52% 97.49% 97.00%
Ipsala 11 7 14787 194 1 97.58% 98.58% 98.08%
Jasmine 436 407 346 13724 87 94.17% 91.49% 92.81%
Karacadake 1158 58 1 75 13708 91.47% 91.39% 91.43%
Accuracy 93.74%
Kappa 92.18%
Time 60.86s

67

Table A.27 Naïve Bayes with Enhancement by Laplacian filter.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 12471 54 0 738 1737 81.05% 83.14% 82.08%
Basmati 846 12871 6 818 459 91.27% 85.81% 88.45%
Ipsala 39 19 14789 153 0 95.03% 98.59% 96.78%
Jasmine 994 1158 768 11674 406 85.78% 77.83% 81.61%
Karacadake 1037 0 0 237 13736 84.07% 91.57% 87.66%
Accuracy 87.39%
Kappa 84.23%
Time 4.21s

Table A.28 K-NN with Enhancement by Laplacian filter.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13260 16 2 233 1489 93.07% 88.40% 90.68%
Basmati 183 14659 2 141 95 98.24% 97.73% 97.98%
Ipsala 31 10 14885 74 0 98.80% 99.23% 99.02%
Jasmine 370 233 177 14137 83 96.79% 94.25% 95.50%
Karacadake 483 3 0 21 14493 89.68% 96.62% 93.02%
Accuracy 95.25%
Kappa 94.06%
Time 9.25s

68

Table A.29 Gradient Boosted Tree with Enhancement by Laplacian filter.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13920 15 0 208 857 94.98% 92.00% 93.88%
Basmati 26 14811 0 147 16 87.88% 98.74% 98.81%
Ipsala 4 2 14902 91 1 99.55% 99.35% 99.45%
Jasmine 175 142 67 14594 22 96.85% 97.29% 97.07%
Karacadake 530 9 0 29 14432 94.15% 96.21% 95.17%
Accuracy 96.88%
Kappa 96.10%
Time 5177.58s

Table A.30 Support Vector Machine with Enhancement by Laplacian filter.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13604 18 0 176 1202 93.04% 90.69% 91.85%
Basmati 60 14663 4 223 50 98.36% 97.75% 98.06%
Ipsala 0 8 14930 62 0 99.55% 99.53% 99.54%
Jasmine 162 197 63 14458 120 96.26% 96.39% 96.32%
Karacadake 796 21 0 101 14082 91.12% 93.88% 92.48%
Accuracy 95.65%
Kappa 94.56%
Time 256.39s

69

A.7 The Results of the Performance of Enhancement by Gaussian
blur

The classification results using the feature dataset from Enhancement by Gaussian
blur and various machine learning techniques are shown in tables A.31-A.35.

Table A.31 Decision Tree with Enhancement by Gaussian blur.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 13486 55 3 475 981 89.76% 89.91% 89.93%
Basmati 53 14566 12 260 109 96.98% 97.11% 97.05%
Ipsala 0 10 14788 201 1 97.69% 98.59% 98.14%
Jasmine 535 267 334 13609 255 92.11% 90.73% 91.42%
Karacadake 950 121 0 229 13700 91.05% 91.33% 91.19%
Accuracy 93.53%
Kappa 91.92%
Time 49.53s

70

Table A.32 Naïve Bayes with Enhancement by Gaussian blur.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 12243 55 0 686 2016 78.97% 81.62% 80.27%
Basmati 711 11965 3 1825 496 93.99% 79.77% 86.30%
Ipsala 45 34 14766 155 0 95.54% 98.44% 96.97%
Jasmine 1182 661 687 11995 475 79.58% 79.97% 79.77%
Karacadake 1322 15 0 412 13251 81.60% 88.34% 84.84%
Accuracy 85.63%
Kappa 82.03%
Time 3.99s

Table A.33 K-NN with Enhancement by Gaussian blur.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 11088 663 1 731 2517 68.77% 73.92% 71.25%
Basmati 2088 11901 1 679 331 87.37% 79.34% 83.16%
Ipsala 8 11 14717 264 0 97.98% 98.11% 98.04%
Jasmine 761 934 302 12088 915 84.17% 80.59% 82.34%
Karacadake 2179 112 0 600 12109 76.29% 80.73% 78.45%
Accuracy 82.54%
Kappa 78.17%
Time 9.45s

71

Table A.34 Gradient Boosted Tree with Enhancement by Gaussian blur.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 14068 19 1 245 667 95.16% 93.79% 94.47%
Basmati 25 14752 1 179 43 98.83% 98.35% 98.59%
Ipsala 1 5 14900 94 0 99.38% 99.33% 99.36%
Jasmine 268 110 91 14429 102 96.10% 96.19% 96.15%
Karacadake 421 41 0 68 14470 94.69% 96.47% 95.57%
Accuracy 96.83%
Kappa 96.03%
Time 4992.54s

Table A.35 Support Vector Machine with Enhancement by Gaussian blur.

Varieties of

rice grains

Arborio Basmati Ipsala Jasmine Karacadag Precision Recall F1-Score

Arborio 14165 5 0 224 606 95.61% 94.43% 95.02%
Basmati 7 14790 3 176 24 98.96% 98.60% 98.79%
Ipsala 0 2 14934 64 0 99.51% 99.56% 99.53%
Jasmine 214 143 71 14425 147 96.19% 96.17% 96.18%
Karacadake 429 6 0 107 14458 94.90% 96.39% 95.64%
Accuracy 97.03%
Kappa 96.29%
Time 213.79s

72

A.8 Performance Evaluation of Machine Learning Models Using Im
age Processing Datasets

Table A.36 The Performance of Image Processing Datasets with Decision Tree.

Dataset Accuracy Precision Recall F1-Score Kappa Time (sec)

Canny edge
detection 95.15% 95.15% 95.15% 95.14% 93.93% 168.97

Sobel edge
detection 95.55% 95.55% 95.55% 95.55% 94.44% 60.29

Ridge detection 94.79% 94.78% 94.78% 94.78% 93.48% 35.72
Texture detection 92.94% 92.93% 92.93% 92.93% 91.17% 42.02
Histogram
equalization 93.47% 93.46% 93.46% 93.45% 91.83% 60.40

Enhancement by
Laplacian filter 93.74% 93.74% 93.73% 93.73% 92.18% 60.86

Enhancement by
Gaussian blur 93.53% 93.51% 93.52% 93.52% 91.92% 49.53

73

Table A.37 The Performance of Image Processing Datasets with Naïve Bayes.

Dataset Accuracy Precision Recall F1-Score Kappa Time (sec)
Canny edge
detection 88.13% 88.04% 88.13% 87.94% 85.16% 13.68

Sobel edge
detection 84.76% 84.75% 84.76% 84.40% 80.95% 4.91

Ridge detection 88.81% 88.73% 88.81% 88.69% 86.01% 5.24

Texture detection 85.53% 85.50% 85.53% 85.41% 81.92% 4.16
Histogram
equalization 87.04% 87.10% 87.04% 86.98% 83.80% 4.25

Enhancement by
Laplacian filter 87.39% 87.44% 87.39% 87.32% 84.23% 4.21

Enhancement by
Gaussian blur 85.63% 85.94% 85.63% 85.63% 82.03% 3.99

Table A.38 The Performance of Image Processing Datasets with K-Nearest Neighbors.

Dataset Accuracy Precision Recall F1-Score Kappa Time (sec)
Canny edge
detection 96.92% 96.93% 96.92% 96.92% 96.15% 32.05

Sobel edge
detection 96.30% 96.32% 96.30% 96.29% 95.37% 13.15

Ridge detection 95.52% 95.53% 95.52% 95.52% 94.40% 11.21
Texture detection 94.39% 94.45% 94.39% 94.37% 92.98% 9.64
Histogram
equalization 95.47% 94.65% 94.57% 94.57% 93.22% 9.77

Enhancement by
Laplacian filter 95.25% 95.32% 95.25% 95.24% 94.06% 9.25

Enhancement by
Gaussian blur 82.54% 82.91% 82.54% 82.65% 78.17% 9.45

74

Table A.39 The Performance of Image Processing Datasets with Gradient Boosted Tree.

Dataset Accuracy Precision Recall F1-Score Kappa Time (sec)
Canny edge
detection 97.15% 97.15% 97.15% 97.15% 96.44% 5886.94

Sobel edge
detection 97.76% 97.76% 97.75% 97.75% 97.20% 9168.98

Ridge detection 96.81% 96.81% 96.81% 96.81% 96.01% 2639.67
Texture detection 96.24% 96.24% 96.24% 96.23% 95.30% 4845.29
Histogram
equalization 96.79% 96.79% 96.79% 96.79% 95.99% 4869.08

Enhancement by
Laplacian filter 96.88% 96.88% 96.87% 96.87% 96.10% 5177.58

Enhancement by
Gaussian blur 96.83% 96.82% 96.82% 96.82% 96.03% 4992.54

Table A.40 The Performance of Image Processing Datasets with Support Vector Machine.

Dataset Accuracy Precision Recall F1-Score Kappa Time (sec)

Canny edge
detection 97.61% 97.61% 97.61% 97.61% 97.02% 413.03

Sobel edge
detection 98.68% 98.67% 98.67% 98.67% 98.35% 136.21

Ridge detection 96.45% 96.45% 96.44% 96.44% 95.65% 207.60
Texture detection 95.42% 95.42% 95.42% 95.41% 9428% 276.62
Histogram
equalization 96.12% 96.12% 96.12% 96.12% 95.16% 258.16

Enhancement by
Laplacian filter 95.65% 95.66% 95.70% 95.65% 94.56% 256.39

Enhancement by
Gaussian blur 97.03% 97.03% 97.03% 97.03% 96.29% 213.79

Remark: Bold and underlined text indicates the highest values of accuracy, precision,
recall, F1-score, and Cohen’s kappa with the fastest classification time (second).

APPENDIX B
APPLICATION OF PYTHON CODE IN IMAGE PROCESS,
FEATURE EXTRACTION AND MACHINE LEARNING

MODELING

76

This chapter presents some Python code using in this thesis.

B.1 Cropped Rice Grain Images By Python Code in Jupyter Notebook

import os
import cv2
import numpy as np

Define the input folder and output folder paths
input_folder = ”E : / Rice_Image_Dataset”
output_root = ”C: / Users/Administrator/Desktop/Cropped_Objects_All”

Function to crop the largest object in an image
def crop_largest_object (image) :

gray = cv2 . cvtColor (image , cv2 .COLOR_BGR2GRAY)
_ , thresholded = cv2 . threshold (gray , 128, 255, cv2 .THRESH_BINARY)
contours , _ = cv2 . findContours (thresholded , cv2 .RETR_EXTERNAL, cv2 .CHAIN_APPROX_SIMPLE)

i f len (contours) > 0:
largest_contour = max(contours , key=cv2 . contourArea)
x , y , w, h = cv2 .boundingRect (largest_contour)
cropped_object = image[y : y+h, x : x+w]
return cropped_object

else :
return None

Recursive function to process subfolders
def process_subfolders (input_folder , output_root) :

for root , _ , f i l e s in os .walk (input_folder) :
for f i le in f i l e s :

i f f i le . lower () . endswith ((” . jpg” , ” . jpeg” , ” .png”)) :
image_path = os . path . join (root , f i le)
image = cv2 . imread(image_path)

i f image i s not None:
cropped = crop_largest_object (image)

77

i f cropped i s not None:
relative_path = os . path . relpath (root , input_folder)
output_subfolder = os . path . join (output_root , relative_path)
os .makedirs (output_subfolder , exist_ok=True)
output_path = os . path . join (output_subfolder , f i le)
cv2 . imwrite (output_path , cropped)

Call the recursive function to process subfolders
process_subfolders (input_folder , output_root)

print (”Cropped objects saved in :” , output_root)

78

B.2 Processed Crop Rice Grain Images by Python Code in Jupyter
Notebook

from PIL import Image
import os

Source directory containing the images
source_dir = r ’C: \ Users\Administrator \Desktop\Cropped_Objects_All ’
Destination directory to save the processed images
destination_dir = r ’C: \ Users\Administrator \Desktop\Processed_Crop_Images’
Create the destination directory i f i t doesn’ t exist
i f not os . path . exists (destination_dir) :

os .makedirs (destination_dir)

Iterate through subfolders in the source directory
for root , dirs , f i l e s in os .walk (source_dir) :

for f i le in f i l e s :
i f f i le . lower () . endswith ((’ . jpg ’ , ’ . jpeg ’ , ’ .png’ , ’ . g i f ’ , ’ .bmp’)) :

Load the source image
source_image = Image .open(os . path . join (root , f i le))

Create a blank black image of size 250x250
new_image = Image .new(’RGB’ , (250 , 250) , (0 , 0 , 0))

Calculate the position to paste the image to center i t
paste_x = (250 − source_image .width) // 2
paste_y = (250 − source_image . height) // 2

Paste the source image onto the new image
new_image. paste (source_image , (paste_x , paste_y))

Save the pasted image in the destination directory
new_image. save (os . path . join (destination_dir , f i le))

print (”Image processing and saving complete .”)

79

B.3 Processed Image using Canny Edge Detection by Python Code in
Jupyter Notebook

import cv2
import os

def apply_canny(image_path , output_path) :
img = cv2 . imread(image_path , 0)
edges = cv2 .Canny(img , 100, 200)
cv2 . imwrite (output_path , edges)

root_dir = ’C: / Users/Administrator/Desktop/Rice_Image_Dataset ’
output_folder = ’C: / Users/Administrator/Desktop/Rice_Image_Dataset_Canny’
Specify the new folder path

Create the output folder i f i t doesn’ t exist
i f not os . path . exists (output_folder) :

os .makedirs (output_folder)

for root , dirs , f i l e s in os .walk (root_dir) :
for f i le in f i l e s :

i f f i le . endswith (” . jpg”) :
img_path = os . path . join (root , f i le)
out_path = os . path . join (output_folder , ”canny_” + f i le)
apply_canny(img_path , out_path)

80

B.4 Processed Image using Sobel Edge Detection By Python code in
Jupyter Notebook

import cv2
import os

path = ”C: / Users/Administrator/Desktop/Rice_Image_Dataset”
output_folder = ”C: / Users/Administrator/Desktop/Rice_Image_Dataset_Sobel”
Specify the new folder path

Create the output folder i f i t doesn’ t exist
i f not os . path . exists (output_folder) :

os .makedirs (output_folder)

Loop through all subdirectories and f i l e s in the given path
for root , dirs , f i l e s in os .walk (path) :

for f i le in f i l e s :
i f f i le . lower () . endswith (” . jpg”) or f i le . lower () . endswith (” .png”) :

Read the image
img_path = os . path . join (root , f i le)
img = cv2 . imread(img_path)

Apply Sobel edge detection
gray = cv2 . cvtColor (img , cv2 .COLOR_BGR2GRAY)
edges_x = cv2 . Sobel (gray , cv2 .CV_64F, 1 , 0 , ksize=5)
edges_y = cv2 . Sobel (gray , cv2 .CV_64F, 0 , 1 , ksize=5)
edges = cv2 .magnitude(edges_x , edges_y)
edges = cv2 . normalize (edges , None, 0 , 255, cv2 .NORM_MINMAX, cv2 .CV_8U)

Save the result in the output folder
output_path = os . path . join (output_folder , ”sobel_” + f i le)
cv2 . imwrite (output_path , edges)

81

B.5 Processed Image using Ridge Detection By Python code in
Jupyter Notebook

import cv2
import os
import matplotlib . pyplot as plt
from skimage import f i l t e r s
from tqdm import tqdm

path = ”C: / Users/Administrator/Desktop/Rice_Image_Dataset”

def plot_images (* images) :
images = l i s t (images)
n = len (images)
f i g , ax = plt . subplots (ncols=n, sharey=True)
for i , img in enumerate(images) :

ax [i] . imshow(img , cmap=’gray ’)
ax [i] . axis (’off ’)

plt . subplots_adjust (le f t =0.03, bottom=0.03, r i ght =1.97, top=1.97)
plt .show()

Loop through all subdirectories and f i l e s in the given path
for root , dirs , f i l e s in tqdm(os .walk (path)) :

for f i le in f i l e s :
i f f i le . lower () . endswith (” . jpg”) or f i le . lower () . endswith (” .png”) :

Read the image
img_path = os . path . join (root , f i le)
img = cv2 . imread(img_path , cv2 . IMREAD_GRAYSCALE)
img2 = cv2 . imread(img_path)
img3 = cv2 . cvtColor (img2 , cv2 .COLOR_BGR2RGB)

Apply Adaptive Threshold detection
edges2= f i l t e r s . sobel (img)
low2 = 0.07

82

high2 = 0.08
hyst2= f i l t e r s . apply_hysteresis_threshold (edges2 , low2, high2)
#adaptive_thresh = cv2 . adaptiveThreshold (img , 255,
cv2 .ADAPTIVE_THRESH_MEAN_C, cv2 .THRESH_BINARY, 11, 2)

Save the result
output_path = os . path . join (root , ”adaptive_” + f i le)
plot_images (img3 , hyst2)

B.6 Processed Image using Texture Detection By Python code in
Jupyter Notebook

import os
import cv2
import numpy as np
import matplotlib . pyplot as plt

def apply_gabor_filter (image , ksize=31, sigma=5.0 , theta=0.0 , lambd=10.0, gamma=0.5) :
gabor_kernel = cv2 . getGaborKernel ((ksize , ksize) , sigma , theta , lambd, gamma, 0 , ktype=cv2 .CV_32F)
filtered_image = cv2 . f i l ter2D (image , cv2 .CV_8UC3, gabor_kernel)
return filtered_image

def process_image (image_path , output_folder) :
image = cv2 . imread(image_path , cv2 . IMREAD_GRAYSCALE)
thresh = cv2 . threshold (image , 0 , 255, cv2 .THRESH_BINARY + cv2 .THRESH_OTSU) [1]
contours , hierarchy = cv2 . findContours (thresh , cv2 . RETR_LIST , cv2 .CHAIN_APPROX_SIMPLE)

mx = (0 , 0 , 0 , 0)
mx_area = 0
for cont in contours :

x , y , w, h = cv2 .boundingRect (cont)
area = w * h
i f area > mx_area :

mx = x , y , w, h

83

mx_area = area
x , y , w, h = mx
crop_img = image[y : y+h, x : x+w]

Apply histogram equalization
equalized_image = cv2 . equalizeHist (crop_img)
texture_image = apply_gabor_filter (equalized_image)

Create output folder i f i t doesn’ t exist
os .makedirs (output_folder , exist_ok=True)

Save the processed image
result_path = os . path . join (output_folder , os . path .basename(image_path))
cv2 . imwrite (result_path , texture_image)

return result_path

Specify input and output folders
input_folder = ’C: / Users/Administrator/Desktop/Rice_Image_Dataset ’
output_folder = ’C: / Users/Administrator/Desktop/Texture_Images’

Process all images in the subfolders
for root , dirs , f i l e s in os .walk (input_folder) :

for f i le in f i l e s :
i f f i le . lower () . endswith ((’ .png’ , ’ . jpg ’ , ’ . jpeg ’)) :

image_path = os . path . join (root , f i le)
process_image (image_path , output_folder)

print (”Processing complete .”)

84

B.7 Processed Image using Histogram Equalization, By Python code
in Jupyter Notebook

import os
import cv2
import numpy as np
import matplotlib . pyplot as plt

def equalize_and_save (image_path , save_path) :
Load the image
image = cv2 . imread(image_path , cv2 . IMREAD_GRAYSCALE)

Thresholding
thresh = cv2 . threshold (image , 0 , 255, cv2 .THRESH_BINARY + cv2 .THRESH_OTSU) [1]
contours , hierarchy = cv2 . findContours (thresh , cv2 . RETR_LIST , cv2 .CHAIN_APPROX_SIMPLE)
mx = (0 , 0 , 0 , 0)
biggest bounding box so far
mx_area = 0
for cont in contours :

x , y , w, h = cv2 .boundingRect (cont)
area = w * h
i f area > mx_area :

mx = x , y , w, h
mx_area = area

x , y , w, h = mx
crop_img = image[y : y + h, x : x + w]

Apply histogram equalization
equalized_image = cv2 . equalizeHist (crop_img)

Save the equalized image
save_image_path = os . path . join (save_path , os . path .basename(image_path))
cv2 . imwrite (save_image_path , equalized_image)

Folder path containing subfolders with images

85

main_folder_path = ”C: /Users/Administrator/Desktop/Rice_Image_Dataset”

Path for the new folder to save the result images
result_folder_path = ”C: / Users/Administrator/Desktop/Equalized_Images”
os .makedirs (result_folder_path , exist_ok=True)

Loop through all subfolders
for subfolder_name in os . l i s t d i r (main_folder_path) :

subfolder_path = os . path . join (main_folder_path , subfolder_name)

i f os . path . i sd i r (subfolder_path) :
Loop through all images in the subfolder
for filename in os . l i s t d i r (subfolder_path) :

i f filename . endswith (” . jpg”) or filename . endswith (” .png”) :
image_path = os . path . join (subfolder_path , filename)
equalize_and_save (image_path , result_folder_path)

B.8 Processed Image using Laplacian Filter (Image Enhancement) by
Python code in Jupyter Notebook

import os
import cv2
import numpy as np
import matplotlib . pyplot as plt

def enhance_texture (image) :
laplacian = cv2 . Laplacian (image , cv2 .CV_64F)
sharpened = np. uint8 (np. cl ip (image − laplacian , 0 , 255))
return sharpened

def process_and_save (image_path , save_folder) :
Load the image
image = cv2 . imread(image_path , cv2 . IMREAD_GRAYSCALE)

86

Thresholding
thresh = cv2 . threshold (image , 0 , 255, cv2 .THRESH_BINARY + cv2 .THRESH_OTSU) [1]
contours , hierarchy = cv2 . findContours (thresh , cv2 . RETR_LIST , cv2 .CHAIN_APPROX_SIMPLE)
mx = (0 , 0 , 0 , 0)
mx_area = 0
for cont in contours :

x , y , w, h = cv2 .boundingRect (cont)
area = w * h
i f area > mx_area :

mx = x , y , w, h
mx_area = area

x , y , w, h = mx
crop_img = image[y : y + h, x : x + w]

Apply histogram equalization
equalized_image = cv2 . equalizeHist (crop_img)

Enhance the texture of the cropped image
enhanced_texture = enhance_texture (equalized_image)

Save the enhanced image
save_path = os . path . join (save_folder , os . path .basename(image_path))
cv2 . imwrite (save_path , enhanced_texture)

Folder path containing subfolders with images
main_folder_path = ”C: /Users/Administrator/Desktop/Rice_Image_Dataset”

Create a subfolder named ’enhance1’ on the desktop
save_folder_path = ”C: /Users/Administrator/Desktop/enhance1”
os .makedirs (save_folder_path , exist_ok=True)

Loop through all subfolders
for subfolder_name in os . l i s t d i r (main_folder_path) :

subfolder_path = os . path . join (main_folder_path , subfolder_name)

i f os . path . i sd i r (subfolder_path) :

87

Loop through all images in the subfolder
for filename in os . l i s t d i r (subfolder_path) :

i f filename . endswith (” . jpg”) or filename . endswith (” .png”) :
image_path = os . path . join (subfolder_path , filename)
process_and_save (image_path , save_folder_path)

B.9 Processed Image using Gaussian blur (Image Enhancement) by
Python code in Jupyter Notebook

import os
import cv2
import numpy as np
import matplotlib . pyplot as plt

def enhance_texture2 (image) :
Apply Laplacian f i l t e r for sharpening
laplacian = cv2 . GaussianBlur (image , (25 , 25) , 0)
sharpened = np. uint8 (np. cl ip (image − laplacian , 0 , 500))

return sharpened

def process_and_save (image_path , save_folder) :
Load the image
image = cv2 . imread(image_path , cv2 . IMREAD_GRAYSCALE)

Thresholding
thresh = cv2 . threshold (image , 0 , 255, cv2 .THRESH_BINARY + cv2 .THRESH_OTSU) [1]
contours , hierarchy = cv2 . findContours (thresh , cv2 . RETR_LIST , cv2 .CHAIN_APPROX_SIMPLE)
mx = (0 , 0 , 0 , 0)
mx_area = 0
for cont in contours :

x , y , w, h = cv2 .boundingRect (cont)
area = w * h
i f area > mx_area :

88

mx = x , y , w, h
mx_area = area

x , y , w, h = mx
crop_img = image[y : y + h, x : x + w]

Apply histogram equalization
equalized_image = cv2 . equalizeHist (crop_img)

Enhance the texture of the cropped image
enhanced_texture2 = enhance_texture2 (equalized_image)

Save the enhanced image
save_path = os . path . join (save_folder , os . path .basename(image_path))
cv2 . imwrite (save_path , enhanced_texture2)

Folder path containing subfolders with images
main_folder_path = ”C: /Users/Administrator/Desktop/Rice_Image_Dataset”

Create a subfolder named ’enhance1’ on the desktop
save_folder_path = ”C: /Users/Administrator/Desktop/enhance2”
os .makedirs (save_folder_path , exist_ok=True)

Loop through all subfolders
for subfolder_name in os . l i s t d i r (main_folder_path) :

subfolder_path = os . path . join (main_folder_path , subfolder_name)

i f os . path . i sd i r (subfolder_path) :
Loop through all images in the subfolder
for filename in os . l i s t d i r (subfolder_path) :

i f filename . endswith (” . jpg”) or filename . endswith (” .png”) :
image_path = os . path . join (subfolder_path , filename)
process_and_save (image_path , save_folder_path)

89

B.10 Example of Shape Feature Extraction by Python Code in
Jupyter Notebook

from PIL import Image
import numpy as np
import os
from skimage import measure, morphology, f i l t e r s
import pandas as pd
import scipy . stats as stats
from skimage .measure import shannon_entropy

Define the path to your dataset folder
dataset_path = ’C: / Users/Administrator/Desktop/enhance1’

Create empty l i s t s to store images , labels , and shape features
images = []
labels = []
shape_features = []

Loop through each subdirectory (each class)
for subdir in os . l i s t d i r (dataset_path) :

subdir_path = os . path . join (dataset_path , subdir)
i f os . path . i sd i r (subdir_path) :

for image_file in os . l i s t d i r (subdir_path) :
image_path = os . path . join (subdir_path , image_file)
i f image_file . endswith ((’ . jpg ’ , ’ .png’ , ’ . jpeg ’)) :

Check i f i t ’s an image f i l e
Open and resize the image
img = Image .open(image_path) . resize ((224 , 224))
images .append(np. array (img))
labels .append(subdir) # You can assign labels based on the subdirectory name

Convert the image to grayscale (2D)
grayscale_image = np. array (img . convert (’L’))

90

Compute shape features using sc ik i t −image’s regionprops
props = measure . regionprops (grayscale_image)

Calculate standard deviation of pixel values
std_dev = np. std (grayscale_image)

Calculate peak value (maximum pixel value)
peak_value = np.max(grayscale_image)

Calculate minimum and maximum gray values
min_gray_value = np.min(grayscale_image)
max_gray_value = np.max(grayscale_image)

Calculate edginess using Sobel f i l t e r
edge_image = f i l t e r s . sobel (grayscale_image)
edginess = np.mean(edge_image)

Calculate normalized center of mass
com = props [0] . local_centroid
normalized_com = (com[0] / grayscale_image . shape[0] , com[1] / grayscale_image . shape[1])

Calculate eccentricity
eccentricity = props [0] . eccentricity

Calculate sol id i ty
sol id i ty = props [0] . sol id i ty

Calculate compactness
compactness = (props [0] . perimeter ** 2) / (4 * np. pi * props [0] . area)

Calculate shape factor
shape_factor = (props [0] . perimeter ** 2) / (props [0] . area)

Calculate equivalent diameter
equivalent_diameter = props [0] . equivalent_diameter

91

Calculate entropy
entropy = shannon_entropy(grayscale_image)

shape_feature = {
”Image” : image_file ,
”Label” : subdir ,
”Area” : props [0] . area ,
”Perimeter” : props [0] . perimeter ,
”Extent” : props [0] . extent ,
”ConvexArea” : props [0] . convex_area ,
”AspectRatio” : props [0] . minor_axis_length / props [0] . major_axis_length ,
”Kurtosis” : stats . kurtosis (grayscale_image . ravel ()) ,
”Skewness” : stats . skew(grayscale_image . ravel ()) ,
”MajorAxis” : props [0] . major_axis_length ,
”MinorAxis” : props [0] . minor_axis_length ,
”StdDev” : std_dev ,
”PeakValue” : peak_value ,
”MinGrayValue” : min_gray_value ,
”MaxGrayValue” : max_gray_value ,
”Edginess” : edginess ,
”NormalizedCOM_X”: normalized_com[0] ,
”NormalizedCOM_Y” : normalized_com[1] ,
”Eccentricity” : eccentricity , # Eccentricity feature
”Sol idity” : sol idity , # Solidity feature
”Compactness” : compactness , # Compactness feature
”ShapeFactor” : shape_factor , # Shape factor feature
”EquivalentDiameter” : equivalent_diameter ,

Equivalent diameter feature
”Entropy” : entropy , # Entropy feature
Add more shape features here

}
shape_features .append(shape_feature)

Create a DataFrame to store the shape features
shape_df = pd.DataFrame(shape_features)

92

Save shape features to CSV and XLSX f i l e s
shape_csv_path = ’C: / Users/Administrator/Desktop/shape_features_EH1 . csv ’
shape_xlsx_path = ’C: / Users/Administrator/Desktop/shape_features_EH1 . xlsx ’

shape_df . to_csv (shape_csv_path , index=False)
shape_df . to_excel (shape_xlsx_path , index=False , engine=’openpyxl’)

print (”Shape features saved as CSV:” , shape_csv_path)
print (”Shape features saved as XLSX:” , shape_xlsx_path)

B.11 Example of Texture Feature Extraction by Python Code in
Jupyter Notebook

import os
import cv2
import numpy as np
from skimage . feature import graycomatrix , graycoprops
import pandas as pd

Function to extract texture attributes from an image
def extract_texture_attributes (image_path) :

Read the image
image = cv2 . imread(image_path , cv2 . IMREAD_GRAYSCALE)

Calculate the co−occurrence matrix
co_occurrence_matrix = graycomatrix (image , [1] , [0] , symmetric=True , normed=True)

Calculate texture attributes from the co−occurrence matrix
correlation = graycoprops (co_occurrence_matrix , ’ correlation ’) [0 , 0]
d iss imi la r i ty = graycoprops (co_occurrence_matrix , ’ d i ss imi la r i ty ’) [0 , 0]
energy = graycoprops (co_occurrence_matrix , ’energy’) [0 , 0]
entropy = −np.sum(co_occurrence_matrix * np. log (co_occurrence_matrix + np. f info (float) . eps))
contrast = graycoprops (co_occurrence_matrix , ’contrast ’) [0 , 0]
homogeneity = graycoprops (co_occurrence_matrix , ’homogeneity’) [0 , 0]

93

Calculate gray level moments
uniformity = np.sum(co_occurrence_matrix ** 2)
mean = np.mean(image)
variance = np. var (image)
skewness = np.mean(((image − mean) ** 3) / (variance ** 1 .5))
kurtosis = np.mean(((image − mean) ** 4) / (variance ** 2))

Get the image name (f i l e name without extension)
image_name = os . path . spl i text (os . path .basename(image_path)) [0]

return [correlation , d iss imi lar i ty , energy , entropy , contrast , homogeneity , uniformity , mean,
variance , skewness , kurtosis , image_name]

Define the folder containing the images
folder_path = ”C: / Users/Administrator/Desktop/Processed_Crop_Images”

In i t i a l i ze l i s t s to store attributes and class labels
data = []

Iterate through subfolders and images
for subfolder in os . l i s t d i r (folder_path) :

subfolder_path = os . path . join (folder_path , subfolder)

i f os . path . i sd i r (subfolder_path) :
for image_file in os . l i s t d i r (subfolder_path) :

image_path = os . path . join (subfolder_path , image_file)

Extract texture attributes from the image
attributes = extract_texture_attributes (image_path)

Append the class label (subfolder name) to the attributes
attributes .append(subfolder)

Add the attributes to the data l i s t
data .append(attr ibutes)

94

Create a Pandas DataFrame
columns = [”Correlation” , ”Diss imi lar i ty” , ”Energy” , ”Entropy” , ”Contrast” , ”Homogeneity” , ”Uniformity” ,

”Mean” , ”Variance” , ”Skewness” , ”Kurtosis” , ”ImageName” , ”Class”]
df = pd.DataFrame(data , columns=columns)

Save the DataFrame to an Excel f i l e
output_file = ”C: / Users/Administrator/Desktop/ texture_attributes . xlsx”
df . to_excel (output_file , index=False)

print (f”Texture attr ibutes saved to { output_file }”)

95

B.12 Example of Data Normalization by Python code in Jupyter
Notebook

import pandas as pd
from sklearn . preprocessing import StandardScaler

Load the dataset from the Excel f i l e
file_path = ”F : / Thesis/shape_texture_features_Ridge . xlsx”
data = pd. read_excel (file_path)

Separate the features (X) and labels (y)
X = data .drop(columns=[’Image’ , ’Label ’])
y = data [’Label ’]

Normalize the features using StandardScaler
scaler = StandardScaler ()
X_normalized = scaler . fit_transform (X)

Create a new DataFrame with the normalized features and labels
normalized_data = pd.DataFrame(data=X_normalized , columns=X.columns)
normalized_data [’Image’] = data [’Image’]
normalized_data [’Label ’] = y

Save the normalized data to a new Excel f i l e
normalized_file_path = ”F : / Thesis/normalized_shape_texture_features_Ridge . xlsx”
normalized_data . to_excel (normalized_file_path , index=False)

96

B.13 Example of Decision Tree Modeling by Python Code in Jupyter
Notebook

import pandas as pd
from sklearn . tree import DecisionTreeClassif ier
from sklearn .model_selection import cross_val_predict
from sklearn .metrics import accuracy_score , cohen_kappa_score , precision_recall_fscore_support ,
confusion_matrix
import time

Load the dataset
data_path = ”C: / Users/Administrator/Desktop/normalized_shape_texture_features_Canny . xlsx”
df = pd. read_excel (data_path)

Spl i t the dataset into features and labels
X = df .drop ([’Image’ , ’Label ’] , axis=1)
y = df [’Label ’]

In i t i a l i ze the Decision Tree Class i f ie r
cl f = DecisionTreeClassif ier ()

Measure the start time
start_time = time . time ()

Perform 10−fold cross−validation with predictions
y_pred = cross_val_predict (clf , X, y , cv=10)

Calculate the performance metrics
accuracy = accuracy_score (y , y_pred)
kappa = cohen_kappa_score(y , y_pred)

Calculate precision , recall , and F1 score for each class
precision , recall , fscore , support = precision_recall_fscore_support (y , y_pred)

Calculate the confusion matrix

97

confusion = confusion_matrix (y , y_pred)

Calculate the total time taken
end_time = time . time ()
total_time = end_time − start_time

Display the results
print (f”Total time taken : { total_time : . 4 f } seconds”)
print (f”Accuracy : { accuracy : . 4 f }”)
print (f”Cohen’s Kappa: {kappa : . 4 f }”)

Display precision , recall , and F1 score for each class
for class_label , prec , rec , f1 in zip (range (len (precision)) , precision , recall , fscore) :

print (f”Class { class_label } : Precision = {prec : . 4 f } , Recall = { rec : . 4 f } ,
F1 Score = { f1 : . 4 f }”)

print (”Confusion Matrix :”)
print (confusion)

B.14 Example of Naïve Bayes Modeling by Python code in Jupyter
Notebook

import pandas as pd
from sklearn . naive_bayes import GaussianNB
from sklearn .model_selection import cross_val_predict
from sklearn .metrics import accuracy_score , cohen_kappa_score , precision_score , recall_score ,
confusion_matrix , f1_score
import time

Load the dataset
data_path = ”C: / Users/Administrator/Desktop/normalized_shape_texture_features_Canny . xlsx”
df = pd. read_excel (data_path)

Spl i t the dataset into features and labels

98

X = df .drop ([’Image’ , ’Label ’] , axis=1)
y = df [’Label ’]

In i t i a l i ze the Naive Bayes Class i f ie r (GaussianNB)
cl f = GaussianNB ()

Measure the start time
start_time = time . time ()

Perform 10−fold cross−validation with predictions
y_pred = cross_val_predict (clf , X, y , cv=10)

Calculate the performance metrics
accuracy = accuracy_score (y , y_pred)
kappa = cohen_kappa_score(y , y_pred)
precision = precision_score (y , y_pred , average=’weighted’)
recall = recall_score (y , y_pred , average=’weighted’)
fscore = f1_score (y , y_pred , average=’weighted’)

Calculate precision , recall , and F1 score for each class
precision_per_class = precision_score (y , y_pred , average=None)
recall_per_class = recall_score (y , y_pred , average=None)
fscore_per_class = f1_score (y , y_pred , average=None)

Calculate the confusion matrix
confusion = confusion_matrix (y , y_pred)

Calculate the total time taken
end_time = time . time ()
total_time = end_time − start_time

Display the results
print (f”Total time taken : { total_time : . 4 f } seconds”)
print (f”Accuracy : { accuracy : . 4 f }”)
print (f”Cohen’s Kappa: {kappa : . 4 f }”)
print (f”Precision : { precision : . 4 f }”)

99

print (f”Recall : { recall : . 4 f }”)
print (f”F1 Score : { fscore : . 4 f }”)

Display precision , recall , and F1 score for each class
for class_label , prec , rec , f1 in zip (range (len (precision_per_class)) ,

precision_per_class , recall_per_class , fscore_per_class) :
print (f”Class { class_label } : Precision = {prec : . 4 f } , Recall = { rec : . 4 f } ,

F1 Score = { f1 : . 4 f }”)

print (”Confusion Matrix :”)
print (confusion)

B.15 Example of KNearest Neighbors Modeling by Python code in
Jupyter Notebook

import pandas as pd
from sklearn .model_selection import cross_val_predict , Stratif iedKFold
from sklearn . neighbors import KNeighborsClassifier
from sklearn .metrics import accuracy_score , cohen_kappa_score , precision_score ,

recall_score , confusion_matrix , f1_score
import time

Load the dataset
dataset_path = ”C: / Users/Administrator/Desktop/normalized_shape_texture_features_Canny . xlsx”
df = pd. read_excel (dataset_path)

Extract features and labels
X = df .drop ([’Image’ , ’Label ’] , axis=1)
Assuming ’Image’ and ’Label’ are the column names for ID and Class
y = df [’Label ’]

In i t i a l i ze the K−NN class i f i e r
knn_classif ier = KNeighborsClassifier (n_neighbors=5)
You can adjust the number of neighbors as needed

100

Perform 10−fold cross−validation with shuffl ing
start_time = time . time ()
strat i f ied_kfold = Stratif iedKFold (n_splits=10, shuffle=True , random_state=42)

Perform predictions during cross−validation
y_pred = cross_val_predict (knn_classif ier , X, y , cv=strat i f ied_kfold)

Calculate and print the time taken for training and cross−validation
total_time = time . time () − start_time
print (f”Total time taken : { total_time : . 4 f } seconds”)

Evaluate performance metrics
accuracy = accuracy_score (y , y_pred)
kappa = cohen_kappa_score(y , y_pred)
precision = precision_score (y , y_pred , average=’weighted’)
recall = recall_score (y , y_pred , average=’weighted’)
fscore = f1_score (y , y_pred , average=’weighted’)

print (f”Accuracy : { accuracy : . 4 f }”)
print (f”Kappa: {kappa : . 4 f }”)
print (f”Precision : { precision : . 4 f }”)
print (f”Recall : { recall : . 4 f }”)
print (f”F1 Score : { fscore : . 4 f }”)

Display precision , recall , and F1 score for each class
precision_per_class = precision_score (y , y_pred , average=None)
recall_per_class = recall_score (y , y_pred , average=None)
fscore_per_class = f1_score (y , y_pred , average=None)

for class_label , prec , rec , f1 in zip (range (len (precision_per_class)) ,
precision_per_class , recall_per_class , fscore_per_class) :

print (f”Class { class_label } : Precision = {prec : . 4 f } , Recall = { rec : . 4 f } ,
F1 Score = { f1 : . 4 f }”)

Display confusion matrix

101

conf_matrix = confusion_matrix (y , y_pred)
print (”Confusion Matrix :”)
print (conf_matrix)

B.16 Example of Support Vector Machine Modeling by Python code
in Jupyter Notebook

import pandas as pd
from sklearn .model_selection import cross_val_predict , KFold
from sklearn .svm import SVC
from sklearn .metrics import accuracy_score , cohen_kappa_score , precision_recall_fscore_support ,

confusion_matrix
from sklearn . preprocessing import StandardScaler
import time

Load the dataset
data = pd. read_excel (”C: / Users/Administrator/Desktop/normalized_shape_texture_features_Canny . xlsx”)

Extract features (excluding ’Image’ and ’Label’ columns)
X = data .drop ([’Image’ , ’Label ’] , axis=1)

Extract labels
y = data [’Label ’]

In i t i a l i ze the SVM class i f i e r
c la s s i f i e r = SVC(kernel=’ l inear ’) # You can change the kernel type as needed

Standardize features (optional but recommended for SVM)
scaler = StandardScaler ()
X = scaler . fit_transform (X)

Start the timer
start_time = time . time ()

102

Perform 10−fold cross−validation with shuffl ing and get predicted labels
kf = KFold (n_splits=10, shuffle=True , random_state=42)
predicted_labels = cross_val_predict (c lass i f ie r , X, y , cv=kf)

Stop the timer
end_time = time . time ()
total_time = end_time − start_time

Calculate accuracy , precision , recall , and F1 score for each class
accuracy = accuracy_score (y , predicted_labels)
precision , recall , fscore , support = precision_recall_fscore_support (y , predicted_labels)

Calculate Cohen’s Kappa
kappa = cohen_kappa_score(y , predicted_labels)

Calculate the confusion matrix
conf_matrix = confusion_matrix (y , predicted_labels)

Display results with four decimal places
print (f”Total time taken : { total_time : . 4 f } seconds”)
print (f”Accuracy : { accuracy : . 4 f }”)
print (f”Cohen’s Kappa: {kappa : . 4 f }”)

Display precision , recall , and F1 score for each class
for class_label , prec , rec , f1 in zip (range (len (precision)) , precision , recall , fscore) :

print (f”Class { class_label } : Precision = {prec : . 4 f } , Recall = { rec : . 4 f } ,
F1 Score = { f1 : . 4 f }”)

print (”Confusion Matrix :”)
print (conf_matrix)

103

B.17 Example of Gradient Boosted Tree Modeling by Python code
in Jupyter Notebook

import pandas as pd
from sklearn .metrics import cohen_kappa_score , accuracy_score , precision_score , recall_score ,

f1_score , confusion_matrix
from sklearn .ensemble import GradientBoostingClassifier
from sklearn .model_selection import cross_val_predict , KFold
import time

Load your dataset from the provided f i l e path
file_path = ”C: / Users/Administrator/Desktop/normalized_shape_texture_features_EH1 . xlsx”
df = pd. read_excel (file_path)

Use ’Image’ and ’Label’ for column names
X = df .drop ([’Image’ , ’Label ’] , axis=1)

Set ’Label’ as the target variable
y = df [’Label ’]

Create a GradientBoostingClassifier
gradient_booster = GradientBoostingClassifier (n_estimators=50, learning_rate=0.1 , max_depth=5)

Start the timer
start_time = time . time ()

Use 10−fold cross−validation with shuffl ing
kf = KFold (n_splits=10, shuffle=True , random_state=42)
y_pred = cross_val_predict (gradient_booster , X, y , cv=kf)

Stop the timer
end_time = time . time ()
total_time = end_time − start_time

Calculate performance metrics

104

accuracy = accuracy_score (y , y_pred)
kappa = cohen_kappa_score(y , y_pred)
precision_per_class = precision_score (y , y_pred , average=None)
recall_per_class = recall_score (y , y_pred , average=None)
fscore_per_class = f1_score (y , y_pred , average=None)

Generate a confusion matrix
conf_matrix = confusion_matrix (y , y_pred)

Print the precision , recall , and F1 score for each class
print (f”Total Time: { total_time : . 2 f } seconds”)
print (f”Accuracy : { accuracy : . 4 f }”)
print (f”Kappa: {kappa : . 4 f }”)

Display precision , recall , and F1 score for each class
for class_label , prec , rec , f1 in zip (range (len (precision_per_class)) , precision_per_class ,

recall_per_class , fscore_per_class) :
print (f”Class { class_label } : Precision = {prec : . 4 f } , Recall = { rec : . 4 f } ,

F1 Score = { f1 : . 4 f }”)

Display confusion matrix
print (”Confusion Matrix :”)
print (conf_matrix)

CURRICULUM VITAE

NAME : Piyanart Boonramart GENDER : Female

EDUCATION BACKGROUND:

• Bachelor of Science (Mathematics), Suranaree University of Technology, Thailand,
2020

SCHOLARSHIP:

• Outstanding Academic Performance Suranaree University of Technology Scholarship

CONFERENCE:

• Boonramart, P., Koatborom, P., Rodjanadid, B., and Tanthanuch, J. (2022) An Appli-
cation of Image Processing and Machine Learning for Rice Varieties Classification.,
The Proceedings of The 10th Nonsi Isan National Academic Conference, Kasetsart
University Chalermphrakiat Campus, Sakon Nakhon, 26 November 2022, 711-721.

• Udomjetjamnong, K., Boonramart, P., and Tanthanuch, J. (2023) Leveraging Three
Image Processing Techniques and Machine Learning for Milled Rice Variety Classi-
fication., The Proceedings of The 20th International and National Conference on
Applied Computer Technology and Information Systems (ACTIS). 25 August 2023,
56-60.

EXPERIENCE:

• Teaching assistant in Suranaree University of Technology, Calculus I, Calculus II,
Calculus III, Differential Equations I and Differential Equations for Civil Engineers.

	Cover
	Approved
	Abstract
	Acknowledgement
	Content
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Reference
	Appendix
	Biography

