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Chapter I

Introduction

Mathematical modelling is a basis for analyzing physical phenomena by
partial differential equations. Almost all fundamental equations of physics are
nonlinear, and in general, are very difficult to solve explicitly. Numerical methods
are often used with much success for obtaining approximate, not exact solutions.
Hence, there is interest in obtaining exact solutions of nonlinear equations. Each
solution has value, firstly, as an exact description of a real process in the framework
of a given model; secondly, as a model to compare various numerical methods;
thirdly, as a basis to improve the models used.

Group analysis is one of the methods for constructing particular exact so-
lutions of partial differential equations. A survey of this method can be found in
Ovsiannikov (1978) and Ibragimov (1994-1996). This method makes use of sym-
metry properties of differential equations. Symmetry means that any solution of
a given system of partial differential equations is transformed by a Lie group of
transformations to a solution of the same system. Moreover a symmetry allows
finding new solutions of the system. There are two types of solutions which can
be obtained by group analysis: invariant and partially invariant solutions.

In this thesis we study the unsteady Navier-Stokes equations. These
equations are fundamental partial differential equations that describe the flow of
an incompressible viscous fluid with usual temperature and pressure. In compact
form, the Navier-Stokes equations are

W+ (u-Viu=—p'vptrvAu+tf, v-u=0, (1.1)



where u = (uy, us, us) is the velocity, ¢ is time, p(x, t) is the fluid pressure, v = p/p
is the kinematic viscosity, p is viscosity, p is density, and f is the external body
force. The operators V and A are the gradient and the Laplacian, which in the
Cartesian coordinates X = (21, xg, x3) are V = (Oy,, Op,, Oz ) and A = (8§1 + (‘ﬁz +
0z,) where 0,, = 2=, (i = 1,2,3).

Many invariant solutions of the Navier-Stokes equations have been known
for a long time; however their systematic analysis became possible only with the
development of the modern methods of group analysis of differential equations
(Ovsiannikov, 1978). The first group classification of the Navier-Stokes equations
in the three-dimensional case was done in Bytev (1972). It was shown that the
Lie group admitted by the Navier-Stokes equations is infinite-dimensional. There
is still no classification of this group. Several papers (Puchnachov (1974), Lloyd
(1981), Boisvert, Ames and Srivastava (1983), Grauel and Steeb (1985), Fushchich
and Popovych (1994), Ibragimov (1994) and Popovych (1995)) are devoted to
invariant solutions of the Navier-Stokes equations. Partially invariant solutions of
the Navier-Stokes equations have been less studied (Puchnachov (1974), Meleshko
and Puchnachov (1999), Hematulin (2001)). At the same time there has been
progress in studying such classes of solutions of inviscid gas dynamics equations
(Ovsiannikov (1978), Sidorov, Shapeev and Yanenko (1984), Meleshko (1991) and
Ovsiannikov (1995)). Therefore, it is natural to investigate partially invariant
solutions for the Navier-Stokes equations.

The construction of partially invariant solutions consists of a sequence of
steps: choosing a subgroup, finding a representation of a solution, substituting the
representation into the studied system of equations, and studying compatibility
of the obtained (reduced) system of equations. This thesis deals with partially

invariant solutions of the Navier-Stokes equations with defect 6 = 1 and rank



o = 1. The subgroups studied are taken from part of the optimal system of subal-
gebras for the gas dynamics equations considered in Ovsiannikov and Chupakhin
(1996). It should be noted that the notion of compatibility plays the key role in
constructing partially invariant solutions. At the same time, when constructing a
representation of a partially invariant solution, the property that the group is ad-
mitted is not used. These facts give rise to the assumption that one can construct
partially invariant solutions with respect to a Lie group which is not necessary
admitted. In the next sections examples of such partially invariant solutions are
presented for the Navier-Stokes equations.

It is well-known that the main difficulty in the study of partially invariant
solutions is the analysis of the compatibility (cf. Finikov (1948) and Kuranishi
(1967)) of the appearing overdetermined systems. The analysis of compatibility
can be reduced to the consecutive performance of algebraic operations of sym-
bolic nature. The compatibility study of systems of partial differential equations
requires a large amount of analytical calculations, and it is necessary to use a
computer system for these calculations. A brief review of computer systems can
be found, for example, in Ibragimov (1994), (1995), (1996), (1999). In our calcu-
lations the system REDUCE (cf. Hearn (1999)) and the MAPLE 8 (cf. Schwartz
(2003)) program were used.

The partially invariant solutions of some subalgebras lead to the heat equa-
tion. For completeness of the study, we consider group classification of the ad-
mitted Lie algebra of the heat equation. Invariant solutions corresponds to these
subalgebras give partially invariant solution of the Navier-Stokes equations.

Admitted Lie groups of the heat equation are obtained. This group is called
G1°. The admitted subgroup G? allows dividing all exact solutions of the heat

equation into classes of essentially different solutions with respect to G°, where two



solutions wuy, us are nonessentially different if one is transformable into the other
by a transformation belonging to the group G°. Essentially different solutions
are obtained with respect to different classes of similar subgroups. The set of all
representatives (one from each class) is called an optimal system of subgroups. For
each subgroup, one can try to find invariant or partially invariant solutions. For
this, one has to find a universal invariant, a representation of a solution, substitute
it into the given system and study the compatibility of the resulting system.

Part of this thesis is devoted to constructing a Lie group of tangent trans-
formations for a system of partial differential equations. The Béacklund theorem
states that in the general case there are no nontrivial tangent transformations of
finite order except contact transformations. This theorem is proven under the
assumption that all derivatives involved in the transformations are free: they only
satisfy the tangent conditions. On the other hand, if the derivatives appearing
in a system of partial differential equations satisfy additional relations other than
the tangent conditions, then there may exist nontrivial tangent transformations of
finite order. These transformations are called Bécklund transformations (Ibragi-
mov, 1983). In this thesis, the existence of Bécklund transformations for systems
which arise from the study of partially invariant solutions of the Navier-Stokes
equations is proven.

This thesis is organized as follows. Chapter II introduces notations of group
analysis and provides references to known facts on application of group analysis
to the construction of exact solutions of partial differential equations. Chapter III
is devoted to the Navier-Stokes equations and admitted groups of the Navier-
Stokes equations. Coordinate systems are also considered in this chapter. These
coordinate systems are used for convenience of writing representations of partially

invariant solutions. Chapter IV deals with the study of regular partially invariant



solutions of the Navier-Stokes equations with respect to the subalgebras presented
in Table 4.1. Subgroups for study are taken from the optimal system of subal-
gebras considered for the gas dynamic equations (Ovsiannikov and Chupakhin
(1996)). Analysis of compatibility of these partially invariant solutions related to
those subgroups is given in this chapter. Final results are presented in tables,
which collect the results according to the type of a coordinate system. Chapter V
considers two-dimensional subalgebras of the optimal system of the Lie algebra
admitted by the heat equation. Invariant solutions of the heat equation are also
studied. The result of representative calculations is presented in Table 5.2. Chap-
ter VI is devoted to Lie groups of Béacklund transformations. These Lie groups
are admitted by a system of partial differential equations which arises from the

study of partially invariant solutions of the Navier-Stokes equations.



Chapter II

Group Analysis Method

In this chapter, the group analysis method is discussed. An introduction to
this method can be found in various textbooks (cf. Ovsiannikov (1978), Handbook

of Lie group analysis (1994), (1995), (1996)).

2.1 Lie Groups

Consider a set of invertible point transformations
2= ¢'(za), a€ A, €V, (2.1)
where i = 1,2,..., N, a is a parameter, and A is a symmetric interval in R'. The
set V is an open set in RV.
If 2z = (x,u), then one uses the notation ¢ = (f,g). Here z =
(x1,22,...,2,) € R™ is the vector of the independent variables, and u =
2

ul, u?. ... u™) € R™ is the vector of the dependent variables. The transformation
) ) 2 p

of the independent variables x, and the dependent variables u has the form
Ty = fi(xau; a)7 o’ :gj(x,u; CL), (22)
where i =1,2,...,n, j=1,2,...,m, (z,u) € V C R* x R™, and the set V is open

in R x R™.

2.1.1 Omne-Parameter Lie-Group of Transformations

Definition 1. A set of transformations (2.1) is called a local one-parameter Lie

group if it has the following properties



1. ¢(2;0) =z forall z € V.
2. o(p(z;a),b) = p(z;a+b) for all a,bya+be Az V.
3. If for a € A one has ¢(z;a) = z for all z € V, then a = 0.
4. p e C=(V,A).
Transformations (2.2) are called a one-parameter Lie group of point trans-
formations. For Lie groups of point transformations, the functions f* and ¢’ can

be written by Taylor series expansion with respect to the parameter a in the

neighborhood of a = 0

9 2
— 2,
i = Tita— ai0+0<a ); (2.3)
) ) J
R L )
da |,_,

The transformations x; + a&% (z,u) and v/ + al¥(x,u) are called infinitesimal

transformations of the Lie group of transformation (2.2), where
0f'(x,u;a)
da e 0

The components £ = (£%1,£%2,...,&%) , ( = (C“I,Cug,...,C“m) are called the in-

¢’ (z,u; a)

£ (@, u) = () = =

a= 0

finitesimal of (2.2). This can be written in terms of the first-order differential

operator
X = % (2, u)d,, + ¢V (2, u)0,. (2.4)

This operator X is called an infinitesimal generator.

There is a theorem, which relates a one-parameter Lie group G with its
infinitesimal generator.
Theorem 1 (Lie). Let functions f'(z,u;a), i = 1,..,n and ¢’(v,u;a), j =
1,...,m satisfy the group properties and have the expansion

T = fi(v,u0) ~ o+ €, u)a,

W = ¢’ (z,u;a) ~ul + ¢V (z,u)a



where
. ~ Of(w,usa) o ~ 0¢ (w,u;a)
E (:U,U)— aa azovc (xvu)_ aa a:().

Then it solves the Cauchy problem

dj?l T = — dﬂ]f wl o~ —

da - 5 (QZ,U), E - C (:B,’LL) (25)
with the initial data

Zi’i|a: 0o — T4 ’lTLj|a: 0 — ’U,j. (26)

Conversely, given £ (x,u) and C“j(x,u), the solution of the Cauchy problem

(2.5),(2.6) forms a Lie group.

Equations (2.5) are called Lie equations.

To apply a Lie group of transformations (2.2) for studying differential equa-
tions one needs to know how this group acts on the functions u’/(x) and their
derivatives. For the sake of simplicity, let us explain the basic idea for the case
n =1 and m = 1. Assume that ug(x) is a given known function, and the trans-
formation is

T = flr,ua) =x+ al®(x,u) (2.7)
u = g(x,u;a) =u+al*(z,u).

Substituting ue(x) into the first equation (2.7), one obtains

T = f(z,up(z);a).

Since f(z,uo(x);0) = 2, the Jacobian at a = 0 is

~[(Of  OfOug B
B (aer@u 8:0)‘@01'

Thus, by virtue of the inverse function theorem, in some neighborhood of a = 0

oT
ox

a= 0

one can express x as a function of z and a,

x = 0(z,a). (2.8)



Note that after substituting (2.8) into the first equation (2.7), one has the identity
T = f(0(z,a),uo(0(z,a));a). (2.9)

Substituting (2.8) into the second equation (2.7), one obtains the transformed

function
ua(j) :9(6(577 a)vuo(e(ia a));a). (210)
Differentiating equation (2.10) with respect to &, one gets

_ Oua(®)  0g 00 +8g8u089 B <ag dg n )> o0

or  0x0r  oudror \oz @ ou o) ow

where the derivative % can be found by differentiating equation (2.9) with respect
to z,
_0f00  0f0udl  (Of  Of ()
© 9xdr  Oudxr dr \dr Ou ax'
Since
0 0
2L (0(2,0),w0(02,00:0) = 1, L (0,0, w00 0) =0, (2.11)

one has af +3 af ug(2) # 0 in some neighborhood of a = 0. Thus,

00 1
- [0 ) )
0z (a_f: + aﬁuﬁ(x))
and
dg(z,uo;a) Ag(zupsa) 1
+ ug(x)
— oz Ju 0 !
Uz = Frmura)  F (e = h(z,up(x), ug(x); a).
f(azo ) + f(auo )u{)(x)

Transformation (2.2) together with
uz = h(z,u,u,; a) (2.12)

is called the prolongation of (2.2).
As before, the function h can be written by Taylor series expansion with

respect to the parameter a in the neighborhood of the point a =0 :

uz = h(z,u,ug; a) = u, + al* (2, u, uy), (2.13)



10

where
Oh(x,u,u,;a)
da

Cum (SB,U,UI) — ) h‘azo = Ug.

a=0

Equation (2.12) can be rewritten

(0fwa) | 0f(uia)\  (dglrua)  Oglr,uza)
W, vai a) ( ox + e ou N Ox s ou '

Differentiating this equation with respect to the group parameter a and substi-

tuting a = 0, one finds

oh(0f  Of 92 f 02 f Py 0%
<8a<8x “%au) +h<@x8a+ux8u8a o 9zda | " duda o

or
v ~ Oh of of
¢ @y ue) = dal, o <5x Jruw@u) 00
(P &g *f 0*f
B <8:1:8a e 6u8a> o Moo (8:0&1 e 8u@a> -
- <8x+uxé’u> uI(@x Ty
= Da(C") = uaDa(€7)
where
9, 9, 9, of dg Oh
Dy= o tUgee A Uggo— o, €= 22| (= (=]
Ox Hu Ju Hu Ou, i ¢ da|,_, ¢ da|,_, ¢ dal,_,

The first prolongation of the generator (2.4) is given by
XM = X 4 (v (2, U, Uy ) Oy, -
In the same way, one obtains the infinitesimal transformation of the second deriva-
tive
Uzz R Ugg + al" (T, Uy Uy, Ugy ),
where (% = D, (("*) — Uz, D, (£%), and the second prolongation of the generator
(2.4) is

X(Q) . X(l) + Cumm (33, uauifnuﬂ?ﬁ?)auzz‘
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For constructing prolongations of an infinitesimal generator in case n,m > 2
one proceeds similarly.

Let @ = {x;} be the set of independent variables and u = {u’} the set of
dependent variables. The derivatives of the dependent variables are given by the
sets u(y) = {uf}, Ug) = {ufs} ,..., where 7 =1,...,mand7,s = 1,...,n. The
derivatives of the differentiable functions u/ can be written in terms of the total

differentiation D; operator given below,

uf = Di(uj),

uwl, = D(u)),

0 -0 .0
D; = J___ J ,
Ox; o oul s oul

+..., (h,s=1,2,...,n; j=1,2,...,m). (2.14)

The formula of the first prolongation of the generator X = &% (x, u)0,, +
¢V (2, u) 0y s

X(l) =X+ Cuz (x,u,u(l))au;,

where

j

C%:D&Gd—u@ﬂﬁﬁ;iﬁ:me;j:me%

The second prolongation of the generator X is

X(Q) = X(l) + Cugl’iQ (.’E, Uy U(1), U(Q))au] ’

21,82

where
C%@:Dh@%)—ﬂnggﬂ Cinigs=1.n s j=1..m (2.15)

In the general case, the k-th prolongation of the generator X is
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Cloeie = Dy, <C et ) —ag L Dy (8%0) 5, ik, s = 1, wamy =1, m

Lie groups of transformations are related with differential equations by the

following.

Definition 2. Given a partial differential equation, a Lie group of transforma-
tions, which transforms a solution ug(x) to a solution u,(x) of the same equation

s called an admitted Lie group of transformations.

Let F = (F,...,F¥), k=1,..., N be differential functions of order p. The
equations

Fk (IL',U,U(D,U(Q), ...,U(p)) = 0, k= 1, ceey N (2.16)

compose a manifold [F = 0] in the space of the variables , u, u(1), t(2), ..., Up).-
After applying an admitted Lie group of transformations to a solution u(z),
one has

F* (f,ﬂ,ﬂ(l),ﬂ(g),...,ﬂ(p)) =0, (k‘ =1,..., N) (2.17)

Differentiating these equations with respect to the group parameter a, and sub-

stituting a = 0, one finds

OFF 0z, OFF 0w  OF*0ul oFk  0ul
+ . + — + o — =0
Oz; Oa ouw da  9ul Oa o’ .. Oa
i1 11,22, 1p a=0
or
OF* JOF* i OF* j k i OF*
T4 U : u; _ Ui i i IR i =0
5 0.’13‘1+C 8U7+C 1@1/, +C v w + +C pauj. . . ’
71 11,12 11,82,000y2p
where
- —j , —J , =7
g 0T O g Oy D
da |,_, da |,_, Oa Y Ja Y
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The last equation can be expressed as an action of the prolonged infinitesimal

generator
XOFF rq =0, (k=1,..,N), (2.18)
where
0 0 i 0 j j 5,
X(P): Ty u7++ Uy, — | (Yo i G AT N —
¢ Ox; ¢ ou? ¢ ou;, ¢ ugl,h ¢ 8ufm-2 ..... "

Hence, in order to find the infinitesimal generator of the Lie group admitted by

differential equations (2.16) one can use the following theorem.

Theorem 2. The differential equation (2.16) admits the group G with the gener-

ator X, if and only if, the following equations hold:
XPF* | ipig =0, (k=1,..,N). (2.19)

Equations (2.19) are called the determining equations.

2.1.2 Multi-Parameter Lie-Group of Transformations

Let O be a ball in the space R" with center at the origin. Assume that 1) is
a mapping, ¢ : O x O — R". The pair (O, ) is called a local multi-parameter
Lie group with the multiplication law % if it has the following properties:
L. ¥(a,0) =9(0,a) =a for all a € O.
2. Y((a,b),c) =(a, (b, c)) for all a,b,c € O for which ¢(a,b), (b, c) € O.
3. v € C*(0,0).

Let V' be an open set in Z. Consider transformations
5 = ¢i(z0), (2:20)

where i = 1,2,.... N, 2z € V C Z = R", and the vector-parameter a € O.
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Definition 3. The set of transformations (2.20) is called a local r-parameter Lie
group G" if it has the following properties:

1. ¢(2,0) =z forall z € V.

2. o(p(z,a),b) = p(z,¢(a,b)) for all a,b,4(a,b) € O, z€ V.

3. If for a € O one has ¢(z,a) = z for all z € V, then a = 0.

Note that if one fixes all parameters except one, for example ay, then the
multi-parameter Lie group of transformations (2.20) composes a one-parameter
Lie group. Conversely, in group analysis it is proven that any r-parameter group
is a union of one-parameter subgroups belonging to it.

Let G" be a Lie group admitted by the system of partial differential equa-
tions

Fk(a:,u,p) =0, k=1,..,s.

Assume that {X1, Xo,..., X,.} is a basis of the Lie algebra L", which corresponds

to the Lie group G”.
Definition 4. A function ®(x,u) is called an invariant of a Lie group G if
d(z,u) = (x,u).

Theorem 3. A function ®(x,u) is an invariant of the group G” with the gener-

ators X;, (i =1,...,r) if and only if,
X®(x,u) =0, (i=1,..,r). (2.21)

In order to find an invariant, one needs to solve the overdetermined system

of linear equations (2.21). Any invariant ¢ can be expressed through this set

o = gb( JHx,u), J2(z,u), ..., JTTTT (2 0) ) .
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where n,m is the numbers of independent and dependent variables, respectively
and r, is the total rank of the matrix composed by the coefficients of the generators

Xi, (i=1,2,...,7). A set of functionally independent invariants
J = (I z,u), P (z,u), ., ST (2,0) )
is called an universal invariant.

Definition 5. A set M is said to be invariant with respect to the group G”, if the

transformation (2.20) carries every point z of M to a point of M.

Definition 6. Let V be an open subset of RN, and ¥ : V — R!, t < N a
mapping belonging to the class C* (V). The system of equations W(z) = 0 is called

reqular, if for any point z € V :

rank (8< W""“ﬁ))) i

O ( 21y 2N

where W = (Y1, ... 0h).
If a system W(z) = 0 is reqular, then for each zq € V with W(zy) = 0 there exists

a neighborhood U of zg in V' such that
M={zeU : ¥U(z)=0}
ts a manifold. Such a manifold is called a regularly assigned manifold.

Theorem 4. A regularly assigned manifold M is an invariant manifold with re-

spect to a Lie group G™ with the generator X;, (i=1,...,r), if

2.2 Lie algebra

Before giving the definition of a Lie algebra, one needs to introduce the

commutator. Let Xy = &0, + (10, Xo = &0, + (20, be two generators. Let us
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define a new generator X, denoted by [X1, X3, by the following formula
X = [X1, Xo| = (X18e — X2&1) 0p + (X1C2 — X2(1) Oy
The generator X is called the commutator of the generators X, Xs.

Definition 7. A vector space L over the field of real numbers with the operation
of commutation | -, - | is called a Lie algebra if | X1, Xs| € L for any X1, Xy € L,

and if the operation | - , - | satisfies the arioms:
a.1 (bilinearity) : for any X1, X2, Xs € L anda, b € R

[aX1+bX2,X3] = a[Xl,X3]+b[X2,X3]

[Xl,CLXQ -+ bX3] = a [Xl,XQ] —+ b [Xl,Xg]

a.2 (antisymmetry) : for any X1, Xo € L

[X1, Xo] = — [X2, X1

a.3 (the Jacobi identity) : for any X1, Xo, X3 € L

[ X1, Xof , Xa] + [[ X2, X3, Xu] + [[ X3, X1], Xo] =0

Let L™ be an r-dimensional Lie algebra with basis Xy, Xo,..., X,: i.e., any

vector X € L" can be decomposed as

k=1

where z, are the coordinates of the vector X in the basis {Xy,..., X, }. Then

X, X;] = cijk; i,j=1,2,...,r
k=1

with real constants cfj

k

The numbers ¢;; are called the structural constants of the Lie algebra L" for the

basis {X1,..., X, }.



17

Definition 8. A vector space H C L 1is called a subalgebra of the Lie algebra L,

if [Hy, Hy] € H for any Hy, Hy € H.

Definition 9. A subalgebra I C L s called an ideal of the Lie algebra L if for

any X € L, Y € [ it is also true that | X,Y] € I.

Definition 10. An element Y € L is called central, if | X,Y] =0 for any X € L.

The set of all central elements s called the center of the Lie algebra L.

2.3 Classification of subalgebras

One of the main aims of group analysis is to construct exact solutions of
differential equations. The set of all solutions can be divided into equivalence

classes of solutions:

Definition 11. Two solutions u; and us of a differential equation are said to be
equivalent with respect to a Lie group G, if one of the solutions can be transformed

into the other by a transformation belonging to the group G.

The problem of classification of exact solutions is equivalent to the clas-
sification of subgroups (or subalgebras) of the group G (or the subalgebra L).
Because there is a one-to-one correspondence between Lie groups and Lie alge-
bras let us explain here the classification of subalgebras. For this purpose, one

needs the following definitions.

Definition 12. Let L and L be Lie algebras. A linear one-to-one map f of L

onto L is called an isomorphism if it satisfies the equation

F(X1, Xoln) = [f(X0), f(Xo)lp, V Xu, Xo €L
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where the indices L and L denote the commutators in the corresponding algebras.
An isomorphism of L onto itself is called an automorphism of the Lie algebra L.

This mapping will be denoted by the symbol A : [, — L.

In the finite-dimensional case, isomorphic Lie algebras have the same di-
mensions. The criterion for two Lie algebras to be equivalent can be stated in
terms of their structural constants. If two of Lie algebra L and L are isomorphic,
then there exist bases for each of them in which their structural constants are

equal.

Let L be a Lie algebra with basis { X1, Xs,...,X,}. Then one has

k13

(Xi X1 =) 5 Xay (6,5 =1,2,...,n),

a=1
where ¢f; are the structural constants. One constructs a one-parameter family of

automorphism, A;, (i =1,...,n) on L,

i=1 =1

where z; = z;(a), as follows. Consider the system
dz7; <~ ; _ .
E:chixﬁ, (j=1,2,...,n). (2.22)
p=1
Initial values for this system are T; = z; at a = 0. The set of solutions of these
equations determines the set of automorphisms {A4;}.

The set of all subalgebras is divided into equivalence classes with respect
to these automorphisms. A list of representatives, where each element of this list
is one representative from every class, is called an optimal system of subalgebras.

Because of the difficulties in constructing the optimal system of subalgebras
for Lie algebras of large dimension, there is a two-step algorithm (Ovsiannikov,

1994), which reduces this problem to the problem for constructing an optimal
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system of algebras of lower dimensions. In brief, let us consider an algebra L" with
basis { X1, Xs,..., X, }. According to the algorithm, the algebra L" is decomposed
as Iy & Ny, where [ is an ideal of L" and N; is a subalgebra of the algebra L".
In the same way, the subalgebra N; can also be decomposed as Ny = [o & No.
Repeats the same process (o — 1) times one ends up with an algebra N, for which
an optimal system of subalgebras can be easily constructed. By gluing the ideals
I; and subalgebras N starting from [ = a to [ = 1, together one constructs the
optimal system of subalgebras for the algebra L". Note that for every subalgebra
N; one needs to check the subalgebra conditions and use the automorphisms to
simplify the coefficients of these systems. Therefore, the problem for constructing
an optimal system of subalgebras of the algebra L" by this method is reduced to
the problem of classification of algebras of lower dimensions.

After constructing the optimal system, one can start seeking invariant and

partially invariant solutions of subalgebras from the optimal system.

2.4 Invariant and partially invariant solutions

The notion of invariant solution was introduced by Sophus Lie (1895). The
notion of a partially invariant solution was introduced by Ovsiannikov (1958).
This notion of partially invariant solutions generalizes the notion of an invariant
solution, and extends the scope of applications of group analysis for constructing
exact solutions of partial differential equations. The algorithm of finding invariant
and partially invariant solutions consists of the following steps.

Let L" be a Lie algebra with the basis X, ..., X,. The universal invariant

J consists of s = m + n — r, functionally independent invariants

J = (I, u), P(z,u), .., J" T (2,0) ),
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where n,m is the numbers of independent and dependent variables, respectively

and r, is the total rank of the matrix composed by the coefficients of the generators

A(JL, ..., Jmin=re)
o(ul,...,um)

to g, then one can choose the first ¢ < m invariants J*, ...,.J9 such that the rank

o(J, ..., J9)

O(Uy, ooy Upm)

characterized by two integers: o > 0 and 0 > 0. These solutions are also called

Xi, (i = 1,2,...,7). If the rank of the Jacobi matrix is equal

of the Jacobi matrix is equal to g. A partially invariant solution is
H (o, d)-solutions. The number o is called the rank of a partially invariant solution.
This number gives the number of the independent variables in the representation
of the partially invariant solution. The number ¢ is called the defect of a partially
invariant solution. The defect is the number of the dependent functions which can
not be found from the representation of partially invariant solution. The rank o
and the defect ¢ must satisfy the conditions
c=0+n—-r,>0,02>0,
p<o<n, max{r, —n,m—q,0} <6 <min{r, — 1,m — 1},

where p is the maximum number of invariants which depend on the independent
variables only. Note that for invariant solutions, 6 = 0 and g = m.

For constructing a representation of a H(o, d)-solution one needs to choose

[ =m — ¢ invariants and separate the universal invariant in two parts:
T = (JY, o, JY, T = (JHY g2 gy,

The number [ satisfies the inequality 1 < [ < ¢ < m. The representation of
the H (o, §)-solution is obtained by assuming that the first [ coordinates .J of the

universal invariant are functions of the invariants 7:
T=w(). (2.23)

Equation (2.23) form the invariant part of the representation of a solution. The

next assumption about a partially invariant solution is that equation (2.23) can
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be solved for the first [ dependent functions, for example,
ut = (T W ™), (=1, 1). (2.24)

It is important to note that the functions W* (i = 1,...,1) are involved in the
expressions for the functions ¢%, (i = 1,...,1). The functions u/*! «!*2 ... u™ are
called superfluous. The rank and the defect of the H(o, d)-solution are § =m —{
and o =m+n—r,—1=0+n—r,, respectively.

Note that if & = 0, the above algorithm is the algorithm for finding a
representation of an invariant solution. If & # 0, then equations (2.24) do not
define all dependent functions. Since a partially invariant solution satisfies the
restrictions (2.23), this algorithm cuts out some particular solutions from the set
of all solutions.

After constructing the representation of an invariant or partially invariant
solution (2.24), it has to be substituted into the original system of equations.
The system of equations obtained for the functions W and superfluous functions
uf, (k= 1+ 1,2,...,m) is called the reduced system. This system is overde-
termined and requires an analysis of compatibility. Compatibility analysis for
invariant solutions is easier than for partially invariant solutions. Another case of
partially invariant solutions which is easier than the general case occurs when T

only depends on the independent variables
Jl+1 _ Jl+1(.’1§'), Jl+2 _ Jl+2(x)7”'7jm+n—r* _ Jm+n—r* (.CU)

In this case, a partially invariant solution is called regular, otherwise it is irregular
(Ovsiannikov, 1995). The number o — p is called the measure of irregularity.
The process of studying compatibility consists of reducing the overde-

termined system of partial differential equations to an involutive system (cf.
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Meleshko (2001)). During this process different subclasses of H(o,d) partially
invariant solutions can be obtained. Some of these subclasses can be Hj(oq,d1)-
solutions with subalgebra Hy C H. In this case oy > o, 6; < § (Ovsiannikov,
1978). The study of compatibility of partially invariant solutions with the same
rank oy = o, but with smaller defect §; < ¢ is simpler than the study of com-
patibility for H(o,d)-solutions. In many applications there is a reduction of a
H (o, 6)-solution to a Hy(o,0) solution. In this case the H(o,§)-solution is called
reducible to an invariant solution. The problem of reduction to an invariant solu-

tion is important since invariant solutions are usually studied first.



Chapter III

Navier-Stokes Equations

3.1 Navier-Stokes Equations

The Navier-Stokes equations are fundamental partial differential equations
that describe flows of incompressible fluids.

In order to derive these equations one starts from the conservation laws of
mass, linear momentum and energy.

The conservation law of mass (or continuity equation) is

dp o
I + pdiv(u) = 0. (3.1)

The conservation law of momentum (or motion equation) is

du

r = div(P) + pf. (3.2)

The conservation law of energy (or energy equation) is

dU
where p is the density, u = (uy,us,u3) = (u,v,w) is the velocity, ¢ is time, U
is the internal energy, 0 is the absolute temperature, P is the stress tensor, f is
the external body force, D = % (g—;‘ + (g—;‘)*) is the rate-of-strain tensor, k is the
coefficient of a heat conductivity, % = % + u - V stands for the total derivative

with respect to time, V is the gradient, P : D is the contraction of the tensors

P and D. By virtue of the Stokes axioms one gets that the stress tensor is
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P = (—p+Adiv(u))l +2uD. Here p is the pressure, A and p are the first and the
second coefficients of viscosity, respectively.
After substituting the stress tensor P into equations (3.2) and (3.3) one

rewrites the motion equation as

du

pgp — Gvl(=pt Adiv(w)l +2uD] + pf (3.4)

= —Vp+ V(Miv(u)) + div(2uD) + pf

and the energy equation as

dU

r T [(—p + Adiv(u))] +2pD] : D + div(kV) (3.5)

= [=pl: D+ (Adiv(u))l : D +2uD : D]+ div(kvo)
— —pdiv(u) + A(div(u))® + 2uD : D + div(kv0)

= —pdiv(u) + ¢ + div(kv0)

where ¢ = A(div(u))?+2uD : D. The function ¢ is called the dissipation function.
According to the state axiom, fluids are two-parameter media which satisfy

the main thermodynamic identity
0dn = dU + pdr, (3.6)

where 7) is the entropy and 7 = % is the specific volume.

Thus, the rate form of equation (3.6) is

dn dU . dr
a ar P
Since i—: = —p—lz%, then
d 1 1
d—; =~ (paiv() = “div(w)
where % is found from the continuity equation.
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Hence,
dU dn p
— 9
dt dt  p

Substituting (3.7) into (3.5), one obtains the equation

d
pﬁd—? = div(kVv0) + ¢.

The second law of thermodynamics gives

¢+ = (v6)* > 0.

| &

In summary, the conservation laws of mass, momentum and energy are

reduced to the following equations

d
Ly pdiv(u) = 0,

dt
pd_‘: = —Vp+ V(Mdiv(u)) + div(2uD) + pf, (3:8)
a CoU LoU
p@a_dlv(kVQ)—l-qb, 0= o p=p B

One calls these equations the viscous gas dynamics equations.
If one sets p and p to constant, then the first two equations of (3.8) can be

rewritten as follows

du
pqp = VP tpAutpf div(u) =0, (3.9)
where
d_0 +u-v
a o U '

This system of equations (3.9) are called the Navier-Stokes equations.
In the thesis we consider the Navier-Stokes equations in the case of free

external body force (f = 0).
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It is also useful to write the Navier-Stokes equations in dimensionless form.

Let u*, p*, x* t* be dimensionless variables, and they are related by the formulae

where V. @), L, and T are velocity, pressure, length and time units, respectively.
Denoting the dimensionless terms of V and A by V* = LV and A* = L?* A. The
Navier-Stokes equations are rewritten as

ou*
ot*

A*u*, V'-u*t =0,

1
+ (u* - VYUt = —(E,) V" + (

(St) E)

where S, = L, E, =

Tl R, = % are called the Strouhal Number, Euler

Q_
pV2 9
Number and Reynolds Number, respectively. So by choosing the units L, V, T, Q
such that S, =1, F, =1, R. = 1, one obtains

ou*
ot*

+(u* - vH)u' = -V AT u", vV'out =0.
After omitting %, one has
u+(u-Viju=-Vp+Au, V-u=0, (3.10)

where V and A are the gradient and the Laplacian with respect to the space
variables x = (x,¥, z), respectively.

In component form the Navier-Stokes equations are:

Up + Uy + VUy + WU, = =Py + Uy + Uyy + Uy, (3.11)
Ut + UV, + VU + WU, = =Dy + Ugy + Vyy + Vs, (3.12)
Wi + UW, + VWy + WW, = — Py + Wag + Wyy + W,z (3.13)
Uy + vy +w, = 0. (3.14)

The dependent variables u,v,w and p are functions of the space variables x,y, 2

and time ¢.
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3.1.1 Admitted group of the Navier-Stokes equations

An admitted Lie group of point transformations of the Navier-Stokes equa-
tions in the three-dimensional case! was found in Bytev (1972). The Lie algebra
admitted by the Navier-Stokes equations is infinite-dimensional. Its Lie algebra
can be presented in the form of the direct sum L*® @ L®, where the infinite-
dimensional ideal L is generated by the operators?

Xo = 0y, Xij =20, — 20, + w0y — Uy
3
Z = 20+ Y (vk0s, — Oy ) — 2p0,, (3.15)
k=1

U = ()0, + 5 (t)0ui — pr;aby (£)0p, © = B(t)0,,

where i = 1,2, 7 = 1,2,3, i < j; ¥; and ¢ are arbitrary functions of time,
and the prime stands for differentiation with respect to . The transformation

corresponding to the generator Xj is translation along the ¢-axis:
t=1t+a. (3.16)

The transformation corresponding to the generator X;; is a rotation of the coor-

dinate system by the angle a;;;_; in the (z;,z;) plane:

cos a sin a
A(a): s e=1,2; 5 =1,2,3; 1 < 3.
—sina cosa

Here

I The two-dimensional Navier-Stokes equations were studied by group analysis in Pukhnachov

(1960).
>There is still no complete classification of the subalgebras of the Lie algebra L> & L°. Clas-

sification of infinite—dimensional subalgebras of this algebra was studied in Khabirov (1992). An

approach to classification of infinite dimensional Lie algebras was recently proposed in Ryzhkov

(2004).
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The transformation corresponding to the generator 7 is a dilation:
1= e, Ty =y, T° = e @b, p=e"2%p, k=1,2,3. (3.18)

The transformation corresponding to the generator W; is a transition to a co-
ordinate system moving transitionally along the x;—axis which is noninertial in

general:

Tj = [I?j -+ CL5+j?/1j (t), ﬂj — uj + a5+j¢;’(t)7 (319)

_ p .
P = p—asyzi(t) — §a§+j¢j(t)¢;/(t)v J=1,2,3.

The transformation corresponding to the generator ® is an addition of an arbitrary

function of time to the pressure:

p=p+asp(l). (3.20)

Here ar € R (k=1,...,9) are the parameters of the corresponding transforma-
tions. When the law of transformation is not indicated for some variables in
(3.16) — (3.20), this means that the corresponding variables are transformed iden-
tically.

Let us consider the Navier-Stokes equations under the assumption f = VU,
which means that the field of external forces is potential. In this case the change
p = P+ pU of the function sought leads to equation (3.9) with f = 0 and the
functions @ and p. Thus, the basis groups of the Navier-Stokes equations with
[ = VU and the system (3.9) with f = 0 are isomorphic. Observe that the fields
of forces most important in applications, namely, the gravitational field and the
field of inertia forces, posses the potentiality property. The specific property of
Lie algebra (3.15) is its infinite dimensionality, due to the presence of arbitrary

functions of ¢ in the coefficients of the operators (3.15).
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Successively putting ¢/; = 1 and 1; = ¢ in the coefficients of the operators

VU, one obtains the infinitesimal generators
X =0, Y; =10, + 0us, = 1,2,3.

The set of operators Xo, X;, Y;, Xi;, (1 =1,2; j=1,2,3; i < j) generates
a Lie algebra L'°, which corresponds to a 10—parameter group of transformations
denoted G'°. The Group G'° is obviously a subgroup of G*°. The Galilean
algebra L1 is contained in L@ L°. Several articles (Pukhnachov (1974), Cantwell
(1978), Cantwell (2002), Lloyd (1981), Boisvert (1983), Steeb (1985), Ibragimov
and Unal (1994), Lloyd (1981), Popovych (1995), Fushchich and Popovych (1994),
Ludlow, Clarkson and Bassom (1999).) are devoted to invariant solutions of the
Navier-Stokes equations®. While partially invariant solutions of the Navier—Stokes
equations have been less studied?®, there has been substantial progress in studying
such classes of solutions of inviscid gas dynamics equations (Ovsiannikov (1978),
Ovsiannikov and Chupakhin (1996), Ovsiannikov (1995), Sidorov, Shapeev and
Yanenko (1984), Meleshko (1991,1994), Ovsiannikov (1994), Chupakhin (1997),

Grundland (1996).

3.2 Coordinate systems

For the sake of convenience, some problems require a special coordinate

system. A coordinate transformation is a conversion from one system of the

3Short reviews devoted to invariant solutions of the Navier-Stokes equations can be found in
Pukhnachov (1974), Cantwell (2002), Fushchich and Popovych (1994), Ludlow, Clarkson and

Bassom (1999).

4The approach of partially invariant solutions to the Navier-Stokes equations was first applied

in Pukhnachov (1974).
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independent variables to another. In this thesis, the following coordinate systems
are used.

The simplest one is the Cartesian coordinate system (D). In this system
x = (@, vy, z) is the vector of the independent variables, u = (u, v, w) is the vector of
the dependent variables. Relations of other coordinate systems with the Cartesian
coordinate system are given as follows.

The first system is the spherical coordinate system (.5). In this system, the

vector of the independent variables is (7,0, ¢), where
x =rsinfcosy, y=rsinfsiny, z = rcosb.

The conversion of the Cartesian coordinate system into the spherical coordinate

system is

r = \/m, 0 = arccos (z/y), ¢ = arctan (y/x).

The corresponding physical components of the velocity vector in the Carte-
sian coordinate system u = (u,v,w) and in the spherical coordinate system

u = (U, V,W) are related by the expressions

u=Usinfcosy + V cosfcosp — Wsingp,
v=Usinfcosp+ Vcostsing — W cos p,
w=Usinf — Vsinf

or, they can be written as follows
U = usinfcos ¢ + vsin @ sin ¢ + wcos 0,
V =wucosfcosp + vcosfsinp —wsin b,
W = —using + v cos ¢.

Note that the vector (V, W) can be described by its modulus H and the angle w

V = Hcosw, W = Hsinw.
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The second system is the cylindrical coordinate system (C'). The relations
between Cartesian and cylindrical coordinate systems (z, R, ) are given by the
formulae

xr=ux, y= Rcosf, z= Rsiné.

The conversion of the Cartesian coordinate system into the cylindrical coordinate

system is
r=x, R=+/y?>+ 22, 0= arctan(z/y).
The physical components of the velocity vector in the Cartesian coordinate system

(u,v,w) and in the cylindrical coordinate system (U,V,W) are related by the

expressions

u="U, v="Vcos —Wsinf, w=Vsind + W cosf
or,

u="U, V=vcosl+wsinf, W= —vsinf + wcosb.

Introducing the modulus ¢ and the angle ¢, the vector (V, W) has components
V =gqcosp, W = gsine.

The third coordinate system is the polar coordinate system (P). The trans-
formation from the Cartesian coordinate system to the polar coordinate system
is presented by

or

u=u, ¢g=Vv*+w? ¢=arctan (w/v).

The fourth system is the polar conical coordinate system (PC'). In this

system, the relations are similar to the polar coordinate system. They are given
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by the formulae
x = (2,9,2), u=(u,yt™" + ¢ cosp™, 2t + ¢ sin ")

or

u=u, ¢ = \/(U —yt=1)2 4 (w — 2t=1)2, " = arctan ((w — 2t71) /(v — yt™h)).

The next coordinate system is denoted by (A'1). In this system the coor-

dinates are defined by the formulae

2 tz —
x=(x,y,2z), u= <u,tfif+v*c0se*, ; Y —I—V*sin9*>

+1

or

U = u,
V= o= ) (o= 5

§* = arctan ((w — 53Y) / (v — E2)).

241 241

The last coordinate system is denoted by (K2). In this system the trans-

formation is

h—(ot=priutty—pz g2 — (Tt —ao)u —ay +tz
X = (x7y72)7 u= u7 b
2 —af 2 —af

or
u = u,
71 =(t*—af)v+ (ot — Br)u—ty + Bz,
J2 = (2 —aB)v + (7t — ac)u + ay — tz.
These coordinate systems are used for convenience of writing a representa-

tion of partially invariant solutions.



Chapter IV

Analysis of Compatibility

Subgroups are taken from the optimal system of subalgebras (Ovsiannikov

and Chupakhin (1996)) considered for the gas dynamics equations.

4.1 Three dimensional regular partially invariant submod-

els

In this thesis we study regular partially invariant solutions with defect 1
and rank 1 of the subalgebras presented in Table 4.1 where a list of the subalgebras
with brief comments is given. These subalgebras were selected from the optimal
system of subalgebras (cf. Ovsiannikov (1994)) of the algebra admitted by the
gas dynamic equations. For gas dynamics equations, regular partially invariant
solutions were studied in Ovsiannikov and Chupakhin (1996).

The basis of operators considered in the table is

Xliam X2:8

Y

X3 = 0.,
Xy =10, + 0y, Xs5=10y+ 0y, Xe=10,+ Oy,
X7 =y0, — 20y + v0y — w0,, Xg=20, —x0, + wo, — uly,
X9 = 20y — Y0, +ud, — v0,, X9 = t0, X11 = t0; + 20, + y0, + 20,.
Note that the generator Xy; is not admitted by the Navier-Stokes equations.
In Table 4.1 the number 7 in the first column denotes the number of the sub-
algebra according to the optimal system of subalgebras from Ovsiannikov (1994).

The basis of generators of a subalgebra is given in the second column.
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Table 4.1: Regular partially invariant submodels of the equation of the gas dy-

namics.

7 Basis Coor- Invariant SF
L} dinate  Independent Unknown
17,8911 S r/t U H,p w
4 1,4,10,7 + all C Reo? q,p—0.p U
5 5,6,7,54+11 PC xft—plnt  wu—=z/t,q*p ©o*
6 1,4,7,11 C R/t q,0—0,p u
7 02,3704+ 11 P xft—pFInt  wu—=z/t q,p ®
9 1,5,6,0447 PC t u— Bo*,q*,p o*
10 2,3,4,7 P t u—=x/t,q,p @
12 1,2,3,84+7 P t u—[Bp,q,p ©
13 7,8,9,10 S r U, H,p w
14 2,3,7,10 P T u,q,p ®
16 2,3,7,4+ 10 P x— (1/2)t*  u—t,qp ®
17 4,5,6,7 PC t u—2a/t,q*,p o*
18 4,5,6,1+7 PC t u+ (p* —2x)/t,q",p ©*
19 4,345,2—-6,al+7 K, t u+ (af* —x)/t,V*p 0
20 1,345,2—6,04+7 K, t u—ald* V*p 0*
21 2,3,4,1+47 P t u+t (p—2x)/t,q,p ©
23 1,4,10,11 D z/y v, W, P U
29 1,4,6,ab+ 11 D y/t —alnt u—y/t,w—z/t,p u
30 2,3,6,4+05+11 D x/t—pInt  wu—z/t,v—0clnt,p w
35 2,3,5,4+4+ 86+ 10 D r— (1/2)t*  u—t,w—PBtp v
36 2,3,5,6 4 10 D T u,w—1t,p v
38 2,3,5,10 D T U, W, p v
A1 1,02 + 73 1 4, K, t 1, 2, u

a3+5,02+6
42 1,4,3+5,2—-6 K t V*, 0% p u
43 1,4,5,6 D t v—y/t,w—z/t,p u
44 2,0l +3,1+5,6 D t u, v —atw —x+az,p w
46 2,1+ 3,5,6 D t u,w+ (xr —az)/at,p v
48 1,2,3+45,6 D t u, v +tw —z,p w
50 1,2,3,4 D t v, W, P U




35

Each operator X, is represented only by its number k. For example, the symbol
7+ all, where « is a real number, denotes the operator X; + aX;;. The third
column indicates the coordinate system in which the subalgebra is studied. The
next two columns give invariants, where the first part represents an invariant only
containing the independent variables and the second part contains the remaining
invariants. The sixth column indicates the superfluous function (SF') used for
constructing a partially invariant solution.

The construction of a partially invariant solution consists of several steps.
First, choose a subgroup from Table 4.1. Then find a representation of a partially
invariant solution. After that substitute the representation of the solution into
the Navier-Stokes equations. Finally, one needs to study the compatibility of the
obtained (reduced) system of equations. As a result one obtains an exact solution
of the Navier-Stokes equations.

Recall that the Navier-Stokes equations define the pressure up to an arbi-

trary function of time. This property is essentially used in the next sections.

4.2 Analysis of compatibility of partially invariant solu-

tions

In this section analysis of compatibility of the partially invariant solutions
for typical representatives is presented in details. The analysis of compatibility of
other subalgebras is similar. The final results are collected in tables at the end of

this section.
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4.2.1 Subalgebra generated by Lis = {2,3,7,4 + 10}

Invariants of the Lie group corresponding to this algebra in the coordinate

system (P) are
u—t, q, p, v — 2712

The rank of the Jacobi matrix of the invariants with respect to the dependent
variables is equal to three. Since this rank is less than the number of the de-
pendent variables, there are no nonsingular invariant solutions that are invariant
with respect to this group. The minimally possible defect of a partially invariant
solution with respect to this group is equal to one. In this case a representation

of a regular partially invariant solution is
u=U(s) +t, p=P(s), g=q(s), s =x—27""

while the function (¢, x,y,z) still depends on all independent variables. Sub-
stituting this representation of a solution into the Navier-Stokes equations, one

obtains
P —U"+UU +1=0, (4.1)
[(Paz + Py + P2z — 01 — poqsing)g + (29" — (t + U)q)pa]sin ¢
—[q" = Uq' — (&2 + ¢ + ©2) + ¢y sin ] cos ¢ = 0, (4.2)
[(Prz + Pyy + P2z — 1 — @2qsing)g + (26 — (t + U)q)pa] cos
" = Uqd = q(0F + ¢, + ¢2)|sinp — ¢*p, cos® ¢] = 0, (4.3)

q(pysinp — @, cos ) — U = 0. (4.4)
Notice that for ¢ = 0 the general solution of equations (4.1)-(4.4) is

U=Cy), P=—s+Cy v=0, w=0, s=x— 2%,
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where (] and (5 are constants. Since the pressure is defined up to an arbitrary
function of time, one can assume C5 = 0.
Further consideration is given for ¢ # 0.

Integrating equation (4.1) with respect to s, one finds
P=U -27'U?—-s+C.

Taking the combination of equations (4.2) and (4.3) by excluding the derivative

©¢, one has
¢"—Uqd —qlgz + ¢, +¢2) = 0. (4.5)
Changing the independent variables (¢, z,y, 2) to (¢, s,vy, z), equations (4.2), (4.4)

and (4.5) become

[(9055 + (pyy + (Pzz - SOt - SOZq Sin 4/7)(] + (29, - UQ)SOS] Sin SO

=1q" = Ud' = (@3 + ¢y + ¢2) + ¢Ppysin gl cos p = 0, (4.6)
¢ = Uqd —q(e; + ¢, +¢2) =0, (4.7)
q(spysin g — . cosp) — U' = 0. (48)

For the compatibility analysis of systems (4.6)-(4.8), it is convenient to
use an implicit representation of the function (¢, s,y, z). Assume that there is a

function F(¢,t,s,y, z) such that F, # 0 and

Fe(t,s,y,2),t,5,y,2) = 0. (4.9)
Taking the total derivatives of equation (4.9) with respect to ¢, s,y, z, one has
DF = Fope + Iy =0, DJF = Fyopo + Fs =0,
D,F = F,p,+ F, =0, D.FF = F,p, +F, =0,
DIF = Fopss + 3 Fpp + 2Fapps + Fos = 0,
DZF = Fopyy + ‘PZFW +2Fypp0y + Fos = 0,

DIF = Fwﬁozz+‘?2Fww+2sz‘pz+Fss = 0.
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All derivatives of the function ¢(¢, s, v, z) can be found through the derivatives of

the function F(¢,t, s,y,z) from these equations:

SOt:_Ft/Fgm SOSZ_FS/FW ‘py:_Fy/Fam sz:_FZ/Fgm
Pss — —(F@@SOE + 2Fsos(108 + FSS)/Ftpa
Pyy — _(Fwso90§ + 2F iy + Fyy) [ o,

Pz — _(FsosoSOZ +2F,0. + F..)/F,.

Substituting these derivatives into equation (4.8), one obtains
Fysingp — F,cosp +aF, =0, (4.10)

where the function a = ¢~'U’ only depends on s.

Case 1. Let a = 0, or U = (4. Notice that if ¢ is constant, then the general

solution of equations (4.1), (4.6)-(4.8) is
P=—s+C, g=Co+ (C59° s =2 —271

where 4, Cy, C5 and C' are constants. Since the pressure is defined up to an
arbitrary function of time, one can assume C = 0.
Assume that ¢ is not constant. The universal invariant is ¢, s, 7, ¢, where

g = ycos ¢ + zsin . Thus, the general solution of equation (4.10) is
F - ¢(t7 87 g? SO)'

Since F, = (—ysing + zcosp)p; + ¢, # 0, this gives that ¢7 + ¢ # 0.

Substituting the function F' = ¢(t, s,7, ¢) into equation (4.7), one obtains

a12> + asz +az =0 (4.11)



39

where
a1 = —(¢" = Cq') 93,
ag = —2(q" — C1q")[¢, cos  — oy sin | by,
az = —[(¢" — Chq" )92 — 92 — (4°(¢" — C1q') + q)#;] cos® ¢

4" = C1q') (20, cos psin g — by ).

The coefficients ay, as and az do not depend on z. Splitting (4.11) with respect to
z, one finds

a; =0, (i=1,2,3).
If ¢; # 0, then the equation a; = 0 implies that ¢’ — C1¢' = 0, and the equation
as = 0 becomes

q(d3 + 42) = 0.

Because of qﬁg + @2 # 0, one has ¢ = 0 which contradicts the assumption ¢ # 0. If
¢y = 0, the equation ag = 0 implies that

(¢" — Ciq) 2 — q¢? = 0.

The general solution of the last equation is

¢ =, @),
where
fg t H). H(s) = [ hsas, b= ("~ )0,
and ¢, = dp 7 0.
Substituting ¢ = é(t, @) into equation (4.6), one obtains
bi(5)bip + ba(s) by + b = 0, (4.12)
where by = h? by = —q1(2¢' — C1q)h — 1. Let us analyze this equation. Differ-

entiating it with respect to s, one obtains

Vb + bhds = 0.
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Assume first that 0] # 0. Then the last equation can be rewritten
op Do
¢ Y
Differentiating it with respect to s, one has (=b,/ b)) = 0. Thus by = —Chb; +

(5. This relation, after substituting representations for the coefficients b, and b,

becomes

((¢" = C1d)a)*(Ca(d" — C1d) + Csq) + (¢" — C1d)(2¢' — Chg)

—1(¢" = C1¢")g = (¢" = Crg)g|27 = 0. (4.13)
In this case the solution of equation (4.12) is

¢ = 04724 |
Returning back to the solution of equations (4.6)-(4.8), one gets

o =Cst — H(s) + C,

where C' = 05(0204)_1.
For the case b} = 0, then b, = 0, or by = Cy > 0 and by = C3. This means

that

Let C5 = 0, then C3 = 0, and, hence ¢ = Cy + C5e“*. Equation (4.12) becomes
(5,5 = 0. This means that the function $ only depends on ¢. Returning back
to the solution of equations (4.6)-(4.8), one has ¢ = —H(s) + Cs. If Cy > 0,
then ¢ = C4eés/2, where C' = C} + 036’2_1/2 and the constants €7, Cy and Cf5 are
related by the equation C§ — Co(CF +4C3) = 0. The solution of equation (4.12) is
P = é(t, @) where the function é(t, @) is a solution of the linear parabolic equation

with constant coefficients

OQ&@@ + 03€5¢> + €5t = 0.
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Case 2. Assume that a # 0. The characteristic system of the equation

(4.10) is
dy dz dep

sing —cosg a
Hence, the universal invariant of this system is ¢, s, yq, 42, where y; = cos ¢ + ay,

y2 = sing + az. Thus, the general solution of equation (4.8) is

F= ¢(ta Saylay2)7

where ¢12/1 + (ﬁi # 0.
Substituting the derivatives of the function ¢(¢, s, y, z) through the derivatives of

the function F(¢,t,s,y,z) into equation (4.7), one obtains
ay cos® p + agcospsing + azcos o + aysing +as = 0 (4.14)

where

a1 = [(q" = Uq')a? + q(a')*[(by, + Py ) (D — D)
as = 2((¢" = Uq")a® + q(a)?| by, by,
az = =2[(y10y, + Y2y, )d' + agslqad’dy,,
ay = =2[(110y, + Y2y, )d' + agslqd’ dy,,
a5 = [[2(y10y, + Y2ty )a'ds + (a5, + ¢7)alg—
(¢" = Uq' — qa*)agy la + (110, + 120)* + &3, la(a')?.
Note that ay,as,as,as and as do not depend on ¢. Splitting (4.14) with respect

to cos® ¢, cos psin @, cos @, sin ¢, one obtains
a; =0, (i=1,2,...,5).

Noting that ¢2 + @2, # 0, the equations a; = 0, ay = 0 imply that (¢" — Uq')a® +

g(a’)* = 0, and the equations az = 0, a4 = 0 imply

(4104, + Y2y )a’ + adla’ = 0. (4.15)



42

The last equation is split into two cases.

Case 2.1. Assume that a’ # 0, then equation (4.15) gives

(Y10y, + Y2y, )d + aps = 0.

The general solution of this equation is ¢ = f(, 91, g2), where g1 = yo/y1, g2 =
a/yr and f7 + fo #0.

Substituting the function ¢ into the equation as = 0, one obtains

(¢" = Uq —qa*)[(g1fo, + 920)" + fo,] = 0.

Since 921+ 922 # 0, then (g1 f,, + 924, )*+ 921 +# 0. Hence, ¢"—Uq¢' —qa® = 0. Finding
¢" from this equation, and substituting it into the equation (¢ — Uq')a*+¢q(a’)* =

0, one has (a')? + a* = 0. This gives a = 0, which contradicts the assumption

a # 0.
Case 2.2 Assume that a’ = 0. Substituting a’ = 0 into the equation a5 = 0,

one obtains
(¢" = Uq = qa®);, — q(a’d;, + ¢7) = 0.
Using here the equation (¢” — Uq')a® + g(a’)* = 0, one finds
PG 4
Hence, ¢, = ¢, = ¢s = 0, which is a contradiction to the condition ¢12/1 +¢§2 # 0.
Therefore there is no partially invariant solutions in case a # 0.
4.2.2 Subalgebra generated by Li = {5,6,7, 34+ 11}

Invariants of the Lie group corresponding to this algebra in the coordinate
system (PC) are

u—=zx/t, ¢, p, s, v/t — BInt.
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The representation of a regular partially invariant solution is
u="U(s)+z/t, p=P(s), ¢ =q¢"(s), s=xz/t — BInt

and the function ¢*(¢,x,y, z) depends on all independent variables.
Substituting this representation of a solution into the Navier-Stokes equa-

tions, one obtains

U — (P — (B —U)U' +U) = 0, (4.16)
(P30 + Py + P2 — @7 — @2q" sin ™)t — (y, + 2¢7))q"
+(2¢" — (U + 2)q")galtsing® — [¢7 + (B — U)tg”
—q (@5 + @y + ¢5) + ¢y sin ] cos = 0, (4.17)
[((Pre + Py + 2. — @7 — P2q" sin ")t — (Yo, + 2¢7))q"
+(2¢" — (tU + 2)q")giltcos " + [¢7" + (B — U)tq” — q't
*2t2

—q' (3 + @+ 2] sin gt — ¢} cos® o*] = 0, (4.18)

q't(p; sin* — @ cosp*) — (U'+3) = 0. (4.19)
In the case ¢* = 0, the general solution of equations (4.16)-(4.19) is
U=-3s+Cy, P=02C—-3(F+5s))s+Cs v=0, w=0, s=xz/t —[FlInt,

where (] and (5 are constants. Because the pressure is defined up to an arbitrary
function of time, C'5 can be set to zero.
Further consideration is given for ¢* # 0.

Equation (4.16) can be split with respect to ¢:
U'=0, PP—(Bp—-U)U'+U =0.

Integrating the last equations with respect to s, one finds

2
U= Cis+Cy P=—Cy(Cy+ 1)% (B — Co)Ch — Ca)s + C.
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Taking the combination of equations (4.17) and (4.18) by excluding the derivative

@}, one has
g — (Cis + Cy — P)tg" — 't — ¢ (p2 + @2 + 1) = 0. (4.20)

Changing the independent variables (¢, x,y,z) onto (¢,s,y, z), equations (4.17),

(4.20) and (4.19) become

(0%, + (P, + 9L — #F — pig"sin*))q"

+(2¢" = (Cis + Cy = B)tq" )il sin g™ — [¢7 — (Cus + Co — B)tg”
—q" 3 — (O )+ PP sin ] cospt =0, (4.21)
¢ = (Cis+ Co— P)tq” — 't — ¢ — (@2 + 97) =0,  (4.22)

q't(pysing® —prcosp’) — (C1 +3) = 0. (4.23)

In the same way as for the previous subalgebra, for the compatibility analysis
of systems (4.21)-(4.23) it is convenient to use an implicit representation of the
function ¢*(t,s,y,2). Assume that there is a function F(¢*, ¢, s,vy,z) such that
F} # 0 and

F(¢*(t,s,y,2),t,5,y,2) = 0. (4.24)

Taking the total derivatives of (4.24) with respect to ¢,z,y,z and substituting

derivatives of the function ¢* into equation (4.23), it becomes
t(Fysing* — F,cos ") + aF« =0, (4.25)

where the function a = (Cy + 3)/¢* only depends on s.
Case 1. Let a =0, or C7 = —3. If ¢* is constant, then the equations (4.21)
and (4.22) become

(q*// —q't) — (Cy — 33)9*/7& = 0.



45

Splitting the last equation with respect to ¢, one obtains ¢*" = 0 and (Cy— 33)q*' +
g* = 0. Solving them, one has ¢* = 0 which contradicts the assumption ¢* # 0.
So suppose ¢* is not constant. The universal invariant is ¢, s, ¢, p*, where

g = ycos p* + zsin ¢*. Thus, the general solution of equation (4.25) is

F - ¢(t7 87 :’)7 ()0*)'

where (bz + (bz,* # 0. Substituting the function F' = ¢(¢, s,9,¢*) into equation

(4.22), one obtains

a1z +agz +a3 =0 (4.26)
where
a1 = —[(¢" — q"t) — (C2 — 3s)q"'t]¢2,
as = —=2[(¢"" — q*t) — (Ca — 3s)q" 1[5}, cos ©* — by sin |y,

7"

as = —[[(¢"" = q"t) = (Ca = 35)g" )% — "2
—[07((¢"" — qt) — (Cs — 35)q™'t) + q"t*] 3] cos®
(g = q*t) — (Ca — 35)g" t][26%, cos @* sin ©* — §y|ig.
The coefficients aq, as and az do not depend on z. Splitting (4.26) with respect to

z, one finds

a; =0, (i=1,2,3).

If ¢3 # 0, then the equation a; = 0 implies that (¢* — ¢*t) — (Cy — 3s)g*'t = 0,

and the equation ag = 0 becomes
¢ (5 + ¢2) = 0.
Because of cﬁg + ¢ # 0, one has ¢ = 0 which contradicts the assumption g # 0.

Hence, ¢; = 0. The equation az = 0 implies that

7,

(g = q"t) — (C2 — 35)q" t)p2s — q" % = 0.
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The general solution of the last equation is

¢ = o(t,¢),
where
¢¢+H@%H@)Q/M@®,hi<ww ¢@if5_%m%>”7
and (ﬁ; # 0.
Substituting ¢ = é(t, @) into equation (4.21), one obtains
bi(8)bag + ba(s)g + i = 0, (4.27)
where by = h? by = —(¢*)"'(2¢" — (Ca — 3s)g*t)h — B'. Let us analyze this

equation. Differentiating it with respect to s, one obtains
Vipgs + oz = 0.
Assume first that ) # 0. Then the last equation can be rewritten
b D
b; by
Differentiating it with respect to s, one has (=0,/ b)) = 0. Thus by = —Cyby +

Cs. This relation, after substituting representations for the coefficients b, and b,

becomes

(2¢* + (Cy — 35)q*t)

e h+h +Ch%—Cs = 0.

Differentiating the last equation with respect to ¢, one obtains (Cy — 3s)h = 0
and, hence h = 0. This give (¢*" — ¢*t) — (Cy — 3s)g*'t = 0. After splitting it with
respect to ¢ and solving them, one obtains ¢* = 0. This is a contradiction to the

assumption ¢* # 0.
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In the case b} = 0, then b, = 0, or by = Cy > 0 and by = C5. This means

that

2¢*" — (Cy — 35)q*t)/C
h:i\/a,(q (2(]* )q't)v Ty
Differentiating the last equation with respect to ¢, one has (Cy — 3s)y/Cy = 0
which also is a contradiction. Therefore partially invariant solutions do not exist
in this case.

Case 2. Assume that a # 0. The characteristic system of the last equation

is
dy dz _ dy”
tsing* —tcosp*  a

Hence, the universal invariant of this system is y1, y2, ¢, s, where y; = t cos ¢* +ay,

yo = tsin p* 4+ az. Thus, the general solution of equation (4.23) is

F = ¢(y17y27t78)7

where ¢12/1 + csz £+ 0.
Substituting the derivatives of the function ¢*(¢, s,y, z) through the derivatives

of the function F(¢*,t,s,y,z) into equation (4.22), it becomes
ay cos® p* + as cos ©* sin p* + azcos * + aysing* +as =0 (4.28)

where

a1 = [(¢"" =gt + (B — ((ag" = 3)s + C2))tq" )a® + ¢ (@)} (g, + Pyu) (P — D)
az = 2[(¢" — gt + (B — ((ag” = 3)s + Ca))tq")a® + " (d')?|dy, by

as = —2[(1y, + Y20y,)a’ + agslg*d oy,

ay = =2[(Y10y, + Y20y, )0’ + ads]q ' Py,

a5 = 2110y, + y2dy,)d'Ds + (P07, + ¢2)a)g” — (¢ + (B — ((ag” — 3)s

+O)tg” — g (a® + 1))at? @2 Ja + [(y1dy, + Yoy, )? + 1202, 1q* (a)2.
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Note that a1, as, as,as and as do not depend on ¢*. Splitting (4.28) with respect

to cos? ¢*, cos p* sin ¢*, cos p*, sin ©*, one obtains
a; =0, (i=1,2,...,5).

Noting that ¢12/1 + (ﬁi # 0, the equations a; = 0, ay = 0 imply that (¢*" — ¢t +
(3 — ((ag* — 3)s + C2))tqg")a® + ¢*(a’)> = 0, and the equations az = 0, a4 = 0
imply

(Y104, + Y2iby,)a’ + adsla’ = 0. (4.29)

Consider the last equation.

Case 2.1. Assume that @’ # 0, then equation (4.29) gives

(ylém + y2¢y2)a/ + a¢5 = 0.

The general solution of this equation is ¢ = f(¢, 91, g2), where g1 = yo/y1, g2 =
afyr and fZ2 + f2 # 0.

Substituting the function ¢ into the equation as = 0, one obtains
(¢ + (B = ((ag" = 3)s + Co))tq” —q"(a® + ) [(91for + 92f0u)* + 5] = 0.

Because ng1 + ng2 # 0, one finds that (g1f,, + 92f,)* + ng1 +# 0. Hence, ¢*" +
(B — ((ag* — 1)s + C))tq" — q*(a® +t) = 0. Finding ¢*" from this equation, and
substituting it into the equation (¢*" + (38— ((ag* —1)s+C2))tq" )a® +¢*((a')2 +1t) =
0, one has (a')? + a* = 0. This gives a = 0, which contradicts the assumption
a# 0.

Case 2. Assume that @’ = 0. Substituting ¢’ = 0 into the equation as = 0,

one obtains

(6" + (B = ((ag" = s+ Co))tg” — g*(a” + ))*6;, — ¢"(a*E ¢y, + ¢7) = 0.
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Using here the equation (¢*" + (3 — ((ag* — 1)s + C))tg* )a® + ¢*(a')? = 0, one
finds

a’t’r + a*td, + ¢2 = 0.
Hence, ¢,, = ¢, = ¢s = 0, which is a contradiction to the condition ¢12/1 +q§§2 # 0.

Therefore there is no partially invariant solutions in case ¢* # 0.

4.2.3 Subalgebra generated by LT = {7,8,9,11}

Invariants of the Lie group corresponding to this algebra in the coordinate
system (5) are

U, H, p, r/t.
The representation of a regular partially invariant solution is
U=U(s), H=H(s), p=P(s), s=r/t (4.30)

while the function w(t,r, 8, ¢) still depends on all independent variables. In
Hematulin (2001) it is proven that even in the more general case there is no
partially invariant solution in the case H # 0. The case H = 0 corresponds to
spherically symmetric flows. After substituting the representation (4.30) into the

Navier-Stokes equations one has
ts? P — (s*U" + (ts® — ts*U + 4s)U' +2U) = 0, (4.31)

sU' +2U = 0. (4.32)

Solving the last equation, one obtain U/ = s~2(', where (] is a constant.

After substituting the function U into equation (4.31), one has

P/S5 - 20](0] - 83) = 0.
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Therefore, the partially invariant solution of the Navier-Stokes equations in this

case 1s
P =211 (45 — C)) + Cy, U =572Cy, V=0, W =0, (4.33)

where (7 and (5 are constants. Using the property that the pressure is defined
up to an arbitrary function of time, one can set C5 = 0.
Note that this partially invariant solution is obtained for a Lie group which

is not admitted by the Navier-Stokes equations.

4.2.4 Subalgebra generated by L{ = {1,4,7,11}

Invariants of the Lie group corresponding to this algebra in the coordinate
system (C') are

q, (P_ev P, R/t

The representation of a regular partially invariant solution is
qg=q(s), ¢ =VY(s)+ 68, p=P(s), s= R/t

and the function U(¢,z,y, z) depends on the all independent variables.
The Navier-Stokes equations can be written in the cylindrical coordinate

system as

Uy + UU, + VU + WUgR™ — UpR™' + p, — Upw — Upg — UggR™? = 0, (4.34)
Vit UVe+ VVr+ WVeR™ = VRR™' + pr — Vi — Var — Voo R™>
+H(V +2Wp — RW*)R™2 = 0, (4.35)
(Wi + UW, + VWr + WWeR™ — WrR™ + ppR™' — W,y — Wrg)R™!
~Wae R + (W —2Vp + RVW)R™® = 0, (4.36)

Ue+ Ve + WoR™ + VR = 0. (4.37)
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Substituting the representation of a solution into the Navier-Stokes equa-

tions, one obtains

[(Upe — UU)R — qUg sin(V + 0)q) R + Uy — U, R?|t?
+ U R? — cos(V + 0)U,qR*t + (R? + t)U,R =0, (4.38)
(Rps — sin(W + 0)%¢°t + cos(V + 0)*qRqs) Rt
—(qss R? — qt* + (R? + t)q, R) cos(¥ + 0) = 0, (4.39)
(qss B2 — qt* + (R? + t)g.R — (qs R + qt) cos(V + 0)qRt) sin(V¥ + 0) = 0, (4.40)

(gs R + gt) cos(¥ + 0) + RtU, = 0. (4.41)
In the case ¢ = 0 the general solution of equations (4.38)-(4.41) is
U=U(ts,0), V=0 W=0, P=C, s=R/t,
where (] is constant and U satisfies the equation
Usss® + sU, (8%t + 1) — Ups®t* + Ugy = 0.

Since the pressure is defined up to an arbitrary function of time, one can assume
Ch = 0.
Further consideration is given for ¢ # 0.

Expanding the expressions cos(V + #) and sin(¥ + 6), equation (4.39) becomes
aysin @ + ay cos@sin b + azcos + aysind + as =0 (4.42)

where

ay = qst®[(¢'s +2¢)(2sin® ¥ — 1) + 25V, cos Wsin ¥,
as = —qst®[2(q's + 2q) cos Usin U — qsW,(2sin® ¥ — 1)],
az = —2[((s' + 1)g's — 4q + s*q" — ¢s*¥?) cos U—

(((s" 4+ 1)g +2¢'s)V, + gs¥,,)ssin V],
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ay = *[((s" + 1)¢'s — 4q + s¢"" — qs*¥?) sin U+
(((s* 4+ 1)g +2¢'s)V, + gsW¥,,)ssin V],
as = —st3[(q's + 2q) sin® ¥ — ¢'s)qg — sP' + sq*V¥, cos ¥ sin V.
Note that a;, (i = 1,...,5) do not depend on 6. Splitting (4.42) with respect to

sin? @, cos@siné, cosf,sin f, one obtains
a; =0, (i=1,...,5).

Solving the equations a; = 0 and a; = 0, one has

C
q:S—;, \P:C3

Substituting ¢, ¥ into equations a3 = 0 and a4 = 0, and solving them, one gets
205t = 0. This gives o = 0. It means that ¢ = 0 which contradicts the

assumption ¢ # 0. Therefore, there is no partially invariant solution in case

q#0.

4.2.5 Subalgebra generated by Lg = {4,3+5,2 —6,al + 7}

Invariants of the Lie group corresponding to this algebra in the coordinate
system (K7) are

u+ (af* —2x)/t, V*, p, t.
The representation of a regular partially invariant solution is
u=U(t) — (0" —2)/t, p= P(t), V' =V*(t),

and the function 6*(¢,z,vy,2) still depends on all independent variables. Sub-
stituting this representation of a solution into the Navier-Stokes equations, one

obtains



[(a(6r, + 0%, + 0%, — 0F — 05V cos 0%) + tU') (7 + 1)

+(* + DU — alty + 2)05)t — a(tU + x — al0*) (> + 1)0;
—a((t* + 1)V*sin0* + ty — 2)t0F = 0,

(0%, + 6%, + 0%, — 07) (87 + 1)*V*sin* — (((ty + 2)0 — 1)

2+ D)V*sing* — (t + 1)(y — 2))|t — (U + = — af*)

(t* + 1)@ V*sin0* — (¢ + 1)V*sin0* + ty — 2)(¢* + 1)

LIV sin 0 + [(V*(022 + 0;% + 03%) + V¥ — V*2sin6%)

(2 + 1) + V*](t* + 1)t cos 0* = 0,

[((Or, + 05, + 0%, — 05)( + 1) — ((ty + 2)0; + 1))t — (tU + 2 — af”)

(% + )05 — (2 + )V sin 0" + ty — 2)t07](1* + 1)V* cos 0"

* [ )*2 *2 *2 #\ *2 Nk 2 kN (42 2
—[((V*(0;" + 0,7+ 0;7) + V") sin 0" + V™07 cos™ 0") (¢ + 1)
ty+z— (y—32)t — (2 + 1)V*sin0*]t = 0,

(t* + 1)(V*H(0; sin 0" — 0% cos 0%) + abs) — (2t — t + 1) = 0.
Notice that for V* = 0 the equations (4.43)-(4.46) become

((a(0%, + 0, + 0%, — 07) + tU) (&% + 1) + (2 + 1)U — a(ty + 2)0;
—(ty — 2)t0Jt — a(tU + x — af*)(t* + 1)0F = 0,
(t+1)(y—2)=0,

y+z—(y—32)t=0,

(2t —t +1) —a(t® + 1)0% = 0.
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(4.43)

(4.44)

(4.45)

(4.46)

(4.47)
(4.48)
(4.49)

(4.50)

Combining equations (4.48) and (4.51), one obtains 2(tz 4+ y) = 0 and splitting it

with respect to y, one gets 2 = 0 which is a contradiction.

Further consideration is given for V* # 0.
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Taking the combination of equations (4.44) and (4.45) by excluding the
derivative 67, one has
(V02 +0;> + 02) + V) (> + 1) — (£ + 1) sin® 0" — 6)V7](£° + 1)
+(y+ 2 — (y —32)t)sin 0 + (> + 1)V*sin 0" +y — 2)(t + 1) cos 0* = 0. (4.51)
For the compatibility analysis of systems (4.43), (4.44), (4.46) and (4.51), it

is convenient to use an implicit representation of the function 6* (¢, z,y, z). Assume

that there is a function F(6*,¢,x,y,z) such that F} # 0 and
F(0"(t,2,y,2),t,2,y,2) = 0. (4.52)

In the same way as for the previous model, finding the derivatives of the function

0*(t, x,y, z) from equation (4.52) and substituting them into equation (4.46), one

obtains
207 — ¢+ 1
V*t(F,sin0* — F,cos0") + tQ——JF‘; +aF, =0.
The characteristic system of the last equation is
dy dz (P4 1)der dx

V*tsin@*  —V*tcos@* 22 —t+1 o
The universal invariant of this system is y1, y2, ys, t, where y; = V*¢(t*+ 1) cos 0* +
(22 —t+ 1)y, yo = V(2 +1)sin0* + (2t* —t + 1)z and y3 = a(t* +1)0* — (2¢* —

t + 1)z. The general solution of equation (4.46) is

F= ¢(y17 Y2, y37t)7

where ¢21 + gbzz + gbzg # 0.

Substituting the function ¢(y1,y2, s, t) into equation (4.51), one obtains

aj cos 0* + ay cos® 0% sin 0% + ag cos® 0% + a4 cos? 6* sin O

+as cos? 0* + ag cos 0% sin 0* + ar cos 0 + agsin0* + ag = 0, (4.53)
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where
ap = =32 + 12(26% + 367 + V(92 — 20,0y, — ¢2,),
ay = —t2(12 + 1)3(26° + 312 + 1)V*3(¢2, + 2y, by, — ¢2,),
= (1% + 1)2V*220,, (((3t + )y2 — (t — Dy1)y, + (263 + 362 + 1)(t2 + 1)by,)
—(t(t + 1) (g1 — y2) (g, + Gyo)(Pyy — buo) — 20(82 + 1) (27 + 3% + 1)y, ),
ay = —t(t* +1)PV2R((3E+ Do — (8= 1)yn)(dys + Ppo) (D — bys)
—20(2° + 32 + 1) (% + 1)y bys + 2(¢(t + 1) (51 — y2) by
Fa(t? 4+ 1)(2t° 4 312 + 1)y, ) by,
= (2 + 1)V a2t + 1) (y1 — y2) by, + a(26% + 3% + 1)(2 + 1)y, )by
(2 V(B2 1)V — (202 — ¢+ D)+ 1) (V) ),
PR+ V(3 + 482+ 1)V — (262 =+ D)+ 1)(V*) ),
+2t(a((3t + V)ya — (t — D)y1)dys — (2 + 1)(263 + 382 + 1)y, ) )Py
= (2 + D2V 2L + V(52 + DVF — (22—t + 1) (12 + 1)(V*) )by,
—a(t + 1)(y1 — Y2)dys )y, + 202 (3 + 1)y2 — (£ — 1)y1) Py, by,
F(2 4 1) (26° + 367 + 1)(1PV2P2 + a?¢2)],
= — (2 + 1)?2at(? + DHVH((582 + DV — (22 —t + 1)(12 + 1) (V") )y, D
—(t+ Dy — ) (BV2h5, + a?dy,) + 26(V)* (3t + 1)ye — (t = 1)y1)tdy,
Fa(t? 4+ 1)(26° 4 312 + 1)y, ) by,
as = (2 + 1)22ct(t2 + DV (512 + DHV* — (262 — £ + 1) (82 + 1)(V*) )by, s
H((Bt+ Dye — (8= V)y) (V™25 + a®d,)],
= (2 4 1D2VA(QR (262 — ¢+ 1)((282 — ¢+ 1)2 + 22 + VAV
—3(82 + 1) (5% + V] — [20t((3t + L)y — (¢ — 1)y1) by, D
(207 =t 1202 ]) (262 =t + DV 22 + 1AV ) (262 —t + 1)
—a?(t* 4 1)(58* + 1)V*]¢2 .
Note that a;, (i = 1,2,...,9) do not depend on #*. Splitting (4.53) with respect to
cos* 0%, cos® 0% sin 0%, cos® 0%, cos? 0* sin 0%, cos® 0%, cos 0* sin 6%, cos 6%, sin 6%, one

Y Y
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obtains

a; :0, (Z

1,2,...,9).

Equations a; + as = 0 and ay — as = 0, give

_2(V*)3t2(t2 + 1)3(2t3 + 3t + 1)(¢y1 + ¢y2)(¢y1 - ¢y2) =0, (4'54)

LV +1)5(26° + 382 + 1)y, by, = O (4.55)

Since V* #£ 0 and the expression #2(¢* + 1)(2¢* 4+ 3t* + 1) can not be zero, then

Oy, = Py, = 0. Equation a5 = 0 becomes

V(2 +1)° (267 + 387 + 1)y, = 0.
The last equation implies that a has to be zero. From ag = 0, one has
VA + 1)%(28° — t +1)°p2, = 0,

which also give ¢, = 0. This is a contradiction to the condition ¢? +¢2 +¢2 # 0.

Therefore partially invariant solutions of the Navier-Stokes equations not exist in
this case.

4.2.6 Subalgebra generated by Li, — {1,4,10,11}

Invariants of the Lie group corresponding to this algebra in the coordinate
system (D) are

v, w, p, 2/y.

The representation of a regular partially invariant solution is

v="V(s), w

W(s), p=P(s), s =z/y
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while the function u(t,z,y, 2) depends on all independent variables. Substituting

this representation of a solution into the Navier-Stokes equations, one obtains

up +ut, + Vu, + Wu, — (U + uyy +u,,) =0, (4.56)
(W —sV)V' —sP )y — ((s* + 1)V" + 2sV") = 0, (4.57)
(W —sV)W' + Py — (s> + YW" +2sW') = 0, (4.58)
yu, — (sV' + W') = 0. (4.59)

Since V' and W only depend on s, equations (4.57) and (4.58) can be split with

respect to y:
(W —sWV)V' —sP' =0, (W —sV)W' 4 P =0, (4.60)
(2 + V" + 25V =0, (s + D)W + 2sW' = 0. (4.61)
Solving equations (4.61), one has
V = Cyarctan(s) + Cy, W = Csarctan(s) + Cy.

Multiplying the first equation by s and combining it with the second equation of
(4.60), one obtains

(W —sV)(V' + sW') = 0.

Let W — sV = 0, then substituting V' and W one gets
(Cy — sCy) + (C5 — sCy) arctan(s) = 0.

Splitting the last equation with respect to s and arctan(s), one obtains ('} = Uy =
C5 = Cy = 0. This means that V' = 0, W = 0 and hence P = (5. Substituting
V and W into equation (4.59), one has u, = 0 or u = U(t,vy, z). Equation (4.56)
becomes

Uy — Uy — U, = 0. (4.62)
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Thus, there is a solution of the Navier-Stokes equations of the type
u=U(t,y,z), V=0, W=0, P=Cs,

where the function U(t,y, z) satisfies equation (4.62).

Similarly, in the case V' + sW’ = 0, one obtains ¢, = 0, C3 = 0, i.e.,
V = Cy,W = (4. In this case P = (5. Substituting V' and W into equation
(4.59), one has u, = 0. This means that u depends on t,y,z or u = U(t, s,vy).

Equation (4.56) becomes
U+ CoUy, + CyU, — Uy + U,, = 0. (4.63)
Thus, there is a solution of the Navier-Stokes equations of the type
u=Ul(ts,y), V==C, W=0Cy P=Cs,

where the function U(t, s, y) satisfies equation (4.63). Because the pressure P is
defined by the Navier-Stokes equations up to an arbitrary function of time, Cj

can be set to zero.

4.2.7 Subalgebra generated by Li; — {2,3,5,4 + 36 + 10}

Invariants of the Lie group corresponding to this algebra in the coordinate
system (D) are

u—t, w— Bt p, x— 271
The representation of a regular partially invariant solution is
u=U(s)+t, w=W(s)+ 8t p=P(s), s=x—271,

while the function v = w(t,x,y,2) still depends on all independent variables.

Substituting this representation of a solution into the Navier-Stokes equations,
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one obtains

U'—uu' — P —1=0, (4.64)

v+ (U + v, +ovy + (W + Bt)v, — (Ve + vy +v,.) = 0, (4.65)
W" —UW' -3 =0, (4.66)

U+ v, = 0. (4.67)

Integrating equations (4.64) and (4.67), one has
P=U -27'0% —s+C, v=—Uy+ V(ts,2).

The constant (] can be zero by using the property that the pressure p is defined
up to an arbitrary function of time only.

Substituting v into equation (4.65), one arrives at the equation
Vit UVy = VU + (W + BOV. — Vg + Ve +y(U" = UU" 4 U”) = 0.
Since U,V and W do not depend on vy, the last equation can be split with respect
to y:
U/// o UUII + U12 — O
Vit UV, =VU + (W + Bt)V, = Vo + V., = 0.
Thus the studied partially invariant solution of the Navier-Stokes equations is
u =U(s)+t, v==-U+V(ts,z2), w=W(s)+ ft,
P =U —271U% — s,
where s = 2 —271* and the function U(s), W(s) and V (¢, s, z) satisfy the reduced
system
U/// _ UU// + U/2 -0
W' —UW' - 3 =0, (4.68)

Vi+ UV, = VU + (W + Bt)V, — Vos + V,, = 0.
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4.2.8 Subalgebra generated by L}, = {1,024+ 73 +4,a3+5,32+ 6}

Invariants of the Lie group corresponding to this algebra in the coordinate
system (Ks) are

jlv j27 P, t.

The representation of a regular partially invariant solution is

. () — (att;_ﬁ;);ﬂy—ﬁz, - j2(t)—(7tt;fz3§—ay+tz7 = P(O)

and the function u(t,z,y,2) depends on all independent variables. Substituting

this representation of a solution into the Navier-Stokes equations, one obtains

(af — tQ)(um + Uy + Uy — ut, —ug) — ((Tu — 2)t — jo

=0, (4.69)
uu, — u) (B — ot) — Ji)

—a(ou —y))u, — ((ou —y)t — j1 — B(Tu — 2))u,

(a8 — t2>((um + Uy + Uz —
— (it + Bja + ((ou — y)t — j1 — B(Tu — 2))(BT — ot)u,

=0, (4.70)
(B — ) (e + Uy + Uy — utty, — wp) (o — 7t) — j5)

—((tu — 2)t — jo — a(ou — y)) (B — ot)u,)

—(Jot + aji + ((tu — 2)t — jo — a(ou — y))(ao — Tt)u,)

—((cu—y)t — j1 — B(tu — 2))(ao — Tt)u, = 0, (4.71)

2t — (aff — t*)u, + (B — ot)u, + (o — 7t)u, = 0. (4.72)

Multiplying the equation (4.69) by (7 — ot) and adding to the equation (4.70),
one has

afjy — t%5; + Biz + tjr = 0. (4.73)

Multiplying the equation (4.69) by (o — 7t) and adding to the equation (4.71),
one has

a3y — t2h + ajy — tjs = 0. (4.74)



61

After solving the equations (4.73) and (4.74), one obtains j; = Cit + BC5, and
jQ — —Ogt — O_/Cl.
A characteristic system for equation (4.72) is

dy dz dz  du
Br—ot ac—Tt 2—af =2

Hence, the universal invariant of this system is ¢, sy, s, u — 2tz /(a3 — *), where
s1 = (81 — o)z + (afB — 1) , s2 = (ao — Tt)x + (a3 — t?). Thus, the general
solution of equation (4.72) is

2tx
u= PV + U(t, s1, $2).

Substituting ji, jo and u into equation (4.69), it becomes a linear equation with
respect to x. Splitting it with respect to x, one obtains two equations which are

of the form

al(t)Usl + b](t)USQ + Cl(t) = O, (475)

F(U81817 U52317 U52827 Us17 U527 Ut7 U7 51, 32>t) — 07 (476)

where
a; = (af — t*)(a? BP0 — 2a8%1t + 2071° — ot?),

by = (aff — t*)(a?B*r — 202 Pt + 2a0t® — Tt),
c1 = (af — t*)(afB + 3t?).
For equation (4.75), a characteristic equation is

d81 o d82 dt - dU

ay [¢5)] 0 —C1
The universal invariant of this system is ¢, s3, U + (c151)/a1, where s3 = (bys; —

a182)/ay. Thus, the general solution of equation (4.75) is

U= -2 4 T, 5).

a
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Substituting U into equation (4.76), one obtains an equation which is linear with
respect to s, and after splitting it with respect to s;, one obtains two equations

as()U,, + by(t) = 0, (4.77)

F(U83537 U537 (7t7 67 S3, t) — O, (478)
where
as = (af — t*)¥(afo — 267t + ot*)(ac? — 577),

by = (aff — 1*)°(BT + ot).
After solving the equation (4.77), one has

Substituting U into equation (4.78), one gets the first order nonhomogeneous
linear equation:

(aff — (281 — ot)t — afo)?[a((Ci7 + Coo)B + 2(Cy — o H)ot)+

(Ch7 + Cao)t +2(Cy + TH)BT)t — (af — t?)(ac? — BT H'| = 0.
Solving the last equation, one finds

H— OZ(t(ClT + CQO')/B + CIO't) -+ /BTCQtQ
- af(ac? — [512)

Returning back to the partially invariant solution, one obtains the partially in-

+ (Ozﬁ — t2)03.
variant solution of the Navier-Stokes equations

+(a?(a(Caot? — y) + B272C5) — (Ba’o?Cs + Catt?))[]/afB(ac? — B17),
la((o(z — Cy) — Ty)Bo + (BT — at)3*2Cs — C10?t)
—(a?0?Cy — Cot) (BT — ot)]/a(ac? — B1?),

u=[a((o(z — Co) — 7(y + C1))BL — (Cst®r — 2)321 + Chot?))

w=lar((cz —7(y + C1))B — t(B*7*C5 + C10))
—B(aa®Cy + Cot?t) — 0a?(8°72Cs + 0Cy)]/af(ac? — B77),

p= P(t).
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4.2.9 Result of compatibility analysis

The results of the study of regular partially invariant solutions correspond-
ing to the remaining subalgebras of Table 4.1 are presented in this section. These
results are considered according to the coordinate system in which a regular par-
tially invariant solution is studied. For brevity, we omit details of their compu-
tations, and simply present the results which we have obtained. All results have
been verified by substituting the solutions into the original systems using the
REDUCE Program.

Table 4.2 is devoted to partially invariant solutions considered in the polar
coordinate system. In each of these models the function ¢ in the representation of
a partially invariant solution depends on all independent variables ¢ = (¢, z,y, 2).
The results of calculations show that such partially invariant solutions of the
Navier-Stokes equations exist. These solutions depend on the form of the function
q(s)-

Table 4.3 presents the results in the polar conical coordinate system. The
superfluous function is ¢* = ¢*(¢, x,y, z). Only subalgebra number 5 is presented
in this table. For this subalgebra, partially invariant solutions exist only in case
g* = 0. For other subalgebras considered in the polar conical coordinate system,
there are no partially invariant solutions.

Table 4.4 is concerned with subalgebras considered in the spherical coor-
dinate system. The superfluous function is w = w(t,r,0,¢). Partially invariant
solutions can only be found in the case H = 0.

Table 4.5 is devoted to partially invariant solutions considered in the cylin-

drical coordinate system. The function u = u(t, x, R, 0) is superfluous.
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Table 4.2: Subalgebras considered in the polar coordinate system (P)

Representation of PIS

Partially invariant solution (PIS)

12

14

16

21

u=U(s)+x/t,
p=P(s), a=q(s),
s =ux/t — BInt,
¢ =p(t,2,y,2)
u=U(t) + By,
p=P(t),

q = q(t),

¢ =p(t,z,y,2)
u=U(z),

p= P(z),
q=q(z),

¢ =t z,y,z)

u=U(t) - (¢ —2)/t,
p= P(t), ¢=q(t),

¥ = So(tvxvyvz)

U=—s+Ci, P=—pks,

l.q=0, ¢ = ¢t s,y,z2)
Q.QZCQ, §0:C3

u=U(t)+ By, p=0,
Lg=0, p=0o(t,y,2) - U/B:

Pyy + Pz — P =0
2.q=01, =05, U =05
3.q=Ce %t o= —Cy(z — Cst) + Oy,

B—0, U=~ Cs
U—Cy, P—0,
1.g=0, o=t z,y,z2)

2. q=Cy + C3e92, o= C,4
3.9=q(z),p=Cst — H(x) + (s :

W+ g1 (2¢ — Cig)h + Coh® — C5 = 0,

H = [ h(z)dz, h=+((¢" — C1q')/q)"/?

4. q= Cy+ C5e“1*, o = —H(z) + Cq
5.q=CC2 o= —¢+ H(x), ¢ = d(t, @) :

CQQB@ + C3€5¢> + =0, Cy >0,

s = £(Co(CF +4Co)V2, O = Oy £ 05
U=0Cy, P=-s,
1.g=0, o=t s,y,z2)

2. q = Cy + C5e91%, 0 = (4
3.q=yq(s),p=Cst — H(s) + Cy:

P +q 1 2¢ — Cig)h + Coh* — C5 = 0,

H = [h(s)ds, h=£((¢" = C1q')/9)"*
4g=Cit Cs5e“'®, 0 = —H(s) + Cg
5.q9=C4e%? o =—¢+ H(s), ¢ = (t, @) :

CQ&@@ + C3<5¢> + ¢y =0, Cy >0,

Cs = +£(Co(C2 +4Co))2, C = Cy + G305
u=U(t)—¢/t, p=0,

q:O, 90:_¢(t7yvz)/t:
¢yy+¢zz_¢t+¢zo
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Table 4.3: Subalgebras considered in the polar conical coordinate system (PC)

1 Representation of PIS Partially invariant solution (PIS)
5 wu=U(s)+ax/t, p= P(s), U= —-3s+ (],

q*:q*(8)7 S:$/t—ﬁlnt, P = (201_3(ﬁ+8))87

¢ ="t 2y, 2) g =0, " =¢"(t,5,9,2)

Table 4.4: Subalgebras considered in the spherical coordinate system (.5)

¢t  Representation of PIS Partially invariant solution (PIS)
1 U=U(s), p=P(s), U=s2Cy,
H=H(s), s=r/t, P =2"1s74Cy(4s* — C)
w=w(t,r0,¢) H=0, w=uw(t,s,0,p)
13 U=U(r), p= P(r), U=r=20,
H = H(r), P = —271p=1C2
w=w(t,r0,p) H=0, w=w(t,rb, )

Table 4.5: Subalgebras considered in the cylindrical coordinate system (C)

1 Representation of PIS Partially invariant solution (PIS)
4 u=u(t,z,R,0), u=Cy P=—-2710%",
p=P(s), ¢ =q(s), qg= C1s", ¥ = —aln(s) + Oy,

@ =V(s)+0, s=Re ™ n=-2(a*+1)"
6 u=u(t,z,R,0), u=Ul(t,s,0),

p=P(s), g =q(s), P =0, ¢q=0,
e =V(s)+0, s=R/t §2U,s + s(s* + 1)U, — s*t2U; + Ugg = 0
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Table 4.6: Subalgebras considered in the Cartesian coordinate system (D)

?

Representation of PIS

Partially invariant solution (PIS)

23

29

30

35

36

u=u(t,z,y, z),
v="V(s),

w = W(s),
p="P(s), s =2/y

u=u(t,z,y, z),

v=V(s) +y/t,
w=W(s)+ z/t,
p = P(s),
s=y/t —alnt
u="U(s)+x/t,
v="V(s)+olnt,
w=w(t,x,y,2),
p = P(s),
s=ux/t — FInt
u="U(s)+t,
v=uv(t,z,y,z),
w=W(s)+ t,
p = P(s),
s=x—1%/2
u—U@)
v=uv(t,x,y,z),
w=W(z)+1,
p = P(z)

L.u=U(tyz), V=0, W=0 P=0:
U —Uy—U,=0

2. u=U(ty,z), V=Cy W=Cy P=0:
U+ CU, + CU, —Uyy +U,, =0

Lu=U(ts,2), V==2s+Cy W=0,
P=(Cy—20—s)s, Z=z[t:
U+ t(—2s + Co— a)Us — Uss — Uzz = 0
2. u=—(x—Ult,s,2)/t, V==3s4+Cy, W=0,
P=(Cy—3(a+s))s, 2=2z/t:

t3Ut + t2(_33 + CZ — a)Us — Uss - U5~ =0

1. U==25+Cy V=0Cy w=WI(t,s,3)/t,
P = (Co—2B—5)s, §=y/t:
W, + 12[(—2s + Cy — B)W, + (Cy — )Wy
~Wes =Wy =0
2. U= —s+Co, V==Cu w=3z/t+ Wit s,5),
P=—ps, g=y/t:
Wy + t](—s + Cy = B)W, + (Co — )Wy
W =Wy =0

u=U(s)+t, v=-U+V(ts,z2),
w=W(s)+8t,P=U —271U%—s:

UIII _ UU"+ U12 =0

W' —UW'—p3 =0,

Vit UV, = VU + (W + BV, = Ves + Ve = 0

u=U(z), v=-U+V(tzz2), w=W(z)+t,
P=U-27102 -z

U///_UU//_I_U/Q :O,

W"—UW'—1=0,

Vit UV = VU + (W 4 )Vz = Vg + Vae = 0
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¢ Representation of PIS Partially invariant solution (PIS)
38 u=U(x), u=U(x), v=-U+V(tz,z2), w=W(),
v=1(t,x,y,z2), P=U —-271U%:
w = W(x) u"—uu"+U"” =0,
p= P(x) W"—UW'=0,
Vit UVe = VU + WV, = Ve + V., =0
4 u=U(t), U=0C, V=Cit+Cy w=W(t,z), p=0:
v=V(t) + atw
+ x — oz,
w=W(t, x,vy,z2), Wee — C1W, — Wy =0
p=P(t)
48 u=U(t), U=0C, V=0C w=W(t,x), p=0:
v=V(t)—tw—z,
w=W(t, x,vy,z2), Wee — C1W, — W =0
p=P(t)
50 u=u(t,z,y,z), u="U(t,y,2), V=C, W=0Cy p=0:
v=V(t),
w = W(t), Ut+ClUy+CQUZ— (Uyy+Uzz) =0
p=P(t)
Table 4.7: Subalgebras considered in the coordinate system (K2)
1 Representation of PIS Partially invariant solution (PIS)

1 u—ultz,y,2), u— [a((o(z = C) — 7(y + C1))Bt — ((CaPr
v =[n(t) = (ot = Br)u —2)B1 + Crot?)) + B(a?(o(Caot® — y)
+ty — B2]/[t* — o], +B772C3) — (Ba’o?Cy + Cart?))]/

w = [j2(t) — (1t — ao)u [af(ac? — B377)],
—ay + tz]/[t* — ap], J1=Cit+ B0, jo = —aCy — Cat,

p=P(t) p= P(t)
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Table 4.6 is considered in the Cartesian coordinate system and the last
Table 4.7 is devoted to partially invariant solutions considered in the coordinate
system (Ks).

There are no regular partially invariant solutions of the Navier-Stokes equa-
tions for the subalgebras 9,10, 17 — 20,42, 43.

Remark Notice that subalgebras 1,4—7,23,29 and 30 are not admitted by
the Navier-Stokes equations. Nevertheless there exist solutions which are partially

invariant with respect to them.



Chapter V

Optimal System

5.1 Admitted group of equation (4.62)

In this section, the Lie group admitted by equation (4.62) is studied. This
is the heat equation, and it was obtained from the Navier-Stokes equations and

gives rise to a partially invariant solutions of the Navier-Stokes equations
(F)  up — uyy — uy, =0,

where the function u depends on ¢, y, 2.

Assume that the generator has a representation of the form
X - gt(tv Y, z, u)at + é’y(t’ Y, z, u)ay + 52(t7 Y, Z)“)az + Cu(ta Y, z, u)au

The second prolongation of the operator X is

X® = X ¢ (t,y,z,u)04 + C(L,y, 2,u)0y, + (= (t,y, 2,u)0,,
FCU (t, Yy, 2,u) Oy + CU (LY, 2,u) Oy, + ¢V (L, Y, 2, u) Oy,
+C= (t,y, 2,u)0y,, + Cu(t,y, 2,u)0y,, + (== (L, Yy, 2,u)0,,, -
The coefficients of the prolonged operator are defined by formulae (2.15). The
determining equations are

X®F 0. (5.1)

(F=0] —
All necessary calculations here as in the previous chapter were carried out

on a computer using the symbolic manipulation program REDUCE (Hearn, 1999).
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The result of the calculations is the admitted Lie group with the basis of

the generators:

X1 = 8,5, X2 = 02, X3 = —3y, X4 = 2t6t + yﬁy + z@z — u@u,

X5 = 20, — zu0,, Xe¢ = y0, — 20y, X7 = —2t0y + yud,,

Xg = At20; + 4yd, + 4t20, — (4t + y* + 2*)ud,,

Xg = u@u, X10 = b(t,y,z)@u,

where b(t,y, z) is an arbitrary solution of the heat equation

br — byy — ba = 0.

(5.2)

The problem is to construct subalgebras of the algebra L°, which can be a

source of invariant solutions of the heat equation. The classification of subalgebras

can be done relatively easy for small dimensions. The optimal systems of sub-

algebras of the Lie algebra spanned by the generators Xy, ..., X9 are constructed

here.

The table of commutators [X;, X;| is

o\ Xy Xo X3 Xy Xs X X7 Xsg Xy
X4 0 0 0 2X:  2X, 0 2Xs 4Xy O
Xo 0 0 0 Xo —Xo X3 0 2X; 0
X3 0 0 0 X3 0 —-Xo —Xo9 2X; O
Xy -2X; —Xo —X3 0 X5 0 X7z 2Xg O
X5 —2Xo Xy 0 - X5 0 X7 0 0 0
Xg 0 — X3 Xo 0 - X7 0 X5 0 0
X7 —2X3 0 Xo X7 0 —-Xs 0 0 0
Xs —-4X, —-2X; —-2X; —-2Xg O 0 0 0 0
Xy 0 0 0 0 0 0 0 0 0
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Inner automorphisms (cf. Ovsiannikov (1978)) are constructed with the help of

the table of commutators.

To construct inner automorphisms, one has to solve the Lie equations. For

example, for the automorphism A;, one has the system of ordinary differential

equations

and the initial values at a =0

fli.’ﬂl, 52:372, T3:.CU3, T4:[,U4.

Therefore, the automorphism A; only changes the coordinates xy, 29, 3 and x4

by the formulae

The remaining coordinates are unchanged.

In the same way, one obtains the automorphisms A;

r3 — 20117, T4 = x4 — dajxs.

xy — 2ay24 + dairg, Ty = T9 — 20,75,

(1
Tg = Tg + A2T5

Tg — X9 + a3y

Tg = Tg — A5T9

Ayt Ty = 29 — Aoy, Ty = T3 — QoTs, T5 — T — 209,
Az Ty = a2 +asxrg, Ty — T3 — asry, Ty — Ty — 20978,
A4 : Tl — $1€2a4, fg — 37262(14, T3 — .’13'362a4,
T5 — :135e_2a4, T7 — a:7e_2a4, Tg — .’Bse_ZG4
As 1 Ty =29 + 2a571, Ts = x5 + asTa, Ty = T7 — A5Ts,
Ag 1 Ty = xocos(ag) — xgsin(ag), Tz = xgsin(ag) + 3 cos(ag),
T5 = x5 cos(ag) — wrsin(ag), Tr = wssin(ag) + 7 cos(ag)
A7 1 Ty = a3+ 20721, Ts = x5 + arxs, Ty = U7+ ar®y, To = Tg — A7T3

2,...,9):

— A5Tg
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Ag: Ty = x4 +4dagxy, Ts = x5 + 2087, Tr = o7 + 2as73,
Ty = xg + 2ag7y + 4aiz,
Ag: Ty =x1, Ty =29, T3 =23, Ty =Ty, T5—=T5, Tg— T,

f7 = a7, fg — Tsg, Eg = Zg.

Also there is the involution

5.2 Decomposition of the algebra [.°

Before constructing an optimal system, let us study the algebraic struc-
ture of the algebra L°. The algebra L° is decomposed as I @ L*, where
I = {X5, X3, X5, X7, X} is an ideal and L* = {X, X4, X, Xg} is a subalgebra.
According to the algorithm for constructing an optimal system of the algebra L°,
we use the two-step algorithm developed in Ovsiannikov (1994). First, an optimal
system of subalgebras of the algebra L* is obtained. The next step is to glue the
subalgebras from the optimal system of subalgebras of the algebra L* and the
ideal I together.

Any subalgebra of a Lie algebra is completely defined by its basis genera-
tors. Any vector of the basis is a linear combination of the basis of generator of this
Lie algebra. Hence, the subalgebra is completely defined by coefficients of these
linear combinations. For example, let L* = {Y],Y5,..., Y.} be a k-dimensional

subalgebra of the algebra L?. Operators Y;, (i=1,2,... k) are

9
Y=Y @iaXa, i=1,...k
a=1
Conditions for LF to be a subalgebra are

k
Vi, Vi) = CoYar ij=1.2,... k.
a=1
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For a classification of subalgebra, the coefficients Cf; have to be simplified by using

the automorphism and subalgebra conditions.

5.3 Classification of the algebra L*

Let us classify the algebra L* = { X1, X4, X, Xg}. The table of commuta-

tors of the algebra L* is

o\ Xy Xy Xe Xs
Xy 0 2X, 0 44X,
X, |—2x, 0 0 2X;
Xs 0 0 0 0
Xg 14X, —-2Xg 0 0

Since the generator Xg composes the center, the optimal system of subalgebras
of L* = {X1, X4, X6, Xs} can be easily constructed by classifying the subalgebra
L? = {X,,X,,Xs} and gluing it with the center {Xg}. The idea of construction
is as follows.

Let a subalgebra L™ of dimension r < 4 be formed by the operators
Yi=anXq +apXs+aiXe+auXs, i=1,...,7

where a;;, (i=1,....,7; j =1,2,3,4) are arbitrary constants.

For the classification of L* we need to study two steps.

1. All coefficients a;3 are zero, a;3 =0 (i = 1,2, 3,4), it means that we will
construct an optimal system of the subalgebra L® = { X, Xy, Xs}.

2. At least one of the coefficients of a;3 is not equal to zero.

Let us study the first step, and construct an optimal system of the subal-

gebra L%, For convenience, we will denote the generators X; by i.
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5.3.1 One-dimensional subalgebras of the algebra L?

Let Y = 211 + 244 + 248 which forms a one-dimensional subalgebra of the
algebra L®. The process of simplification of the coefficients of the operator Y is
separated into the following cases.

Case 1. Assume that xg # 0. Then one can divide Y by xg. Hence,

without loss of generality one can consider

Y:$11+$44+8

By means of transformation Ay, it can transformed to an operator with x, = 0.

Case 1.1. Let 1 # 0. By means of transformation A4, one can
transform it to €1 + 8, where ¢ = +1.

Case 1.2. Let x; = 0, then the representative of the class is the
operator 8.

Case 2. Assume that 2g = 0. Then one has Y = 21 + z44.

Case 2.1. Let x4 # 0. Dividing the operator Y by x4, one obtains
Y = ;1 + 4. By using the automorphism A;, the operator Y is transformed to
Xy.

Case 2.2. Let 24 = 0, then Y = 1.

5.3.2 Two-dimensional subalgebras of the algebra L3

Let a subalgebra be formed by the operators

YL' - aﬂl + a,-24 + a,-38, 1= 1,2

where a;;, (i = 1,2; j = 1,2,3) are arbitrary constants. Note that the rank of

. apnn ai2 Q13 .
the matrix is equal to two.

Q21 Q22 Q23
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Case 1. Assume that ay3 # 0. We can divide Y; by a;3. Hence, by
subtracting the operator (ags/a;3)Y; from Ys, one can assume agz = 0 and a3, +
a3, # 0. Using the automorphisms A;, the operator Y; is transformed to Y; =

a; 1 + 8. The subalgebra condition gives

[ CL111 -+ 8 N CL211 +a228 ] e a(an]. -+ 8) +/3(a211 -+ a228)

where « and 3 are arbitrary constants. Calculating the left hand side and com-
paring the coefficients on the left hand side with coefficients on the right hand

side, one has

2a11a221 — 4asn 4 — 20228 = (aay + Bazi)1 + Pard + a8.

Therefore

2a11a9 = aayy + Bag, —4ag = Pasy, —2a99 =

Further consideration depends on values of the coefficients aq1, a1, ase. If ase = 0,
then ag; = 0 which is a contradiction to the condition a3, + a3, # 0. Hence,
ass # 0. One can assume that asy = 1. Therefore « = -2, § = —4ay;, and
ay = —as,.

Case 1.1. If as; # 0, then using the automorphism Ay, the operators
Y, and Y; are transformed to Y; =8 — 1, Y, =4 + 1.

Case 1.2. If agy = 0, then the operators Y; and Y, are

Vi=8Y;, =4

Case 2. Assume that ay3 = 0. If ass # 0, then by exchanging Y; and

Y5, this becomes the previous case. Hence, one can take ass = 0. Therefore, the
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operators are Y7 = a1 +a24, Y2 = a1 1 + age4. Because the rank of the matrix

a1l a2
Qg1 Q22
is equal to 2, then by taking linear combinations of the operators Y; and Y5 they

can be transformed to ¥; = 1 and Y, = 4.

5.3.3 Three-dimensional subalgebras of the algebra L3

Let a subalgebra be formed by these operators

Y;=an1l+ a4+ a;38, i =1,2,3

where a;;, (i =1,2,3; j = 1,2,3 are arbitrary constants. Since the rank of the

79
matrix

ail ajz ais
az1 Q22 0A23

azy dzp ass

is equal to three, the basis if this subalgebra can be taken as

Vi=1LY,=4Y;=8.

5.3.4 Optimal system of subalgebras of the algebra L?> —
{1, 4, 8}

The result of classifying the algebra L? = {1, 4, 8} is the following:



77

Dimension
1 2 3
1 1,4 1,4,8
4 4,8
8 1-81+4

el + 8

where ¢ = £1.

5.3.5 Optimal system of subalgebras of the algebra L* —
{1, 4, 6, 8}

Let us consider the second step where at least one of the coefficients a;3 is

not equal to zero. Without loss of generality one can assume

Yl — 6—|—a111+a124—|—a148
Y;' = a111+ai24—l—a,~48, Z'ZQ,‘..,T, T§4

Using the conditions for L* to be a subalgebra, one obtains

Because L3 = {1, 4, 8} is a subalgebra and the generator 6 forms the center,

then

~

Comparing the coefficients, one obtains a;; = 0; 7,7 = 1,2,...,4. Because of
these results and since the algebra L? = {1, 4, 8} has already been classified,
therefore this allows simplifying the process of constructing the optimal system of
the algebra L*. This process construct by using the result of the optimal system of

algebra L3: we have to classify each optimal system of subalgebras of L? together
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with the generator Y1 = 6 +ay1 1+ a124 + a148. Here we give one example of this
process. Other elements of the optimal system of the algebra L* are constructed
in the similar way.

Let us consider the subalgebra {1 — 8,1 + 4}. For constructing three-

dimensional subalgebras of the algebra I, one considers

Y1:6+a111+a124+a148, YQZ]_—S, }/3:1*|>4:

Since Y7 can be written as:

Y1 =6+ (a1 — a12 + a14)1 + a19(1 + 4) + a14(8 — 1),

by forming a linear combination with Y5 and Y3, the operator Y; can be taken in

the form Y7 = 6 + @;;1. The subalgebra conditions gives

6+anl, 1-8]=—4aud=«a(® +anl)+5(1-8)+~(1+4)

where o, 3 and « are arbitrary constants. Comparing the coefficients on the left

side with the coefficients on the right side, one obtains

Thus, one obtains that Y; = 6, and the subalgebra is {6, 1 -8, 1+ 4}.
The result of calculation is an optimal system of subalgebras of the algebra

L*={1, 4, 6, 8} which is



79

Dimension

1 2 3 4
1 1, 4 1,4, 6 1, 4, 6, 8
4 4, 6 1,4, 8
6 4, 8 4, 6, 8
8 1, 6454 6,1+4,1-8
1+6 8, 654
c1+8 c1+8,6
4+ 6 1+4,1-8
816
c1+6+8

where 3 is an arbitrary real parameter and ¢ = +£1.

5.3.6 Optimal system of subalgebras of the algebra L°

After constructing an optimal system of subalgebras of the algebra L*, the
next step is the construction of an optimal system of subalgebras of the algebra
L =1{1, 2, 3,4, 5, 6, 7, 8 9}, by gluing subalgebras from the optimal
system of subalgebras of the algebra L* and the ideal I = {2, 3, 5, 7, 9}
together.

As it was seen for the algebra L*, the process of constructing an optimal
system of subalgebras of the algebra L° by gluing the algebra L* and the ideal I
consists of the following steps. In the first step, the vectors

S/i = Z a,vaj+ Z binj, (Z: 1,2,...,k’),
7={2,3,5,7,9} 7={1,4,6,8}

Y;’_Hg = Z Cinj (Z: 1,2,...,8),
7={2,3,5,7,9}
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are composed. Here the vectors
> b,
7={1,4,6,8}
are basis elements from one of the k-dimensional subalgebras L of the optimal
system of the algebra L*. In matrix form, this step can be explained by the

construction of the matrix

23579|1468

A B

C 0

where the matrices A, B and C consist of the coefficients a;j, bin, cgj, (i =
L2,...0ky 7 =2,3,5,7,9; a = 1,4,6,8, 8 = 1,2,...,s). In this step, the

matrix A is arbitrary. The rank of the matrix

A B
C 0

is equal to k+ s and this is the dimension of the subalgebra of the algebra L°. The
matrix C is chosen to be the simplest by taking linear combinations of it columns
and has to take all possible values of the given rank s. Note also that the matrix
A can be simplified with the help of the matrix C.

The next step is the process of checking the subalgebra conditions and
checking linear dependence of commutators on the basis generators of the subal-
gebra.

In this thesis, we study only two-dimensional subalgebras of the algebra
L?, because the two-dimensional subalgebras allow obtaining invariant solutions
which reduce the initial system of partial differential equations to a system of

ordinary differential equations.
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Let us give an example for constructing two-dimensional subalgebras, using
the subalgebra {¢1 4+ 8}. The maximum possible dimension of a subalgebra of
the algebra L* after gluing a subalgebra to the ideal I is two. In this case, the

matrix C is a 1 x 5 matrix, the rank of which is equal to one:

2 3 5 7 9]/1 4 6 8
a2 aiz a5 air aig | 0 0 1
Cog Ca3 Co5 Ca7 C9 | 0O O O O

By virtue of the automorphism Ag:

Ty = wocos(ag) — x3sin(ag), Ty = xesin(ag) + w3 cos(ag),

Ts5 = w5 cos(ag) — xrsin(ag), Tr = xssin(ag) + @7 cos(ag).
We can consider three cases:
1. 3+ ¢34 # 0,
2. 2y +cay =0, 35+ 3 £ 0,
3. ¢+ 2= 0, 3+ 3. =0, cag £ 0.

Case 1. By using the automorphism Ag one can assume coo = 1, co3 = 0.

In this case, by means of linear combinations and by the automorphisms

As, As, As, A7 the table of coefficients is transformed to

23 5 7 9|1 4 6 8

0O 0 0 0O ag|le 0 0 1

I 0 co5 cor a9

The subalgebra conditions give

[61 -+ 8 -+ a199, 2 -+ 6255 -+ 6277 + 6299] = 286252 —+ 286273 — 25
= Oé(€1 —|—8—|—Cl199)

+8(2 + co5D + cor'l + c299),
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where the coefficients a and 3 are arbitrary constants. Comparing the coefficients,

one obtains
O[:O, ﬁ:j:2, €:—1, 027:0, CQQZO, 025:Z|21.

Therefore, in this case the subalgebra is {—1 + 8 + 4199, 2 +5}.

Case 2. Since 3, + ¢33 = 0, or cag = 0, co3 = 0. Because of 3 + c2; # 0,
by virtue of the automorphism Ag one can take co5 = 1, co7 = 0. By means of
linear combinations and by the automorphisms As, A3, As, A7, the coeflicients are

transformed to

2 357 91 4 6 8

0O 0 0 0 ap|e 0 0 1

0 0 1 0 ¢c9|0 0 0 O

The subalgebra condition gives

[61 + 8 + a199, 5 + 0299] = 22

= a(el + 8 +a199) + B(d +c209),

where the coefficients o and (3 are arbitrary constants. Comparing the coefficients,

one obtains

a=0,3=0,c=0.

This is a contradiction to € # 0. Therefore, there exists no subalgebra in this
case.

Case 3. Assume that c3, + ¢33 = 0, 35 + c3; = 0 and ca9 # 0, or c22 = 0,
co3 = 0, cos = 0, cor = 0. Since o9 # 0, without loss of generality one can
choose ca9 = 1. By taking linear combinations and by virtue of the automorphism

As, Az, As, A7 the table of coefficients can be transformed to
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23 57 9|1 4 6 8

0O 0 0 0 0]e O O 1

O 0 0 0 170 0 0 O

The subalgebra conditions give
1+ 8, 9=0=a(c1+8)+3(9),
which is satisfied with
a=0, g=0.

Therefore, the subalgebra is {¢1 + 8, 9}. Other elements of the optimal system
of the algebra L? are constructed in the similar way.

The list of two-dimensional subalgebras of the optimal system of the algebra

L? is presented in the Table 5.1.

Table 5.1: Two-dimensional subalgebras of the optimal system of the algebra L°

N  Generator N  Generator

1 2.3 11 1,2+a04+6+ 39
2 2.7 12 8,04 +6+ 39

3 5.7 13 8,04 +5+ 6+ 39
4 2,3+ 7 14 4+a9,6 + 39

5 1,44+ a9 15 6+a9,¢1+ 8+ 39
6 2,44+ a9 16 24+7,34+5+a7
7 5,4+ a9 17 24+ 9,1+ 387 +99
8§ 8,4+ a9 18 5+a9,83+8+19
9 1,2+4+a9 19 24+&5,-1+8+ a9

10 1,a04+6+ 39 20 1-8+209,1+4+ a9
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5.4 Invariant Solutions of the equation (4.62)

Invariant solutions of the equation (4.62) are presented in this section.
Analysis of invariant solutions is presented in details for two examples. The anal-
ysis of the other cases is similar. The final results are collected in Table 5.2 in the

next section.

5.4.1 Subalgebra 7 : {5,4 + a9}

The basis of this subalgebra is

X5 =210, — zud,,
Xy + aXg=2t0; +y0, + 20, + (o — 1)ud,.
Let a function

=1y, zu)

be an invariant of the generator X5. This means that
2tf, — zuf, = 0.

The general solution of this equation is

)

Z

f=F(ty,u), 4 =ue=,
After substituting it into the equation (X, +aXy)f = 0, one obtains the equation
2F, +yF, + (o — 1)aF; = 0.

The characteristics system of the last equation is

dt  dy da

2y (a—Da
Thus the universal invariant of this subalgebras consist of invariants

2 2
Yy A lea o~ 2z
=,y "%, 4 —uew.
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Hence, a representation of the invariant solution is
1 -2
u=y"" e Te(q)

with arbitrary functions ¢(g) and g = y?/t. After substituting this representation

into equation (4.62), one obtains the ordinary differential equation
8¢°¢" + 2q(q + 4o — 2)¢ + (2a* — 6 — g + 4)¢ = 0.

The general solution of the last equation is

g 2a— 20— 1 1 20— 1 1
= e_ng T {Clwl <T’Z’%> + CoW, (T? Z?%>:| )

where W3 (2‘“4_1, i, %) , Wa (20‘4_1, i, %) are Whittaker functions and Cf, Cs are ar-

bitrary constants.

5.4.2 Subalgebra 16 : {2+ 7,3+ 5+ a7}
The basis of this subalgebra consists of the generators
X2 + X7 = 02 — 2t8y -+ yu@u,
Xs+ X5 +aX7 = —(1+2at)0, + 20, + (ay — 2)ud,.

In order to find an invariant solution, one needs to find a universal invariant of

this subalgebra. Let a function

f: f(t7y7z7u)

be an invariant of the generator X, + X7. This means that

f—2tf, +yuf, = 0.

The characteristics system of the last equation is

dz ﬁ_d_u_dt

1 =2t yu 0’
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The general solution of this equation is

2

F=F,9,46), §=y+2z, 04— ue®.
After substituting it into the equation
(Xs+ Xs+aX:)f=0
one obtains the equation
2t(1 + 2at — 4t*)Fy + gaF, = 0.
The characteristics system of this equation is

dj da  dt

2t(1 +2at — 42) g4 0

Hence, the universal invariant of this subalgebras consist of invariants

2 2
JU N v
l, e 4(+20t-4) g — oy 4 2z, U = uest.

A representation of the invariant solution of this subalgebra has the following form
(y+2t2)? 2

u = 6m_ﬂ¢(i)

with an arbitrary function ¢(¢). After substituting the representation of the in-

variant solution into equation (4.62), the functions ¢(¢) has to satisfy the equation
(14 2at — 48%)¢' + (. — 4t)¢p = 0.
The general solution of the last equation is
¢ =C/V1+ 2at — 412

where (' is constant.
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The result of the study of invariant solutions of equation (4.62) corresponding to

the subalgebras of Table 5.1 are presented in this section.

Table 5.2: Result of invariant solutions of the equation (4.62)

No. Universal invariant | Invariant solution
1 t,u|lu=C
2 4, ueV /M | u=(Ce /") /\/I
3 t, uew't=")/a | u = (Ce—(y2+zz)/4t)/t
4 1t , ue? 2D | o = (Ce¥* /20 /or 1 1
2.1, ue? 22N |y = (Ce~v’/22=0) )\ 2F — 1
5 zfy , uz'" | u=Cy(z —yi)* ' + Ca(z + yi)*™*
6 Y/t uyT |
— _ —y2 —2a 2 _%a 2
u = t(?a 1)/4y /26—y /St[clwl(%7i7 i_t) T CQWQ(l 42 ’i’ y_t)]
7 yQ/t ’ uyl—aez2/4t |
2 2
U — t(?a—1)/4y—1/26—(y2+222)/8t[CIWI(—1—2 7%, Z_t) + 02W2(—1—2a’ iv y_t)]
) Z/y 7 ut—ayl—ae(y2+22)/4t I
u = e~ WO (2 4 yi) ol 4 Oy(z — yi) Y
9  (+D/y, uwt u=Ciz+1-yi)* ™+ Co(z + 1 +yi)*!
10 _ 2 2 n—aarctan(z/y) (a—p) arctan(z/y)
1= Vi1 e |
u=q e e(B-a)arctan(=/y) | gin (L= = B 1nq) + Cycos( 2 o 5 1n q)]
2
11 g=2carctan($75%52)—In[(1 +y + a’y)? + (a + 2 +a®2)?]
xTz O£22
ue(a—ﬁ)arctan(liyﬁQ—y) |
u = ela=Ra/1gl’ a)arcwn(%)[C’ sin(¥ a)q)+C’ cos(L= - (B—e)gy)
12 q = (yQ + 22)%t—1eaarctan(z/y) (,y + Z )zue(%)—ﬁarctan(z/y) |
w= (i + 22)he U HAatane/N) T [ sin (&2 In g)
+C% cos(f’%ln q)]
13 q= (yQ _I_ZQ)%t—% ’ u(yQ _I_ZQ)l_To‘eﬁarctan(y/z) ‘

2
u= (4 2 e (O W (5, 5 D) + (5 )
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Table 5.2: (Continued)

No.  Universal invariant | Invariant solution
4 QQZ— {83 -
14 q=—[2aarctan(SE22=200) + In[((2 + oz — 2at)® + (y + o’y + 2¢)*)t77]
tue( y2$22 Y—(a+) arctan(?L—f‘jgz;r—Q;t) i
z+a z 2at +z
u — ea(a+ﬁ)+/ﬁ()2(a2+1))e(a+ﬂ> arctan (2 )~ (e )[Cl SiH(Q((O;J;i)f))
+C Cos( e 2+1))]
15 1. qg= (yQ T 22)/(4t2 T 1), ’U,(4t2 T+ 1)1/2eqt+aarctan(y/z)—(ﬁarctan(?t))/? |
u = (yQ T 2{,2)—1/26(ﬂa,rctan(?t))/?—qt—ozarct;an(y/z)[C’lI/I/'l(%7 %17 ql)
+02W2(ﬁ417 a21 ) ql)]
2.9 = (y* +22) /(A7 — 1), u(4? 4 1)}/ 2eattearcant/ (20 4 1) /(2t — 1))/ |
u = (g 22) Y 2eatmaetanlo/a) (20 4 1)/ (2t — 1)~ CWA(E. . q)
+02W2( 4ﬁ7 a217 Q)]
v2_ (y+2t2)? (y+2t2)? 42
16 ¢ , ue® 4t(1+2at—4t2) ’ u = (Ce4t(1+2at—4t7) 4t )/1 /1 4 2ot — 4t2
17 qg= 6.[;2 +y, ue—ﬁz—t(2ﬂ2t2+3(ﬁy+7))/3 |

18

19

20

u = P HEFEH3(By) B[O A, (2 BBatr=e)y | ¢, p,(=YBBatr—a?)y)

B B
_ (-2 | 24622 4 1)+ﬁ —12pty
q = Stgﬁﬁ , ute % * 96¢3 |
242 (v % 4y —D+8% 128ty (1— z)
— 41 2y—Bq-2 2v—Bq-2
u = t e 06t3 [Cl ( 2ﬁ2/3 ) + CQBZ( 2ﬁ2/3 )]

2

442 —-1)1/2 o _ 22yt
Log =800 w4 — 1)V2((2t + 1)/ (2t — 1))/ teTm 7T |

y2t 22
w= (42 — 1)~ V2((2t 4+ 1)/(2t — 1))~/ *eTz1 700 g CyWy (52, LQ)

%IH

+OWa (152, 1, )]

747

(442 -1)1/2 2 Pt
2. q = U (4 — DY2((2t +1)/(2t — 1))/ teT 2020 w1

Yy

2 22
u = (442 — 1)7V2((2t + 1) /(2t — 1))_a/4e4_tyz%1ijql/2

[Clwl(_lja o i2)+C’2VV2( loa 1 iz)]

’ 40 740

y/z, u(l+ 2t)_°‘zl+°‘e2(1+2t> |

2,,2
=(1+ 2t)az‘1‘ae_%[6’1(y + zi)7o7 4 Cy(y — zi)7271|

where Wi, Wy are Whittaker functions, A;, B; are Airy wave functions and

C, Cy, Cy are constants.



Chapter VI

Backlund Transformations

This part of the thesis is devoted to finding a Lie group of Backlund trans-
formations admitted by the system of equation (4.68). First we recall the main

knowledge from the theory of tangent transformations.

6.1 Lie Group of Finite Order Tangency

A point transformation is a transformation which involves transformations
of the independent and the dependent variables only. On the other hand, a tan-
gent transformation is a transformation which involves transformations of the
independent variables, the dependent variables, as well as the derivatives. A
natural generalization of the prolongation of point transformation leads to the
tangent transformation. A tangent transformation which involves only the first
order derivatives is called a contact transformation. A tangent transformation
which involves derivatives up to finite order is called a Bécklund transformation.

Consider the transformations of the independent variables x, dependent

variables u and derivatives p:

i = ['(z,u,p;a), @ = F(z,u,p;a), ph = Vh(2,u,p;a). (6.1)
Here
L Olelyk olelyk
Po = "gpa — Ozt ..o’

where o = (aq, g, ..., ) is a multi-index, |a| = aytast...4a,, , i =1,...n, k=

L....m, |a| €{1,2,...,q}.
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The functions f?, o¥ and ¥ depend on the independent variables x, de-

pendent variables u and the derivatives p of order up to ¢ ( |o| € {1,2,...,4} ).

One extends the action of the group to the variables dw;,du®, dp® by the usual
formulae for the differentials

i i g i

8 S
1B=1 %
_ k k q 2
dat = GEdu; + Gedu® + 37 Sedpy, (6.2)
[B]=1
_ ok ok I, gy
dp]; — %dxj + %dus + 3 8’]/jgdpg,
[8]=1

where 7,7 =1,2,...,n, k,s

1,2,...,m, |af,|8] € {1,2,....q}.
The Lie group of transformations (6.1) is called a one-parameter group of

tangent transformations if it preserves the tangent conditions

duf — pldz; =0, dpk — pﬁ’idxi =0,

(6.3)
i=1,2,...,n, k=1,2....m, |a| €{1,2,....q — 1}.
This means that

du* — pkda; = 0, dpf — p¥ .dz; = 0,
’ (6.4)
i=1,2,...,n k=1,2,..m, |a| € {1,2,....,q — 1}.

These conditions are strong, they provide very strong restrictions for the trans-
formations (6.1).

The infinitesimal generator of this group is given by the vector field (&, 7, {):

q
X =£0,, + n* 0. + Z Csapg,

(6.5)
a1

where
;i Of
&= da

T
a:O’ da

Ck:%
0’ * da

a=

a=0
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After substituting (6.2) into equations (6.4), one obtains

9
L"’Eﬁ‘s Z pﬁ; vi (aﬁ +3u3p3+|;13p )] dz;

+ 2 (3,, - i )de:O,

e
ouk | ok s %N ouk ot q (6.6)
Tttt 2 Ay ~Pai | 55, +ausp}+ Z o3 5
Bk AfiN g5
+ >0 ((;ﬁ ~ Phizhg )dpﬁ—O,

1Bl=q
(i,7=1,2,...,n, ks =1,2,....m, |a| € {1,2,....g — 1} ).

The left side of these equations is a linear form with respect to the differentials
dz;, dpj, |B| = ¢. Since dz;, dpj, [B| = g are arbitrary, this implies that the
coefficients of these forms have to be equal to zero. Differentiating these equations

with respect to the parameter a and substituting a = 0 into them, one obtains

677 Ui 3<f 35’ o¢
k o _
G = dx; aus ]—I—Z opj Do~ P Ox; 8u5 Pt Z op spﬂd =0, (6:7)
|8]=1 18|=1
n* s
e — 6.8
i =0 (1A=0) (6:5)
ok Gk L NSO o
Chi= 222+ =2p5 + & — Ph Z %] =0,
Oy OuT 5 O 0T o1 075
(6.9)
o6k 0¢
T~ Paizs = 0, = 6.10
e =g =0, (181=1) (6.10)
(i,7=1,2,..,n, k,s=1,2,....,m, |a| € {1,2,....q — 1} ).
Equations (6.7) and (6.9) can be written in the form
Gt = Di(n") = piDi(&"), Cai = Di(Ce) — paiDi(€"), (6.11)

(i=1,2,...n, k=1,2,...m, |a| € {1,2,....,q — 1})

where the differential operators are

g—1

0 0 0
DJ a +p]3 s_l_l;lpﬁja
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It is convenient to rewrite equations (6.8) and (6.10) through the functions
WE=nf —&pf, WE=¢E—¢ph (k=1.2,...m, |a| € {1,2,....q — 1}).

Consider ¢ = 1. Equation (6.8) becomes

oWk
op;

— =0, (i=1,2,...,n, k;s =1,2,...,m). (6.12)

If m > 1, choosing k # s and k = s in (6.12), one finds, respectively,

€i7_8W17_8W27 _o_owrm o awk
- 9p;  Opy v opr Opp

(t=1,2,...,n, k,s=1,2,...,mk#s).

The general solution of these equations can be written in the form

£ =Vi(x,u), WrF=UF—€pr=U"—Vipt, (i=1,2,....,n, k=1,2,...,m),
(6.13)
where the functions V; = Vi(z,u) and U* = U¥(z,u) do not depend on the
derivatives. Thus the Lie group (6.1) is a prolongation of a Lie group of point
transformations.

If m =1, then (6.11) and (6.12) give

g W oW oW
- 8]?1'7 e 8.’I7j pi 6u7

(i=1,2,..,n), (6.14)

where u = u!, W =W p;, = pl, ¢; = (. Notice that from the definition of the

function W and equation (6.14), one has

ow
n=Ww-— pia—-
Di

The function W is called a characteristic function. By induction one obtain the

coefficients of the prolonged generator through the characteristic function

oW
f— -‘/‘/ —_ P — > .
Ca Dz pa,z apl ) ( |Oé| - 1)
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Let ¢ > 1. Equations (6.8) and (6.10) become

oW* oWk 0Pk
— =0, —2+&—==0, (k,s=12,...,m, o] €{1,2,...,9—1}, |3 = q).
Opj Op Opj )
(6.15)
If m > 1, choosing k # s in equation (6.15), one obtains
oWk
o =0, (k,s=1,2,....,m, |a| €{1,2,....q—1}, |5 = q). (6.16)
B

choosing k = s and 3 = «, 7 in equation (6.8), one finds

OWH

E — _ap];;i?

(t=1,2,..,n, k=1,2,..m, |a| € {1,2,....g—1}).  (6.17)

Since in equation (6.15) the coordinates &' do not depend on the derivatives

phi (181 =g, k=1,2,..,m), the general solution of equations (6.17) is
WE=UF—&pk, (i=12..n k=12..,m, |o| € {1,2,..,q— 1}).

where the functions U¥ do not depend on the derivatives of order ¢ : p3, (|8] =
q, s = 1,2,..,m). Because of equations (6.15) and (6.10), the coefficients #* and
kok=1,2,..,m, (Ja| =1,...,¢— 1) are also independent of the derivatives of
order ¢. By induction on g one obtains (6.13). Hence, as in the case ¢ = 1, the

Lie group (6.1) is a prolongation of a Lie group of point transformations.

If m = 1, equations (6.15) become

ow o aWa i apoz,i

_*07 - ) +
s (181 =) s fapﬂ

—0, (Jo] € {1,2, ., — 1}, |8] = ). (6.18)

If for given 3 and « there is @ such that g # «, i, then

ow

— =0.
Ops

Hence,

0 <8Wa +§¢> 0 <8Wa) N ol ogi -
Ops \ OPai Opai \ Ops Ops  Opg .
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If n > 1, then for any 1 <i <n and 3, (|8] = ¢) there are o, (Ja| = g — 1) and

k such that k # 4, 8= a,k and 3 # a,i. Thus, the coefficients ¢%, i = 1,...,n do

not depend on ps (|3| = ¢), and
Wa — Ua - gipa,h (|a| =4q— 1)>

where the functions U, also do not depend on pg, (|| = ¢). Similar to the case
m > 1, one obtains that the group (6.1) is a prolongation of a Lie group of contact
transformations.

If n =1, equation (6.15) lead to

W=n—Ep, Wi=0C—Ep, Wo=C(—Eps, ..., Wo1 = Cq—l —Epzp
and

ow oW, OW,y an_Q 0Wq_1

— =0, =0, =0, ..., =0, = — . 6.19

Opg Ipq Ipq Opq ¢ Ipq ( )

Because of (6.13), one finds

DWq—2 - D(Cq—? - qu—l) = DCq—Q - pq—lDf - qu — Cq—l - qu — Wq—l'

Since of (6.19)
COWer  OWyes

8pq 8pq—l
Hence,
o OWy_o . OWy_o - OWy_o
n=WwW-—m Opg—1’ G =W _p28pq71 oo Cq—? o Wq_2 ~ Pa-1 Opg—1"’

o - W, _»

Cq—l = DWq_Q -+ €pq — DWq—Q — Pq 31,:71
_ OWy—o OWy—_2 OWy_o OWy_o
- Oz + P1 EM + P2 Op1 + ...+ pq—l Bpg—2

Thus, &, 1, C1, G2, ..., (4—1 only depend on @, u, p1, ps, ..., pg—1. By induction on
g one obtains that the Lie group (6.1) is a prolongation of a Lie group of contact

transformations.
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Therefore, any Lie group of transformations (6.1) is not a prolongation of
a Lie group of point transformations only for m = 1. For m = 1 any Lie group
(6.1) is a prolongation of a Lie group of contact transformations, and there exists

a characteristic function W = W (xy, za, ..., Zp, u, p1, P2, ..., pn) such that

. oW oW oW
[— :W_ i, a:DaW— i T = 1727---7 ) Z 1 .

(6.20)

This statement is known as the Lie Backlund theorem.

Theorem 5 (Backlund). There are no tangent transformations of finite order
N other than tangent transformations which are prolongations of contact (m = 1)

or point transformations (m > 1) .

This means that for the case m > 1, a tangent transformation is the N-
th prolongation of a group of point transformations, and for m = 1, a tangent

transformation is the prolongation of a contact transformation.

6.2 An admitted Lie group of tangent transformations

The notion of a Lie group of point transformations has been generalized to
involve derivatives in the transformations?.

Assume that the transformations (6.1) form a one parameter Lie group G.
The infinitesimal generator of the group G is given by the equation (6.5). The

coefficients of the infinitesimal generator for the derivatives of any order higher

than ¢ are defined by the recurrent prolongation formulae

i,i - DiCi_pzy,kDiv (|a| = 4,9+ 1; )

Here D; is the operator of the total derivative with respect to x;.

IFor details one can see Ibragimov (1983,1999)
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The infinitesimal generator X is prolonged for the differentials du’, dz; and
dp? :
X = X + & Oau, + 1% Our + 0,

by the usual formulae for the differentials

gi fdg—afder

nk = dn* 7377 ~da; +

TI
8 sdu +8sdpﬁ7

G —dg - 34adx + Lagus + 8<“dpﬁ

A Lie group of tangent transformations has to satisfy the determining equations

9 (CCJ! - Cgfakdxk - pi7kg) =0.

[(6.4)

(77 — ¢ ax; —ng) =
1(6.4)

The Bécklund theorem (Ibragimov, 1983) states that any tangent transformation
is a prolongation of a Lie group of either contact transformations or point trans-
formations. The first case is only possible for m = 1. Notice that the Backlund
theorem was proven under the assumption that all derivatives only satisfy the
tangent conditions.

A Lie group of tangent transformations with generator X is called admitted

by a system of partial differential equations
(S) F(z,u,p) =0
if the coefficients of the infinitesimal generator satisfy the determining equations
X Fis) = 0. (6.21)

Invariance of the tangent conditions for the admitted Lie group of tangent trans-

formations becomes

7 _gdxi_ng) — 07
N<77 N 1(6.4),(5)
G = Gdrr = ") _—
( R PakS T 6.y, ()
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In contrast to the Bécklund theorem, admitted tangent transformations
involve additional relations for the derivatives occurring in (S). This allows for
the existence of Bécklund transformations, namely tangent transformations of

finite order.

6.3 Lie groups of Backlund transformations

Lie groups of Béacklund transformations admitted by the system of equation
(4.68) are presented in this section. Direct calculations show that the Lie group

of transformations corresponding to the generators
Y1 =U'0y, Yo = (tU" +1)dy, Ys = (Bt + W + 2U")0y (6.22)

is admitted by the system of equations (4.68). The corresponding transformations

are:

U=U,T=U,T=U" T =UU"—(U)
W=w, W=W,6 W =W'=UW'+ 5,
V=Vtall, Vi=V, V.=V, V.=V,

-

_s — ‘/:9 + CLU”, Vss - Vss + a(UU” - (UI)2)7

U=U,T=U,T =U" T =UU"— (U

W=wW, W=wW, W =W'=UW'+ 3,

<l

:V+a(tUl+1>7 Vt:‘/lf+aU,7 Vz: F2) sz:‘/zz;

Ve=Vit+atl", Ve =V +at(UU" - (U")?),
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7" U U’” — U’ — (U/)Q,
W=W, W=W, W =W"=UW+ 3,

V=Vitapt+W+2U0"), Vi=V;+ap,

<

L=V, tal, V=V,

Vo=Vt aW' +azU", V=V +aW" +az(UU" — (U)?).
The Lie group of transformations (6.22) was originally found by seeking an ad-
mitted Lie group of point transformations for the equivalent system
U"—uu' +0%=0, U="U",
W'—UW'— =0, (6.23)
Vit UV, = VU + (W + SOV, = Vi + V. = 0.

For system (6.23) the dependent variables are
Wl =U, =V, =W, u*=U"

The basis of the Lie algebra corresponding to the Lie group of point transforma-
tions admitted by system (6.23) is

X1 =205, Xo=0,, Xs=Voy, Xy =0+ pto,, Xs =10, + Ow,

Xe =U'0v, X7= (U +1)0v, Xg= (Bt + W + 2U")0y.
The generators Xg, X7, Xg coincide with the operators Yy, Y5, Y3, respectively.
Notice that if one looks for an admitted group by considering the dependent

variables

wl=U v =V, u® =W, u*=U",
wW=W, u =V, u" =V, «® =V,
then one obtains the following admitted generators
X1 =05, Xo=20., X3=Voy+ Vioy, + Vioy, + V.0v,,
Xy =10, + 0w — V,0v, X5 = 0p— PlO,.

Note that Y7, Y5, and Y3 are no longer among these generators.



Chapter VII

Conclusion

7.1 Thesis Summary

This thesis is devoted to an application of group analysis to the Navier-

Stokes equations.

7.1.1 Problems

Unsteady motion of incompressible viscous fluid is governed by the Navier-

Stokes equations. These equations can be written in the compact form
u+u-vu=—-Vpt+tAu, V- -u=0,

where u = (uy, ug, uz) = (u,v,w) is the velocity field, p is the fluid pressure, V is
the gradient operator in the three-dimensional space, x = (21,22, 23) = (2,v, 2)
and A is the Laplacian. A group classification of the Navier-Stokes equations in
the three-dimensional case was done in Bytev (1972). The Lie algebra admitted
by the Navier-Stokes equations is infinite-dimensional. Its Lie algebra can be
presented in the form of the direct sum L® @ L, where the infinite-dimensional

ideal L is generated by the operators
U = () 0x; + (1) 0us — pa;lfi (1) 0y, © = H(1)0,

with arbitrary functions v;(t), (i = 1,2,3) and ¢(¢). The subalgebra L° has the

basis:
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j 7
XO = athij = ::sj@xi — :ci&cj + U}aui — U Oysi

3
Z = 20+ Y (210, —uFOu ) —2p0,,
k=1

where ¢ = 1,2, j = 1,2,3, i < j. The Galilean algebra L!'° is contained in
L>®@® LS. There is still no classification of this algebra. Several articles are devoted
to invariant solutions of the Navier-Stokes equations. Since partially invariant
solutions of the Navier-Stokes equations have been less studied, therefore it is
natural to investigate such partially invariant solutions.

Constructing partially invariant solutions consists of a sequence of steps:
choosing a subgroup, finding a representation of a solution, substituting the rep-
resentation into the studied system of equations, and studying compatibility of
the obtained (reduced) system of equations.

The first problem that was studied in the thesis is to analyze all regular par-
tially invariant solutions of the Navier-Stokes equations based on the subalgebras
from Table 4.1.

It should be noted that the notion of compatibility plays the key role in
constructing partially invariant solutions. During construction of a representation
of a partially invariant solution, the property of the group to be admitted is not
used. This fact gives rise to the assumption that one can construct partially
invariant solutions with respect to a Lie group which is not necessary admitted.
Farlier partially invariant solutions were only constructed with respect to admitted
Lie groups. The subalgebras 1,4—7,23,29 and 30 from Table 4.1 are not admitted
by the Navier-Stokes equations.

The second problem that is studied in the thesis is devoted to the construc-

tion of a Lie group of tangent transformations for a system of partial differential
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equations. The Backlund theorem states that in the general case there are no
nontrivial tangent transformations of finite order except contact transformations.
This theorem is proven under the assumption that all derivatives involved in the
transformations are free: they only satisfy the tangent conditions. On the other
hand, if the derivatives appearing in a system of partial differential equations
satisfy additional relations other than the tangent conditions, then there may ex-
ist nontrivial tangent transformations of finite order. These transformations are
called Bécklund transformations.

After obtaining a reduced system of equations one can again apply group
analysis to it: find an admitted group, construct optimal system of subalgebras,
and obtain invariant and partially invariant solutions. Some subalgebras of Ta-
ble 4.1 lead to the heat equation. The admitted algebra of the heat equation is
spanned by the generators (5.2). The problem that was studied in the thesis is
to construct all subalgebras of the algebra L%, which can be a source of invariant

solutions of the heat equation.

7.1.2 Results

1. All partially invariant solutions for the Navier-Stokes equations with
respect to the subalgebras presented in Table 4.1 were studied. The final results
are collected in Table 4.3-Table 4.7. There are no regular partially invariant
solutions of the Navier-Stokes equations for the subalgebras 9,10, 17 — 20,42, 43.

2. The subalgebras 1,4—7, 23,29 and 30 from Table 4.1 are not admitted by
the Navier-Stokes equations. Nevertheless, it is proven that there exist solutions
which are partially invariant with respect to them.

3. The existence of Bécklund transformations for a system of partial differ-

ential equations (4.68) which arises from the study of partially invariant solutions
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of the Navier-Stokes equations is proven.

4. The optimal systems of two-dimensional subalgebras of the Lie algebra
spanned by generators Xi,..., X9 (5.2) were obtained: there are 20 classes that
have invariant solutions. The invariant solutions with respect to their subalgebras

were presented.

7.1.3 Limitations

The thesis deals with regular partially invariant solutions of the Navier-
Stokes equations with defect § = 1 and rank ¢ = 1. These solutions of this (o, )
type can be easily constructed. Subalgebras for studying were taken from part

of the optimal system of subalgebras for the gas dynamics equations(Ovsiannikov

and Chupakhin (1996)).
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Appendix



Special Functions

1 Gamma function

The Gamma function is defined for Re(z) > 0 by

F(z)/ e it e,
0

and is extended to the rest of the complex plane, less the non-positive integers, by

analytic continuation. I' has a simple pole at each of the points z =0, —1, -2, ....

2 Kummer functions
The Kummer functions KummerM(y, v, s) and KummerU(y, v, s) solve the dif-
ferential equation

sw" + (v — s)w' — pw = 0.

3 Hypergeometric functions
The hypergeometric functions hypergeom(n; d; s), n = (n1,ng,...,n,), d =

(dy,ds, ...,d,) are solutions to the hypergeometric differential equation
s(1—=s)w" +[c—(a+b+ 1)sjw' — abw = 0.

The function hypergeom(n;d;s) is the generalized hypergeometric function

F(n;d;s). It is frequently denoted by ,F,(n;d;s). The definition of ,F,(n;d; s) is

[ T(ni + k)/ D ()

(n;d; s) Z’:ql k_
1w/

If n; = —m, where m is a non-negative integer, the series is finite, stopping after

m+1 terms. If d; = —m, where m is a non-negative integer, the series is undefined,
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unless there is also a negative upper parameter of smaller absolute value, in which
case the previous rule applies.

The complete solution to the hypergeometric differential equation is
w=Cy oF(a,b;c,s) + Co o Fi(a+1—c,b+1—¢2—c¢,s)

where '] and (5 are constants.

4 Whittaker functions
The Whittaker functions Wi(u,v,s) and Wa(p, v, s) solve the differential

equation

1 p +—12
1 4
——4= = 0.
W < 4+ S + =2 ) w
They can be defined in terms of the hypergeometric and Kummer functions as

follows:

Wi (p,v,s) = e_%s%“L”hypergeom (%—I—V—/,L, 1+ 21/,5) ,

[N
=

Wo(p,v,s) = e 252 "KummerU (34+v—p, 1 + 2v,5) .

5 Airy wave functions
The Airy wave functions A; and B; are linearly independent solutions for
w in the equation
w” — sw = 0.
Specifically,
Ai(s) = e10F1(0,2,5) — cas 0 F1(0,2,5),

Bz(S) = \/§ [Cl oFl(O, %, %) — 38 0F1(07 %7 %)

where ¢ F] is the generalized hypergeometric function,

c; = A;(0) and ¢ = —AL(0).
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