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This research presents the development of a landmark-based motion
detection system for enhanced frozen shoulder rehabilitation. The goal of the study
was to make frozen shoulder rehabilitation more accurate and useful by using cutting
edge technologies like motion capture, face detection, computer vision for degree
measurement, and cosine similarity. The research involved the recruitment of healthy
volunteers to assess the system's accuracy in measuring efficacy. By utilizing key frame
analysis, angle degree measurements, and similarity scores, the system aimed to
identify movement deviations and tailor rehabilitation strategies for individual patients.
The methodology included participant recruitment, physical therapy pose execution,
data collection through angle measurements, and comparative analysis using the
developed system. The research questions focused on the system's contribution to
measuring patient adherence to therapeutic postures, identifying movement
deviations, and evaluating the impact of technological integration on treatment
efficacy. The proposed system sought to enhance physical therapy precision for frozen

shoulder patients, ultimately .improving their rehabilitation outcomes.
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CHAPTER |
INTRODUCTION

1.1  Motivations of the study

In the ever-evolving landscape of healthcare, where technological innovations
are reshaping the way we approach medical challenges, the realm of musculoskeletal
disorders stands as a significant focal point. These disorders, with their intricate
nuances and often debilitating impacts, beckon for refined rehabilitation
methodologies. As we navigate this era of transformative healthcare, the imperative
to address musculoskeletal issues becomes increasingly pronounced (Ahmad et al.,
2022; Briggs et al., 2020).

Recent strides in healthcare underscore the potential advantages of integrating
cutting-edge technologies into rehabilitation practices. Among these, motion
detection systems emerge as powerful tools, capable of unraveling the complexities
of patient movements and expanding the horizons of remote healthcare delivery
(Cooper & Cooper, 2019; Albahri et al., 2018).

Amid this backdrop, frozen shoulder (Dias et al., 2005) takes center stage—an

ailment characterized by pain and restricted joint mobility. Its intricacies demand a
departure from conventional rehabilitation (Challoumas et al., 2020) approaches
toward a more personalized paradigm (Choi et al., 2018).
It is within this narrative that the proposed landmark-based comparative analysis
within motion detection systems (Srikaewsiew et al., 2022) steps into focus, positioning
itself not just as an innovation but as a catalyst for nuanced assessments and tailored
therapeutic interventions.

As the challenges posed by musculoskeletal disorders (Fernandes et al., 2018)
persist, and the potential of technology continues to expand, this study seeks to

contribute to the ongoing paradigm shift in musculoskeletal rehabilitation.



It aims to delve into the realm of personalized and technology-enhanced
healthcare, where the scrutiny of patient movements against instructional videos,
utilizing landmark-based analysis, becomes not just a method but a key to unlocking
precision in treatment.

This study, driven by the dynamic interplay of healthcare and technology,
poaspires to integrate advanced systems into rehabilitation practices, offering a path
toward precision and personalization in the treatment of musculoskeletal disorders—
particularly frozen shoulder. As we embark on this exploration, the synthesis of
medical science and technological prowess becomes a symphony, promising to

harmonize the complexities of musculoskeletal rehabilitation.

1.2  Advancements in frozen shoulder rehabilitation

Frozen shoulder (Dias et al., 2005), or adhesive capsulitis (Tasto & Elias, 2007),
stands as a challenging musculoskeletal condition, causing pain, stiffness, and
restricted motion in the shoulder joint. This condition profoundly affects daily life
(Lyne et al,, 2022), impeding routine activities and causing persistent discomfort.
Traditional management involves a combination of physical therapy, exercises, and,
in severe cases, surgical interventions, with physical therapy playing a key role in
alleviating symptoms (Pandey & Madi, 2021).

Despite established treatments, optimizing rehabilitation for frozen shoulder
patients remains a challenge due to varying individual responses. This necessitates
exploring innovative solutions, and recent technological advancements in motion
detection systems (Roggio et al,, 2021) show promise for enhancing precision in
rehabilitation.

The proposed thesis, " Development of a Landmark-Based Motion Detection
System for Enhanced Frozen Shoulder Rehabilitation” seeks to contribute to the
evolution of frozen shoulder rehabilitation. By developing a motion detection system
grounded in landmark techniques, the research aims to address individual patient
nuances, optimize interventions, and improve overall outcomes.

Through a comparative analysis of patient and therapist movements,
leveraging advanced technologies such as cosine similarity (Abdulghani et al., 2023;

Srikaewsiew et al., 2022) and facial expression modeling (Revina & Emmanuel, 2018),



the thesis aims to establish a comprehensive understanding of the rehabilitation
process. Integrating key frame analysis, angle degree measurements, and similarity
scores offers a holistic approach to evaluating patient progress, allowing for a more
nuanced and tailored therapeutic regimen.

The exploration of landmark-based motion detection in frozen shoulder
rehabilitation aligns with the trajectory of technological advancements in healthcare.
The proposed research responds to the imperative of providing a personalized,
effective, and data-driven approach to address the multifaceted challenges posed by
frozen shoulder. This thesis endeavors to contribute to the evolution of rehabilitation
strategies, fostering improved patient outcomes and enhancing the quality of life for

individuals grappling with the constraints of frozen shoulder.

1.3 Landmark-based motion detection

Landmark-based motion detection represents a transformative approach in
healthcare (Fried et al., 2023), particularly in the realm of rehabilitation (Latreche et
al.,, 2023). This innovative methodology utilizes anatomical landmarks to precisely
track and analyze movements, offering a nuanced understanding of the dynamics
involved in therapeutic processes.

In the context of frozen shoulder rehabilitation, a condition characterized by
pain and restricted motion, traditional treatment approaches often face challenges in
tailoring interventions to individual patient needs. Landmark-based motion detection
systems present a potential solution by providing a more personalized and data-
driven approach to physical therapy.

These systems, leveraging advanced technologies, enable a detailed
examination of specific anatomical points during movement. By incorporating
techniques such as cosine similarity and facial expression modeling, researchers can
gain insights into patient progress with unprecedented precision.

The proposed thesis, " Development of a Landmark-Based Motion Detection
System for Enhanced Frozen Shoulder Rehabilitation" positions itself at the
intersection of technology and rehabilitation. By focusing on landmark-based motion
detection, the research aims to pioneer a more advanced and tailored approach to

frozen shoulder therapy.



Through a comparative analysis of patient and therapist movements, the thesis
intends to contribute to the evolution of rehabilitation strategies. Key frame analysis,
angle degree measurements, and similarity scores form integral components of this
holistic approach, promising to redefine the standards of precision in therapeutic
regimens.

The exploration of landmark-based motion detection not only aligns with the
current trajectory of technological advancements in healthcare but also responds to
the imperative of providing a personalized, effective, and data-driven approach to
address the multifaceted challenges posed by conditions like frozen shoulder. This
research endeavors to establish landmark-based motion detection as a cornerstone
in enhancing precision and efficacy across various realms of physical therapy, fostering

improved patient outcomes and quality of life.

1.4  Purpose of the research

The primary objective of this research was to pioneer advancements in frozen
shoulder rehabilitation through the development and implementation of a Landmark-
Based Motion Detection System. The overarching goal was to address the limitations
of traditional rehabilitation approaches by introducing a more precise, personalized,
and data-driven methodology. Specifically, the research aimed to:

1.4.1 Develop a prototype system for frozen shoulder patients using motion
detection techniques based on landmark analysis. This involved comparing user-
generated videos with original recordings conducted by physical therapy experts.

1.4.2 To evaluate the effectiveness of the prototype system in practical
applications, specifically assessing its accuracy in motion detection, angle
measurement, and comparison with instructor videos.

1.4.3  Explore the integration of computer technology into physical therapy
practices, employing techniques such as face detection, motion capture, degree
measurement via computer vision, and similarity comparisons.

1.4.4  Investigate and experiment with methods aimed at facilitating effective
at-home physical therapy for frozen shoulder patients, with a focus on self-

administration.



1.5  Scope of the research
1.5.1 Development of Landmark-Based Motion Detection System
The research centered on designing and implementing a motion
detection system based on landmark techniques specifically tailored for comparing
physical poses captured in user videos with those demonstrated by experts and
measure the angles of specific body parts in each physical pose.
1.5.2  Comparative Analysis of Movements
The scope included a comparative analysis of movements between
frozen shoulder patients and therapists, utilizing key frame analysis, angle degree
measurements, and similarity scores to assess the precision and effectiveness of the
motion detection system.
1.5.3 Engage with Healthy Volunteers
The research encompassed the recruitment of fourteen healthy
volunteers, aged between 20 and 50 years, with careful consideration given to
maintaining gender balance. Participants provided informed consent before engaging
in the research procedures, thereby demonstrating their voluntary involvement. The
study aimed to deliver detailed explanations regarding the experiment, including
associated risks and terms, to ensure comprehensive understanding and ethical
adherence throughout the research process.
1.5.4 Technological Integration and Evaluation
The research involved the integration of advanced technologies, such
as cosine similarity and facial expression modeling, into the motion detection system.
The focus was on evaluating the impact of technological integration on the accuracy
and comprehensiveness of the analysis in the context of frozen shoulder

rehabilitation.

1.6  Research questions
1.6.1 How does the Landmark-Based Motion Detection System contribute to
precisely measuring and improving the frozen shoulder patient's adherence to

therapeutic postures during rehabilitation interventions?



1.6.2 To what extent can the landmark-based comparative analysis identify
and address specific movement deviations in frozen shoulder patients, leading to
tailored and more effective rehabilitation strategies?

1.6.3 What is the impact of incorporating cosine similarity and facial emotion
modeling in the motion detection system on the accuracy and thoroughness of
measuring patient progress and treatment efficacy in frozen shoulder rehabilitation?

1.6.4 How does the developed motion detection system provide precise,
quantifiable data for redefining frozen shoulder rehabilitation standards and advancing

rehabilitation practices?

1.7  Contributions of the research
1.7.1  Precision Enhancement in Rehabilitation Practices
The research contributes by introducing a Landmark-Based Motion
Detection System designed for frozen shoulder therapy. This technology enhances
the precision of rehabilitation interventions, providing detailed and accurate analyses
of patient movements during therapy sessions.
1.7.2  Tailored and Effective Rehabilitation Strategies
By leveraging landmark-based comparative analysis, the study pioneers
personalized rehabilitation interventions. The system identifies individual patient
responses and needs, allowing for tailored strategies that address specific movement
deviations, thereby increasing the effectiveness of frozen shoulder therapy.
1.7.3  Integration of Advanced Technologies
The research integrates cosine similarity and facial expression modeling
into the motion detection system, enhancing the accuracy and comprehensiveness of
the analysis for patient progress and treatment efficacy in frozen shoulder

rehabilitation.



CHAPTER Il
LITERATURE REVIEW

2.1  Frozen shoulder

Frozen shoulder, medically known as adhesive capsulitis, represents a
challenging musculoskeletal condition characterized by pain, stiffness, and restricted
mobility within the shoulder joint. Epidemiological studies have indicated a
prevalence ranging from 2% to 5% in the general population, with a notably higher
occurrence among individuals aged 40 to 60 years. This condition is often associated
with various risk factors, including diabetes mellitus, thyroid disorders, prior shoulder
trauma or surgery, and a higher incidence in females (Dias et al., 2005; de la Serna et
al,, 2021).

The pathophysiology of frozen shoulder involves a multifaceted interplay of
inflammatory, fibrotic, and contractile processes within the glenohumeral joint
capsule and surrounding soft tissues. The clinical course of frozen shoulder typically
progresses through distinct phases, starting with a painful phase characterized by
increasing pain and stiffness, followed by an adhesive phase marked by significant loss
of shoulder mobility, and concluding with a recovery phase where mobility gradually
improves (Dias et al., 2005).

Diagnosis of frozen shoulder relies primarily on clinical evaluation, including
history-taking and physical examination. However, imaging modalities such as X-rays,
ultrasound, and magnetic resonance imaging (MRI) are often utilized to confirm the
diagnosis and rule out other shoulder pathologies (Dias et al., 2005).

In terms of treatment modalities, a multimodal approach is usually adopted.
Conservative treatments play a pivotal role and may include physical therapy
interventions aimed at improving range of motion and reducing pain through specific
exercises and manual techniques. Pharmacological interventions, such as
corticosteroid injections, can provide symptomatic relief, particularly during the

painful phase of the condition (Mertens et al., 2022).



Surgical interventions, including manipulation under anesthesia and arthroscopic
release, may be considered for refractory cases where conservative measures have
failed to provide adequate relief (Dias et al., 2005).

Psychological factors, including stress and anxiety, may also influence the
onset and progression of frozen shoulder. Moreover, the prognosis of frozen shoulder
varies among individuals, with some experiencing persistent limitations in shoulder
mobility despite treatment efforts (Rizk & Pinals, 1982; Dias et al., 2005).

Furthermore, the research has identified additional risk factors associated with
the development of adhesive capsulitis, particularly in high-risk populations such as
neurosurgical patients. Bruckner and Nye (1981) conducted a prospective study
focusing on neurosurgical patients, revealing several significant risk factors, including
impairment of consciousness, hemiparesis, duration of post-operative intravenous
infusion, age, and depressive personality. Routine treatment with corticosteroids post-
operatively did not prevent capsulitis (Bruckner & Nye, 1981).

In conclusion, frozen shoulder poses a multifaceted clinical challenge,
underscoring the importance of a thoroush comprehension of its epidemiology,
pathophysiology, diagnostic criteria, and treatment modalities. As advancements in
technology and rehabilitation continue to evolve, there is a growing need for
innovative approaches to optimize therapeutic outcomes for individuals with frozen
shoulder. The development of a landmark-based motion detection system, as
proposed in this thesis, holds promise for enhancing precision in physical therapy
interventions. By leveraging technological advancements to refine rehabilitation
strategies, we can strive towards improving patient outcomes and quality of life in

individuals affected by this debilitating condition.

2.2  Landmark-based motion detection and pose estimation
Landmark-based motion detection techniques, encompassing various
technologies to track and analyze movement by identifying specific anatomical
landmarks on the body, have emerged as crucial tools in rehabilitation practices.
Traditionally, these methods relied on markers placed on the body, but recent

advancements in computer vision have introduced markerless techniques (Desmarais



et al,, 2021), such as Google's Mediapipe Blazepose (Bazarevsky et al., 2020), which
employ machine learning algorithms to detect landmarks directly from video data.

In their research, Tharatipyakul and Pongnumkul (2023) conducted a
systematic review focusing on deep learning-based pose estimation as a means of
providing feedback for physical movement. Their study encompassed an extensive
examination of 20 articles, specifically addressing pose estimation, movement
assessment, and augmented feedback utilizing deep learning techniques. The authors
meticulously categorized and analyzed the methodologies and outcomes presented
in the selected articles, employing a comprehensive approach to evaluate pose
estimation methods, movement assessment techniques, and classifications of
augmented feedback derived from existing literature in motor learning. Their
investigation revealed a predominant reliance on deep learning methodologies,
notably Convolutional Neural Networks (CNN), for pose estimation tasks. They
identified diverse approaches for movement assessment, ranging from mathematical
formulas and rule-based methods to machine learning algorithms. Augmented
feedback mechanisms predominantly manifested in visual and verbal forms,
encompassing various modalities such as numbers, words, phrases, videos, images,
and animations. Through their rigorous review process, the authors shed light on the
current state of research in this domain, pinpointing both strengths and limitations
within the existing literature. Their comprehensive analysis offered valuable insights
into the application of deep learning techniques for pose estimation and augmented
feedback in physical movement contexts, while also identifying avenues for future
research and development.

Pauzi et al. (2021) developed a system for estimating human movement using
Mediapipe Blazepose. The system tracks body movements from video sources and
superimposes labelled skeleton joints onto the individual's body. This technology has
wide-ranging applications, particularly in physically demanding work environments and
the sports industry, where precise movement tracking is essential. The authors
employed deep learning techniques, specifically utilizing the Mediapipe Blazepose
algorithm and the PoseNet dataset, tailored for detecting and estimating movements
prone to causing bodily injury during heavy workloads. To evaluate the system's

accuracy, the authors compared it with IMU-based motion capture, revealing
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differences in accuracy within a 10% range. Despite this discrepancy, the proposed
system aims to accurately identify and label skeleton joints on individuals' bodies.
Additionally, it is designed to calculate movement velocity and joint angles, crucial
factors in assessing the risk of both short- and long-term injuries. Through their
research, Pauzi et al. contribute to the advancement of movement estimation
technology, providing a foundation for enhanced injury prevention and movement
analysis in various fields.

Singh, Kumbhare, and Arthi (2021) explored real-time human pose detection
and recognition using MediaPipe technology. They introduced a framework capable
of detecting human actions in real-time, even under diverse conditions and viewing
angles. This framework utilized MediaPipe Holistic, which integrated pose, face, and
hand landmark detection models. By parsing real-time video feed frames, they
extracted 501 landmarks, exporting them as coordinates to a CSV file. These
coordinates were then used to train a custom multi-class classification model,
employing machine learning algorithms such as random forest, linear regression, ridge
classifier, and gradient boosting classifier. The aim was to understand the relationship
between body language poses and corresponding classes. Through this research, Singh
et al. aimed to advance human action recognition technology for more accurate and
efficient real-time detection and recognition of human poses.

The landmark detection for human pose estimation was conducted by
Srikaewsiew et al (2022). The study utilized the MediaPipe framework with the
BlazePose GHUM Heavy model to extract skeletal and joint data from each frame of
the dance videos. Specifically, the upper portion of the body, including anatomical
points such as the shoulders, elbows, and wrists, was the focus of landmark detection.
By mapping these points and representing their significance as the names of body
parts, the researchers were able to calculate the similarity between the vectors of
each body part using the evaluation techniques of Cosine similarity, Euclidean
distance, and Angular difference. This approach enabled the team to effectively
analyze the similarity of posture in each frame between the instructor and the trainee,
ultimately leading to the determination of the most effective method for evaluating

human motion in the context of instructor-led dances.
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However, applying landmark-based motion detection to frozen shoulder
rehabilitation poses significant challenges. The complexity of the shoulder joint's
motion and the variability of movement patterns across individuals with frozen
shoulder present considerable hurdles. The intricate nature of shoulder biomechanics
complicates the accurate detection and tracking of landmarks, particularly during
dynamic movements.

Moreover, factors such as clothing, body composition, and patient positioning
can further hinder landmark detection, leading to potential inaccuracies in motion
analysis. Despite these challenges, Mediapipe offers a promising solution. Leveraging
convolutional neural networks (CNNs) and pose estimation algorithms, Mediapipe
enables real-time detection and tracking of key landmarks on the human body in
video streams. This capability facilitates objective and quantifiable assessments of
shoulder mobility, allowing clinicians to monitor progress and tailor treatment plans
accordingly. By providing immediate feedback during exercise sessions, Mediapipe
promotes adherence to prescribed rehabilitation protocols and enhances patient
engagement in the recovery process.

Furthermore, its versatility extends to tele-rehabilitation (Gava et al., 2022) and
remote monitoring (Erickson et al., 2023), enabling patients to participate in supervised
rehabilitation sessions from home. This accessibility facilitates continuous monitoring
of progress and adjustment of treatment plans as needed, ultimately improving
patient outcomes and quality of care. Despite ongoing challenges, ongoing research
and innovation in this field hold promise for optimizing the clinical utility of landmark-
based motion detection in frozen shoulder rehabilitation, leading to improved

outcomes and enhanced patient care.

2.3 Face expression recognition

Research in the field of facial expression recognition has been ongoing for
several years, with notable contributions from various disciplines such as computer
science and computer engineering. A recent study by Di Luzio et al. (2023) introduced
a randomized deep neural network for emotion recognition, incorporating landmark
detection. Utilizing the Extended Cohn-Kanade dataset (CK+) and Mediapipe

technology, the authors extracted 468 face landmarks and employed a combination
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of randomized convolutional and Long Short-Term Memory (LSTM) layers to achieve
over 90% accuracy in recognizing five emotions. Similarly, Hangaragi et al. (2023)
proposed a face detection and recognition system using a face mesh and deep neural
network, demonstrating superior accuracy compared to existing methods. Hamester
et al. (2015) presented a 2-channel convolutional neural network for facial expression
recognition, surpassing previous approaches in terms of accuracy on the JAFFE dataset.

Assari and Rahmati (2011) focused on non-intrusive driver drowsiness detection
using facial expression recognition, achieving remarkable accuracy rates. Additionally,
Munasinghe (2018) developed a method for facial expression recognition using facial
landmarks and a random forest classifier, demonstrating promising results on the
Extended Cohn-Kanade (CK+) database. Overall, these studies underscore the
potential of deep learning techniques and landmark detection in advancing facial
expression recognition technology for various applications, from affective computing

to human-machine interaction



CHAPTER IlI
METHODOLOGY

3.1 Overview of the development of the landmark-based motion

detection for enhanced physical therapy precision system

Gathering and Analyzing Theoretical Academic Literature

Postural physical therapy for
Frozen Shoulder
Rehabilitation

Landmark-Based Motion
Detection

Pose Similarity Comparison
Algorithm

Facial Recognition
Technology

Experimental Research for Optimal System Development Methodology

Conducting Research to Identify Optimal Methods for

Assessing Movement Similarity Between Teachers and Conducting Research to Identify Optimal Methods for Facial

Emotion Recognition

Students
Prototype System Development
Landmark Detection and Similarity Scoring Angular Measurement of Facial Recognition
Analysis Mechanism Specific Body Parts Technology
System Validation through Volunteer Testing
. - - Testing Movement -
Evaluation of Posture Evaluation of Video h P Collection of :
Angle Measurement Similarity Comparison Fac1albaer:(:cl:,ir;1:tlonal Volunteer Feedback g;;?epr:f}ll"?slf:r:,ge
Accuracy Accuracy Functionality for System Refinement

Figure 3.1 Segmented process chart of development of the Landmark-Based-

Motion Detection for Enhanced Physical Therapy Precision System.
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From the Figure 3.1, The methodology encompassed the gathering and
analysis of theoretical academic literature on various topics, including Landmark-Based
Motion Detection, Pose Similarity Comparison Algorithm, Postural physical therapy for
Frozen Shoulder Rehabilitation, and Facial Recognition Technology. This phase
involved scrutinizing past studies and scholarly works to establish a foundation for
further research.

Following this, an experimental research approach was adopted to develop
an optimal system. This involved conducting research to identify the best methods
for assessing movement similarity between teachers and students (Srikaewsiew et al.,
2022), as well as optimal techniques for facial emotion recognition (Srikaewsiew &
Kanjanawattana, 2024). The aim was to refine existing methodologies and techniques
based on empirical findings.

Subsequently, the prototype system was developed, incorporating
components such as landmark detection and analysis, a similarity scoring mechanism,
angular measurement of specific body parts, and facial recognition technology. This
phase involved the implementation of theoretical concepts into practical solutions.

The system underwent validation through volunteer testing, wherein the
accuracy of posture angle measurement, video similarity comparison, and detection
functionalities (movement, facial, and emotional) were evaluated. Volunteer feedback
was collected to refine the system further, and comprehensive testing was conducted
to ensure its effectiveness.

Throughout the process, adherence to academic standards and rigorous
methodology was paramount, ensuring the reliability and validity of the research

outcomes.

3.2 Landmark-based motion detection and posture similarity score

computation

In the Landmark-Based Motion Detection and Posture Similarity Score
Computation methodology employed, the process commenced with data collection
and pose estimation, wherein researchers gathered data by displaying a tutorial video
while recording the user's motion through a smartphone. Human pose estimation was

conducted on the recorded data utilizing MediaPipe, a machine learning framework
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designed for media applications. This estimation facilitated the extraction of x and y
coordinates of the trainee based on pose landmarks, Mediapipe provides landmarks

as illustrated in Figure 3.2, facilitating subsequent analysis.

Figure 3.2 Mediapipe pose landmarks index (Bazarevsky et al., 2020).

Subsequently, attention was directed towards landmark detection, wherein
researchers focused on identifying and comparing variations in landmark joints of the
human body. Specific points situated in the upper body were targeted for analysis,
encompassing joints such as the left shoulder, right shoulder, left elbow, right elbow,
left wrist, and right wrist. These chosen landmark joints served as representative
markers for significant body parts pertinent to motion analysis.

The methodology advanced to calculating posture similarity scores, aiming to
discern the resemblance in motion between instructors and trainees based on their
body joints in each frame. Utilizing the most effective technique identified through
preliminary research (Srikaewsiew et al,, 2022), which involved cosine similarity
techniques, computed the posture similarity score, a numerical representation of the
likeness in posture between individuals. This process involved calculating the posture
similarity score for every frame based on the designated landmark joints, facilitating a

comprehensive assessment of motion congruence.
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Through these meticulously executed steps, successfully detected landmark
joints, and computed posture similarity scores, thereby advancing the understanding

and application of motion analysis techniques within academic research.

3.3  Measuring the angle of motion in a specific body region

The methodology employed in the study involved the utilization of joint angle
rotations as a fundamental technique. This process entailed measuring the angles
formed between adjacent body segments or joints, providing crucial insights into the
orientation and movement of specific body parts. The shoulder was selected for
analysis. Their initial positions in a reference frame were determined, and the
movement of these joints over consecutive frames was tracked to capture motion
sequences. Angles between adjacent joints at each time step were then calculated
to represent joint angle rotations, utilizing arctangent functions, as illustrated in Figure

3.3, the formula demonstrates how the vector is calculated.

Angle Between Two Vectors 2D Formula

Formula

0.= atan2 (wov; — w1v2, WiV + Wa3)

Figure 3.3 Determining the Angle Between Two 2D Vectors (Bruns, 2017).
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3.4  Facial recognition

This methodology outlines a comprehensive approach to facial expression
recognition utilizing a combination of Convolutional Neural Networks (CNNs) and a
landmark-based technique. The landmark-based method involves the transformation
of image data into coordinate representations of landmark facial points, employing
the MediaPipe library for facial landmark detection. Specifically, 468 facial coordinates
are extracted along both the x and y axes from facial images, as depicted in Figure
3.4. This approach leverages the capability of CNNs, a deep learning architecture
renowned for its proficiency in learning intricate patterns and spatial dependencies
from extensive datasets, to analyze and interpret facial data effectively.

Data preprocessing involved several steps. Facial landmark extraction utilized
tools like the MediaPipe library to identify and extract key facial points such as the
outer edges of the mouth, nose, and eyes. Subsequently, data normalization was
performed to scale facial coordinate values appropriately, reducing variations in the
data and facilitating effective pattern learning by the CNN model. Feature engineering
enhanced the model's ability to recognize and classify emotions accurately by
transforming raw facial coordinate data into more meaningful features capturing

spatial relationships between facial landmarks.

Figure 3.4 Mediapipe Face Landmark (Google Developers, 2020).
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Data augmentation techniques, such as rotation, flipping, or adding noise to
the facial landmark data, were applied to increase the diversity and size of the training
dataset, improving the generalization and robustness of the CNN model. The
preprocessed facial landmark data was then split into training and testing sets, with
the former used to train the CNN model on the facial expression recognition task and
the latter to evaluate the model's performance on unseen data. Input preparation
involved formatting and structuring the preprocessed facial landmark data for effective
learning and feature extraction by the CNN architecture to make accurate predictions
about the emotions expressed in images.

The combined CNN with landmark-based method was trained on large-scale
datasets like The Delaware Pain Database (Mende-Siedlecki et al., 2020) and UTKFace,
enabling it to capture both global and local facial data, thus enhancing its ability to
recognize and identify various emations. Performance evaluation revealed high
accuracy, precision, recall, and F1 score values, demonstrating the effectiveness of
the integrated approach in accurately identifying emotions from facial expressions

(Srikaewsiew & Kanjanawattana, 2024).

3.5  System validation through volunteer testing

7 Male Volunteers
JConduct a similarity evaluation of| Conduct a shoulder angle Collect Data I AnalyzeData l—.l Results m
video-based physical exercises —>{ evaluation using the developed
using the developed tool tool and expert assessment
Start l l
with 14 Volunteers '
(7 male, 7 female) Shoulder Angle
Shoulder flexion

3 times Measurements conducted in
three ways: 1. According to

general principles. 2. According Similarity Score
to medical principles, measured
by an expert. 3. Using the

Rest 1 minutes developed program.”

7 Female Volunteers ]

T Face Expression

Abduction
3 times

Rest 1 minutes

i

Shoulder external rotation

i

Rest 1 minutes

|

Shoulder intemal rotation

l

Rest 10 minutes P

Figure 3.5 Participates testing diagram.
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From Figure 3.5, the methodology adopted for participant involvement in the
experiment commenced with the recruitment of fourteen healthy volunteers aged
between 20 and 50 years, ensuring an equal gender distribution with seven males and
seven females. Prior to participation, all individuals provided informed consent by
signing a consent form, acknowledging their voluntary involvement in the
experimental procedures. This study was conducted in accordance with the guidelines
set forth by the Human Research Ethics Committee (EC-66-27). Following consent,
participants received detailed explanations regarding the experiment, including
associated risks and terms, delivered by the researchers. Adequate compensation was

provided to participants as warranted.

Subsequently, the experiments commenced with the utilization of the
developed system, during which participants' physical activity videos were recorded
for system integration. Participants were divided into gender-specific groups and
guided through a series of physical therapy poses, including shoulder flexion (Figure
3.6), abduction (Figure 3.7), shoulder external rotation (Figure 3.8), and shoulder
internal rotation (Figure 3.9), under the supervision of researchers and medical
professionals. Each pose was performed three times, with data collection facilitated
by measuring the designated points using the system and expert physical therapists.
One-minute breaks were implemented between each pose to ensure participant
comfort and well-being. Upon completion of all poses, participants provided feedback

on their experiences, including usability and suggestions for improvements.

The shoulder angle evaluation phase of the experiment employed a
comprehensive approach to assess the accuracy and reliability of the developed
system. This phase incorporated three distinct measurement methodologies:

1. General principles-based assessment: Shoulder angles were measured using
standard angle measurement methods. This approach provided a baseline
measurement following common practice. However, it is important to note that these
principles do not conform to traditional medical measuring methods or rules.

2. Expert medical evaluation: A qualified medical professional, specifically an
experienced physical therapist or orthopedic specialist, conducted measurements

based on clinical expertise and medical principles. This method offered a gold
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standard for comparison, leveraging years of clinical experience and specialized
knowledge.

3. Assessment with Developed Program: The custom-designed program,
central to this study, was utilized to measure shoulder angles. This novel approach
aimed to validate the efficacy and accuracy of the developed system against
established methods.

The triangulation of these measurement techniques allowed for a robust
comparison between traditional methods and the innovative approach proposed in
this study. Participants underwent evaluation using all three methods for each
shoulder movement: flexion, abduction, external rotation, and internal rotation. This
multi-faceted approach facilitated a comprehensive analysis of the developed
system's performance in relation to established clinical and biomechanical standards

Data collected from these three measurement methods were systematically
recorded for subsequent statistical analysis. The comparative evaluation aimed to
assess the concordance between the developed program and expert measurements,
as well as to identify any significant deviations from established norms. This rigorous
methodology ensures a thorough validation process for the newly developed
shoulder angle evaluation tool, potentially contributing to advancements in
biomechanical assessment techniques within physical therapy and sports medicine
domains.

Upon conclusion, participants were allowed to depart at their convenience.
Subsequently, video clips were imported into the system for comparative analysis,
where measures such as the similarity between practitioners and instructors and facial
expressions during physical therapy were assessed. The angles obtained were
compared against traditional measurements recorded by medical professionals.
Experimental results were meticulously documented, concluding the experimental

phase.



Figure 3.6 Shoulder flexion.

Figure 3.7 Abduction.
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Figure 3.9 Shoulder internal rotation.
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Figure 3.10 System Application Diagram.

Figure 3.10 shows an application for evaluating exercise performance through

video analysis. Users follow an expert's video, record their performance, and the

system processes the video by rotating it and extracting key posture images and facial

features. These images are converted into landmarks to measure shoulder angles and

detect expressions of pain. The system uses cosine similarity to compare the user's

poses with the experts, providing detailed results on shoulder angle accuracy, pose

similarity, and facial expressions. The results include feedback and recommendations,

such as additional practice for low scores or consulting a healthcare professional if

discomfort is detected. This feedback is documented for future clinical reference,

enhancing the user's exercise performance and well-being.




CHAPTER IV
RESULTS AND DISCUSSIONS

4.1  Experimental setting

The experiment was conducted on June 14, 2024, at the SIRINDHORN
WITSAWAPHAT building, 4th floor, involving 14 healthy volunteers aged between 20
and 50 years, with an equal gender distribution of seven males and seven females.
The setting utilized equipment such as an iPhone 12 Pro Max, MacBook Air 2019, a
goniometer, a projector display, and a projector. Some environmental conditions were
controlled in the experiment: the same room was used for all participants, white lights
were turned on when daylight was insufficient and turned off when daylight was bright,
and the distance between the cameraman and the dancer was controlled at 1.62
meters. The experiment focused on exploring methods for at-home physical therapy
for frozen shoulder patients.

4.2 The experimental procedure

The experiment involving volunteers was conducted in three stages. Initially,
participants followed a video demonstrating exercises that included shoulder flexion,
abduction, shoulder external rotation, and shoulder internal rotation. These exercises
were supervised by researchers and medical professionals, with each participant
completing three repetitions of each exercise followed by a one-minute rest period.
The process continued until all volunteers had completed the exercises. Throughout
these exercises, researchers utilized a Smartphone to record videos, which were
subsequently analyzed using a developed program.

In the second stage, researchers employed a goniometer (Figure 4.1) for
assessing shoulder angles through expert medical evaluation and general principles-
based assessment, alongside evaluation facilitated by a developed program. Each
exercise underwent evaluation at three distinct stages: initial posture, midpoint

posture, and peak posture. The postures and stages of the poses are depicted in

Figures 4.2 to 4.5.
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During the final stage, researchers administered a survey to volunteers via a
Google Form. The survey included questions asking participants to rate their
discomfort level on a scale from 0 to 5, where 0 indicated no discomfort (normal) and
5 indicated severe discomfort (very painful).

Upon completion of the volunteer participation, the experiment concluded,
and researchers proceeded to collate all gathered data for subsequent analysis to

derive conclusions for their thesis.

Figure 4.1 Goniometer and How to use a Goniometer to measure Range of

Motion (The Goniometer, 2012).



a) b) )

Figure 4.2 The postures and stages of the shoulder flexion: (a) initial posture,

(b) midpoint posture, and (c) peak posture.
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a) b) @)
Figure 4.3 The postures and stages of the abduction: (a) initial posture,

(b) midpoint posture, and (c) peak posture.



a) b) @)
Figure 4.4 The postures and stages of the shoulder external rotation:

(a) initial posture, (b) midpoint posture, and (c) peak posture.

a) b) @)
Figure 4.5 The postures and stages of the shoulder internal rotation:

(a) initial posture, (b) midpoint posture, and (c) peak posture.
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4.3 The results and discussion of participants following a

demonstrated exercise video

The experiment involves the evaluation of 14 volunteer videos using frame-
by-frame analysis, as depicted in Figure 4.6. Initially, an Excel file was created by the
researchers where the first column contained images of the teacher's exercise,
comprising approximately 20 frames each. The subsequent columns contained frames

extracted from volunteer videos, also approximately 20 frames per video.

Subsequently, expert evaluators assessed the similarity between the frames
by assigning scores, referred to as expert scores. The results of this similarity
assessment were categorized into a rubric: scores of 0 to 49 indicated non-similarity,

while scores of 50 to 100 indicated similarity.

Following expert evaluation, the evaluators returned the results to the
researchers, who then incorporated these alongside cosine similarity scores. This
additional data was presented in two columns: the first column contained cosine
similarity scores, and the second column contained cosine similarity evaluations. The
cosine similarity evaluations were derived from the cosine similarity scores using a

cutoff threshold of 97.5.

Upon completion of the frame-by-frame evaluation by the experts and
researchers, each video yielded a final evaluation result. These results were
subsequently employed for comparison using a confusion matrix in the subsequent

section of the study.



Student Image Image name CosineSimilari

frame 000000.jpg 99.72630386 Similar 80 Similar

frame 000001.jpg 98.53043927 Similar 60 Similar

Figure 4.6 Illustrates an example of a complete Excel file used for evaluation.

4.3.1 Shoulder flexion Result

Expert Result Cosine Similarity Result
Similar Not Similar
Similar Similar
Similar Not Similar
Not Similar Not Similar
Similar Not Similar
Similar Similar
Shoulder flexion Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar

Table 4.1 Comparison between Expert Result and Cosine Similarity of
Shoulder Flexion Result

Predicted Similar|Predicted Not Similar
Similar 10 3
Not Similar 0 1

Table 4.2 Confusion Matrix between Expert Result and Cosine Similarity of

Shoulder Flexion Result
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The analysis of shoulder flexion data aimed to compare the similarity
results obtained from expert evaluations with those derived from a cosine similarity
algorithm. The data show as Table 4.1. It included 14 instances, with experts labeling
13 as "Similar" and 1 as "Not Similar," while the cosine similarity algorithm labeled 10
as "Similar" and 4 as "Not Similar." The performance metrics were calculated using a
confusion matrix (Table 4.2), revealing a precision of 1.0, recall of approximately 0.769,
accuracy of about 0.786, and an Fl-score of 0.870. These results indicate that the
cosine similarity algorithm is highly precise, correctly identifying similarities 100% of
the time when it makes such predictions. However, its recall value suggests it misses
some instances identified as similar by experts. The overall accuracy demonstrates a
good agreement between the algorithm and expert judgments, while the Fl-score
reflects a balanced consideration of precision and recall. Although the cosine similarity
algorithm shows promise with excellent precision and good accuracy, its lower recall
suggests the need for further adjustments to enhance its sensitivity to expert-identified
similarities.

4.3.2 Abduction Result

Expert Result Cosine Similarity Result
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Not Similar
Similar Similar
Abduction Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar

Table 4.3 Comparison between Expert Result and Cosine Similarity of
Abduction Result

Predicted Similar|Predicted Not Similar
Similar 13 1
Not Similar 0 0

Table 4.4 Confusion Matrix between Expert Result and Cosine Similarity of

Abduction Result
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The analysis of abduction data aimed to compare similarity results
obtained from expert evaluations with those derived from a cosine similarity
algorithm. In this data (Table 4.3), experts labeled all 14 instances as "Similar," while
the cosine similarity algorithm labeled 13 instances as "Similar" and 1 instance as "Not
Similar." The performance metrics were calculated using a confusion matrix (Table
4.4), which revealed a precision of 1.0, recall (sensitivity) of approximately 0.929,
accuracy of about 0.929, and an F1-score of approximately 0.963.

These results indicate that the cosine similarity algorithm is highly
precise, correctly identifying similarities 100 percentage when it makes such
predictions. The recall value shows that the algorithm missed only one instance
identified as similar by experts, indicating a high level of sensitivity. The overall
accuracy demonstrates strong agreement between the algorithm and expert
judgments, while the Fl-score reflects a balanced consideration of precision and
recall.

4.3.3 Shoulder external rotation

Expert Result Cosine Similarity Result
Similar Similar
Similar Not Similar
Similar Not Similar
Similar Similar
Similar Similar
Similar Not Similar
Shoulder external rotation |Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar

Table 4.5 Comparison between Expert Result and Cosine Similarity of
Shoulder external rotation Result

Predicted Similar|Predicted Not Similar
Similar 11 3
Not Similar 0 0

Table 4.6 Confusion Matrix between Expert Result and Cosine Similarity of

Shoulder external rotation Result
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The analysis of shoulder external rotation data compared expert
evaluations with results from a cosine similarity algorithm (Table 4.5). Experts labeled
all 14 instances as "Similar," while the algorithm labeled 11 as "Similar" and 3 as "Not
Similar." The performance metrics (Table 4.6) show a precision of 1.0, a recall of 0.786,
an accuracy of 0.786, and an Fl1-score of 0.88. These results indicate that the cosine
similarity algorithm is highly precise but has room for improvement in recall. While
the algorithm reliably identifies similarities, it missed a few instances recognized by
experts.

4.3.4 Shoulder internal rotation

Expert Result Cosine Similarity Result
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Shoulder Internal rotation |Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar
Similar Similar

Table 4.7 Comparison between Expert Result and Cosine Similarity of

Shoulder internal rotation Result

Predicted Similar|Predicted Not Similar
Similar 14 0
Not Similar 0 0

Table 4.8 Confusion Matrix between Expert Result and Cosine Similarity of

Shoulder internal rotation Result

The analysis of shoulder internal rotation data (Table 4.7) compared
expert evaluations with results from a cosine similarity algorithm. In this dataset, both
experts and the cosine similarity algorithm labeled all 14 instances as "Similar." The
cofussion metrics (Table 4.8) derived from this perfect agreement are as follows: a
precision of 1.0, a recall (sensitivity) of 1.0, an accuracy of 1.0, and an F1-score of 1.0.
These results indicate that the cosine similarity algorithm perfectly matches the expert

evaluations, identifying all instances accurately without any errors.



4.3.5 Example of an individual experiment with interesting results

Shoulder flexion (M005)

Expert Result Cosine Similarity Result
Similar Similar
Similar Similar
Not Similar Not Similar
Similar Similar
Similar Similar
Similar Not Similar
Not Similar Not Similar
Similar Similar
Not Similar Not Similar
Similar Similar
Similar Similar

Not Similar
Not Similar
Not Similar

Similar
Similar
Not Similar
Not Similar
Similar

Not Similar
Not Similar
Not Similar

Not Similar
Similar
Not Similar
Not Similar
Similar

Table 4.9 Comparison between Expert Result and Cosine Similarity of

MO05¢s Shoulder flexion

Predicted Similar

Predicted Not Similar

Similar

9

2

Not Similar

0

8

Table 4.10 Confusion Matrix between Expert Result and Cosine Similarity of

MO05°s Shoulder flexion
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The results presented in Table 4.9 indicate two discrepancies between

the predictions made by the system and those made by the experts. The researcher

observed that the participant did not adjust their posture promptly, leading to a slight

delay between posture changes. This delay caused the system to judge the posture

as incorrect, despite the posture beginning to resemble the subsequent correct pose.

In contrast, experts awarded partial points if certain aspects of the posture were

similar, resulting in discrepancies in some frames. Analyzing these discrepancies using

the confusion matrix (Table 4.10) reveals slight inconsistencies in the judgment of

shoulder flexion for participant M0O05.



Abduction (M005)

Expert Result Cosine Similarity Result
Similar Similar
Not Similar Not Similar
Similar Not Similar
Similar Similar
Similar Similar
Not Similar Not Similar
Similar Similar
Not Similar Not Similar
Similar Similar
Similar Similar

Not Similar
Not Similar
Not Similar
Similar
Similar
Not Similar
Not Similar
Similar

Not Similar
Not Similar
Not Similar
Similar
Similar
Not Similar
Not Similar
Similar

Table 4.11 Comparison between Expert Result and Cosine Similarity of

MOO05°s Abduction

Predicted Similar

Predicted Not Similar

Similar

9

1

Not Similar

0

8

Table 4.12 Confusion Matrix between Expert Result and Cosine Similarity of

MO05°s Abduction
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Table 4.11 shows that M005's poses were generally well executed, with

only one error observed in a single frame. The researcher noted that the participant

was unable to lift their arms to the appropriate height. Except for the arm-lifting

aspect, the participant's postures matched those of the experts in every other respect.

This discrepancy led the system to judge the pose differently for that particular frame,

whereas the experts awarded a low similarity score despite recognizing the similarity.

The conflicting results are illustrated in Table 4.12, which compares the expert

judgments with the system's assessments using a confusion matrix.



Shoulder external rotation (M003)

Expert Result

Cosine Similarity Result

Similar
Similar
Similar
Not Similar
Similar
Similar
Not Similar
Similar
Not Similar
Similar
Similar
Similar
Not Similar
Similar
Similar
Not Similar
Not Similar

Similar
Similar
Similar
Not Similar
Similar
Similar
Not Similar
Similar
Not Similar
Not Similar
Not Similar
Similar
Not Similar
Similar
Not Similar
Not Similar
Not Similar

Table 4.13 Comparison between Expert Result and Cosine Similarity of

MO003‘s Shoulder external rotation

Predicted Similar

Predicted Not Similar

Similar

8

3

Not Similar

0

6

Table 4.14 Confusion Matrix between Expert Result and Cosine Similarity of

MO003‘s Shoulder external rotation
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Table 4.13 shows that the results of M003's poses across various frames

were largely incorrect. The researcher observed that this participant frequently

performed the poses incorrectly and more slowly than the instructor. Notably, this

movement occurred in a system blind spot, which may have contributed to the

system's incorrect predictions, making errors more likely compared to the first two

movements. However, experts also determined that this participant made numerous

mistakes, aligning with the system's overall judgment. Despite this, the system's

judgments did not fully match those of the experts. The results are detailed in Table

4.14, which compares the expert judgments with the system's assessments using a

confusion matrix.



Shoulder Internal rotation (M006)

Expert Result

Cosine Similarity Result

Similar
Similar
Similar
Similar
Similar
Similar
Similar
Similar
Similar
Similar
Similar
Similar
Similar
Not Similar
Similar
Not Similar
Similar

Similar
Similar
Similar
Similar
Similar
Not Similar
Similar
Similar
Similar
Similar
Similar
Similar
Similar
Not Similar
Similar
Not Similar
Similar

Table 4.15 Comparison between Expert Result and Cosine Similarity of

MO06°s Shoulder internal rotation

Predicted Similar

Predicted Not Similar

Similar

14

1

Not Similar

0

2

Table 4.16 Confusion Matrix between Expert Result and Cosine Similarity of

MOO06°‘s Shoulder internal rotation
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Table 4.15 shows that the judgment results for this specific pose differ

from the overall video judgment results, where the system and experts had 100%

agreement. The researcher believes that one reason for the high accuracy in this pose

is its similarity to a previous pose, which provided the volunteers with a better

understanding. Additionally, this pose is easy to follow because it goes against the

principles of body movement, resulting in slower and more controlled motions,

making it easier for participants to mimic. In Table 4.16, which presents the confusion

matrix comparing the judgments of experts and the system, there is only one

discrepancy in the decision.
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4.3.6 Discussion

The study aimed to develop and evaluate a prototype system for
frozen shoulder patients, leveraging motion detection techniques based on landmark
analysis to compare user-generated videos with original recordings by physical therapy
experts. The analysis of different shoulder postures—flexion, abduction, external
rotation, and internal rotation—provided valuable insights into the system’s
effectiveness and areas for improvement. For shoulder flexion, the cosine similarity
algorithm labeled 10 out of 14 instances as “Similar” and 4 as “Not Similar,”
compared to the expert evaluations which labeled 13 as “Similar” and 1 as “Not
Similar.” The performance metrics, including a precision of 1.0, recall of 0.769,
accuracy of 0.786, and an Fl-score of 0.870, demonstrate high precision but lower
recall, indicating that while the algorithm is excellent at correctly identifying
similarities, it misses some instances identified by the expert. In shoulder abduction,
the algorithm labeled 13 out of 14 instances as “Similar” and 1 as “Not Similar,” while
experts labeled all instances as “Similar.” The resulting metrics—precision of 1.0,
recall of 0.929, accuracy of 0.929, and an Fl1-score of 0.963—show strong algorithm
reliability, though it missed one instance. For shoulder external rotation, the algorithm
labeled 11 instances as “Similar” and 3 as “Not Similar,” compared to all “Similar”
labels by experts. The metrics, with a precision of 1.0, recall of 0.786, accuracy of
0.786, and an Fl-score of 0.88, indicate high precision but the need for better
sensitivity to match expert-identified similarities. In shoulder internal rotation, both
the algorithm and experts labeled all 14 instances as “Similar,” achieving perfect
metrics—precision, recall, accuracy, and Fl-score of 1.0—demonstrating exceptional

algorithm performance in this posture.

This analysis maps directly to the study’s objectives. The prototype
system effectively utilized motion detection techniques, comparing user-generated
videos with expert recordings, fulfilling objective 1.4.1. The evaluation of the system's
effectiveness in practical applications, specifically in motion detection and angle
measurement, showed high precision and accuracy, though with varying degrees of

success across different postures, addressing objective 1.4.2. The study also explored
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the integration of computer technology into physical therapy practices, using motion
capture and similarity comparisons, validating the feasibility of these technologies in
aiding physical therapy, thus achieving objective 1.4.3. Lastly, the findings indicate that
the prototype system can facilitate effective at-home physical therapy for frozen
shoulder patients, enabling reliable feedback on posture correctness, aligning with
objective 1.4.4. However, it is vital to note that expert evaluations can be subjective
and may introduce biases, especially when relying on a single expert. Future research
should involve multiple experts to reduce bias and increase the robustness of
comparison analysis. This would ensure a more accurate and reliable system for at-

home therapy for frozen shoulder patients.

4.4 Evaluation of face detection model results and discussion

This experiment investigates a group of 14 healthy volunteers aged between
20 and 50 years, comprising an equal distribution of seven males and seven females.
The study involves capturing video footage of participants prior to the experimental
intervention, specifically while they follow a demonstrated exercise video. Using face
detection techniques, the research team extracts facial images from the video. These
images are then processed to identify facial landmarks using the Mediapipe framework.
The landmark data is subsequently fed into a developed classification model to
determine whether the participants exhibit a "hurt" or "normal" facial expression. The
model used for face classification is derived from the work of Srikaewsiew and
Kanjanawattana (2024), which has demonstrated outstanding accuracy with a score of
0.95. Consequently, the results obtained are highly accurate. Additionally, the
classification results from the face detection model are consistent with the feedback
collected from the participants via a Google Form, further validating the model's

accuracy and reliability in this context.

Predicted Normal [Predicted Hurt
Normal 1120 0
Hurt 0 0

Table 4.17 Confusion Matrix between Feedback Result (Actual) and

Developed Model Result (Predict)
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4.4.1 Results explanation

From Table 4.17, the confusion matrix reveals that the classification
model has achieved perfect performance on the Normal class but has no performance
metrics for the Hurt class due to the absence of actual Hurt instances in the dataset.
Specifically, the model correctly predicted all 1120 Normal instances, resulting in an
accuracy of 100%. Both the precision and recall for the Normal class are 100%,
indicating flawless classification for this category. However, the metrics for the Hurt
class, including precision, recall, and F1 score, are undefined because the dataset

contains no actual Hurt instances.

4.4.2 Discussion

The fundamental purpose of this experiment was to examine the
integration of computer technology into physical therapy processes, primarily focused
on the development of a prototype system for frozen shoulder patients utilizing
motion detection techniques based on landmark analysis. By capturing and analyzing
videos of participants following a demonstrated exercise video, the study tried to test
the performance of face detection and classification systems. The experiment
effectively showed the possibility of employing these methods in a real environment.
The classification techniques, based on the work of Srikaewsiew and Kanjanawattana
(2024), demonstrated well exact results, matching with participant feedback obtained
via Google Forms. This alignment highlights the potential of computer-assisted
physical therapy to enhance the accuracy and efficacy of home-based rehabilitation
exercises.

The findings of this experiment indicated that the face detection and
classification model could accurately identify "normal" and "hurt" expressions in the
participants, obtaining a perfect classification rate for the normal class. This accuracy
illustrates the model's robustness and the dependability of the landmark extraction
technique utilizing Mediapipe. The full agreement between the model's results and
participant comments further verifies the model's performance. However, the
confusion matrix revealed that there were no actual instances of the "hurt" class in

the dataset, which limits the evaluation of the model's efficacy in distinguishing this
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specific condition. This was due to the fact that the participants reported no hurt
feelings in any posture, as reflected in their feedback on Google Forms. Consequently,
the metrics for the hurt class, including precision, recall, and F1 score, are undefined
because the dataset contains no actual hurt instances. Despite this, the good accuracy
for the typical class indicates the system's potential effectiveness in actual
applications.

One important problem noted during the experiment was the model's
reduced confidence when identifying images of people wearing glasses. This illustrates
that the presence of spectacles might interfere with the landmark detection process,
resulting in lower classification accuracy. This issue highligshts a need for extra
development of the model to handle such changes in facial expression effectively.
Moreover, the absence of hurt incidents in the dataset underlines the requirement for
a more balanced dataset to thoroughly assess the model's effectiveness across diverse
situations. Future study should focus on addressing these difficulties to enhance the
model's generalizability and provide dependable performance across different

participant characteristics.

4.5 Evaluation of shoulder angle results and discussion

This experiment investigates shoulder angles in a cohort of 14 healthy
volunteers aged between 20 and 50 years, with an equal distribution of seven males
and seven females. The study examines four specific shoulder poses: Shoulder
Flexion, Abduction, Shoulder External Rotation, and Shoulder Internal Rotation,
evaluated at three stages—initial posture, midpoint posture, and peak posture.

The shoulder angles were measured across these poses using both general
actual angles and clinical actual angles, evaluated by experts. Additionally, predictive
angles were generated using a concurrently developed program. The aggregated

results from these measurements are presented and compared in Table 4.18.
451 Results explanation

From the Table 4.18, it reveals notable patterns when comparing
general actual angles, clinical actual angles, and predicted angles across both genders.

For shoulder flexion, females exhibit a range from an initial angle of 16.43° (SD 3.92°)
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to a finishing angle of 172.57° (SD 5.94°), while males demonstrate a similar trend from
17.00° (SD 1.83°) to 170.00° (SD 5.23°). Predicted angles consistently underestimate
these positions, with females starting at 9.57° (SD 1.27°) and males at 8.29° (SD 1.38°),
suggesting potential limitations in the predictive model's accuracy for initial joint
positions. Clinical actual angles closely align with general actual angles, indicating

robust consistency across measurement methodologies.

In abduction movements, females display angles ranging from 16.29°
(SD 2.27°) to 174.14° (SD 4.34°), and males from 17.71° (SD 0.95°) to 174.00° (SD 4.28).
Predicted angles once again indicate lower starting positions (9.14° for females, 8.16°
for males) but comparable finishing angles. Notably, shoulder external rotation
exhibits more pronounced variability, with females ranging from 90.14° (SD 2.23°) to
175.00° (SD 3.64°) and males from 92.43° (SD 2.37°) to 174.71° (SD 3.82°). Predicted
angles diverge notably, particularly at the start (84.57° for females, 89.43° for males)

and mid-range, reflecting challenges in accurately predicting these movements.

Internal rotation angles demonstrate a narrower range and higher
variability, with females ranging from 91.14° (SD 2.23°) to 26.86° (SD 9.29°) and males
from 91.14° (SD 2.19°) to 32.57° (SD 16.89°). Predicted angles reveal significant
disparities, especially at the finishing position (10.86° for females, 16.86° for males),

highlighting the complexity of accurately predicting these intricate movements.

4.5.2 General Actual Angle vs. Predicted Angle

In shoulder flexion, both genders consistently exhibit general actual
angles lower than predicted. Notably, females' initial actual angle (16.43°) contrasts
markedly with their predicted angle (9.57°), while males show a higher initial actual
angle (17.00°) compared to their predicted angle (8.29°).

For abduction, a significant disparity exists at the initial posture, with
general actual angles (16.29° for females, 17.71° for males) exceeding predicted angles
(9.14° and 8.16° respectively).

External rotation generally shows lower general actual angles than
predicted, particularly evident at the midpoint (e.g., females: actual 131.71° vs.
predicted 133.00°).
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Internal rotation displays varied results, with instances of both higher
and lower general actual angles compared to predicted angles across different
postures.

453 Clinical Actual Angle vs. Predicted Angle

Clinical actual angles in shoulder flexion tend to closely align with
predicted angles compared to general actual angles. For example, females' clinical
peak angle (171.29°) approaches the predicted angle (173.71°), contrasting with their
general actual angle (172.57°).

In abduction, clinical measurements closely approximate predicted
angles, notably in midpoint and peak postures. For instance, males' clinical peak
abduction (172.86°) closely matches the predicted angle (174.86°).

External rotation clinical angles exhibit smaller variations from
predicted angles compared to general actual angles.

Clinical angles in internal rotation generally align closer to predicted

angles than general actual angles, particularly in midpoint and peak postures.
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455 Discussion

The study successfully developed and evaluated an initial system for
patients with frozen shoulder, using motion detection techniques based on landmark
analysis. This method aimed to enhance the accuracy of motion identification and
angle measurement by comparing user-generated videos with recordings by physical
therapy experts. The integration of computer technologies, such as facial detection
and motion capture using computer vision, enabled precise degree measurements
and facilitated comparisons with expert videos. This methodology represents
significant progress in leveraging technology to improve physical therapy procedures,
particularly for aiding patients with frozen shoulder in performing exercises at home.

The experiment focused on analyzing shoulder angles across various
postures among a group of 14 healthy volunteers. The results revealed considerable
discrepancies among the measured angles in shoulder flexion, abduction, external
rotation, and internal rotation motions, notably between general actual, clinical
actual, and predicted angles. While clinical actual angles closely agreed with
predicted angles, general actual angles typically revealed initial variations that
resolved towards similar peak angles. This gap was notably obvious in external and
internal rotation movements, showing difficulty in specifically measuring these
complex motions using current computer models.

Despite the favorable outcomes, the study revealed several
challenges and recommendations. One notable issue was the impact of clothing
edges on MediaPipe recognition accuracy, leading to erroneous angle estimates.
Participants wearing loose clothing obscured body parts crucial for measurement,
highlighting the importance of form-fitting attire in future studies to avoid detection
errors. Additionally, the study noted the limitations of having only two researchers
oversee measurements, which was insufficient for ensuring consistent accuracy and
rapid troubleshooting. Future research could benefit from deploying additional
personnel to enhance oversight and maintain measurement precision throughout

the evaluation process.



CHAPTER V
CONCLUSIONS

5.1 Conclusion

This study represents a significant advancement in the development and
evaluation of a landmark-based motion detection system tailored for improving frozen
shoulder rehabilitation. Integrating motion analysis, facial expression recognition, and
shoulder angle measurement, our multi-faceted approach underscores the potential
of advanced technologies in physical therapy.

The comparative analysis between user-generated videos and expert
recordings yielded promising outcomes, demonstrating high precision in identifying
similarities across shoulder postures. Particularly, the cosine similarity algorithm
achieved notable accuracy in abduction and internal rotation exercises, aligning
closely with expert evaluations. However, variability in recall rates across different
movements suggests areas for refinement to enhance sensitivity to expert-identified
similarities.

Facial expression recognition, leveraging the MediaPipe framework and a
custom classification model, exhibited impressive accuracy in detecting normal
expressions, which corroborates participant feedback on its potential for real-time
assessment of patient comfort during exercises. Challenges such as the absence of
"hurt" expressions in the dataset and issues with glasses wearers underscore the

necessity for more diverse training data and robust feature extraction methods.

Analysis of shoulder angle measurements revealed nuanced patterns across
general actual, clinical actual, and predicted angles. While the system demonstrated
promise in approximating clinical measurements, particularly in flexion and abduction
movements, discrepancies in external and internal rotation angles underscore the
challenges in accurately modeling these motions. In summary, this research
successfully developed a prototype system integrating motion detection, facial

recognition, and angle measurement technologies to enhance frozen shoulder
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rehabilitation. These findings provide valuable insights into technology-assisted
physical therapy, paving the way for personalized and effective at-home rehabilitation
programs.

5.2  Limitations

Several limitations of the present study must be acknowledged:

5.2.1 Sample Size and Diversity: The study was conducted with a limited
number of participants, potentially limiting the generalizability of the findings.

5.2.2 Environmental Factors: The impact of various environmental
conditions, such as lighting and background, on the system's performance was not
comprehensively explored.

5.2.3 Clothing Interference: Loose clothing was found to interfere with
accurate landmark detection, potentially skewing results.

5.2.4  Limited Personnel: Having only two researchers during the assessment
phase limited the ability to provide comprehensive supervision and immediate
troubleshooting.

525 Single Expert Evaluation: Relying on a single expert for clinical
measurements may have introduced potential bias or limited the robustness of the
comparison.

5.2.6  Focus on Static Postures: While the study examined three stages

of movement, it may not fully capture the dynamics of continuous motion.

5.3  Suggestions for future research

Based on the findings and limitations of this study, the following suggestions

are proposed for future research:

53.1 Expanded Participant Pool: Future studies should include a larger,

more diverse group of participants to enhance the generalizability of findings.

5.3.2 Dynamic Movement Analysis: Develop methods to assess continuous

shoulder movements rather than focusing solely on static postures.

5.3.3 Multi-Expert Validation: Incorporate assessments from multiple clinical

experts to establish a more robust ground truth for comparisons.
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53.4 Environmental Testing: Evaluate the system's performance under

various lighting conditions and backgrounds to assess its reliability in different settings.

535 Clothing Standardization: Develop and test standardized clothing

protocols to minimize interference with landmark detection.

53.6 Enhanced Personnel Training: Increase the number of trained
personnel involved in data collection and assessment to improve accuracy and

troubleshooting capabilities.

53.7 Integration of Additional Metrics: Explore incorporating other relevant
measurements (e.g., range of motion, movement speed) to provide a more

comprehensive analysis of shoulder function.

53.8 Long-term Reliability Testing: Conduct longitudinal studies to assess

the system's consistency and reliability over time.

5.3.9 Application-Specific Refinement: Tailor the system for specific
applications (e.g., post-operative rehabilitation, sports-specific movements) and

evaluate its effectiveness in these contexts.

53.10 Machine Learning Enhancements: Explore the use of advanced
machine learning techniques to improve the system's accuracy, particularly for

challenging initial and transitional movements.
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Abstract

Facial expression recognition plays a crucial role in human-computer interaction. This study aimed to compare
image-based and landmark-based learning methods to gain a deeper understanding of these techniques. Various
algorithms, including Convolutional Neural Networks (CNN), Support Vector Machines (SVM), Random Forest
Classification (RFC), Logistic Regression Classification (LRC), and Gradient Boosting Classifier (GBC), were
leveraged to investigate their performance aspects. Image-based learning, implemented by CNN, specialized in
acquiring global and local facial data, while landmark-based learning focused on key facial points. The results
demonstrated that CNN achieved an outstanding accuracy of 0.95, particularly with the landmark technique. SVM
displayed proficiency with landmarks, while GBC and RFC exhibited robust results. LRC, known for its efficiency
in training, varied in performance. Datasets from The Delaware Pain Database and UTKFace were utilized in this
study to provide insights into the specifics of face emotion recognition. The implications of the findings extended
beyond the study's primary emphasis, suggesting promise for applications such as assisting in physical rehabilitation.
Future initiatives aimed to leverage these findings to enhance safety and facilitate rapid injury diagnosis during
physical therapy sessions. This study not only advanced our understanding of facial emotion identification but also

carried practical implications for the development of emotionally intelligent systems.

Keywords: Facial expression recognition, Face landmark, Machine learning, Image classification, Computer Vision

1. Introduction

Facial expression recognition [1] is a captivating field at the intersection of computer vision [2], artificial intelligence [3],

and psychology [4], attempting to figure out the complex language of human emotions expressed through facial expressions.

Facial expressions have long been recognized as a basic method for subtle communication [5], helping humans to show
their emotions, motives, and perceptions. Knowing how to interpret these expressions come effortlessly to humans however
remain an important obstacle for machines [6]. As our reliance on human-computer interaction intensifies, the requirement for
emotionally intelligent technologies that are capable of recognizing and responding to human emotions grows more and more
obvious. The image-based method depends on the transformative capabilities of deep learning [7], with Convolutional Neural

Networks (CNN) at its vanguard. CNN have changed computer vision tasks by effectively learning patterns and spatial
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dependencies from huge quantities of data. By teaching CNN on large-scale datasets, such as The Delaware Pain Database [8]
and UTKFace, image-based models become efficient at capturing both global and local data from facial images, enabling them
to recognize and identify hidden facial data illustrative of various emotions. In contrast, face landmark-based learning [9]
concentrates on key facial points, or landmarks, such as the outer edges of the mouth, nose, and eyes. These landmarks serve
as instructive representations of facial expressions, regardless of particular facial features, poses, or illumination conditions.
Landmark-based methods, frequently utilizing geometric features or handcrafted descriptors, represent the spatial relationships

between these facial landmarks, providing robust and comprehensible models for emotion classification.

This research focused on a comprehensive comparative analysis of two different techniques for facial expression
recognition: image-based learning [10] and landmark-based learning [11]. By leveraging the abilities of CNN [12], Logistic
Regression Classification (LRC) [13], Support Vector Machines (SVM) [14], Random Forest Classification (RFC) [15], and
Gradient Boosting Classifier (GBC) [16], we provided recommendations for choosing the most suitable approach to obtain

accurate and reliable emotion recognition.

This research aimed to study the advantages and limitations of both image-based and landmark-based learning techniques
by conducting comprehensive comparisons. Utilizing the rich datasets from the Delaware Pain Database and UTKFace, we
attempted to fully analyze the effectiveness of various classification models, including LRC, SVM, RFC, and GBC, when
applied to both methods. By researching the strengths and weaknesses of each methodology, we aim to provide researchers
and developers with helpful recommendations for choosing the most appropriate technique for facial expression recognition
in various fields. The knowledge achieved from this study demonstrates an opportunity to advance emotionally intelligent
systems [17], enabling them to enhance human-computer interaction [18], virtual reality experiences [19], and mental health

diagnostics [20].

2. Literature review

Face expression recognition has been researched for several years in the areas of computer science and computer

engineering. We briefly reviewed an academic work released on the topic.

In their introductory study, Di Luzio et al. presented a randomized deep neural network for emotion recognition with
landmark detection [21]. They applied The Extended Cohn-Kanade dataset (CK+) and Mediapipe to extract 468 face
landmarks. The model combined a randomized convolutional layer with an Long Short-Term Memory (LSTM) layer, receiving
over 90% accuracy for five emotions: disgust, fear, happiness, sadness, and surprise. This work improved emotion recognition
and demonstrated the possibilities of deep learning and landmark detection in affective computing and human-machine
interaction. To overcome the limitations in the field of face recognition, Hangaragi et al. proposed face detection and
recognition using a face mesh and deep neural network [22]. This study utilized a Labeled Faces in the Wild (LFW) dataset
and images captured in real-time by using Face Mesh to reconstruct the complete face with face landmarks and a deep learning
model. They compared this model to 3DMM (LFW), 3DDFA (LFW), and 3DMM-CNN (LFW) and got a superior result in
terms of accuracy. The proposed model achieved 94.23% accuracy, as well as The model detected and recognized faces in

various illuminations and non-frontal images efficiently, which other existing algorithms failed to do.

In [23], Hamester et al. proposed a 2-Channel CNNss for recognizing facial expressions. The design included two channels,
one to handle the raw image data and the other for processing the output of a Convolutional Autoencoder (CAE). The CAE
was trained in an unsupervised fashion to extract features from the input image, which were subsequently merged with the raw
image data in the second channel. The combined features then got transmitted into a completely connected layer for
classification. They evaluated this method on the JAFFE dataset while comparing it to previously released methods. They
demonstrated that their technique surpassed these methods in the area of accuracy. The algorithm that was suggested obtained
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an average accuracy of 95.8% with a standard deviation of 1.6 on the JAFFE dataset. Face expression can provide additional
stability in our daily lives. Assari et al. attempted to utilize a non-intrusive technique for detecting driver drowsiness through
facial expressions [24]. The proposed method employed an infrared light-sensitive camera to capture images of the driver's
face, which were processed in order to detect facial features such as eye expressions, mouth openness, and eyebrow elevation.
If any of these states were stable for a certain length of time, a notification appeared displaying the driver's drowsiness status.
The suggested method was tested in a real-life driving case using images obtained under various lighting conditions and from
multiple individuals with varied appearances. The photos went through processing at a frame rate of 20 frames per second with
aresolution of 360 x 240 pixels. The outcomes demonstrated that the proposed method was efficient at recognizing drowsiness
in drivers, with an outstanding level of accuracy and a low false-positive rate. The method was also compared to several other
non-intrusive drowsiness detection methods and proved to perform better in both accuracy and robustness. In [25], Munasinghe
et al. presented a technique that involves recognizing facial landmarks and employing them to calculate a feature vector
representing emotion in the face. The feature vector is obtained by calculating the distance among sets of landmarks and
normalizing them to eliminate facial size differences. Once the feature vector was calculated, it served as input to a random
forest classifier that was trained to classify expressions. The researchers applied the dlib library to locate 68 facial landmarks
as well as the scikit-learn library to implement the random forest classifier. The accuracy of the method was evaluated via the
Extended Cohn-Kanade (CK+) database, which was a commonly used facial expression database. This study used a total of
225 different poses coming from 104 individual people, with 156 poses implemented as training datasets and 69 poses used as
testing datasets. The outcomes of the study demonstrated that the proposed technique was successful in correctly detecting
emotions, with an average accuracy rate of 90%. The accuracy rates for individual expression were 79% for anger, 95% for
happiness, 89% for sadness, and 96% for surprise. The suggested method outperformed current methods, acquiring an average

performance rate of 90% compared to 80% for Omer et al. [26] and 72-100% for Akram et al. [27].

Based on the above research, it was obvious that the topic could be properly divided into two primary technique: an
image-based technique and face-landmark technique. Additionally, it was essential to note that the source of both datasets
came from image sources. Moreover, it was important to acknowledge that the model commonly applied CNN, SVM, many
different algorithms belonging to the Tree family, as well as other fundamental machine learning techniques. As a result, the
primary goal of this study was a comprehensive study and comparative analysis of the performance demonstrated through the
two techniques and commonly used machine learning classification. This research effort was particularly focused on finding

an effective method for facial expression and making recommendations for developers in the future.

3. Machine learning techniques

The following section provides a succinct overview of the machine learning algorithms compared in this study.

3.1. Convolutional Neural Networks (CNN)

CNN is a deep learning model that has significantly transformed the field of computer vision. It is primarily designed to
process and evaluate grid-like data, such as photographs. CNNs are built using convolutional layers that convolve input with
learnable filters, capturing local patterns hierarchically. Subsequent pooling layers down-sample the representations while
keeping crucial characteristics. This architecture intrinsically respects spatial connections, which is vital in visual data
interpretation. CNNs commonly employ non-linear activations and regularization approaches to boost representation learning
and control over-fitting. With several layers, they exhibit increasing feature abstraction. Fully connected layers towards the
end merge these features for categorization or other tasks. Overall, CNNs have automated feature engineering and delivered
state-of-the-art performance across image-related applications, making them a popular choice for academic research in the

field of computer vision.
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3.2. Random Forest Classification (RFC)

The Random Forest technique was initially introduced in 2001 and has since become a widely used ensemble learning
approach for tasks involving regression as well as classification. This algorithm is particularly effective due to its use of
multiple decision trees that utilize both bootstrapped aggregation (bagging) and random feature selection. These techniques
assist to minimize overfitting and enhance predictive capabilities. In classification assignments, the final judgment is made
based on a majority vote, while regression predictions are based on the average of outcomes. RFC is a fantastic choice for

high-dimensional data and can even determine feature importance, making it an immensely valuable tool for data analysis.

3.3. Logistic Regression Classification (LRC)

Logistic Regression is a frequently used binary classification approach in machine leaming. It is a probabilistic
classification approach that assesses the chance that an instance belongs to a certain class (typically 0 or 1). Despite its name,
it is not a regression technique. It employs the logistic function to build the relationship between input attributes and the
likelihood of the target class, which transforms any input to a number between 0 and 1. By setting a threshold (typically 0.5),
predictions are made: values over the threshold are classed as one class, and those below it as the other. It is a basic yet efficient
strategy for problems with virtually linear connections between characteristics and classes. Regularization techniques can be

applied to prevent over-fitting.

3.4. Support Vector Machine (SVM)

SVM is a commonly used generalized linear classification algorithm that may also be applied to regression situations
[28]. Its name originates from its capacity to maximize the geometric margin while minimizing classification mistakes, making
it a popular choice for many applications. To do this, SVMs apply Structural Risk Minimization (SRM), which helps to
optimize the separation between distinct classes of data points. This is done by constructing parallel hyperplanes on either side

of the decision boundary, with a greater margin assuring better generalization of the model.

3.5. Gradient Boosting Classifier (GBC)

Gradient boosting is a commonly used methods for machine learning that could get effective used for both classification

and regression purposes. This approach functions by adding decision trees iteratively into a model, where each tree rectifies

the mistakes of the preceding trees. This method repeats until the model achieves an acceptable level of accuracy. One of the

main benefits of gradient boosting is being able to deal with complicated datasets and find non-linear relationships between

he

features. However, it is sensitive to overfitting, so it requires comprehensive of hyperp ters.

4. Experiment

4.1. Dataset

In this study, we collected image data from publically available sources for research usage, including The Delaware Pain
Database and UTKFace, two of which are human image databases that have collected a huge number of photographs. It
contained many emotional characteristics we selected faces with normal emotions. and hurt emotions, totaling 1200 images,
divided between 800 images for training, 200 images for testing, and 200 images for further tests. The examples of image data
are as illustrated in Fig. 1 and Fig. 2.




59

151

152

153

154

155

156

157
158
159
160

161
162
163

165

166
167
168
169
170
171

172
173
174
175

The 9th International Conference on Advanced Technology Innovation 2024 (ICATI2024) 5
B oo Ay i B R0 A B 0RO AN noser. i B oo e
B oo i i B oeoammps 0 B o i TR

Fig. 1 Example of normal face image dataset from The Delaware Pain Database and UTKFace
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Fig. 2 Example of hurt face image dataset from The Delaware Pain Database and UTKFace
4.2. Image-based method

In the Image-based method experiment, we chose five algorithms including CNN, LRC, SVM, RFC, and GBC. In terms
of LRC, SVM, RFC, and GBC, we utilized the library of scikit-learn to employ these techniques, although these algorithms
may not work directly with images. Therefore, it is important for converting images into numerical data. To manipulate data

to suit the algorithm, we employed the Histogram of Oriented Gradients (HOG) feature extraction technique.

In our study, various functions were constructed, including the extraction of features. Each image underwent processing
by converting it to gray scale, scaling it, and extracting HOG features. The "get data" function was devised to create training
and testing datasets, achieved by iterating over image folders, extracting features, and assigning labels. Feature scaling was
applied to normalize the data. Once the data was obtained, LRC, SVM, RFC, and GBC models were developed. These models

were trained using the provided training data.

In the CNN the Keras package was employed for binary image categorization. The network architecture comprised
convolutional layers designed to capture hierarchical features within an image. The initial convolution layer utilized 16 filters
with a size of (3,3) and a step of 1. A Rectified Linear Unit (ReLU) activation function was applied after each convolutional
layer. Maximum pooling was used to reduce spatial dimensions while retaining essential information. This process continued
with subsequent convolution layers, using 32 and 16 filters, respectively. A flattening layer converted the 3D output into a 1D

vector, facilitating the transition to a fully connected layer.

The first dense layer featured 256 neurons with a ReLU activation function, capturing complex high-level characteristics
from the hierarchical representation in the previous convolutional layer. The final dense layer comprised a single neuron with
a sigmoid activation function, suitable for binary classification. Sigmoid activation produced an output between 0 and 1,
representing the probability of the input image belonging to a positive class. The model architecture is illustrated in Fig. 3.
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For model training and optimization, the code utilized the Adam optimizer, an adaptive learning rate method. The binary
cross-entropy loss function was chosen to quantify the difference between the expected probability and the actual binary label.
Model performance was evaluated using accuracy as the metric. This comprehensive architecture was designed to
autonomously learn and extract information from input images, progressing from low-level features in the initial layer to high-

level features in the fully connected layer.

All methods underwent final evaluation, assessing model performance on a test set using measures such as precision,
recall, and F1 score, with confusion matrices providing insight into the results. Classification tasks also included observing the

elapsed time for training the model.

[ conv2d_input ] input: [ ((None, 200, 200, 3)) ]
[ TnputLayer I output: ] [(None, 200, 200, 3))] ]

conv2d ] input l (None, 200, 200, 3) ]
| Coav2D | output: | (None, 198, 198, 16) |

| max_pooling2d | input: | (Nove, 198, 198, 16) |
[ MaxPooling2D [ output | (None, 99, 99, 16) ]

[ (m\'2d_T[ nput: [ (None, 99, 9, 16) ]
[ Con\'!()l output; [ (None, 97, 97, 32) ]

[ max_pooling2d_1 [ input: | (None, 97, 97, 32) |
[ MaxPooling2D | output l (None, 48, 48, 32) ]

2 T ()

Conv2D | output

I’Wd,_l ] input ] (None, 46, 46, 16) ]
1 MaxPooling2D [ output: | (None, 23,23, 16) |

[ flatten ] imxn:T(None. 23, zx.m
[Hanm butpm [ (None, sac.uj

dense | input: | (None, 8464)
Dense | output: | (None, 256)

Fig. 3 Image-Based CNN Model Architecture
4.3. Landmark-Based Method

In the landmark-based method experiment, the image data needed transformation into coordinates representing points on
the face. The MediaPipe library was employed for this purpose, extracting 468 facial coordinates in both the x and y axes. This
transformation was applied to all images in both the training and test sets. To leverage the acquired information effectively,
specified algorithms, including CNN, LRC, SVM, RFC, and GBC, were employed.

While LRC, SVM, RFC, and GBC could be directly implemented using the sklearn library to create models, constructing
a CNN for binary image classification required the use of TensorFlow and Keras. Initial data handling involved loading training
and testing datasets into Pandas DataFrames. The features and corresponding labels were separated, and the features were
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standardized using the StandardScaler from scikit-learn. For numerical processing, label encoding converted target classes into

numeric values. The feature data was then reshaped into a 3D format suitable for the subsequent CNN.

The CNN model was defined using the Keras Sequential API and included a 1D convolutional layer with 32 filters and a
kernel size of 3, followed by max-pooling and flattening operations. Two fully connected layers followed, incorporating ReLU
activation in the first layer and a sigmoid activation in the second, suitable for binary classification. The model was compiled
using the Adam optimizer with binary crossentropy loss. The architecture of the model is depicted in Fig. 4. Model training
occurred within a loop, continuously doubling the number of epochs until a predefined accuracy threshold was reached. The

training and validation sets were employed during this process.

Finally, all methods underwent evaluation. Model performance was assessed on a test set using measures such as precision,
recall, and F1 score, with confusion matrices providing insight into the results. The elapsed time for training the model was

also observed in the classification process.

[ convid_input | input: | ((None, 1404, 1)) |
[ InputLayer Ioutp\ll ] [(None, 1404, 1)) ]

convid | input (None, 1404, 1)

CooviD | output: | (None, 1402, 32)

[[max_pooling1d | input: | (Nove, 1402, 32) |
[ MaxPooling1D | output: | (None, 701, 32) |

flavens | input: | (None, 701, 32)
Flatten | output: | (None, 22432)

dense | input: | (None, 22432)

(None, 64)

[ e o | e 1 |

Fig. 4 Landmark-Based CNN Model Architecture
5. Experimental results

In this study, various machine learning models were explored using different techniques and feature sets. The results,
presented in Table 1, indicate that the SVM exhibited excellent performance with the landmark technique, achieving an
accuracy of 0.8550, precision of 0.8876, recall of 0.8550, and an F1 score of 0.8519. However, the SVM model with the image-
HOG-scaling strategy showed slightly lower metrics, with an accuracy of 0.8200, precision of 0.8363, recall of 0.8200, and an
F1 score of 0.8178.

GBC demonstrated robust results, particularly with the landmark technique, where it achieved an accuracy of 0.8850,
precision of 0.8965, recall of 0.8850, and an F1 score of 0.8842. The GBC model with image-HOG-scaling also performed
well, achieving an accuracy of 0.8700, precision of 0.8724, recall of 0.8700, and an F1 score of 0.8698.

RFC displayed good accuracy and precision, particularly with the landmark approach, reaching 0.8950 and 0.9018,
respectively. However, the image-HOG-scaling technique significantly reduced performance to an accuracy of 0.8600 and

precision of 0.8601. The RFC model consistently maintained recall and F1 scores above 0.8600.
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LRC demonstrated efficiency in terms of training time, with the landmark technique requiring only 0.106s. The model
achieved an accuracy of 0.8850, precision of 0.8939, recall of 0.8850, and an F1 score of 0.8843. However, the image-HOG-
scaling technique resulted in a drop in performance, with an accuracy of 0.7900, precision of 0.8047, recall of 0.7900, and an
F1 score of 0.7874.

The CNN outperformed other models, especially with the landmark method, achieving an accuracy of 0.9500, precision
of 0.9541, recall of 0.9541, and an F1 score of 0.9541. The image approach similarly yielded strong results, with an accuracy
of 0.8700, precision of 0.8558, recall of 0.8900, and an F1 score of 0.8725, albeit with a slightly longer training time of 88.89s.
These findings offer a comprehensive overview of the models' performance across different methods and feature sets,

facilitating the selection of the most suitable methodology for the specific goal.

Table 1. Machine Learning Model Performance

Model Techniques Training Time Accuracy Precision Recall F1 score

SVM landmark 0.24s 0.8550 0.8876 0.8550 0.8519

SVM image-hog- 0.19s 0.8200 0.8363 0.8200 0.8178
scaling

GBC landmark 31.72s 0.8850 0.8965 0.8850 0.8842

GBC image-hog- 20.93s 0.8700 0.8724 0.8700 0.8698
scaling

RFC landmark 1.34s 0.8950 0.9018 0.8950 0.8946

RFC image-hog- 1.36s 0.8600 0.8601 0.8600 0.8600
scaling

LRC landmark 0.11s 0.8850 0.8939 0.8850 0.8843

LRC image-hog- 0.09s 0.7900 0.8047 0.7900 0.7874
scaling

CNN landmark 2.01s 0.9500 0.9541 0.9541 0.9541

CNN image-hog- 88.89s 0.8700 0.8558 0.8900 0.8725
scaling

6. Discussion

The study underscored the critical importance of thoughtful machine learning model selection and feature extraction
methods to achieve optimal classification results. Notably, the SVM exhibited sensitivity to the applied techniques, with the
landmark approach outperforming the image-HOG-scaling method. This suggests that landmark features significantly
contribute to the SVM model's ability to discern patterns within the dataset.

GBC showcased robust performance across both landmark and image-HOG-scaling techniques, indicating its adaptability
to different feature sets. While the model's longer training period, especially with the landmark technique, suggests a more

intricate learning process, the superior accuracy, precision, recall, and F1 scores achieved justify this investment in time.

The RFC technique consistently delivered strong results across both landmark and image-HOG-scaling feature sets.
Maintaining high precision, recall, and F1 scores while training quickly highlights its effectiveness and dependability with
diverse data.

LRC demonstrated efficiency in terms of training time, particularly with landmarks. However, the more noticeable
decrease in performance with image-HOG-scaling implies that LRC may be more impacted by feature selection, especially

with intricate datasets.
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The CNN emerged as the top-performing experimental model, excelling in accuracy, precision, recall, and F1 scores,
especially with the landmark technique. The longer training time associated with the image technique emphasizes the
computational demands of CNNs, but the substantial improvement in performance justifies the investment. These findings
emphasize the nuanced considerations necessary in choosing appropriate models and feature extraction methods to achieve

optimal results in machine learning classification tasks.

7. Conclusions and Future Work

This study aims to assess the effectiveness of image-based and landmark-based learning approaches in face emotion
recognition. The results indicate that the CNN outperformed other models, particularly when employing the landmark
technique, achieving an accuracy of 0.9500, precision of 0.9541, recall of 0.9541, and an F1 score of 0.9541. The image-based
strategy also yielded favorable results, with an accuracy of 0.8700, precision of 0.8558, recall of 0.8900, and an F1 score of

0.8725, albeit with a somewhat longer training time of 88.89s.

For future studies, the insights gained from this work will be applied in a program aimed at assisting with the physical
rehabilitation of Frozen Shoulder. This application is designed to enhance safety and identify injuries during physical therapy.
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Abstract—The COVID-19 outbreak has restricted most
outdoor activities, leads to increasing interest in exercise at home
with online trainers. One issue of online exercise technology is
the safety since improper motion might result in injury. As a
basis to prevent improper ethods for luating the
motion similarity between an instructor and a trainee are

ial. Cosine similarity, Angular difference, and Euclidean
distance are three general ways for the motion evaluation. This
study aimed to determine the most effective way for analyzing the
similarity of h tion on the d of instructor-led
dances. We first experimented with the data to find the
appropriate cut-off value for classifying posture into two classes
based on the similarity score. Confusion matrix, precision, recall,
Fl-score, accuracy of the results were then used to compare the
efficiency. We discovered that Cosine similarity had the highest
accuracy, 82.77 percent at cut-off 93.
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Keywords
Angular  difference;
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I. INTRODUCTION

Dancing is a set of motions that correspond to music.
People use dancing not only for entertainment but also for
exercise. For instance, primary school students practice
dancing in their physical education class. During COVID-19,
human behaviors have shifted to a new norm. All outdoor or
group activities, such as dance and aerobics, have been
restricted. As a result, there is increasing interest in a method
of exercise using online technology, such as exercising at
home with an online instructor [1] or online video [2].
Similar to traditional exercise, improper motion may result in
trainee injury. To prevent damage in the context of online
exercise technology, it is essential to recognize the
appropriate evaluation techniques for measuring and
comparing the degree of difference, displacement, and
velocity between instructors and trainees [3].

Data comparison is a typical technique for distinguishing
between similar and distinct data. It is utilized in a variety of
fields, including business [4], marketing [5], education [6]
and research [7]. Comparisons are required to examine data
at all levels efficiently. Careful selection of data or

sarunya.k@sut.ac.th

techniques can lead to productive outcomes [8], [9]. There
are several techniques for comparing data, including
Euclidean distance, Cosine similarity, and Angular
difference, among others.

In previous studies, Cosine similarity was used to
evaluate similarities between face verification differences
[10], word differences in natural language processing [11],
and non-speaker information reduction [12]. Various
applications of Euclidean distance include obtaining
skeletons [13], estimating the distance between syntactically
related phrases [14], and mapping the pixel distance between
two images [15], and etc. Angular difference is utilized in
image registration [16], feature process extraction [17], and
out-of-step generator identification [18], among other
applications. The evaluation results depend on how exactly
the data can be compared. Human motion is challenging to
be compared because there are numerous measurements for
this kind of data [19].

In this study, we examined evaluation techniques for
measuring the similarity of data on human motion through
the similarity of posture in each frame. The simple
approaches of Euclidean distance, Cosine similarity, and
Angular difference were employed to evaluate the similarity
of human motion in current scientific research. This work's
datasets included dance video from trainees and footage from
an exercise instructor obtained from YouTube.

II. RELATED WORKS
A. Pose estimation

When comparing human motions, the first and most
crucial step is to record the motion characteristics. Today's
technology has changed to make it easier to detect human
motion through pose estimation, which is a computer vision
technique to estimate the spatial locations of key body joints
of a person from an image or a video. One of the pose
estimation strategies employed by the researcher is to bring
MediaPipe, in which Pauzi [20] discussed. Mediapipe
Blazepose [21] is a form of algorithm that can be used to
detect human motion accurately in real-time.
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In this research, the MediaPipe was utilized for extracting
skeletal and joint data from each frame.

B. Motion similarity

Motion is the continual change of postures. Valcik et al
[22] addressed this concept by discovering that human
motion has several components. From the numerous
components, a variety of approaches are utilized to retrieve
the data for comparison. One approach is in the category of
Position Features [23] [22], which is based on the premise of
extracting distinct postures in each frame. This approach will
not be affected by the speed of the motion or the surrounding
frame. The techniques in this area include, for example, Joint
Angle Rotations, Distance-Based Pose Features, and
Relational Features.

In this research, we used Joint Angle Rotations. This
strategy relies on retrieving and comparing the differences in
the landmark joints of human. The comparison does not have
to be performed on every frame since the difference between
each consecutive frames could be minor. This notion is
found in Choi et al. [24], where only distinct moves were
indexed to save time in operation, and in Ferrari et al. [25],
where only one representative frame were selected.

C. Integrating human and machine in evaluation

Motion evaluation is challenging. Evaluation by human
takes time and can lead to bias, whereas automated
evaluation by machine may be inaccurate, i.e., contradict
with human evaluation, due to the method used or model's
integrity. One way to address this problem is to integrating
human and machine. For example, Wright et al. [26]
integrated the labels from human annotators with the results
from an image classifier, resulting in increasing in accuracy.

Based on this concept, we designated the similarity of
dancing between instructors and trainees as the target for
accurate model prediction during model developing and
testing phases. Note that the developing phase is a process to
determine the cut-off values and parameters from the
prepared dataset (developing data). The testing phase is a
process to use the cut-off value and apply with unseen
dataset (test dataset). A confusion matrix was utilized to
evaluate and compare the accuracy of each technique.

D. Efficient pose estimation for limited camera angles

R. S. Hiremath et al. [27] assessed the effectiveness of
learners by comparing their dances to those of experts. There
were effective methods for gathering data of human motion
by detecting the upper and lower portions of the human body
independently. The Ferrari research [25] focuses on detecting
motion specifically in the upper body. The result is an
excellent performance.

In this research, we collected data by assumed that users
may use a web camera attached to a laptop in their home,
resulting in limited camera angles. Thus, we applied the
similar approach of focusing on scoring the motion of the
upper part of the body.
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Fig. 1. Pose landmarks. Source: Adapted from [28]

Fig. 2. Screenshot of our application, displaying a tutorial video with
100% opacity and a trainee video feed from a web camera with 80%
opacity to facilitate motion learning.

III. DATA SOURCE

We collected data using our web application [2], which
could display an online tutorial video while showing and
recording a user motion from web camera beside the tutorial
video to facilitate motion learning, as shown in Fig. 2. Two
authors individually followed a video taken from YouTube
(https://youtu.be/b0aX6b5lc3M), which instructs an easy
dance motion, and recorded the motion. Then, human pose
estimation was performed on the recordings using
MediaPipe, a machine learning framework for media, with
BlazePose GHUM Heavy model. The result contained the x
and y coordinates of the trainee based on the pose landmark
(Fig. 1) and the timestamp of each frame. Each video
recording was considered as one dataset, which was use in
different phases as described in the next section.

IV. EXPERIMENT

The experiment included three steps: (A) calculating
posture similarity score (using Cosine similarity, Euclidean
distance, and Angular difference); (B) developing phase
(determining the cut-off value of each technique to classify
the posture into two classes based on the score); and (C)
testing phase (testing and comparing the accuracy of each

technique). We explain each step in the following
subsections.
A. Calculating posture similarity score

The experiment investigated the similarity in motion
between an instructor and a trainee using their body joints in
each frame. As the motion involved mostly the upper body
and we assumed limited camera angle, we used only points
located in the upper portion of the body, including 11 (left
shoulder), 12 (right shoulder), 13 (left elbow), 14 (right
elbow), 15 (left wrist), and 16 (right wrist). We mapped two
points that joined joints and represented their significance as
the names of body parts (Table I).
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TABLE L. POINT MAPPING AND MEANING
First Point Second Point Meaning
11 (left shoulder) 12 (right shoulder) shoulder
11 (left shoulder) 13 (left elbow) left upper arms
12 (right shoulder) 14 (right elbow) right upper arms
13 (left elbow) 15 (left wrist) left lower arms
14 (right elbow) 16 (right wrist) right lower arms

For instance, if the first point was 11 and the second
point was 12, these two points could be connected by a line
to depict the "shoulder”. Each body part was represented as a
vector. The similarity between a vector pair of each body
part of the instructor (%) and the trainees (¥) was then
determined using Cosine similarity, Euclidean distance, and
Angular difference.

For the Cosine similarity technique, we used Equation
(1).
@)

Cosine similarity (i, ¥) = cos(8) = (W) (1)

Then, we normalized the result by transforming the 0 - 1
range to the 0 — 100 range by multiplying the result of (1) by
100.

Euclidean distance was calculated by Equation (2).

Euclidean distance(, ¥) = fZ{-;i(fi[ + 1)

For Angular difference, we first calculated the angle of
each body part of a human to the positive real axis using
function numpy.angle(). Then, Equation (3) was used to
calculate the angle difference between the instructor angle
and the trainee angle, where 6, represents the instructor
angle, and 6, represents the trainee angle. Finally, Equation
(4) was used to transform the numbers from 2z to 0 to the
range 0 to 100 to normalize the result obtained from
Equation (3), where x is the normalized value.

@

Angular difference (6,,8,) = 8, — 6, (3)
x = 100 — (((Angular difference (6,,6,)) * 100)/
2m) (4)

The similarity score of the posture of each frame is the
average of the similarity between a vector pair of each body
part.

B. Developing phase

The cut-off value is used to classify whether the motion
of the trainee and instructor are similar. This step's objective
was to determine the cut-off value that delivers the highest
level of accuracy on one video (developing data) of each
technique.

We manually examined and labeled the similarity of the
instructor and trainee's dance of each frame into “similarity”
and “not-similarity”. Images of trainees and instructors were
retrieved every 10 frames, totaling 504 frames.

Accuracy
3

cence  —— Euclidean

Fig. 3. A comparison of accuracy of cut-off values from 1 to 100.

Note that experiments were conducted so that if Trainee
A was the one who followed the instructor, then Trainee B
would be the one who determined the similarity of posture,
and vice versa.

We created a Python program with the Grid search
concept. The posture similarity score of each frame were
calculated using three evaluation techniques (Cosine
similarity, Euclidean distance, and Angular difference).
Then, the frame that received the score below the cut-off
value was classified as “not-similarity”, otherwise it was
classified as “similarity”. For the Euclidean distance, the cut-
off score was reversed, e.g., the score below the threshold
was classified as “similarity”. The process was repeated with
the cut-off value ranging from 1 to 100, resulting in 100 sets
of automated labels of each evaluation technique. We then
compared the automated label sets with the manual label to
examine their accuracy, as shown in Fig. 3. Finally, we
obtained the cut-off value of each evaluation technique by
selecting the one that produced the highest accuracy.

C. Testing phase

To evaluate the evaluation techniques, we compared the
instructor's and trainees' motions in the test dataset. A
confusion matrix is used to evaluate each technique. The
confusion matrix is an essential tool for evaluating the
predictive results projected by a model or machine learning
method, since it determines the proportional relationship
between what is expected (what the model predicts) and
what really occurs.

We manually labeled the similarity of the instructor and
trainee's dance of each frame into “similarity” and “not-
similarity” in the same manner as the developing phase. We
retrieved one frame per 10 frames, for a total of 470 frames.

We then used the cut-off value of each technique to
automatically classify the frame into two classes based on
their score. If the Cosine similarity score and the Angular
difference are less than the cut-off value, the results are
considered as “not-similarity”, and vice versa. In contrast, if
the Euclidean distance result is greater than the cut-off value,
the results are considered as “not-similarity”, and vice versa.
Finally, we compared the automated label of each technique
with the manual label and analyzed the performance of each
technique using precision, recall, Fl-score, accuracy, and
confusion matrix.
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TABLE IL THE CUT-OFF VALUES AND ACCURACIES OF EACH
TECHNIQUE
Technique Cut-off Value Accuracy
Cosine similarity 93 90%
Euclidean distance 41 87%
Angular difference 96 85%
1
8276595745
770212766
80
2 60
£ 4382978723
2 40
20
0
Cosine similarity  Angular difference Euclidean distance

Fig. 4. Comparison of accuracy results in the test dataset.

V. EXPERIMENTAL RESULTS
The experimental outcomes were described as follows:

A. The value that yields the most accurate outcomes for
each technique throughout the developing phase.

Table II shows the selected cut-off value of each
technique and their accuracy with the Developing data. It is
determined that the cut-off value must be set as follows for
the best accuracy: Cosine similarity had 90% similarity
accuracy with a cutoff value of 93. The Angular difference
was 85% accurate at the cutoff value of 96. At a cutoff value
of 93, the Euclidean distance had 87% accuracy.

B. Comparison accuracy results during the testing phase

Fig. 4 shows the accuracy of each technique with the test
dataset. The accuracy of Cosine similarity, Angular
difference, and Euclidean distance were 82.77%, 77%,
and 43.83%, respectively.

C. Comparison of accuracy of each technique

Fig. 5 compares the accuracies of each evaluation
technique when applying to two datasets. For the
developing phase, the accuracies of each technique were
high and comparable. For the testing phase, Cosine
similarity and Angular difference were not much
different from those acquired during the developing
phase. However, the accuracy of Euclidean distance was
much lower compared to the result in the developing
phase.

For this study, the Cosine similarity produced the
most accurate results, with 82.77% accuracy.

Euclidean Distance _ 43.83 &

N 0
Angular Difference 8s

82.77
9

0 20 40 60 80 100

|"
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Cosine Similarity

uTestdata wDeveloping data

cy b the d
testing phase.

Fig. 5. Comparison of loping phase and the

D. Detailed comparison of Cosine similarity, Angular
difference and Euclidean distance.

Table III and Fig. 6 show the analysis of Cosine
similarity results. Evidentially, the precision of Similarity
was 0.917603, whereas the precision of Not-similarity was
0.709360. This indicates that the Cosine similarity can
efficiently identify the trainee’s motion in close proximity to
the instructor’s. The recall of the Cosine similarity were not
notably different. Both values were relatively high at
0.805921 and 0.867470.

Table IV and Fig. 7 show the analysis of Angular
difference. The precision offered by Angular difference for
the Not-similarity class was 0.615009, whereas the result for
the Similarity class was 0.949541. These outcomes are
comparable to those produced using the Cosine similarity
technique. The recall values were 0.933735 for Not-
similarity and 0.680921 for Similarity.

Table V and Figure 8 show the analysis of the
Euclidean distance. The technique revealed the most
differences, with a recall result of Not-similarity equal to
0.993976 and Similarity equal to 0.134886.
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TABLE IIL PRECISION , RECALL , F1-SCORE AND ACCURACY OF

COSINE SIMILARITY

g

150

100

sin:l‘:;ity Similarity | Accuracy

Precision 0.709360 0.917603 0.827660
Recall 0.867470 0.805921 0.827660
F1-Score 0.780488 0.858144 0.827660

TABLEIV. PRECISION , RECALL , F1-SCORE AND ACCURACY OF

ANGULAR DIFFERENCE
slnl::lon';i ty Similarity Accuracy
Precision 0.615079 0.949541 0.770213
Recall 0.933735 0.680921 0.770213
F1-Score 0.741627 0.793103 0.770213

TABLE V. PRECISION , RECALL , F1-SCORE AND ACCURACY OF
EUCLIDEAN DISTANCE.
Not-
similarity Similarity Accuracy

Precision 0.385514 0.976190 0.438298

Recall 0.993976 0.134868 0.438298

F1-Score 0.555556 0.236994 0.438298

VI. CONCLUSIONS AND DISCUSSION

This study compared Cosine similarity, Angular
difference, and Euclidean distance as evaluation techniques
for analyzing trainee-instructor dance data. We established
the appropriate cut-off value for each technique, which
resulted in the highest degree of accuracy during the testing
phase, as follows: Cosine similarity with accuracy of 82.77%
at a cut-off 93, Angular difference with accuracy of 77% at a
cut-off value of 96, Euclidean distance with accuracy
43.83% at a cut-off value of 41. The most suitable evaluation
technique for trainee-instructor dance data was the Cosine
similarity.

This study has the limitation that the dataset contained
only one motion of two people. In the future, we will explore
methods to improve the accuracy of the evaluation
techniques and methods to compare the evaluation
techniques other than the confusion matrix. For instance, the
accuracy of Euclidean distance in the testing phase was
dramatically decrease. One possible reason is that the
technique takes into account the vector length (i.e., the
physique of the user). Normalizing the vector length should
increase this technique's accuracy. In addition to evaluation
techniques, we would like to explore features for facilitating
analysis of the choreographies. For example, we may display
the angle of the landmark joint in our web application and
display suggestions for trainees to improve their
performance.
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