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 The province of Albay regularly experiences landslides due to its geographic 

location in the southeastern part of the island of Luzon, making it prone to natural 

disasters. Being located in the country’s eastern seaboard, the province is regularly hit 

by typhoons entering the Philippines. Since the province is situated in the Pacific Ring 

of Fire, Albay is also tectonically active as characterized by the presence of active 

faults traversing the area and being the location of Mayon Volcano, which is the most 

active volcano in the Philippines.  

Despite these circumstances which necessitate the need for landslide 

susceptibility mapping, there is still a lack of comprehensive studies in this field due 

to the difficulty of preparing and obtaining a landslide inventory. To overcome these 

challenges, the study utilized two remote sensing techniques to identify landslide 

features, namely PSI (persistent scatterer interferometry)-based hotspot analysis, and 

clustering of spectral indices.   

The first technique; PSI was used to identify locations where landslides are 

highly likely to occur based on their stability threshold. PSI was performed on a stack 

of 62 ascending and 65 descending Sentinel-1 SAR images dated from July 30, 2017 to 

December 31, 2020, extracting a total of 277,525 PSI points measuring VLOS (line-of-

sight velocity) with a stability threshold of 11 mm./yr. VLOS measurements were 

projected along the direction of the steepest slope to measure slope deformation 

velocity (VSLOPE). Results of Getis-Ord Gi* hotspot analysis showed that out of 871 points 

with a 99% degree of confidence, 356 points have a VSLOPE of >33mm./yr. and are 

designated as landslide points. 
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CHAPTER I 
 

1.1 Background of the Study 
 Landslides are one of the most common types of geohazard, which refers to 

the downward movement of soil due to slope failure driven by gravity. Several factors, 

physical, geological, and hydrologic characteristics, influence the rate at which 

landslide events occur or potentially occur.   Froude and Petley (2018) found that 

55997 people were killed by landslides over 12 years between 2004 and 2016 in 4862 

landslide events, with 75% of these events having occurred in Asia. In the same study, 

the Philippines alone accounts for 46% of rainfall-induced landslides in Southeast Asia, 

42% of which were triggered by typhoons. The most recent notable landslide event in 

the province occurred on November 1, 2020 during the onslaught of Typhoon Goni 

where at least 14 people were reported dead after lahar flows from the Mayon 

Volcano ravaged nearby villages. The aftermath of the disaster left thousands of homes 

buried with damages estimated to be at least $369 million, according to the NDRRMC. 

The province of Albay regularly experiences landslides, the most common of 

which are flow-type landslides: debris flow (specifically, lahar flows) and debris 

avalanches. Landslide susceptibility mapping is crucial to vulnerable areas to mitigate 

the future impacts of a reoccurrence. Due to its dynamic environment being 

geologically active and the inevitable effect of climate change further intensifying 

typhoons, conducting landslide susceptibility mapping in the province of Albay is of 

utmost importance. 

The mountainous terrain, complex (mostly volcanic) geology, and geographical 

location of the province of Albay in the eastern seaboard of the Philippines make it 

vulnerable to combined natural disasters with devastating effects on infrastructure and 

public safety. The most recent notable landslide event in the province occurred on 

November 1, 2020 during the onslaught of Typhoon Goni where at least 14 people 

were reported dead after lahar flows from the Mayon Volcano ravaged nearby villages. 
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The aftermath of the disaster left thousands of homes buried with damages estimated 

to be at least $369 million, according to the NDRRMC (National Disaster Risk Reduction 

and Management Council).  

Despite these circumstances, there is still a relative lack of comprehensive 

research focused on assessing the landslide susceptibility of the province in part due 

to the lack of available landslide inventory data in the area. The most recent study 

conducted in the province of Albay to assess landslide vulnerability was the use of 

hexagonal binning techniques by Abante (2021), which was only able to identify 376 

sq.km of highly vulnerable areas which was only located inside the 12 km. radius of 

Mayon Volcano. 

 

1.2 Research objectives 
The objectives of this research were: 

I. To create a landslide inventory map of the study area using: 
  a. hotspot clustering of slope velocity points measured from PSI (persistent 

scatterer interferometry) analysis of SAR (synthetic aperture radar) data, and; 

  b. visual identification of landslide features from Gaussian clustering of 

spectral indices (BSI, NDVI). 

II. Utilize the produced landslide inventory map to create a landslide 

susceptibility map using deep learning algorithms (CNN-2D and MLP). 

III. Assess the performance of deep learning algorithms for landslide 

susceptibility mapping by comparing its ROC and overall accuracy with conventional 

ML algorithms (LR, RF, SVM) 

IV. Create a vulnerability and population risk exposure map of Albay to identify 

the number of subdistricts at high risk of landslides. 

 

1.3  Types of Landslides 
According to the USGS Landslide Handbook, landslides can be generally 

classified based on the type of material they carry: earth (fine-sized rocks or soil 

particles, or both), and debris (larger and coarser materials). For clarification purposes, 
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landslides are classified further according to their displacement as defined by Highland 

and Bobrowsky (2008): 

 

A. Fall 
Abrupt, downward movements of rock or earth, or both, that detach from steep 

slopes or cliffs. The falling material usually strikes the lower slope at angles less than 

the angle of fall, causing bouncing. The falling mass may break on impact, begin rolling 

on steeper slopes, and continue until the terrain flattens.  

 
Figure 1.1 Schematic diagram of rockfall. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Roadside rockfall at Sagñay-Tiwi Road, Patitinan, Camarines Sur (Photo from 

Isarog Radio Broadcasting). 
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B. Topple 
 A topple is recognized as the forward rotation out of a slope of a mass of soil 

or rock around a point or axis below the center of gravity of the displaced mass. 

Toppling is sometimes driven by gravity exerted by the weight of material upslope 

from the displaced mass. 

 

 

 

 

 

 

 

 

 

Figure 1.3 Schematic diagram of a topple. 

 

 

 
Figure 1.4 Collapsed road at Malilipot, Albay toppled due to erosion dated November 

2020 (Photo from The Philippine Examiner). 
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C. Slides 
 A slide is a downslope movement of a soil or rock mass occurring on rupture 

surfaces or relatively thin zones of intense shear strain. It is further classified into two 

types: rotational, if the surface of rupture is curved upward (spoon-shaped) and the 

slide movement is more or less rotational about an axis that is parallel to the contour 

of the slope, and translational, if the mass moves out, or down and outward, along a 

relatively planar surface with little rotational movement or backward tilting. 

   
Figure 1.5 Rotational landslide (left) and translational landslide (right). 

 
Figure 1.6 Translation landslide at Itogon, Benguet Province, Sept 27, 2018. (Photo 

from Associated Press). 
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D. Flow 
 A flow is a spatially continuous movement in which shear surfaces are short-

lived, closely spaced, and usually not preserved. The component velocities in the 

displacing mass of a flow resemble those in a viscous liquid. Often, there is a gradation 

of change from slides to flows, depending on the  water content, mobility, and 

evolution. 

  

Debris flow 
 A form of rapid mass movement in which loose soil, rock, and sometimes 

organic matter combine with water to form a slurry that flows downslope. They have 

been informally and inappropriately called "mudslides" due to the large quantity of 

fine material that may be present in the flow. Debris flows carrying tephra and volcanic 

materials are called "lahar" flows. 

 

 
Figure 1.7 Diagram of a debris flow. 
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Figure 1.8 Lahar flow from Mt. Mayon burying homes in Guinobatan, Albay in the 

aftermath of Typhoon Goni dated November 2020 (Photo from GMA Network). 

 

Debris avalanche  
 Debris avalanches are essentially large, extremely rapid, often open-slope flows 

formed when an unstable slope collapses, and the resulting fragmented debris is 

rapidly transported away from the slope. 

 
Figure 1.9 Diagram of a debris avalanche. 
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Figure 1.10 Debris avalanche landslide in Itogon, Benguet dated January 2018 (Photo 

from Reuters). 

 

1.4 Study Area 
The province of Albay is located in the southeastern part of the largest island 

in the Philippines, Luzon, covering a total land area of 2575.77 sq.km. The province is 

divided into three cities and 15 municipalities into three cities and 15 municipalities, 

further divided into three cities and 15 municipalities into 720 subdistricts, with a total 

population of 1,374,768 as of 2020.  

 

 

 

 

 

 

 

 

 

 

 
Figure 1.11 Administrative boundaries of Albay Province. 
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Due to its location being located in the eastern seaboard of the central 

Philippines, the province of Albay is prone to typhoons. The active Legazpi Lineament 

and Linao Fault traverse directly through the province, making it prone to earthquakes. 

In addition, the iconic Mayon Volcano, a stratovolcano with a near-perfect cone shape 

and the most active volcano in the Philippines is also located in the province.  

Another volcano classified as potentially active is Mount Masaraga, which 

serves as the province's crucial geothermal energy hub. According to a 2013 report 

from the Human Development Network, the province of Albay suffers from a combined 

risk of natural disasters. An average of 20 typhoons hit the province each year, two 

destructive, and as many as 86 baranggays (villages) within three cities and 

municipalities are at risk from volcanic hazards. It is estimated that around 73% of the 

province is vulnerable to landslides, with 127 villages at high risk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12. Bicol Volcanic Arc and regional structures with Masaraga, Mayon and 

Malinao highlighted. Obtained from Minimo and Lagmay (2016). 
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Figure 1.13 Active fault lines of Albay obtained from PHIVOLCS. 
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CHAPTER II 
LITERATURE REVIEW 

 

2.1  Landslide Inventory Mapping 
  2.1.1 Overview of landslide inventory mapping 

 Gathering landslide points is the first step in conducting landslide susceptibility 

mapping. According to Guzetti et al. (2012), the quality of a landslide inventory 

depends on its accuracy and the type and certainty of the information provided. The 

easiest and most straightforward method involves gathering the location of previous 

landslide events from various sources, either from previous studies in the area or 

through an existing landslide inventory database. Geological field mapping is a 

common method in studying landslide features, but due to dynamic natural and 

human processes, there is considerable difficulty in this approach. Moreover, the in-

situ visual investigation does not take into account the occurrences of historical 

landslides.  

In the absence of historical data, NASA provides a freely available Global 

Landslide Catalog as part of the Cooperative Open Online Landslide Repository 

(COOLR) project (https://gpm.nasa.gov/landslides/data.html), where data is provided 

mostly by concerned professionals and citizen scientists, supplemented with online 

news articles (Juang et al., 2019).  

2.1.2 Detection and interpretation of slow-moving landslides using PSI 
PSI has been successfully conducted over the past decade to detect slow-moving 

ground motion. Persistent scatterer interferometry (PSI) is a differential InSAR technique 

that estimates the line-of-sight (LOS) yearly displacement rate from a sparse grid of 

processed radar points collected from multiple SAR images. Lu et al. (2014) stated that 

PSI processing helps overcome the disadvantages of temporal decorrelation and 

atmospheric noises exhibited by DInSAR methods by decoupling height and 

deformation over long time-series analysis. The results of PSI points, however, are 

highly dependent on the number of SAR images selected, the coherence of the image,
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and the time interval between scenes. In the case of highly vegetated areas, PSI tends 

to exhibit noise and low density due to a lack of stable signal reflectors, such as 

buildings and barren land. To this end, it is necessary to adjust coherence manually 

and weeding parameters accordingly to account for noisy pixels while gathering as 

many PS points as possible.

A study by Cigna et al. (2013) analyzed the reliability of PSI in confirming 

previous landslide inventories and mapping the extent of potential landslides 

combined with in situ mapping for validation. A later study by Lu et al. (2014) described 

how PSI helped detect anomalous clusters of slow-moving landslides over 

mountainous and hilly areas. Using hotspot analysis to analyze and interpret areas 

where slope failures are likely to occur, their study detected new slow-moving 

landslides not present in previous landslide inventories by using ancillary topographic 

maps and optical images.  

 PSI has also been used for the refinement of existing landslide susceptibility 

maps. Ciampalini et al. (2016) described how the integration of PSI into existing 

landslide susceptibility maps can increase the degree of susceptibility over certain 

areas. Their findings also indicate how PSI successfully increased the reliability of new 

landslide susceptibility maps by detecting slow-moving landslides that typically occur 

in urban areas. 

 A more recent study by Cigna et al. (2021) aimed to comprehensively quantify 

the accuracy of PSI derived from Sentinel-1 SAR images by comparing their 

displacement velocity from GNSS and ground levelling data. Their results found a 

significantly high R-squared of 0.95 compared with geodetic levelling data with a 

relative error of only 20% for targets subsiding 15mm/year, which significantly 

decreases to 16% for targets subsiding faster than 50mm/year.  

2.1.3 Extraction of landslide features from spectral indices 
Spectral indices derived from multispectral satellite imagery provide an avenue 

to easily identify land cover and the state of vegetation in an area. In mountainous 

areas where slope failures are prevalent, spectral indices aid in identifying landslide 

features. One of the most spectral indices used is the normalized difference vegetation 

index (NDVI), which quantifies the health and amount of vegetation over the area 
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coverage. Yang, Wang and Shi (2013) highlighted the efficacy of NDVI in detecting 

landslides after the occurrence of events that induce rapid downslope movements, 

such as earthquakes, by identifying areas exhibiting sudden drops in NDVI values.  

 The heuristic approach in visually interpreting landslide features using NDVI is 

further highlighted by Fiorucci et al. (2019). By integrating stereoscopic multispectral 

images maximizing the use of radiometric and terrain information, the study was able 

to identify additional landslides than what was previously identified in existing 

landslide inventory maps due to better recognition of narrow, channeled landslides. 

 While still not commonly used for landslide detection, bare soil index (BSI) has 

also been successful in visual interpretation of landslide features due to its ability to 

discern sparsely vegetated and barren areas from dense canopies. Ariza et al. (2021) 

demonstrated the potential of bare soil index derived from Sentinel-2 images by 

successfully detecting 62% of landslides present compared to high-resolution SPOT-7 

imagery.  

 
2.2 Landslide susceptibility mapping using deep learning algorithms 
 Advancements in computational hardware increased the scalability of deep 

learning algorithms allowing for an increase in predictive performance. Given a set of 

input data with conditioning factors serving as independent variables, deep learning 

algorithms calculate the weights of input features in hidden layers in order to extract 

meaningful information. Park and Lek (2016) highlighted that aside from this inherent 

advantage, optimized deep learning models have the ability to derive solutions directly 

from the input data due to their adaptive nature. There are also relatively few 

parameters to consider in deep learning models allowing for streamlined deployment 

of models.  

A 2019 study by Wang, Fang, and Hong using deep convolutional neural 

networks (CNN) found how convolutional neural networks, specifically CNN-2D models 

can be applied for regional analysis of landslide susceptibility. The study concluded 

how CNN-2D can slightly outperform other convolutional neural networks such as CNN-

1D, CNN-3D, and LeNet5 in terms of overall accuracy achieving a score of 77.63%, 4% 

higher than other deep learning models and 7% higher than SVM during assessment.  
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 A similar study conducted by Yi et al. (2020) on the use of convolutional neural 

networks for landslide susceptibility mapping  on a regional scale found that the model 

significantly outperformed standard neural networks and logistic regression in terms of 

both training and validation accuracy metrics. Using multi-scale fusion input data to 

effectively expand the receptive field and improve feature extraction, CNN model 

obtained a training accuracy of 97%, 16% higher than standard neural networks with a 

high validation accuracy of 88% which is also a 6% increase compared with other 

models. 

 Subsequent studies conducted by Tien Bui et al. (2020) focusing on multilayer 

perceptrons found that deep MLPs outperform conventional machine learning 

algorithms and even shallow neural networks by a considerable margin achieving an 

overall accuracy of 90.53% and a high sensitivity of 95%. Comparison with a standard 

shallow neural network showed a 7% increase in sensitivity and 3% increase in overall 

accuracy. While there was a considerable difference in terms of predictive 

performance, it was noted that this method comes at the expense of heavier 

computational load and long process of fine-tuning hyperparameters to achieve high 

performance metrics; a trade-off that future researchers must consider. 

The characteristic of convolutional neural networks to extract spatial patterns 

which are more representative of real-world landslide phenomena was further 

emphasized in a study by Azarafza et al. (2021). By not being constrained into a single 

pixel, the model was able to extract meaningful information contributing to a high 

accuracy score of 90.9%, outperforming other models by at least 5%. 

 

2.3 Landslide susceptibility mapping using conventional machine 
learning algorithms 
 Landslide susceptibility mapping involves combining multiple influencing 

factors as raster of different formats and scales. This often presents problems in some 

lower-end hardware especially on studies conducted on a provincial or regional-scale. 

Deep learning models mostly require specialized hardware to run efficiently due to 

the complexities in its hyperparameters whereas conventional machine learning 

algorithms can be used as a relatively lightweight approach that can run on most entry-
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level hardware. Conventional machine learning algorithms treat each input data as 

individual pixels allowing it to be trained faster at the expense of not being able to 

analyze for meaningful spatial patterns. Despite this obvious limitation, these 

algorithms still remain a viable option for binary classification of landslides that can 

provide a relatively high level of accuracy. 

A study by Tien Bui et al. (2020) showed how SVM can perform on par with 

MLP in terms of sensitivity and overall accuracy with a score of 86.94% and 81%, 

respectively. The scores are only 1% lower than that observed from the MLP.  

 A 2022 study by Hussain et al. showed how logistic regression, one of the most 

common method for landslide susceptibility mapping, can still perform with relatively 

high accuracy achieving an AUC score of 85.61%, a 10% increase as opposed to 

frequency ratio model which is another common method for mapping landslides. 

 
2.4 Landslide vulnerability and risk assessment  
 Vulnerability and risk assessment are crucial components for drafting disaster 

risk reduction and management strategies. In areas where landslides are common or 

highly likely to occur, VRA is utilized to quantitatively determine the potential 

socioeconomic impact of disasters in order to identify areas that need higher priority 

for disaster mitigation.  

 According to Fell, et al. (2008), while there is an increasing need for quantitative 

risk management, there is no unifying procedure for risk mapping among countries 

leading to different accuracy and reliability of produced maps as a variety of input data 

and methodology is used similar to a statement described by Westen et al. (2008) 

regarding landslide susceptibility mapping. The study further emphasized that in the 

context of landslide zonation studies, the definition of hazard, susceptibility, and risk 

are used interchangeably. However, advances in GIS and remote sensing technology 

made it possible to utilize several tools to quantify risk and compare them with other 

hazards and risks present in an area. 

 In order to identify areas at risk of landslide, Arrogante-Funes et al. (2021) stated 

that landslide susceptibility and vulnerability mapping must be conducted as these 

procedures can help in finding variables that influence landslides. But as is the case 
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with landslide susceptibility and risk mapping, there is also no standard procedure in 

how vulnerability mapping can be conducted but suggested that socioeconomic 

factors must be considered. Subsequent studies by Singh and Kanungo (2021) and 

Wang, et al. (2021) stated that physical vulnerability can be integrated for landslide risk 

assessment to serve as an indicator of potential degree of damage to properties. 

 Risk mapping combines the quantified hazard and vulnerability classes in order 

to identify expected economic damages and loss of human life as a result of exposure 

to landslides. This procedure is a disaster mitigation strategy that can help 

policymakers identify areas that need higher priority in order to minimize losses. 

However, as hazard maps rely on dynamic spatio-temporal data the resulting maps 

can vary annually over certain periods of time as opposed to using static input data as 

is the case with landslide susceptibility mapping. Since landslide susceptibility mapping 

also integrates geophysical parameters such as annual precipitation, temperature, and 

NDVI which may be considered as spatio-temporal data, Arrogante-Funes, et al. (2021), 

and Ram and Gupta (2022) suggests the use of resulting landslide susceptibility maps 

as a substitute for a landslide hazard map even though the definition of terminologies 

are technically different.
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CHAPTER III 

METHODOLOGY 
 

3.1 Research Procedure 
 3.1.1 Scope and Limitations 

This section provides a summary of the scope of the study which is as follows: 

1) For preparing a historical landslide inventory using spectral indices, the 

satellite imagery from Landsat and Sentinel-2 platforms will cover various time periods. 

The selection of suitable satellite imagery will be based on the following factors: exact 

date when the landslide was reported; clarity of the location (eg. cloud cover) at the 

date of the satellite image, and visibility of the landslide features.  

Bare soil index and NDVI will be extracted from multispectral satellite images 

and stacked together with a slope raster. Landslide features will be visually identified 

and the values of the point locations are to be used as input in a Gaussian clustering 

model. Clusters showing landslide features will be manually extracted from the 

resulting cluster output. The locations of these clusters on post-landslide imagery are 

to be visually compared with pre-landslide satellite imagery in order to ensure that 

the features are not pre-existing prior to the reported occurrence of landslides in the 

area.  

2) For preparing PSI-based landslide inventory data, ascending and descending 

data from Sentinel-1A/1B platforms on single VV polarization over a 3-year time period 

(2017-2020) will be prepared in order to calculate the average slope displacement rate 

of the area. The resulting persistent scatterrer (PS) points will be merged and 

calculated for their standard deviation which will be designated as the stability 

threshold.  

To reduce the number of points, incident points will be aggregated into a 100 

m x 100 m grid cell and calculated for their average values and average distances to 

the eight nearest neighboring features. The resulting output will be calculated using a 
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Getis-Ord Gi* hotspot analysis to identify red and blue hotspots with 99% 

confidence. The degree of susceptibility will be calculated from the significant points 

based on the number of standard deviations of their average vertical slope 

displacement from the designated stability threshold.  

3) Aggregated points derived from PSI and spectral indices will be used as input 

dependent variables. The values of their location will be extracted from the raster of 

landslide causative factors serving as independent variables. To facilitate binary 

classification of landslide susceptibility, an equal number of non-landslide points will 

be randomly generated. The resulting data will be divided into 70% training data as 

input and 30% test data for accuracy assessment. 

4) The training data will be used to train deep learning models which will create 

the landslide susceptibility maps of the area. The models will be assessed for their 

accuracy. Comparative performance with conventional machine learning algorithms 

will also be conducted for benchmarking purposes. 

5) On the vulnerability and risk assessment stage (VRA), vulnerability mapping 

will only consider social vulnerability quantified from economic parameters and 

resiliency scores of each municipality and city. Risk mapping will be calculated based 

on the percentage of population in each subdistrict exposed to landslides. 

 

 The following points describe the limitations encountered during the conduct 

of the study and how these were addressed: 

1) Due to the geographical location and climate of the study area, there is 

increased difficulty in visually identifying the location of landslide features. For this 

purpose, only three major landslide events encompassing various dates will be 

identified from multispectral satellite imagery. 

 2) The pre-existing problems concerning the identification of landslide features 

from spectral indices extend to PSI analysis. In addition to the aforementioned, PSI 

derived from C-band SAR platforms show mixed performance in vegetated areas. This 

characteristic and atmospheric noise caused by surrounding ocean causes incoherence 

in many of the SAR images which has to be addressed manually through weeding of 

noisy PS points. 
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 3) Aside from noise and coherence problems, another tradeoff to consider is 

the large amount of storage required to accommodate SAR images which in turn, also 

requires high computational power and longer processing times over repeated 

experimentations. 

4) For extracting landslide features from spectral indices, the study will not 

fully employ change detection and the total landslide area as GMM clustering is a 

semi-automatic algorithm which is highly reliant on manually extracting relevant 

clusters. 

5) Due to absence of high resolution images and lack of auxiliary data regarding 

properties, vulnerability and risk maps will not include infrastructures and 

accompanying economical costs of potential landslide disasters. Additionally, due to 

the lack of dynamic data needed for conducting a comprehensive landslide hazard 

mapping, the study will directly use the landslide susceptibility map created as a 

substitute for a hazard map during vulnerability and risk assessment stage. 

 

3.2 Research Methodology 
The methodology encompasses the general flow of the case study which is 

mainly separated into three parts: landslide inventory mapping, landslide susceptibility 

mapping, and landslide vulnerability and risk assessment (VRA). 

In this report, this section is divided into five parts:  

(1) Data acquisition and preprocessing – for landslide inventory mapping, 

Sentinel-1 SAR data is acquired to get PSI points, and spectral indices will be extracted 

from multispectral satellite imagery from  

(2) Landslide inventory mapping techniques, specifically hotspot analysis of 

persistent scatterer interferometry (PSI) points, and semi-automatic extraction of 

landslide features from Gaussian clustering of spectral indices; 

(3) Utilization and optimization of deep learning models, specifically CNN-2D 

(two-dimensional convolutional neural networks) and MLP (multilayer perceptron), 

and; 
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(4) Benchmark comparison of deep learning models with conventional machine 

learning algorithms (random forest, SVM, logistic regression) in terms of ROC score and 

overall accuracy. 

(5) Vulnerability and risk assessment (VRA) to identify subdistricts exposed to 

landslide occurrences in terms of percentage of population. 

 

 

Figure 3.1 Conceptual framework of landslide inventory and susceptibility mapping. 

 

 

 
Figure 3.2 Conceptual framework of landslide vulnerability and risk assessment. 
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3.3 Data acquisition and Preprocessing 
Moderate resolution multispectral satellite imagery from Sentinel and Landsat 

is to be prepared in advance. Existing geologic data and weather data are also to be 

collected from relevant government agencies. Cloud masking was applied on satellite 

images to avoid potentially undesirable results and then converted into null values 

prior to scaling. 

 To reduce training time, all input data with the exception of categorical 

variables are to be standardized to normally distribute data by reducing mean to 0 

and variance to 1 as described in the following equation:  
 

=  
 

  
 

Where,  is the original value,  is the mean, and  is the standard deviation. 

 The data will be divided into 70% training as input for deep learning algorithms 

and 30% test sets for accuracy assessment. The data to be used in the study and their 

sources are listed in Table 3.1. 

Table 3.1 Data type and sources. 

Data type Source 
Sentinel-1 SAR SLC IW:  

     Path 69 ascending (2017-2020) 
     Path 134 descending (2015-2020) 

Copernicus Open Access Hub 

 

Sentinel-2 multispectral image Copernicus Open Access Hub 

Landsat 5 ETM EarthExplorer 

ALOS-PALSAR DEM Copernicus Open Access Hub  

Geologic map Mines and Geosciences Bureau (MGB) 

Fault map Philippine Institute of Volcanology and 

Seismology (PHIVOLCS) 

Population data Philippine Statistics Authority (PSA) 

 

(3.1) 
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Selection of landslide factors 
Currently, there are no established standards for a suitable landslide 

influencing factor. The selection of the environmental factors used in the susceptibility 

assessment depends on the type of landslide, the type of terrain, and the availability 

of existing data and resources (Westen et al., 2008). Truong et al. (2018) recommended 

the use of topographic features, land cover type, lithology, soil, hydrological features, 

and distance to active fault zones for places located within active fault zones. 

Topographic features include the slope and its aspect, altitude, and shape. 

Hydrological features include river networks, TWI (topographic wetness index), and SPI 

(stream power index). The aforementioned topographic and hydrological features can 

be readily extracted and quantified from DEM (digital elevation models)  

In this study, landslide factors were selected based on their influence in 

inducing downslope soil movement. In general, slopes with a higher degree of the 

gradient are more susceptible to landslides. Differences in slope aspect influence the 

amount of precipitation and solar radiation, while curvature reflects the terrain's 

complexity and topography (Zhang et al., 2019). Soil and lithology effectively influence 

the occurrence of landslides due to differences in shear strength, porosity, density, 

and particle sizes. Seismic energy released by faults can effectively trigger landslides 

in steep areas with weak soil foundations. Hydrological influences soil movements as 

sediments are suspended and can travel in the same direction as water. Additionally, 

moisture can also affect soil cohesion through saturation. The NDVI reflects both the 

amount and condition of vegetation. Areas with higher vegetation are generally at 

lower risk of landslides as root cohesion effectively strengthens the underlying soil and 

prevents it from being carried and transported by erosional agents. A list of landslide 

influencing factors is summarized according to their category in Table 3.2. 
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Table 3.2 Selected landslide influencing factors. 

Category Factors 
Physical  Elevation 

  Slope 
  Aspect 
  Curvature 
  Topographic ruggedness index 
  Normalized difference 

vegetation index (NDVI)  
  Fault distance 

Hydrological  Topographic wetness 

index(TWI) 
  Stream distance 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Elevation map of Albay in meters. 
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Figure 3.4 Slope gradient map of Albay. 

Figure 3.5 Slope aspect of Albay. 
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Figure 3.6 Buffer showing distance to active faults of Albay. 

Figure 3.7 Topographic wetness index of Albay. 
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Figure 3.8 NDVI of Albay. 

Figure 3.9 Flow direction map of Albay. 
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Figure 3.10 Terrain roughness index of Albay. 

 

Figure 3.11 Planform curvature of Albay. 
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Figure 3.12 Profile curvature map of Albay. 

Figure 3.13 Stream distance map of Albay. 
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3.4  Landslide Inventory Mapping 
Gathering landslide points is the first step in conducting landslide susceptibility 

mapping. According to Guzetti et al. (2012), the quality of a landslide inventory 

depends on its accuracy and the type and certainty of the information provided. The 

easiest and most straightforward method involves gathering the location of previous 

landslide events from various sources, either from previous studies in the area or 

through an existing landslide inventory database. Geological field mapping is a 

common method in studying landslide features, but due to dynamic natural and 

human processes, there is considerable difficulty in this approach. Moreover, the in-

situ visual investigation does not take into account the occurrences of historical 

landslides. To account for previous landslide events, an existing landslide inventory 

detailing the location and description of the feature can be used, preferably from 

official government sources. In the absence of historical data, NASA provides a freely 

available Global Landslide Catalog as part of the Cooperative Open Online Landslide 

Repository (COOLR) project, where data is provided mostly by concerned professionals 

and citizen scientists, supplemented with online news articles (Juang et al., 2019).  

To fill in the gaps of landslide inventory at the local level, this study will utilize 

remote sensing techniques namely, persistent scatterer interferometry, and spectral 

indices to create a landslide inventory.  

3.4.1 Persistent Scatterer Interferometry 
Persistent scatterer interferometry, hereafter referred to as PSI, is a powerful 

tool for monitoring landslide displacement. It offers a synoptic view that can be 

repeated at different time intervals and at various scales (Tofani et al., 2013). PSI is 

commonly applied on multiple SAR images in conjunction with in situ monitoring to 

provide a coherent interpretation of landslide movements and account for the revisit 

time of SAR platforms.  

For PSI processing, the technique is conducted via a two-part approach as described 

by Mancini et al. (2021):  

 (i). Processing of acquired SAR images and formation of interferogram using 

ESA’s SNAP (Sentinel Application Platform) software packages. 
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 (ii) Processing of interferograms using StaMPS (Stanford Method of Persistent 

Scatterrers) developed by Foumelis et al. (2018), implemented in MATLAB. 

Interferogram generation done via ESA SNAP’s Sentinel-1 toolbox starts with 

the automatic selection of a master image. All acquired SAR images are split based on 

the bursts, sub-swath and polarization needed for the study. For mapping landslides, 

VV polarization is typically used as it is sensitive to vertical displacement and 

downslope movement. Orbital corrections are then applied to the image splits and 

co-registered via backgeocoding. During the coregistration stage, master-slave image 

stacks are generated and undergo spectral diversity enhancement to improve 

coherence. Debursting is applied to remove redundant scan lines from different bursts 

and sub-swaths. Subsetting may be done at this stage to process the desired area of 

interest for interferogram generation. Topographic phase removal is applied to the 

interferogram subset with SRTM DEM to account for topographic variations resulting 

from the temporal difference of master-slave pairs before being exported to StaMPS 

format. 

During StaMPS processing, candidate persistent scatterer (PS) points are 

selected from every interferogram via phase noise estimation and noisy PS points are 

weeded. Phase correction and unwrapping are done to preserve information and 

merge patches generated during PS point selection. Spatially-correlated noises are 

then estimated to account for DEM errors mapped into radar coordinates. Processed 

PS points are refined further to correct atmospheric noise, automatically done using 

Toolbox for Reducing Atmospheric Noise (TRAIN) as part of the StaMPS package in 

MATLAB. The parameters used during StaMPS operation are based on the 

recommendation of Hoser (2018) for PSI-based landslide detection. 
Because SAR platforms operate with a LOS direction tilted concerning the vertical 

direction, coupled with the incidence angle being very small (30-45° for Sentinel-1A/B), 

sensors are more sensitive to vertical deformation. To compensate for this, combining 

data from ascension and descension orbits is necessary to extract both horizontal (in 

the east-west direction) components of the movement and, consequently, the actual 

vector of displacement (Tofani et al., 2013) in three dimensions.  
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 To quantitatively analyze a large number of PSI points, PSI points need to be 

merged and aggregated into a grid cell size of 100m. In order to exclude PSI points 

reflected from built-up areas, PSI points with an average slope angle of <5° are 

removed. This is to ensure that no PSI points are going to be calculated in flat areas 

where slope failures are highly unlikely to occur.  

The resulting VLOS points are converted into VSLOPE which projects data along 

the direction of the steepest slope using the formula proposed by Notti et al. (2014): 

 
= ( cos( ) sin( 1.571)) 

+( ( 1 cos( ) cos( 1.571)) 

+ sin( ))) 

 

 Where, , , and  are the directional cosines of the LOS platform 

calculated as:  
= cos( ) ; 
= cos(1.571  ) cos( ); 
= cos(1.571  ) cos( ) ; 

= 3.142  ;  = 4.712  . 
 

The parameters used for calculating  is listed in Table 3. 

Table 3.3 Parameters for calculating coefficient . 
Symbol Description 

S Slope (radian) 

A Aspect 

 VLOS and VSLOPE ratio 

 LOS azimuth (radian) 

 LOS incident angle 

 Ellipticity 

 Altitude 

(3.2) 

(3.3) 
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Finally, VSLOPE can now be calculated as:  
VSLOPE =VLOS/  

 
Since landslides move downslope, VSLOPE with positive values are removed. 

Positive values indicate displacement towards the satellite sensor. Negative values 

measure displacement moving away from the satellite sensor indicating downslope 

movement. VSLOPE points are then converted into absolute value. The remaining VSLOPE 

from ascending and descending platforms are aggregated and spatially joined to a 

100m grid cell in order to further reduce the number of points and decrease 

computational load. The grid cells are calculated for their average VSLOPE to account 

for incident points.  

Although the method is still uncommon, the use of PSI-derived landslide 

inventory successfully quantifies landslide susceptibility. In a study conducted by 

Piacentini et al. (2015) on mapping slow-moving landslides in a medium-scale area, the 

landslide susceptibility map produced using PSI-derived data showed an AUC of 0.95 

using a weight-of-evidence model. PSI has also proven useful in refining and updating 

existing landslide susceptibility maps, as demonstrated by the 2016 study of 

Ciampailini et al., in which the incorporation of PSI data led to an increase in high 

susceptibility areas due to the prevalence of slow-moving landslides. 

3.4.2 Hotspot Analysis of PSI points 
 In order to accurately pinpoint areas with a high degree of landslide 

susceptibility with high confidence, hotspot mapping analysis will be conducted on 

the resulting VSLOPE calculated from the time-series displacement of ascending and 

descending points similar to the approach adopted by Lu et al. (2012, 2019) and Liu 

et al. (2020).  

 Getis-Ord Hotspot Analysis returns z-score which describes intensity of clusters. 

The resulting z-score also corresponds to the level of confidence of calculated points 

or the p-value. The formula for Getis-Ord is written as:  

( ) =        

{[(  × )  ]/( )}
 

(3.4) 

(3.5) 
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 Where,  is the total number of VSLOPE points in location  given  neighbors 

within a scale distance ,  is the surface displacements of VSLOPE points,  is the 

mean value of displacements, and  is the standard deviation of displacements. 

A fixed distance band is designated which is calculated from the average 

distance of a single point to eight neighboring features using the average nearest 

neighbor algorithm. The resulting red and blue hotspots are to be evaluated further 

to only select locations with p-value < 0.01, signifying 99% degree of confidence.  

Finally, to extract points with a high degree of susceptibility a slope stability 

threshold is designated which is calculated from the standard deviation of the merged 

PSI points. Points with 4  standard deviation from the stability threshold will be 

classified as potential landslide points as modified from the approach of Ciampalini, 

et al. (2016) originally used for the refinement of existing landslide susceptibility maps. 

3.4.3 Gaussian clustering of spectral indices 
Using data from multi-spectral satellite platforms such as Landsat 8 and 

Sentinel, spectral indices can be created which are sensitive to soil and vegetation, 

making them ideal for monitoring sol movement.  

To differentiate barren land from other classes, bare soil index can be used. 

This index is based on the combination of the normalized difference vegetation index 

and normalized difference built-up index in order to enhance the contrast of bare soils 

(Diek et al., 2017). A recent study by Ariza et al. (2021) proposed the use of a bare soil 

index to detect traces of soil movement by combining blue, red, near-infrared and 

shortwave infrared bands from Sentinel-2 to observe variations in soil moisture 

described in the following equation:  

=  
( + ) ( + )
( + ) + ( + )

 

Another index commonly used is the normalized difference vegetation index 

which is useful for monitoring changes in vegetation and forest cover. Yang et al. (2019) 

described how this index could be used for temporal analysis of slope movement in 

densely vegetated mountainous areas. The index can be described in the following 

equation: 

(3.6) 
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=  
+

 

To streamline the process of compiling landslide inventories through spectral 

indices, the study will use a Gaussian mixture model to divide mapped spectral indices 

and slope values into separate clusters using well-known landslide event locations as 

input.  
Gaussian clustering is a probabilistic model that assumes samples are generated 

from k Gaussian distributions with unknown parameters (Wang, Azzari, and Lobell, 

2019). K-means algorithm is used to initialize the Gaussian clustering by partitioning 

samples into clusters and assigning them to the nearest centroid using squared 

Euclidean distance. The cluster centroids are assigned according to the means of 

samples. K-means typically choose a centroid that will minimize the sum of squares 

within a cluster as illustrated in the following: 

 ,…,
1

| |
 (  )

,

 

Where, | | denotes the number of observations in the  cluster. 

 

 

 

 

 

 

Figure 3.14 Clustering boundary of K-means (Photo from Github). 

(3.7) 

(3.8) 
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However, unlike K-means which performs a hard assignment on the clusters, 

Gaussian clustering implements an expectation-maximization algorithm by calculating 

the probability of samples belonging to each Gaussian and estimating the means and 

covariances of the clusters from assigned samples until it converges to a local 

optimum. Gaussian clustering is then calculated as: 

 

log ( | , , ) =  log ( | , )

=   ,.…….,  

Where, ( | , ) are the derived Gaussian densities from cluster component 

k, arameter  is the mean of component, covariance , and the mixing coefficient 

 which is the estimate of the density of each Gaussian component.  

 

Figure 3.15 Clustering boundary of Gaussian mixtures (Photo from Github). 

 

 

(3.9) 
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To assess quality of clusters, a silhouette coefficient is calculated as:  

=  
 ( , )

 

Where,  is the mean distance between a sample and all other points in the same 

class and  is the mean distance between a sample and all other points in the next 

nearest cluster.  

The parameter optimal number of clusters k can then be determined to obtain 

predicted Gaussian clusters. As the underlying assumption of GMM clustering is tied to 

normal distribution of data, the resulting decision boundary is elliptical which allows 

the model to readily accommodate non-linear data by considering covariances. Its 

probabilistic nature also allows the model to optimize the likelihood of one data point 

belonging to a certain cluster allowing for better quantitative fitness of clusters. 

The resulting clusters are visually evaluated from the original multi-spectral 

imagery in order to only extract landslide features and ensure the quality of the 

resulting landslide inventory. This is to determine whether the barren features are pre-

existing or recurring prior to the landslide events such as the case with dry river beds, 

construction sites, dirt roads, and fallow lands.  

 

3.5 Conventional Machine Learning Algorithms 
 For benchmark comparison purposes, this study will utilize conventional 

machine learning algorithms typically used for landslide susceptibility mapping, 

namely: logistic regression, random forest, and support vector machines. Their 

performance is compared with deep learning models. A brief summary of each 

conventional machine learning algorithm used in the study is described in the following 

sections. 

 3.5.1 Logistic Regression 
 Logistic regression is a modified form of generalized linear models used for 

binary classification tasks despite its name. A logistic regression model uses a logistic 

(sigmoid) function, which transforms a linear regression line into an S-shaped curve to 

predict outputs whose values are as close to but never exceed 0 and 1. The logistic 

(3.10) 
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curve allows the model to obtain a broader range of variables. The equation can be 

written as:  
( ) =  

1
1 +  ( ) 

Where sigmoid constant  is the base natural logarithm equal to 2.718, and  is the 

intercept of the coefficients of independent variables . 

 

Figure 3.16 Logistic regression curve (Photo from Analytics India). 

3.5.2 Random Forest 
 In a typical tree-based model, binary recursive splitting is applied to grow a 

large tree on given training data. It is composed of a root node where the first split will 

occur and then branches out into several decision nodes, stopping at the leaf node or 

terminal node, which will predict the outcome. The splitting of nodes is randomly 

determined based on the values of specific attributes. The splitting of nodes is 

controlled by the cost function Gini.

( ) =  (1  ) 

Where, is the proportion of training observations of class in node .

The Gini index measures the impurity of a given node by measuring the total 

variance across all features in a given class. A Gini index of 0 indicates that the node is 

(3.11) 

(3.12) 
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pure. For binary tasks, the Gini index takes on a small value. The Gini index takes on a 

small value for binary tasks if the proportion of training observations is close to 0 or 

1.A random forest model is a tree-based model which combines multiple decision 

trees and averages their output to improve predictive performance and reduce over-

fitting. A random forest uses a large number of unpruned random decision trees that 

their results are combined using an un-weighted majority of class votes (Rokach, 2016). 

To find the optimal number of decision trees to be created, bootstrap aggregation 

(OOB estimation) is implemented. Here, each new tree is fit from a bootstrap sample 

of the training observations. Random forest model can be written using the following 

formula:  

( ) =  ( | ) ( | ) ( ) 

 

Where, ( | ) and ( | ) are the probability and relative frequency of the 

predicted output classification  of the input variable , respectively, and ( ) 

is the probability distribution of the input variable . 
 

 

 

 

 

 

Figure 3.17 Schematic diagram of a random forest model (Photo from Medium). 

According to Abidin et al. (2020), the ability of a random forest to outputs of 

many decision trees makes the model highly robust and cancel out biases making 

overfitting less of a problem albeit with a trade-off of being computationally intensive. 

 

(3.13) 
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3.5.3 Support Vector Machine 
 Support vector machine (SVM) algorithm creates an optimum linear hyperplane 

that separates data patterns. For non-linear data, a radial basis function (RBF) kernel is 

used to convert the data into a linearly separable format in a high-dimensional feature 

space.  

 

 

 

 

 

 

 

 

 

Figure 3.18 Hyperplane separating two classes obtained from James et al. (2013). 

In the implementation of SVM, the parameters C and gamma must be 

considered. The parameter C, common to all SVM kernels, trades off the 

misclassification of training examples against the simplicity of the decision surface. 

Gamma defines how much influence a single training example has. A low C makes the 

decision surface smooth, while a high C aims at classifying all training examples 

correctly. Larger gamma means samples must be closer in distance to be affected and 

vice versa. The non-linear RBF kernel SVM can be written in the following equation: 

 

, = (  )  
 

Where,  is a positive constant of the training vectors  and  , and  is the natural 

logarithm. RBF kernel classifies data by finding similarities between training and test 

observations in terms of Euclidean distance. As SVM RBF kernel is a non-linear model, 

the transformed space is infinite-dimensional making the coefficients of each variable 

to become unrelated. As such, the relationship of features is only implied. 

(3.14) 
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Figure 3.19 RBF kernel separating non-linear data in 3d space (Photo from Learn 

OpenCV).  

 

3.6 Deep Learning Algorithms 
Deep learning algorithms are the general form of an artificial neural network, 

which is also a subset of machine learning. The basic structure of a neural network 

comprises one input layer, a hidden layer, and an output layer. Any artificial neural 

network with 3 or more hidden layers are generally considered as a deep learning 

model (Emmert-Streib et al., 2020). After one forward pass, neural networks make use 

of backpropagation which automatically adjusts the weights and biases of hidden 

layers through reverse matrix multiplication to calculate the optimal gradient of a given 

loss function. Deep learning models to be used in this research are described below. 

3.6.1 Multilayer Perceptron 
Multilayer perceptron (MLP), also referred to as artificial neural network (ANN) 

is an interconnected network of simple computational elements, where the elements 

are named neurons (Mo et al., 2017).  

For binary classification tasks, the MLP consists of the following: 

i. an input layer of neurons with values x1, · ·· ,xi;

ii. hidden layers which compute the weighted summation of extracted features 

from inputs defined as w1, · ·· ,wn, and a predefined offset or threshold value bias 

b; 
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iii. output layer y1, · ·· ,yi with values ranging from 0 to 1.  

A typical MLP can be summarized in the following equation:  
 

+  

 

Where,  is the summed product of weights  and input data , and  is the 

bias or offset value. 

 

 

 

 

 

 

 

 

 

Figure 3.20 Structure of a typical MLP (Abderrahim, Chellali and Hamou, 2016). 

For landslide susceptibility mapping, input layers represent the given landslide 

conditioning factors. The output layer is a continuous binary value ranging from 0 to 1, 

representing non-landslide and landslide classes. 

3.6.2 Convolutional Neural Network 
A convolutional neural network (CNN) is a multilayer feed-forward neural 

network designed specifically to process large-scale images or sensory data in the form 

of multiple arrays by considering local and global stationary properties (Hu et al., 2020). 

Convolutional neural networks (CNN) are similar to the standard MLP in that both have 

an input layer, multiple hidden layers of weight and biases, and an output layer.  

This type of neural network has been found to excel at extracting meaningful 

local features based on their shared-weights architecture and space invariance 

(3.15) 
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characteristics (Hu et al., 2018). The key difference between CNN and the standard MLP 

is its use of convoluted filter layers consisting of several convolutional units to extract 

features from the input layer. Another key component is the use of a pooling layer to 

reduce the feature's dimensionality, reducing the number of parameters and 

decreasing computational load (Wang, Fang, and Hong, 2019). 

Koushik (2016) described a typical CNN model where layers are filter maps, and 

each layer can be written as a sum of convolutions of the previous layer using the 

equation:  

, =  ( (. , ) , (. , ))( )  

 

Where,  is the subsequent layer of input data , Wj is the convolutional filter 

of kernel size k,  is the activation function, u is the offset value, and * is the discrete 

convolutional operator. 

Figure 3.21 Generalized CNN architecture (Wang, Fang and Hong, 2019). 

 

 

(3.16) 
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3.7 Accuracy Assessment 
 For benchmark comparison of deep learning algorithms, accuracy assessment 

is conducted using performance metrics available in the Scikit-learn library. Receiver 

operating characteristic (ROC) curve, which represents sensitivity as a function of the 

false positive rate (Chen et al., 2018) and is quantitatively measured by the AUC (Area 

under ROC curve) is used to visually compare the predictive performance of algorithms. 

 Since landslide susceptibility mapping is a binary classification task, precise 

statistical measures are used for accuracy assessment of produced maps. To identify 

the ratio of correctly identified classes over the number of predicted classes, precision 

of predicted positive and negative classes are measured using the following formula: 

 

  and   

 

 

Where,  is true positive, TN is true negative, FP is false positive, and FN is false 

negative. 

 To assess how an algorithm can correctly classify samples belonging to a 

specific class, recall is assessed. For binary classification tasks, two types of recall; 

sensitivity and specificity are assessed. Sensitivity is the recall of the positive class or 

the performance of an algorithm in classifying true positives or the landslide classes, 

described as:  

+
 

 

Specificity is the recall of the negative class which measures how well an 

algorithm performs in classifying true negative or non-landslide classes, described in 

the following formula:  

 +
 

 

(3.17) 

(3.18) 

(3.19) 
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For a precise summary of the performance of models used for landslide 

susceptibility mapping, overall accuracy of all models are assessed which takes into 

account and the true and false prediction of all classes using the formula: 

 

+
+ + +  

 

 

 

3.8 Landslide Vulnerability and Risk Mapping 
 Vulnerability and risk assessment is conducted after landslide susceptibility 

mapping to quantify the socioeconomic impact of potential landslide disasters. 

Vulnerability is the estimated degree of damages to an element in the event of a 

landslide occurrence (Lu et al., 2014, Wang et al., 2021). According to Abdulwahid and 

Pradhan (2017), vulnerability is typically used to describe physical, social, and 

economic indicators which quantifies the effect of landslides in an area. Vulnerability 

indicators which mostly rely on published information are generally assessed 

empirically (Fell et al., 2008).  

 Due to the lack of high resolution satellite data and information regarding the 

costs of infrastructures, the study assessed social vulnerability on a municipal scale 

using a formula modified from Guillard-Gonçalves and Zêzere (2018) and Gonzalez et 

al. (2020) described as:  
 

=  
+
2

 

 

Where,  is the indicator for economic parameters and  is the resiliency scores of 

municipalities to landslides. 

 Risk is the expected losses that will be incurred of an exposed element in the 

event of a disaster which includes the probability of a disaster and the magnitude of 

losses (Wang, et al., 2021). The exposed element considers the monetary values of 

properties at risk or the number of human lives (Lu, et al., 2014). Risk mapping typically 

(3.20) 

(3.21) 
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combines hazard values derived from dynamic spatial data and vulnerability maps. In 

this study however, landslide susceptibility map will be used in place of a hazard map 

as carried out by Ram and Gupta (2021) combined with exposed elements similar to a 

method by Lu et al. (2014). The modified landslide risk formula is then described as: 

 

= × ×  
 

Where,  is landslide susceptibility,  is the vulnerability of municipalities to disasters, 

and  is the elements exposed to landslides described as the number of population 

per subdistrict in the study. 

 To identify subdistricts that are at risk of landslides and create a 

comprehensible output risk exposure map showing the percentage of population 

exposed to landslides, mean zonal statistics is also applied and then divided over the 

actual population of each subdistrict as applied by de Almeida et al. (2016) described 

in the following formula:   

 = × 100 

 
Where,  is the average number of population exposed to landslides in a subdistrict 

and  is the number of population in each subdistrict.

(3.22) 

(3.23) 
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CHAPTER IV 
RESULTS 

 

4.1  Landslide Inventory Mapping 
 The initial results of landslide inventory mapping highlight the utilization of PSI 

VLOS measurements by identifying landslide points based on their VSLOPE (vertical slope 

velocity). Another highlight of this section is the application of Gaussian clustering on 

spectral indices to extract three confirmed landslide events, which are further visually 

verified by a pre-landslide image and cross-verification through news reports. 

 4.1.1 PSI points processing 
Results of StaMPS analysis in MATLAB using the parameters suggested by 

Lazecky (2011) and Hoser (2018) for landslide detection yielded 163,627 points for 

ascending images and 113,898 points for descending images, totaling 277,525 PS points. 

The maximum topographic error is modified from the default 20m. to 30m. since input 

SAR data are projected using a 30m SRTM digital elevation model. Parameters in 

StaMPS modified from the default settings are described in Table 4.1. 

 

Table 4.1 StaMPS parameters as modified from Lazecky (2011) and Hoser (2018). 

Parameters Description Default Used 

max_topo_err Maximum uncorrelated DEM error. 20 30 

clap_win CLAP (Combined Low-Pass and High Pass) 

filter window 

32 16 

unwrap_grid_size Resample grid spacing 200 100 

unwrap_time_win Smoothing window (in days) for estimating 

phase noise distribution for each pair of 

neighbouring pixels. 

730 365 

unwrap_gold_alpha Value of  for Goldstein filter 0.8 5 
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Table 4.1 (Continued). 

Parameters Description Default Used 

scla_deramp Phase ramp estimation. ‘n’ ‘y’ 

unwrap_gold_n_win Goldstein filter window size 32 8

weed_standard_dev Threshold standard deviation for dropping 

noisy pixels. 

1 1.5 

scn_time_win Spatio-temporal filter window of 

atmospheric noise (in days) 

365 50 

Figure 4.1 Resulting ascending VLOS points. 

In order to extract VSLOPE from the initial VLOS of ascending and descending 

points, VLOS is projected along the steepest slope following the procedure proposed 

by Notti et al. (2014) which considers the directional cosines of the VLOS calculated 

from the incidence angle and azimuth of the SAR platform. VLOS points located in 

slopes with <5° gradients are excluded from the calculation as this signifies reflectors 

located in flat areas where slope failure is highly unlikely to occur. As VSLOPE values 
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signifying subsidence and potential slope failures are negative, positive values are 

discarded as this would signify landslides moving upslope, which is highly unlikely in 

nature.   

 

As there are no ground levelling and geodetic measurements conducted to 

accurately determine the stability threshold of gathered PS points, a stability threshold 

of 11mm/yr. is designated to assess the degree of susceptibility of VSLOPE. The stability 

threshold is calculated from the combined standard deviation of ascending and 

descending VLOS points similar to the approach of Ciampalini et al. (2016). The 

designated stability threshold is also close to the 10mm/yr value determined by Righini 

et al. (2012) to discriminate significant slow-moving landslides accounting for the 

underestimation of slope movement by PSI. All positive VSLOPE are excluded as this 

signifies either terrain uplift or landslides moving upwards which are impossible to 

happen in the real world.  

To further reduce the number of points and account for incidence, the merged 

VSLOPE points are spatially joined and aggregated to a 100m grid cell and calculated for 

Figure 4.2 Resulting descending VLOS points. 
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the average VSLOPE in each individual cell. Grid cells with no count and those outside 

the boundaries of the study area are excluded. A 100 meter ring buffer is constructed 

outside the boundaries of the study area to account for the uncertainty in locations 

caused by spatial joining and phase shifting of PS points. A summary of the resulting 

VLOS (ascending and descending) and VSLOPE are described in Tables 4.2 and 4.3, 

respectively.  
 

Table 4.2 Summary of acquired ascending and descending Sentinel-1 InSAR data.  

 Ascending Descending 

Temporal range 10/12/2017 – 

12/31/2020 

07/30/2017 - 

06/08/2020 

Master image date 01/23/2019 01/09/2019 

No. of images 62 images 65 images 

No. of PS points 163,627 points 113,898 points 

Min. VLOS(mm/yr) -59.13 -40.45 

Max. VLOS(mm/yr) 32.76 39.21 

Stability threshold (mm/yr) ±7.14 ±4.74 

LOS Azimuth ( ) -0.21 -2.93 

 

Table 4.3 Summary of VSlope points. 

No. of VSLOPE features 57,438 points 

After spatial joining 13,152 cells (100m grid) 
Max. VSLOPE (mm/yr.) 232.26 

After spatial joining 226.31 
Mean VSLOPE (mm/yr.) 18.46 

After spatial joining 18.34 
Stability threshold (mm/yr.) 0 to 11 
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The maximum VSLOPE prior to spatial joining is located on the slopes of Mayon 

Volcano. Aggregation of VSLOPE drastically reduced the maximum VSLOPE. However, it was 

observed that all VSLOPE exceeding 160mm/yr-1 prior to aggregation are clustered within 

the permanent danger zone of Mayon Volcano where lahar flows and volcanic debris 

regularly accumulate during periodic eruptions. A mean VSLOPE of around 18 mm/yr.-1 

indicates that slow-moving landslides are prevalent in the area. The similar mean VSLOPE 

before and after spatial joining also indicates that aggregation of points did not 

significantly affect the value of VSLOPE as points very close to each other typically have 

similar velocities.  

Figure 4.3 Resulting VSlope points after spatial joining. 
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A. Spatial Autocorrelation Analysis (Moran’s I) 

Aggregated PSI points are calculated for their average distance to eight 

neighboring features to determine the distance band for spatial autocorrelation and 

hotspot analysis. The average distance threshold to eight neighboring features is 

determined to be 540 meters. Results of Moran’s I shows that a p-value of <0.01 and 

a z-score of >2.58 indicates that VSLOPE points are significantly clustered. 

4.1.2 Landslide hotspot mapping of PSI points 
Despite the precise millimeter measurements of PSI points, their quality is still 

highly dependent on the coherence, local terrain, topography, and quality of the digital 

elevation models to be used. Projections and grid resampling also introduce variations 

in the locations and actual values of PSI points which further necessitates in situ 

measurements which may be costly in terms of time and resources considering the 

large study area.  

Figure 4.4 Spatial autocorrelation results. 
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 To determine the significance of VSLOPE points, Getis-Ord Gi* hotspot analysis is 

conducted which creates red and blue hotspots and classifies their confidence level. 

Red hotspots indicate clustering of high VSLOPE values, while blue hotspots indicate 

clustering of low VSLOPE values. A fixed distance band of 540 m. is applied to the points 

with VSLOPE as the weighting factor. In order to produce a reliable landslide inventory 

map derived from VSLOPE, only red hotspots and blue hotspots with a 99% confidence 

level were accepted.  

A high concentration of VSLOPE was observed within the radius of active Mayon 

Volcano. This is further emphasized by a high concentration of hotspots and coldspots 

near the cone upon closer inspection. Mayon Volcano regularly experiences phreatic 

eruption. During typhoons and eruptions, volcanic debris and lahar flow also regularly 

accumulate within the designated 12km. permanent danger zone. 

Figure 4.5 Hotspot analysis results. 
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Finally, in order to discriminate critical areas from the extracted hotspot points, 

a stability threshold of 11mm/yr. derived from the standard deviation of ascending 

and descending VLOS were used to classify the points. VSLOPE points 4  standard 

deviations from the stability threshold were designated as having very high degrees of 

susceptibility. This procedure is modified by Ciampalini et al. (2016) in classifying VSLOPE 

points for landslide susceptibility.  

Figure 4.6 Clusters located within Mayon Volcano. 

Table 4.4 Hotspot analysis summary. 

99% confidence - Hot spots 591 points 
- Cold spots 280 points 

95% confidence – Hot spots 220 points 

- Cold spots 216 points 

90% confidence – Hot spots 213 points 

- Cold spots 213 points 

Insignificant 11419 points 
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Out of 891 VSLOPE points with 99% confidence level, 356 points were designated 

as having very high degrees of susceptibility indicating the potential for landslide and 

slope failure. 154 of these points are located within the permanent danger zone of 

Mayon Volcano. However, 11419 points have been considered insignificant as false 

discovery rate correction was applied to account for spatial dependence and reduce 

the rate of false positive results. Another possibility is the factor of a relatively short 

fixed distance band of 540 m. which was the average distance of one feature from the 

nearest neighboring feature. The aggregation of incident points may have also 

contributed to a relatively high number of insignificant points. As the mean of incident 

points is obtained after aggregation, this process inadvertently eliminates local patterns 

but may have introduced high variations in values between neighboring features 

leading to FDR considering them as insignificant. 

To accommodate binary landslide susceptibility classification, points below 

11mm/yr VSLOPE at a 99% confidence level are designated as non-landslide classes due 

to their extremely slow velocity. These points are classified as having low susceptibility 

Figure 4.7 PSI-derived landslide inventory. Green points signify non-landslide points.
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degrees as their displacement rates are below the designated stability threshold. In 

total, there are 335 non-landslide points derived directly from hotspot analysis of PSI-

derived VSLOPE points. 

4.1.3 Landslides extracted from spectral indices 
Features extracted from spectral indices represent location where landslides 

have been confirmed by news reports and visual interpretation of multi-spectral 

satellite imagery. To extract landslide features efficiently, a Gaussian mixture model 

(GMM) clustering algorithm was applied on a stack of NDVI, bare soil index, and slope 

rasters. Due to the geography of the area, most satellite images have significant cloud 

covers all-year round which is prevalent during the typhoon season which starts from 

July to December. Frequent phreatic eruptions of Mayon Volcano also makes it difficult 

to identify eruption-induced landslides as smoke covers significant portions of the area 

near the permanent danger zone where most slope failures occur. This difficulty is 

further complicated by rapid vegetation regrowth due to frequent rainfall in the 

tropical humid environment of the study area. As such, only three major landslide 

events were considered in the study which were validated from archived news articles 

and visual interpretation of high-resolution satellite imagery. Visual interpretation was 

carefully conducted in order to not extract pre-existing features similar to landslides 

that might be incorrectly identified by the clustering model such as barren construction 

sites, dry river beds, fallow lands, and to some extent, built-up areas.   

 Using GMM clustering on a raster stack of spectral indices, the AUC showed 

relatively high predictive performance. However, as a semi-automatic algorithm, 

landslide features had to be extracted manually by removing other clusters and pre-

existing features that were classified as belonging to the landslide clusters such as 

built-up areas, fallow lands, and dry river beds. Two classes indicating landslide and 

non-landslide points were used for clustering. The choice of the optimal number of 

clusters is arbitrary and varies across the three major landslide events. The final 

number of cluster components was chosen considering the AUC score of the 

probability of predicted clusters and the ease of visually separating landslide and non-

landslide features in a GIS environment. A total of 85 confirmed landslide points were 

extracted across three major landslide events. 
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 This section describes the three major landslide events recorded and used for 

creating landslide inventory maps derived from spectral indices. All landslide events 

were rainfall-induced because of typhoons. 

 

A. November 2006 Typhoon Durian (local name: Reming) 

Figure 4.8 Aerial view of villages buried by lahar flow in Legazpi City, Albay (Photo 

from Bulatlat, dated December 2006). 

On November 30, 2006 supertyphoon Reming hit Albay triggering lahar flows 

and landslides coming from Mayon Volcano. According to PAGASA Weather Advisory, 

the typhoon packed a maximum sustained winds of 190 km/h near the center with a 

gustiness of 225 km/h (Orense and Ikeda, 2007). In a statement given by then-PAGASA 

administrator Graciano Yumul Jr. to the Philippine Star, 466 mm. of rainfall was 

recorded on a single day during the onslaught of Reming (Echemineda, 2006). In 

another statement by then-PHIVOLCS head Renato Solidum, the typhoon brought the 

heaviest single-day volume of rainfall recorded in almost 40 years during that time. 

Following the termination of retrieval operations on December 15, 2006 in another 

report by Philippine Star, the Provincial Disaster Coordinating Council (PDCC) of Albay 

recorded at least 546 killed that were retrieved and 243 missing presumed dead 

bringing the total number of dead to at least 658 (Dematera, 2006). A 2006 report by 

OCHA indicated that more than 1100 people were killed in Bicol Region alone. An 
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estimated P5 billion (USD 108 million) in damages to infrastructure, property, and 

agriculture were recorded. Lahar flows buried villages located in the foot of Mayon 

Volcano in the municipalities of Camalig, Daraga, Guinobatan, and Sto. Domingo. 

 

 

 

 

 

 

 

 

 

Figure 4.9 Training points for November 2006 landslides overlain on high-resolution 

satellite imagery. 

A Landsat 5 TM+ multispectral image dated April 11, 2007 was used as the 

source image for extracting spectral indices. In order to not interfere with the NDVI and 

BSI, clouds were masked out. To aid in discerning landslide features from pre-existing 

features, another image dated August 30, 2006 was used as a pre-landslide image 

guide. 4207 points designated as landslide features were used as input for the GMM 

clustering algorithm. Using GMM, a total of 57 features were extracted from 14 clusters 

with a silhouette score of 69%. Since landslide features are to be manually extracted, 

the score is sufficient to discern landslide and non-landslide clusters in the area. The 

optimal choice of clusters is arbitrary and will highly depend on the ease of 

discrimination among clusters in the final output while considering the silhouette 

coefficient. 14 clusters were enough to visually discern landslides from non-landslides 

and other related pre-existing features such as fallow land and dirt roads without 

significant change in the silhouette coefficient. During an 8-month time period in the 
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pre-landslide and post-landslide satellite imagery, it was observed that most of the 

areas affected by lahar flows were located near the foot of the volcano well within 

the established permanent danger zone. 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Silhouette score of GMM clusters extracted from November 2006 

landslides. 

 

  

Figure 4.11 Cloud-masked pre-landslide (left) and post-landslide (right) Landsat-5 

image of Guinobatan. 
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Figure 4.12 Cloud-masked pre-landslide (left) and post-landslide (right) Landsat-5 

image of Sto. Domingo. 

  

Figure 4.13 Cloud-masked pre-landslide (left) and post-landslide (right) Landsat-5 

image of Daraga. 

  

Figure 4.14 Cloud-masked pre-landslide (left) and post-landslide (right) Landsat-5 

image of Camalig. 

 



60 

 

B. December 2018 Tiwi, Albay landslides (Tropical Depression Usman) 

Figure 4.15 Aftermath of TD Usman in Tiwi, Albay dated Dec. 30, 2018 (Photo from 

ABS-CBN News). 

A relatively weak tropical cyclone formed on December 25, 2018, with a 

maximum sustained wind of 45 km/h, entered the Philippine Area of Responsibility 

(PAR). In a statement issued by PAGASA to the Philippine Daily Inquirer on December 

27, TD Usman slowed down from 15 km/h to 10 km/h. At its peak on December 28-

29, TD Usman reached a maximum sustained wind of 55km/h near the center and 

gustiness of 65 km/h (Ramos, 2018). During the same 2-day period, 460.1 mm of 

accumulated rainfall was recorded by PAGASA in its synoptic station in Legazpi City, 

Albay. The slow velocity of the tropical depression combined with heavy rainfall 

caused multiple landslides in the province of Albay as well as surrounding regions. 3 

people reportedly died after being buried by landslides in Legazpi City, according to a 

news report by Rappler (Barcia 2018). In Tiwi, Albay, one of the areas struck with 

devastating landslides, 11 people were reportedly killed (Magsino, 2018). On January 

2, 2019, the chief of Bicol Regional Disaster Risk Reduction and Management Council 
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(RDRRMC) Claudia Yucot ordered the evacuation of residents in one village after 

discovering large cracks in mountainous areas (Barcia, 2019). A total of 126 people 

reportedly died in the aftermath of TD Usman with about 100 being recorded in Bicol 

Region with total damages to agriculture and infrastructure estimated to be at P4.2 

billion or USD 85 million (Viray, 2019).  

Figure 4.16 Training points for December 2018 Tiwi landslides overlain on high-

resolution satellite imagery from ArcMap. 

A Sentinel-2 multispectral satellite imagery dated January 15, 2019, was used 

to extract landslide features in Tiwi, Albay. A pre-landslide image of the area dated 

February 9, 2018 was used as a guide in determining pre-existing features from 

landslide features. Despite a minimal temporal difference of only 17 days from the 

date of collapse, the sizes of landslides are relatively small making it difficult to extract 

input features for the GMM clustering algorithm. This difficulty is reflected in a low 

silhouette coefficient of 55% in 10 clusters. However, 126 features were successfully 

extracted from 62 points after post- processing of clusters.  
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Figure 4.18 Sentinel-2 pre-landslide image of Tiwi, Albay dated February 9, 2018. 

Figure 4.17 Silhouette score of GMM clusters extracted from December 2018 Tiwi 

landslides. 
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Figure 4.19 Sentinel-2 post-landslide image of Tiwi, Albay dated January 15, 2019. 

C. November 2020 typhoons 
Typhoon Goni (local name: Rolly) is a supertyphoon which first made landfall 

on November 1, 2020 with the maximum sustained wind of 225 km/h and gustiness of 

310 km/h (Inquirer, 2020). According to PAGASA, the typhoon was the strongest 

worldwide in 2020 (Marquez, 2020). The typhoon displaced more than 316 thousand 

people or 87,000 families in the Bicol region according to the Office of Civil Defense, 

116,000 of which are in Albay (Mier-Manjares, 2020). In a statement issued by NDRRMC 

to CNN Philippines (2020) on November 6, 22 people died, 13 of which are in Albay. 

Damage to infrastructure and property was estimated to be at around P14 billion ($285 

million). 77% of Albay’s electrical grid was also damaged according to APEC (Albay 

Power and Electric Corporation) communication head Lesley Capus (Mier-Manjares, 

2020). 98% of the grid was restored as of January 22, 2021 in a statement issued by 

National Electrification Adminstration (NEA) to BusinessWorld (Yang, 2021).  

 On the aftermath of Typhoon Goni, another supertyphoon codenamed Vamco 

(local name: Ulysses) hit Albay on November 10, 2020 with a recorded maximum 

sustained winds of 155 km/h and gustiness of 215 km/h with total damages exceeding 

P20 billion (USD 408 million) with 101 people confirmed dead (NDRRMC, 2021). 
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 Among the hardest hit was the town of Malilipot, Albay already reeling from 

the destruction of Typhoon Rolly. Successive typhoons triggered landslides in the 

municipality – one of which is a prominent 100-feet chasm overlooking Bulawan River, 

displaced 65 families (Luces, 2020). 

 

Figure 4.20 100-feet chasm overlooking Bulawan River in Malilipot, Albay dated 

November 10, 2020 (Photo from Manila Bulletin). 
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Figure 4.21 Training points for 2020 Malilipot landslides overlain on high-resolution 

satellite imagery. 

Using spectral indices derived from Sentinel-2 satellite imagery dated May 29, 

2021, a total of 17 landslide features was visually identified and extracted from 11 

clusters with a silhouette coefficient of 58%. Despite a 6-month temporal difference 

from the date of the landslide, the extent of the landslide meant that it was not 

affected by vegetation regrowth during that time period. However, due to its smaller 

size relative to the locality, only 59 landslide points were used as input data. Despite 

this problem, the clarity of landslide features made it relatively easy to extract 

landslide points and visually discern landslides from non-landslide features. 
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Figure 4.22 Silhouette score of GMM clusters extracted from 2020 Malilipot landslides. 

Figure 4.23 Sentinel-2 pre-landslide image of Malilipot dated April 10, 2017. 
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Figure 4.24 Sentinel-2 post-landslide image of Malilipot dated May 9, 2021. 

During landslide inventory mapping, 200 landslide features were extracted 

directly from spectral indices using GMM clustering algorithms. Despite the difficulty of 

extracting landslides in small localities due to atmospheric factors, online news sources 

became an indispensable source of information to minimize the temporal range during 

the acquisition of multispectral satellite images. While there is also considerable 

difficulty in discerning landslide features from pre-existing features, this method 

combining a semi-automatic clustering algorithm with elements of citizen science 

yielded a fair amount of samples in an area where landslide inventory is inaccessible 

to the public. 

There were 356 landslide points extracted from PSI using a combined 

technique of VSLOPE calculation and hotspot mapping. Moreover, 332 non-landslide 

points were also extracted from the results of hotspot mapping. The totals of 556 

landslide points and 332 non-landslide that are ready to be analyzed for binary 

landslide susceptibility classification. 
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 Despite landslide points being only limited to mainland Albay and does not 

include the outer-lying island municipality of Rapu-Rapu and other areas within the 

jurisidiction of Bacacay, Malilipot, and Tabaco, the large sample size provides enough 

input for machine learning and deep learning models in order to classify the whole 

province.  

 To control the quality of the landslide susceptibility maps, 200 non-landslide 

points located in Mayon Volcano were omitted. To compensate for excluded points, 

non-landslide points were also arbitrarily created in the outer-lying islands and in areas 

where landslides are less likely to occur such as urban settlements located in flatlands 

within the coastline. Non-landslide points are also created in areas with <5 slope 

gradient. The figure indicates non-landslide points extracted from PSI VSLOPE points with 

1  stability threshold and points arbitrarily designated based on the fact that no 

significant slope movement have been made by both PSI and multi-spectral satellite 

imagery. 

As a post-processing method, the results of the landslide inventory are further 

aggregated into 25x25 grid cells with a pixel size of 10m in order to be accommodated 

by deep learning algorithms. Aside from eliminating incident points, this process will 

also be highly beneficial for deep learning algorithms which considers the value of 

neighboring pixels during training. In order to avoid any error during training and 

prediction-related stemming from datasets, all input data with NaN values are further 

excluded. A total of 113 non-landslide points and 378 landslide points was used as 

input data giving a 1:3 ratio of samples. Despite the class imbalance, the ratio of the 

input landslide points are in line with studies done by Thabtah et al. (2020) and 

Starovoitov and Golub (2020) who stated that it will final the performance of binary 

classifiers. The final landslide inventory map including non-landslide points are 

illustrated in Figure 4.25. 
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Figure 4.25 Landslide inventory map used in the study including non-landslide points. 
 

4.2 Landslide Susceptibility Mapping 
 This section highlights the use of deep learning algorithms, namely multilayer 

perceptrons and two-dimensional convolutional neural networks (CNN-2D) for binary 

classification of landslide susceptibility mapping. Landslide data with NaN pixel values 

are excluded prior to training to control the quality of input data. The remaining data 

are split into 70% training and 30% validation data. The training data are normalized 

in order to reduce training time and improve predictive performance. In order to be 

accommodated by univariate statistical tests and conventional machine learning 

algorithms during benchmark comparisons, datasets were duplicated and calculated 

for their mean considering the values of neighboring pixels.  

Prior to prediction, the study area is split into 12 equally sized overlapping tiles 

with a shape of 2500x2500 pixels to reduce computational load. The predicted tiles 

are merged together into a single mosaic. The means of edge pixels are calculated to 

account for overlap.  
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All landslide susceptibility maps were further post-processed using a 3x3 mean 

low-pass filter to smooth out edges and eliminate noisy pixels. Resulting maps are 

further classified using geometric intervals and discretized into 5 levels (very low, low, 

moderate, high, and very high). 

 4.2.1 Optimal selection of landslide influencing factors 
Landslide influencing factors were selected based on their predictive capability using 

the information gain (IG) ratio. The results showed that stream distance and profile 

curvature have 0 IG and were thus eliminated from the input data. The lithology of 

the area is predominantly composed of non-porous and non-permeable volcanic 

igneous rocks which are highly resistant to weathering, hence making it difficult for 

water to flow. While significant portions are also composed of calcareous sedimentary 

rocks, these have varying degrees of porosity and permeability due to its structure of 

interlocking crystals and varying texture sizes making it generally impervious to flow. 

While some locations may have larger pore sizes which will aid in the formation of 

underground cavities and karst landforms, the variations make it less ideal to form 

streams and groundwater reservoirs. Profile curvature has 0 IG score despite planform 

curvature having a relatively higher degree of importance. This is due to the fact that 

most of the landslide points were extracted from PSI which records backscatter 

intensity perpendicular to the satellite sensor, hence recording velocity perpendicular 

to the direction of the slope. Profile curvature measures values parallel to the 

maximum slope direction which explains why it did not exhibit any degree of 

importance.  

 Fault distance and elevation have the highest IG scores at 0.14 and 0.136, 

respectively. Since the Legazpi Lineament and Linao faults are seismically active, many 

PSI VSLOPE points have also been recorded within the faultlines. Additionally, landslides 

were previously recorded in elevated areas characterized by steep slopes and rugged 

topography such as in the municipalities of Malilipot and Tiwi, and within the radius of 

Mayon Volcano which is reflected in its high degree of importance. 

 The results of the univariate statistical analysis are illustrated in Figure 4.26 and 

the values described in Table 8. 
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Figure 4.26 Feature importance plot showing mutual information of each influencing 

factor. 

 

Table 4.5 Mutual information scores (IG Ratio) of each influencing factor. 

Landslide influencing factors Mutual Information (IG Ratio) 
Fault distance 0.14 

Elevation 0.136 

TRI 0.116 

Slope 0.105 

TWI 0.058 

Planform curvature  0.04 

Flow direction 0.035 

Aspect 0.027 

NDVI 0.023 

Profile curvature 0.0 

Stream distance 0.0 

4.2.2 Landslide Susceptibility Mapping using Deep Learning Algorithms 
 The high predictive performance of the two deep learning algorithms used in 

the study shows their viability for creating accurate landslide susceptibility maps. Both 
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algorithms are optimized using RMSprop (root-mean square propagation), an extension 

of stochastic gradient descent (SGD) first proposed by Hinton (2012) which estimates 

the moving average of squared gradients.  

Both deep learning algorithms share the same hyperparameters with regards to 

the learning rate, activation function, optimizer, and number of neurons in fully 

connected layers. However, in the case of CNN-2D, three convolutional filters and 

average pooling layers were used to extract features from the input data. The choice 

of average pooling layers over max-pooling layers was because binary classification has 

probabilistic outputs. Max-pooling layers excel in detecting edges by extracting the 

maximum values of feature maps which is useful for hard classification tasks such as 

LULC classification but may eliminate crucial values in probabilistic tasks. Since 

landslide susceptibility mapping is a binary classification task, the information provided 

by the output is highly dependent on the predicted probabilistic values and as such, 

it needs information considering the values of all pixels in the feature maps. Each 

convolutional filter was regularized using L2 regularization or weight decay to smooth 

out the gradients and penalize large weights to mitigate overfitting, improving 

predictive performance.  

To further reduce training time, early-stopping callback routines were 

implemented on both models to stop training when the accuracy did not increase 

after 35 iterations. To avoid the possibility of yielding a poor output due to early 

convergence, a warm start of 20 epochs was also implemented. This method allows 

the learning rate to gradually increase becoming constant after a number of iterations. 

Both models are created with Tensorflow version 2.10. The models are compiled and 

trained on a server computer running on Intel i9-9900KF 3.6 GHz CPU (up to 5 GHz 

overclocking), 4-slot 2.6 Ghz DDR4 RAM totaling 64GB, and NVIDIA GeForce RTX 2070 

Super 8GB with 2560 CUDA cores, 320 tensor cores, and 40 raytracing acceleration 

cores. The architecture of both MLP and CNN-2D are illustrated in Figures 4.27 and 

4.28. The description of the deep MLP used in the study are described in Table 4.6. A 

detailed description of convolutional filters, and their hyperparameters is given in 

Table 4.7.  The fully connected layers in the CNN-2D model uses the same 

hyperparameters described in the MLP model.  
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Figure 4.27 Schematic diagram of the deep MLP used in the study. 

 
Table 4.6 Specifications of the fully connected layers used by both MLP and CNN-2D.  

Hidden layers: 
Dense layer 1 – 256 neurons (dropout = 0.25) 

Dense layer 2 – 128 neurons 

Dense layer 3 and 4 – 64 neurons 

Dense layer 5 – 32 neurons 

Dense layer 6 – 16 neurons 

Dense layer activation function - ReLU 

Output layer:
2 neurons 

Softmax activation function 

Learning rate = 0.0003  
Warm-star enabled – 20 epochs 
Optimization function = RMSprop 
Early-stopping callback enabled – 35 iterations 
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Table 4.7 Specifications of CNN-2D model used in the study.  

7x7 convolutional filter: 
 32 neurons 

 Padding = ‘same’ 

 L2 regularizer = 0.01 

 ReLU activation function 

 Batch normalization enabled 

2x2 Average Pooling (strides = 2, same padding) 

5x5 convolutional filter: 
 32 neurons 

 Padding = ‘same’ 

 L2 regularizer = 0.01 

 ReLU activation function 

 Batch normalization enabled 

2x2 Average Pooling (strides = 2, same padding) 

3x3 convolutional filter: 
 64 neurons 

 Padding = ‘same’ 

 L2 regularizer = 0.01 

 ReLU activation function 

 Batch normalization enabled 

2x2 Average Pooling (strides = 1, same padding) 
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Figure 4.28 Schematic diagram of the CNN-2D model.  

 

 

Figure 4.29 Loss and accuracy metrics of CNN-2D in every epoch.  

Analysis metrics of CNN-2D shows that the model converged after 102 epochs 

due to the implementation of early-stopping callbacks. Considerable oscillations were 

observed in the loss and validation loss as shown in Figure 4.29. This may be attributed 

to a large variation of values in each sample as convolutional neural networks consider 

the value of neighboring pixels. However, the accuracy and validation accuracy 

remained relatively stable throughout training indicating that its overall predictive 

performance is not truly affected by variations in the training data.  
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Although MLPs do not consider neighboring pixels to identify spatial patterns 

as the model treats data as a 1-dimensional vector, similar trends in loss and validation 

loss were observed in the metrics of the MLP model which converged at 55 epochs. 

In addition to the learning rate which may have been too fast for both CNN-2D and 

MLP causing the loss values to oscillate, the similarity may be attributed to the input 

data as well. The original 25x25 grid size input data was converted to a 1x1 pixel 

containing the average values of all landslide influencing factors. During the process, 

large variations in the input values likely occurred which was reflected in the MLP 

metrics plot as shown in Figure 4.30. 

 

 

 

Figure 4.30 Loss and accuracy metrics of Deep MLP in every epoch. 
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Figure 4.32 Landslide susceptibility map of Albay with Deep MLP. 

 

Figure 4.31 Landslide susceptibility map of Albay using CNN-2D optimized with 

RMSprop. 
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The overall accuracy of 89% and 92% of MLP and CNN-2D, respectively 

shows that both models have comparably good results. While both models exhibit 

similar sensitivity in predicting landslide classes, CNN-2D shows higher sensitivity in 

predicting non-landslide points with a score of 93% as opposed to 84% shown by 

MLP. This contrast is further emphasized in Figures 68 and 69 wherein the CNN-2D 

model detected patterns of very high landslide susceptibility in the island 

municipality of Rapu-rapu located in the eastern part of the province where non-

landslide points were designated. In the mountainous southwestern portions of the 

province, CNN-2D was also able to detect similar patterns of susceptibility that the 

MLP did not detect. As opposed to MLP which functions similarly with conventional 

machine learning algorithms in that it only considers individual pixels, CNN-2D 

considers the values of neighboring pixels during training and prediction. Specificity 

shows similar results in that both models can correctly identify true negative results 

at a relatively similar rate, but with CNN-2D outperforming MLP by 3 and 4% in 

landslide and non-landslide classes, respectively. The resulting output maps were 

classified using natural breaks to better illustrate the differences in values in each 

susceptibility class. 

Table 4.8 Classification report of CNN-2D. 

Classes Precision Recall F-1 score 
Non-landslide 93% 83% 87% 

Landslide 92% 97% 94% 

Weighted 
average 

92% 90% 91% 

Overall model accuracy - 92% 
 
Table 4.9 Classification report of MLP. 

Classes Precision Recall F-1 score 
Non-landslide 84% 80% 82% 

Landslide 91% 93% 92% 
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Weighted 
average 

89% 89% 89% 

Overall model accuracy - 89% 
 

While the output susceptibility maps differ in their composition, both models 

are on par with one another based on their predictive performance with the difference 

being that CNN-2D can classify non-landslide points more accurately as exhibited by 

its high sensitivity.  

A total land area of 2500 sq. km. was successfully classified by CNN-2D. 

Predicted probability values were classified using geometric interval and then 

reclassified into five discrete classes showing the degree of susceptibility. Most of the 

area are classified has having high to very high susceptibility to landslides. A total area 

of 990.92 sq. km. were classified as having very high susceptibility to landslides making 

it the highest observed susceptibility class followed by high susceptibility class totaling 

to 701.58 sq. km. Only 73.8 sq. km. of the province were classified as having very low 

susceptibility, most of it being located in low-lying urban areas near the coastline 

where landslides are highly unlikely to occur followed by 246.77 sq. km. of low 

susceptibility areas. 

 

Table 4.10 Area of landslide susceptibility classes. 

Class Area (sq.km.) 
Very Low 73.8 

Low 246.77 

Moderate 487.17 

High 701.58 

Very high 990.92 
 

4.2.3 Benchmark comparisons and accuracy assessment 
 Conventional machine learning algorithms namely logistic regression, random 

forest, and support vector machines were used for benchmark comparisons.  For 

Table 4.9 (Continued). 
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random forest and SVM, a grid-search cross-validation method was employed obtain 

the optimal number of parameters. Among the machine learning algorithms used, 

random forest had the highest accuracy with a score of 86% followed closely by SVM 

at 85%. Logistic regression had the lowest overall accuracy at 79%. Similar to CNN-2D 

models, all machine learning algorithms exhibited high sensitivity in classifying non-

landslide points.  

Table 4.11 Classification report of logistic regression. 

Classes Precision Recall F-1 score 
Non-landslide 90% 39% 55% 

Landslide 77% 98% 86% 

Weighted average 81% 79% 76% 

Overall model accuracy - 79% 
 
Table 4.12 Classification report of random forest including the parameters used. 

Classes Precision Recall F-1 score 
Non-landslide 93% 61% 74% 

Landslide 84% 98% 90% 

Weighted average 87% 86% 85% 

Overall model accuracy - 86% 
Parameters: 50 trees, gini criterion 

 

Table 4.13 Classification report of SVM including the parameters used. 

Classes Precision Recall F-1 score 
Non-landslide 93% 59% 72% 

Landslide 83% 98% 90% 

Weighted average 86% 85% 84% 

Overall model accuracy - 85% 
Parameters: C = 10, Gamma = 0.01, Kernel = radial basis function (RBF) 
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Figures 4.33 ROC plots of deep learning (CNN-2D, MLP) and conventional machine 

learning algorithms (Random forest, SVM, logistic regression). 

Table 4.14 Benchmark comparison metrics for all models used. 

Model Sensitivity Specificity AUC score Overall 
accuracy 

CNN-2D 97% 83% 95% 92% 
MLP 93% 80% 91% 89% 

LR 98% 39% 84% 76% 

RFC 98% 61%  88% 86% 

SVM 98% 59% 88% 85% 
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Based on the resulting landslide susceptibility maps, both random forest and 

SVM showed comparably similar results. All resulting maps showed similar patterns of 

landslide susceptibility in the southwestern areas of the province similar to CNN-2D. 

The landslide susceptibility map created by logistic regression detected similar patterns 

of very high susceptibility in Rapu-rapu similar to CNN-2D. This is in part due to the fact 

that logistic regression also uses weight decay to penalize large weights similar to how 

the convolutional filters used in this study were regularized. Random forest model 

emphasized very low degree of susceptibility in areas with low slope gradient. Although 

the impact of fault distance in the predicted output has also been emphasized in the 

model in the same area, the low slope gradient in the area makes it less likely for 

landslides to occur. However, periodic earthquakes may trigger landslides in the 

surrounding mountainous areas as shown by the contrasting susceptibility classes in 

the predicted output. 

 All models predicted very high degrees of susceptibility in the western portion 

of Tiwi where heavy landslides were recorded in 2019 following successive typhoons. 

Very high degrees of susceptibility were also observed in the mountainous portion of 

the municipality of Manito bordering the neighboring Sorsogon province. In both SVM 

and CNN-2D, the center of Mayon Volcano is classified as having a moderate degree of 

susceptibility in contrast to other models which classified the entirety of Mayon 

Volcano as having very high degrees of susceptibility. It might be attributed to the fact 

that despite being active with periodic eruptions, the cone remains relatively stable 

and has not yet collapsed into a caldera retaining its near-perfect shape.  

All models showed a high degree of sensitivity indicating that all models have 

a high rate of identifying landslide classes during accuracy assessment. All three 

conventional machine learning models have a very high true positive rate of 98% which 

is marginally higher than CNN-2D at 97%. MLP has a comparably lower score at 93%. 

However, all conventional machine learning models also have a significantly lower rate 

of true negatives with RFC and SVM scoring a specificity of 61% and 59%, respectively. 

LR has the lowest specificity score at 39%. Both deep learning models were able to 

identify true negatives at a significantly higher rate at 80% and 83% for MLP and CNN-

2D, respectively. 

 



83 

 

Further analysis of the model metrics shows that CNN-2D outperforms all of 

the models. With a ROC score of 95% and overall accuracy of 92%, it indicates that 

CNN-2D is better at classifying landslides and distinguishing between non-landslide 

areas. This performance is due to the fact that the model excels at extracting 

meaningful features and analyzing spatial patterns by making use of convolutional 

filters. This is opposed to MLP and conventional machine learning algorithms which 

generally treat each input data as an individual pixel which will not allow the models 

to extract meaningful spatial context. However, MLP results also show close predictive 

performance despite not being able to detect the same hidden patterns shown by the 

landslide susceptibility map produced by CNN-2D. An AUC of 91% and overall accuracy 

of 89% indicates that MLP can be used for binary classification of landslides as an 

alternative to conventional machine learning algorithms due to its comparably higher 

predictive performance. It can also be used to substitute for CNN-2D which may be 

computationally intensive on most hardware.  

 Among the conventional machine learning algorithms, random forest and SVM 

show comparably similar results with overall accuracy of 86% and 85%, respectively. 

While both models have lower accuracy compared to deep learning models, the AUC 

score of 88% in both models show that their performance is not far behind from MLP. 

This is because both models are robust to multicollinearity. Random forest makes use 

of bootstrap sampling due to its method of splitting features into different sets and 

then picking the best feature among the samples. On the other hand, SVM models 

fitted with non-linear kernels; particularly RBF kernel as used in the study, avoids 

multicollinearity by transforming features into a higher dimensional space effectively 

decorrelating input variables. Logistic regression recorded the lowest score in every 

metric despite being commonly used for binary classification tasks. Multicollinearity is 

a common problem which affects the predictive performance of linear models as 

these models operate on an assumption that input data are independent of one 

another. The presence of L2 regularization or weight decay in logistic regression model 

further affected predictive performance by heavily penalizing higher weights observed 

in data with high variance.  
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Figure 4.34 Landslide susceptibility map of Albay using logistic regression.  

Figure 4.35 Landslide susceptibility map of Albay using random forest. 
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Figure 4.36 Landslide susceptibility map of Albay using SVM. 

 

4.3 Vulnerability and Risk Assessment 
In order to analyze the potential impact of landslides, vulnerability and risk 

assessment is conducted at the municipal level and subdistrict level, respectively. 

Geometric interval was used in order to balance the distribution of classes and to 

highlight changes between the median and extreme values in the resulting 

vulnerability and risk maps. 

Vulnerability factors for each municipality in this study were divided into two 

indicators: economic parameters and resiliency. Economic parameters cover 2018 

annual income (millions) obtained from the Department of Finance and poverty 

incidence data obtained from Philippine Statistics Authority. The annual economic 

income was used as an economic parameter as areas with higher economic activity 

can typically fund the necessary policies and equipment that can mitigate disasters. 

Poverty incidence, while seemingly tied to economic income, displays the general 

economic status and well-being of the citizens living in the area. Areas with a lower 
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incidence of poverty means that people living in the area are being given adequate 

welfare and social services which can help with their readiness to potential disasters 

allowing them to easily recover from the aftermath.  

Due to lack of high resolution satellite data and information regarding costs of 

property and materials in infrastructures, resiliency values used data obtained from 

the 2022 annual ranking Cities and Municipalities Competitive Index of the Department 

of Trade and Industry detailing critical infrastructures. 

 

Table 4.15 Economic parameters for each city and municipality in Albay. 

City/Municipality Annual income (Php millions) Poverty incidence 
(percentage) 

Bacacay     216.37    31.5 

Camalig 233.95 21.1 

Daraga 473.66 13.5 

Guinobatan 288.39 25.6 

Jovellar 96.53 37.5 

Legazpi City 1368.08 13.8 

Libon 260.07 37.4 

Ligao City  844.09 23.1 

Malilipot 183.51 26.1 

Malinao 160.12 33.7 

Manito 138.24 37.2 

Oas 235.97 34.2 

Pio Duran 171.59 37.5 

Polangui 292.42 21.3 

Rapu-rapu 150.38 42.7 

Sto. Domingo 138.52 23 

Tabaco 711.83 19.8 

Tiwi 239.58 23.6 
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Table 4.16 Resiliency scores for each city and municipality. 

City/Municipality Healthcare 
infrastructure 

Emergency 
infrastructure 

Early 
Warning 
System 

Utilities 

Bacacay 0.2694 0.3768 1.0012 1.5043 

Camalig 0.2134 0.3535 1.0037 1.517 

Daraga 0.2816 0.3696 1.0025 1.4998 

Guinobatan 0.0325 0.3554 1 1.0004 

Jovellar 0.0133 0.3769 0.004 1.5001 

Legazpi City 1.3211 0.645 1.0884 1.6553 

Libon 0.101 0.4363 1.0012 0.9999 

Ligao City  0.1053 0.6261 1.0071 1.8338 

Malilipot 0.0084 0.3607 1.0356 1.2508 

Malinao 0.0188 0.3724 1.0059 1.2509 

Manito 0.0495 0.3608 1.0119 1.4982 

Oas 0.0047 0.3492 1.0658 1.5008 

Pio Duran 0.1609 0.4119 1.0237 1.5 

Polangui 0.1969 1.5039 1.005 1.5039 

Rapu-rapu 0.0848 0.3372 1.004 1.4995 

Sto. Domingo 0.0214 0.3287 1.002 1.5006 

Tabaco 0.1434 0.4108 1.0342 1.4997 

Tiwi 0.0712 0.3665 1.0074 0.0036 

 



88 

 

Figure 4.37 Social vulnerability map of Albay. 

Figure 4.38 Population map of Albay per subdistrict. 
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The results show that Jovellar has a very high degree of vulnerability. Six other 

municipalities are also highly vulnerable. Only the capital city of Legazpi, Ligao City, 

and Polangui have a very low degree of vulnerability attributed to their high resiliency 

scores and high annual revenue.  

Figure 4.39 Landslide risk exposure map of Albay. 

 

The landslide risk exposure map is generated by combining the results of the 

classified landslide susceptibility map and the social vulnerability map with the 

population of each individual subdistrict as per the 2015 census. No subdistrict 

population census data for 2020 and beyond for the province of Albay is freely 

available at the time of writing. The resulting landslide risk map is expressed in terms 

of the percentage of population exposed to landslides in terms of percentage in each 

subdistrict. Out of 720 subdistricts, 290 subdistricts have been classified as high risk 

with 103 subdistricts classified as very high risk. In the northern part of the province, 

the western portions of the municipalities of Tiwi and Malinao is classified as very high 

risk with more than half of the population in the subdistricts at risk of landslides. A 

single subdistrict in the municipality of Oas bordering Malinao, Tabaco City, Polangui, 

and Ligao City is classified as very high risk.  
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Significant portions of the municipalities of Oas, Libon, Guinobatan, and Camalig 

are classified as high risk. Nearly the entirety of Manito, Malilipot, Bacacay, and Sto. 

Domingo are at high to very high risk. The majority of the municipality of Jovellar is at 

very high risk while the entirety of the island municipality of Rapu-rapu is at very high 

risk to landslides. The aforementioned locations are highly susceptible to landslides 

with a moderate to high social vulnerability which may not be enough to fund disaster 

mitigation measures thereby putting significant number of lives at risk. The entirety of 

Rapu-rapu being at very high risk is a cause for major concern. While the municipality 

is relatively sparsely populated, its high vulnerability to disaster and its remote location 

from the mainland will exacerbate the consequences posed by a potential landslide 

disaster putting entire populations at risk.  

Subdistricts in the municipality of Malilipot, Guinobatan, Sto. Domingo, and 

Camalig within the radius of Mayon Volcano are also classified as high to very high risk 

due to the inherent combined hazards posed by being located in near proximity to an 

active volcano. Subdistricts belonging the cities of Ligao and Tabaco, and the 

municipality of Daraga also within the proximity of Mayon Volcano has moderate risk 

to landslides while the rest of the aforementioned areas have low risk exposure. This 

is mainly due to their low social vulnerability to landslide disasters owing to their high 

resiliency made possible by their high economic activity which can readily fund disaster 

mitigation strategies.  

The entirety of the capital city of Legazpi is at very low risk despite its close 

proximity to high risk areas and high population. Being the center of commerce and 

governance in the province means that the city has enough funds for disaster risk 

mitigation measures. Additionally, minimizing the risk posed by disasters in the city will 

ensure that the whole province will not be paralyzed economically and politically as 

key local government offices, large establishments, and transportation hubs are 

located in the area.  
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CHAPTER V 
CONCLUSION 

 
 The results of the study highlights the use of persistent scatterer interferometry 

and the semi-automatic extraction of landslide features from multispectral satellite 

imagery. These techniques provided a viable solution in compensating for the lack of 

landslide inventory data which is highly crucial in the province of Albay as it is prone 

to landslides that are further aggravated by other natural disasters.  

 By projecting the extracted time-series velocity points from SAR imagery to the 

direction of the steepest slope, a total of 13,152 PS points showing downward slope 

velocity (VSLOPE) indicative of landslides were extracted after post-processing with the 

stability threshold set at 11 mm./yr. It has been found that the maximum VSLOPE in the 

province of Albay is at 226.31 mm./yr with the average at 18.34 mm./yr. Using PSI-

based hotspot analysis on the VSLOPE points showed that the measured slope 

displacement are significantly clustered given a p-value of <0.01 and z-score of >2.58. 

A total of 356 landslide points showing 99% degree of confidence with a velocity of 

33 mm./yr. given a stability threshold of 4  were successfully extracted. 

Combining three significant landslide events that occurred in the province of 

Albay from 2007, 2018, and 2020 the study was also able to successfully extract 

landslide features using semi-automatic Gaussian clustering of BSI and NDVI which 

corresponds to the post-landslide satellite imagery which are then combined with 

slope values. A total of 200 landslide features have been extracted successfully with 

a silhouette coefficient ranging from 0.55-0.69. Post-processing of landslide points in 

order to be accommodated by the deep learning models as well as to reduce incident 

points gave a final inventory of 378 landslide points while 113 non-landslide points 

were manually created. 

During landslide susceptibility mapping, both CNN-2D and MLP outperformed 

conventional machine learning algorithms in all metrics with overall accuracy of 92% 

and 89%, respectively. Random forest and SVM both with an AUC score of 88% shows
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comparable performance with MLP with an AUC score of 91%. While also being 

outperformed by deep learning models, random forest in particular showed an overall 

on par with MLP at 86%. However, the significantly low rate of specificity for 

conventional machine learning models in contrast with their high sensitivity suggests 

that these models  have a tendency to overestimate the rate at which landslide occurs 

which contributed to their significantly lower AUC and overall accuracy.  

The results also suggested that despite the non-linear parameters used in the 

conventional machine learning algorithms (except LR), these models cannot find 

hidden patterns that will help improve predictive performance unlike in the case of 

deep learning models which utilizes a very high number of hyperparameters to arrive 

at an optimal solution at the cost of computational resources. In turn, conventional 

machine learning algorithms had a higher rate of overfitting which may be exacerbated 

by the inclusion of larger input data. 

However, RF and SVM can still perform relatively on par with deep learning 

models in terms of AUC and overall accuracy. Given major adjustments and further 

optimization in order to improve sensitivity and specificity, both models may also have 

the potential to perform similarly or even outperform deep learning models. These 

observations also prove that conventional machine learning algorithms can still be 

used as an alternative to deep learning models which are generally computationally 

expensive and will require specific hardware for the architectures to run smoothly and 

allow for easier hyperparameter tuning.  

More than half of the province have been classified as having high to very high 

susceptibility to landslides totaling to 1600 sq.km out of 2500 sq.km. that was 

successfully classified. Additionally, 290 subdistricts have been classified as having high 

to very high risk to landslides. The results imply the need for comprehensive disaster 

risk reduction and contingency plan to mitigate the impact of landslides on exposed 

populations, especially in poorer, vulnerable municipalities. 

 

5.1 Recommendations 
The study highlights the potential use of PSI to detect possible landslides based 

on their vertical slope velocity. While the use of hotspot clustering analysis may 
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provide statistically significant results and reduce the number of points, it is important 

to note that this approach and other similar techniques must be conducted in tandem 

with field verification to test their reliability such as using different for conceptualizing 

spatial relationships or using optimized hot-spot analysis as suggested by Lu et al. 

(2019) and Hakim et al. (2021). A corrected range index may also be used as also 

suggested by Notti et al. (2014) and Solari et al. (2019) to which also factors in the 

effect of LULC in estimating ground motion. 

As the values recorded in PSI VSLOPE points only have a limited temporal 

coverage, time-series analysis may be conducted as well in order to predict the 

dynamics and future trends of potential slope failures in the area. This is crucial in 

areas such as the province of Albay which regularly experiences a combination of 

natural disasters. Additionally, while the SAR images are not affected by weather 

patterns per se, their coherence and in turn, the backscatter intensity may be affected, 

leading to erroneous measurements or negative coherence in the images. Future 

studies using PSI must consider the factors mentioned above to refine its use for 

locating landslides. 

 The use of multi-spectral satellite imagery for confirming locations of previous 

landslides in tandem with archival reports, while relatively effective in cases where 

data is unavailable, is a time-consuming process requiring manual cross-verifications 

with written articles in addition to side-by-side comparison of pre- and post- satellite 

imagery. This may also prove difficult in areas with large cloud covers, particularly in 

archipelagic countries with a large temporal gap between good quality satellite images. 

In the context of landslide mapping, this presents a problem as vegetation will have 

time to regrow in previously barren areas that suffered slope failures.  

While Gaussian mixture modeling as an unsupervised learning method may 

expedite the process of pinpointing landslides, the approach used in the study still 

requires a prior knowledge to predict the probabilities of input data belonging to 

certain clusters. Furthermore, post-processing is required in order to extract landslide 

clusters and must also be cross-checked with pre-landslide satellite imagery in order 

to reduce the risk of misclassification. Future studies may opt to use high-resolution 

satellite imagery for easier manual extraction of landslides. 
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Additionally, while landslide susceptibility mapping using deep learning 

algorithms showed results with high accuracy, further validation methods may also be 

used in all models in order to assess how the models can perform under different 

conditions. Cross-validation of all chosen machine learning and deep learning 

algorithms may be conducted as suggested by Jiang and Chen (2016) and Shirzadi et 

al. (2017) to analyze how each machine learning and deep learning models can 

perform given independent datasets. 

The lack of a comprehensive landslide hazard map is also another aspect that 

needs to be addressed as the probability may change over time due to its reliance on 

dynamic spatiotemporal data. The inclusion of annual rainfall as suggested by Wang 

et al. (2021) or seismicity and other natural disasters as recommended by Corominas 

et al. (2014) can be used in order to better analyze how landslide patterns can change 

over time. The results of the risk and vulnerability map are still highly subjective and 

are subject to change due to lack of spatial data concerning property costs. Data such 

as road accessibility, capacity of evacuation centers, locations of critical infrastructure, 

urban parcels, plantations, and registered business establishments, may also be 

considered in order to estimate the potential socio-economic impact of landslides. 
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APPENDIX A 

STAMPS-MATLAB INITIALIZATION PARAMETERS FOR PSI 
PROCESSING 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



107 

 

 
max_topo_err 30 

quick_est_gamma_flag ‘y’ 
select_reest_gamma_flag ‘y’ 

filter_grid_size ‘50’ 
filter_weighting ‘P-square’ 

gamma_change_convergence 0.005 
gamma_max_iterations 1 

slc_osf 1 
clap_win 16 

clap_low_pass_wavelength 800 
clap_alpha 1 
clap_beta 0.3 

select_method ‘DENSITY’ 
density_rand 50 
percent_rand 20 

gamma_stdev_reject 0 
weed_time_win 730 

weed_max_noise Inf 
weed_standard_dev 1.5 
weed_zero_elevation ‘n’ 

weed_neighbours ‘n’ 
unwrap_method ‘3D’ 

unwrap_patch_phase ‘n’ 
drop_ifg_index [] 

unwrap_la_error_flag ‘y’ 
unwrap_spatial_cost_func_flag ‘n’ 

unwrap_prefilter_flag ‘y’ 
unwrap_grid_size 100 

unwrap_gold_n_win 32 
unwrap_alpha 8 

unwrap_time_win 24 
unwrap_gold_alpha 5 

unwrap_hold_good_values ‘n’ 
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scla_drop_index [] 
scn_wavelength 100 
scn_time_win 50 

scn_deramp_ifg [] 
scn_kriging_flag ‘n’ 

ref_lon -Inf  Inf 
ref_lat -Inf  Inf 

ref_centre_lonlat 0 0 
ref_radius Inf 

ref_velocity 0 
n_cores 1 

plot_dem_posting 90 
plot_scatterer_size 120 

plot_pixels_scatterer 3 
plot_color_scheme ‘inflation’ 

shade_rel_angle 90 45 
lonlat_offset 0 0 

merge_resample_size 0 
merge_standard_dev Inf 

scla_method ‘L2’ 
scla_deramp ‘y’ 

lambda NaN 
heading NaN 

subtr_tropo ‘n’ 
tropo_method ‘a_l’ 
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APPENDIX B 
WRAPPED PHASE OF SENTINEL-1 INTERFEROGRAMS ON 

ASCENDING ORBIT 
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APPENDIX C 
WRAPPED PHASE OF SENTINEL-1 INTERFEROGRAMS ON 

DESCENDING ORBIT 
 

 

 

 

 

 

 

 

 

 

 



115 

 

 

  

 



116 

 

 

 

  

 



117 

 

 

  

 



118 

 

 
 
 
 
 
 
 
 
 

APPENDIX D 
UNWRAPPED PHASE OF SELECTED PS POINTS ON ASCENDING 

ORBIT 
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APPENDIX E 
UNWRAPPED PHASE OF SELECTED PS POINTS ON DESCENDING 

ORBIT 
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APPENDIX F 

NDVI AND BARE SOIL INDICES OF SELECTED AREAS IN ALBAY 
PROVINCE FOR GAUSSIAN CLUSTERING 
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BSI dated April 11, 2007 

NDVI dated April 11, 2007 
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  NDVI dated January 15, 2019 

BSI dated January 15, 2019 
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  NDVI dated May 29, 2021 

BSI dated May 29, 2021 
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APPENDIX G 
POPULATION OF ALBAY PROVINCE ON SUBDISTRICT LEVEL 
ACCORDING TO 2015 CENSUS AND CORRESPONDING RISK 

VALUES 
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Bacacay 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Baclayon 2703 1301.89 48.16% Barangay 9 646 274.08 42.43% 

Banao 1491 711.10 47.69% Bariw 625 301.29 48.21% 

Barangay 1 1308 522.90 39.98% Basud 1746 833.80 47.75% 

Barangay 10 773 408.07 52.79% Bayandong 1650 795.57 48.22% 

Barangay 11 197 87.57 44.45% Bonga 7649 3960.57 51.78% 

Barangay 12 298 84.65 28.41% Buang 1337 660.16 49.38% 

Barangay 13 1315 558.15 42.44% Busdac 1182 622.83 52.69% 

Barangay 14 1237 531.08 42.93% Cabasan 2028 1108.39 54.65% 

Barangay 2 285 125.78 44.13% Cagbulacao 862 495.12 57.44% 

Barangay 3 545 195.66 35.90% Cagraray 703 378.65 53.86% 

Barangay 4 274 91.95 33.56% Cajogutan 1130 482.26 42.68% 

Barangay 5 276 113.06 40.96% Cawayan 1247 647.45 51.92% 

Barangay 6 248 90.35 36.43% Damacan 431 223.11 51.77% 

Barangay 7 267 103.63 38.81% Gubat Ilawod 1080 453.55 42.00% 

Barangay 8 147 57.72 39.26% Gubat Iraya 1159 581.95 50.21% 

Hindi 3800 1671.31 43.98% Pili Ilawod 1522 782.39 51.41% 

Igang 2332 953.88 40.90% Pili Iraya 997 420.36 42.16% 

Langaton 765 406.15 53.09% Pongco 1022 535.38 52.39% 

Manaet 836 484.66 57.97% San Pablo 1274 675.78 53.04% 

Mapulang 

Daga 
453 241.55 53.32% San Pedro 1605 652.35 40.64% 

Mataas 518 266.45 51.44% Sogod 4552 1939.11 42.60% 

Misibis 1007 529.00 52.53% Sula 873 460.56 52.76% 

Nahapunan 402 205.77 51.19% Tambilagao 906 498.57 55.03% 

Namanday 1482 766.75 51.74% Tambongon 705 353.94 50.20% 

Namantao 778 432.50 55.59% Tanagan 1388 754.55 54.36% 

Napao 1883 1016.20 53.97% Pigcobohan 817 436.43 53.42% 

Panarayon 1848 749.12 40.54%     

 
Camalig 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Anoling 964 474.73 49.25% Libod 3233 1061.61 32.84% 

Baligang 3389 937.45 27.66% Ligban 714 314.99 44.12% 

Bantonan 586 215.92 36.85% Mabunga 137 53.85 39.31% 

Barangay 1 1086 344.54 31.73% Magogon 566 205.48 36.30% 

Barangay 2 407 132.32 32.51% Manawan 879 267.28 30.41% 

Barangay 3 534 151.79 28.43% Maninila 1085 354.12 32.64% 
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Barangay 4 316 97.12 30.74% Mina 651 291.31 44.75% 

Barangay 5 361 96.62 26.76% Miti 926 329.09 35.54% 

Barangay 6 385 106.65 27.70% Palanog 3148 903.05 28.69% 

Barangay 7 401 111.41 27.78% Panoypoy 1304 481.48 36.92% 

Bariw 2047 656.15 32.05% Pariaan 863 322.41 37.36% 

Binanderahan 583 241.99 41.51% Quinartilan 924 300.67 32.54% 

Binitayan 590 211.29 35.81% Quirangay 2721 1267.05 46.57% 

Bongabong 865 289.58 33.48% Quitinday 259 107.64 41.56% 

Cabagñan 2820 1200.01 42.55% Salugan 1750 736.01 42.06% 

Cabraran Pequeño 852 329.82 38.71% Solong 433 153.76 35.51% 

Caguiba 1566 576.79 36.83% Sua 1377 655.17 47.58% 

Calabidongan 717 253.52 35.36% Sumlang 2025 704.83 34.81% 

Comun 1704 524.27 30.77% Tagaytay 5652 2021.28 35.76% 

Cotmon 2750 803.37 29.21% Tagoytoy 620 250.28 40.37% 

Del Rosario 842 260.17 30.90% Taladong 1547 447.55 28.93% 

Gapo 1665 608.66 36.56% Taloto 998 349.09 34.98% 

Gotob 635 277.74 43.74% Taplacon 1181 442.37 37.46% 

Ilawod 2807 873.32 31.11% Tinago 2072 759.48 36.65% 

Iluluan 1631 556.83 34.14% Tumpa 1336 623.89 46.70% 

 
Daraga 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Alcala 2935 729.20 24.84% Kiwalo 1387 299.15 21.57% 

Alobo 841 205.82 24.47% Lacag 2533 647.19 25.55% 

Anislag 11461 3117.45 27.20% Mabini 673 152.86 22.71% 

Bagumbayan 3416 784.50 22.97% Malabog 4243 1023.88 24.13% 

Balinad 2606 570.69 21.90% Malobago 663 149.18 22.50% 

Bañadero 1643 454.36 27.65% Maopi 1197 296.99 24.81% 

Bañag 2800 433.48 15.48% 
Market Area 

Poblacion 
2681 264.65 9.87% 

Bascaran 4335 1111.66 25.64% Maroroy 5518 957.06 17.34% 

Bigao 1073 311.86 29.06% Matnog 1772 552.45 31.18% 

Binitayan 4447 655.82 14.75% Mayon 1794 530.78 29.59% 

Bongalon 1148 264.33 23.03% Mi-Isi 1108 393.10 35.48% 

Budiao 288 94.74 32.90% Nabasan 663 207.16 31.25% 

Burgos 1227 300.41 24.48% Namantao 1608 425.02 26.43% 

Busay 2065 437.80 21.20% Pandan 1859 419.76 22.58% 

Canaron 513 155.23 30.26% Peñafrancia 3041 555.97 18.28% 

Cullat 1492 296.15 19.85% Sagpon 6587 803.97 12.21% 

Dela Paz 909 198.74 21.86% Salvacion 3648 941.05 25.80% 

Dinoronan 691 185.26 26.81% San Rafael 288 85.20 29.58% 

Gabawan 2151 470.29 21.86% San Ramon 1481 420.04 28.36% 

Gapo 2062 439.62 21.32% San Roque 4500 1110.72 24.68% 
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Ibaugan 621 207.02 33.34% 
San Vicente 

Grande 
1088 337.21 30.99% 

Ilawod Area 

Poblacion 
2243 206.69 9.21% 

San Vicente 

Pequeño 
336 91.21 27.15% 

Inarado 1804 390.17 21.63% Sipi 3750 521.92 13.92% 

Kidaco 1373 333.51 24.29% 
Tabon-

Tabon 
3124 668.01 21.38% 

Kilicao 4328 900.51 20.81% Tagas 6901 1404.95 20.36% 

Kimantong 2144 480.74 22.42% Talahib 643 183.74 28.58% 

Kinawitan 451 110.63 24.53% Villahermosa 2442 673.66 27.59% 

 
Guinobatan 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Agpay 482 175.71 36.45% Malobago 1867 821.13 43.98% 

Balite 585 257.90 44.09% Maninila 1482 705.85 47.63% 

Banao 1074 420.18 39.12% Mapaco 1460 514.71 35.25% 

Batbat 1373 607.98 44.28% 
Marcial O. 

Rañola 
537 249.89 46.53% 

Binogsacan 

Lower 
1889 649.21 34.37% Masarawag 3760 2184.86 58.11% 

Binogsacan 

Upper 
1131 364.45 32.22% Mauraro 5980 2047.53 34.24% 

Bololo 1442 675.67 46.86% Minto 1726 737.81 42.75% 

Bubulusan 1399 616.77 44.09% Morera 2602 748.26 28.76% 

Calzada 2787 858.07 30.79% 
Muladbucad 

Grande 
2079 1044.83 50.26% 

Catomag 796 308.50 38.76% 
Muladbucad 

Pequeño 
2051 1136.34 55.40% 

Doña Mercedes 1411 568.45 40.29% Ongo 942 426.51 45.28% 

Doña Tomasa 1352 747.17 55.26% Palanas 427 203.94 47.76% 

Ilawod 2209 659.81 29.87% Poblacion 427 114.48 26.81% 

Inamnan 

Grande 
2177 759.76 34.90% Pood 1336 629.66 47.13% 

Inamnan 

Pequeño 
1756 634.27 36.12% Quibongbongan 2595 834.86 32.17% 

Inascan 1481 774.73 52.31% Quitago 2236 893.99 39.98% 

Iraya 1771 507.31 28.65% San Francisco 3302 1201.58 36.39% 

Lomacao 2096 719.95 34.35% San Jose 853 352.20 41.29% 

Maguiron 2118 878.89 41.50% San Rafael 3884 1459.87 37.59% 

Maipon 3944 1689.06 42.83% Sinungtan 1812 770.28 42.51% 

Malabnig 1145 399.38 34.88% Tandarora 1291 605.68 46.92% 

Malipo 1760 707.56 40.20% Travesia 3878 1312.82 33.85% 
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Jovellar 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Aurora 

Poblacion 
96 57.78 60.18% 

Mercado 

Poblacion 
221 111.71 50.55% 

Bagacay 985 574.55 58.33% 
Plaza 

Poblacion 
168 90.48 53.86% 

Bautista 920 576.57 62.67% 
Quitinday 

Poblacion 
254 183.88 72.39% 

Cabraran 1636 874.41 53.45% Rizal Poblacion 360 203.90 56.64% 

Calzada 

Poblacion 
523 259.68 49.65% Salvacion 400 245.19 61.30% 

Del Rosario 679 425.33 62.64% San Isidro 1020 643.86 63.12% 

Estrella 513 280.87 54.75% San Roque 1470 936.57 63.71% 

Florista 790 475.95 60.25% San Vicente 1976 1090.72 55.20% 

Mabini 

Poblacion 
636 405.39 63.74% Sinagaran 570 323.40 56.74% 

Magsaysay Pob 126 76.07 60.37% Villa Paz 872 526.88 60.42% 

Mamlad 1044 578.27 55.39% 
White Deer 

Poblacion 
752 482.89 64.21% 

Maogog 1297 756.70 58.34%     

 
Legazpi City 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Bgy. 1 - Em's 

Barrio 
3725 181.40 4.87% Bgy. 42 - Rawis 8868 362.98 4.09% 

Bgy. 10 - 

Cabugao 
547 29.61 5.41% 

Bgy. 43 - 

Tamaoyan 
1642 74.13 4.51% 

Bgy. 11 - 

Maoyod 

Poblacion 

1110 58.24 5.25% Bgy. 44 - Pawa 3469 181.63 5.24% 

Bgy. 12 - Tula-

Tula 
2586 128.47 4.97% Bgy. 45 - Dita 1791 85.52 4.77% 

Bgy. 13 - Ilawod 

West Poblacion 
721 39.77 5.52% 

Bgy. 46 - San 

Joaquin 
2260 100.73 4.46% 

Bgy. 14 - Ilawod 

Poblacion 
854 40.64 4.76% 

Bgy. 47 - 

Arimbay 
3753 184.47 4.92% 
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Bgy. 15 - Ilawod 

East Poblacion 
2879 149.10 5.18% 

Bgy. 48 - 

Bagong Abre 
1627 85.16 5.23% 

Bgy. 16 - Kawit-

East 

Washington Dr 

5372 289.07 5.38% Bgy. 49 - Bigaa 6730 336.29 5.00% 

Bgy. 17 - Rizal 

Sreet., Ilawod 
2048 100.75 4.92% 

Bgy. 5 - Sagmin 

Poblacion 
1375 64.83 4.72% 

Bgy. 18 - 

Cabagñan West 
3856 203.24 5.27% 

Bgy. 50 - 

Padang 
1653 127.51 7.71% 

Bgy. 19 - 

Cabagñan 
1427 93.13 6.53% 

Bgy. 51 - 

Buyuan 
3895 233.80 6.00% 

Bgy. 2 - Em's 

Barrio South 
1820 109.67 6.03% 

Bgy. 52 - 

Matanag 
1895 130.29 6.88% 

Bgy. 20 - 

Cabagñan East 
641 42.69 6.66% Bgy. 53 - Bonga 3503 253.11 7.23% 

Bgy. 21 - 

Binanuahan 

West 

917 53.04 5.78% 
Bgy. 54 - 

Mabinit 
1640 119.54 7.29% 

Bgy. 22 - 

Binanuahan 

East 

1619 68.76 4.25% 
Bgy. 55 - 

Estanza 
4237 336.87 7.95% 

Bgy. 23 - 

Imperial Court 

Subd. 

746 38.45 5.15% 
Bgy. 56 - 

Taysan 
4237 278.02 6.56% 

Bgy. 24 - Rizal 

Street 
641 39.44 6.15% 

Bgy. 57 - Dap-

dap 
2287 104.46 4.57% 

Bgy. 25 - Lapu-

Lapu 
1398 74.27 5.31% 

Bgy. 58 - 

Buragwis 
4549 351.64 7.73% 

Bgy. 26 - 

Dinagaan 
798 43.00 5.39% Bgy. 59 - Puro 4756 255.16 5.37% 

Bgy. 27 - Victory 

Village South 
1418 84.23 5.94% 

Bgy. 6 - 

Bañadero 

Poblacion 

1390 83.88 6.03% 

Bgy. 28 - Victory 

Village North 
2399 104.07 4.34% 

Bgy. 60 - 

Lamba 
1352 69.48 5.14% 

Bgy. 29 - 

Sabang 
1656 65.15 3.93% 

Bgy. 61 - 

Maslog 
4796 345.33 7.20% 

Bgy. 3 - Em's 

Barrio East 
900 37.45 4.16% 

Bgy. 62 - 

Homapon 
4832 337.06 6.98% 

Bgy. 30 - 

Pigcale 
1688 77.78 4.61% 

Bgy. 63 - 

Mariawa 
1664 103.94 6.25% 

Bgy. 31 - 

Centro-Baybay 
1415 86.57 6.12% 

Bgy. 64 - 

Bagacay 
1616 100.11 6.20% 

Bgy. 33 - Pnr-

Peñaranda St.-

Iraya 

2773 68.81 2.48% 
Bgy. 65 - 

Imalnod 
2146 133.59 6.23% 

Bgy. 34 - Oro 

Site-Magallanes 

St. 

1633 46.57 2.85% 
Bgy. 66 - 

Banquerohan 
6976 479.24 6.87% 
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Bgy. 35 - Tinago 375 16.74 4.46% Bgy. 67 - Bariis 1812 144.01 7.95% 

Bgy. 36 - 

Kapantawan 
644 30.75 4.78% 

Bgy. 68 - San 

Francisco 
2479 177.50 7.16% 

Bgy. 37 - Bitano 8559 348.61 4.07% 
Bgy. 69 - 

Buenavista 
1319 128.75 9.76% 

Bgy. 38 - Gogon 5752 212.08 3.69% Bgy. 7 - Baño 645 54.86 8.51% 

Bgy. 39 - Bonot 3521 105.11 2.99% 
Bgy. 70 - 

Cagbacong 
2776 224.28 8.08% 

Bgy. 4 - Sagpon 

Poblacion 
953 66.57 6.99% 

Bgy. 8 - 

Bagumbayan 
3400 98.20 2.89% 

Bgy. 40 - 

Cruzada 
5853 191.58 3.27% Bgy. 9 - Pinaric 1493 92.24 6.18% 

Bgy. 41 - 

Bogtong 
4753 244.49 5.14% 

Bgy. 32 – San 

Roque 
5632 322.56 5.73% 

 
Libon 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Alongong 1529 709.30 46.39% Rawis 2250 871.54 38.74% 

Apud 1938 679.06 35.04% Sagrada Familia 1666 737.72 44.28% 

Bacolod 1450 451.48 31.14% Salvacion 518 254.92 49.21% 

Bariw 1297 560.94 43.25% Sampongan 458 238.12 51.99% 

Bonbon 3820 1193.55 31.24% San Agustin 2517 1043.64 41.46% 

Buga 3748 1521.00 40.58% San Antonio 1519 749.42 49.34% 

Bulusan 2169 938.96 43.29% San Isidro 1883 611.68 32.48% 

Burabod 2057 922.34 44.84% San Jose 2982 1470.23 49.30% 

Caguscos 1051 570.51 54.28% San Pascual 1229 575.33 46.81% 

East Carisac 947 310.90 32.83% San Ramon 764 397.17 51.99% 

Harigue 876 438.16 50.02% San Vicente 2989 1175.99 39.34% 

Libtong 886 431.31 48.68% Santa Cruz 1514 917.86 60.62% 

Linao 1544 553.44 35.84% Talin-Talin 1555 766.17 49.27% 

Mabayawas 404 201.37 49.84% Tambo 862 475.14 55.12% 

Macabugos 2840 1598.24 56.28% Villa Petrona 1497 560.70 37.46% 

Magallang 512 211.75 41.36% West Carisac 1053 313.09 29.73% 

Malabiga 857 419.54 48.95% Zone I 1486 523.02 35.20% 

Marayag 966 321.56 33.29% Zone II 1249 395.82 31.69% 

Matara 894 421.12 47.11% Zone III 870 229.86 26.42% 

Molosbolos 1084 538.91 49.71% Zone IV 1769 710.94 40.19% 

Natasan 1033 473.16 45.80% Zone V 1068 302.54 28.33% 

Niño Jesus 342 147.60 43.16% Zone VI 531 287.06 54.06% 

Nogpo 2281 1033.09 45.29% Zone VII 1635 488.75 29.89% 

Pantao 6930 3622.18 52.27%     
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Ligao City 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Abella 1047 256.45 24.49% Mahaba 3560 745.26 20.93% 

Allang 1472 416.71 28.31% Malama 1864 512.28 27.48% 

Amtic 1930 584.61 30.29% Maonon 3042 849.84 27.94% 

Bacong 1874 517.70 27.63% Nabonton 2203 702.65 31.89% 

Bagumbayan 2453 436.34 17.79% Nasisi 1879 504.33 26.84% 

Balanac 742 224.67 30.28% Oma-Oma 1761 565.26 32.10% 

Baligang 1463 526.87 36.01% Palapas 1469 506.49 34.48% 

Barayong 2438 536.15 21.99% Pandan 4519 911.43 20.17% 

Basag 2194 591.95 26.98% Paulba 2464 778.62 31.60% 

Batang 3672 757.69 20.63% Paulog 2424 664.90 27.43% 

Bay 1383 299.41 21.65% Pinamaniquian 2088 515.47 24.69% 

Binanowan 1208 310.98 25.74% Pinit 2714 532.58 19.62% 

Binatagan 3191 601.44 18.85% Ranao-Ranao 1773 320.44 18.07% 

Bobonsuran 659 133.77 20.30% San Vicente 787 200.71 25.50% 

Bonga 3196 860.71 26.93% Santa Cruz 2192 346.70 15.82% 

Busac 1229 390.65 31.79% Tagpo 987 205.75 20.85% 

Busay 1386 498.39 35.96% Tambo 1525 515.72 33.82% 

Cabarian 2569 675.48 26.29% Tandarora 452 118.67 26.26% 

Calzada 1717 298.53 17.39% Tastas 2272 429.35 18.90% 

Catburawan 1747 459.07 26.28% Tinago 4800 955.16 19.90% 

Cavasi 929 187.74 20.21% Tinampo 2644 486.94 18.42% 

Culliat 806 169.79 21.07% Tiongson 944 261.90 27.74% 

Dunao 760 148.42 19.53% Tomolin 1458 286.28 19.64% 

Francia 812 221.21 27.24% Tuburan 5682 1091.80 19.22% 

Guilid 3848 735.42 19.11% 
Tula-Tula 

Grande 
1825 449.91 24.65% 

Herrera 2655 853.05 32.13% 
Tula-Tula 

Pequeño 
1224 314.68 25.71% 

Layon 3152 705.44 22.38% Tupas 1026 285.40 27.82% 

Macalidong 1289 313.21 24.30%     

 
Malilipot 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Barangay I 2152 944.23 43.88% 
San Antonio 

Santicon 
791 415.64 52.55% 

Barangay II 597 245.66 41.15% 
San Antonio 

Sulong 
794 455.35 57.35% 
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Barangay III 1296 542.88 41.89% San Francisco 1565 658.03 42.05% 

Barangay IV 1614 566.73 35.11% 
San Isidro 

Ilawod 
3705 1462.25 39.47% 

Barangay V 1264 533.00 42.17% San Isidro Iraya 4686 1987.28 42.41% 

Binitayan 1834 804.29 43.85% San Jose 5110 2264.57 44.32% 

Calbayog 2094 1197.93 57.21% San Roque 2277 1236.44 54.30% 

Canaway 2599 1355.78 52.17% Santa Cruz 1659 756.10 45.58% 

Salvacion 1176 615.19 52.31% Santa Teresa 2573 1401.49 54.47% 

 
Malinao 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Awang 347 157.41 45.36% Libod 1065 485.49 45.59% 

Bagatangki 772 523.79 67.85% Malolos 856 445.17 52.01% 

Bagumbayan 788 362.35 45.98% Matalipni 1939 1213.84 62.60% 

Balading 3104 1484.63 47.83% Ogob 1992 1048.33 52.63% 

Balza 2084 941.34 45.17% Pawa 1217 591.32 48.59% 

Bariw 1524 676.18 44.37% Payahan 1414 645.45 45.65% 

Baybay 1730 638.17 36.89% Poblacion 657 325.05 49.47% 

Bulang 1028 680.38 66.18% Quinarabasahan 821 523.99 63.82% 

Burabod 837 393.22 46.98% Santa Elena 1133 605.76 53.47% 

Cabunturan 577 277.37 48.07% Soa 1352 799.62 59.14% 

Comun 1772 748.80 42.26% Sugcad 1784 1122.37 62.91% 

Diaro 889 436.48 49.10% Tagoytoy 2323 1123.12 48.35% 

Estancia 4293 1872.94 43.63% Tanawan 1739 985.23 56.65% 

Jonop 2024 903.05 44.62% Tuliw 1761 826.02 46.91% 

Labnig 3479 1536.15 44.15%     

 
Manito 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Balabagon 507 261.93 51.66% Holugan 1199 578.99 48.29% 

Balasbas 1581 760.36 48.09% It-Ba 3588 1477.97 41.19% 

Bamban 1010 621.09 61.49% Malobago 958 589.85 61.57% 

Buyo 4038 1528.86 37.86% Manumbalay 998 527.31 52.84% 

Cabacongan 945 605.80 64.11% Nagotgot 2510 1508.70 60.11% 

Cabit 1093 613.47 56.13% Pawa 2297 1075.06 46.80% 

Cawayan 1805 1177.48 65.23% Tinapian 1165 610.93 52.44% 

Cawit 1013 419.78 41.44%     
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Oas 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Badbad 602 264.66 43.96% Maramba 3301 1404.46 42.55% 

Badian 2681 1266.11 47.23% Matambo 489 151.02 30.88% 

Bagsa 862 248.80 28.86% Mayag 452 196.36 43.44% 

Bagumbayan 879 215.61 24.53% Mayao 1618 321.31 19.86% 

Balogo 4236 2505.14 59.14% Moroponros 357 166.18 46.55% 

Banao 470 219.42 46.68% Nagas 1631 767.59 47.06% 

Bangiawon 910 434.49 47.75% Obaliw-Rinas 1504 472.05 31.39% 

Bogtong 367 172.69 47.06% Pistola 1135 372.46 32.82% 

Bongoran 1816 602.87 33.20% Ramay 734 316.98 43.19% 

Busac 2079 633.24 30.46% Rizal 864 303.25 35.10% 

Cadawag 485 231.91 47.82% Saban 1908 525.83 27.56% 

Cagmanaba 3305 1645.31 49.78% San Agustin 1285 386.68 30.09% 

Calaguimit 867 422.85 48.77% San Antonio 939 418.25 44.54% 

Calpi 1335 438.47 32.84% San Isidro 1529 491.60 32.15% 

Calzada 911 289.30 31.76% San Jose 744 342.83 46.08% 

Camagong 1167 411.96 35.30% San Juan 1503 468.44 31.17% 

Casinagan 617 273.61 44.35% San Miguel 772 330.97 42.87% 

Centro 

Poblacion 
225 44.52 19.79% San Pascual 841 324.10 38.54% 

Coliat 723 345.51 47.79% San Ramon 1710 491.90 28.77% 

Del Rosario 733 302.99 41.34% San Vicente 938 299.18 31.90% 

Gumabao 793 223.72 28.21% Tablon 940 409.03 43.51% 

Ilaor Norte 1495 443.94 29.69% Talisay 779 326.53 41.92% 

Ilaor Sur 2202 634.35 28.81% Talongog 1192 396.40 33.25% 

Iraya Norte 1982 668.88 33.75% Tapel 1813 905.06 49.92% 

Iraya Sur 774 286.64 37.03% Tobgon 1648 754.53 45.78% 

Manga 2322 652.41 28.10% Tobog 1312 391.36 29.83% 

Maporong 1184 385.11 32.53%     

 
Pio Duran 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Agol 1135 479.20 42.22% Lawinon 1280 584.14 45.64% 

Alabangpuro 835 381.04 45.63% Macasitas 508 216.51 42.62% 

Banawan 3235 939.22 29.03% Malapay 1087 453.45 41.72% 

 



141 

 

Barangay I 4070 1645.53 40.43% Malidong 2062 913.92 44.32% 

Barangay II 1796 486.19 27.07% Mamlad 503 228.51 45.43% 

Barangay III 986 303.58 30.79% Marigondon 1562 481.39 30.82% 

Barangay IV 1472 415.60 28.23% Matanglad 681 322.13 47.30% 

Barangay V 2362 781.09 33.07% Nablangbulod 657 298.95 45.50% 

Basicao 

Coastal 
2300 884.35 38.45% Oringon 667 307.69 46.13% 

Basicao 

Interior 
599 276.63 46.18% Palapas 1181 523.17 44.30% 

Binodegahan 2517 1248.96 49.62% Panganiran 621 280.53 45.17% 

Buenavista 1247 502.21 40.27% Rawis 875 391.13 44.70% 

Buyo 452 223.15 49.37% Salvacion 621 294.08 47.36% 

Caratagan 4536 2584.57 56.98% Santo Cristo 451 201.67 44.72% 

Cuyaoyao 1618 694.71 42.94% Sukip 868 388.16 44.72% 

Flores 1410 617.57 43.80% Tibabo 662 330.25 49.89% 

La Medalla 1837 793.59 43.20%     

 
Polangui 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Agos 3631 776.19 21.38% Kinuartilan 594 166.86 28.09% 

Alnay 2398 617.81 25.76% La Medalla 855 238.77 27.93% 

Alomon 1285 216.83 16.87% La Purisima 572 139.18 24.33% 

Amoguis 506 155.88 30.81% Lanigay 3830 968.56 25.29% 

Anopol 1155 395.02 34.20% Lidong 1563 452.28 28.94% 

Apad 1665 332.54 19.97% Lourdes 733 206.67 28.19% 

Balaba 1697 581.86 34.29% Magpanambo 1342 359.89 26.82% 

Balangibang 1716 270.76 15.78% Magurang 3884 494.89 12.74% 

Balinad 3256 891.02 27.37% Matacon 4398 836.50 19.02% 

Basud 3752 628.95 16.76% Maynaga 1349 383.86 28.45% 

Binagbangan 922 250.49 27.17% Maysua 1004 375.52 37.40% 

Buyo 1066 320.18 30.04% Mendez 1025 172.69 16.85% 

Centro 

Occidental 
3578 671.75 18.77% Napo 3448 650.44 18.86% 

Centro 

Oriental 
2393 362.31 15.14% Pinagdapugan 969 245.23 25.31% 

Cepres 1529 414.32 27.10% Ponso 5039 1353.96 26.87% 

Cotmon 652 237.86 36.48% Salvacion 1208 301.96 25.00% 

Cotnogan 1652 369.25 22.35% San Roque 1687 457.65 27.13% 

Danao 1131 363.31 32.12% Santa Cruz 639 171.39 26.82% 

Gabon 3381 638.92 18.90% Santa Teresita 855 219.95 25.73% 

Gamot 1424 389.82 27.38% Santicon 2878 559.76 19.45% 

Itaran 1902 488.92 25.71% Sugcad 3986 993.02 24.91% 

Kinale 2402 388.55 16.18% Ubaliw 3270 550.95 16.85% 
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Rapu-Rapu 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Bagaobawan 769 490.66 63.81% Linao 484 323.77 66.90% 

Batan 1093 735.20 67.26% Malobago 869 608.65 70.04% 

Bilbao 1265 868.17 68.63% Mananao 1178 815.05 69.19% 

Binosawan 747 465.75 62.35% Mancao 1146 771.50 67.32% 

Bogtong 1072 790.12 73.71% Manila 840 576.17 68.59% 

Buenavista 820 555.14 67.70% Masaga 517 321.86 62.26% 

Buhatan 1016 649.60 63.94% Morocborocan 929 635.64 68.42% 

Calanaga 927 623.19 67.23% Nagcalsot 899 599.58 66.69% 

Caracaran 1387 972.37 70.11% Pagcolbon 244 172.43 70.67% 

Carogcog 421 312.90 74.32% Poblacion 5840 4261.58 72.97% 

Dap-Dap 1024 725.33 70.83% Sagrada 723 498.29 68.92% 

Gaba 836 536.15 64.13% San Ramon 2230 1494.75 67.03% 

Galicia 2020 1313.55 65.03% Santa Barbara 198 144.57 73.01% 

Guadalupe 346 243.92 70.50% Tinocawan 753 536.73 71.28% 

Hamorawon 1118 782.79 70.02% Tinopan 713 494.71 69.38% 

Lagundi 696 506.73 72.81% Viga 543 350.19 64.49% 

Liguan 958 657.80 68.66% Villahermosa 2299 1556.27 67.69% 

 
Sto. Domingo 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Alimsog 1082 521.72 48.22% San Fernando 2193 1113.61 50.78% 

Bagong San 

Roque 
1410 588.78 41.76% 

San Francisco 

Poblacion 
654 217.05 33.19% 

Buhatan 1215 575.84 47.39% San Isidro 2843 938.40 33.01% 

Calayucay 1663 846.28 50.89% 
San Juan 

Poblacion 
1072 411.41 38.38% 

Del Rosario 

Poblacion 
730 267.40 36.63% 

San Pedro 

Poblacion 
471 105.85 22.47% 

Fidel Surtida 2780 1378.46 49.58% 
San Rafael 

Poblacion 
615 275.92 44.86% 

Lidong 3076 1286.77 41.83% San Roque 1636 783.63 47.90% 

Market Site 

Poblacion 
200 77.39 38.69% 

San Vicente 

Poblacion 
1356 461.97 34.07% 
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Nagsiya 

Poblacion 
995 297.50 29.90% 

Santa 

Misericordia 
2714 1328.09 48.93% 

Pandayan 

Poblacion 
493 287.88 58.39% 

Santo Domingo 

Poblacion 
673 253.18 37.62% 

Salvacion 1946 1008.24 51.81% Santo Niño 1870 713.27 38.14% 

San Andres 3280 1385.02 42.23%     

 
Tabaco City 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Agnas 1377 455.42 33.07% Oson 1184 459.72 38.83% 

Bacolod 1907 448.46 23.52% Panal 3317 883.39 26.63% 

Bangkilingan 4542 1203.77 26.50% Pawa 4248 1079.66 25.42% 

Bantayan 1645 532.34 32.36% Pinagbobong 2992 805.05 26.91% 

Baranghawon 4357 1157.18 26.56% 
Quinale 

Cabasan 
1536 382.74 24.92% 

Basagan 1190 341.77 28.72% Quinastillojan 1805 547.78 30.35% 

Basud 2561 581.08 22.69% Rawis 1516 560.15 36.95% 

Bogñabong 2527 746.18 29.53% Sagurong 2921 1032.76 35.36% 

Bombon 1788 435.92 24.38% Salvacion 2525 699.21 27.69% 

Bonot 1188 360.77 30.37% San Antonio 5393 1474.62 27.34% 

Buang 2949 1176.27 39.89% San Carlos 3859 1058.70 27.43% 

Buhian 1599 537.04 33.59% San Isidro 1306 436.55 33.43% 

Cabagñan 2277 672.91 29.55% San Juan 1521 320.18 21.05% 

Cobo 3592 986.52 27.46% San Lorenzo 7892 2091.50 26.50% 

Comon 2497 751.72 30.10% San Ramon 3408 929.64 27.28% 

Cormidal 2187 579.00 26.47% San Roque 5173 1325.95 25.63% 

Divino Rostro 1257 321.22 25.55% San Vicente 3891 1026.41 26.38% 

Fatima 3923 950.20 24.22% Santo Cristo 5530 1395.95 25.24% 

Guinobat 1918 531.60 27.72% Sua-Igot 1148 412.47 35.93% 

Hacienda 5655 2000.56 35.38% Tabiguian 1642 495.97 30.21% 

Magapo 1063 386.82 36.39% Tagas 2431 596.54 24.54% 

Mariroc 5344 1542.14 28.86% Tayhi 3389 899.68 26.55% 

Matagbac 4895 1286.93 26.29% Visita 1647 606.36 36.82% 

Oras 1356 424.72 31.32%     
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Tiwi 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Subdistrict Population 
(2015) 

Population 
at Risk 

Risk 
Exposure 

Percentage 

Bagumbayan 2315 1442.82 62.32% Libtong 2304 1048.19 45.49% 

Bariis 1092 682.41 62.49% Matalibong 1397 885.72 63.40% 

Baybay 2265 931.49 41.13% Maynonong 824 529.20 64.22% 

Belen 1406 752.23 53.50% Mayong 1632 1039.23 63.68% 

Biyong 1680 1003.49 59.73% Misibis 2192 1394.11 63.60% 

Bolo 1205 566.62 47.02% Naga 4629 2294.49 49.57% 

Cale 5557 3399.44 61.17% Nagas 3206 1443.54 45.03% 

Cararayan 2012 887.36 44.10% Oyama 1289 534.55 41.47% 

Coro-Coro 1747 774.26 44.32% Putsan 1234 700.96 56.80% 

Dap-Dap 891 572.82 64.29% San Bernardo 1759 1124.20 63.91% 

Gajo 1536 717.11 46.69% Sogod 2103 1199.80 57.05% 

Joroan 2741 1731.67 63.18% Tigbi 3168 1411.47 44.55% 

Libjo 2936 1326.11 45.17%     
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