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The province of Albay regularly experiences landslides due to its geographic
location in the southeastern part of the island of Luzon, making it prone to natural
disasters. Being located in the country’s eastern seaboard, the province is regularly hit
by typhoons entering the Philippines. Since the province is situated in the Pacific Ring
of Fire, Albay is also tectonically active as characterized by the presence of active
faults traversing the area and being the location of Mayon Volcano, which is the most
active volcano in the Philippines.

Despite these circumstances which necessitate the need for landslide
susceptibility mapping, there is still a lack of comprehensive studies in this field due
to the difficulty of preparing and obtaining a landslide inventory. To overcome these
challenges, the study utilized two remote sensing techniques to identify landslide
features, namely PSI (persistent scatterer interferometry)-based hotspot analysis, and
clustering of spectral indices.

The first technique; PSI was used to identify locations where landslides are
highly likely to occur based on their stability threshold. PSI was performed on a stack
of 62 ascending and 65 descending Sentinel-1 SAR images dated from July 30, 2017 to
December 31, 2020, extracting a total of 277,525 PS| points measuring V,os (line-of-
sight velocity) with a stability threshold of 11 mm./yr. VLOS measurements were
projected along the direction of the steepest slope to measure slope deformation
velocity (Vs opp). Results of Getis-Ord Gi* hotspot analysis showed that out of 871 points
with a 99% degree of confidence, 356 points have a Vg gpe Of >33mm./yr. and are

designated as landslide points.



Another technique used for landslide inventory mapping is the extraction of
landslide features from the Gaussian clustering of spectral indices. In this study, two
spectral indices (NDVI and BSI) supplemented with slope raster were used as input
data in a Gaussian clustering algorithm to semi-automatically extract confirmed
landslide features on clusters by comparing pre-landslide and post-landslide satellite
images across three different dates, all of which were taken during the aftermath of
typhoons. A total of 200 landslide features were successfully extracted through the
manual post-processing of Gaussian clustering output features.

The landslide inventory data were split into 70% training data used as input in
deep learning algorithms for landslide susceptibility mapping, and 30% testing data for
accuracy assessment. Both deep CNN-2D and MLP showed high overall accuracy at
92% and 89%, respectively. Comparison with conventional machine learning
algorithms showed that RF can perform on par with MLP with an overall accuracy of
86% followed closely by SVM at 85% and with LR showing the lowest accuracy at 79%.

Assessment of landslide susceptibility in the province shows that a total land
area of 990.92 sq.km. out of 2500 sg.km. was classified as having very high susceptibility
and 701.58 sq.km. at high susceptibility. Population risk exposure mapping also showed
that 290 out of 720 subdistricts are at high risk with 103 of them at very high risk. The
entire island municipality of Rapu-rapu is at very high risk. Significant parts of the
municipalities of Tiwi, Malinao, Manito, and Jovellar are also atwvery high risk while the
entirety of the city of Legazpi has very low risk to landslides. The results of the study
imply the need of robust disaster risk reduction and-management planning to mitigate

the risk of landslides in vulnerable municipalities.
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