CONTENTS

			Page
ABST	RACT		I
ABST	RACT	Γ IN ENGLISH	
ACKI	JOWL	EDGEMENTS	V
CON	TENT	S	VI
LIST	OF F	IGURES	VIII
LIST	OF T.	ABLES	XI
СНА	PTER		
I	INTRODUCTION		
	1.1	Hydrogen energy	
	1.2	Hydrogen storage methods and applications	3
	1.3	References	7
II			
	2.1	Hydrogen in metal hydrides	9
	2.2	LiNH ₂ /Li ₂ NH and their tuning trategies	12
	2.3	Small hydrogen storage tanks for hydrogen storage materials	17
	2.4	References	21
111	EXP	PERIMENTAL SECTION	26
	3.1	Chemicals	
	3.2	Apparatus	
	3.3	Sample preparation	27
	0.0	3.3.1 Compacted LiNHarl iH doped with TiE4 and MWCNTs	27
		3 3 2 LiH-sandwiched LiNH _a -LiH-TiF ₄ -MWCNTs pellets	21
	3 Л	Small hydrogen storage tanks	، ۲ 77
	5.4	שוומני וואסו האבוד זרטו מצב נמו הש	

CONTENTS (Continued)

				Page
	3.5 (Chara	cterizations	28
	3	3.5.1	Chemical compositions	28
			3.5.1.1 Powder X-ray diffraction (PXD)	
			3.5.1.2 Fourier Transform Infrared Spectrometry (FTIR)	29
			3.5.1.3 X-ray photoelectron spectroscopy (XPS)	29
	3	3.5.2	Hydrogen sorption properties	
			3.5.2.1 Simultaneous Thermal Analysis (STA) coupled with	
			Mass Spectroscopy (MS)	30
			3.5.2.2 Sievert-type apparatus for tank scale	31
	3	3.6	References	33
IV	RESU	ILTS /	AND DISCUSSION	
	4.1 (Comp	pacted LiNH ₂ -LiH doped with TiF ₄ and MWCNTs	34
	4.2 L	_iH-sa	andwiched LiNH ₂ -LiH-TiF ₄ -MWCNTs pellets	44
	4.3 F	Refere	ences	53
V	CON	CLUS	IONS	55
CUR	RICULU	JM VF	TAE	

LIST OF FIGURES

Figure		Page
1.1	Global carbon dioxide (CO ₂) production per electricity	1
1.2	Visualization of the hydrogen production routes with a specific color	2
1.3	Hydrogen cycle	3
1.4	Hydrogen storage methods	4
1.5	Theoretical hydrogen storage capacities of all materials and systems	6
2.1	Hydride formation, Pressure-composition isotherm plot of metal-to-	
	metal hydride phase transition (PCT) curves, and van't Hoff plot	10
2.2	Steps for the absorption and desorption of the metal hydrides	11
2.3	The decomposition path of the $LiNH_2/Li_2NH_{a}$	13
2.4	The specific surface area to ball milling time of the ${\rm LiNH_2-LiH}$ composite	
	and DSC profiles for varied milling time	13
2.5	Dehydrogenation under 0.02 MPa and rehydrogenation under 0.7 MPa	
	hydrogen pressure at 300 °C of the LiNH_2-1.6LiH and doping with $\rm MH_2$	
	(M = Mg, Ca, and Ti)	15
2.6	Cycling stability of LiNH ₂ -LiH and LiNH ₂ -LiH-5mol%KF	16
2.7	Dehydrogenation profiles, Isothermal dehydrogenation of the LiNH $_2$ -LiH	
	composites and CeF $_4$ -doped LiNH $_2$ -LiH at different temperatures, and	
	$\rm NH_3$ signal in MS curves of $\rm CeF_4\text{-}doped\ LiNH_2\text{-}LiH$	17
2.8	Laboratory-scale hydrogen storage tank and hydrogen desorption graph	
	of compacted $Mg(NH_2)_2$ -2LiH-0.07KOH with varying ENG contents	
3.1	Glove box (Omni-Lab System, VAC) and A QM0.4L Planetary Ball Mill,	
	Nanjing Chishun Science & Technology	26

LIST OF FIGURES (Continued)

Figure		Page
3.2	Schematic draw of LiH-sandwiched LNL pellet, the components of	
	small hydrogen storage tank, and the positions of thermocouples	
	along the tank length packed with compacted samples	28
3.3	An airtight sample holder covered with a PMMA dome	28
3.4	FTIR spectrometer of Tensor 27-Hyperion 2000 (Bruker)	
3.5	X-ray photoelectron spectroscopy at SLRI, Thailand	
3.6	STA 449 F3 Jupiter coupled with QMS 403C (Netzsch)	31
3.7	Schematic diagram of Sievert-type apparatus	32
4.1	Simultaneous STA-MS results during dehydrogenation	
	of LNL and LNL-TiF ₄ -CNT	34
4.2	Temperature, pressure, and hydrogen flow rate profiles during	
	dehydrogenation of small hydrogen storage tanks containing	
	compacted LNL and LNL-TiF4 CNT	36
4.3	Temperature and pressure profiles during rehydrogenation of small	
	hydrogen storage tanks containing compacted samples of LNL and	
	LNL-TIF ₄ -CNT	37
4.4	Dehydrogenation kinetics and reversibility during cycling of small	
	hydrogen storage tanks containing compacted LNL and LNL-TiF4-	
	CNT	
4.5	PXD spectra of compacted LNL located at the middle of	
	the tank (TC2)	
4.6	FTIR spectra of compacted LNL located at the middle of	
	the tank (TC2)	40
4.7	PXD spectra of compacted LNL-TiF₄-CNT located at the middle of the	
	tank (TC2)	<u>1</u> 1

LIST OF FIGURES (Continued)

Figure		Page
4.8	FTIR spectra of compacted LNL-TiF $_4$ -CNT located at the middle	
	of the tank (TC2)	42
4.9	FTIR spectra of as-prepared and dehydrogenated samples at	
	different positions inside the tank containing compacted LNL-TiF $_4$ -	
	CNT	43
4.10	Pictures of compacted LNL and LNL-TiF ₄ -CNT	43
4.11	Simultaneous DSC-TG-MS results of LNL, LNL-10% LiH, LNL-20%	
	LiH, and LNL-30% LiH pellets	45
4.12	Dehydrogenation kinetics of LNL-10% LiH and LNL-30% LiH pellets	46
4.13	Rehydrogenation kinetics of LNL-10% LiH and LNL-30% LiH pellets	46
4.14	Dehydrogenation kinetics and reversibility of LNL-10% LiH and	
	LNL-30% LiH pellets	47
4.15	Simultaneous DSC-TG-MS results of the 6 th rehydrogenated pellets of	
	LNL-10% LiH and LNL-30% LiH	48
4.16	Microscope images of as-prepared and the 6 th rehydrogenated pellets	
	of LNL-10% LiH and LNL-30% LiH	49
4.17	PXD patterns and FTIR spectra of LNL-10%LiH	50
4.18	PXD patterns, FTIR spectra, and N 1s XPS spectra of LNL-30% LiH and	
	as-milled LiNH ₂ powder samples	51

LIST OF TABLES

Table		Page
1.1	Targets of material-based automotive hydrogen storage systems set	
	by the US-DOE	5
2.1	Summary of the DSC profiles for $LiNH_2$ -LiH by varied milling time	
	and LiH molar ratio	14
3.1	Chemicals used in this work	26