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This thesis proposed the optimal energy management system for microgrids 

under uncertainties. The most remarkable uncertainty for electricity entities lies in the 

energy demand and generation in the power systems. Many renewable energy 

generation sources are integrated into the power network because renewable 

resources provide guidelines for minimizing the network's environmental impact. 

However, renewable resources have volatile production energy and are unavailable at 

peak power output. Maximizing the utilization of renewable energy sources requires 

accurate forecasting due to its inherent uncertainty. Accurate forecasting is essential 

to guarantee reliable operation conditions and planning for generation capacities. This 

thesis presents an optimization-based microgrid energy management system 

incorporating demand response (DR) to tackle the issues of generation and demand 

uncertainties. To address this problem, uncertainty modeling is typically executed by 

a statistics-based stochastic process. The former is evaluated by modeling synthetic 

samples or scenarios in the input model for decision-making optimization. The latter 

model applied a simple stochastic process in the sophisticated decision-making model. 

However, it is hard to interface the complex scenario-based forecasting models and 

the sophisticated decision-making model. Therefore, this thesis highlights the 

interfacing of deep-learning-based time-series forecasting models with decision-making 

models. Forecasted information is embedded into the optimization problems due to 

the uncertain nature of demand and renewable generation. The day-ahead availability 

of power generation and microgrid demand were forecasted on the test system. The 

energy demand and RE generation forecasting are employed along with the Gate 

Recurrent unit  (GRU),  and  the  out  results  of  the  Gate  Recurrent  unit  (GRU)  are  
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CHAPTER I 

INTRODUCTION 

1.1  Background Introduction 

 The conventional power grid faces infrastructure aging and a considerable rise 

in power demand due to the increasing population worldwide. Most power companies 

desire to transform smart grid network technology to meet the fundamental 

requirement of the increase in electric demand. This system can permit a bulk power 

transmission network with flexible penetration of RE resources based on large-scale 

distributed generation and reliable power flow control capability. Power line engineers 

face the risks of power delivery capability and flexible expansion of traditional AC 

networks, such as controlling heavy and complex load flow analysis, voltage or 

frequency transient instability, and environmental impact in overhead and 

underground high voltage AC transmission (Pan et al., 2008). 

A microgrid combines advanced electrical network infrastructure, where the 

fundamental component is the same as the existing network structure modified with 

advanced information and communication technology. Another significant revolution 

of network structure allows any generating resource (DGs) penetration at any voltage 

level into the power system network. The distributed resource (DG) size is available 

from kilowatts to megawatts capacity, generally connected at the distribution level 

network. Generally, DG is preferred to RE-based generation plants, such as wind, solar, 

and hydro. On the other hand, increasing RE resources at local networks may give rise 

to the system’s energy security in the main grid and the distribution network (Costianu, 

Arghlra, Fagarasan, & St Iliescu, 2012). 
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Moreover, fast synchronization of the microgrid with the main grid back and 

black start capabilities must also handle a microgrid in islanded mode. The power 

balance and the controlling function were responsible for the utility grid in grid-

connected mode. The microgrid system can regulate and optimize generation 

resources based on its economical operation criterion. Generally, local renewable 

generation is more financial resources than the main grid. In such a case, the objective 

is to extract the maximum power from RE resources. The microgrid is guaranteed to 

generate constant power output and act as a filter for the active power injection or 

absorption to the utility grid under the grid-connected operation (Rozinajová et al., 

2018). 

Forecasting is an essential and powerful tool in the microgrid environment to 

maintain the power system's supply-demand balancing. Exceedingly accurate, quick, 

reliable balance and specific forecasting results are vital in the power and individual 

energy management systems in microgrids, industrial, commercial, and residential 

areas. Various forecasting data can be available based on different time horizons, from 

more than a few hours to quite a few days ahead. Forecast demand can support the 

required information to evaluate unit commitment scheduling of generation capacities 

and demand requirements for the next day. Significantly, the scheduling scheme was 

assessed around midday before the next day. The scheduling of generating capacities 

and storage facilities can be optimized by forecasting PV output power and electricity 

demand. As a result, the fuel consumption of generators can be minimized.  

Microgrid’s energy management system (EMS) monitors and controls the 

operational status of optimal economic dispatch power from the various energy 

resources to the controllable and critical loads. In the advanced interconnected 

system, the controllable loads can be dispatched to ensure reliability in the system. 

The EMS collected the load profiles and forecasted energy resource information, 

consumer preference, policy, and electricity market price to evaluate optimal power 

flow, energy price, load dispatch, and generation scheduling (Conejo & Carrion, 2006). 
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The objective of EMS in the microgrid is to optimize local generation for 

network connection and standalone operation conditions. The microgrid’s 

management system mainly focuses on economic generation scheduling with load 

shedding or shifting from the demand side. The system voltage/ frequency control and 

supply/demand balancing were essential tasks under the island operation mode. 

Controllable generation sources in microgrids, such as fuel-based generation, fuel cells, 

or storage systems, were responsible for energy balancing by absorbing or injecting 

energy from the non-controllable renewable generation. Another task is to adjust the 

noncritical or controllable loads from the demand side at the system’s unbalanced 

circumstance (Rozinajová et al., 2018). 

1.2  Problem Statement 

 The penetration of many distributed generations (DGs) into the network has 

significantly impacted the electricity market (Vivekananthan, 2014). Moreover, a 

restructuring system can potentially bring new risk concerns with the system’s 

reliabilities in the electricity market and the network. Supply/demand balancing and 

voltage/frequency profiles must be maintained below the threshold level in the 

distribution level (Khoa, Dos Santos, Sechilariu, & Locment, 2016). The optimization 

from the network operator standpoint was to ensure the serving capacity of the lines, 

the stable margin of the voltage profiles, and balance the network power flows, 

security, quality, and reliability (Arias, Rivas, Santamaria, & Hernandez, 2018). The 

unpredictable nature of renewable generation and unstable demand characteristics 

caused bus voltage fluctuation. Demand growth in the main grid often led to stringent 

operating circumstances. In the meantime, available power generation overflowing or 

underflowing negatively impacted system operation and gave the stress back to the 

whole system. Another risk concern with microgrid EMS is the increased use of 

controllable loads; it increases load forecasting accuracy. PHEVs/PEVs can be 

integrated into the grids at any charging location and at any time, giving rise to uncertain 
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load forecasting.  Multiple charging of EV loads onto signal feeder at peak time will 

bring transformer overload (Conejo & Carrion, 2006). The factors concerned with the 

nature of various types of renewable generation and robust energy management 

systems have gradually become a significant problem in autonomous microgrids (Shi, 

Liang, Huang, & Dinavahi, 2019). 

Recently, the concepts of microgrid planning addressed the economic 

feasibility and substantial stability issues. It is a complex process due to existing system 

constraints and uncertainties. The planning process goals usually conflict, and 

optimization problems accompany the planning process. Technical and environmental 

constraints and uncertainties are vital parameters to consider in planning. All decision 

factors considered in the planning stage can influence the system's capability in the 

competitive energy market. In general, the microgrid planning process is created with 

particular objective functions and constraints, and this is a vital source of risks 

necessary to avoid or control before decision-making (Gamarra & Guerrero, 2015).  

With the increase of renewable energy source generation and nonlinear loads 

causing the voltage to fluctuate in the power system, supply-demand balancing 

becomes unstable. The building process may be termed energy management, the 

process of monitoring, controlling, and conserving energy in an organization. In a 

microgrid where the consumers can generate local energy from several distributive 

generation units, and there is plenty of space for different pricing schemes, many 

researchers have pointed out the need for energy management programs (Nguyen et 

al., 2020). 

Traditional load shedding processes, under-voltage and under-frequency load 

shedding, and breakers’ interlocking are generally carried out based on the magnitude 

of voltage and frequency variation. It did not consider individual loads' priority or 

evaluate the correct load value needed to be shed (Khoa et al., 2016). In this scenario, 

this traditional process created unwanted conditions, such as excessive and 

unnecessary load reduction in the system (Shokooh et al., 2005). In this regard, 
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demand-side management can also reduce CO2 emissions and power system 

reliabilities and minimize total energy costs for end-users. The conventional grid cannot 

be a demand-side management method on the utility side due to the lack of efficient 

communication structure, automation tools, and sensor technologies.  In an advanced 

microgrid environment, modern information and communication technology gives 

opportunities for energy management programs (Costianu et al., 2012).  

1.3  Significance of the Study 

This research provides significant benefits and outcomes for the microgrid 

operator and the microgrid's consumer perspectives to minimize operation cost and 

peak-to-average ratio to support the network's cost-effective energy demand balance 

conditions. This work is unique from the previous methods due to considering the cost  

benefits to the microgrid grid operator and customer perspectives with minimum 

dissatisfaction—the optimal generation scheduling algorithm with the forecasting 

technique developed in the first phase of this research. The monthly uncertainties of 

power consumption and RE generation variation are considered in this work. This fact 

is realized in the microgrid's EMS implementation process. The proposed algorithm 

developed to set up the DR option is the final phase of this work. The DR program can 

be implemented efficiently with the incentive-based DR option. This EMS framework 

considers the perspectives of the end-user and the grid operator during decision-

making for load shifting/shedding. This system also provides an electricity cost-benefit 

to actively participate end-users by changing or reducing the appliance usage pattern 

allowable time frame. 

1.4  Research objectives 

This research aims to produce an optimal microgrid energy management model 

considering the demand response and monthly uncertainties of RE generation and 

demand in Thailand. Specific research objectives are set as follows: 
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(1)  To estimate solar power, wind power, and demand forecasting in the microgrid   

distribution network using the autoregressive moving average (ARMA) method, deep-

learning method, and employ advanced forecasting techniques in energy management 

system; 

(2)  To implement the optimal energy management system considering operation 

cost minimization, peak load minimization, end-user satisfaction, and demand 

response program; 

(3)  To test the performance of the proposed system on an IEEE 34 node system 

and Nakhon Ratchasima distribution system.  

1.5  Scope and limitation of the study 

The decentralized microgrid energy management system with demand 

response is implemented with generation and demand forecasting to minimize 

operating costs and peak-to-average ratio. This work emphasizes the optimal energy 

management system to benefit the grid operator and consumers who participate 

actively in the electricity mart by responding to hourly demand information provided 

by microgrid operators. Exceedingly accurate, quick, reliable balance and specific 

forecasting results are vital in the power and individual energy management systems 

in microgrids, industrial, commercial, and residential buildings. The day-ahead forecast 

technique, short-term forecasting, is an essential and powerful tool in the advanced 

microgrid environment to maintain the power system's supply-demand balancing. An 

hour ahead and a few hours ahead of forecasting the demand are also essential for 

the network economic load dispatching control. The scheduling of generating 

capacities and storage facilities can be optimized by forecasting PV output power and 

electricity demand. This study implemented the application of a statically base ARMA 

forecasting method to predict medium-term RE generation and demand forecasting 

and an artificial neural network-based deep-learning model (Gate-recurrent unit (GRU), 

long-short term model (LSTM)) to predict day-ahead forecasting. The day-ahead 

forecasted hourly data is applied to this study's energy management system 

 



CHAPTER II 

LITERATURE REVIEWS 

2.1  Smart Management and Control System 

 Smart management and control systems improve electricity use, balance 

supply and demand, control greenhouse gas emissions, reduce electric bills, and 

maximize utility profit. The smart management and control system provides advanced 

load management techniques and control facilities. The fundamental functions are to 

provide an efficient and reliable control structure, secure data collection, and two-way 

data transmission with supportive sensing. Huge data collection is carried out by an 

extensive collection of smart meters (SMs) or sensors to sense the actual grid status 

at every location through the network in real time. Two-way transmission links deliver 

sensor information signals to the control centers and vice versa. The control function 

typically provides data from smart meters, sensors, and control devices located at all 

places of the network to grid components and vice versa. Therefore, to reliably 

perform the critical function of smart grid communication infrastructure. The basic 

architecture must have integration of enabling networking technologies, home area 

networks (HANs), business area networks (BANs), neighborhood area networks (NANs), 

data centers, and substation automation (SA) integration systems (Costianu et al., 

2012). 

The Day-ahead forecast technique is an essential and powerful tool in the 

smart grid environment to maintain the power system’s supply-demand balancing and 

smart protection system. Exceedingly accurate, quick, reliable balance and specific 

forecasting results are vital in the power and individual energy management systems 

in the microgrid, industrial, commercial, and residential buildings. Various forecasting 

data can be available based on different time horizons, from more than a few hours 
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to quite a few days ahead. Day-ahead forecast demand can support the required 

information to evaluate unit commitment scheduling of generation capacities and 

demand requirements for the next day. Significantly, the scheduling scheme is 

assessed around midday before the next day. The unit commitment and scheduling 

process of electricity markets must be employed approximately 36 hours ahead of 

forecasted information. A few hours ahead of demand forecasting, ultra-short-term is 

also essential for the network economic load dispatching. The operation time 

scheduling of generating capacities and storage facilities can be optimized by 

forecasting PV output power and electricity demand forecasting. As a result, the fuel 

consumption of generators can be minimized. 

 

 

Figure 2.1 Various Forecasting methods for smart grid environment (Borghetti & Nucci, 

2016) 

For instance, the motion of clouds along a PV project ground can suddenly 

cause an increase or decrease in solar irradiance, namely ramp events. A few hours 

ahead, forecasting the ramp rate and width is essential for the solar project to diminish 

the consequences of ramp events. Different forecasting methods are employed in the 

smart environment for unit commitment, economic load dispatch, and load frequency 
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control purposes. According to essential forecasting techniques in the whole network 

or individual system operations, several days ahead forecasting, day ahead forecasting, 

several hours ahead forecasting, intra-hour ahead forecasting, and nowcasting have 

been investigated in recent years. Available resources technology is numerical weather 

prediction (NWP) models, satellite images, all-sky images, and PV power output 

measurement (Borghetti & Nucci, 2016). 

With the increase of renewable energy source generation and nonlinear loads 

causing voltage fluctuation in the power system, supply-demand balancing becomes 

unstable. Energy management monitors and controls the organization's building 

system to transform efficient energy-conserving forms. In a smart grid environment, the 

prosumers can generate energy locally from several available distributive generation 

resources, and there is plenty of space for different pricing schemes. In this regard, 

many researchers have pointed out the essential of energy management programs in 

the advanced power system. 

Demand-side management can also support reducing CO2 emissions, power 

system reliabilities, and minimizing total energy costs for end-users. The conventional 

grid cannot be a demand-side management method on the utility side due to the lack 

of efficient communication structure, automation tools, and sensor technologies.   In 

a smart grid environment, smart meters and modern information and communication 

technology can give opportunities for home energy management programs. HEM 

application can control domestic energy usage by scheduling the domestic load from 

peak to off-peak intervals. Once the end-user switches on their appliance, a data signal 

is instantaneously sent to the energy management unit (EMU) system. The EMU system 

is then delivered to the smart meter and local generation units to get the hourly price 

information from the utility and the available local energy resources. EMU can 

schedule the end-user appliance's starting and shifting time based on this hourly price 

information. The appliance waiting time is evaluated by the difference between the 

allowable time resigned by EMU and the consumer request start time.  Consumer-side 
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HEM generally uses home area networks (HAN) for load forecasting, energy 

management systems, and smart meter communication. Generally, HAN technology is 

based on a command-based system and link-based system communication (Costianu 

et al., 2012). 

2.2  Microgrid System Architecture 

The microgrid is an intelligent system with self-control, protection, and 

management in the local network. The operation mode of such a system can connect 

or disconnect with the bulk power system. The system's main task is the flexible and 

efficient integration of distributed energy resources, especially for connecting many RE 

resources. The conventional power network is inflexible to integrated DGs, lacks self-

healing, system recovery ultimately depends on entities, and cannot get advanced 

communication. Therefore, such a system imperfection cannot bring to perform 

automation system in the conventional network. According to Fig 2.2, a microgrid 

energy management system mainly works for grid-connected or disconnected 

distribution networks, and local distributed generation and responsive load are 

featured in advanced microgrids. Generally, demand response resources mainly 

depend on the different types of loads on the demand side. Demand response 

resources in the smart microgrid system include managing the demand side loads and 

DG power generation. The end-user’s load can be mainly categorized into adjustable 

load, shiftable load, controllable or uncontrollable load, and electric vehicle. The 

distributed generation includes photovoltaic solar power, wind turbine, and distributed 

energy storage (Y. Wang et al., 2018). 

2.3  Advantages of Microgrids 

Microgrids have potential advantages over existing power networks: Reduced 

losses, reliability, environmental benefits, and energy independence. 

In the traditional main grid, power generation is often far away from the 

demand side, and power is transferred for long transmission lines that may cause 

power losses in the lines. The total power losses from the transmission and distribution 
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systems were approximately 4%–5%. In a microgrid, the power generation is generally 

located near the load center. Therefore, reducing the line distance required to 

transport power can significantly reduce power losses in the entire network. 

 

Figure 2.2 Structural diagram of a typical Demand Response smart micro-grid (Wang 

et al., 2018) 

This is because the microgrids have their generation resources and are 

independent of the main network. It can ensure continuous operation during a 

blackout or shortage in the main grid. Therefore, microgrid has been interested in 

recent years to improve system reliability. Usually, most microgrid generation resources 

are renewable energy-based generation sources. The microgrids can change either grid-

connected or islanded mode operation, which creates the event to use more locally 

generated and reduce the critical power from the grid when it is unavailable. This 
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system can provide a higher integration of renewable DG than in the existing network. 

Therefore, it can minimize carbon emissions and environmental benefits. 

High penetration of DG and energy storage becomes more reliable and 

independent from the main grid in energy requirement. In the future, well-designed 

DG penetration could be effectively operated on the entire energy industry. This 

system will reduce the influence of large electricity companies in the electricity market 

and create a significant electricity market share as the business models established 

years ago (Y. Wang et al., 2018). 

2.4  Demand Side Management 

Energy demand varies by time series and depends on the year's season. The 

power flow in the smart grid environment has been changed into bi-directional power 

transfer. Therefore, the customer can generate electricity to reduce power demand 

and transfer excess power to the grid to increase the grid capacity. DSM technologies 

also allow them to use local storage capacity during peak times. In such a case, the 

DSM concept can support the load ability that does not need to reduce total demand. 

Generally, demand-side management effectively manages load utilization to match 

the available hourly supply rather than filling the hourly consumer demand. Demand 

response and energy efficiency are the two main concepts of DSM. While energy 

efficiency reduces a certain amount of demand for all time, demand response 

manages the total demand level during the on-site interval. This concept changes 

consumers' power usage behavior or cuts a specific demand in a particular time interval 

to balance production suppliers and consumers. Currently, the industrial sector mainly 

applies DR to minimize overall power consumption. Therefore, DR is a simple model 

that reduces overall power consumption in a short time interval. DSM can persuade 

consumers to limit their usage through an energy consumption scheduler (ECS) unit 

inside a smart meter to make the demand curve flatten a particular house (Hayes, 

2017). 
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2.5  Advantages of demand-side management 

Demand-side management (DSM) plays a significant role in developing the 

power industry, energy planning, and environmental protection. It can bring benefits 

to the power market: the efficient electricity market environment and restrain the 

market power, the realized information exchange the status of supply and demand, 

and accelerated the formation mechanism for electricity price information sharing, the 

effective mitigation of demand growth at peak hours and elevating the system 

reliability, significantly reduce the capital investment on generation sides, and also 

mitigate transmission, and distribution upgrading, facilitate the new aspects of energy 

conservation and reduction of CO2 emissions (Li, Chiu, & Sun, 2017). 

2.6  Demand Response 

Demand Response (DR) is the economic benefits concept to interact with end-

user. It also provides the potential benefits for reliability improvement and electricity 

market development. It can reduce the capital investment required for generation 

plant upgrading. The positive impact of load shedding, which can restore the 

acceptable system reliability level, is significantly initiated by the insufficient available 

power from generation resources by load reduction from the end-user side (Li et al., 

2017). Real-time market or day-ahead prices and market mechanisms are the basic 

requirements for demand response implementation in the power market. Using 

demand response in the system provides economic benefits and ensures energy 

efficiency and storage. The demand response program can typically offer six services 

in the system, as shown in Fig 2.3. The peak clipping, valley filling, and load shifting 

approaches were used for load management in the system, and the last three were 

used to change the load shape in the system. Therefore, the changing shape depended 

on customers' willingness to participate and the nature of the demand side ( Li et al., 

2017). 

2.6.1   Peak Clipping  
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Peak clipping reduces or clips the total demand below the threshold 

level based on the transmission system supply capacity. Although this can be 

implemented in the industrial, commercial, and accommodation sectors, it can 

be more effectively implemented in the accommodation environment by 

directly controlling the load. This service can significantly help the system by 

avoiding stress during peak hours. On the other hand, this can create customer 

dissatisfaction due to load curtailment. 

2.6.2  Valley Filling 

Valley filling increases demand during off-peak hours, potentially 

causing system instability. The more applicable method for this service in the 

system is the application of storage devices, such as energy storage and plug-

in electric vehicles. This is forced to increase the total power consumption of 

customers at off-peak hours. This may not significantly increase electric billing. 

2.6.3   Load Shifting 

Load shifting is forced to change particular loads from peak to valley 

time when total consumption exceeds the specific level. Since this strategy 

offered to change the time of use rather than force to reduce the total 

consumption, it does not violate customer satisfaction. 

2.6.4   Strategic Conservation 

This conservation encourages reducing demand to improve energy 

efficiency when the total load exceeds the supply capacity. This work can be 

implemented by replacing traditional devices with energy-efficient apparatuses. 

The consumption and cost of information support can persuade customers to 

reduce power demand. 

 



15 

 

2.6.5   Strategic Load Building 

The load-building strategy is encouraged to pull up overall demand 

when the total demand is lower than the usual supply level. This work can be 

done using energy storage services ( Li et al., 2017). 

 

Figure 2.3 Six types of demand-side management ( Li et al., 2017) 

The load shifting and peak shaving are generally actions from the demand side, 

and they can significantly impact the whole system context under stringent operating 

conditions. The function of load shifting is to remove the load from the peak interval 

to off-peak time intervals to mitigate system stress and reduce end-user power costs. 

The high energy price usually occurs during peak load hours due to the expensive 

generation startup to meet system demand. Therefore, peak shifting can reduce energy 

consumption at peak hours. The viewpoint of energy management is to minimize 
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system operation costs by replacing more expensive energy production with cheaper 

production (Mortaji, Ow, Moghavvemi, & Almurib, 2017). 

An adaptive under-frequency load shedding UFLS method can reduce the 

possible outage. This analysis considers daily load profiles of different loads to 

evaluate the amount of load to be shed. Moreover, the dynamic characteristics of the 

load aggregator and daily load profiles of various load types were considered (Dietrich, 

Latorre, Olmos, & Ramos, 2011). Demand-side management is a balancing tool for 

supply and demand using game theory to reduce the peak-to-average ratio and save 

consumer costs. The storage system with rooftop PV power was used as an energy 

source at the load-shedding interval (Horri & Roudsari, 2020). 

2.7  Classification of Demand Response 

The consumer DR participation manner can be categorized into three types. 

Firstly, the end-user's power demands to reduce during high price or peak demand but 

do not need to minimize action at regular periods. However, this strategy can be 

possible to give the temporary loss of a comfortable lifestyle. In the second type, end-

users respond to shifting their power usage pattern from the spike demand period to 

the valley time. This approach would not violate domestic customer satisfaction.  

Still, it is difficult for the industrial consumer to reschedule the production line 

again, negatively impacting manufacturing services. Third, some customers would 

respond to load reduction using small-scale own-generation resources, especially 

renewable energy resources. In this case, consumers do not need to change their 

electricity usage pattern very much, and total power demand will also be significantly 

minimized at a particular time (Noor et al., 2018). There are two types of DR frameworks 

for consumer persuasion: price-based DR and incentive-based DR offered to end-users. 

The price-based DR program aims to reduce energy demand or change usage patterns 

by offering time-varying dynamic electricity prices under high wholesale prices. The 
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incentive-based DR is to pay a particular amount of financial to customers, who curtail 

or shift some of the electric loads at times of high demand (Albadi & El-Saadany, 2008). 

Price-based DR has been offered fluctuating electricity prices to end-users 

under the dynamic time-varying scheme: time-of-use pricing (TOU), critical and extreme 

day CPP (CPP & ED-CPP), excessive day pricing, and real-time pricing (RTP). Demand 

response with CPP, ED-CPP, or EDP was to minimize the peak load at a specific or 

emergency period. TOU pricing is adjusting electricity usage patterns based on different 

time price signals. The RTP program is also an effective time-shifting method to export 

unimportant loads to the hour of valley demand (Ahmadi, Charwand, & Aghaei, 2013). 

However, it is not easy to persuade customers in the long term to shift or curtail hourly 

or daily (Zhong, Xie, & Xia, 2012).  

 

Figure 2.4 Classification of Demand Response (Albadi & El-Saadany, 2008) 

The incentive-based program can be classified into classical and market-based 

programs, as shown in Fig. 2.4. Both offer rewards, financial payments, or discount 

credit payments to the customers depending on the amount of DR participation during 
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a particular time. According to the utility side notification, direct Load Control and 

Interruptible/Curtailable programs cut the load at a specific amount and time interval. 

Such programs were more suitable for domestic or small business customers. In such 

a program, however, participators must be paid a penalty payment for contract 

omission. In demand bidding programs, the consumer must curtail their loads until a 

specified amount for bidding. In emergency DR and capacity market programs, 

participants must be responsible for load reduction with a specific amount. The 

consumers will also receive financial rewards according to the participation amount in 

emergencies or contingencies. The ancillary services market is concerned with end-

user-level demand bidding in the market. These incentive programs are day-ahead 

notifications (Albadi & El-Saadany, 2008). 

The price-based time-varying program was non-dispatchable and reduced 

flexibility for the operator side. This will sometimes impose a spike in power selling 

prices on the customers, adversely impacting such programs. In this fact, incentive-

based DR programs offer a dispatchable and more flexible contribution to the operator. 

However, some investigations highlight that consumers are less willing to participate in 

DR programs because of the inconvenience of load interruption during a particular 

period and dissatisfaction with the mandatory daily power cutting (Yu, Hong, & Kim, 

2016). Therefore, the time for load reduction in the entire horizon should be set as a 

feasible option for several network consumers. According to the theoretical 

investigation, the price-based time-varying option still has some challenges to become 

widely deployed. Incentive-based DR programs have also been proposed to reduce 

peak load by offering a financial reward (Yu et al., 2016). 

2.8  Energy Management System 

The Energy management system monitors the operational status of various 

energy resources under optimal economic dispatch power and controls the 

controllable and critical loads. In the advanced interconnected system, the 
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controllable loads can be dispatched to improve system reliability. EMS collects the 

load profiles and forecasts energy resources, consumer preference, energy policy, and 

electricity market price. Afterward, optimal power flow, energy price, load dispatch, 

and generation scheduling were implemented (Conejo & Carrion, 2006).  

2.8.1  Centralized Microgrid EMS 

The centralized EMS has three control levels: distribution network 

operator (DNO) and market operator (MO); microgrid central controller (MGCC); 

and local controllers (LCs) associated with energy resources and load units. At 

the operator level, the market operator exchanged information between the 

microgrid and the electricity market. The distribution network operator 

managed the real-time and operating commands from the multiple microgrids 

and main grids. In the second level, the microgrid central controller is 

responsible for an information and control center gateway between the 

operator and local controllers to get information from utility requirements and 

the energy market. The MGCC can update the system operational status, 

handle system disturbance, switch, and resynchronize the microgrid with the 

primary grid. Another essential task concern with MGCC is scheduling energy 

output from all resources based on information from load aggregators, 

particular objective functions, and system constraints. The centralized MGCC 

operation is a powerful computational mechanism to handle real-time signals 

from all resources and loads. Although MGCC design is easy implementation, 

standardized procedure, high expansion cost, high communication capacity, 

and fast computational ability become drawbacks due to the increment of 

control devices in the system (Su & Wang, 2012).  
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Figure 2.5 Centralized microgrid EMS (Su & Wang, 2012) 

2.8.2  Decentralized Microgrid EMS 

In decentralized control, autonomous intelligence and several local 

controllers monitor every component in the interconnected system. Fig. 1.6 

shows the architecture of a decentralized control scheme. Because the local 

controllers only need decision-making and communication locally, the 

communication congestion and computational burden are significantly less 

than centralized EMS. In this scheme, local controllers must not determine the 

optimal power output in such a distributed system. Therefore, this design 

significantly reduces the computational power requirement in the entire 

microgrid. Due to the local controllers having local authority, it is challenging 

to detect and troubleshoot security issues. A highly dependent and smooth 

communication infrastructure is the drawback of this system (Su & Wang, 2012).  

A new control aspect of decentralized EMS for the distributed microgrid 

operation is shown in Fig 2.6. The primary control is for reliable function of 

frequency and voltage below the set points when communication fails. The 

secondary control controls the voltage and frequency deviations for the entire 

system. The third is to perform optimization to get cost-effective energy 

scheduling. The control process is performed locally (De Brabandere et al., 

2007). 
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Figure 2.6 Decentralized Microgrid EMS (Su & Wang, 2012) 

.  

 

Figure 2.7 Overview of overall decentralized EMS (De Brabandere et al., 2007) 

The objective of EMS in the microgrid is to ensure local generation 

optimization for both modes of operation. The microgrid management system 

was mainly focused on economic generation scheduling with demand-side 

management. The system voltage and frequency control and supply and 
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demand balancing were essential tasks under the island operation mode. 

Controllable generation sources in microgrids such as fuel-based generation, 

fuel cells, or storage systems were responsible for energy balancing by power 

absorption or injection from the non-controllable renewable generation and 

local loads. The energy management system is also responsible for adjusting 

the noncritical loads under imbalance in the microgrid. 

Moreover, fast synchronization of the microgrid with the main grid back 

and black start capabilities must also handle a microgrid in islanded mode. The 

power balance and the controlling function were responsible for the utility grid 

in grid-connected mode. The microgrid system can regulate and optimize 

generation resources based on its economical operation criterion.  Generally, 

local renewable generation has more financial resources than the utility grid. 

In such a case, the objective is to extract the maximum power from RE-based 

resources. On the basic, the microgrid was guaranteed to generate to evaluate 

power output and act as a filter for the active power injection or absorption to 

the utility grid under the grid-connected operation (Rozinajová et al., 2018). 

2.9  Unit Commitment (UC) and Economic Dispatch (ED) 

Unit commitment is the evaluation of minimum generation cost from different 

generations to support the energy needed quickly and to satisfy system constraints. 

The results from UC control provide the decision of generation plants’ 

startup/shutdown and support the total production capacity of all generation units 

economically in the power network in individual operation hours. This optimization 

problem minimizes operational costs for every generation unit over every hourly 

horizontal. The constraints related to generation scheduling consider the power 

balance constraint, spinning reserve, and generation capacity limitation (Logenthiran & 

Srinivasan, 2009). Coordinate interconnected loads with Distributed Energy Resources 

(DERs) in the system and act as a centralized or decentralized controlling entity 

concerning the utility grid. The Energy Management System (EMS) in the microgrid takes 
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action to ensure microgrids' reliable and economical operation. The generation 

scheduling and dispatching operation system maintains reliable power reserve levels, 

mitigates the uncertain nature of renewable resources, and introduces demand 

response (DR) action at the demand side management. The two concepts of 

centralized EMS were based on Unit Commitment (UC) and Optimal power flow (OPF) 

models. Unit Commitment (UC) based energy management system (EMS) takes into 

account the network constraints and operational constraints concerned with 

distributed energy resources; optimal power flow (OPF) based EMS considers the 

optimal network flows (Solanki, Raghurajan, Bhattacharya, & Canizares, 2015).  

Unit Commitment (UC) and Economic Dispatch (ED) are the microgrid's two 

main functions of generation scheduling. Unit commitment is the optimization problem 

of scheduling the operation and compensation of the generation from available 

generation resources in the microgrid daily to weekly based on the generator and 

system constraints. Many different generation technologies in the system can 

exponentially increase the UC problem. Optimization of generation scheduling 

becomes the central management function performed to meet forecast demand and 

spinning reserve under minimum operating cost in a short time (Logenthiran & 

Srinivasan, 2009). The UC optimization is to solve the unit-scheduled problem and 

economic dispatch (ED) problem. The constraints for the unit-scheduling optimization 

problem usually consider the system capacity requirements, generation limits, and the 

constraints on the startup and shutdown of the scheduled units. System demand and 

spinning reserves must be considered for optimal generation dispatch problems for 

every interval (Yong, Zhi-Jian, & Chuan-Wen, 2005).  

With improved communication infrastructure in the microgrid community, 

smart demand response, load shedding, load shifting, and restoration have also 

become the options to ensure supply/demand balancing based on customers' 

willingness to participate. Load shedding restores the total loads needed to shed and 

recovers the power supply according to appliance operating characteristics. The 
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traditional load-shedding processes are under-voltage, under-frequency load shedding, 

and breakers interlocking based on the voltage and frequency variation magnitude. 

The conventional system did not require considering individual load priority and did 

not need to evaluate the correct load-shedding value (Khoa et al., 2016). In this 

scenario, the conventional method has the drawback of excessive or unnecessary load 

reduction problems in the system. 

Moreover, the volatile nature of renewable generation and demand growth are 

drawbacks to bus voltage fluctuation. Demand growth in the system often led to 

stringent operating circumstances. In the meantime, the issues of available power 

generation can affect appliances' operation and cause stress to the whole system 

(Shokooh et al., 2005). 

2.10  Microgrid Energy Management System 

EMS controls a cluster of different resources and responsive loads as a single 

entity from the upstream generation system, allowing full use of RE's generation 

capacity while minimizing operation costs and pollution (Moradi, Esfahanian, Abtahi, & 

Zilouchian, 2018). The microgrid usually consists of different types of distributed 

generation, such as dispatchable and non-dispatchable generation. Dispatchable units 

include diesel engines (DEs), microturbines (MTs), and fuel cells (FCs), while non-

dispatchable sources consist of wind turbines  (WTs)  and photovoltaic cells  (PVs)  (Li, 

et al., 2019).  It is challenging to schedule a microgrid effectively under the volatility 

of non-dispatchable sources. 

The integration of distributed generation (DG) enhanced the performance of 

distribution systems, such as reducing power losses, improving system reliability, 

economical operation, and reducing pollution. On the other hand, the high penetration 

of intermittent DGs raises the challenge of modern power systems, such as voltage 

exceeding, network congestion, and the randomness of DG power supply (C. Wang et 

al., 2016). The energy management system (EMS) performs optimal dispatch resource 

management upstream, dealing with REs uncertainty and demand response and 
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increasing REs penetration with high profit. The effectiveness of an advanced microgrid 

system is that the structure provides a local distribution system in which the 

uncertainty from RE resources can adequately be captured by load pattern change, 

namely demand response (DR) (Lu, Cheng, & Carli, 2021). Demand response (DR) has 

been considered in the scheduling problem, operating the existence of RE uncertainty 

to respond to the variation of RE. The idea of flexibilities DR participants tracked the 

uncertainty problem of RE resources and energy reserve. Generation scheduling with 

flexible DR is an effective structure for hosting a high penetration of RE resources in 

the distribution system (Du et al., 2021). 

2.11  Microgrid active distribution network 

Emerging in the electricity market with advanced communication technologies, 

consumers have become active in optimizing energy usage. Furthermore, local 

generation scheduling and EMS systems become the solution for smart microgrid 

operations to reduce financial losses. It will also be flexible to extend RE-based 

distributed generation integration locally (Essayeh, El-Fenni, & Dahmouni, 2016). The 

microgrid system can regulate and optimize generation resources based on its 

economical operation criterion. Generally, local renewable generation is a more 

economical resource than the utility grid. In such a case, the objective is to extract the 

maximum power from RE-based resources. The active distribution network was created 

to guarantee the generation of constant power output and filter the active power 

export and import with the utility grid under the grid-connected operation. 

This microgrid system combines fuel-based conventional generators and 

renewable-based generation from the supply side with demand response on the 

demand side. The energy trading scheme back to the grid is an option in the advanced 

system, whereas local generation can be sold to the local demand side and the main 

grid. When the local generation capacity is insufficient, the utility grid imports the 

energy to this distribution system in grid-connected mode. Microgrid aims to maximize 
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RE-based generation utilization to minimize both operation modes' fuel cost 

consumption (Mokryani, 2015).  

2.12  Techniques for uncertainty issues 

Accurately predicting upcoming demand and RE generation is the prerequisite 

information to construct a model of an efficient energy management structure. Many 

research articles highlight that the uncertainty of parameters accompanies the 

predicting error ( Yang et al., 2021). The nature of uncertainty in forecasting wind and 

PV generation considerably impacts the scheduling decision. In recent years, many 

research works have focused on improving forecast methodology with less error (Tan 

et al., 2020).  

According to research articles, physical methods, mathematical methods, 

machine learning, and hybrid methods are the available tools for forecasting. The 

above work mainly highlights the impact of wind or PV generation forecast errors on 

system stability issues. There is little consideration of analyzing the comprehensive 

forecasting errors of all available renewable resources on the microgrid dispatching 

system (Hajiamoosha, Rastgou, Bahramara, & Bagher Sadati, 2021). On the other hand, 

the favored methods applied in the model to analyze the uncertainties are Monte-

Carlo simulation (MCS), point estimation method (PEM), scenario analysis, and risk-

averse analysis (Hajiamoosha et al., 2021). Currently, four methods are mainly used for 

power systems and microgrid dispatch systems based on uncertain renewable power 

characteristics: fuzzy method, stochastic method, robust optimization methods, and 

interval optimization methods (Mokryani, 2015). 

2.12.1  The stochastic method 

The existing research article discussed the need to use a method to 

capture the nature of uncertainty, mainly with stochastic, probabilistic, and 

robust planning. The stochastic approach is the most utilized technique in 

distribution network planning (Mokryani, 2015). The scenario generation 

represented a discrete distribution model from the continuous probability 
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density distribution function. The probability density distribution function with 

fewer scenarios cannot guarantee the secure complex optimization problem in 

the scenario generation method (Tabar, Jirdehi, & Hemmati, 2017). This is the 

multiple scenarios generation method to obtain the optimal solution, and this 

method takes high computational time to identify the probability distribution 

function (PDF) of uncertainty problems (Z. Yang et al., 2021). The wind/PV 

sources and demand are considered uncertainty parameters and probabilistic 

methods for handling microgrid uncertainty problems (Nikmehr & Najafi 

Ravadanegh, 2016). The predicted wind, solar irradiance, and load profile 

uncertainty are generally solved by the predictive control (MPC) approach (Saez 

et al., 2015). This work presented stochastic EMS formulations to address 

uncertainty issues. These formulations determined the necessary reserves of 

the microgrid to avoid arbitrarily fixing these reserves a-priory (Saez et al., 2015). 

The advantage of stochastic programming is that this method does not 

require accurate forecasting parameters and is based on probability distribution. 

Therefore, this method suits conditions with unknown parameters and hardly 

predictable circumstances (Tostado-Véliz, Rezaee Jordehi, Icaza, Mansouri, & 

Jurado, 2023). In the stochastic method, uncertainties are presented as 

probabilistic distributed stochastic variables. Their probabilistic distributions are 

usually assumed as certain standard probabilistic density functions. For 

instance, Weibull and Beta distribution are well-known probability density 

functions that attempt to describe wind and PV uncertainties. of wind speed 

and solar irradiance.  

2.12.2  The fuzzy method 

The fuzzy variable and fuzzy memberships are represented for 

uncertainty parameters to establish a fuzzy dispatch model. The fuzzy 
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method provided an optimal solid solution from the system 

dispatcher’s specified memberships function (Mokryani, 2015). 

2.12.3  The robust optimization method  

Some articles propose the achievement of a mathematics-

based and evolutionary algorithms robust optimization method with 

less computation time for uncertainties problems. This work observes 

that although the executability of robust modeling has an advantage 

on linear problems, achieving the guaranteed result on non-linear 

problems is challenging (Mokryani, 2015). Robust optimization has 

become a popular method to solve scheduling problems with 

uncertainty in the power system. Robust optimization evaluates the 

optimal solution under the worst-case scenario with less computation 

time. However, the application of robust optimization has limitations 

due to the low probability of a worst-case scenario. The robust 

optimization is a non-probabilistic model that models uncertainty 

based on the expected value and predicted intervals. Although the 

robust optimization method is efficient for solving the minimization 

problem, it has difficulty for the min-max dual optimization problem 

due to interval numbers. The main drawback is that this method never 

optimizes the problem in the worst scenario (Tostado-Véliz et al., 2023). 

To overcome the problem of complexity methods in the operation of 

MGs, robust optimization is investigated to achieve a simple way to 

solve the characteristic of uncertainty problems (Wang et al., 2017). This 

work highlights the advantage of robust multi-objective optimization for 

microgrid scheduling. The results show that the proposed method does 

not necessarily generate the scenario probabilistic function and 

experiential information. 

2.12.4  The interval optimization method 
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Interval optimization has recently been introduced to overcome the 

limitation of a robust method. This method finds an optimal minimization 

solution to address uncertainties concerning specific objective functions' upper 

and lower bounds (Li et al., 2019). The work in (Khalili, Nojavan, & Zare, 2019) 

analyzed quality prediction of electricity prices under uncertainty. It presented 

the outcome of the expected interval to construct a preassigned probability of 

future electricity prices. Predicting the volatile interval is more suitable than 

the specified exact stochastic distribution for optimal unit commitment in 

practical operation. Interval prediction is helpful in power systems, such as load 

flow with uncertain demand, electric energy markets, and boundary analysis 

for reliability and economic assessment in distribution systems. The limitations 

of accurate interval forecasting are the difficulty of estimating the forecasted 

interval and the distribution variance. Due to the volatility of the predicted 

parameter, it is challenging to represent the parameter with traditional linear 

time series models. The estimation of distribution is commonly based on the 

assumed analysis because of unknown parameters. Although the variance is 

essential in interval prediction, it is challenging to predict due to time-varying. 

From the above mentions, interval optimization is usually applied for a single 

optimization problem due to its complexity. However, the microgrid 

optimization problem usually comes with simultaneous operation multiple 

criteria problems, such as reduced operation cost, satisfactory levels, power 

quality, and system security (Jun Hua, Zhao Yang, Zhao, & Kit Po, 2008). 

2.13  The Advanced Forecasting Techniques 

With the emergence of advanced artificial neural networks, solar irradiance, and 

wind speed can be forecasted from several minutes to several days ahead, depending 

on the requirement of the application over the time horizon. Forecasting several 

minutes to days ahead is essential for system operation optimization and electricity 

market participation. Therefore, RES forecasting has become a target for an advanced 
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system operation, and appropriate forecasting methods must also be selected 

according to advanced applicability (Rajagukguk, Ramadhan, & Lee, 2020). (Y. Wang, 

Xia, & Kang, 2011). Although various articles presented the precise methods to mitigate 

the uncertainty, RE capacity forecasting results still showed a 10% average MAE error 

in the practical field for the day-ahead scheduling process. In this regard, the total REs 

capacity error with demand variation brings the risk of forecasting error amplification 

(Y. Wang et al., 2011). 

Forecasting the ramp rate and width an hour ahead of time is essential for the 

solar project to diminish the consequences of ramp events. Different forecasting 

methods are employed in the smart environment for unit commitment, economic 

load dispatch, and load frequency control purposes. According to essential forecasting 

techniques in the whole network or individual system operations, several-days ahead 

forecasting, day ahead forecasting, several hours ahead forecasting, intra-hour ahead 

forecasting, and nowcasting have been investigated in recent years (Borghetti & Nucci, 

2016).  The advanced forecasting methods can be classified as the physical method, 

conventional statistical method, and artificial neural network (ANN) based method (Ko 

et al., 2021). After a high penetration of RE access in the active distribution network, 

there is also an increase in the complexity of scheduling. The accuracy improvement 

of power forecasting for RE generation has become the primary technology for securing 

the status of operational scheduling, reducing additional capacity reserves, and 

decreasing generation costs. According to the feature, the prediction process can be 

divided into direct and indirect prediction, and the spatial scale of prediction can be 

divided into a single field and regional prediction. The time scale can be divided into 

ultra-short-term, short-term, medium-term, and long-term forecasts. According to the 

classification of the prediction method, the method can be divided into point 

prediction, interval prediction, and probability prediction; the class can be divided into 

the physical model, conventional statistical model, and machine learning model. The 
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prediction research is usually carried out by prediction methods such as the physical 

method, statistical method, and machine learning method (K. Wang, Qi, & Liu, 2019). 

2.13.1  The physical method 

The physical method builds on the mesoscale weather information, 

namely the numerical weather prediction system (NWP). This mathematically 

expressive model is based on geographical and meteorological information (Ko 

et al., 2021). This method can effectively perform for medium-term forecasting 

periods but has limitations on short-term forecasting due to geographical or 

meteorological gathering difficulty. For instance, the motion of clouds along a 

PV project ground can suddenly cause an increase or decrease in solar 

irradiance, namely ramp events. Available resources technology is numerical 

weather prediction (NWP) models, satellite images, all-sky images, and 

measured PV power output data (Borghetti & Nucci, 2016). The representative 

of the physical model is modeling with mathematical or numerical to interact 

with the solar radiation in the atmosphere according to the laws of physics. 

This model usually involved numerical weather prediction, sky imagery, and 

satellite image models. The statistical model is the way to find the solution 

from the relationship of the input and output variables. The well-known 

conventional statistical models are the fuzzy theory, Markov chain, 

autoregressive, and regression models (Rajagukguk et al., 2020).  

2.13.2  The Conventional Statistical Method 

The conventional statistical method is built on historical data and is 

characteristic of the linear statistical method. ARMA and ARIMA models are the 

most popular methods, but the nonlinear characteristic of the statistical data 

cannot guarantee the accuracy of this method (Ko et al., 2021). The statistical 

model maps correlation to the data model by curve fitting, parameter 

estimation, and correlation analysis. The correlation mapping processed the 

historical input data, such as solar radiation and PV power generation output, 
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to realize the prediction of output data. The advantage of the statistical model 

over the physical model is that it does not need to thoroughly understand the 

complex theoretical relationship of advanced systems, such as photoelectric 

conversion and wind speed correlation. The statistical model only needs the 

knowledge of partial realization through different data analysis techniques; 

therefore, this is a simple technique with strong universality for different 

regions. However, a vast amount of correct historical past data, data acquisition, 

and complex calculation processes are the drawbacks of statistical methods 

for implementation. The complex numerical calculation process usually takes 

time to predict, and ultra-short-term prediction speed is another drawback to 

implementing with ordinary computers. Due to the prediction process being 

related to the reserve of historical data, data screening and elimination of false 

data are the primary concerns for the accuracy of the conventional statistical 

method. Therefore, the prediction accuracy depends on many numerical 

calculation processes of higher dimensions, considerably increasing the 

calculation time and the prediction speed (K. Wang et al., 2019).  

2.13.3  The artificial neural network 

The artificial neural network is a powerful tool representing historical 

data's nonlinear and complex features with many parameters. ANN methods 

have been widely applied in forecasting to improve memories and arithmetic 

units. ANN models for forecasting (WSF) provide results with higher accuracy 

than physical and conventional statistical methods. The introduction of deep 

learning neural networks improved the accuracy of ANN models. Recurrent 

neural networks (RNN), long short-term memory (LSTM) networks, and gated 

recurrent units (GRU) are the advanced structures of the deep learning ANN 

method (Ko et al., 2021). 

2.13.4  Machine learning techniques 
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Machine learning is a highly efficient model based on artificial 

intelligence; this model can effectively extract high-dimensional complex 

nonlinear input functions (Rajagukguk et al., 2020). Machine learning is a 

powerful tool that can extract high-dimensional complex nonlinear features 

and directly map the output. The support vector machine (SVM), k-nearest 

neighbors, artificial neural network (ANN), naive Bayes, and random forest are 

the former well-known machine learning models. The input variable of the 

machine learning statistical models usually relies on historical past data to 

predict near-future time series models (Wang et al., 2019). 

Recently, machine learning has become a popular time series prediction 

technique. In the recent research article, analysis prediction of REs resources 

with machine learning in which the meteorological data is used as the input 

data, such as irradiance, temperature, humidity, wind speed, air pressure, etc. 

(K. Wang et al., 2019). This work presented an ANN-based fitting tool and the 

rapid miner technique to predict solar irradiance with numerous input variables. 

The prediction model is compared with different ANN models, such as RBFNN 

and GRNN. 

2.13.5  Deep learning techniques 

The deep learning model has recently become a popular forecasting 

technique. The deep learning model is the development of the machine 

learning model; this model can solve a complex nonlinear problem with vast 

data in a short time. The structure of the multiple can automatically learn the 

abstract features from the raw data to find valuable representations. The 

outperforming result of deep learning models over other conventional is 

improving the accuracy as the training data increases, whereas conventional 

models' performance has been limited improvement at a certain amount of 

data (Rajagukguk et al., 2020). 
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2.14 Concepts of energy management system with Forecasting 

techniques 

The reliable forecasting of demand and distributed generation has become vital 

in the active distribution system. The data is helpful information for system operators 

to manage the power flows, maintain dispatching, and ensure continuous servicing in 

the network. Distribution system operators (DSOs) manage the network power flow, 

balance supply and demand, and dispatch the power system. Thus, continuity and 

reliability are important issues for ensuring service provision. This concept has become 

important significantly due to the improved integration of distributed generation and 

overall demand response, making the distribution system an active network (Massrur, 

Niknam, & Fotuhi-Firuzabad, 2018). The RE uncertainties with multi-objective 

optimization energy management for the networked microgrids cooperation are 

highlighted (Karimi & Jadid, 2020).  Multi-objective stochastic optimization is solved by 

the Compromised Program (CP). This technique converts the multi-objective into a 

single-objective function. This analysis aims to reduce power transfer from the main 

grid, reduce system losses, reliable operation of cooperative MMG, and minimize 

greenhouse emissions. 

Incentive-based integrated demand response is a powerful tool to reduce the 

supply-demand imbalance of integrated energy systems with high penetration of 

renewable energy resources. Moreover, to reduce total electricity costs, demand 

response programs are applied in this work as an option for economic aspects. The 

output uncertainties of RE generation, load uncertainties from the demand side, 

double coupling including the energy conversion effect on the energy aggregators side, 

and appliance coupling effect on the end-user side created a challenge to model 

incentive-based demand response programs. In this model, the applicability of 

curtailment integrated and absorbing integrated demand response is planned to be 

added to the bi-level stochastic programming method. The final results show that this 

model can decrease multi-energy aggregators' total operating and risk costs and 
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increase consumers’ profits (Zheng et al., 2020). Due to the increasing dependence on 

electrical, heat, and gas systems to supply various purpose load types, multi-energy 

carrier systems face challenges concerning any uncertainty given rise from one carrier. 

These issues would influence the whole system’s energy flow and secure operation. 

These cases become a critical issue due to the integration of industrial energy carrier 

demand response (ECDR) consumers, who participated randomly, and renewable 

resources (RESs) and their inherent characteristics (Massrur et al., 2018). The work in 

this paper shows the 2m + 1 point estimate method as a powerful probabilistic tool 

to analyze energy flow, which considers ECDR, RES, and various types of demand 

uncertainties. According to the results, the incentives for DR integration on electricity 

suppliers increased the additional operating cost. Therefore, incentives for DR should 

be employed when the system faces a security risk. The work of Du et al. (2020) 

proposed an uncertainty RE generation model with demand response in the unit 

commitment problem. The mixed-integer linear is used to solve the problem of UC 

scheduling. In this scenario, demand response is cooperative work to optimize load 

and RE generation curtailment risk when the RE output runs out of the adjustable 

uncertainty set. The adjustable uncertainty set of RE is divided into subintervals and 

evaluated bounds of the set. In these subintervals, consider DR to reduce operation 

which has not deviated from the forecasted value. 

The distribution system operator (DSO) is responsible for maintaining the 

reliable operation of distribution systems and aggregating the DRs and controllable 

loads into the network. Therefore, the advanced microgrid network must be 

considered the optimal framework for a demand response (DR) program with the 

uncertainty of wind power generation. The load reduction offers include load 

curtailment, load shifting, and generation from DERs. Then, the DSO handles the 

market-clearing price using mixed-integer linear programming (MILP) for the day-ahead 

market. For uncertainty problems, Weibull probability distribution is fitted scenario 

generation of the wind power. Many scenarios are the various realizations of uncertain 
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parameters that must be considered for modeling this stochasticity. The results show 

that the proposed model minimized the peak demand and system cost. Stochastic 

risk-constrained with DR framework are employed for short-term scheduling 

considering generation and demand uncertainty in advanced microgrids. The proposed 

method is to demonstrate demand response influence on the system’s reliability and 

financial issues. The risk-constrained stochastic method is employed to maximize the 

profit of the grid operator by considering the uncertainty of RE output, day-ahead 

prices, and load. The optimal power flow determines the amount of power reserve 

from dispatchable distributed generation and evaluates responsive load operation for 

the next day. Moreover, the indices of the system’s reliability and economic impacts 

are investigated by the appropriate level of DR participants, the number of losses, and 

the risk-aversion parameter (Vahedipour-Dahraie, Rashidizadeh-Kermani, Anvari-

Moghaddam, & Guerrero, 2019). 

Based on the concept of bidding in the electricity market, the work of Gao et 

al. (2017) demonstrates the competitive electricity market model with various types 

of resources that integrate into the VPP. The centralized dispatchable virtual power 

plant (VPP) is a step to improve the integration of distributed energy resources into the 

competitive electricity market. The bidding model has been considered the DR model 

and the uncertainty of RE for VPP to mitigate the negative impacts of RE penetration. 

The scenario analysis deals with the impact of elastic demand due to the demand 

side's inherent nature and the risk of VPP bidding. The numerical results show that the 

proposed VPP is superior in handling the management of the system with RE and DR 

resources. Shi et al. (2019) proposed the multistage robust energy management model 

with generation and demand uncertainties for the network-connected microgrid. Dual 

dynamic programming is applied to handle the complexity of multistage management 

problems.  Haddadian and Noroozian (2017) highlight a model of the optimal active 

distribution network in the multi-microgrid system. Firstly, the proposed system carried 

out a probabilistic dual load flow model of all distributed generation, including the 
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Monte Carlo algorithm. In this stage, the objective function considered in the test 

system is to minimize the cost and power transfer from the main network. The 

stochastic nature of demand and RE generation is estimated by Rayleigh PDF, Beta 

PDF, and Normal PDF, respectively, from historical information. This study also takes 

into consideration a time-dependent storage system. This scenario is timely due to the 

energy storage system's hourly state of charge. This approach is solved by MCS, limiting 

the number of stochastic states for all intermittent intervals having their PDF. Then, 

probabilities of power flow are evaluated for the generated states. 

2.15  Time Series prediction for day-ahead economic dispatch 

Recently, a more accurate timescale prediction model has been introduced to 

address the challenge of REs uncertainty (Xu, Chang, Zhao, & Wang, 2023). The 

timescale scheduling schemes regarding the basis of shorter timescales eliminate 

uncertainty factors. Day-ahead scheduling, intraday rolling, and real-time scheduling 

are the basic models of timescale scheduling schemes in which uncertainty is 

eliminated to ensure system stability and economic dispatch. With the emergence of 

the active distribution network, demand response (DR) is a method for eliminating 

uncertainty; it is the interaction between the consumer and operator to change the 

load curves and eliminate peak load at a particular time. According to the timescale 

characteristic, the accuracy of the PV/wind power prediction has been improved with 

the refinement of the prediction method. In addition, the demand response 

performance also provided peak load shaving and valley filling. The uncertainty 

referred to the prediction error of the randomness of the volatility resources. This 

strategy aims to meet the worst case of the system. Uncertainty reflected the 

randomness of volatility and the unpredictability of RE resources. This paper adopted 

the time series deep learning model to address the uncertainty of RE resources for the 

day-ahead scheduling process. In the optimal day-ahead scheduling, the dispatch 

outputs of the upstream generation units are arranged optimally for the next day over 

24 hours at a one-hour time step (Xu et al., 2023). The optimal day-ahead operational 
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management and power bidding DR strategy are incorporated to provide dispatch 

operation with no supply/demand deviation. The highly accurate deep-learning neural 

network forecasts the day-ahead wind/PV power generation and the aggregate load 

profile. Then, the optimization algorithm implemented dispatch generation for the 

next day according to day-ahead forecast information to satisfy the multi-criteria 

objective and system constraints. The optimal day-ahead scheduling phase results are 

considered a decision-making strategy for the demand response program to 

compensate for the imbalances caused by RE uncertainty and prediction error. 

Therefore, the day-ahead operation strategy prevents the main disturbance caused by 

RE uncertainty in realities (Khosravi, Afsharnia, & Farhangi, 2022). The above algorithms 

present the efficient usage of mathematical formulation to capture uncertainty. The 

previous model ignored the effectiveness of the time-series model and real-world 

applicability in the calculation process. The equivalent continuous demand profile 

combines the random outage of the generating units effectively predicted with the 

artificial neural network model. The model assumes that responsive load users fully 

respond to the demand side management according to the response amount 

requirement before the violent circumstance. In practice, there is also significant 

uncertainty in the user’s response after the load change order is issued. Therefore, 

demand response has three situations: over-demand response, full-demand response, 

and under-demand response. This work presents the possibility of over-demand 

response caused by REs uncertainty and its impact on the upstream side generation 

cost (Y. Yang, Wang, Gao, & Gao, 2022). 

The work of (Nourollahi, Salyani, Zare, & Razzaghi, 2022) presented the 

application of a hybrid scenario and robust optimization techniques to model the 

uncertainty of the ITMG under normal and resiliency operations. The results show that 

the robust optimization modeled the uncertainty of the electricity price due to its 

unpredictable market environment. The Scenario probability technique will capture 

the other uncertainties, such as the renewable generation, load, and resiliency period. 
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A microgrid is an active distribution network that makes activities feasible economically 

with available resources. Due to forecasting features of REs and load in the active 

system, the available time horizon for the energy management system is the day 

ahead, intra-day ahead, and real-time operation. Moreover, day-ahead, intra-day-

ahead, and real-time operations require an active distribution network to control 

current and future operation situations. Furthermore, the day-ahead management 

system requires current input information to update important information daily. The 

forecasting input module is responsible for forecasting the daily REs generation and 

daily load curves according to historical data and weather conditions. The day-ahead 

EMS contains the forecasted information of wind/PV, load profile, local generation 

units’ settings data, the mathematical model of desired operating conditions, and 

decision-making optimizer. The decision-maker evaluated the optimal condition of 

dispatch unit costs according to the data setup from the input module to satisfy system 

constraints and objective function. The output of the decision-maker is the optimal 

dispatch operation of each generation unit, which is formed as dispatch powers. The 

optimal dispatch powers are to set up the operating status of the real-time microgrid 

EMS for the next day. The decision-maker also compensates for RE generation and 

demand deviation due to real-time forecast errors (Silva, Aoki, & Lambert-Torres, 2020). 

The REs generation and load forecasts vary considerably over the year; 

addressing the day-ahead scheduling problem for every day under uncertainty is a 

limitation of previous work. Moreover, the simulation results of the day-by-day analysis 

to cover the uncertainty of four seasons and variations in load and solar generation 

forecasts could not be suitable for the real-world set of simulations. Therefore, 

accurate forecasting of REs is compulsory to mitigate system stability issues (Akhter, 

Mekhilef, Mokhlis, & Mohamed Shah, 2019). 
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2.16 Literature reviews of renewable energy forecasting with the 

statistical method 

Generation forecasting is the basis of managing tools for existing and 

restructuring systems (Ghofrani & Alolayan, 2018; Martín et al., 2010; Voyant, Muselli, 

Paoli, & Nivet, 2012). Suppose the generation output is not accurately forecasted. In 

that case, inappropriate system operation in practices and inadequate power 

transactions are implicated (Ghofrani & Alolayan, 2018; Vahedipour-Dahraie et al., 

2019).  Many renewable energy sources penetrations, such as wind and solar, can 

significantly raise uncertainties in the systems and have complicated power system 

operation and planning. The use of energy storage (ES) or the forecasting of the power 

sources becomes the option to handle these risks. Therefore, forecasting of RE 

generation became vital information to solve the complicated system into more 

efficient and reliable systems operation. Generally, wind and solar forecasting have 

three categories: classical statistical techniques, intelligent computational methods, 

and hybrid algorithms. Time-series statistical techniques are the most commonly 

applied for various forecasting. The mathematical formulation developed the time-

series method that can be applied to observe near-future predictions based on 

available historical data (Voyant et al., 2012). 

Moreover, the critical aspect of generation forecasting is its increasing 

penetration rate into the network, guaranteeing the supply-demand balance and 

optimal managing process in the active grid structure. In the case of the PV system, 

the generated power mainly depended on solar irradiance. Therefore, solar power 

forecasting can be executed by predicting solar irradiance (David, Ramahatana, Trombe, 

& Lauret, 2016).   This work highlights the performances of the combined use of linear 

models (ARMA and GARCH) to provide probabilistic solar irradiance. This model used 

historical solar irradiance data and provided reliabilities probabilistic statistical 

distribution. The result testing procedure has been implemented to assess for point 

forecasts and probabilistic forecasts. The work of (Paoli, Voyant, Muselli, & Nivet, 2010) 
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highlights the error comparison with an ANN prediction approach and statical 

prediction methods such as AR and ARMA k-NN, and Markov Chains. These proposed 

methods evaluate daily solar irradiation and grid-connected PV output at Corsica 

Island, France. AR (8) and ANN models with clearness index and precise sky index 

reduce the normalized root mean square error (nRMSE) errors by approximately 5–6% 

compared to those without the preprocessing model. This model got better results 

than 20%-25% in nRMSE than the Markov chain, Bayes, and k-NN methods. In 

conclusion, the combined use of ANN and ARMA simulation confirms that it improved 

daily irradiation profiles' accuracy. 

The comparison of output perdition for half-daily values and three-day 

temporal horizon solar irradiance data is presented (Martín et al., 2010). The statistical 

time series model, such as autoregressive and neural networks with fuzzy logic models, 

is tested with the clearness index and lost component time series model. For 

autoregressive analysis, half daily irradiance data are changed into stationary time series 

variables used as input parameters. The relative root mean squared deviation (rRMSD) 

measures the performance index. Neural Networks and Adaptative-network-based 

fuzzy inference system (ANFIS) models provided the best results for lost component 

input variables. However, Clearness index time series model provided better results in 

the models with lost component. Therefore, this evaluation process shows that the 

accuracy of forecasting model strongly depended on the metrological meteorologist 

conditions and temporal data set sequence. 

The prediction of hourly solar irradiation was analyzed by (Ji & Chee, 2011) by 

the combined use of   Autoregressive and Moving Average (ARMA) and the controversial 

Time Delay Neural Network (TDNN). Before implementing the ARMA model, a non-

stationary set of solar irradiations is removed in the detrending process. The goodness 

of the stational model is tested by the Augmented Dickey-Fuller and Augmented 

Dickey-Fuller methods and normalized root means square error (NRMSE). According to 

overall testing, the TDNN model provided a better result, but this model sometimes 
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has enormous prediction errors and unstable phenomena. Moreover, the hourly solar 

irradiation data set will involve linear and nonlinear parts. The ARMA model is applied 

for linear stationary series in the prediction process, and the TDNN model is employed 

to predict the nonlinear function in the input data set. Although the hybrid model 

does not always provide the best performance, the combined use maintained stable 

and accurate performance in the prediction process. The two-stage method's hourly 

rooftop PV power prediction is presented (Bacher, Madsen, & Nielsen, 2009). The first 

step of the proposed method is a statistical normalization using a clear sky model. 

Then, the prediction process is evaluated by linear time series autoregressive (AR) and 

AR with exogenous input (ARX) models. The information from numerical weather 

predictions (NWPs) is used as an exogenous input variable for ARX model. In this 

scenario, ARX model minimize 35% root mean square error than AR model. A root 

means square error improvement of around 35% is achieved by the ARX model. This 

method is suitable for online forecasting to access the solar system's conditions and 

the surrounding environment's state. The overall results show that 2 hours ahead of 

prediction can be forecasted by the available solar power data set. Nevertheless, 

online adaptive NWPs are the essential variable for longer prediction horizons. 

The numerical weather prediction model (NWP) with hybrid ARMA/ANN is also 

proposed (Voyant et al., 2012). This paper presented an hourly radiation time series 

model using meteorological forecasting data from a numerical weather prediction 

(NWP) model. The static input variable for auto-regressive and moving averages (ARMA) 

uses multilayer perceptron (MLP) and endogenous data. This hybrid model has 

compared the persistence predictor and standalone ANN for performance checking. 

This work proposes the confidence interval of every prediction process to validate 

reliability. The work (Voyant, Randimbivololona, Nivet, Paoli, & Muselli, 2014) highlights 

the day ahead forecasting solar irradiation. This work compares the artificial neural 

network (ANN) with the statistical-based autoregressive-moving average model (ARMA) 

and references the persistent method. A method based on artificial intelligence using 
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an artificial neural network (ANN) is reported. The ANN multi-layer perceptron (MLP) 

with endogenous and exogenous input variables is employed to pretreat time series 

data sets. 

The autoregressive time series model for wind power forecasting in three 

different site areas is analyzed (Poggi, Muselli, Notton, Cristofari, & Louche, 2003). The 

statistical time series model simulates the wind speed data in this scenario. Then, the 

result data are compared with experimental data to check the production of studied 

periods. This work aims to create a monthly data set in a particular reference year for 

wind power simulation in Corsica. Erdem & Shi (2011) work focuses on short-term wind 

speed and direction forecasting with four-time series autoregressive moving average 

(ARMA) model types. This model was applied to observe wind speed in two different 

sites. The overall final performance is compared by the mean absolute error (MAE). 

The ARMA model first forecasted lateral and longitudinal wind direction and speed 

components. The traditional ARMA model predicts the Wind speed. Linked ARMA 

predictor evaluates the Wind direction. In the final methods, vector autoregression 

(VAR) models and restricted versions of the VAR are applied to forecast wind speed 

and direction sequence. According to the results, the component model provided 

better direction forecasting than the traditional-linked ARMA. The VAR model improved 

wind direction results more than traditional-linked ARMA and significantly improved 

speed performance. Restricted VAR models would be a suitable approach for 

forecasting models compared to other counterparts.  

The work of Santamaría-Bonfil, Reyes-Ballesteros & Gershenson, ( 2016) 

presents the combination of hybrid Support Vector Regression and the Phase Space 

Reconstruction method to predict wind speed using historical wind data from Mexico. 

According to the historical data set, the wind speed of the selected location has a 

non-Gaussian distribution nature and has positive Lyapunov exponents. Therefore, the 

Time Delay Coordinates model and Phase Space Reconstruction procedure were 

selected as the proposed model. The hybrid method is checked with the persistence 
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and autoregressive models (AR, ARMA, and ARIMA) by AIC and Ordinary Least Squares 

for comparison purposes. The performance of this method is more accurate in medium 

and short forecasting than persistence and autoregressive models, and it is best to use 

it for mitigating fluctuating wind speed. The autoregressive moving average with 

generalized autoregressive conditional hetero-scedasticity technique (ARMA–GARCH) is 

used to evaluate the means and the volatility from the historical wind speed in time 

series at different heights (Liu, Erdem, & Shi, 2011). In volatility forecasting, the interval 

estimation provided possible results. For wind speed forecasting, mean estimation 

shows accurate and robust results. The difficulty in wind power generation is due to 

its unstable nature, and the interval estimation mitigated this drawback and provided 

accurate information on mean and volatility to the operator who can effectively 

manage system operation. The analysis of (Hill, McMillan, Bell, & Infield, 2012) provided 

detailed wind speed modeling, such as diurnal, seasonal, and geographical area effects, 

to evaluate real wind power on the grid. Univariate, multivariate, and vector 

autoregressive models are employed for detrended wind data. The main feature of 

this work is to determine the annual and seasonally diurnal variations, which are the 

critical impacts on wind power generation. 

Moreover, it is also pointed out that the detrending is also considered for 

regional site variations. All models are compared with root-mean-square error (RMSE) 

for accuracy assessment. According to the outcomes, the VAR model demonstrated a 

better synthesis reference for the GB wind plant planning and operation. 

2.17  Literature reviews of Demand forecasting with the statistical 

method 

Many works of literature have studied demand forecasting based on duration 

and methodology of forecasting. Demand forecasting can be classified into three 

according to their analysis tools: traditional, modified traditional, and soft computing 

methods (A. K. Singh, Ibraheem, Khatoon, Muazzam, & Chaturvedi, 2012). Accurate 
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demand forecasting provided the utility information for decisions such as purchasing 

electricity, generating power, switching load, and improving system infrastructure. 

Moreover, demand variation was a significant issue in the electricity markets. This 

variation created the technical network’s vulnerability and undesired economic effect 

on the spot electricity price, whose decisions are based on the existing plants' 

expanded investment. Thus, demand forecasting has also become an important topic 

with the emergence of the competitive electricity markets. According to many research 

methodologies, the demand forecasting field can be concluded as linear regression 

and econometric models, neuro-fuzzy models and data mining procedures, artificial 

intelligent techniques, Auto-Regressive Integrated Moving Average (ARIMA), and Auto-

Regressive Moving Average (ARMA) models (Pappas et al., 2008).  The work of (A. K. 

Singh et al., 2012) addresses modeling demand and electricity price forecasting with 

the deseasonalized and Auto Regressive Moving Average (ARMA) method in Greece. 

For the validation process, the results are validated with three types of order selection 

criteria, namely AICC, Akaike’s Information Criterion (AIC), and Schwarz’s Bayesian 

Information Criterion (BIC). 

Another aspect of demand forecasting is system operators' performance of 

system safety and management. The demand variation due to active demand response 

has become subject to active distribution network management problems. The work 

of (Garulli, Paoletti, & Vicino, 2015) demonstrated the effects of load variation in the 

active distribution network and the validity of the proposed load forecasting methods. 

Active demand behavior and seasonal components are considered exogenous inputs 

of load forecasting. The load identification approach has been analyzed and tested 

based on different demand classes, such as commercial and accommodation areas. It 

is pointed out that neglecting the load variation with demand response in the model 

leads to unsatisfactory results. Therefore, ongoing investigation regards that it needs to 

analyze more accurately to model for the system with active demand component of 

the load and the sensitivity of forecasting algorithm that can improve performance of 
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dynamic demand modeling errors. The work of (Shyh-Jier & Kuang-Rong, 2003) 

employed the load forecast using the Autoregressive moving average (ARMA). They 

proposed a model that considered the non-Gaussian nature of historical load data. 

The cumulant and bi-spectrum concepts are used with ARMA to tackle the Gaussian 

and non-Gaussian parts. It is concluded that the performance of the proposed model 

is ensured for accuracy improvement in the load forecast. Effective short-term load 

forecasting and information utilization become the requirements in active system 

development. However, the system’s monthly and yearly demand forecasting is 

complicated because of its seasonal volatility effect. The work of (Pappas et al., 2008) 

presented the multi-model partitioning theory for short-term load forecasting for all 

seasonal periods and compared its performances with the Corrected Akaike 

Information Criterion (AICC), Akaike’s Information Criterion (AIC), and Schwarz ’s 

Bayesian  Information  Criterion  (BIC)  time series techniques. The applicability of the 

proposed method is proved by comparing it with the actual demand for the Hellenic 

power system. It proves that the proposed method's reliability and accuracy make 

usefulness in the studies of concern electricity consumption and electricity prices 

forecasting. This effectiveness of proposed work concern with energy consumption and 

electricity prices forecasting that provided the information to the electricity authorities 

to guarantee supply uninterruptable power supply with a low cost. 

2.18 Literature reviews of multi-objective optimization economic 

dispatch 

The work in (Guoping Zhang, Wang, Du, & Liu, 2020) presented an economic 

multi-objective optimization model using a hybrid particle swarm optimization 

algorithm and the simulated annealing (SAPSO) algorithm for a standalone microgrid 

system involving photovoltaic panels, wind turbines, diesel generators, and energy 

storage battery system. Since the power of the storage system and the diesel generator 

is the optimal decision variable, the multi-objective variable is defined to minimize the 

costs of generation, battery depreciation, and environmental protection. The results 
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demonstrated that the increased battery depreciation cost caused a dramatic decrease 

in economic and environmental costs. Moreover, the energy storage system charging 

and discharging capacity of the storage power during peak and night can shave the 

peak load, fill the valley, and smooth the output power of traditional diesel generators.  

The work in (Alilou, Nazarpour, & Shayeghi, 2018) highlights the multi-objective 

demand-side management strategy in the distribution system with the multi-

distributed generation and demand response program. The non-dominated sorting 

firefly algorithm and fuzzy decision-making method were applied to optimize 

distribution systems' technical, economic, and environmental indices. The results 

presented that indices of the distribution system have been significantly improved by 

utilizing optimal schedule DSM. The dispatchable DG units fulfill part of the demand 

requirement due to their stable productivity and low start-up/shutdown costs. The 

generated power of non-dispatchable DGs is almost one-third of the demand, and the 

effect of environmental indices is considerably clean and eco-friendly. 

The work (F. Wang et al., 2018) presented multi-objective optimization for the 

community- building level intelligent energy management system (BEMS) based on the 

forecasting of building integrated PV power, noncontrollable load, and outdoor 

temperature. In the BEMS system, the occupants’ indoor environment comfort was 

considered to be the main aspects: visual comfort, thermal comfort, and indoor air 

quality comfort. Considering controllable load DR programs, the system’s different 

energy usage, electricity, thermal, and cooling loads are balanced to guarantee 

optimized operation. The results showed that the multi-objective optimization model 

simultaneously improved the system economy of the BES and less affected 

occupants’ comfort level by the synergetic optimized dispatch. The work of (Paterakis, 

Gibescu, Bakirtzis, & Catalao, 2018) presented a multi-objective optimization model of 

risk-aware joint energy and reserve market structure incorporating demand-side 

resources. The risk-averse multi-objective optimization of stochastic programming is 

considered to mitigate significant wind power uncertainty and minimize expected 
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operational costs. The results observed that stochastic optimization controls the risk 

of wind uncertainty and the risk embedded in the decisions making reserved by 

procuring the necessary. The participation of DRPs can mitigate risk related to sensitivity 

for the load recovery and the costs of demand side reserves. The elastic demand side 

management allowed for higher exploitation of wind energy at all risk aversion levels. 

The work by (Soares, Fotouhi Ghazvini, Silva, & Vale, 2016) presented the 

optimization of the centralized Energy Resource Management (ERM) system for a 

Virtual Power Plant (VPP) with multi-dimensional signaling to maximize profits. Since 

VPP includes several different generation resources, such as Demand Response (DR), 

Electric Vehicles (EV), and Energy Storage Systems (ESS), it requires advanced tools to 

manage competitive resources at a reasonable cost. The results observed that 

deterministic optimization is more resource-intensive and needs more system memory 

than metaheuristics in large-scale problems. The decision-making of large-scale VPP 

operations required more computing efficiency platforms to solve large-scale 

problems and provide better decision support in adequate time. This work proposed 

stochastic algorithms to ensure reliable microgrid daily optimal scheduling operation 

considering intermittent generation and load behavior. The metaheuristic algorithm is 

applied to solve uncertainties of RESs and loads. Moreover, the strength of demand 

response programs is considered on optimal day-ahead scheduling of microgrids to 

reduce cost fluctuations and flatten the demand curve. The numerical results show 

the effectiveness of the metaheuristic algorithm through comparison with stochastic 

optimization.  The results suggested that deterministic methods are no longer suited 

for precise analysis of advanced microgrid system operation and planning. The work in 

(Shewale, Mokhade, Funde, & Bokde, 2020) analyzed multi-objective optimization 

problems for residential appliance scheduling problems regarding operation cost 

minimization, PAR minimization, and user satisfaction maximization. This work carried 

out a state-of-the-art comparison of RASP using classical, heuristic, and meta-heuristic 

algorithms. The finding discussed the performance of three algorithms in terms of 
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computing time and optimal solution. Although the classical method provided the 

exact global optimal solution, this method takes a long computational time. The 

heuristic method provides an approximate optimal solution faster and can be helpful 

for specific schedules of appliances. The nature-inspired meta-heuristic algorithm is a 

faster convergence way to find the optimal schedule in appliance scheduling at an 

acceptable time. The work of (Phani Raghav, Seshu Kumar, Koteswara Raju, & Singh, 

2022) proposed the multi-objective day-ahead three-layer stochastic energy 

management framework to optimize operational costs, energy losses, and voltage 

deviation under uncertainty. This work addressed the uncertainties of wind power, 

solar irradiance, load demand, and market price with the scenario generation/reduction 

method. This work developed a flexible price elasticity-based incentive-driven model, 

and the performance of the proposed model is evaluated based on a techno-

economic multi-criterion. The results observed that the emergency demand response 

program outperforms nonlinear and linear-based incentive and penalty models 

regarding load factor improvement. 

Tavakoli Ghazi Jahani, Nazarian, Safari, & Haghifam (2019) developed a multi-

objective model with demand response that solves the distribution networks' 

reliable/economic performance with the epsilon-constrained (EPC) method. The 

uncertainty-based multi-objective optimization model is developed with stochastic 

programming. The results show that optimal reconfiguration of the distribution system 

reduced power loss and energy not supplied (ENS) index, demand response reduced 

total power loss, amount of curtailed load, and enhanced voltage profile. Dan et al. 

(2018) developed the multi-objective hierarchical three-layer model of a day-ahead 

management system with an artificial immune algorithm to solve operation cost, 

network benefit, and social welfare simultaneously. The results observed that the 

feasible optimization model could provide the utility level of operation cost 

minimization and the peak-to-average ratio, demand side management offered profit 

maximization to DR aggregators, and electricity bill minimization to customers. 
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Aghajani, Shayanfar, and Shayeghi (2015) proposed a multi-objective short-term 

energy management system to optimize microgrid operating costs and pollutant 

emission in the presence of renewable energy sources (RESs) with a randomized 

natural behavior. The results presented that the demand side management (DSM) 

scheduling model can effectively reduce the uncertainty problem obtained from the 

actual generated and predicted power of wind turbines and photovoltaic in microgrids. 

The results observed that incentive-based payment demand response is a possible 

way to apply in a competitive electricity market. Reddy (2016) presented a multi-

objective day-ahead market clearing (DAMC) mechanism with demand response for 

social welfare maximization, load reduction minimization (PredM), and load-served 

error (LSE) minimization. The proposed system considers reduced stress system 

conditions where only demand response cannot provide a feasible solution. The multi-

objective strength Pareto evolutionary algorithm 2+ (SPEA 2+) is used to solve the 

DAMC problem. This work highlights the requirement for judiciously selecting a 

combination and suitable choice of conflict objectives function for the multi-objective 

problem.  The results show that voltage-dependent load modeling is required to 

optimize SWM and LSE multi-objective functions simultaneously. The Pareto optimal 

front provided to make a better choice of decision variable regarding compromise 

between the conflicting objective functions. 

The work of Hajebrahimi, Abdollahi, and Rashidinejad (2017) presented 

probabilistic multi-objective transmission expansion planning (TEP) to provide a 

structure elasticity of demand and customer benefit function. This work investigates 

the impact of responsive load on power system planning and considers the 

uncertainties associated with wind power and demand. The congestion costs, RC, and 

TIC are multifarious objectives in probabilistic multi-objective TEP incorporating 

demand response programs (DRPs). The result observed that the inflicted costs and 

additional investment were significantly deferred by implementing a demand response 

program through transmission expansion planning (TEP). The work of Falsafi, 
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Zakariazadeh, and Jadid ( 2014) presented a multi-objective two-stage stochastic 

generation scheduling model using the augmented epsilon constraint method and 

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method. This 

work highlights the effectiveness of a demand response reserve to recover the 

uncertainty of wind power forecasting in the smart grid. The results show that demand 

response and reserve market compensated for the effect of forecasting uncertainty 

and reduced the operational cost and air pollutant emissions. Hong and Lin (2013) 

presented short-term active power scheduling of a stand-alone system with wind and 

PV power uncertainties to simultaneously reduce fuel cost and CO2 emission. The 

interactive multi-objective problem is solved by adaptive chaos clonal evolutionary 

programming (ACCEP), and the uncertainty of wind and PV powers is modeled by the 

fuzzy interval prediction method. The work of Azizipanah-Abarghooee, Niknam, Roosta, 

Malekpour, and Zare, (2012) implemented the wind-thermal economic emission 

optimal dispatch problem with a teaching-learning algorithm, and the probabilistic of 

wind power uncertainty was solved by the stochastic 2m point estimated method. The 

proposed work is to analyze energy costs and emissions costs simultaneously. The 

probabilistic economic emission dispatch problem considers overestimating and 

underestimating available wind power. The results observed that the precise modeling 

of uncertainty is essential for generating unit scheduling and generation costs, wind 

power can reduce the emissions cost, and the stochastic approach is an efficient way 

to cope with uncertain resources for the system operator’s likelihood estimate. 

2.19  Literature reviews of advanced forecasting method 

Renewable energy forecasting is a more practical application than the various 

methods to capture upstream side variation. The prediction accuracy facilitated high 

penetration of REs through secure and economical operation. Compared to solar 

power, it has been understood that wind and solar power are less predictable 

resources due to their highly uncertain characteristics (Ko et al., 2021). Many research 

articles have investigated the accuracy improvement method and its impact on the 
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power system. ANN-based forecasting models have become widely applicable 

practically due to higher accuracy than physical and conventional statistical methods. 

Forecasting is essential for the decision-maker to provide information dealing with the 

operating system's stability (Nikoobakht, Aghaei, Shafie-Khah, & Catalao, 2019). Wind 

and solar power generations are considered a negative load due to uncertainty in 

steady-state conditions. Therefore, predicting wind and PV generation curves is a 

practical deployment concept, especially for estimating standby capacity and optimal 

unit scheduling processes. The increased penetration of RE levels also elevated the 

importance of accurate forecasting methods. Adequate renewable energy and load 

forecasting are essential to mitigate related uncertainties; this concept provides 

conductive planning and operation of energy systems. The accuracy of forecasting is a 

challenging task due to the intermittent and randomness of renewable energy data. 

Numerous forecasting algorithms have been used in the previous literature to provide 

accurate predictions for the several minutes ahead to the few days ahead. The 

uncertainty of forecasting harmed the daily power system operation and control. 

Therefore, the research articles have recently been paying significant attention to 

forecasting uncertainty (Wang, Lei, Zhang, Zhou, & Peng, 2019). 

Renewable energy, especially solar PV, will become a significant energy source. 

Regressive methods have benefited short-term time series prediction models in the 

last decade. Recent articles highlight that deep learning based on artificial neural 

networks has the adaptability to solve complex nonlinear problems and a powerful 

acceleration capability for difficult computation problems. Recently, artificial neural 

networks (ANNs) based prediction method has continuously grown to carry out time-

series application due to their superior working characteristics offered on the nonlinear 

models. The deep learning-based ANN has become popular in the time-series 

prediction application due to its accelerating function to overcome the difficulty of 

complex statical methods. The multi-layer perceptron (MLP)-type ANNs is a helpful 

model for complex relationships, but this method cannot assimilate the long- and 
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short-term dependencies present in the historical data. The dependencies are the 

ability of ANN to identify and remember the behavior patterns from the distant past 

and the near past. ANN is a particular type to make functional near-future predictions 

of historical sequential behavior patterns. To address this, Recurrent Neural Networks 

(RNN) emerged where the networks have internal feedback loops. The prediction of 

REs is fundamental to increasing system reliability. The generated power from sources 

is the medium-level integration to the distribution networks. In the energy market, 

electric production and actual consumption patterns are the factors with the 

programmed offer. The high integration of renewable energy intensifies the complexity 

of managing power distribution and the distinctions of the ongoing energy balance due 

to its unpredictable and intermittent nature. Several methodologies have been 

available for the prediction process at different horizons. This work predicted the PV, 

wind, and demand power for the day ahead in 1-hour intervals from historical records 

during one year using Long Short-Term Memory (LSTM) and Gate Recurrent Units (GRU). 

The artificial neural network-based prediction method predicted the near future data 

from the data in the past as current input data. A multi-layer perceptron (MLP) neural 

network learns the relation between input and output data and does not consider 

time series characteristics (Elsaraiti & Merabet, 2022). 

Time series prediction of future values is a frequently studied problem in the 

electrical power system. Over the last decade, the infrastructure of power systems has 

progressively changed from centralized to decentralized systems, allowing the 

integration of small-scale distributed generation (DG) scenarios through the distribution 

system. The dispersal of DG in the energy market, especially from Renewable Energy 

Sources (RESs), has been facilitated by economic and environmental reasons. However, 

the high penetration of DG into conventional electricity systems has brought 

challenges for system operators to monitor and control the operation and 

maintenance of grids. The smaller generation units are directly connected to 

distribution networks near the consumer to characterize decentralized systems. 
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Therefore, future energy systems' proactive and transactive nature offers many 

opportunities. However, the challenge of future energy systems is related to integrating 

the highly intermittent and stochastic nature of RES production into deterministic 

energy systems. In this regard, the conventional energy system demands to change 

into the modern grid with improved flexibility. This is the reason the prediction topic 

has become a necessary tool for all energy sectors:  prediction is required to prepare 

respective offer strategies for producers, to maximize profit for consumers, to optimize 

short and medium-term decisions for energy regulation and dispatching for 

Transmission (TSO) and Distribution (DSO) System Operators. According to these facts, 

the accuracy of the prediction system has become the point for the automatic 

modeling tools for data analytics and intelligent operation control, enabling prosumer-

oriented home energy management systems and reducing energy and operation costs. 

Many of the power system’s practical operations greatly rely on scenario-predicted 

data, which is especially important for producers', network operators', and market 

players’ applications. In the last decade, this scenario-predicted is mainly essential for 

the production comes from expected and intermittent RES resources. This intermittent 

brings considerable uncertainty about the difference between predicted and actual 

production. This uncertainty challenges stability issues, dispatch ability, and electricity 

market problems concerning the day-ahead market. The advantage of RES energy in 

the electric system is the environmental and economic benefits since the production 

cost and levelized cost of energy from RESs are usually lower than the market-clearing 

price. The drawback of this source is its difficulty predictability, which will increase 

potential costs to compensate for the imbalance problem between demand and 

actual production (Succetti, Rosato, Araneo, & Panella, 2020). 

The approaches mentioned above usually carry out univariate and multivariate 

energy time series. The univariate model involving energy time series considers a single 

time series to obtain the prediction result of the future time series. Multivariate is the 

way to observe different situations relating to considering two or more time series 
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simultaneously, and it is a complex system that generates a broader generalization 

capability. The multivariate data is suitable for developing a model to describe the 

results of the relationship between the original time series and the related physical 

variables. This method is required to analyze data and collect time series data from 

different physical variables related to physical phenomena such as wind, solar 

radiation, humidity, air pressure, etc.  In this work, the forecasting results were tested 

on real-world data to show and compare the performance of univariate deep learning 

with the basic ARMA model. According to numerical results from the literature, the 

multivariate analysis offers better results than the univariate way in most cases. The 

accuracy of the work is proved in terms of MAE. Improvements in prediction accuracy 

are required in the field of the energy management of distributed energy resources. 

The active prosumers in the smart grid need efficient data-driven modeling tools to 

enable active participation and diffused coordination tasks (Succetti et al., 2020). 

The work of Rosato, Panella, Araneo, and Andreotti (2019)presented that 

energy storage is a solution for RESs generation dispatchable, and the dispatchable 

work is often combined with the accurate forecasting method to predict generation 

and demand profiles. This work is in the microgrid context with renewable embedded 

generation and involves responsive load. The structure of power systems is 

progressively changing to be flexible to meet the requirements of high RES penetration 

in current infrastructures. RES infrastructures generally come from intermitted natural 

resources, which favor use to achieve and enhance carbon diversity and climate 

change. The future energy infrastructure envisions a scenario of decentralized systems 

that will replace the importance of existing bulk power systems. Moreover, in this 

framework, many small generating units will be connected to distribution networks, 

and all the consumers will become flexible prosumers capable of interacting with 

responsive load control programs. However, the uncertainty issues remain a challenge 

related to the predicted deviation of forecast and actual generation of RESs. This is the 

problem for stability issues and dispatch ability reasons to the day-ahead market. 

 



56 

 

Therefore, the effective prediction tool is a feasible solution for these problems for 

the virtual power plant (VPP) concept. The active distribution network involved an 

option to implement an effective way to handle the intermittent RES generation along 

with the load change pattern cooperatively to optimize system management and cost 

reduction. To deal with this, an accurate prediction system must be involved to ensure 

the aggregation of the above process.  Neural networks have been widely used for 

prediction purposes, offering better results for time series prediction at different time 

horizons using feedforward, recurrent, and deep architectures. The prediction 

processes are performed with the local data, such as irradiation, wind speed, and load 

data (Rosato et al., 2019). This work presented a distributed learning algorithm for long 

short-term memory (LSTM) networks to learn long-term dependencies for 

decentralized VPP, and the distributed average consensus (DAC) protocol is used to 

interact with local agents. This work proposed an approach of cooperative learning of 

LSTM networks in microgrid management, mainly working as the active distribution 

network. The prediction process is that wind and PV power plants operate with their 

LSTM network to forecast power generation. Therefore, the complex patterns of RES 

energy are necessary to consider through a forecasting model related to the 

sustainable energy system. Forecasting can reflect the intermittence and uncertainty 

of power supply and demand. The short-term or long-term forecasting model with 

intra-hour-ahead or seven days ahead is utilized in the feasibility energy system design, 

and it can also reduce undesired regulatory costs when integrating RES sources into 

the energy system (Nam, Hwangbo, & Yoo, 2020). This work developed the forecasting 

model with the day-ahead prediction for power demand and renewable energy 

generation based on LSTM and GRU deep learning methods. The simulation results of 

prediction are used to promote feasible and sustainable renewable energy systems in 

the active distribution network. This work also compares and evaluates deep learning 

performance with conventional statistical models. The deep learning models studied 

in this work included long short-term memory (LSTM) and gated recurrent unit (GRU) 
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to overcome the drawback of the conventional statistical method, including the Auto-

regressive-Moving-Average (ARMA) model. The performance evaluation of the 

forecasting models has a significantly different effect according to the properties of the 

available data. The performances of deep learning models have different solutions 

depending on the models' forecasting time, training duration, target data, and simple 

or ensemble structure. Therefore, selecting an appropriate model needs several issues 

to consider. Comparing and evaluating processes using accurate metric numerical 

evaluators and selecting appropriate forecasting models for future load demand and 

renewable energy generation (Nam et al., 2020). Although the expansion of RES 

resources can effectively positively impact economic and environmental issues, the 

challenges still need to be solved for using these sources. For this reason, the 

combination of fuel-based distributed generation and renewable energy utilization is 

still a complementary relationship. Moreover, it is necessary to ensure the optimal 

operation of different technologies from the upstream side to generate power. When 

the distribution system is considered to operate with both renewable and 

conventional fuel energy, planning and scheduling mixed power generation with 

different technologies becomes an issue for the upstream side operation. In this regard, 

the work on multiple power generation technologies involving investment issues has 

become a significantly increased topic. In the last years, real options and Monte Carlo 

simulation have been widely applied to analyze the investment issues of different 

generation technologies. Most of the research focuses on the optimization problem of 

the investment portfolios and the whole power system structure, which involves 

different power generation technologies. Optimizing the whole structure and each 

generation cycle still has challenges to response RESs uncertainty, participation of 

responsive load in the active distribution network, changing electricity markets, energy 

policies, and environments. With the development of renewable energy technologies, 

distribution networks have been completed to construct multiple-generation 

infrastructures. However, due to the uncertainty, each power generation technology's 
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actual profit and cost are still a problem. Moreover, the problem of practical usage of 

the existing power generation technologies and the task of fulfilling power demand 

within the production cycle horizon still needs attention related to uncertainty issues 

(Peng, Liu, Zhang, Zeng, & Graham, 2023). Solar irradiance forecasting is required to 

plan and schedule solar and grid-combined generating systems. Artificial intelligence 

(AI) based artificial neural networks are widely used to train historical solar irradiance 

values and meteorological variables such as temperature, humidity, wind speed, 

pressure, and precipitation (Gao et al., 2019). The work by Huang et al. (2016) presented 

the power of the gated recurrent unit (GRU) with weather forecasts to predict solar 

irradiance for 24 hours. The results show that the proposed method reduces the root 

mean squared error by 28.4% to the CSpers algorithm, 23.3% more accurate than the 

BPNN algorithm, and 11.9% more accurate than the recurrent neural network (RNN). 

The prediction error is reduced by 36.6% compared to long short-term memory. 

Compared to the ARMA method, the forecast skill of the GRU is improved by 42.0%. 

For the five different training processes, the performance of GRU and LSTM is 

distinguishable in that both the LSTM and the GRU exceed the accuracy of the 

traditional network model. The work by Lee et al. (2018) presented utilizing 

convolutional neural networks and long–short-term memory for day-ahead solar 

power generation. This work also analyzes time series data in deep learning 

communities with data from photovoltaic inverters and national weather centers. This 

research considers that weather information is not always available, which depends 

on the site location of PV modules and sensors installed. The proposed model predicts 

solar power with roughly estimated weather data from national weather centers. The 

robustness of the proposed work is sophisticatedly preprocessed with input data 

without weather information to reduce unexpected environmental issues. The 

extensive simulation is processed with real-life data sets. The study by Chandran et 

al., (2021) presented the effectiveness of deep learning algorithms in predicting short-

term wind power generation from wind speed data. This study adopted Long Short-
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Term Memory (LSTM), Gated Recurrent Unit (GRU), and Recurrent Neural Network (RNN) 

in the projection of wind farms. The results show that deep learning models are more 

applicable techniques in real-life locations than other models. This study discussed 

that machine/deep learning algorithms were efficient modeling tools before the 

installation of wind farms in geographically unknown areas. The GRU model is suited 

for highly non-linear and complex input data sets in real-time. This work compared 

conventional statistical method implementation with deep learning model without 

NWP inputs to present accurate predictive models. The work by Malakar et al., (2021) 

highlights appropriate design choices of Long short- term memory (LSTM) models to 

show the impact significantly on short-term forecasting performance. The design 

choices involved pre-processing techniques such as deseasonalization, ordering of the 

input data, network size, batch size, and forecasting horizon. The study works on three 

recent benchmark methods based on random forest, recurrent neural network, and 

LSTM regarding forecasting accuracy. The findings discussed that the importance of the 

temporal order of the data and the lack of discernible data pre-processing affect the 

making of the LSTM stateful model. The result also found that the input data variation 

influences the number of nodes and batch size in an LSTM network. The work by 

Ibrahim et al., (2021) proposed the combination of the adaptive dynamic particle 

swarm algorithm (AD-PSO) and guided whale optimization algorithm (Guided WOA) to 

create an algorithm. This algorithm helped to select the optimal hyperparameters of 

the Long Short-Term Memory (LSTM) network for wind power forecasting. This work is 

to carry out 48-hour-ahead wind power prediction for wind farms. The results showed 

that the AD-PSO-Guided WOA algorithm outperforms the accuracy of comparative 

optimization and deep learning algorithms. The work  by Hua et al., (2008) presented 

interval prediction of electricity price to solve uncertainty risk in the decision-making 

problem. This work highlights that interval prediction is a more interesting topic for 

market participants to make bidding strategies and investment decisions rather than 

forecasting the value. The interval prediction method is a valuable risk management 
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tool for market participants in a deregulated electricity market. After conducting 

comprehensive experiments with real-world price data, the results show that the 

proposed NCHF is more effective than well-established time series models, such as 

ARIMA and GARCH. The work by Huang et al., (2016) presented an interval prediction 

model describing power and load prediction uncertainties for virtual power plant 

economic dispatch. This work converts the probability function into an interval 

prediction deterministic model. The interval-based ED model is a more flexible way of 

uncertainty modeling than the complicated probability distribution function (PDF) or 

fuzzy membership function (FMF) due to its simple known intervals and uncertain 

variables. The results verify that the proposed system is flexible and can be adopted 

for the economic dispatch of virtual power plants. The work by Wu, Shahidehpour, 

and Li, (2012) presented the comparative application of the Monte Carlo (MC) scenario 

generation method and lower and upper bounds interval optimization approaches for 

stochastic security-constrained unit commitment problems considering wind power 

uncertainty. The results presented that although the scenario method provided more 

stable and insensitive results to the number of scenarios, this method takes additional 

time due to computation burdens. The interval optimization method provides lower 

and upper bounds solutions for the operation cost and generation dispatch with less 

computation, but the optimal result is not a guaranteed solution due to the 

uncertainty interval sensitively. From this point, interval optimization is not a suitable 

method for the simulation problem having discrete type uncertainty variables such as 

random outages of generation units and transmission lines in power systems. The work 

in (Saez et al., 2015) studied the robust microgrid energy management system (EMS) 

for determining the optimal dispatching of generation units using day-ahead renewable 

resources and loads data. The fuzzy prediction interval model is applied to represent 

the uncertainty of future predictions. The proposed method is demonstrated with local 

data such as solar irradiation, wind speed, and load data from the Huatacondo, Chile, 

distribution system. The results suggested that the width of the prediction interval 
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reflected higher levels of expected CP that significantly impacted the uncertainty. Shi, 

Liang, and Dinavahi (2018) work proposed the RNN-based LUBE method to construct 

an optimal PI evaluation index for real-world wind power forecasting. The RNN model 

is suitable for time series forecasting, and the new PI evaluation index is designed to 

enhance the model training process. RNN prediction model is optimized with the 

dragonfly algorithm to tune the parameters of the prediction model. The delay 

embedding theorem reconstructed the chaotic wind power data for better prediction. 

The results show that interval prediction is more efficient in quantifying forecasting 

uncertainties than the point forecast approach. The work by Wen, Zhou, Yang, and Lu 

(2019) presented the accurate residential power load model and the PV power short-

term forecasting with the deep recurrent neural network with long short-term memory 

units (DRNN-LSTM). This work highlights the potential accurate short-term forecasting 

for grid-connected residential microgrids' economic load dispatch model to reduce 

daily costs and increase reliability. The results show that this model promotes system 

operator and consumer interaction. The PV power and residential load uncertainties 

were optimized in the load dispatch model based on the forecasting results of the 

DRNN-LSTM model. The results also presented that energy storage and EVs shifted 

community peak load, and utilization of PV power was promoted. The work by Cai, 

Pipattanasomporn, Rahman, (2019) proposed hierarchically-structured deep neural 

network models for day- ahead load forecasting in commercial buildings. The 

performances of the deep learning model are compared with the Seasonal ARIMAX 

model in terms of accuracy, computational efficiency, generalizability, and robustness. 

This work investigated that the deep learning gated 24- h CNN model outperformed in 

a direct multi-step manner and improved the accuracy by 22.6% compared to seasonal 

ARIMAX. Compared to the conventional approaches, the results reveal that 

hierarchically structured deep learning networks outperformed the conventional 

approaches for capturing the data- dependent uncertainty and increasing the 

computational efficiency for large-scale applications. The work in (Shen, Ma, Deng, 
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Huang, & Kuo, 2021) analysis  of three  types  of  deep  learning  model, convolutional  

neural network, long short-term memory neural network, and hybrid model, for 

photovoltaic power forecasting. Many tests and verifications were carried out with 

different time series data lengths, and three statistical indicators were concluded with 

the statistical results under different data lengths. The statistical results reveal that the 

three models' performance provided a good solution and acceptable accuracy. This 

work analysis SELNet deep learning and data processing ensemble model to reduce 

the impact of seasonal factors. The effectiveness of the proposed model compared 

with the gated recurrent unit (GRU), TCN, VMD-TCN, and VMD-CNN models in terms of 

mean absolute percentage error (MAPE). The result shows this work can provide a 

universally applicable prediction of electricity demand in four seasons. It was also 

revealed that deep-learning models have excellent performance to reduce 

computational time requirements and less computing equipment and parameters. 

2.20  Power generation planning 

In the microgrid planning stage, choosing the available power sources is vital 

for satisfying the demand needed in a specific area. The suitable and available source 

selection requires deep analysis of microgrids in a particular area. Power source and 

energy storage systems must be sized based on many criteria, such as peak demand 

and cost-effective criteria. Types of suitable fuel base generation must also be selected 

for the network, which concerns cost-effectiveness and system reliability. In contrast, 

this issue must be considered in the system planning stage as three mains: cost-

effective objective, reducing environmental impact, and improving reliability (Gamarra 

& Guerrero, 2015). 

2.21  Operation Scheduling 

Scheduling is a common problem in the feasibility planning stage; it plans the 

available resources in a particular area, such as generators and storage devices. This 

problem minimizes operational costs, environmental impact, and power quality while 
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covering demand requirements. Multiple optimization methods with signal or multi-

objective functions solve the optimal operation of various microgrids. Heuristics and 

metaheuristics are widely used in sizing and scheduling generation mix problems 

(Gamarra & Guerrero, 2015). This work highlights sources of uncertainty in every step 

of the decision-making process, such as uncertainties in modeling, uncertainty during 

model exploration, and uncertainties in interpreting results. Generally, uncertainties 

can be identified under two main types. External uncertainties concern the lack of 

knowledge and the nature of the environment. Internal uncertainties are related to 

the structuring process and analysis of the decision-maker. The uncertainty effect, 

objective function, and system constraints are the standard parameters that must be 

addressed in every commercial microgrid planning process to achieve cost-benefit and 

customer satisfaction. Consumer satisfaction means keeping reliable and quality 

insurance with a low environmental impact. In these facts, microgrid planning usually 

accompanies the optimal searching process. The optimal planning techniques are 

applied not only in renewable energy allocation but also in energy management 

systems. Energy management systems are the optimization problem to apply in 

different fields based on technical, environmental, and economic constraints and 

uncertainties (Gamarra & Guerrero, 2015). 

This technique has gained attention in energy management systems (EMS) in 

smart homes, buildings, and grids in the last decade. Modeling energy decision-making 

is considered a sustainable design that plans and controls particular optimization 

issues. It has a complex and computational challenge in handling the traditional 

optimization method. The emergence of artificial intelligence, inspired by biological 

evolution algorithms, has recently been widespread due to its potential capability to 

solve this problem. Many research studies have investigated bio-inspired methods for 

energy management systems in smart homes, buildings, and grids (Nguyen et al., 2020). 

The comprehensive design and operation of an active distribution network with 

REs generation and responsive load to capture the intermittence are described as 
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follows: Firstly, deep-learning models provide the required information for the 

decision-makers in generating wind turbines and PV systems. Then, decision-makers 

create an optimal plan scheduling for modifying the optimized distribution system. 

Secondly, the management system’s role is to implement system balancing, which is 

essential to creating sustainable and economically efficient activities. The system 

overload condition has a contrary effect on the efficient energy distribution system. 

On the other hand, a lack of demand fulfillment leads to safety and stability, which 

creates long-term generation cost problems due to energy-saving issues. The deep-

learning-based Gate Recurrent Unit (GRU) model, designed to extract complex 

nonlinear data from real-time series data, improves the wind and PV power generation 

predictions. Accurate wind power forecasting improved the system stability and solved 

the challenge of efficient operation for the modern distribution network. Deep learning 

techniques have recently become popular in RE forecasting due to their effective 

prediction methods (Chandran et al., 2021). 

2.22  Bio-Inspired Optimization Algorithms 

Bio-inspired algorithms are evolutionary algorithms based on nature’s biological 

behaviors that make novel and robust searching algorithms. Evolutionary-based and 

swarm-based optimization methods are two basic energy management systems 

(Nguyen et al., 2020). 

2.22.1  Evolutionary Computing (EC) 

This approach inspired the evolution of concepts to handle 

optimization problems automatically. Genetic Algorithm (GA) is a widespread 

evolutionary computing meta-heuristic optimization method. Evolutionary 

fittest selection and genetic operator between generations explored the 

searching space of the optimization problem (Nguyen et al., 2020). 

2.22.2  Swarm Intelligence (SI) 

This approach mimics the collective behaviors of living species, such as 

ants, bees, and birds, forming a group of operators and making interactions 
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between them. These principles created decentralized searching algorithms 

that balance exploring and exploiting capabilities. Different techniques have 

different ways of exploring and exploiting manners in the searching space. 

Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) are 

popular heuristic algorithms. Furthermore, along with other modern heuristics, 

Artificial Bee Colony (ABC), Bat Algorithm (BA), Cuckoo Search (CS), Grey Wolf 

Optimization (GWO), Firefly Algorithm (FA), Social Spider Algorithm (SSA), and 

Kestrel-based Search Algorithm (KSA) are the modern swarm intelligence (SI) 

techniques (Nguyen et al., 2020). 

2.23  Meta-heuristic Optimization Techniques 

Metaheuristics has become popular due to its problem-solving techniques. This 

technique can find reasonable solutions with a wide range of algorithms where 

deterministic are not efficient enough to find reasonable solutions. The metaheuristics 

method is a stochastic operator due to creating random solutions and finding 

reasonable solutions in a reasonable time. The first class of metaheuristics is iteratively 

generated and improved the specific solution until a specific condition is met. The 

benefit of the first method is low computational time and high convergence speed. 

The drawback is less exploration and easy to trap in the local optimal solution. The 

second class of metaheuristics is a group of improved solutions for a given optimization 

problem. The group search is a highly exploratory algorithm.  However, this method 

requires high computational time and space complexity (Khan et al., 2019). The Grey 

Wolf Optimizer (GWO) is the recent swarm intelligence optimization method that 

inspired gray wolves' hunting behavior (Mirjalili & Dong, 2020a). 

Meta-heuristic techniques are the less computational complexity solvers that 

can handle problems with self-learning, self-optimization, self-processing, and self-

healing. The fast exploration and exploitation capability is the feature of such a 

technique to escape from the local optimal and to search for the optimal answer from 
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the searching area with adequate diversity. Another advantage of the meta- heuristic 

over the deterministic techniques is that it does not need the assumption of certainty 

or proportionality (Khan et al., 2019). 

 

2.23.1  Grey Wolf Optimizer  

The Grey Wolf Optimizer (GWO) was presented in 2014 by (Mirjalili, 

Mirjalili, & Lewis, 2014) and mimics the nature hierarchy and hunting behavior 

of grey wolves. Grey wolves live in naturally organized packs; the wolves’ class 

in a pack is divided into four groups according to the level of power: alpha, 

beta, delta, and omega. The alpha is the most decisive wolf leader in the pack 

to lead for navigation and hunting. The next-level beta wolves are responsible 

for helping alpha wolves in decision-making and leadership. Delta and Omega 

wolves are the least potent wolves in the pack. The hunting behavior of GWO 

is presented in the figure. The GWO algorithm saves the power hierarchy of 

wolves, alpha, beta, and delta wolves as the three best solutions. The rest of 

the solutions are considered omega wolves. After defining the dominance 

wolves’ level, the position vector of the corresponding wolf is updated as 

follows: 

pY(t 1) Y (t) A.D  
�� � �

       (2.1) 

Where Y (t + 1) presented the position vector of a grey wolf in the t + 1th 

iteration, Y (t) shows the position vector of the grey wolf at the tth iteration, A 

is a coefficient, and D is the distance between the grey wolf and the location 

of the prey (Xp). The distance is calculated as follows: 

       
pD C.Y (t) Y(t) 

�� � �
         (2.2) 

1A 2a.r a 
� � � �

         (2.3) 
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2C 2.r
� �

        (2.4) 

Where a is a parameter to balance exploration and exploitation, r1 and r2 are 

the coefficient random parameters between [0,1]. 

The following equations allow the update of the position of every gray 

wolf and make it go around in an n-dimensional search space. The parameter 

‘a’ is updated in the current iteration as follows: 

iter
a 2* 1

Maxiter

   
 

�
       (2.5) 

The position of each wolf in each iteration is indicated using the alpha, beta, 

and delta wolves as follows: 

1 2 3
(iter 1)

Y Y Y
Y

3


 


� � �
�

       (2.6) 

Where t is the current iteration, and T is the maximum number of iterations. 

This is presented as real grey wolves encircling prey in the 3D search space. Y1, 

Y2, and Y3 are the new positions of a wolf and are calculated as follows: 

1 1Y Y R *(P )  
� � � �

       (2.7) 

2 2Y Y R *(P )  
� � � �

       (2.8) 

3 3Y Y R *(P )  
� � � �

       (2.9) 

The three best solutions are considered alpha, beta, and delta wolf. 

After that, the algorithm iteratively updated the wolves' position and the time-

varying parameters. In each iteration, if a new solution is better than the existing 

three best solutions, the existing solution is replaced by the new solution. The 

new solutions are now selected as the current iteration's alpha, beta, and delta 
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wolf. This iteration process will stop when it meets the end criterion's 

satisfaction. 

 

Figure 2.8 Hunting behavior of gray wolf and position updating of search 

agents (Mirjalili et al., 2014) 

2.23.2  Multi-objective Grey Wolf Optimizer 

Multi-objective Grey Wolf Optimizer (MOGWO) used the archive to store 

non-dominated solutions throughout the iteration process according to the 

following rules and conditions. The first condition, the new non-dominated 

wolf, will be stored in the archive if the archive is empty. The second condition 

is that the new non-dominated wolf will replace the existing wolf's position in 

the archive if the existing wolf is dominated by a new wolf outside the archive. 

The third condition is that the new non-dominated wolf will be stored in the 

archive if the new wolf is non-dominated compared to the existing wolf in the 

archive and the archive has enough space. The fourth condition, the most 

crowded grid segment in the archive, will be removed, and the new wolf will 

be entered. If the new wolf is a non-dominated solution compared with the 

existing wolf in the archive, there is also not enough space to store it (Mirjalili 

& Dong, 2020a). The archive mechanism has two operators to navigate the 

space in the maximum size: archive maintenance and leader selection. Archive 
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maintenance is responsible for removing the existing gray wolf from crowded 

regions once the archive is complete. The function of the grid mechanism is to 

divide the objective space into segments. The number of hold gray wolves is 

recognized as the crowdedness of each segment (Mirjalili & Dong, 2020a). The 

probability of the removed segment eliminating the solution from the segment 

is chosen as follows. The probability of removing the solution will be high if 

the probability of choosing the equation shows as the crowded segment.  The 

removing a solution is presented as low probability if the non-dominated 

solution does not exist it in the segment. The following equation is the 

probability of selecting the segment to choose a leader from the archive. 

i ip n c         (2.10) 

i ip c n 1          (2.11) 

Where ni presented the number of non-dominated solutions in the i-the-

segment and c represented a constant set to 1. ni indicates the number of non-

dominated solutions in the i-the-segment, and c is a constant generally set to 

1. This equation indicates that if the segment has few solutions, the candidate 

solution will have a higher potential for choosing as a leader candidate. Fig. 5.1 

shows the relation of probability values for the segment and the number of 

solutions inside. The MOGWO search algorithm around the crowded segment 

areas is more likely to find the non-dominated solutions than increase overall 

distributions. Fig 3.2 (a) shows the potential for removing a solution from the 

archive according to the higher level of the crowded segment. The chosen 

solution from the most crowded segment will be accommodated with a new 

solution. In a stochastic algorithm, a small probability of crowded regions will 

be offered high exploration and avoided trapping in the locally optimal 

solutions.  
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(a) 

 

(b) 

Figure 2.9 (a) The probability of choosing the leader. (b) The probability 

values for removing segment (Mirjalili & Dong, 2020b) 

The mentioned leader selection technique chooses three non-

dominated solutions in every iteration step. The selected leaders are the 

reference points to update the solutions and position in the population, and 

the updated solutions and positions are inserted into the archive according to 
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the mentioned rules (Mirjalili & Dong, 2020a). The pseudo-code of the MOGWO 

is taken from Goli et al. (2020).  

A multi-objective is a group of vectors with more than one objective 

function to be minimized or maximized (Mirjalili & Dong, 2020b). The following 

equations represented a multi-objective minimization problem: 

 Minimize:     1 2 0F(x) f (x) , f (x),..., f (x)
����� ���� ���� ����� � � �

    (2.12) 

Subject to:  ig (x) 0, i 1,2,...m 
�

     (2.13) 

ih (x) 0, i 1,2,..., p 
�

       (2.14) 

i i ilb x ub , i 1, 2,..., n          (2.15) 

Where x presented a vector of objective function involving all variables in the 

problem, n showed the number of variables, and m and p presented the 

number of inequality and equality constraints, respectively.  lbi represented 

the lower bound of the ith variable, and ubi is the upper bound. 

The Pareto optimal front, a vital dominance operator, must compare 

the conflict solutions among multiple solutions under multiple objectives 

function. The mathematical formulation of Pareto dominance and Pareto 

optimality for the minimization problem is defined as follows: 

Two vectors, such as 
1 2 kx (x , x ,..., x )

�  and 
1 2 ky (y , y ,..., y )

� . Vector x
�  

dominates vector y
�  (denote as x y

� �
≺ ) if:  

i (1,2,...,0)         (2.16) 

i i i i[f (x) f (y)] [ i 1,2,...,0 : f (x) f (y)]    
� � � �

    (2.17) 

A solution x ∈ X is called Pareto-optimal if:  

  y X | y x 
� � �

≺        (2.18) 
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In such conditions, thousands of reasonable choice solutions are 

available with different quality. The Pareto optimal solution set is to represent 

this condition; this is the set of all nondominated solutions for a given problem. 

This set usually includes thousands of reasonable choice solutions, 

representing the best trade-offs between the objectives. The Pareto optimal 

set is represented as follows: 

Pareto-optimal solutions set for all solutions in a minimization problem: 

  Pareto-optimal solutions set (P S) := x, y X | y x 
� � � �

≺    (2.19) 

The Pareto optimal front is an essential set of multi-objective 

optimization processes. This set has the exact solutions as the Pareto optimal 

set. The Pareto optimal front is selected to store the best solutions of specific 

objectives for all objectives from the optimal solution set. The Pareto optimal 

front is the projection from the optimal solution, which only considers specific 

objectives. Figure 2.10 presents four possible cases of Pareto's optimal front for 

minimization and maximization problems. 

This set is presented as follows: 

 i (1,2,...,0)         (2.20)  

Pareto optimal front (P F) :=  if (x) | x PS
� �

    (2.21) 
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Figure 2.10 Location of Pareto optimal fronts for a bi-objective function in four cases 

that were considered minimized or maximized (Mirjalili & Dong, 2020b) 

Algorithm: Pseudo-code Multi-objective Gray Wolf Optimizer (MOGWO)  

1. Initialize wolf solutions Si (i=1,…, N_wolf) 

2. Generate vectors of movement coefficient 

3. Evaluate the fitness of each wolf 

Pα=the position of the best wolf (alpha) Pβ=the position of the second wolf 

(gamma) Pδ=the position of the third best wolf (delta) 

4. iter=1 

5. repeat 

6. for n=1:N_wolf 

Reposition the wolves based on Equations (8)- (14) 

7. End for 

 8. Estimate the fitness value of wolves    

9. Update Pα, Pβ, Pδ 
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10.Update the vectors of movement coefficient 

(Equtions (12)-(13)) 

11. Specify the non-dominate solution (P) (Update Archive) 

12. iter=iter+1 

13. Until iter>=Max_iter 

  14. Return Archive   

2.23.3  Priori Multi-objective Optimization 

In prior multi-objective optimization, multiple objectives are aggregated 

using a set of weights to form a single objective. This simple method has low 

computational time due to aggregated single-objective algorithms without 

storing non-dominated solutions. However, the algorithm required running 

several times to search multiple Pareto optimal solutions (Mirjalili & Dong, 

2020b). The following equation presented priori multi-objective minimization 

problem: 

 Minimize :   
0

i i

i 1

f (x) w f (x)



� �        (2.22) 

Subject to:  ig (x) 0, i 1,2,...m 
�

     (2.23) 

ih (x) 0, i 1,2,..., p 
�

       (2.24) 

i i ilb x ub , i 1, 2,..., n          (2.25) 

Where x shows a vector of all variables in the problem, n represents 

the number of variables, and m and p represent the number of inequality and 

equality constraints, respectively. lbi is the lower bound of the ith variable, and 

ubi is the upper bound. 

2.23.4  Posteriori Multi-objective Optimization  
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In this algorithm, the multiple objectives of the problem are maintained 

and optimized simultaneously (Mirjalili & Dong, 2020b). Maintaining multi-

objective formulation for a minimization problem is formulated as follows: 

Minimize:     1 2 0F(x) f (x) , f (x),..., f (x)
����� ���� ���� ����� � � �

    ( 2.26) 

Subject to:  
ig (x) 0, i 1,2,...m 

�
     (2.27) 

         
ih (x) 0, i 1, 2,..., p 

�
     (2.28) 

          
i i ilb x ub ,i 1,2,..., n       (2.29) 

 

Where x shows a vector of all variables in the problem, n represents 

the number of variables, and m and p are the number of inequality and 

equality constraints, respectively. lbi is the lower bound of the ith variable, and 

ubi is the upper bound. 

Since the posterior method has applied the rules of Pareto optimal 

dominance to compare solutions, this method is required to store non-

dominated solutions as the best solutions. This method can accurately 

approximate the Pareto optimal solutions, and the solutions' distribution is 

uniform across all objectives. The uniformly distributed Pareto optimal 

solutions supported the decision maker to choose different applications and 

purposes from many different solutions (Mirjalili & Dong, 2020b). 

  2.23.5  Interactive Multi-objective Optimization 

Interactive multi-objective optimization is the human interactive input 

operation that implements decision-making during optimization to guide the 

search process to obtain desired regions. The random solution is first generated 

from the algorithm, and then the process is evaluated and continued to find 

desirable solutions (Mirjalili & Dong, 2020b).  
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2.24  Best compromise solution 

The best compromise solution (BCS) is provided for searching for the best 

solution from the Pareto optimal set. This method is derived from the Euclidean 

distance technique. The minimum value of the corresponding objective function is set 

as the reference point (fimin, fjmin, fkmin) available from the corresponding solution from 

all objective functions. The best solution is evaluated based on the minimum distance 

(d) between the specific and reference points (Khan et al., 2019). The following 

equation expresses the formulation of the minimum distance calculation: 

2 2 2 1/2

ai i,min bj j,min ck k,minD [(f f ) (f f ) (f f ) ]         (2.30) 

d min(D)         (2.31) 

2.25  Energy Management Systems Based on Bio-Inspired Algorithms 

The concept of efficient EMS has attention recently due to demand growth 

and environmental issues. Autonomous and intelligent EMS is decision-making on 

scheduling generation and demand requirements to minimize energy utilization within 

a certain period. The function of computer-aided EMS is to monitor, supervise, 

optimize, and manage the consumer’s consumption pattern, network configuration, 

and generation facilities. Its primary function is to make an efficient and cost-effective 

structure with supply/demand balancing under operational constraints, RE resources 

uncertainties, energy costs uncertainties, and energy demand uncertainties. 

In this scenario, demand-side management (DSM) and demand response (DR) 

are two essential concepts of EMS. The function of DSM is demand control, such as 

planning, executing, and monitoring, influencing consumer energy usage patterns. DSM 

systematically disperses energy usage to minimize emissions and peak demand with 

the DR model and chooses preferred energy sources. DR is the model of incentive-

based schemes or time-based pricing schemes, such as Time-of-Use (ToU), Real-time 

Pricing (RTP), Critical Peak Pricing (CPP), and Inclining Block Rate (IBR). Optimization and 
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energy usage can be achieved when the EMS controller obtains the DR data and price 

tariff for energy from the service providers. 

 

Figure 2.11 EMS using bio-inspired approaches (Nguyen et al., 2020). 

The EMS with bio-inspired optimization technique is shown in Fig. 4.2. 

Generally, types of energy suppliers are traditional and renewable energy sources. 

Factors such as peak-to-average ratio, energy demand, electricity cost, emission cost, 

operation cost, and user-comfortable lifestyle must be considered in the planning 

process. These factors can influence the system's combined use of energy sources. 

The controlling process is executed with EMS, which performs as a decision-maker to 

schedule optimally according to received information and these factors in a specified 

time horizon.  

Therefore, the responsibility of EMS is intelligently to handle and manage all 

information from the specified system. Applying bio-inspired searching algorithms in 

the EMS modeling can enhance exploration and exploitation to provide global 

optimization search results. This algorithm is a more powerful tool than an exact 

algorithm to solve optimization problems due to its effective search in the feasible 

region to provide optimal results (Nguyen et al., 2020). 
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2.26  Multi-objective Optimization Method for microgrid operation 

Multi-objective optimization is the problem with conflict problems with multi-

criteria objectives with multiple solutions as an optimum solution. The feasible region 

is formulated from the group of optimal solutions known as the Pareto optimal front 

to provide a solution amongst the conflicting objectives. Meta-heuristic techniques 

provide a Pareto optimal front in a single run, while mathematical techniques perform 

multiple steps to get an optimal front (Khan et al., 2019). This work implements a 

power system optimization problem dealing with three conflicting objectives: 

operation cost, PAR reduction, and consumer comfort, with and without coordination. 

The difference between with and without coordinate optimization impacts the 

decision-making step in day-ahead scheduling. The solution from the Pareto front 

solution set is selected using the best compromise solution (BCS) method. In the 

coordinate day-ahead optimization, the optimal solution is chosen first from the Pareto 

optimal front, and then the decision solution is generated after coordination among 

the conflict objective’s function. During the scheduling process, although the operation 

cost is the main target to focus on from the upstream aspect, it is necessary to involve 

another conflict objective that can affect the flexible operation system. An efficient, 

optimal solution is required to satisfy conflicting objectives for implementing the 

optimization work in the natural environment. This work considers the optimal day-

ahead load scheduling process equally crucial in a multi-objective framework (Khan et 

al., 2019). 

The participation of distribution generations and responsive components in the 

reconfigurable microgrid will pose challenges in optimal day-ahead scheduling. To this 

end, this work presents active microgrid distribution network management for day-

ahead scheduling of existing active components and uncertainty. In the optimal day-

ahead scheduling process, the continuous real-time supervision of active structure, 

such as real-time forecasted REs information, real-time aggregate load profile, and 

available power generation from system generation units, is required. The optimization 
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process performs as a decision-maker to evaluate the optimal set-points of system 

generation units and active, responsive load. The multi-objective optimizer defines the 

optimal generation dispatch and responsive load participation according to multi-

criteria and related system constraints: wholesale market purchases and RCSs status 

(Esmaeili, Anvari-Moghaddam, Jadid, & Guerrero, 2019). 

The optimal day-ahead scheduling is performed for a day at one h time step; 

its task is to evaluate the optimal dispatch of available resources in real-time. Due to 

the possibility of error in REs prediction, it is necessary to consider the worst-case 

scenario that can adjust the robustness of system performance to improve system 

security during optimal scheduling. Based on the robustness principle, the robust 

optimization model applies the interval prediction information wind/PV power output 

using the obtained power from the hourly real-time predicted interval. Due to the high 

penetration of REs, the accuracy of RE prediction becomes essential for management 

systems dealing with marginal operation costs and unexpected system contingencies. 

To avoid such shortcomings, it is required to plan the optimal scheduling with 

uncertainty and the predicted error to ensure the reliability and economic dispatch of 

the real-world system. The previous research explores the day-ahead scheduling 

process with mathematical formulation to capture the uncertainty; it does not consider 

the temporal characteristics of prediction accuracy (Xu et al., 2023). 

The management and planning of microgrids is a problem commonly solved 

with optimization methods. The optimization methods can be divided into math and 

meta-heuristic approaches. Math optimization is a simplification approach that can be 

achieved to simplify the linear model and solve the problem with a specific model. 

The meta-heuristic optimization inspired the nature of the ecosystem. The multi- 

objective optimization provides multi-optimal points that satisfy the different criteria 

of the system requirement. Therefore, a suitable method for selecting the optimal 

solution is required (Hajiamoosha et al., 2021). 

 



81 

 

In this work, a multi-objective optimization model is applied to solve the 

problem of microgrid energy management. The proposed model is to handle the 

operation cost, peak demand, and consumer satisfaction simultaneously. Moreover, 

the demand response program has cooperated to elevate the microgrid performance 

under uncertainty due to RES’ resources. The proposed model is considered energy 

management from the upstream aspect; the typical grid-connect model consists of PV, 

wind, and fuel-based distributed generation. This planning stage considers uncertain 

parameters due to PV and wind generation. A multi-objective gray-wolf optimizer is a 

powerful tool for solving multi-objective problems with three different criteria. The 

different case studies simulation results and comparative studies validated the 

effectiveness of the proposed method. 

2.27  Types of Time-series Forecasting 

The forecasting method can be classified according to iterative way, direct way, 

point forecasts, and probabilistic forecasts. Different types of forecasts are utilized 

depending on the desire for different situations, applications, and scenarios. The 

following presented the standard time-series forecasting method as groupings (Haben, 

Voss, & Holderbaum, 2023). 

2.27.1 Point or Probabilistic forecasting 

The point and probabilistic forecasts provided multiple estimation 

values in each time step to describe the outspread form of future values. Point 

forecasting is a fast estimation method with fewer learning and training data 

parameters. This can easily be embedded in applications, such as energy 

storage controlling models that utilize a single point value per time step rather 

than a range of values. The point forecasts reflected the uncertainty and 

volatile data. In such cases, the applications of probabilistic forecasting are 

more utilizing models for volatile data. The drawback to probabilistic methods 

is that they are complex and computationally expensive to produce and store 

(Haben et al., 2023). 
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2.27.2  Statistical and Machine Learning Methods 

Statistical-based time series forecasting has been implemented using 

statistical methods, such as ARMA, ARIMA, and exponential smoothing. These 

methods are easy to implement and interpret and computationally 

inexpensive. Recently, machine- learning techniques have become applied in 

time series forecasting, such as neural networks and random forests. The 

statistical models preferred clear and linear relations in the data, such as 

daily/weekly, seasonality, and clear links to external influences such as 

weather. Since model assumptions directly learn the relationships from the 

data, failed model assumptions will lead to inaccurate results. Machine learning 

is an excellent choice for complicated nonlinear data and unclear probability 

relationships. This method is suited for learning many time series data and 

hierarchical time series forecasting (Haben et al., 2023). 

2.28  Time Series: Basic Definitions and Properties 

Time series data are the consecutive sequence data set that chronologically 

increases the discrete time index. The critical feature of time series data is stationary 

and autocorrelation. The stationary time series is the expected value and the variance, 

and each data point comes with an equal distribution of fixed mean and variance. 

Autocorrelation can be described as the one-point changes in the time series data 

related to the lagged points time series data. Autocorrelations are essential for 

identifying historical values to estimate future points. Non-stationary time series are 

the values from a distribution with time-varied mean and variance. Stationarity is 

essential for traditional time series forecasting models like ARMA and ARIMA. Trends 

and seasonality are features that often occur in non-stationary data. The trend is the 

macroscopic low-frequency changes in the data with the linear trend, gradual linear 

growth in the time series. Seasonality is the changes in the time series occurrence at 

fixed regular intervals or fixed periods, such as daily, weekly, and annual levels.  
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The fundamental function of forecasting is trying to get approximate or 

accurate function describing the future behavior of a time series. Accuracy is generally 

defined based on error measures and optimizes the application of interest. Various 

forecasting methods that are suited for different applications are available and have 

advantages and disadvantages. The context of point forecasting is to provide a single 

estimate for each time step tn+1, tn+2, . . . , tn+h in the forecasting horizon. 

Probabilistic forecasting generally provides multiple values for each time step and is 

usually the better description of the uncertainty of future values. The drawback of 

probabilistic forecasting is the high computational costs and the large amount of 

training data to generate an accurate estimate. The probabilistic models with sufficient 

computational resources and data can provide a better descriptive and informative 

estimation of the uncertainty in future values (Haben et al., 2023). 

The traditional statistical methods assume that the relative between the 

dependent and independent variables is the way of linear trends autoregressive 

behaviors. The performance of statistical methods is quite successful and accurate, 

and this method is easy to forecast even with few available data. However, this method 

is not suited for highly complex nonlinear models. Therefore, increased monitoring has 

increasingly allowed machine learning methods to solve complicated patterns in the 

data. This model can be trained to learn the complex relationship of the data with 

some features. Recently, artificial neural networks become increasingly popular for 

time series tasks and forecasting. Sophisticated Deep learning variants, such as 

recurrent neural networks, long-short-term memory (LSTM), and gated recurrent unit 

(GRU), are the successful models for time series tasks due to the availability to model 

the autoregressive relationships. Recurrent architectures convolutional neural 

networks (CNN) also provide the best results, and this can be trained efficiently in large 

time series data for distribution-level networks (Haben et al., 2023). 
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2.29  Statistical Time series forecasting methods 

There are five statistical-based forecasting methods: Artificial Neural Network 

(ANN), Support Vector Machine (SVM), Markov Chain, Autoregressive, and Regression 

models. All statistical-based models require historical data to execute time- series 

forecasting and do not require internal system states to model the process according 

to the parameter assessed at the current points (Sobri, Koohi-Kamali, & Rahim, 2018). 

 2.29.1  Regression 

The regression method is a model for determining the functional 

relationship between response and predictor parameters. This method is a 

repetitive process where the output parameters are applied to analyze, verify, 

criticize, and modify the input parameter. Univariate regression analysis refers 

to one response parameter, and multivariate regression considers two or more 

parameters. The univariate linear regression approach determined the 

correlation parameters by fitting a proper linear equation to the data. The linear 

fitting kept all response parameters constant in the multiple linear regression 

but not for predictor parameters. These two regression methods are commonly 

used with the complex correlation between the parameters. The forecasted 

data are obtained for any predictor values that diverge from the observed data 

(Sobri et al., 2018).  

 2.29.2  Autoregressive (AR) 

Autoregressive is to measure the correlations between dependent and 

independent parameters. The categorization process depends on the 

conduction of stationary/non-stationary and linear/nonlinear processes. The 

stationary time series is the time series that fluctuates in the region of the static 

mean (Sobri et al., 2018). The equation is expressed as follows: 

 
m

t i t i t

i 1

x x 


          (2.32) 

t 1 t 1 2 t 2 3 t 3 m t m tx x x x ... x             (2.33) 
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Where, i  is the ith AR coefficient. t ix  is the time series values. t  is the white 

noise with zero mean and constant variance 

 2.29.3  Moving average (MA) 

The moving average (MA) model uses a weighted factor of historical data 

to create a time-series representation. Then, it combines with past noise data to 

develop a time-series process (Sobri et al., 2018). The MA of order n is described 

as: 

n

t t t j

j 0

x 


          (2.34) 

t t 1 t 1 2 t 2 n t n
x ...             (2.35) 

Where t  is the jth MA coefficient. t j  is the white noise that is uncorrelated with 

random parameters with zero mean and constant variance. 

2.30  Autoregressive Moving average (ARMA)   

The ARMA has emerged as an adoption model that extracts from statistical and 

Box-Jenkins methods. The general form of the ARMA prediction model is shown in Fig 

4.2. ARMA model, commonly applied in autocorrelated stationery time-series data, was 

a superior tool to predict the following values of particular stationary time-series (Sobri 

et al., 2018). 

m n

t i t i j t j

i 1 j 0

x x  
 

            (2.36) 

 

Figure 2.12 Process of ARMA forecasting method (Sobri et al., 2018). 
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It required a series of measure data sets for the particular site to forecast the 

output of an RE generation with statistical methods. The enormous amount of applied 

data set can be reduced without losing the information by employing statistical data 

treatment. Generating accurate synthetic data for a typical year represents the actual 

statistics of multi-year measure data (Nfaoui, Buret, & Sayigh, 1996). The following 

articles are the treatment process for historical data series. 

 2.30.1  Stationarity 

The ARMA model is suited for use as a prediction tool for stationary 

historical time series. Stationary is the statistical properties of the time series 

model, which have equal mean, variance, and autocorrelations over all-time 

horizons. Therefore, statistical forecasting techniques applied the assumption 

time-series, which statistical transformations can change stationaries. The 

stationeries of times series data make it easier to implement the prediction 

process using historical data. Therefore, the time-series sequence needed to 

transform stationery provides a clue-searching process for the forecasting 

model (B. Singh & Pozo, 2019). 

2.30.2  Gaussian transformation 

Hourly wind data cannot be directly applied due to its non-Gaussian 

distribution. This problem is solved by the Dubey method that modifies shape 

parameters of the Weibull random variable close to 3.6 (J. L. Torres, Garcia, De 

Blas, & De Francisco, 2005). The Weibull probability distribution function (PDF) 

is given as; 

 k 1 k

vPDF k c(v c) exp( (v c))       (2.37) 

Time series of the particular month of the year are transformed into Gaussian 

distribution; 

x k / 3.6         (2.38) 

Where k and c are the shape and scale parameters of wind speed. 
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2.30.3  Elimination of the seasonal variation and daily variation 

The issue of non-stationary seasonal set down the year segment into 

monthly periods at the outset. Daily non-stationarity can be removed by 

subtracting the hourly mean value from the actual data set. It was also needed 

to divide with the standard deviation to decrease the data to a normal process 

with a mean of 0 and variance of 1 (Brown, Katz, & Murphy, 1984; Nfaoui et al., 

1996). The time series of the particular month of the year is standardized 

velocity to remove diurnal non-stationarity; 

 
'
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  With the following period function: 
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Where *V (n, y)  is the standardized hourly average wind speed. '

n,yV is hourly 

average wind speed. (t)  and (t)  are the sample mean and the standard 

deviation of all transformed wind speeds in 24 hours. 

2.30.4  Parameter Estimation 

The Yule-Walker estimator is used to calculate the sample 

autocorrelation coefficient (Patterson, 2011); 

2 T 1

2 2 2
ˆˆ ˆ ˆˆ (0)(1 R )

           (2.42) 

Where, 
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For first-order moving average model, MA(1); 

White-noise series distributed with constant variance. 
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(k) 0  for all k>       (2.54) 

2.31  Performance metrics 

The performance index of the forecasting methods can be measured by 

different metrics related to the forecast error. The higher percentage of errors index 

corresponds to fewer accuracies. This section provides the commonly used definitions 

and equations for error calculation metrics (Ghofrani & Alolayan, 2018). Many metrics 

can be defined as the validation for forecasting results. Root Mean Square Error (RMSE), 

Mean Absolute Error (MAE), and Mean Bias Error (MBE) are commonly used error metrics 

for forecasting (David et al., 2016). The formulation of performance metrics is as 

follows: 

Root Mean Square Error 
n

2

i i

i 1

(RMSE) 1/ n (x x )


     (2.55) 

 Mean Absolute Error    
n

i i

i 1

(MAE) 1/ n | x x |


    (2.56) 

 Mean Bias Error    
n

i i

i 1

(MBE) 1/ n (x x )


    (2.57)   

Where, xi is the forecasted time series values 

  ix  is the observed time series values 

  n is the total number of samples 

2.32  Modern Recurrent Neural Networks 

RNN networks have only been capable of modeling short-term dependencies 

and numerical instability issues. Therefore, gated recurrent units (GRUs) and long short- 

term memory (LSTM) are the popular extensions of RNNs. In feedforward networks, 

recurrent neural networks work the input data of the input layer Xt , a hidden state of 

the activation signal from the last time step Zt−1. LSTMs involve a second hidden state 

called the cell state. The function of cell state is to memorize the current state and 

previous cell state where the training determines memorized for long- and short-term 
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values. LSTMs also involve the forget gate to control the forget function of the input 

and output state. Weights and activation functions are needed to activate since the 

gates are made up of ANN layers. The forget gate controls keep data from the previous 

cell state and add data from the current input of the previous activation. The activation 

of the input and output is evaluated with a sigmoid function (between 0 and 1), in 

which the choice cell state “forgets” when the values are close to 0 or the choice cell 

state “kept” when the values are close to 1 (Huawei Technologies Co., 2022). 

2.33  Deep Neural Network 

Deep learning is a group of stacked perceptrons used to build multi-layer 

artificial neural networks based on human neural networks. The artificial neural 

network is a computing system of highly interconnected artificial neuron networks that 

processes information with dynamic responses to external inputs. Artificial neural 

networks possess the same feature as the human brain, such as parallel information 

processing, learning, association, classification, and memorizing. 

 

Fig. 2.13 Neurons in the human brain and artificial neural network (Huawei 

Technologies Co., 2022) 

In single-layer perceptron, the input vector X ¼ [x0, x1,⋯, xn] T is the dot 

product with the weight net W ¼ [w0, w1,⋯,wn]T. The net is activated to take an 

output function by an activation function called Sgn(net). The single-layer perceptron 

is a linear model and can only implement linear classification. The multilayer 

perceptron, the fastest-growing artificial feedforward neural network, is the structure 

of a hierarchical neuron arrangement to process non-linear data. The inner layer 
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neuron of nodes is the computing unit that performs the computing function. The 

neurons are to receive the previous values and transmit the value to the subsequent 

layer neurons. The same layer neurons are not internally connected, and the data 

transmission is one-way between the layers (Huawei Technologies Co., 2022). 

2.33.1  Optimizer  

The optimizer is the gradient descent algorithm term, often 

encapsulating into one object when implemented in an object-oriented 

language. The popular optimizers are SGD, Momentum, Nesterov, Adagrad, 

Adadelta, RMSprop, Adam, Adamax, Nadam, etc. The optimizers are used to 

improve the convergence speed of the algorithm, the stability to a local 

extremum, and the efficiency of the hyperparameters. The following presented 

the most commonly used optimizers (Huawei Technologies Co., 2022). 

2.33.2  Adam Optimizer 

Adagrad and Adadelta developed the Adaptive Moment Estimation 

(Adam) optimizer. Adam is to identify the adaptive learning rate of the 

parameter in a complex neural network. This is also used as weight adjustment 

of the network's different sensitivity parts, which is a complicated process to 

calculate the specific learning rate of the sensitive parts. The optimizer is 

generally a lower value. Identifying the sensitive parts manually and calculating 

the specific learning rate was challenging. The learning rate of the Adam 

optimizer setup is 0.0001. The gradient update equation is shown below: 

  w m(n)
e v(n)


  


      (2.58) 

Where m and v are the past gradients' first moment (mean) and second 

moment (uncentered variance), respectively. m and v can be defined as: 

 m(n) am(n 1) (1 a)g(n)         (2.59) 

2v(n) bv(n 1) (1 b)g (n)         (2.60) 
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2.33.3  Activation Function  

The activation function is essential in neural network learning models 

to interpret complex nonlinear functions. The activation function implements 

nonlinear characteristics in the neural network. Without the activation function, 

the neural network can be represented as a linear function even with many 

layers. The sigmoid function is most frequently adopted in the study of 

feedforward neural networks. The sigmoid function is monotonic and derivative 

continuous to compute output bounded, used in the output layer for binary 

classification. This function facilitates the convergence of the network (Huawei 

Technologies Co., 2022). 

2.33.4  Regularization 

Regularization is the practical measure parameter to reduce 

generalization error and overfitting in machine learning. There are several 

proper techniques to prevent overfittings, such as parameter norm penalty, 

dataset expansion, dropout, and early stopping. Dropout is comprehensive and 

straightforward in the computation regularization method. The dropout 

function has discarded some parts of the output of neurons randomly and 

does not update the discarded neurons during the training phase. During the 

training, The random dropout process makes constant shield parameters and 

generates competitive models (Huawei Technologies Co., 2022). 

2.33.5  Loss Function 

Error detection function of the target classification is needed during the 

training of a deep neural network. This function is presented as a loss function 

or an error function. The loss function is to reflect the error between the target 

value and the actual value of the network perceptron. The commonly used 

loss function is the root mean square error (RMSE), as follows:  

2

d d

x X,d D
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2n  

        (2.61) 
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Where, w is the model parameter, X is the training examples set, n is the size 

of X, D is the gathering of neurons in the output layer, t is the target output, 

and o is the actual output (Huawei Technologies Co., 2022). 

2.34  Long short-term memory 

The deep learning neural network was introduced, and the performances of 

such an approach have been assessed in several fields, such as language modeling, 

machine translation, image captioning, handwriting generation, image generation, and 

time series forecasting. RNNs can connect previous data with the present task, but their 

performance is poor in some applications when facing long-term dependencies. LSTMs 

are designed to solve the long-term dependency problem by removing or adding 

information in a single cell. LSTMs are constructed with several layers, and different 

types of layers are connected internally. (1) The Sequence Input layer sets the 

dimension of the input sequence at each time step. (2) The LSTM layer has several 

hidden units described as long-term dependencies, relying on a recurrent dynamical 

model. (3) The Fully Connected layer is a feedforward layer that connects the hidden 

units with the output layer in the LSTM layer. This layer acts independently and 

statically at every step. (4) The Regression Output layer is the computing layer that 

evaluates the mean squared error loss to solve the regression problem during training 

time. 

The basic structure of RNNs has the vanishing gradient problem: the gradient 

decreases when the number of layers increases. The gradient problem is practically 

null and prevents the network training process of the deep RNNs with many layers. 

The networks with short-term memory do not provide good results dealing with long 

sequences. Therefore, the network demanded memorization of all the information in 

a complete sequence. Long short-term memory (LSTM) recurrent networks have been 

introduced to solve the vanishing gradient problem. LSTM uses three gate units, 

namely forget gate, update gate, and output gate, to keep relevant information and 

discard irrelevant information. Forget Gate decided to discard and save the information 
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using binary numbers (0 and 1), whereas 0 means the information is forgotten and 1 

means the information remains. The update gate decided the update and memory 

state condition of new information. The output gate generates the output value of a 

specific hidden unit, the input of the following hidden unit. The dot product of the 

previously hidden unit and the xt current input is passed through the r sigmoid 

activation function to compute the current gate values. The tanh activation function 

computes the ~ct update values (Torres et al., 2021). The following equations define 

such condition: 

t c t 1 t cc tanh(W [a , x ] b ) ɶ       (2.62) 

u

u t 1 t u(W [a , x ] b )          (2.63) 

f

f t 1 t f(W [a ,x ] b )          (2.64) 

o

o t 1 t o(W [a , x ] b )          (2.65) 

u f

t t t 1c c c   ɶ ɶ        (2.66) 

o

t ta tanh c          (2.67) 

Where Wu, Wf, and Wo present the weights function of the update gate, forget gate, 

and output gate, respectively. bu, bf, and bo are biases that govern the behavior of 

update, forget, and output gates, respectively. Wc and bc show the weights and bias of 

the memory cell. 

2.35  Gated recurrent units 

Gated recurrent unit (GRU) is a simple version of LSTMs as long- term memory 

networks with low computational cost than LSTM networks. This unit is a widely used 

version with high convergence and robustness for many problems. GRU is the improved 

RNN network version that captures long-range dependencies and effectively uses the 
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RNN network. GRU is a simple model with less computational time, and it only uses 

two gates, namely the update gate and the Gr relevance gate. The update gate decides 

the condition of the memory state to be updated or not updated according to the 

memory state candidate. The relevance gate decides the relevance of ct 1 to compute 

the next candidate for ct ( Torres et al., 2021). The following equations presented such 

conditions: 

u

u t 1 t u(W [c ,x ] b )                        (2.68) 

r

r t 1 t r(W [c ,x ] b )           (2.69) 

u

t c t 1 t cc tanh(W [ c ,x ] b  ɶ ɶ       (2.70) 

u u

t t t 1c c (1 )c    ɶ        (2.71) 

u f

t t t 1c c c   ɶ ɶ        (2.72) 

t ta c          (2.73) 

where Wu and Wr, show the weights function of the update gate and relevance gate, 

respectively. bu and br are the bias that governs the behavior of the update gate and 

relevance gate, respectively. Wc and bc are the weights and bias of the memory cell 

candidate. 

 

 

 



CHAPTER III 

RESEARCH METHODOLOGY 

The common objective of the energy planning system has been to address the 

cost minimization problem (Gamarra & Guerrero, 2015). The planning process needs 

other essential objectives to be taken into account, such as environmental cost, power 

quality, system reliability, fuel consumption cost, total voltage variation, voltage 

stability enhancement, voltage profile improvement, transmission active and reactive 

power loss reduction (Gamarra & Guerrero, 2015; Guoping Zhang et al., 2020). The 

following chapter describes the common optimization problem in the microgrid 

planning process and also discusses techniques to solve energy management 

problems: 

3.1  Research Methodology 

The previous section summarizes the methodology for forecasting solar power, 

wind power, and demand using the stochastic base scenario and ARMA models. 

Renewable power prediction differs from demand due to its inherent non-stationary, 

diurnal nature and seasonal ramps. Solar power forecasting is generally divided into 

physics-based models, which apply numerical weather forecasting and solar radiation 

data, and statistical models that directly predict historical data. Many research articles 

point out that both techniques have their strength and weaknesses. This work uses 

statistical methods alone, specifically auto-regressive moving average (ARMA) models 

developed for the forecasting model. Although it has some limitations, the ARMA 

model is widely applied as a forecasting tool due to its ease of implementation. 

Accurate forecasting is vital to guarantee reliable operations conditions and 

planning for generation capacities. To solve the problem, uncertainty modeling is 

typically executed by statistics base stochastic process. The former is evaluated by 
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modeling synthetic samples or scenarios in the input model for decision-making 

optimization. The latter model applied a simple stochastic process in the sophisticated 

decision-making model. However, it is hard to interface the complex scenario base 

forecasting models and the sophisticated decision-making model. This work highlights 

the interfacing of the time-series forecasting model with decision-making models. In 

the proposed method, the system operation is further incorporated with DR, which 

does not require predefined constrain parameters to tackle the deviation from the 

forecasting (B. Singh & Pozo, 2019). 

Energy efficiency and renewable resources provided guidelines for the 

minimization of the environmental impact of the network (Gamarra & Guerrero, 2015). 

However, renewable resources have volatile production energy and are unavailable at 

their peak power. Forecasting is implemented with optimization problems due to the 

uncertain nature of demand and renewable generation, the seasonal availability of 

power generation, and the demand for the microgrids forecasted in this system. 

The proposed microgrid combines responsive loads, RESs, and non-RESs. Due 

to environmental concerns, modern microgrids focus on elevating the integration of 

RES resources. Therefore, combining different generation technologies requires optimal 

management and planning of the system's resources. Moreover, analyzing a suitable 

approach for the system’s uncertainties caused by the energy resources is also 

essential. Many research articles have been concerned with uncertainties in microgrids' 

energy management in recent years. The demand response program is a topic to 

address in managing microgrids. The impact of demand response can effectively solve 

the uncertainties in the renewable energy-based microgrid. 

The proposed multi-objective framework is formulated for the minimization 

problem of operation cost, peak demand, and consumer comfort factor while satisfying 

network constraints and demand response. This multi-objective optimization is a 

problem that handles multi-criteria complex problems with multiple optimal points 

(Pareto-optimal front). The conventional optimization techniques do not have 
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sufficient capabilities to solve such a problem. In this work, a deterministic multi-

objective optimization problem is solved iteratively over time by the most updated 

and accurate available RE information at each time step. The demand response 

program is integrated as an ancillary service to provide reliable operation and consider 

uncertainty impact. From the previous research, the estimation of day-ahead 

parameters is scheduled based on the predicted system information with a specific 

probability function. The proposed work further investigates combining deep learning 

and multiple objectives optimization for the microgrid dispatch problem. Due to the 

intermittent nature of RE resources and demand, uncertainty becomes a significant 

concern related to microgrid energy management systems. In general, the uncertainty 

can be described as the divergence probability of the predicted values and the actual 

data. As illustrated in Figure 3.1, microgrid energy management is the optimization 

problem, which determines the optimal dispatching of resources according to system 

objectives. After that, the management system also creates an active distribution 

network by providing control commands for responsive loads. This work has executed 

the function with relevant technical information, network constraints, grid 

characteristics, and forecasted information.  

The first step is forecasting in the microgrid environment, which can support 

the required information to evaluate the scheduling of generation capacities and 

demand requirements for the next day. Various forecasting data can be available based 

on different time horizons, from more than a few hours to quite a few days ahead. 

The proposed system developed 24-hour-ahead prediction results with a deep neural 

network. Secondly, the scheduling scheme was assessed before the next day. The 

scheduling of generating capacities is optimized by forecasting results from the first 

step, PV/wind power and load profile. As a result, the proposed system controls the 

operational status of optimal economic dispatch power from the various energy 

resources. Finally, the controllable responsive loads program can be dispatched to 

ensure reliability in the system based on the optimal generation scheduling results. 
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Figure 3.1 Flowchart of proposed EMS 
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Figure 3.2 IEEE 34 node test system (Abdelmotteleb, San Roman, & Reneses, 2016) 
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3.2  System Modelling for the economical operation of a microgrid 

The microgrid is a small-scale distribution network combining renewable and 

non-renewable sources to provide local demand optimally. This is a part of the active 

distribution networks in which consumers can participate in power sharing to reduce 

electricity costs (Chamandoust, Bahramara, & Derakhshan, 2020). The economical 

operation is the power system dispatch operation issues, where the system operator 

tries to minimize generation costs. Therefore, economical operation cost has become 

a dispatching objective in power system operation (Y. Li et al., 2019). This work 

presented the uncertainty of power generation and load demands required to balance 

effectively by grid operators in the day-ahead dispatch microgrid. In the smart 

microgrid, day-ahead scheduling and demand-side management are used to solve the 

challenges of the system’s contingencies due to rising uncertainty. The demand side 

management interacts with the consumer to encourage consumption patterns to 

change to minimize the upstream side's total operation cost and the consumer's 

electricity payment. The changing pattern includes load shifting regarding the 

availability of output power from generation units, load curtailment according to the 

high energy price, and reduced fossil fuel utilization to minimize the operation cost. 

Many studies have analyzed the optimal scheduling problem from the economic, 

environmental, and technical aspects. 

Due to the high penetration of RE resources, energy waste, and operation cost 

increment are the issues dealing with intensified uncertainty. The energy management 

system is the option that can effectively be performed as an economic benefit flexible 

network (Qiu et al., 2022). On the other hand, the intermittent nature of REs is a 

disturbance to implementing effective microgrid energy management. Microgrids are a 

part of the electricity market in which proper scheduling of local resources is essential 

to perform an economically operated system. Although economic operation is the 

main issue for microgrids, many discrete factors still exist in the microgrids’ 

optimization problem. This work uses the IEEE 34 node test system with dispatch and 
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non-dispatch DG units as a model for solving the multi-objective day-ahead scheduling 

problem. Due to the randomness of RE generation, the proposed system considers 

uncertain conditions. A microgrid is a distribution network with bidirectional power 

flow; the generated power can be exchanged with the upstream network (Gazijahani, 

Hosseinzadeh, Abadi, & Salehi, 2017). The specifications of DG units, such as capacity 

and construction, can be found in Figure 3.7. The proposed model’s multi-criteria have 

been handled by a multi-objective gray wolf optimizer (MOGWO) to minimize the 

objective function simultaneously. Conventional balancing techniques fail to recover 

from uncertainty problems. With the emergence of microgrid advanced 

communication systems, modern techniques are the option for balancing, such as day- 

ahead scheduling, energy storage, and demand side management. The ongoing 

research work in the microgrids field is the application of modern techniques for solving 

operational control problems (Kumar & Saravanan, 2019). Demand response (DR) is a 

part of the Demand-Side Management (DSM) technique; this is the method of 

modifying the consumption patterns of consumers to respond to electricity market 

prices or the system’s emergency condition. The purpose of such a program is to utilize 

downstream control schemes to monitor the effective utilization of energy during peak 

hours. 

The first objective function is the operation cost minimization problem. The generation 

unit in this model involves PV, wind, fuel-base distribution generator, and grid power 

exchange: 

T
t t t 2 t t t

operation PV PV wind wind DG DG grid grid grid sell

t 1

min C P P [aP bP a] P (u u )


          (3.1) 

The second optimization problem is the minimization of peak load at each time. PAR 

is peak demand at particular hours, presented as the ratio of preferred peak and 

average demand at each time. PAR is expressed as follows: 

 
max

t L
PAR

t

avg

L

T

P
mi

P
n



 


       (3.2) 
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The third objective function is minimizing consumer dissatisfaction, considering the 

time and power gaps. In the consumer comfort problem, operation time delay and 

demand gap are considered the metrics of consumer satisfaction level in the 

optimization problem. The power gap is defined as the ratio of the preferred and 

scheduled power, and the time gap is presented as the ratio of the waiting time to 

total operation time, which is expressed as follows: 

  
t t

shift shift
dissatisfaction total total

operation operation

T P
min

T P
        (3.3) 

Demand elasticity:  
t

t shift
elasticity total

operation

P

P
       (3.4) 

Subject to, 

Power balance constraint: 

  
T

t t t t t

PV wind DG grid d

t 1

P P P P P


         (3.5) 

Power exchange constraints: 

 t

gridlb u ub          (3.6) 

The spinning reserve is considered to protect the system from unexpected conditions, 

power outages, and sudden load changes: 

 
G

g t t t

max g d Rev

g 1

[P P ] P P


          (3.7)     

 Generation capacities: 

  
min max

PV PV PVP P P 
         (3.8) 

min max

wind wind windP P P 
         (3.9) 

min max

DG DG DGP P P 
       (3.10) 
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min max

grid grid ridP P P         (3.11) 

Constraints to prevent new peak: 

  
t max t

min L maxP P P 
       (3.12) 

Dissatisfaction level constraints (Time gap and power gap constraints for dissatisfaction     

index):   

  t shift shift

shift start stopT T T 6         (3.13) 

t t t

d,total shift d,total5%P P 20%P        (3.14) 

3.3  Study area and Data collection 

The study area is the Nakhon Ratchasima district. The Nakhon Ratchasima 

district is one of the districts in Thailand located at 14.979900 latitudes and 102.097771 

longitudes. Collection and preparation data include three years of historical wind 

speed, solar radiation, and historical load profile for a particular region. This data is 

used for static modeling purposes by ARMA techniques. The historical wind speed and 

solar radiation are downloaded from the Historical Weather Dashboard and National 

Climatic Data Center (NCDC) website. Specify that the region’s daily load data are 

collected from Provincial Electricity Authority (PEA) load research. 

 

 

 

 

 

 

 

 

 



CHAPTER IV 

RESULTS AND DISCUSSION

This chapter presents simulation results and discusses the microgrid energy 

management system. The discussion parts are regarded with the following aspects: 

simultaneous multi-objective implementation, comparison of single and multi- 

objective optimization related to generation costs, impacts of demand response 

implementation, and impacts of uncertainty on the proposed system. The simulation 

results are summarized as five different case studies. 

4.1  Problem description 

The proposed system combines different generation technologies with 

different marginal production costs for different generation technologies. The proposed 

multi- objective optimization determined the optimal conditions of energy generation 

to provide microgrids with the least cost and the best decisions. The generation 

schedule is the combined utilization of different units according to the cost order. 

Since the MG is a grid-tied system, the power has been imported and exported from 

the main grid. The simulation is performed based on the data from Thailand's power 

system, Nakhon Ratchasima City, in 2022 for the operating days. The typical working 

day with high power demand during working hours is due to a significant space cooling 

and operation system requirement. The power generation is shared and represented 

in the system with 20% from REs production, 50% from the main grid, and 30% power 

generation from DG units. In this model, the utilization of generation resources is 

according to the order of lower electricity production cost. The highest priority of 

resources is renewable generation resources (REs), which are non-dispatchable 

generation with negligible marginal production costs. DG units are dispatched when 
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the lower marginal costs are fully utilized. Therefore, the generation cost to satisfy 

demand indicates the power generation system efficiency. 

Moreover, the proposed energy management method forms an active 

distribution network in which demand-side flexibility investigates the influence on the 

generation cost. Based on the hourly generation in the reference condition, demand 

response is implemented at a 5%-20% percentage of the hourly consumption and 

shifted over 24 hours. Although consumers and system operators practically activate 

the level of load shift participation, the flexibility approach is outside the scope of the 

study. 

4.2  Forecasting performance analysis and discusses 

With rapidly growing capability dealing with big data and computing power, 

deep learning is applied in the power system energy management to improve the 

accuracy of renewable energy and load profile prediction. The deep learning-based 

forecasting model has been developed for deterministic, probabilistic forecasting of 

24-hour ahead renewable energy and load profiles. This section discusses the deep 

learning model's performance and potential research application in the challenges of 

the power system field. Due to the uncertainty of the forecasted data negatively 

impacting the daily operation of power systems, current uncertainty assessments have 

received sufficient attention to solve the management of power systems. The 

proposed model solves the energy management problem with the received 

deterministic forecasted data. Five case studies were performed for uncertainty 

assessment. Regarding higher accuracy, GRU is used as a forecasting module for the 

energy management system where uncertainty assessment is continuously improved. 

Although the performance accuracy of the hybrid model provided a better 

solution than the conventional single model, it was recommended that this work use 

three years of historical time series data length for the prediction process. This work 

suggested that conventional deep learning models, convolutional neural networks, 

and long short-term memory neural network models are reasonable choices under 
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certain circumstances, such as preferring processing time for a specific model and the 

historical time series data available from the specific geographic location. In the PV 

power prediction, the GRU model implemented the prediction process using solar 

irradiation from the National Climatic Data Center (NCDC) website for Nakhon 

Ratchasima City, Thailand, over five months of data (April 1, 2022, to September 30, 

2022). In the wind power prediction, the model used wind speed data from the 

Historical Weather Dashboard for Nakhon Ratchasima City, Thailand, over five months 

of data (April 1, 2022, to September 30, 2022). In the demand power prediction, the 

model used a historical load profile of load research of the Provincial Electricity 

Authority (PEA) over five months of data (April 1, 2022, to September 30, 2022). This 

input data set was split into training and test sets. The training data is used to train the 

data in the learning process, and the test data is used to test the results in the learning 

process. 

MATLAB  (R2022b)  software was used to train input data for the LSTM 

prediction process. The GRU process is a developed RNN architecture to predict the 

values of the next time steps of a time-series sequence. The regression network was 

trained to the GRU sequence, where responses are training sequences with changing 

values in one step. That is, for each time step of the input sequence, the GRU network 

learns to predict the value of the next time step. The GRU and LSTM model training 

sets have 500 Epochs and 200 hidden layers. The data collected from the selected 

site location was collected 24 hours daily for one month, from 6 am to 5 am. The 

solar irradiation data were collected at 1-hour intervals for 5 months, including 5×30 

× 24 = 3600 measurements. The missing value is filled by the average value of the last 

3 hr. After completion of the training process, the forecasting results obtained from 

the models are compared with the test data set. The number of past values in the 

data set requirement of the series is not dependent on the target vector's size but on 

the problem's nature. In this regard, a single execution of the algorithm with a few 

historical data will be enough to predict the necessary results in the future time step 
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with the necessary horizon. This algorithm considers the day-ahead predicting PV, wind, 

and demand power at 1-hour intervals. To evaluate the performance and correctness, 

the results of the GRU deep learning algorithm were compared using the extensively 

used statical technique ARMA model. Two types of time series prediction models were 

implemented in the proposed methodology in this work. 

The simulation results show that the deep-learning model has a competitive 

prediction performance compared to conventional statistical models. Whether the 

length and non-linear characteristic of the collected historical data, such as wind speed 

data, solar radiation, and historical load, does not matter upon the performance of the 

deep-learning model. Furthermore, Figures 4.1 to 4.6 illustrate that the deep learning 

GRU model performed better than the statistical ARMA models. Deep learning is a less 

straightforward process than ARMA models to extract the inherent nonlinear features 

and high-level invariant structures in time-series data. The deterministic forecasting of 

REs and load profiles are predicted with GRU and LSTM deep learning algorithms. The 

performance of forecasting methods is tabulated in Table 4.1 using root-mean-square 

error (RMSE). The main feature of LSTM and GRU is the internal memory function layers 

connections between the processing neural units, which is suited for REs time-series 

prediction. The deterministic 24-hour ahead short-term forecasting performance of 

GRU and LSTM models are statistically presented in terms of mean absolute error 

(MAE) and root-mean-square error (RMSE). It can be seen from the table that the 

performance index of the GRU model in specified location random error ranges from 

0.1192 to 0.6841. Similarly, the LSTM and ARMA model indexes are between 0.1718-

0.8342 and 6.9427-9.3878, respectively. It has been observed from the results that the 

deterministic prediction performance differs in different forecasting methods, and the 

single variant prediction method exhibited different error ranges according to different 

forecasting methods. 
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Table 4.1 Comparison of random error for forecasting methods 

Items GRU LSTM ARMA 

PV 0.1337 0.1718 2.6349 

Wind 0.6841 0.8342 2.6723 

Load profile 0.1192 0.1759 3.0640 

 

Figure 4.1 Monthly solar irradiation (April) with ARMA 

 

Figure 4.2 Monthly Average Load Profile (April) with ARMA 
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Figure 4.3 Monthly average Wind Speed (April) with ARMA 

 

Figure 4.4 Forecasted and observed day-ahead solar irradiation with GRU. 
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Figure 4.5 Forecasted and observed day-ahead solar power with GRU. 

 

 

Figure 4.6 Forecasted and observed day-ahead wind speed with GRU. 
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Figure 4.7 Forecasted and observed day-ahead wind power with GRU. 

 

 

Figure 4.8 Forecasted and observed day-ahead load profile with GRU. 
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and deterministic forecasting based on deep learning has paid attention to RE 

forecasting. The proposed model provides accurate prediction and reliable data, 

allowing for efficient power sharing at future upstream and downstream side 

operations. The combined application of artificial intelligence with the optimal energy 

efficiency concept appears to have boosted the digitization of the electrical sector, 

particularly with energy sustainability and decarburization. The importance of time 

series data processing in optimization models is highlighted in this section. A deep-

learning-based LSTM, GRU time series prediction performs as a better time-series 

model, while the statistical ARMA model performs poorly in time series prediction. The 

reason suggests this work focuses on the development of a prediction module in order 

to arrive at high suitability in the advanced energy management system. While 

comparing prediction methods, artificial intelligence algorithms have demonstrated 

less error and superiority in obtaining favorable outcomes. Obtaining favorable results 

necessitates adjusting a certain amount of hyperparameter adjustment. The quality 

and quantity of the input data impact the prediction model's performance. 

4.3  Parameters and Case Studies 

Three power generation technologies are considered: wind, PV, and fuel-fired 

distributed generators. The proposed system developed 24-hour ahead-generation 

scheduling for microgrids as an active distribution network where end-users can 

participate in periodic responsive load programs. The proposed model is considered a 

microgrid system on the IEEE test system and tested for five case studies on a standard 

IEEE node system. The location and the links of available resources of MG are from 

(Abdelmotteleb et al., 2016). It is assumed that the uncertainty of the variable 

parameter, such as wind speed, solar radiation, and the load profile, is based on the 

random error of forecasted information. Since the MG has flexible and inflexible loads, 

a responsive load program is only considered for flexible load change. The responsive 

load change is implemented between 5%- 20% of the average load demand. The main 

grid's power delivery is between 50 and 100 MW. The minimum and maximum 
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generation capacity of two DG units are 25MW and 125MW, respectively. The grid 

electricity prices are considered according to Thailand’s Time of use (TOU). Since the 

PVs and WTs technologies only have operation and maintenance costs (O&M), the 

O&M cost for PVs and WTs is 0.10954 $/kWh. The O&M costs for WT and PV are 

obtained from (Karimi & Jadid, 2020), and these resources' hourly generation costs are 

set as zero. The risks concerned with uncertainty management are considered in this 

work. The coefficients of the DG cost function are tabulated in Table 4.2 (Gao Zhang 

et al., 2017). Due to their continuous operation, DGs' startup and shutdown costs are 

not considered. In case studies II-V, the multi-objective optimization of the MG is 

considered for cost minimization, peak load reduction (PAR), and consumer 

satisfaction. In all case studies, the MG participates in demand response (DR) programs; 

the maximum DR is 20% of the average load demand. 

The proposed model is utilized for forecasting scenarios for the microgrid 

energy management design to achieve a cost-effective active distribution network. The 

renewable sources considered in this study are wind power and photovoltaic solar 

power generation. The power capacity for each generation scenario is determined by 

considering the power demand of the target region. The optimal scenarios are 

evaluated by economic, peak demand reduction, and consumer comfort aspects. In 

this work, the cheapest generation from the RESs scenario provided their total capacity 

to the optimal dispatch system. To evaluate the effectiveness of the proposed model, 

four case studies are considered as follows: 

Case study I:   In this case study, the single objective optimization of the MG is 

considered only for cost minimization. In order to prove the effectiveness of the multi- 

objective proposed system, case study I is to be compared with the following case 

studies. 

Case study II:   In this case study, the multi-objective optimization of the MG is 

considered for cost minimization, peak load reduction (PAR), and consumer satisfaction 
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simultaneously. In order to prove the effectiveness of the proposed system, case II 

does not consider the uncertainty effect related to the system’s parameter variable. 

 Case study III: The MG solves the same optimization problem as case study II. This 

case study considers the scheduling problem for wind and PV power uncertainties. The 

load profile is considered to be accurately forecasted by the operator. This case study 

is proven to solve multi-objective optimization with generation uncertainty. 

Case study III: Multi-objective optimization is solved for the MG scheduling problem 

under demand uncertainty. This case study is considered to prove the MG multi-criteria 

problem under demand uncertainty. 

Case study IV: This case study is the same as case II; the proposed model is solved for 

the MG energy management, while the MG experience in REs generation and demand 

uncertainty. In order to prove the robustness of the proposed system, this case 

considered and solved all uncertainty simultaneously. 

Table 4.2 The characteristic of distributed generator 

Items a b Pmin (MW) Pmax (MW) 

DG1 0.02 10 25 125 

DG2 0.015 10.75 25 125 

 

4.4  Performance Comparison of Optimal microgrid dispatch 

This section discussed the optimal operation of different case studies based on 

single and multi-objective problems to analyze different uncertainty levels that affect 

the system and highlight the achievement of multi-objective over single objectives in 

optimal dispatch. Figure 4.7-Figure 4.11 demonstrated the optimal power generation 

for five case studies from the wind, PV, DGs, and main grid to the demand through the 

24-hour horizon. The Figures show that most of the electricity at night and early 

morning is supplied from the main grid and local DG generation due to the insufficient 

power from wind turbines and lack of power from PV generation. The peak load started 
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in the morning at 07:00 hr, coinciding with an increasing time of use tariff. The surplus 

demand is shifted when there is an inefficient way to generate it. Thus, the peak load 

occurs during working hours between 7:00- and 16:00, so the dispatch units are 

required to generate expensive hours. Currently, the demand response is used to 

balance the demand when local generation is insufficient to provide high demand. The 

demand response program allows the hourly consumption to shift 20% of demand 

power within the day,  and the lack load is moved to demand response agreement 

hours. The conjunction of PV from 8:00 a.m. to 6:00 p.m. and wind generation is 

frustrating all day. The high wind and PV power can be observed in the daytime 

between 9:00 a.m. and 6:00 p.m. When the PV is not generated, and wind power is at 

low capacity than other hours, the high power is imported from the grid between 19:00 

hr-20:00 hr and 1:00 hr -6:00 hr. The optimal planning results also indicate that DGs 

reduced the generated power at high PV generation. This is the way of elevating wind 

and fully utilizing PV power. According to Table 4.2, although the generated power is 

higher than the total demand, the production costs are not raised at a specific time. 

At 15:00 hr, the total power generated in case II is 269.3175MW, and the generation 

cost is 863.4912 $/hr. In other words, the optimal scheduling process is planned to 

generate more power at a specific time without detaching the system's objective 

function and contents. The optimization algorithm is implemented for optimal search 

for the multi-decision variables while satisfying the load demand. 
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Figure 4.9 Optimal generation scheduling (Case I) 

 

Figure 4.10 Optimal generation scheduling (Case II) 
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Figure 4.11 Optimal generation scheduling (Case III) 

 

Figure 4.12 Optimal generation scheduling (Case IV) 
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Figure 4.13 Optimal generation scheduling (Case V) 

 

Figure 4.14 Demand Response Comparison 
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Figure 4.15 Operation Cost Comparison 

In case V, the worst scenario occurs when the system suffers REs and demand 

uncertainty at certain hours. The worst case obtained from the prediction results 

allows for determining the necessary reserves for a microgrid. The results in case study 

III-V indicated that the uncertainty by REs resources and demand influence the 

microgrid operation schedule costs. Moreover, the uncertainty also impacts the 

demand response program, as shown in Figure 4.12. Figure 4.13 demonstrates the total 

generation cost of each scenario. While comparing the rate of cost of optimal scenarios 

I-V to the without optimization scenario, the performance of optimal scenarios is better 

than that of the without optimization scenario. 
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Table 4.3 Operation Cost Comparison 

Time Case I 

($/hr) 

Case II 

($/hr) 

Case III 

($/hr) 

Case IV 

($/hr) 

Single 

Objective 

Optimization 

Without 

Optimization 

1 850.3547 548.7659 1602.6038 909.8174 1348.8052 1178.3895 

2 546.8354 675.4061 1881.3554 950.3468 375.8713 1166.4242 

3 1647.7591 1814.2025 986.5724 1014.8482 755.3541 1262.6394 

4 2260.2045 1382.8665 830.3685 546.8436 844.131 1343.1749 

5 1597.4741 810.7412 1128.6224 925.2776 955.6905 1454.7519 

6 1228.4864 674.5382 545.6983 633.1734 896.9522 1551.3196 

7 789.8557 1772.5758 922.2043 911.4865 1771.578 1613.097 

8 915.1626 1927.3184 816.1838 906.4845 1860.017 1480.4041 

9 623.0207 1710.0389 1848.8694 702.5314 1070.0432 1318.4219 

10 1007.2585 911.5002 750.1332 1753.1033 1528.6164 1281.7748 

11 871.0221 1196.8271 1181.8888 658.9685 414.443 1034.9343 

12 931.4334 1057.7202 1543.7718 1003.4643 456.2641 889.1053 

13 643.6643 1099.922 665.0263 1671.819 1121.2631 1142.985 

14 693.4364 681.9297 553.2851 550.4119 1278.3009 989.6244 

15 1935.8251 863.4912 954.7437 1382.0845 1164.2192 1049.4357 

16 550.6114 941.7813 1499.6155 1382.839 1420.9453 1203.1379 

17 1239.8446 1491.7396 580.3995 1266.3497 929.4854 1130.5521 

18 2041.085 2041.5774 601.8911 1282.7158 1279.9121 1132.3403 

19 1205.234 548.5494 806.3561 1943.9574 1066.5643 1539.488 

20 1651.4888 546.6343 1413.8903 1020.5354 1605.2763 1344.3061 

21 550.4086 1659.43 873.4584 1359.1564 1281.3776 1500.249 

22 714.4964 897.854 1618.5924 1058.807 877.6257 1608.6235 

23 1280.2971 1966.8542 1571.219 969.86 635.1677 1572.3436 

24 1242.2974 1604.3582 1089.0291 922.9465 1078.5599 1539.1209 

Total 27018 28827 26266 25728 26016 31327 
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Table 4.4 Peak load Limit 

Time Case II Case III Case IV Case V 

1 45.3820 50 50 1.2372 

2 1.5866 9.6227 50 8.4500 

3 5.7101 3.5861 9.5415 30.2988 

4 20.0023 50 5.7829 2.3446 

5 38.4223 23.3173 26.8279 7.0604 

6 3.5374 0 3.3282 0 

7 50 42.0055 50 24.4368 

8 50 23.7297 0 50 

9 21.6324 48.5468 24.2745 50 

10 1.9812 31.8058 12.7375 5.4831 

11 0 31.3314 9.5113 50 

12 8.8724 50 28.2874 26.2175 

13 7.8348 22.1608 0 50 

14 0 30.3119 11 50 

15 50 5.2005 30.8079 3.9629 

16 0 50 50 32.6861 

17 1.0917 50 50 26.9262 

18 0 2.8050 43.6707 50 

19 50 0 48.1903 17.9828 

20 11.7004 26.0738 42.9103 7.5695 

21 44.7376 50 50 17.8145 

22 14.4537 13.9775 10.0359 25.4472 

23 0.7616 0 50 50 

24 45.3820 50 50 17.5532 
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Table 4.5 Percentage Demand Elasticity 

Time Case II (%) Case III (%) Case IV (%) Case V (%) 

1 6 29 10 13 

2 19 20 3 8 

3 6 9 12 7 

4 24 13 24 12 

5 3 22 23 28 

6 28 4 20 4 

7 23 28 15 29 

8 19 7 14 25 

9 5 11 11 27 

10 20 4 8 14 

11 15 12 18 7 

12 10 6 3 3 

13 6 6 17 6 

14 29 8 18 3 

15 24 21 9 3 

16 5 8 29 14 

17 26 13 12 29 

18 20 28 29 20 

19 12 8 9 14 

20 12 28 3 18 

21 4 3 3 17 

22 3 11 10 21 

23 23 13 4 27 

24 14 6 29 3 

 

 

 

 



123 

 

Table 4.6 Demand Response Comparison 

Case Studies Case I Case II Case III Case IV Single Objective 

Optimization 

Total Demand 

Response (MW) 

339 251 326 307 428 

 

Table 4.7 Total Generation Capacity in Microgrid 

Item Case I Case II Case III Case IV Case V With 

Optimization 

Grid Power 

(MW) 

1314 1674 1634 1723 1630 2400 

Local 

Generation 

(MW) 

2267 2346 2492 2279 2242 2424 

 

The local generation capacity and gird power of microgrid (MG) for all case 

studies is tabulated in Table 4.6. This table shows that the local generation increased 

due to the optimal generation scheduling process in single and multi-objective case 

studies. The proposed system is the model of the active distribution network to reduce 

energy importation from the main grid, and local resources mainly generate energy 

requirements. The results summarized in Table 4.6 showed the power imported from 

the main grid. The results revealed the facts of microgrid independence. The proposed 

model entirely consumes local wind and PV generation energy. It can be observed 

that the power from the main grid is decreased purchasing during improved REs 

capacity in the daytime (8:00hr-18hr). The case studies showed that the proposed 

model minimized the main grid dependency and elevated RE generation regardless of 

peak and off-peak periods. The fuel-based DGs are applied as dispatchable generation 

units and serve unfulfilled power from non-dispatchable units such as local wind and 
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PV generation. Due to high production costs, the DG generation can use total capacity 

over other resources in this model. By comparing the case studies in Tables 4.2 and 

4.6, it can be observed that the operation costs of the proposed model depend on 

DG generation. The operation cost from the fuel generation unit in the microgrid is a 

key factor to expense the whole operation—the optimization algorithm searches for a 

better objective function solution. When the microgrid is without optimization, the 

total operation cost is 31327$. The dependence performance indices of case studies 

II-V are 55%, 70%, 68%, 71%, and 62% without optimization, respectively.  

 

Figure 4.16 Power Trading to Main Grid 

Figure 4.23 shows the surplus power of case studies after performing the 

optimization. The surplus power is traded back to the upstream network at different 

hours. It can be observed from case studies II-V that all generation resources are 

running at optimal production levels, and surplus electricity is traded to the network 

to gain more profit. This is also the way of natural profit maximization for the overall 

interconnected microgrid. Regarding responsive load, the trade power depends on the 

combination of total power demand in MW at this hour and shifted load in MW from 

nearby hours. In case I, the available generating units produced maximum electric 
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power at 15:00 hours, which is about 269.3175 MW, and the total cost of production 

is 1935.8251$/hr. Thus, the total electricity demand at this period is 173.3 MW, and 

the total shifted load from 16:00 hours to 48 MW. The surplus 49 MW is traded back 

to the main grid at 15:00hr. It was noted from Figure 4.7 that from 1:00 hr - to 5:00 hr, 

microgrids trade a high amount of power to the grid.  

Table 4.8 Total Power Trading back to Main Grid 

Item Case I Case II Case III Case IV Case V 

Sell Power 

(MW) 

352.1016 551.9353 344.3057 440.5191 352.1016 

 

4.5  Effect of Demand Response on the Operation Cost 

Table 4.2 presents the performance comparison related to the generation costs 

of different case studies. The proposed multi-objective model is tested on four 

different scenarios based on the level of experiencing variable parameter uncertainty. 

In case I, the microgrid, does not participate in multi-criteria optimization, the proposed 

model for case I only solved for generation cost reduction. According to Table 4.6, 

local generation is more required to compensate and fulfill demand in case III. Besides, 

the energy not supply (ENS) in case I is improved by 121MW (39% improvement) 

compared to the worst-case scenario (case V). 

The cost of microgrid operation is 31327 $ without considering optimization. 

After optimal operation, the cost reached 26016 $, reduced by 17% compared to 

without optimal operation. Besides, the ENS is increased by 428MW due to DR 

participation in case study I. In case I, the optimal generation scheduling problem is 

only based on cost minimization. In other words, the optimization process is not 

limited to maximum DR participation. The ENS in Case III is lower at 26%, 23%, and 

18% than in Cases I, II, and IV. In this case study, the optimal scheduling is implemented 

with the uncertainty related to RE generation. The uncertainty related to wind speed 
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is 0.68 % more forecasted than actual wind speed. In other words, the forecasted 

power from RE resources significantly impacts the generation costs. By implementing 

optimal energy management, DR provided the loads shifting program to shift the load 

from the energy not supply (ENS) period to the off-peak periods. This way, the peak 

load and energy requirement are reduced based on the economical operation. The 

results revealed that the proposed multi-objective model reduces the ENS and 

generation costs more than single objectives without optimal operation models. In this 

regard, the proposed model significantly improves the usage of RE resources, lessens 

independence on the main grid, and reduces the generation cost by 17% compared 

to without optimal operation. 

The case studies in Table 4.3 show that the uncertainty effects related to RE 

generation and load profile are significantly mitigated by introducing DR in the 

microgrid. This table also compared the impact of DR on multi-objective and single-

objective optimization problems. According to Figure 4.14-Figure 4.17, load shifting 

commonly occurs when the demand exceeds the total generation capacity due to 

insufficient power from RE resources. The load shifting DR is more likely to favor 

working hours due to surplus total generated power. Figure 4.18 to Figure 4.22 

compares the existing load profile with the load profile after DR participation for five 

case studies. The optimal situation for case studies varied the load change pattern at 

different hours. It can be observed from this Figure that the daily load profile of the 

microgrid is removed from peak load by implementing multi-objective optimization 

with the DR program. Participating in the DR program shifts the peak load from on-peak 

to off-peak periods. 

Moreover, multi-objective is considered to prevent the creation of a new peak 

at the on- peak and off-peak periods. It can also be observed that demand response 

significantly improves the MG load profile. Figure 4.18 shows the new peak load 

created at 70 MW in peak time by DR programs. Although DR reduces system peak 

load at peak and off- peak times, a new peak load is created at peak time due to the 
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DR program. This is the cause of over-DR after implementing a single objective demand 

response model. The new demand is higher than the existing demand after 

implementing DR, leading to the extra load at the peak time. Therefore, DR programs 

increased peak load by about 29% at peak time. The performance of load shifting 

demand response in case I improved peak load at 8:00 hr, 10:00 hr, and 14:00 hr. 

In this work, multi-objective optimization is considered an objective function to 

avoid DR problems. In this regard, case II-V considered multi-objective optimization for 

optimal scheduling problems. In the proposed model, multi-objective implemented 

optimal generation scheduling regarding cost minimization, simultaneously preventing 

peak load creation and consumer comfort. Table 4. shows the Peak to Average Rates 

(PAR) in cases II-IV. The optimization results are the tolerance level of peak load each 

hour to prevent new peak creation after load shifting demand response participation. 

After DR programs, overall PAR in cases II-V is improved and reaches 1.14 (18%), 1.12 

(16%), 1.16 (18%) and 1.24 (18%), respectively.  In Figure 4.19 to Figure 4.22, cases II - 

III load profiles are the results of multi-objective dealing with peak prevention, cost 

reduction, and consumer satisfaction simultaneously. Implementing multi-objective 

optimization and DR programs prevents the system's peak load from being created in 

the new load profile. It can be seen that the day-ahead load shifted by multi-objective-

based DR was reduced over DR after DR implementation, and the proposed model has 

a better performance than the traditional single objective-based DR program.  

According to simulation results, the flexibility load change reduced the 

generation cost and mitigated system uncertainty, especially from non-dispatchable 

generation resources and load profiles. RE generation significantly affects the operation 

schedule, which depends on the values of RE uncertainty. Similarly, the increment of 

REs' power significantly reduced the grid dependency. According to the facts from this 

work, since the uncertainty in REs generation and demand impacts the scheduling 

process and total operation cost, it can be considered a factor for predicting a 24-hour 

bidding price in a day-ahead pricing market. 
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Figure 4.17 Load Shifting demand response program (Case I) 

 

Figure 4.18 Load Shifting demand response program (Case II) 
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Figure 4.19 Load Shifting demand response program (Case III) 

 

Figure 4.20 Load Shifting demand response program (Case IV) 
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Figure 4.21 Load Shifting demand response program (Case V) 

 

Figure 4.22 Comparison of load pattern before and after demand response in Case I 
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Figure 4.23 Comparison of load pattern before and after demand response in Case II 

 

Figure 4.24 Comparison of load pattern before and after demand response in Case III 
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Figure 4.25 Comparison of load pattern before and after demand response in Case IV  

 

Figure 4.26 Comparison of load pattern before and after demand response in Case V 
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4.6  Simulation results and discussion of multi-objective optimization 

 The Pareto optimal fronts obtained from the algorithms are provided in Figure 

4.25-Figure 4.27. Since the proposed method is a multi-objective minimization 

problem, the shape of the Pareto optimal fronts is a convex function, explained in 

section 3.4.2. The Figure shows the dominated and non-dominated solutions in a 

particular iteration process. The non-dominated solution is stored in the archive based 

on the mentioned rules in section 3.4.2 for each iteration process. The best optimal 

solution is the choice with the best compromise solution (BCS) method. The optimal 

results are shown in the Figure. According to the figures, the optimal solutions were 

selected close to the Pareto optimal front.  

 

Figure 4.27 Dominated and Non-dominated wolves in the archive for the bi-objective 

minimization problem  
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Figure 4.28 Dominated and Non-dominated wolves in the archive for the bi-objective 

minimization problem 

 

 

Figure 4.29 Dominated and Non-dominated wolves in the archive for the tri-objective 

minimization problem 
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CHAPTER V 

CONCLUSION AND RECOMMENDATION 

5.1  Concluding summary and recommendation 

In this work, operation cost is formulated as the combination of RES, power 

exchange from the grid, and fuel cost. The fuel cost is usually represented as the 

quadratic function of output power. With the high penetration of RE resources, it is 

essential to maintain energy balancing, secure generating a scheduling, and make 

effective dispatch choices. The adequate forecast information minimizes generation 

costs, reduces demand shortage due to RE capacity variation, and enhances power 

operation. Due to its unpredictable and unstable nature, it is challenging to forecast 

accurate RE capacity over time. Due to the uncertainty and variability of renewable 

energy, modern electric power systems need to change flexible networks with 

adequate management in short- term operations. Regarding this aspect, most work has 

not considered the flexibility needed to meet economic investment decisions for 

generation purposes related to renewables generation and demand uncertainty.  

The increased penetration of RE resources increases the network's randomness, 

volatility, and uncertainty. Such uncertainty challenges network security, such as 

safety, reliability, and economic operation generation systems. Therefore, the 

upstream power network can control and manage a reliable dispatch of generation 

units from the predicted REs generation and demand information. The optimal day-

ahead scheduling of the distribution with REs generation systems is proposed in this 

work, and the proposed model also considers the demand response program to 

capture REs uncertainty. This problem is described as a multi-criteria optimization 

problem, a solved multi-objective gray wolf optimizer. At the same time, It compares 
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and analyzes the impact of multi-objective day-ahead scheduling with the existing 

works. The simulation result presented the effectiveness of the proposed model in 

terms of operation cost, peak load reduction, and consumer comfort. The uncertainty 

is the challenge of dealing with the scheduling problem of distribution systems with 

highly integrated renewable energy. To deal with this problem, the proposed system 

analysis is a multi-objective day-ahead scheduling problem under the renewable 

energy uncertainty problem. 

The day‐ahead unit scheduling was to manage the generation unit optimally 

24 hours in advance, with a one-hour time scale. Integrated demand response is 

introduced after the day-ahead scheduling process to adjust the aggregate load profile. 

In order to perform optimal day-ahead scheduling, the local day‐ahead wind, PV, and 

load forecasting is vital information for the microgrid EMS system. Optimal day‐ahead 

scheduling is the optimization problem to minimize operation cost, peak load, and 

consumer comfort.  

The decision-making ability is to control the risk caused by the system’s 

unbalanced condition, as reflected by the confidence level. In the day‐ahead optimal 

scheduling model, the risk usually comes from the insecure forecast information, which 

will destroy system balancing. The simulation results reveal that the proposed model 

allocates the maximum power sharing from the cheaper generation units in the total 

generation capacity. PV and wind are the cheapest resources, and the proposed 

algorithm is preferred to the extent of 100% utilization of these resources. The power 

exchange from the grid is the high-paid source at 24 h and the sparing power capacity. 

The optimal scheduling is to extend maximum capacity from cheaper sources and 

spare the extent of extensive generation. Moreover, the optimization problem can 

effectively implement a demand response program to manage the excess load from 

the aggregate load profile. 
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Regarding the possibility of the proposed model extension, the following points 

are mentioned as future work. The proposed system is a step-by-step approach to 

energy management, and the implementation process has not been solved in a single 

optimization problem. Further work in this field is expanding and improving the energy 

management method suited to dynamic environments. In order to improve the 

planning model, it can incorporate different generation technologies and electric 

vehicles, which can be unpredictable and economically irrational.
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Main MOGWO 
 
clear all 
clc 
drawing_flag = 1; 
  
fobj=@(x)objective_function3DG_forecast_mo(x); 
nVar=11; 
VarSize=[1 nVar]; 
% Lower bound and upper bound 
lb=[     0.2406    0      50    25   25   0       0   0    0    5   
0.05]; 
ub=[     0.2406    0      100   125  125   100    1    1     5   50  
0.2];  
  
GreyWolves_num=100; 
MaxIt=10;  % Maximum Number of Iterations 
Archive_size=20;   % Repository Size 
  
alpha=0.1;  % Grid Inflation Parameter 
nGrid=11;   % Number of Grids per each Dimension 
beta=4; %=4;    % Leader Selection Pressure Parameter 
gamma=2;    % Extra (to be deleted) Repository Member Selection 
Pressure 
  
% Initialization 
  
GreyWolves=CreateEmptyParticle(GreyWolves_num); 
  
for i=1:GreyWolves_num 
    for j=1:nVar 
    GreyWolves(i).Velocity=0; 
    GreyWolves(i).Position=zeros(1,nVar); 
     
        %GreyWolves(i,j).Position=unifrnd(lb,ub); 
    GreyWolves(i).Position=unifrnd(lb,ub); 
    GreyWolves(i).Cost=fobj(GreyWolves(i).Position); 
    GreyWolves(i).Best.Position=GreyWolves(i).Position; 
    GreyWolves(i).Best.Cost=GreyWolves(i).Cost; 
    end 
end 
  
GreyWolves=DetermineDomination(GreyWolves); 
  
Archive=GetNonDominatedParticles(GreyWolves); 
  
Archive_costs=GetCosts(Archive); 
Grid=CreateHypercubes(Archive_costs,nGrid,alpha); 
  
for i=1:numel(Archive) 
    Archive(i)=GetGridIndex(Archive(i),Grid); 
end 
  
% MOGWO main loop 
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 y=zeros(3*MaxIt,Archive_size); 
 q=zeros(MaxIt,nVar); 
  
for it=1:MaxIt 
    a=2-it*((2)/MaxIt); 
    for i=1:GreyWolves_num 
         
        clear rep2 
        clear rep3 
         
        % Choose the alpha, beta, and delta grey wolves 
        Delta=SelectLeader(Archive,beta); 
        Beta=SelectLeader(Archive,beta); 
        Alpha=SelectLeader(Archive,beta); 
         
        % If there are less than three solutions in the least crowded 
        % hypercube, the second least crowded hypercube is also found 
        % to choose other leaders from. 
        if size(Archive,1)>1 
            counter=0; 
            for newi=1:size(Archive,1) 
                if sum(Delta.Position~=Archive(newi).Position)~=0 
                    counter=counter+1; 
                    rep2(counter,1)=Archive(newi); 
                end 
            end 
            Beta=SelectLeader(rep2,beta); 
        end 
         
        % This scenario is the same if the second least crowded 
hypercube 
        % has one solution, so the delta leader should be chosen from 
the 
        % third least crowded hypercube. 
        if size(Archive,1)>2 
            counter=0; 
            for newi=1:size(rep2,1) 
                if sum(Beta.Position~=rep2(newi).Position)~=0 
                    counter=counter+1; 
                    rep3(counter,1)=rep2(newi); 
                end 
            end 
            Alpha=SelectLeader(rep3,beta); 
        end 
         
        % Eq.(3.4) in the paper 
        c=2.*rand(1, nVar); 
        % Eq.(3.1) in the paper 
        D=abs(c.*Delta.Position-GreyWolves(i).Position); 
        % Eq.(3.3) in the paper 
        A=2.*a.*rand(1, nVar)-a; 
        % Eq.(3.8) in the paper 
        X1=Delta.Position-A.*abs(D); 
         
         
        % Eq.(3.4) in the paper 
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        c=2.*rand(1, nVar); 
        % Eq.(3.1) in the paper 
        D=abs(c.*Beta.Position-GreyWolves(i).Position); 
        % Eq.(3.3) in the paper 
        A=2.*a.*rand(1, nVar)-a; 
        % Eq.(3.9) in the paper 
        X2=Beta.Position-A.*abs(D); 
         
         
        % Eq.(3.4) in the paper 
        c=2.*rand(1, nVar); 
        % Eq.(3.1) in the paper 
        D=abs(c.*Alpha.Position-GreyWolves(i).Position); 
        % Eq.(3.3) in the paper 
        A=2.*a.*rand(1, nVar)-a; 
        % Eq.(3.10) in the paper 
        X3=Alpha.Position-A.*abs(D); 
         
        % Eq.(3.11) in the paper 
        GreyWolves(i).Position=(X1+X2+X3)./3; 
         
        % Boundary checking 
        
GreyWolves(i).Position=min(max(GreyWolves(i).Position,lb),ub); 
         
        GreyWolves(i).Cost=fobj(GreyWolves(i).Position); 
        fnew=fobj(GreyWolves(i).Position); 
         
        f=fobj(GreyWolves(i).Best.Position); 
        if fnew<=f 
    f(:,:)=fnew(:,:); 
    GreyWolves(i).Best.Position=GreyWolves(i).Position; 
    %GreyWolves(i).Cost=fobj(GreyWolves(i).Best.Position); 
    end 
     
    end 
      [optval,optind]=min(f(:,:)); 
   bestfx(MaxIt)=optval; 
   %bestpos=position(optind,:);  
     
    GreyWolves=DetermineDomination(GreyWolves); 
    non_dominated_wolves=GetNonDominatedParticles(GreyWolves); 
     
    Archive=[Archive 
        non_dominated_wolves]; 
     
    Archive=DetermineDomination(Archive); 
    Archive=GetNonDominatedParticles(Archive); 
     
    for i=1:numel(Archive) 
        Archive(i)=GetGridIndex(Archive(i),Grid); 
    end 
  
    if numel(Archive)>Archive_size 
        EXTRA=numel(Archive)-Archive_size; 
        Archive=DeleteFromRep(Archive,EXTRA,gamma); 
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        Archive_costs=GetCosts(Archive); 
        Grid=CreateHypercubes(Archive_costs,nGrid,alpha); 
         
    end 
     
    %disp(['In iteration ' num2str(it) ': Number of solutions in the 
archive = ' num2str(numel(Archive)) ':Best Cost =' 
num2str(GreyWolves(i).Cost) ':Best position =' 
num2str(GreyWolves(i).Position)]); 
     
     
    save results 
     
    %[optval,optind]=min(f(:,:)); 
   %bestfx=optval; 
   %bestpos=position(optind,:); 
    % Results 
     
    costs=GetCosts(GreyWolves); 
    Archive_costs=GetCosts(Archive); 
    Archive_position=Archive.Position; 
      
     
     %disp(['In iteration ' num2str(it) ': Number of solutions in the 
archive = ' num2str(numel(Archive))]); 
    %selsect min from Archive 
if drawing_flag==1 
    hold off 
        plot(costs(1,:),costs(2,:),'k.'); 
        hold on 
        plot(Archive_costs(1,:),Archive_costs(2,:),'rd'); 
        legend('Dominated solutions','Non-dominated solutions'); 
        xlabel('Operation Cost 
($/kWh)','FontSize',28,'FontName','Times New Roman'); 
         ylabel('PAR','FontSize',28,'FontName','Times New Roman'); 
        figure; 
        plot(costs(2,:),costs(3,:),'k.'); 
        hold on 
        plot(Archive_costs(2,:),Archive_costs(3,:),'rd'); 
        legend('Dominated solutions','Non-dominated solutions'); 
        xlabel('PAR','FontSize',28,'FontName','Times New Roman'); 
         ylabel('Consumer 
Dissatisfaction','FontSize',28,'FontName','Times New Roman'); 
        figure; 
       plot3(costs(1,:),costs(2,:),costs(3,:),'k.'); 
       hold on 
        
plot3(Archive_costs(1,:),Archive_costs(2,:),Archive_costs(3,:),'rd'); 
        %legend('Grey wolves','Non-dominated solutions'); 
        legend('Dominated solutions','Non-dominated solutions'); 
         xlabel('Operation Cost 
($/kWh)','FontSize',28,'FontName','Times New Roman'); 
         ylabel('PAR','FontSize',28,'FontName','Times New Roman'); 
         zlabel('Consumer 
Dissatisfaction','FontSize',28,'FontName','Times New Roman'); 
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         grid on 
         figure; 
        drawnow 
       
end 
     
    bestfx_1(it)=f(:,1); 
    bestfx_2(it)=f(:,2); 
    bestfx_3(it)=f(:,3); 
    %disp([   '' num2str(Archive_costs)  ]); 
     
    disp([  '' num2str(Archive_position) ]); 
   
y(it,:)=[Archive_costs(1,:)]; 
  
  y(it+MaxIt,:)=[Archive_costs(2,:)]; 
   
  y(it+MaxIt*2,:)=[Archive_costs(3,:)]; 
    filename=['bcs_cost_1_adfr_2','.xlsx']; 
    xlswrite(filename,y)   ;  
     
    q(it,:)=Archive_position(:,:); 
      filename= ['bcs_G_1_adfr_2','.xlsx']; 
       
      xlswrite(filename,q); 
   
  
    %disp([  '' num2str(Archive_position) ]); 
    %disp([ 'In iteration ' num2str(it) ':Cost' 
num2str(GreyWolves(i).Cost) ':Best position =' 
num2str(GreyWolves(i).Best.Position)]); 
    %disp(['' num2str( f(:,:)) ':' 
num2str(GreyWolves(i).Best.Position) ]); 
   % if drawing_flag==1 
      % hold off 
       %plot(GreyWolves(i).Cost(:,1),GreyWolves(i).Cost(:,2),'*r'); 
       %plot(Archive_costs(:,:),'*r'); 
      %xlabel('Obj 1'); 
         %ylabel('Obj 2'); 
    %end 
    %plot(bestfx_3,'Linewidth',2); 
    %xlabel('Iteration'); 
    %ylabel('Best Cost (First Objective)' ); 
end 
   

 

Objective Function 
function [f] = objective_function3DG_forecast_mo(x) 
data1=[ 147.2607       146.8                                                                                   
    151.9281       150.3 
    157.119          155.4  
    162.5461        158.4  
    167.9063         166.5 
    172.8989         174.5 
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    177.2422         177.5 
    180.6783        176.6 
    183.008         179.8 
    184.1255        180.7 
    184.016          181.8                                                                   
    182.6872        179.8 
    180.031         177.9 
    175.6149        179 
    168.6586        173.3 
    160.1163        167 
    156.0161        160.7 
    159.5986        163.4          
    166.8815        173.2          
    174.0677        178.8          
    177.511         180.2          
    178.0595        178.4          
    177.6684        179.2          
    176.0256        176.9];         % demand forecast & actual 
(gru)//// wholesale price 
  
pv=[0         0 
         0         0 
         0         0 
         0         0 
         0         0 
    0.5750         0 
    2.0133    0.1747 
    4.7038    4.3580 
    8.5583    9.3070 
   12.6055   12.9876 
   15.4040   15.6100 
   16.6730   17.5211 
   16.3370   16.9766 
   14.8364   15.9214 
   11.9471   12.9440 
    7.6976    8.8252 
    3.3794    1.3812 
    0.6151         0 
         0         0 
         0         0 
         0         0 
         0         0 
         0         0 
         0         0];  %%% PV power/gru/forecast &actual / MW 
      
      
 wind=[0.1918    0.2406 
    1.1077    2.4474 
    2.7287    1.4827 
    0.0715    0.0768 
    2.3577    0.1754 
    1.0640    0.8121 
    0.0752    0.0024 
    2.8232    0.0001 
    3.4542    2.4474 
    0.1901    0.5492 
    3.6018    7.6409 
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    5.7626   10.3165 
    1.0430    0.2528 
    7.5667    7.6409 
    5.9023    5.4731 
    0.5123    0.6841 
    5.4016    7.6409 
    7.4826   10.3165 
    0.3566    0.5704 
    9.2593   10.3165 
    6.3229   5.4731 
    0.1295    0.7853 
    2.2546    2.4474 
    4.0447    2.4474];%%% wind power/gru/forecast&actual/MW 
data3=[  0    0                      
    2.664108        0 
    3.739684      0 
    1.696395      0 
    3.758407      0 
    34.54576      0 
    124.7138      10.82                                                                   
    520.8635     272.24                                                                          
    741.4423      566.43 
    884.3228     763.92 
    939.1666     896.15 
    920.2418     986.94 
    835.7125      956.27  
    672.9625      896.83   
    433.595       729.12   
    293.8441        497.11   
    190.3563      77.82 
    34.64856      0             
    0    0            
    0     0             
    0      0            
    0      0           
    0       0           
    0          0];        %PV irradiation gru forecast/actual 
data4=[ 2.4871   2.6822                                         
    4.462       5.8115 
    6.0261      4.9174 
    1.7895      1.8329  
    5.7396      2.414 
    4.4025      4.0234 
    1.8206      0.58115                                                                                 
    6.0949      0.17882 
    6.5188      5.8115 
    2.4794      3.5316 
    6.6104     8.4938 
    7.7314     9.3878 
    4.3733     2.7269 
    8.4662     8.4938 
    7.7934     7.5997 
    3.4506     3.7998 
    7.5665     8.4938 
    8.4347     9.3878 
    3.0581     3.5763  
    9.0555     9.3878 
    7.9743     7.5997       
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    2.1816     3.9787       
    5.6547     5.8115       
    6.8709      5.8115];       % wind gru forecast/actual 
  
X1=x(:,1);          %%%wind 
X2=x(:,2);          %%%PV 
X3=x(:,3);          %%%grid 
X4=x(:,4);          %%%DG1 
X5=x(:,5);          %%%DG2 
X6=x(:,6);          %%%PAR 
X7=x(:,7);          %%%waiting time 
X8=x(:,8);          %%% demand limit 
X9=x(:,9);        %%%DR elasticity 
%1st objective function 
z_1=[X1.*0.1095]+[X2.*0.1095]+[X3.*0.075]+[( 
0.02.*X4.^2+10.*X4)+(0.015.*X5.^2+10.75.*X5)]; 
z_2=((X6)./(data1(1,2)));                     %PAR min 
%z_2=exp([(24.*X6)./data1(3,1)]).*data1(3,2); 
  
%3nd objective function              %Dissatification min 
z_3=X7./24+(X8./data1(1,2)).*X9; 
  
%3st Constraints 
g(:,4)=abs(X7-5); 
%g(:,5)=[X11-data1(3,1).*0.005]; 
%1st Constraint 
g(:,1)=X1+X2+X3+X4+X5-data1(1,2)-(10^(5));         %power balance 
constraints 
g(:,2)=-[50-X1]-[50-X2]-[100-X3]-[125-X4]-[125-
X5]+data1(1,2)+data1(1,2).*0.1;        %spinning resereve constraint 
%define pently term 
pp=10^(15); 
for i=1:size(g,1) 
   for j=1:size(g,2) 
       if g(i,j)>0 
            
           penalty(i,j)=pp.*g(i,j); 
       end 
   end 
     
end 
%compute objective function 
  
Z_1=z_1+sum(penalty,2); 
%Z_2=z_2+sum(penalty,2); 
Z_2=z_2; 
Z_3=z_3; 
f=[Z_1  Z_2  Z_3]; 

 

Create Empty Particle 
function particle=CreateEmptyParticle(n) 
     
    if nargin<1 
        n=1; 
    end 
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    empty_particle.Position=[]; 
    empty_particle.Velocity=[]; 
    empty_particle.Cost=[]; 
    empty_particle.Dominated=false; 
    empty_particle.Best.Position=[]; 
    empty_particle.Best.Cost=[]; 
    empty_particle.GridIndex=[]; 
    empty_particle.GridSubIndex=[]; 
     
    particle=repmat(empty_particle,n,1); 
     
end 

 

Create Hyper Cubes 
function G=CreateHypercubes(costs,ngrid,alpha) 
  
    nobj=size(costs,1); 
     
    empty_grid.Lower=[]; 
    empty_grid.Upper=[]; 
    G=repmat(empty_grid,nobj,1); 
     
    for j=1:nobj 
         
        min_cj=min(costs(j,:)); 
        max_cj=max(costs(j,:)); 
         
        dcj=alpha*(max_cj-min_cj); 
         
        min_cj=min_cj-dcj; 
        max_cj=max_cj+dcj; 
         
        gx=linspace(min_cj,max_cj,ngrid-1); 
         
        G(j).Lower=[-inf gx]; 
        G(j).Upper=[gx inf]; 
         
    end 
  
end 

 

Delete From Cubes 
function rep=DeleteFromRep(rep,EXTRA,gamma) 
  
    if nargin<3 
        gamma=1; 
    end 
  
    for k=1:EXTRA 
        [occ_cell_index occ_cell_member_count]=GetOccupiedCells(rep); 
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        p=occ_cell_member_count.^gamma; 
        p=p/sum(p); 
  
        
selected_cell_index=occ_cell_index(RouletteWheelSelection(p)); 
  
        GridIndices=[rep.GridIndex]; 
  
        selected_cell_members=find(GridIndices==selected_cell_index); 
  
        n=numel(selected_cell_members); 
  
        selected_memebr_index=randi([1 n]); 
  
        j=selected_cell_members(selected_memebr_index); 
         
        rep=[rep(1:j-1); rep(j+1:end)]; 
    end 
     
end 

 

Determine domination 
function pop=DetermineDomination(pop) 
  
    npop=numel(pop); 
     
    for i=1:npop 
        pop(i).Dominated=false; 
        for j=1:i-1 
            if ~pop(j).Dominated 
                if Dominates(pop(i),pop(j)) 
                    pop(j).Dominated=true; 
                elseif Dominates(pop(j),pop(i)) 
                    pop(i).Dominated=true; 
                    break; 
                end 
            end 
        end 
    end 
  
end 

 

Dominates solution 
function dom=Dominates(x,y) 
  
    if isstruct(x) 
        x=x.Cost; 
    end 
  
    if isstruct(y) 
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        y=y.Cost; 
    end 
     
    dom=all(x<=y) && any(x<y); 
  
end 

 

Get costs function 
function costs=GetCosts(pop) 
  
    nobj=numel(pop(1).Cost); 
    costs=reshape([pop.Cost],nobj,[]); 
  
end 

 

Get gris index function 
function [Index SubIndex]=GetGridIndex(particle,G) 
  
    c=particle.Cost; 
     
    nobj=numel(c); 
    ngrid=numel(G(1).Upper); 
     
    str=['sub2ind(' mat2str(ones(1,nobj)*ngrid)]; 
  
    SubIndex=zeros(1,nobj); 
    for j=1:nobj 
         
        U=G(j).Upper; 
         
        i=find(c(j)<U,1,'first'); 
         
        SubIndex(j)=i; 
         
        str=[str ',' num2str(i)]; 
    end 
     
    str=[str ');']; 
     
    Index=eval(str); 
     
end 

 

Get non-dominated solution 
function nd_pop=GetNonDominatedParticles(pop) 
  
    ND=~[pop.Dominated]; 
     
    nd_pop=pop(ND); 
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end 

 

Occupied cells 
function [occ_cell_index occ_cell_member_count]=GetOccupiedCells(pop) 
  
    GridIndices=[pop.GridIndex]; 
     
    occ_cell_index=unique(GridIndices); 
     
    occ_cell_member_count=zeros(size(occ_cell_index)); 
  
    m=numel(occ_cell_index); 
    for k=1:m 
        occ_cell_member_count(k)=sum(GridIndices==occ_cell_index(k)); 
    end 
     
end 

 

Roulette Wheel Selection 
function i=RouletteWheelSelection(p) 
  
    r=rand; 
    c=cumsum(p); 
    i=find(r<=c,1,'first'); 
  
end 

 

Select Leader 
function rep_h=SelectLeader(rep,beta) 
    if nargin<2 
        beta=1; 
    end 
  
    [occ_cell_index occ_cell_member_count]=GetOccupiedCells(rep); 
     
    p=occ_cell_member_count.^(-beta); 
    p=p/sum(p); 
     
    selected_cell_index=occ_cell_index(RouletteWheelSelection(p)); 
     
    GridIndices=[rep.GridIndex]; 
     
    selected_cell_members=find(GridIndices==selected_cell_index); 
     
    n=numel(selected_cell_members); 
     
    selected_memebr_index=randi([1 n]); 
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    h=selected_cell_members(selected_memebr_index); 
     
    rep_h=rep(h); 
end 

 

BCS selection 
clc 
clear all 
%select = readtable('bcs_cost_1.xlsx'); 
data = xlsread('bcs_cost_17_fdar_1.xlsx'); 
y=zeros(300,1); 
for i=1:300 
f_1=min(data(i,:)); 
  
disp([num2str(f_1) ]); 
y(i,:)=f_1(:,:); 
      filename= ['bcs_min_select_17_fdar_1','.xlsx']; 
       
      xlswrite(filename,y); 
end 

 

BCS main 
clc 
clear all 
data=xlsread('bcs_min_select_17_fdar_1.xlsx'); 
f_1=min(data(1:100,:)); 
f_2=min(data(101:200,:)); 
f_3=min(data(201:300,:)); 
  
for i=1:100 
   D=sqrt((data(i,:)-f_1).^2+(data(i+100,:)-f_2).^2+(data(i+200,:)-
f_3).^2);  
   disp(['Distance ' num2str(D)]) ; 
   
end 

 

GWO main 
format short 
clc 
clear all 
%initialize the parameter 
CostFunction=@(x)objective_function3DG_arma_peakday_1(x); 
N=10;                  %no. of wolf 
D=5;                    %no. of paramater 
d=[5 D]; 
lb=[2.7287    0      50    25   25    ];           
ub=[2.7287    0      100   125  125   ]; 
  
itermax=100; 
wolf.pos=[]; 
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pop=repmat(wolf,D); 
%generating the initial population 
%for i = 1:N 
   %pop(i).pos = unifrnd(lb, ub, d); 
  % pop(i).fx = CostFunction(pop(i).pos); 
    
 %end 
position=zeros(5,5); 
  
for i=1:N 
    
     pop(i).pos =unifrnd(lb, ub); 
   
position(i,:)= pop(i).pos ;    
   
end 
  
fx=CostFunction(position); 
[fminval,ind]=min(fx);      %find minimum value 
gbest=position(ind,:);  
  
iter=1; 
  
    fgbest=fminval; 
     
   a=2-(2.*(iter./itermax));  
   while iter<=itermax 
 for j=1:N 
     position_1=position; 
     %pos1=pop(i).pos;  
     x=position(j,:); 
   A1=(2.*a.*rand(1,D))-a;            %alpha wolf 
   C1=2.*rand(1,D); 
   fx=CostFunction(position_1); 
   [alphaval,alphaind]=min(fx); 
   alphapos=position_1(alphaind,:); 
   Dalpha=abs((C1.*alphapos)-x); 
   X_1=(alphapos-(A1.*Dalpha)); 
    
    
   position_1(alphaind,:)=[];             %beta wolf 
   fx=CostFunction(position_1); 
   [betaval,betaind]=min(fx); 
   A2=(2.*a.*rand(1,D))-a;             
   C2=2.*rand(1,D); 
   %[betaval,betaind]=min(fx); 
   betapos=position_1(betaind,:); 
   Dbeta=abs((C2.*betapos)-x); 
   X_2=(betapos-(A2.*Dbeta)); 
    
    
   position_1(betaind,:)=[];       %delta wolf 
  
   fx=CostFunction(position_1); 
   [deltaval,deltaind]=min(fx); 
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    A3=(2.*a.*rand(1,D))-a;             
   C3=2.*rand(1,D); 
   %[deltaval,deltaind]=min(fx); 
   deltapos=position_1(deltaind,:); 
   Ddelta=abs((C3.*deltapos)-x); 
   X_3=(deltapos-(A3.*Ddelta)); 
    
   Xnew=((X_1+X_2+X_3)./3);           %new solution 
   %check bond 
   %Xnew=min(Xnew,lb); 
   %Xnew=max(Xnew,ub); 
   %fnew=CostFunction(Xnew); 
   if Xnew>ub   
      Xnew= ub; 
   end 
    if Xnew<lb 
           Xnew=lb; 
    end 
     
    fnew=CostFunction(Xnew); 
f=CostFunction(position(i,:)); 
if fnew<f 
    f=fnew; 
    position(i,:)=Xnew; 
     
end 
 end 
    
   %update gbest 
   [fmin,find]=min(fx); 
   if fmin<fgbest 
       fgbest=fmin; 
       gbest=position(find,:); 
   end 
     
   [optval,optind]=min(f); 
   bestfx(iter)=optval; 
   bestpos=position(optind,:); 
   disp(['iteration:'   num2str(iter)   'Best Cost:'    
num2str(bestfx(iter))   'best position:'    num2str(bestpos)]); 
    %disp([ num2str(f)]); 
   iter=iter+1; 
    plot(bestfx,'Linewidth',2); 
   xlabel('Iteration Number'); 
   ylabel('Best Cost'); 
    grid on 
     
 end 
   

 

GRU load prediction 
jean_data = readtable('load_5.csv');                %Purifyadditional 
data for analysis 
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%   Fill the NaN value with the Nearest value. 
jean_data.irradiance = fillmissing(jean_data.P, 'nearest'); 
lenofdata = length(jean_data.P); 
  
  
%for i=1 : length(jean_data.collect_day) 
   % jean_data.collect_day(i) = strip(jean_data.collect_day(i),','); 
%end 
  
Y = jean_data.irradiance; 
data = Y'; 
  
%   2015.01.01 ~ 2019.05.06 (90%) : Training Data Set 
%   2019.05.07 ~ 2019.10.31 (10%) : Test Data Set 
numTimeStepsTrain = floor(0.9933*numel(data)); 
dataTrain = data(1:numTimeStepsTrain+1); 
dataTest = data(numTimeStepsTrain+1:end); 
  
%   Normalize sales_price to a value between 0 and 1 (Training Data 
Set) 
mu = mean(dataTrain); 
sig = std(dataTrain); 
dataTrainStandardized = (dataTrain - mu) / sig; 
XTrain = dataTrainStandardized(1:end-1); 
YTrain = dataTrainStandardized(2:end); 
  
%LSTM Net Architecture Def                                  %Model 
Selection for Prediction 
numFeatures = 1; 
numResponses = 1; 
numHiddenUnits = 200; 
layers = [ ... 
    sequenceInputLayer(numFeatures) 
    gruLayer(numHiddenUnits,'OutputMode','sequence') 
    fullyConnectedLayer(numResponses) 
    regressionLayer]; 
options = trainingOptions('adam', ... 
    'MaxEpochs',500, ... 
    'GradientThreshold',1, ... 
    'InitialLearnRate',0.005, ... 
    'LearnRateSchedule','piecewise', ... 
    'LearnRateDropPeriod',125, ... 
    'LearnRateDropFactor',0.2, ... 
    'Verbose',0, ... 
    'Plots','training-progress'); 
     
%   Train LSTM Net 
net = trainNetwork(XTrain,YTrain,layers,options); 
  
%   Normalize sales_price to a value between 0 and 1 (Testing Data 
Set)         %Data prediction 
dataTestStandardized = (dataTest - mu) / sig; 
XTest = dataTestStandardized(1:end-1); 
net = predictAndUpdateState(net,XTrain); 
[net,YPred] = predictAndUpdateState(net,YTrain(end)); 
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%   Predict as long as the test period (2019.05.07 ~ 2019.10.31) 
numTimeStepsTest = numel(XTest); 
for i = 2:numTimeStepsTest 
    [net,YPred(:,i)] = predictAndUpdateState(net,YPred(:,i-
1),'ExecutionEnvironment','cpu'); 
end 
  
%   RMSE calculation of test data set                       
%Predictive evaluation (RMSE) 
YTest = dataTest(2:end); 
YTest = (YTest - mu) / sig; 
rmse = sqrt(mean((YPred-YTest).^2)) 
  
%   Denormalize Data                                %Result and 
semantic analysis 
YPred = sig*YPred + mu; 
YTest = sig*YTest + mu; 
  
%   X Label : Collect Day 
x_data = datetime(jean_data.collect_date_time, 'InputFormat' ,'yyyy-
MM-dd-hh:mm:ss'); 
%x_data = (jean_data.collect_day); 
x_train = x_data(1:numTimeStepsTrain+1); 
x_train = x_train'; 
x_pred = 
x_data(numTimeStepsTrain:numTimeStepsTrain+numTimeStepsTest); 
%xx=x_train(1:end-1); 
%yy=dataTrain(1:end-1); 
%   Train + Predict Plot 
figure 
%plot(xx,yy) 
plot(x_train(1:end-1),dataTrain(1:end-1)) 
%plot(x_train,dataTrain) 
hold on 
plot(x_pred,[data(numTimeStepsTrain) YPred],'.-') 
hold off 
xlabel('Collect Day') 
ylabel('Sales Price') 
title('Forecast') 
legend('Observed', 'Forecast') 
  
%  RMSE Plot : Test + Predict Plot 
disp([':pre ' num2str(YPred) ':test '  num2str(YTest)]); 
figure 
%subplot(2,1,1) 
plot(YTest) 
hold on 
plot(YPred,'.-') 
hold off 
legend('Observed', 'Forecast') 
ylabel('Demand') 
title('Forecast') 
  
%subplot(2,1,2) 
%stem(YPred - YTest) 
%xlabel('Collect Day') 
%ylabel('Error') 
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%title('RMSE = ' + rmse) 
  
%   Train + Test + Predict Plot 
figure 
plot(x_data,Y) 
hold on 
plot(x_pred,[data(numTimeStepsTrain) YPred],'.-') 
hold off 
xlabel('Collect Day') 
ylabel('Sales Price') 
title('Compare Data') 
legend('Raw','Forecast') 
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