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This thesis proposed the optimal energy management system for microgrids
under uncertainties. The most remarkable uncertainty for electricity entities lies in the
energy demand and generation in the power systems. Many renewable energy
generation sources are integrated into the power network because renewable
resources provide guidelines for minimizing the network's environmental impact.
However, renewable resources have volatile production energy and are unavailable at
peak power output. Maximizing the utilization of renewable energy sources requires
accurate forecasting due to its inherent uncertainty. Accurate forecasting is essential
to guarantee reliable operation conditions and planning for generation capacities. This
thesis presents an optimization-based microgrid energy management system
incorporating demand response (DR) to tackle the issues of generation and demand
uncertainties. To address this problem, uncertainty modeling is typically executed by
a statistics-based stochastic process. The former is evaluated by modeling synthetic
samples or scenarios in the input model for decision-making optimization. The latter
model applied a simple stochastic process in the sophisticated decision-making model.
However, it is hard to interface the complex scenario-based forecasting models and
the sophisticated decision-making model. Therefore, this thesis highlights the
interfacing of deep-learning-based time-series forecasting models with decision-making
models. Forecasted information is embedded into the optimization problems due to
the uncertain nature of demand and renewable generation. The day-ahead availability
of power generation and microgrid demand were forecasted on the test system. The
energy demand and RE generation forecasting are employed along with the Gate

Recurrent unit (GRU), and the out results of the Gate Recurrent unit (GRU) are



compared with the Auto Regressive Moving Average (ARMA) model in terms of
forecasting accuracy. In the proposed method, the system operation is further
incorporated with DR, which does not require predefined constrain parameters to
tackle the deviation from the forecasting. The thesis also presents an incentive demand
response structure for scheduling the load to reduce the peak average ratio of power
demand with consumers' confidentiality. The proposed technique reduces electricity
costs, reduces users' dissatisfaction, and minimizes peak load for microgrids in the
presence of Time of Use (TOU). This thesis analyzes the modeling of microgrid optimal
scheduling based on the multi-constrained, multi-objective problem. The study results
confirmed the effectiveness of the proposed techniques as well.
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CHAPTER |
INTRODUCTION

1.1  Background Introduction

The conventional power grid faces infrastructure aging and a considerable rise
in power demand due to the increasing population worldwide. Most power companies
desire to transform smart grid network technology to meet the fundamental
requirement of the increase in electric demand. This system can permit a bulk power
transmission network with flexible penetration of RE resources based on large-scale
distributed generation and reliable power flow control capability. Power line engineers
face the risks of power delivery capability and flexible expansion of traditional AC
networks, such as controlling heavy and complex load flow analysis, voltage or
frequency transient instability, and environmental impact in overhead and

underground high voltage AC transmission (Pan et al., 2008).

A microgrid combines advanced electrical network infrastructure, where the
fundamental component is the same as the existing network structure modified with
advanced information and communication technology. Another significant revolution
of network structure allows any generating resource (DGs) penetration at any voltage
level into the power system network. The distributed resource (DG) size is available
from kilowatts to megawatts capacity, generally connected at the distribution level
network. Generally, DG is preferred to RE-based generation plants, such as wind, solar,
and hydro. On the other hand, increasing RE resources at local networks may give rise
to the system’s energy security in the main grid and the distribution network (Costianu,

Arghlra, Fagarasan, & St lliescu, 2012).



Moreover, fast synchronization of the microgrid with the main grid back and
black start capabilities must also handle a microgrid in islanded mode. The power
balance and the controlling function were responsible for the utility ¢rid in grid-
connected mode. The microgrid system can regulate and optimize generation
resources based on its economical operation criterion. Generally, local renewable
generation is more financial resources than the main grid. In such a case, the objective
is to extract the maximum power from RE resources. The microgrid is guaranteed to
generate constant power output and act as a filter for the active power injection or
absorption to the utility grid under the grid-connected operation (Rozinajova et al,,

2018).

Forecasting is an essential and powerful tool in the microgrid environment to
maintain the power system's supply-demand balancing. Exceedingly accurate, quick,
reliable balance and specific forecasting results are vital in the power and individual
energy management systems in microgrids, industrial, commercial, and residential
areas. Various forecasting data can be available based on different time horizons, from
more than a few hours to quite a few days ahead. Forecast demand can support the
required information to evaluate unit commitment scheduling of generation capacities
and demand requirements for the next day. Significantly, the scheduling scheme was
assessed around midday before the next day. The scheduling of generating capacities
and storage facilities can be optimized by forecasting PV output power and electricity

demand. As a result, the fuel consumption of generators can be minimized.

Microgrid’s energy management system (EMS) monitors and controls the
operational status of optimal economic dispatch power from the various energy
resources to the controllable and critical loads. In the advanced interconnected
system, the controllable loads can be dispatched to ensure reliability in the system.
The EMS collected the load profiles and forecasted energy resource information,
consumer preference, policy, and electricity market price to evaluate optimal power

flow, energy price, load dispatch, and generation scheduling (Conejo & Carrion, 2006).



The objective of EMS in the microgrid is to optimize local generation for
network connection and standalone operation conditions. The microgrid’s
management system mainly focuses on economic generation scheduling with load
shedding or shifting from the demand side. The system voltage/ frequency control and
supply/demand balancing were essential tasks under the island operation mode.
Controllable generation sources in microgrids, such as fuel-based generation, fuel cells,
or storage systems, were responsible for energy balancing by absorbing or injecting
energy from the non-controllable renewable generation. Another task is to adjust the
noncritical or controllable loads from the demand side at the system’s unbalanced

circumstance (Rozinajova et al., 2018).
1.2 Problem Statement

The penetration of many distributed generations (DGs) into the network has
significantly impacted the electricity market (Vivekananthan, 2014). Moreover, a
restructuring system can potentially bring new risk concerns with the system’s
reliabilities in the electricity market and the network. Supply/demand balancing and
voltage/frequency profiles must be maintained below the threshold level in the
distribution level (Khoa, Dos Santos, Sechilariu, & Locment, 2016). The optimization
from the network operator standpoint was to ensure the serving capacity of the lines,
the stable margin of the voltage profiles, and balance the network power flows,
security, quality, and reliability (Arias, Rivas, Santamaria, & Hernandez, 2018). The
unpredictable nature of renewable generation and unstable demand characteristics
caused bus voltage fluctuation. Demand growth in the main grid often led to stringent
operating circumstances. In the meantime, available power generation overflowing or
underflowing negatively impacted system operation and gave the stress back to the
whole system. Another risk concern with microgrid EMS is the increased use of
controllable loads; it increases load forecasting accuracy. PHEVs/PEVs can be

integrated into the grids at any charging location and at any time, giving rise to uncertain



load forecasting. Multiple charging of EV loads onto signal feeder at peak time will
bring transformer overload (Conejo & Carrion, 2006). The factors concerned with the
nature of various types of renewable generation and robust energy management
systems have gradually become a significant problem in autonomous microgrids (Shi,

Liang, Huang, & Dinavahi, 2019).

Recently, the concepts of microgrid planning addressed the economic
feasibility and substantial stability issues. It is a complex process due to existing system
constraints and uncertainties. The planning process goals usually conflict, and
optimization problems accompany the planning process. Technical and environmental
constraints and uncertainties are vital parameters to consider in planning. All decision
factors considered in the planning stage can influence the system's capability in the
competitive energy market. In general, the microgrid planning process is created with
particular objective functions and constraints, and this is a vital source of risks

necessary to avoid or control before decision-making (Gamarra & Guerrero, 2015).

With the increase of renewable energy source generation and nonlinear loads
causing the voltage to fluctuate in the power system, supply-demand balancing
becomes unstable. The building process may be termed energy management, the
process of monitoring, controlling, and conserving energy in an organization. In a
microgrid where the consumers can generate local energy from several distributive
generation units, and there is plenty of space for different pricing schemes, many
researchers have pointed out the need for energy management programs (Nguyen et

al., 2020).

Traditional load shedding processes, under-voltage and under-frequency load
shedding, and breakers’ interlocking are generally carried out based on the magnitude
of voltage and frequency variation. It did not consider individual loads' priority or
evaluate the correct load value needed to be shed (Khoa et al., 2016). In this scenario,
this traditional process created unwanted conditions, such as excessive and

unnecessary load reduction in the system (Shokooh et al, 2005). In this regard,



demand-side management can also reduce CO, emissions and power system
reliabilities and minimize total energy costs for end-users. The conventional grid cannot
be a demand-side management method on the utility side due to the lack of efficient
communication structure, automation tools, and sensor technologies. In an advanced
microgrid environment, modern information and communication technology gives

opportunities for energy management programs (Costianu et al., 2012).
1.3  Significance of the Study

This research provides significant benefits and outcomes for the microgrid
operator and the microgrid's consumer perspectives to minimize operation cost and
peak-to-average ratio to support the network's cost-effective energy demand balance

conditions. This work is unique from the previous methods due to considering the cost

benefits to the microgrid grid operator and customer perspectives with minimum
dissatisfaction—the optimal generation scheduling algorithm with the forecasting
technique developed in the first phase of this research. The monthly uncertainties of
power consumption and RE generation variation are considered in this work. This fact
is realized in the microgrid's EMS implementation process. The proposed algorithm
developed to set up the DR option is the final phase of this work. The DR program can
be implemented efficiently with the incentive-based DR option. This EMS framework
considers the perspectives of the end-user and the grid operator during decision-
making for load shifting/shedding. This system also provides an electricity cost-benefit
to actively participate end-users by changing or reducing the appliance usage pattern

allowable time frame.
1.4 Research objectives

This research aims to produce an optimal microgrid energy management model
considering the demand response and monthly uncertainties of RE generation and

demand in Thailand. Specific research objectives are set as follows:



(1) To estimate solar power, wind power, and demand forecasting in the microgrid
distribution network using the autoregressive moving average (ARMA) method, deep-
learning method, and employ advanced forecasting techniques in energy management

system;

2) To implement the optimal energy management system considering operation
cost minimization, peak load minimization, end-user satisfaction, and demand

response program;

(3) To test the performance of the proposed system on an IEEE 34 node system

and Nakhon Ratchasima distribution system.
1.5 Scope and limitation of the study

The decentralized microgrid energy management system with demand
response is implemented with generation and demand forecasting to minimize
operating costs and peak-to-average ratio. This work emphasizes the optimal energy
management system to benefit the e¢rid operator and consumers who participate
actively in the electricity mart by responding to hourly demand information provided
by microgrid operators. Exceedingly accurate, quick, reliable balance and specific
forecasting results are vital in the power and individual energy management systems
in microgrids, industrial, commercial, and residential buildings. The day-ahead forecast
technique, short-term forecasting, is an essential and powerful tool in the advanced
microgrid environment to maintain the power system's supply-demand balancing. An
hour ahead and a few hours ahead of forecasting the demand are also essential for
the network economic load dispatching control. The scheduling of generating
capacities and storage facilities can be optimized by forecasting PV output power and
electricity demand. This study implemented the application of a statically base ARMA
forecasting method to predict medium-term RE generation and demand forecasting
and an artificial neural network-based deep-learning model (Gate-recurrent unit (GRU),
long-short term model (LSTM)) to predict day-ahead forecasting. The day-ahead

forecasted hourly data is applied to this study's energy management system



CHAPTER II
LITERATURE REVIEWS

2.1  Smart Management and Control System

Smart management and control systems improve electricity use, balance
supply and demand, control greenhouse gas emissions, reduce electric bills, and
maximize utility profit. The smart management and control system provides advanced
load management techniques and control facilities. The fundamental functions are to
provide an efficient and reliable control structure, secure data collection, and two-way
data transmission with supportive sensing. Huge data collection is carried out by an
extensive collection of smart meters (SMs) or sensors to sense the actual grid status
at every location through the network in real time. Two-way transmission links deliver
sensor information signals to the control centers and vice versa. The control function
typically provides data from smart meters, sensors, and control devices located at all
places of the network to grid components and vice versa. Therefore, to reliably
perform the critical function of smart grid communication infrastructure. The basic
architecture must have integration of enabling networking technologies, home area
networks (HANs), business area networks (BANs), neighborhood area networks (NANs),
data centers, and substation automation (SA) integration systems (Costianu et al,,

2012).

The Day-ahead forecast technique is an essential and powerful tool in the
smart grid environment to maintain the power system’s supply-demand balancing and
smart protection system. Exceedingly accurate, quick, reliable balance and specific
forecasting results are vital in the power and individual energy management systems
in the microgrid, industrial, commercial, and residential buildings. Various forecasting

data can be available based on different time horizons, from more than a few hours



to quite a few days ahead. Day-ahead forecast demand can support the required
information to evaluate unit commitment scheduling of generation capacities and
demand requirements for the next day. Significantly, the scheduling scheme is
assessed around midday before the next day. The unit commitment and scheduling
process of electricity markets must be employed approximately 36 hours ahead of
forecasted information. A few hours ahead of demand forecasting, ultra-short-term is
also essential for the network economic load dispatching. The operation time
scheduling of generating capacities and storage facilities can be optimized by
forecasting PV output power and electricity demand forecasting. As a result, the fuel

consumption of generators can be minimized.
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Figure 2.1 Various Forecasting methods for smart grid environment (Borghetti & Nucdi,

2016)

For instance, the motion of clouds along a PV project ground can suddenly
cause an increase or decrease in solar irradiance, namely ramp events. A few hours
ahead, forecasting the ramp rate and width is essential for the solar project to diminish
the consequences of ramp events. Different forecasting methods are employed in the

smart environment for unit commitment, economic load dispatch, and load frequency



control purposes. According to essential forecasting techniques in the whole network
or individual system operations, several days ahead forecasting, day ahead forecasting,
several hours ahead forecasting, intra-hour ahead forecasting, and nowcasting have
been investigated in recent years. Available resources technology is numerical weather
prediction (NWP) models, satellite images, all-sky images, and PV power output

measurement (Borghetti & Nucci, 2016).

With the increase of renewable energy source generation and nonlinear loads
causing voltage fluctuation in the power system, supply-demand balancing becomes
unstable. Energy management monitors and controls the organization's building
system to transform efficient energy-conserving forms. In a smart grid environment, the
prosumers can generate energy locally from several available distributive generation
resources, and there is plenty of space for different pricing schemes. In this regard,
many researchers have pointed out the essential of energy management programs in

the advanced power system.

Demand-side management can also support reducing CO, emissions, power
system reliabilities, and minimizing total energy costs for end-users. The conventional
grid cannot be a demand-side management method on the utility side due to the lack
of efficient communication structure, automation tools, and sensor technologies. In
a smart grid environment, smart meters and modern information and communication
technology can give opportunities for home energy management programs. HEM
application can control domestic energy usage by scheduling the domestic load from
peak to off-peak intervals. Once the end-user switches on their appliance, a data signal
is instantaneously sent to the energy management unit (EMU) system. The EMU system
is then delivered to the smart meter and local generation units to get the hourly price
information from the utility and the available local energy resources. EMU can
schedule the end-user appliance's starting and shifting time based on this hourly price
information. The appliance waiting time is evaluated by the difference between the

allowable time resigned by EMU and the consumer request start time. Consumer-side
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HEM generally uses home area networks (HAN) for load forecasting, energy
management systems, and smart meter commmunication. Generally, HAN technology is
based on a command-based system and link-based system communication (Costianu

et al., 2012).

2.2 Microgrid System Architecture

The microgrid is an intelligent system with self-control, protection, and
management in the local network. The operation mode of such a system can connect
or disconnect with the bulk power system. The system's main task is the flexible and
efficient integration of distributed energy resources, especially for connecting many RE
resources. The conventional power network is inflexible to integrated DGs, lacks self-
healing, system recovery ultimately depends on entities, and cannot get advanced
communication. Therefore, such a system imperfection cannot bring to perform
automation system in the conventional network. According to Fig 2.2, a microgrid
energy management system mainly works for grid-connected or disconnected
distribution networks, and local distributed generation and responsive load are
featured in advanced microgrids. Generally, demand response resources mainly
depend on the different types of loads on the demand side. Demand response
resources in the smart microgrid system include managing the demand side loads and
DG power generation. The end-user’s load can be mainly categorized into adjustable
load, shiftable load, controllable or uncontrollable load, and electric vehicle. The
distributed generation includes photovoltaic solar power, wind turbine, and distributed

energy storage (Y. Wang et al., 2018).

2.3  Advantages of Microgrids
Microgrids have potential advantages over existing power networks: Reduced

losses, reliability, environmental benefits, and energy independence.

In the traditional main grid, power generation is often far away from the
demand side, and power is transferred for long transmission lines that may cause

power losses in the lines. The total power losses from the transmission and distribution
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systems were approximately 4%-5%. In a microgrid, the power generation is generally
located near the load center. Therefore, reducing the line distance required to

transport power can significantly reduce power losses in the entire network.
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Figure 2.2 Structural diagram of a typical Demand Response smart micro-grid (Wang

et al., 2018)

This is because the microgrids have their generation resources and are
independent of the main network. It can ensure continuous operation during a
blackout or shortage in the main grid. Therefore, microgrid has been interested in
recent years to improve system reliability. Usually, most microgrid generation resources
are renewable energy-based generation sources. The microgrids can change either grid-
connected or islanded mode operation, which creates the event to use more locally

generated and reduce the critical power from the grid when it is unavailable. This
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system can provide a higher integration of renewable DG than in the existing network.

Therefore, it can minimize carbon emissions and environmental benefits.

High penetration of DG and energy storage becomes more reliable and
independent from the main grid in energy requirement. In the future, well-designed
DG penetration could be effectively operated on the entire energy industry. This
system will reduce the influence of large electricity companies in the electricity market
and create a significant electricity market share as the business models established

years ago (Y. Wang et al., 2018).

2.4  Demand Side Management

Energy demand varies by time series and depends on the year's season. The
power flow in the smart grid environment has been changed into bi-directional power
transfer. Therefore, the customer can generate electricity to reduce power demand
and transfer excess power to the grid to increase the grid capacity. DSM technologies
also allow them to use local storage capacity during peak times. In such a case, the
DSM concept can support the load ability that does not need to reduce total demand.
Generally, demand-side management effectively manages load utilization to match
the available hourly supply rather than filling the hourly consumer demand. Demand
response and energy efficiency are the two main concepts of DSM. While energy
efficiency reduces a certain amount of demand for all time, demand response
manages the total demand level during the on-site interval. This concept changes
consumers' power usage behavior or cuts a specific demand in a particular time interval
to balance production suppliers and consumers. Currently, the industrial sector mainly
applies DR to minimize overall power consumption. Therefore, DR is a simple model
that reduces overall power consumption in a short time interval. DSM can persuade
consumers to limit their usage through an energy consumption scheduler (ECS) unit
inside a smart meter to make the demand curve flatten a particular house (Hayes,

2017).
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2.5 Advantages of demand-side management

Demand-side management (DSM) plays a significant role in developing the
power industry, energy planning, and environmental protection. It can bring benefits
to the power market: the efficient electricity market environment and restrain the
market power, the realized information exchange the status of supply and demand,
and accelerated the formation mechanism for electricity price information sharing, the
effective mitigation of demand growth at peak hours and elevating the system
reliability, significantly reduce the capital investment on generation sides, and also
mitigate transmission, and distribution upgrading, facilitate the new aspects of energy

conservation and reduction of CO, emissions (Li, Chiu, & Sun, 2017).

2.6 Demand Response

Demand Response (DR) is the economic benefits concept to interact with end-
user. It also provides the potential benefits for reliability improvement and electricity
market development. It can reduce the capital investment required for generation
plant upgrading. The positive impact of load shedding, which can restore the
acceptable system reliability level, is significantly initiated by the insufficient available
power from generation resources by load reduction from the end-user side (Li et al,,
2017). Real-time market or day-ahead prices and market mechanisms are the basic
requirements for demand response implementation in the power market. Using
demand response in the system provides economic benefits and ensures energy
efficiency and storage. The demand response program can typically offer six services
in the system, as shown in Fig 2.3. The peak clipping, valley filling, and load shifting
approaches were used for load management in the system, and the last three were
used to change the load shape in the system. Therefore, the changing shape depended
on customers' willingness to participate and the nature of the demand side ( Li et al,,

2017).

2.6.1 Peak Clipping
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Peak clipping reduces or clips the total demand below the threshold
level based on the transmission system supply capacity. Although this can be
implemented in the industrial, commercial, and accommodation sectors, it can
be more effectively implemented in the accommodation environment by
directly controlling the load. This service can significantly help the system by
avoiding stress during peak hours. On the other hand, this can create customer

dissatisfaction due to load curtailment.

2.6.2 Valley Filling

Valley filling increases demand during off-peak hours, potentially
causing system instability. The more applicable method for this service in the
system is the application of storage devices, such as energy storage and plug-
in electric vehicles. This is forced to increase the total power consumption of

customers at off-peak hours. This may not significantly increase electric billing.

2.6.3 Load Shifting

Load shifting is forced to change particular loads from peak to valley
time when total consumption exceeds the specific level. Since this strategy
offered to change the time of use rather than force to reduce the total

consumption, it does not violate customer satisfaction.

2.6.4  Strategic Conservation

This conservation encourages reducing demand to improve energy
efficiency when the total load exceeds the supply capacity. This work can be
implemented by replacing traditional devices with energy-efficient apparatuses.
The consumption and cost of information support can persuade customers to

reduce power demand.
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2.6.5 Strategic Load Building
The load-building strategy is encouraged to pull up overall demand
when the total demand is lower than the usual supply level. This work can be

done using energy storage services ( Li et al., 2017).
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Figure 2.3 Six types of demand-side management ( Li et al., 2017)

The load shifting and peak shaving are generally actions from the demand side,
and they can significantly impact the whole system context under stringent operating
conditions. The function of load shifting is to remove the load from the peak interval
to off-peak time intervals to mitigate system stress and reduce end-user power costs.
The high energy price usually occurs during peak load hours due to the expensive
generation startup to meet system demand. Therefore, peak shifting can reduce energy

consumption at peak hours. The viewpoint of energy management is to minimize
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system operation costs by replacing more expensive energy production with cheaper

production (Mortaji, Ow, Moghavvemi, & Almurib, 2017).

An adaptive under-frequency load shedding UFLS method can reduce the
possible outage. This analysis considers daily load profiles of different loads to
evaluate the amount of load to be shed. Moreover, the dynamic characteristics of the
load aggregator and daily load profiles of various load types were considered (Dietrich,
Latorre, Olmos, & Ramos, 2011). Demand-side management is a balancing tool for
supply and demand using game theory to reduce the peak-to-average ratio and save
consumer costs. The storage system with rooftop PV power was used as an energy

source at the load-shedding interval (Horri & Roudsari, 2020).

2.7 Classification of Demand Response

The consumer DR participation manner can be categorized into three types.
Firstly, the end-user's power demands to reduce during high price or peak demand but
do not need to minimize action at regular periods. However, this strategy can be
possible to give the temporary loss of a comfortable lifestyle. In the second type, end-
users respond to shifting their power usage pattern from the spike demand period to

the valley time. This approach would not violate domestic customer satisfaction.

Still, it is difficult for the industrial consumer to reschedule the production line
again, negatively impacting manufacturing services. Third, some customers would
respond to load reduction using small-scale own-generation resources, especially
renewable energy resources. In this case, consumers do not need to change their
electricity usage pattern very much, and total power demand will also be significantly
minimized at a particular time (Noor et al., 2018). There are two types of DR frameworks
for consumer persuasion: price-based DR and incentive-based DR offered to end-users.
The price-based DR program aims to reduce energy demand or change usage patterns

by offering time-varying dynamic electricity prices under high wholesale prices. The
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incentive-based DR is to pay a particular amount of financial to customers, who curtail

or shift some of the electric loads at times of high demand (Albadi & El-Saadany, 2008).

Price-based DR has been offered fluctuating electricity prices to end-users
under the dynamic time-varying scheme: time-of-use pricing (TOU), critical and extreme
day CPP (CPP & ED-CPP), excessive day pricing, and real-time pricing (RTP). Demand
response with CPP, ED-CPP, or EDP was to minimize the peak load at a specific or
emergency period. TOU pricing is adjusting electricity usage patterns based on different
time price signals. The RTP program is also an effective time-shifting method to export
unimportant loads to the hour of valley demand (Ahmadi, Charwand, & Aghaei, 2013).
However, it is not easy to persuade customers in the long term to shift or curtail hourly

or daily (Zhong, Xie, & Xia, 2012).

Demand Response Program

Incentive Based Program

Classical

- Direct Control
- Interruptible/Curtailable Programs

Market Based

- Demand Bidding

- Emergency DR

- Capacity Market

- Ancillary Service Market

Price Based Program

- Time of Used

- Critical Peak Time

- Extreme Day CPP

- Extreme Day Pricing
- Real Time Pricing

Figure 2.4 Classification of Demand Response (Albadi & El-Saadany, 2008)

The incentive-based program can be classified into classical and market-based
programs, as shown in Fig. 2.4. Both offer rewards, financial payments, or discount

credit payments to the customers depending on the amount of DR participation during
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a particular time. According to the utility side notification, direct Load Control and
Interruptible/Curtailable programs cut the load at a specific amount and time interval.
Such programs were more suitable for domestic or small business customers. In such
a program, however, participators must be paid a penalty payment for contract
omission. In demand bidding programs, the consumer must curtail their loads until a
specified amount for bidding. In emergency DR and capacity market programs,
participants must be responsible for load reduction with a specific amount. The
consumers will also receive financial rewards according to the participation amount in
emergencies or contingencies. The ancillary services market is concerned with end-
user-level demand bidding in the market. These incentive programs are day-ahead

notifications (Albadi & El-Saadany, 2008).

The price-based time-varying program was non-dispatchable and reduced
flexibility for the operator side. This will sometimes impose a spike in power selling
prices on the customers, adversely impacting such programs. In this fact, incentive-
based DR programs offer a dispatchable and more flexible contribution to the operator.
However, some investigations highlight that consumers are less willing to participate in
DR programs because of the inconvenience of load interruption during a particular
period and dissatisfaction with the mandatory daily power cutting (Yu, Hong, & Kim,
2016). Therefore, the time for load reduction in the entire horizon should be set as a
feasible option for several network consumers. According to the theoretical
investigation, the price-based time-varying option still has some challenges to become
widely deployed. Incentive-based DR programs have also been proposed to reduce

peak load by offering a financial reward (Yu et al.,, 2016).

2.8 Energy Management System
The Energy management system monitors the operational status of various
energy resources under optimal economic dispatch power and controls the

controllable and critical loads. In the advanced interconnected system, the
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controllable loads can be dispatched to improve system reliability. EMS collects the
load profiles and forecasts energy resources, consumer preference, energy policy, and
electricity market price. Afterward, optimal power flow, energy price, load dispatch,

and generation scheduling were implemented (Conejo & Carrion, 2006).

2.8.1 Centralized Microgrid EMS

The centralized EMS has three control levels: distribution network
operator (DNO) and market operator (MO); microgrid central controller (MGCQ);
and local controllers (LCs) associated with energy resources and load units. At
the operator level, the market operator exchanged information between the
microgrid and the electricity market. The distribution network operator
managed the real-time and operating commands from the multiple microgrids
and main grids. In the second level, the microgrid central controller is
responsible for an information and control center gateway between the
operator and local controllers to get information from utility requirements and
the energy market. The MGCC can update the system operational status,
handle system disturbance, switch, and resynchronize the microgrid with the
primary grid. Another essential task concern with MGCC is scheduling energy
output from all resources based on information from load aggregators,
particular objective functions, and system constraints. The centralized MGCC
operation is a powerful computational mechanism to handle real-time signals
from all resources and loads. Although MGCC design is easy implementation,
standardized procedure, high expansion cost, high communication capacity,
and fast computational ability become drawbacks due to the increment of

control devices in the system (Su & Wang, 2012).
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Figure 2.5 Centralized microgrid EMS (Su & Wang, 2012)

2.8.2 Decentralized Microgrid EMS

In decentralized control, autonomous intelligcence and several local
controllers monitor every component in the interconnected system. Fig. 1.6
shows the architecture of a decentralized control scheme. Because the local
controllers only need decision-making and communication locally, the
communication congestion and computational burden are significantly less
than centralized EMS. In this scheme, local controllers must not determine the
optimal power output in such a distributed system. Therefore, this design
significantly reduces the computational power requirement in the entire
microgrid. Due to the local controllers having local authority, it is challenging
to detect and troubleshoot security issues. A highly dependent and smooth

communication infrastructure is the drawback of this system (Su & Wang, 2012).

A new control aspect of decentralized EMS for the distributed microgrid
operation is shown in Fig 2.6. The primary control is for reliable function of
frequency and voltage below the set points when communication fails. The
secondary control controls the voltage and frequency deviations for the entire
system. The third is to perform optimization to get cost-effective energy
scheduling. The control process is performed locally (De Brabandere et al,,

2007).
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Figure 2.6 Decentralized Microgrid EMS (Su & Wang, 2012)
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Figure 2.7 Overview of overall decentralized EMS (De Brabandere et al., 2007)

The objective of EMS in the microgrid is to ensure local generation
optimization for both modes of operation. The microgrid management system
was mainly focused on economic generation scheduling with demand-side

management. The system voltage and frequency control and supply and
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demand balancing were essential tasks under the island operation mode.
Controllable generation sources in microgrids such as fuel-based generation,
fuel cells, or storage systems were responsible for energy balancing by power
absorption or injection from the non-controllable renewable generation and
local loads. The energy management system is also responsible for adjusting

the noncritical loads under imbalance in the microgrid.

Moreover, fast synchronization of the microgrid with the main grid back
and black start capabilities must also handle a microgrid in istanded mode. The
power balance and the controlling function were responsible for the utility grid
in grid-connected mode. The microgrid system can regulate and optimize
generation resources based on its economical operation criterion. Generally,
local renewable generation has more financial resources than the utility grid.
In such a case, the objective is to extract the maximum power from RE-based
resources. On the basic, the microgrid was guaranteed to generate to evaluate
power output and act as a filter for the active power injection or absorption to

the utility erid under the erid-connected operation (Rozinajova et al., 2018).

2.9  Unit Commitment (UC) and Economic Dispatch (ED)

Unit commitment is the evaluation of minimum generation cost from different
generations to support the energy needed quickly and to satisfy system constraints.
The results from UC control provide the decision of generation plants’
startup/shutdown and support the total production capacity of all generation units
economically in the power network in individual operation hours. This optimization
problem minimizes operational costs for every generation unit over every hourly
horizontal. The constraints related to generation scheduling consider the power
balance constraint, spinning reserve, and generation capacity limitation (Logenthiran &
Srinivasan, 2009). Coordinate interconnected loads with Distributed Energy Resources
(DERs) in the system and act as a centralized or decentralized controlling entity

concerning the utility grid. The Energy Management System (EMS) in the microgrid takes
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action to ensure microgrids' reliable and economical operation. The generation
scheduling and dispatching operation system maintains reliable power reserve levels,
mitigates the uncertain nature of renewable resources, and introduces demand
response (DR) action at the demand side management. The two concepts of
centralized EMS were based on Unit Commitment (UC) and Optimal power flow (OPF)
models. Unit Commitment (UC) based energy management system (EMS) takes into
account the network constraints and operational constraints concerned with
distributed energy resources; optimal power flow (OPF) based EMS considers the

optimal network flows (Solanki, Raghurajan, Bhattacharya, & Canizares, 2015).

Unit Commitment (UC) and Economic Dispatch (ED) are the microgrid's two
main functions of generation scheduling. Unit commmitment is the optimization problem
of scheduling the operation and compensation of the generation from available
generation resources in the microgrid daily to weekly based on the generator and
system constraints. Many different generation technologies in the system can
exponentially increase the UC problem. Optimization of generation scheduling
becomes the central management function performed to meet forecast demand and
spinning reserve under minimum operating cost in a short time (Logenthiran &
Srinivasan, 2009). The UC optimization is to solve the unit-scheduled problem and
economic dispatch (ED) problem. The constraints for the unit-scheduling optimization
problem usually consider the system capacity requirements, generation limits, and the
constraints on the startup and shutdown of the scheduled units. System demand and
spinning reserves must be considered for optimal generation dispatch problems for

every interval (Yong, Zhi-Jian, & Chuan-Wen, 2005).

With improved communication infrastructure in the microgrid community,
smart demand response, load shedding, load shifting, and restoration have also
become the options to ensure supply/demand balancing based on customers'
willingness to participate. Load shedding restores the total loads needed to shed and

recovers the power supply according to appliance operating characteristics. The
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traditional load-shedding processes are under-voltage, under-frequency load shedding,
and breakers interlocking based on the voltage and frequency variation magnitude.
The conventional system did not require considering individual load priority and did
not need to evaluate the correct load-shedding value (Khoa et al., 2016). In this
scenario, the conventional method has the drawback of excessive or unnecessary load

reduction problems in the system.

Moreover, the volatile nature of renewable generation and demand growth are
drawbacks to bus voltage fluctuation. Demand growth in the system often led to
stringent operating circumstances. In the meantime, the issues of available power
generation can affect appliances' operation and cause stress to the whole system

(Shokooh et al., 2005).

2.10 Microgrid Energy Management System

EMS controls a cluster of different resources and responsive loads as a single
entity from the upstream generation system, allowing full use of RE's generation
capacity while minimizing operation costs and pollution (Moradi, Esfahanian, Abtahi, &
Zilouchian, 2018). The microgrid usually consists of different types of distributed
generation, such as dispatchable and non-dispatchable generation. Dispatchable units
include diesel engines (DEs), microturbines (MTs), and fuel cells (FCs), while non-
dispatchable sources consist of wind turbines (WTs) and photovoltaic cells (PVs) (Li,
et al,, 2019). It is challenging to schedule a microgrid effectively under the volatility

of non-dispatchable sources.

The integration of distributed generation (DG) enhanced the performance of
distribution systems, such as reducing power losses, improving system reliability,
economical operation, and reducing pollution. On the other hand, the high penetration
of intermittent DGs raises the challenge of modern power systems, such as voltage
exceeding, network congestion, and the randomness of DG power supply (C. Wang et
al., 2016). The energy management system (EMS) performs optimal dispatch resource

management upstream, dealing with REs uncertainty and demand response and
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increasing REs penetration with high profit. The effectiveness of an advanced microgrid
system is that the structure provides a local distribution system in which the
uncertainty from RE resources can adequately be captured by load pattern change,
namely demand response (DR) (Lu, Cheng, & Carli, 2021). Demand response (DR) has
been considered in the scheduling problem, operating the existence of RE uncertainty
to respond to the variation of RE. The idea of flexibilities DR participants tracked the
uncertainty problem of RE resources and energy reserve. Generation scheduling with
flexible DR is an effective structure for hosting a high penetration of RE resources in

the distribution system (Du et al., 2021).

2.11 Microgrid active distribution network

Emerging in the electricity market with advanced communication technologies,
consumers have become active in optimizing energy usage. Furthermore, local
generation scheduling and EMS systems become the solution for smart microgrid
operations to reduce financial losses. It will also be flexible to extend RE-based
distributed generation integration locally (Essayeh, El-Fenni, & Dahmouni, 2016). The
microgrid system can regulate and optimize generation resources based on its
economical operation criterion. Generally, local renewable generation is a more
economical resource than the utility grid. In such a case, the objective is to extract the
maximum power from RE-based resources. The active distribution network was created
to guarantee the generation of constant power output and filter the active power

export and import with the utility grid under the grid-connected operation.

This microgrid system combines fuel-based conventional generators and
renewable-based generation from the supply side with demand response on the
demand side. The energy trading scheme back to the grid is an option in the advanced
system, whereas local generation can be sold to the local demand side and the main
grid. When the local generation capacity is insufficient, the utility grid imports the

energy to this distribution system in grid-connected mode. Microgrid aims to maximize
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RE-based generation utilization to minimize both operation modes' fuel cost

consumption (Mokryani, 2015).

2.12 Techniques for uncertainty issues

Accurately predicting upcoming demand and RE generation is the prerequisite
information to construct a model of an efficient energy management structure. Many
research articles highlight that the uncertainty of parameters accompanies the
predicting error ( Yang et al., 2021). The nature of uncertainty in forecasting wind and
PV generation considerably impacts the scheduling decision. In recent years, many
research works have focused on improving forecast methodology with less error (Tan

et al., 2020).

According to research articles, physical methods, mathematical methods,
machine learning, and hybrid methods are the available tools for forecasting. The
above work mainly highlights the impact of wind or PV generation forecast errors on
system stability issues. There is little consideration of analyzing the comprehensive
forecasting errors of all available renewable resources on the microgrid dispatching
system (Hajiamoosha, Rastgou, Bahramara, & Bagher Sadati, 2021). On the other hand,
the favored methods applied in the model to analyze the uncertainties are Monte-
Carlo simulation (MCS), point estimation method (PEM), scenario analysis, and risk-
averse analysis (Hajiamoosha et al., 2021). Currently, four methods are mainly used for
power systems and microgrid dispatch systems based on uncertain renewable power
characteristics: fuzzy method, stochastic method, robust optimization methods, and

interval optimization methods (Mokryani, 2015).

2.12.1 The stochastic method

The existing research article discussed the need to use a method to
capture the nature of uncertainty, mainly with stochastic, probabilistic, and
robust planning. The stochastic approach is the most utilized technique in
distribution network planning (Mokryani, 2015). The scenario generation

represented a discrete distribution model from the continuous probability
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density distribution function. The probability density distribution function with
fewer scenarios cannot guarantee the secure complex optimization problem in
the scenario generation method (Tabar, Jirdehi, & Hemmati, 2017). This is the
multiple scenarios generation method to obtain the optimal solution, and this
method takes high computational time to identify the probability distribution
function (PDF) of uncertainty problems (Z. Yang et al., 2021). The wind/PV
sources and demand are considered uncertainty parameters and probabilistic
methods for handling microgrid uncertainty problems (Nikmehr & Najafi
Ravadanegh, 2016). The predicted wind, solar irradiance, and load profile
uncertainty are generally solved by the predictive control (MPC) approach (Saez
et al,, 2015). This work presented stochastic EMS formulations to address
uncertainty issues. These formulations determined the necessary reserves of

the microgrid to avoid arbitrarily fixing these reserves a-priory (Saez et al., 2015).

The advantage of stochastic programming is that this method does not
require accurate forecasting parameters and is based on probability distribution.
Therefore, this method suits conditions with unknown parameters and hardly
predictable circumstances (Tostado-Véliz, Rezaee Jordehi, Icaza, Mansouri, &
Jurado, 2023). In the stochastic method, uncertainties are presented as
probabilistic distributed stochastic variables. Their probabilistic distributions are
usually assumed as certain standard probabilistic density functions. For
instance, Weibull and Beta distribution are well-known probability density
functions that attempt to describe wind and PV uncertainties. of wind speed

and solar irradiance.

2.12.2 The fuzzy method
The fuzzy variable and fuzzy memberships are represented for

uncertainty parameters to establish a fuzzy dispatch model. The fuzzy
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method provided an optimal solid solution from the system

dispatcher’s specified memberships function (Mokryani, 2015).

2.12.3 The robust optimization method

Some articles propose the achievement of a mathematics-
based and evolutionary algorithms robust optimization method with
less computation time for uncertainties problems. This work observes
that although the executability of robust modeling has an advantage
on linear problems, achieving the guaranteed result on non-linear
problems is challenging (Mokryani, 2015). Robust optimization has
become a popular method to solve scheduling problems with
uncertainty in the power system. Robust optimization evaluates the
optimal solution under the worst-case scenario with less computation
time. However, the application of robust optimization has limitations
due to the low probability of a worst-case scenario. The robust
optimization is a non-probabilistic model that models uncertainty
based on the expected value and predicted intervals. Although the
robust optimization method is efficient for solving the minimization
problem, it has difficulty for the min-max dual optimization problem
due to interval numbers. The main drawback is that this method never
optimizes the problem in the worst scenario (Tostado-Véliz et al., 2023).
To overcome the problem of complexity methods in the operation of
MGs, robust optimization is investigated to achieve a simple way to
solve the characteristic of uncertainty problems (Wang et al., 2017). This
work highlights the advantage of robust multi-objective optimization for
microgrid scheduling. The results show that the proposed method does
not necessarily generate the scenario probabilistic function and

experiential information.

2.12.4 The interval optimization method
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Interval optimization has recently been introduced to overcome the
limitation of a robust method. This method finds an optimal minimization
solution to address uncertainties concerning specific objective functions' upper
and lower bounds (Li et al., 2019). The work in (Khalili, Nojavan, & Zare, 2019)
analyzed quality prediction of electricity prices under uncertainty. It presented
the outcome of the expected interval to construct a preassigned probability of
future electricity prices. Predicting the volatile interval is more suitable than
the specified exact stochastic distribution for optimal unit commitment in
practical operation. Interval prediction is helpful in power systems, such as load
flow with uncertain demand, electric energy markets, and boundary analysis
for reliability and economic assessment in distribution systems. The limitations
of accurate interval forecasting are the difficulty of estimating the forecasted
interval and the distribution variance. Due to the volatility of the predicted
parameter, it is challenging to represent the parameter with traditional linear
time series models. The estimation of distribution is commonly based on the
assumed analysis because of unknown parameters. Although the variance is
essential in interval prediction, it is challenging to predict due to time-varying.
From the above mentions, interval optimization is usually applied for a single
optimization problem due to its complexity. However, the microgrid
optimization problem usually comes with simultaneous operation multiple
criteria problems, such as reduced operation cost, satisfactory levels, power

quality, and system security (Jun Hua, Zhao Yang, Zhao, & Kit Po, 2008).

The Advanced Forecasting Techniques

With the emergence of advanced artificial neural networks, solar irradiance, and

wind speed can be forecasted from several minutes to several days ahead, depending

on the requirement of the application over the time horizon. Forecasting several

minutes to days ahead is essential for system operation optimization and electricity

market participation. Therefore, RES forecasting has become a target for an advanced
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system operation, and appropriate forecasting methods must also be selected
according to advanced applicability (Rajagukguk, Ramadhan, & Lee, 2020). (Y. Wang,
Xia, & Kang, 2011). Although various articles presented the precise methods to mitigate
the uncertainty, RE capacity forecasting results still showed a 10% average MAE error
in the practical field for the day-ahead scheduling process. In this regard, the total REs
capacity error with demand variation brings the risk of forecasting error amplification

(Y. Wang et al., 2011).

Forecasting the ramp rate and width an hour ahead of time is essential for the
solar project to diminish the consequences of ramp events. Different forecasting
methods are employed in the smart environment for unit commitment, economic
load dispatch, and load frequency control purposes. According to essential forecasting
techniques in the whole network or individual system operations, several-days ahead
forecasting, day ahead forecasting, several hours ahead forecasting, intra-hour ahead
forecasting, and nowcasting have been investigated in recent years (Borghetti & Nucci,
2016). The advanced forecasting methods can be classified as the physical method,
conventional statistical method, and artificial neural network (ANN) based method (Ko
et al,, 2021). After a high penetration of RE access in the active distribution network,
there is also an increase in the complexity of scheduling. The accuracy improvement
of power forecasting for RE generation has become the primary technology for securing
the status of operational scheduling, reducing additional capacity reserves, and
decreasing generation costs. According to the feature, the prediction process can be
divided into direct and indirect prediction, and the spatial scale of prediction can be
divided into a single field and regional prediction. The time scale can be divided into
ultra-short-term, short-term, medium-term, and long-term forecasts. According to the
classification of the prediction method, the method can be divided into point
prediction, interval prediction, and probability prediction; the class can be divided into

the physical model, conventional statistical model, and machine learning model. The
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prediction research is usually carried out by prediction methods such as the physical

method, statistical method, and machine learning method (K. Wang, Qi, & Liu, 2019).

2.13.1 The physical method

The physical method builds on the mesoscale weather information,
namely the numerical weather prediction system (NWP). This mathematically
expressive model is based on geographical and meteorological information (Ko
et al,, 2021). This method can effectively perform for medium-term forecasting
periods but has limitations on short-term forecasting due to geographical or
meteorological gathering difficulty. For instance, the motion of clouds along a
PV project ground can suddenly cause an increase or decrease in solar
irradiance, namely ramp events. Available resources technology is numerical
weather prediction (NWP) models, satellite images, all-sky images, and
measured PV power output data (Borghetti & Nucci, 2016). The representative
of the physical model is modeling with mathematical or numerical to interact
with the solar radiation in the atmosphere according to the laws of physics.
This model usually involved numerical weather prediction, sky imagery, and
satellite image models. The statistical model is the way to find the solution
from the relationship of the input and output variables. The well-known
conventional statistical models are the fuzzy theory, Markov chain,

autoregressive, and regression models (Rajagukguk et al., 2020).

2.13.2 The Conventional Statistical Method

The conventional statistical method is built on historical data and is
characteristic of the linear statistical method. ARMA and ARIMA models are the
most popular methods, but the nonlinear characteristic of the statistical data
cannot guarantee the accuracy of this method (Ko et al., 2021). The statistical
model maps correlation to the data model by curve fitting, parameter
estimation, and correlation analysis. The correlation mapping processed the

historical input data, such as solar radiation and PV power generation output,
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to realize the prediction of output data. The advantage of the statistical model
over the physical model is that it does not need to thoroughly understand the
complex theoretical relationship of advanced systems, such as photoelectric
conversion and wind speed correlation. The statistical model only needs the
knowledge of partial realization through different data analysis techniques;
therefore, this is a simple technique with strong universality for different
regions. However, a vast amount of correct historical past data, data acquisition,
and complex calculation processes are the drawbacks of statistical methods
for implementation. The complex numerical calculation process usually takes
time to predict, and ultra-short-term prediction speed is another drawback to
implementing with ordinary computers. Due to the prediction process being
related to the reserve of historical data, data screening and elimination of false
data are the primary concerns for the accuracy of the conventional statistical
method. Therefore, the prediction accuracy depends on many numerical
calculation processes of higher dimensions, considerably increasing the

calculation time and the prediction speed (K. Wang et al., 2019).

2.13.3 The artificial neural network

The artificial neural network is a powerful tool representing historical
data's nonlinear and complex features with many parameters. ANN methods
have been widely applied in forecasting to improve memories and arithmetic
units. ANN models for forecasting (WSF) provide results with higher accuracy
than physical and conventional statistical methods. The introduction of deep
learning neural networks improved the accuracy of ANN models. Recurrent
neural networks (RNN), long short-term memory (LSTM) networks, and gated
recurrent units (GRU) are the advanced structures of the deep learning ANN

method (Ko et al., 2021).

2.13.4 Machine learning techniques
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Machine learning is a highly efficient model based on artificial
intelligence; this model can effectively extract high-dimensional complex
nonlinear input functions (Rajagukguk et al., 2020). Machine learning is a
powerful tool that can extract high-dimensional complex nonlinear features
and directly map the output. The support vector machine (SVM), k-nearest
neighbors, artificial neural network (ANN), naive Bayes, and random forest are
the former well-known machine learning models. The input variable of the
machine learning statistical models usually relies on historical past data to

predict near-future time series models (Wang et al., 2019).

Recently, machine learning has become a popular time series prediction
technique. In the recent research article, analysis prediction of REs resources
with machine learning in which the meteorological data is used as the input
data, such as irradiance, temperature, humidity, wind speed, air pressure, etc.
(K. Wang et al., 2019). This work presented an ANN-based fitting tool and the
rapid miner technique to predict solar irradiance with numerous input variables.
The prediction model is compared with different ANN models, such as RBFNN
and GRNN.

2.13.5 Deep learning techniques

The deep learning model has recently become a popular forecasting
technique. The deep learning model is the development of the machine
learning model; this model can solve a complex nonlinear problem with vast
data in a short time. The structure of the multiple can automatically learn the
abstract features from the raw data to find valuable representations. The
outperforming result of deep learning models over other conventional is
improving the accuracy as the training data increases, whereas conventional
models' performance has been limited improvement at a certain amount of

data (Rajagukguk et al., 2020).



34

2.14 Concepts of energy management system with Forecasting

techniques

The reliable forecasting of demand and distributed generation has become vital
in the active distribution system. The data is helpful information for system operators
to manage the power flows, maintain dispatching, and ensure continuous servicing in
the network. Distribution system operators (DSOs) manage the network power flow,
balance supply and demand, and dispatch the power system. Thus, continuity and
reliability are important issues for ensuring service provision. This concept has become
important significantly due to the improved integration of distributed generation and
overall demand response, making the distribution system an active network (Massrur,
Niknam, & Fotuhi-Firuzabad, 2018). The RE uncertainties with multi-objective
optimization energy management for the networked microgrids cooperation are
highlighted (Karimi & Jadid, 2020). Multi-objective stochastic optimization is solved by
the Compromised Program (CP). This technique converts the multi-objective into a
single-objective function. This analysis aims to reduce power transfer from the main
grid, reduce system losses, reliable operation of cooperative MMG, and minimize

greenhouse emissions.

Incentive-based integrated demand response is a powerful tool to reduce the
supply-demand imbalance of integrated energy systems with high penetration of
renewable energy resources. Moreover, to reduce total electricity costs, demand
response programs are applied in this work as an option for economic aspects. The
output uncertainties of RE generation, load uncertainties from the demand side,
double coupling including the energy conversion effect on the energy aggregators side,
and appliance coupling effect on the end-user side created a challenge to model
incentive-based demand response programs. In this model, the applicability of
curtailment integrated and absorbing integrated demand response is planned to be
added to the bi-level stochastic programming method. The final results show that this

model can decrease multi-energy aggregators' total operating and risk costs and
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increase consumers’ profits (Zheng et al., 2020). Due to the increasing dependence on
electrical, heat, and gas systems to supply various purpose load types, multi-energy
carrier systems face challenges concerning any uncertainty given rise from one carrier.
These issues would influence the whole system’s energy flow and secure operation.
These cases become a critical issue due to the integration of industrial energy carrier
demand response (ECDR) consumers, who participated randomly, and renewable
resources (RESs) and their inherent characteristics (Massrur et al., 2018). The work in
this paper shows the 2m + 1 point estimate method as a powerful probabilistic tool
to analyze energy flow, which considers ECDR, RES, and various types of demand
uncertainties. According to the results, the incentives for DR integration on electricity
suppliers increased the additional operating cost. Therefore, incentives for DR should
be employed when the system faces a security risk. The work of Du et al. (2020)
proposed an uncertainty RE generation model with demand response in the unit
commitment problem. The mixed-integer linear is used to solve the problem of UC
scheduling. In this scenario, demand response is cooperative work to optimize load
and RE generation curtailment risk when the RE output runs out of the adjustable
uncertainty set. The adjustable uncertainty set of RE is divided into subintervals and
evaluated bounds of the set. In these subintervals, consider DR to reduce operation

which has not deviated from the forecasted value.

The distribution system operator (DSO) is responsible for maintaining the
reliable operation of distribution systems and aggregating the DRs and controllable
loads into the network. Therefore, the advanced microgrid network must be
considered the optimal framework for a demand response (DR) program with the
uncertainty of wind power generation. The load reduction offers include load
curtailment, load shifting, and generation from DERs. Then, the DSO handles the
market-clearing price using mixed-integer linear programming (MILP) for the day-ahead
market. For uncertainty problems, Weibull probability distribution is fitted scenario

generation of the wind power. Many scenarios are the various realizations of uncertain
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parameters that must be considered for modeling this stochasticity. The results show
that the proposed model minimized the peak demand and system cost. Stochastic
risk-constrained with DR framework are employed for short-term scheduling
considering generation and demand uncertainty in advanced microgrids. The proposed
method is to demonstrate demand response influence on the system’s reliability and
financial issues. The risk-constrained stochastic method is employed to maximize the
profit of the grid operator by considering the uncertainty of RE output, day-ahead
prices, and load. The optimal power flow determines the amount of power reserve
from dispatchable distributed generation and evaluates responsive load operation for
the next day. Moreover, the indices of the system’s reliability and economic impacts
are investigated by the appropriate level of DR participants, the number of losses, and
the risk-aversion parameter (Vahedipour-Dahraie, Rashidizadeh-Kermani, Anvari-

Moghaddam, & Guerrero, 2019).

Based on the concept of bidding in the electricity market, the work of Gao et
al. (2017) demonstrates the competitive electricity market model with various types
of resources that integrate into the VPP. The centralized dispatchable virtual power
plant (VPP) is a step to improve the integration of distributed energy resources into the
competitive electricity market. The bidding model has been considered the DR model
and the uncertainty of RE for VPP to miticate the negative impacts of RE penetration.
The scenario analysis deals with the impact of elastic demand due to the demand
side's inherent nature and the risk of VPP bidding. The numerical results show that the
proposed VPP is superior in handling the management of the system with RE and DR
resources. Shi et al. (2019) proposed the multistage robust energy management model
with generation and demand uncertainties for the network-connected microgrid. Dual
dynamic programming is applied to handle the complexity of multistage management
problems. Haddadian and Noroozian (2017) highlight a model of the optimal active
distribution network in the multi-microgrid system. Firstly, the proposed system carried

out a probabilistic dual load flow model of all distributed generation, including the
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Monte Carlo algorithm. In this stage, the objective function considered in the test
system is to minimize the cost and power transfer from the main network. The
stochastic nature of demand and RE generation is estimated by Rayleigh PDF, Beta
PDF, and Normal PDF, respectively, from historical information. This study also takes
into consideration a time-dependent storage system. This scenario is timely due to the
energy storage system's hourly state of charge. This approach is solved by MCS, limiting
the number of stochastic states for all intermittent intervals having their PDF. Then,

probabilities of power flow are evaluated for the generated states.

2.15 Time Series prediction for day-ahead economic dispatch

Recently, a more accurate timescale prediction model has been introduced to
address the challenge of REs uncertainty (Xu, Chang, Zhao, & Wang, 2023). The
timescale scheduling schemes regarding the basis of shorter timescales eliminate
uncertainty factors. Day-ahead scheduling, intraday rolling, and real-time scheduling
are the basic models of timescale scheduling schemes in which uncertainty is
eliminated to ensure system stability and economic dispatch. With the emergence of
the active distribution network, demand response (DR) is a method for eliminating
uncertainty; it is the interaction between the consumer and operator to change the
load curves and eliminate peak load at a particular time. According to the timescale
characteristic, the accuracy of the PV/wind power prediction has been improved with
the refinement of the prediction method. In addition, the demand response
performance also provided peak load shaving and valley filling. The uncertainty
referred to the prediction error of the randomness of the volatility resources. This
strategy aims to meet the worst case of the system. Uncertainty reflected the
randomness of volatility and the unpredictability of RE resources. This paper adopted
the time series deep learning model to address the uncertainty of RE resources for the
day-ahead scheduling process. In the optimal day-ahead scheduling, the dispatch
outputs of the upstream generation units are arranged optimally for the next day over

24 hours at a one-hour time step (Xu et al., 2023). The optimal day-ahead operational
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management and power bidding DR strategy are incorporated to provide dispatch
operation with no supply/demand deviation. The highly accurate deep-learning neural
network forecasts the day-ahead wind/PV power generation and the aggregate load
profile. Then, the optimization algorithm implemented dispatch generation for the
next day according to day-ahead forecast information to satisfy the multi-criteria
objective and system constraints. The optimal day-ahead scheduling phase results are
considered a decision-making strategy for the demand response program to
compensate for the imbalances caused by RE uncertainty and prediction error.
Therefore, the day-ahead operation strategy prevents the main disturbance caused by
RE uncertainty in realities (Khosravi, Afsharnia, & Farhangi, 2022). The above algorithms
present the efficient usage of mathematical formulation to capture uncertainty. The
previous model ignored the effectiveness of the time-series model and real-world
applicability in the calculation process. The equivalent continuous demand profile
combines the random outage of the generating units effectively predicted with the
artificial neural network model. The model assumes that responsive load users fully
respond to the demand side management according to the response amount
requirement before the violent circumstance. In practice, there is also significant
uncertainty in the user’s response after the load change order is issued. Therefore,
demand response has three situations: over-demand response, full-demand response,
and under-demand response. This work presents the possibility of over-demand
response caused by REs uncertainty and its impact on the upstream side generation

cost (Y. Yang, Wang, Gao, & Gao, 2022).

The work of (Nourollahi, Salyani, Zare, & Razzaghi, 2022) presented the
application of a hybrid scenario and robust optimization techniques to model the
uncertainty of the ITMG under normal and resiliency operations. The results show that
the robust optimization modeled the uncertainty of the electricity price due to its
unpredictable market environment. The Scenario probability technique will capture

the other uncertainties, such as the renewable generation, load, and resiliency period.
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A microgrid is an active distribution network that makes activities feasible economically
with available resources. Due to forecasting features of REs and load in the active
system, the available time horizon for the energy management system is the day
ahead, intra-day ahead, and real-time operation. Moreover, day-ahead, intra-day-
ahead, and real-time operations require an active distribution network to control
current and future operation situations. Furthermore, the day-ahead management
system requires current input information to update important information daily. The
forecasting input module is responsible for forecasting the daily REs generation and
daily load curves according to historical data and weather conditions. The day-ahead
EMS contains the forecasted information of wind/PV, load profile, local generation
units’ settings data, the mathematical model of desired operating conditions, and
decision-making optimizer. The decision-maker evaluated the optimal condition of
dispatch unit costs according to the data setup from the input module to satisfy system
constraints and objective function. The output of the decision-maker is the optimal
dispatch operation of each generation unit, which is formed as dispatch powers. The
optimal dispatch powers are to set up the operating status of the real-time microgrid
EMS for the next day. The decision-maker also compensates for RE generation and

demand deviation due to real-time forecast errors (Silva, Aoki, & Lambert-Torres, 2020).

The REs generation and load forecasts vary considerably over the year;
addressing the day-ahead scheduling problem for every day under uncertainty is a
limitation of previous work. Moreover, the simulation results of the day-by-day analysis
to cover the uncertainty of four seasons and variations in load and solar generation
forecasts could not be suitable for the real-world set of simulations. Therefore,
accurate forecasting of REs is compulsory to mitigate system stability issues (Akhter,

Mekhilef, Mokhlis, & Mohamed Shah, 2019).
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2.16 Literature reviews of renewable energy forecasting with the

statistical method

Generation forecasting is the basis of managing tools for existing and
restructuring systems (Ghofrani & Alolayan, 2018; Martin et al., 2010; Voyant, Muselli,
Paoli, & Nivet, 2012). Suppose the generation output is not accurately forecasted. In
that case, inappropriate system operation in practices and inadequate power
transactions are implicated (Ghofrani & Alolayan, 2018; Vahedipour-Dahraie et al,,
2019). Many renewable energy sources penetrations, such as wind and solar, can
significantly raise uncertainties in the systems and have complicated power system
operation and planning. The use of energy storage (ES) or the forecasting of the power
sources becomes the option to handle these risks. Therefore, forecasting of RE
generation became vital information to solve the complicated system into more
efficient and reliable systems operation. Generally, wind and solar forecasting have
three categories: classical statistical techniques, intelligent computational methods,
and hybrid algorithms. Time-series statistical techniques are the most commonly
applied for various forecasting. The mathematical formulation developed the time-
series method that can be applied to observe near-future predictions based on

available historical data (Voyant et al., 2012).

Moreover, the critical aspect of generation forecasting is its increasing
penetration rate into the network, guaranteeing the supply-demand balance and
optimal managing process in the active grid structure. In the case of the PV system,
the generated power mainly depended on solar irradiance. Therefore, solar power
forecasting can be executed by predicting solar irradiance (David, Ramahatana, Trombe,
& Lauret, 2016). This work highlights the performances of the combined use of linear
models (ARMA and GARCH) to provide probabilistic solar irradiance. This model used
historical solar irradiance data and provided reliabilities probabilistic statistical
distribution. The result testing procedure has been implemented to assess for point

forecasts and probabilistic forecasts. The work of (Paoli, Voyant, Muselli, & Nivet, 2010)
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highlishts the error comparison with an ANN prediction approach and statical
prediction methods such as AR and ARMA k-NN, and Markov Chains. These proposed
methods evaluate daily solar irradiation and grid-connected PV output at Corsica
Island, France. AR (8) and ANN models with clearmess index and precise sky index
reduce the normalized root mean square error (NRMSE) errors by approximately 5-6%
compared to those without the preprocessing model. This model got better results
than 20%-25% in nRMSE than the Markov chain, Bayes, and k-NN methods. In
conclusion, the combined use of ANN and ARMA simulation confirms that it improved

daily irradiation profiles' accuracy.

The comparison of output perdition for half-daily values and three-day
temporal horizon solar irradiance data is presented (Martin et al., 2010). The statistical
time series model, such as autoregressive and neural networks with fuzzy logic models,
is tested with the clearness index and lost component time series model. For
autoregressive analysis, half daily irradiance data are changed into stationary time series
variables used as input parameters. The relative root mean squared deviation (rRMSD)
measures the performance index. Neural Networks and Adaptative-network-based
fuzzy inference system (ANFIS) models provided the best results for lost component
input variables. However, Clearness index time series model provided better results in
the models with lost component. Therefore, this evaluation process shows that the
accuracy of forecasting model strongly depended on the metrological meteorologist

conditions and temporal data set sequence.

The prediction of hourly solar irradiation was analyzed by (Ji & Chee, 2011) by
the combined use of Autoregressive and Moving Average (ARMA) and the controversial
Time Delay Neural Network (TDNN). Before implementing the ARMA model, a non-
stationary set of solar irradiations is removed in the detrending process. The goodness
of the stational model is tested by the Augmented Dickey-Fuller and Augmented
Dickey-Fuller methods and normalized root means square error (NRMSE). According to

overall testing, the TDNN model provided a better result, but this model sometimes
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has enormous prediction errors and unstable phenomena. Moreover, the hourly solar
irradiation data set will involve linear and nonlinear parts. The ARMA model is applied
for linear stationary series in the prediction process, and the TDNN model is employed
to predict the nonlinear function in the input data set. Although the hybrid model
does not always provide the best performance, the combined use maintained stable
and accurate performance in the prediction process. The two-stage method's hourly
rooftop PV power prediction is presented (Bacher, Madsen, & Nielsen, 2009). The first
step of the proposed method is a statistical normalization using a clear sky model.
Then, the prediction process is evaluated by linear time series autoregressive (AR) and
AR with exogenous input (ARX) models. The information from numerical weather
predictions (NWPs) is used as an exogenous input variable for ARX model. In this
scenario, ARX model minimize 35% root mean square error than AR model. A root
means square error improvement of around 35% is achieved by the ARX model. This
method is suitable for online forecasting to access the solar system's conditions and
the surrounding environment's state. The overall results show that 2 hours ahead of
prediction can be forecasted by the available solar power data set. Nevertheless,

online adaptive NWPs are the essential variable for longer prediction horizons.

The numerical weather prediction model (NWP) with hybrid ARMA/ANN is also
proposed (Voyant et al., 2012). This paper presented an hourly radiation time series
model using meteorological forecasting data from a numerical weather prediction
(NWP) model. The static input variable for auto-regressive and moving averages (ARMA)
uses multilayer perceptron (MLP) and endogenous data. This hybrid model has
compared the persistence predictor and standalone ANN for performance checking.
This work proposes the confidence interval of every prediction process to validate
reliability. The work (Voyant, Randimbivololona, Nivet, Paoli, & Muselli, 2014) highlights
the day ahead forecasting solar irradiation. This work compares the artificial neural
network (ANN) with the statistical-based autoregressive-moving average model (ARMA)

and references the persistent method. A method based on artificial intelligence using
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an artificial neural network (ANN) is reported. The ANN multi-layer perceptron (MLP)
with endogenous and exogenous input variables is employed to pretreat time series

data sets.

The autoregressive time series model for wind power forecasting in three
different site areas is analyzed (Poggi, Muselli, Notton, Cristofari, & Louche, 2003). The
statistical time series model simulates the wind speed data in this scenario. Then, the
result data are compared with experimental data to check the production of studied
periods. This work aims to create a monthly data set in a particular reference year for
wind power simulation in Corsica. Erdem & Shi (2011) work focuses on short-term wind
speed and direction forecasting with four-time series autoregressive moving average
(ARMA) model types. This model was applied to observe wind speed in two different
sites. The overall final performance is compared by the mean absolute error (MAE).
The ARMA model first forecasted lateral and longitudinal wind direction and speed
components. The traditional ARMA model predicts the Wind speed. Linked ARMA
predictor evaluates the Wind direction. In the final methods, vector autoregression
(VAR) models and restricted versions of the VAR are applied to forecast wind speed
and direction sequence. According to the results, the component model provided
better direction forecasting than the traditional-linked ARMA. The VAR model improved
wind direction results more than traditional-linked ARMA and significantly improved
speed performance. Restricted VAR models would be a suitable approach for

forecasting models compared to other counterparts.

The work of Santamaria-Bonfil, Reyes-Ballesteros & Gershenson, ( 2016)
presents the combination of hybrid Support Vector Regression and the Phase Space
Reconstruction method to predict wind speed using historical wind data from Mexico.
According to the historical data set, the wind speed of the selected location has a
non-Gaussian distribution nature and has positive Lyapunov exponents. Therefore, the
Time Delay Coordinates model and Phase Space Reconstruction procedure were

selected as the proposed model. The hybrid method is checked with the persistence
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and autoregressive models (AR, ARMA, and ARIMA) by AIC and Ordinary Least Squares
for comparison purposes. The performance of this method is more accurate in medium
and short forecasting than persistence and autoregressive models, and it is best to use
it for mitigating fluctuating wind speed. The autoregressive moving average with
generalized autoregressive conditional hetero-scedasticity technique (ARMA-GARCH) is
used to evaluate the means and the volatility from the historical wind speed in time
series at different heights (Liu, Erdem, & Shi, 2011). In volatility forecasting, the interval
estimation provided possible results. For wind speed forecasting, mean estimation
shows accurate and robust results. The difficulty in wind power generation is due to
its unstable nature, and the interval estimation mitigated this drawback and provided
accurate information on mean and volatility to the operator who can effectively
manage system operation. The analysis of (Hill, McMillan, Bell, & Infield, 2012) provided
detailed wind speed modeling, such as diurnal, seasonal, and geographical area effects,
to evaluate real wind power on the grid. Univariate, multivariate, and vector
autoregressive models are employed for detrended wind data. The main feature of
this work is to determine the annual and seasonally diurnal variations, which are the

critical impacts on wind power generation.

Moreover, it is also pointed out that the detrending is also considered for
regional site variations. All models are compared with root-mean-square error (RMSE)
for accuracy assessment. According to the outcomes, the VAR model demonstrated a

better synthesis reference for the GB wind plant planning and operation.

2.17 Literature reviews of Demand forecasting with the statistical

method

Many works of literature have studied demand forecasting based on duration
and methodology of forecasting. Demand forecasting can be classified into three
according to their analysis tools: traditional, modified traditional, and soft computing

methods (A. K. Singh, Ibraheem, Khatoon, Muazzam, & Chaturvedi, 2012). Accurate
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demand forecasting provided the utility information for decisions such as purchasing
electricity, generating power, switching load, and improving system infrastructure.
Moreover, demand variation was a significant issue in the electricity markets. This
variation created the technical network’s vulnerability and undesired economic effect
on the spot electricity price, whose decisions are based on the existing plants'
expanded investment. Thus, demand forecasting has also become an important topic
with the emergence of the competitive electricity markets. According to many research
methodologies, the demand forecasting field can be concluded as linear regression
and econometric models, neuro-fuzzy models and data mining procedures, artificial
intelligent techniques, Auto-Regressive Integrated Moving Average (ARIMA), and Auto-
Regressive Moving Average (ARMA) models (Pappas et al., 2008). The work of (A. K.
Singh et al.,, 2012) addresses modeling demand and electricity price forecasting with
the deseasonalized and Auto Regressive Moving Average (ARMA) method in Greece.
For the validation process, the results are validated with three types of order selection
criteria, namely AICC, Akaike’s Information Criterion (AIC), and Schwarz’s Bayesian

Information Criterion (BIC).

Another aspect of demand forecasting is system operators' performance of
system safety and management. The demand variation due to active demand response
has become subject to active distribution network management problems. The work
of (Garulli, Paoletti, & Vicino, 2015) demonstrated the effects of load variation in the
active distribution network and the validity of the proposed load forecasting methods.
Active demand behavior and seasonal components are considered exogenous inputs
of load forecasting. The load identification approach has been analyzed and tested
based on different demand classes, such as commercial and accommodation areas. It
is pointed out that neglecting the load variation with demand response in the model
leads to unsatisfactory results. Therefore, ongoing investigation regards that it needs to
analyze more accurately to model for the system with active demand component of

the load and the sensitivity of forecasting algorithm that can improve performance of
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dynamic demand modeling errors. The work of (Shyh-Jier & Kuang-Rong, 2003)
employed the load forecast using the Autoregressive moving average (ARMA). They
proposed a model that considered the non-Gaussian nature of historical load data.
The cumulant and bi-spectrum concepts are used with ARMA to tackle the Gaussian
and non-Gaussian parts. It is concluded that the performance of the proposed model
is ensured for accuracy improvement in the load forecast. Effective short-term load
forecasting and information utilization become the requirements in active system
development. However, the system’s monthly and yearly demand forecasting is
complicated because of its seasonal volatility effect. The work of (Pappas et al., 2008)
presented the multi-model partitioning theory for short-term load forecasting for all
seasonal periods and compared its performances with the Corrected Akaike
Information Criterion (AICC), Akaike’s Information Criterion (AIC), and Schwarz ’s
Bayesian Information Criterion (BIC) time series techniques. The applicability of the
proposed method is proved by comparing it with the actual demand for the Hellenic
power system. It proves that the proposed method's reliability and accuracy make
usefulness in the studies of concern electricity consumption and electricity prices
forecasting. This effectiveness of proposed work concern with energy consumption and

electricity prices forecasting that provided the information to the electricity authorities

to guarantee supply uninterruptable power supply with a low cost.

2.18 Literature reviews of multi-objective optimization economic
dispatch

The work in (Guoping Zhang, Wang, Du, & Liu, 2020) presented an economic
multi-objective optimization model using a hybrid particle swarm optimization
algorithm and the simulated annealing (SAPSO) algorithm for a standalone microgrid
system involving photovoltaic panels, wind turbines, diesel generators, and energy
storage battery system. Since the power of the storage system and the diesel generator
is the optimal decision variable, the multi-objective variable is defined to minimize the

costs of generation, battery depreciation, and environmental protection. The results
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demonstrated that the increased battery depreciation cost caused a dramatic decrease
in economic and environmental costs. Moreover, the energy storage system charging
and discharging capacity of the storage power during peak and night can shave the
peak load, fill the valley, and smooth the output power of traditional diesel generators.
The work in (Alilou, Nazarpour, & Shayeghi, 2018) highlights the multi-objective
demand-side management strategy in the distribution system with the multi-
distributed generation and demand response program. The non-dominated sorting
firefly algorithm and fuzzy decision-making method were applied to optimize
distribution systems' technical, economic, and environmental indices. The results
presented that indices of the distribution system have been significantly improved by
utilizing optimal schedule DSM. The dispatchable DG units fulfill part of the demand
requirement due to their stable productivity and low start-up/shutdown costs. The
generated power of non-dispatchable DGs is almost one-third of the demand, and the

effect of environmental indices is considerably clean and eco-friendly.

The work (F. Wang et al., 2018) presented multi-objective optimization for the
community- building level intelligent energy management system (BEMS) based on the
forecasting of building integrated PV power, noncontrollable load, and outdoor
temperature. In the BEMS system, the occupants’ indoor environment comfort was
considered to be the main aspects: visual comfort, thermal comfort, and indoor air
quality comfort. Considering controllable load DR programs, the system’s different
energy usage, electricity, thermal, and cooling loads are balanced to guarantee
optimized operation. The results showed that the multi-objective optimization model
simultaneously improved the system economy of the BES and less affected
occupants’ comfort level by the synergetic optimized dispatch. The work of (Paterakis,
Gibescu, Bakirtzis, & Catalao, 2018) presented a multi-objective optimization model of
risk-aware joint energy and reserve market structure incorporating demand-side
resources. The risk-averse multi-objective optimization of stochastic programming is

considered to mitigate significant wind power uncertainty and minimize expected
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operational costs. The results observed that stochastic optimization controls the risk
of wind uncertainty and the risk embedded in the decisions making reserved by
procuring the necessary. The participation of DRPs can mitigate risk related to sensitivity
for the load recovery and the costs of demand side reserves. The elastic demand side

management allowed for higher exploitation of wind energy at all risk aversion levels.

The work by (Soares, Fotouhi Ghazvini, Silva, & Vale, 2016) presented the
optimization of the centralized Energy Resource Management (ERM) system for a
Virtual Power Plant (VPP) with multi-dimensional signaling to maximize profits. Since
VPP includes several different generation resources, such as Demand Response (DR),
Electric Vehicles (EV), and Energy Storage Systems (ESS), it requires advanced tools to
manage competitive resources at a reasonable cost. The results observed that
deterministic optimization is more resource-intensive and needs more system memory
than metaheuristics in large-scale problems. The decision-making of large-scale VPP
operations required more computing efficiency platforms to solve large-scale
problems and provide better decision support in adequate time. This work proposed
stochastic algorithms to ensure reliable microgrid daily optimal scheduling operation
considering intermittent generation and load behavior. The metaheuristic algorithm is
applied to solve uncertainties of RESs and loads. Moreover, the strength of demand
response programs is considered on optimal day-ahead scheduling of microgrids to
reduce cost fluctuations and flatten the demand curve. The numerical results show
the effectiveness of the metaheuristic algorithm through comparison with stochastic
optimization. The results suggested that deterministic methods are no longer suited
for precise analysis of advanced microgrid system operation and planning. The work in
(Shewale, Mokhade, Funde, & Bokde, 2020) analyzed multi-objective optimization
problems for residential appliance scheduling problems regarding operation cost
minimization, PAR minimization, and user satisfaction maximization. This work carried
out a state-of-the-art comparison of RASP using classical, heuristic, and meta-heuristic

algorithms. The finding discussed the performance of three algorithms in terms of
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computing time and optimal solution. Although the classical method provided the
exact global optimal solution, this method takes a long computational time. The
heuristic method provides an approximate optimal solution faster and can be helpful
for specific schedules of appliances. The nature-inspired meta-heuristic algorithm is a
faster convergence way to find the optimal schedule in appliance scheduling at an
acceptable time. The work of (Phani Raghav, Seshu Kumar, Koteswara Raju, & Singh,
2022) proposed the multi-objective day-ahead three-layer stochastic energy
management framework to optimize operational costs, energy losses, and voltage
deviation under uncertainty. This work addressed the uncertainties of wind power,
solar irradiance, load demand, and market price with the scenario generation/reduction
method. This work developed a flexible price elasticity-based incentive-driven model,
and the performance of the proposed model is evaluated based on a techno-
economic multi-criterion. The results observed that the emergency demand response
program outperforms nonlinear and linear-based incentive and penalty models

regarding load factor improvement.

Tavakoli Ghazi Jahani, Nazarian, Safari, & Haghifam (2019) developed a multi-
objective model with demand response that solves the distribution networks'
reliable/economic performance with the epsilon-constrained (EPC) method. The
uncertainty-based multi-objective optimization model is developed with stochastic
programming. The results show that optimal reconfiguration of the distribution system
reduced power loss and energy not supplied (ENS) index, demand response reduced
total power loss, amount of curtailed load, and enhanced voltage profile. Dan et al.
(2018) developed the multi-objective hierarchical three-layer model of a day-ahead
management system with an artificial immune algorithm to solve operation cost,
network benefit, and social welfare simultaneously. The results observed that the
feasible optimization model could provide the utility level of operation cost
minimization and the peak-to-average ratio, demand side management offered profit

maximization to DR aggregators, and electricity bill minimization to customers.
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Aghajani, Shayanfar, and Shayeghi (2015) proposed a multi-objective short-term
energy management system to optimize microgrid operating costs and pollutant
emission in the presence of renewable energy sources (RESs) with a randomized
natural behavior. The results presented that the demand side management (DSM)
scheduling model can effectively reduce the uncertainty problem obtained from the
actual generated and predicted power of wind turbines and photovoltaic in microgrids.
The results observed that incentive-based payment demand response is a possible
way to apply in a competitive electricity market. Reddy (2016) presented a multi-
objective day-ahead market clearing (DAMC) mechanism with demand response for
social welfare maximization, load reduction minimization (PredM), and load-served
error (LSE) minimization. The proposed system considers reduced stress system
conditions where only demand response cannot provide a feasible solution. The multi-
objective strength Pareto evolutionary algorithm 2+ (SPEA 2+) is used to solve the
DAMC problem. This work highlights the requirement for judiciously selecting a
combination and suitable choice of conflict objectives function for the multi-objective
problem. The results show that voltage-dependent load modeling is required to
optimize SWM and LSE multi-objective functions simultaneously. The Pareto optimal
front provided to make a better choice of decision variable regarding compromise

between the conflicting objective functions.

The work of Hajebrahimi, Abdollahi, and Rashidinejad (2017) presented
probabilistic multi-objective transmission expansion planning (TEP) to provide a
structure elasticity of demand and customer benefit function. This work investigates
the impact of responsive load on power system planning and considers the
uncertainties associated with wind power and demand. The congestion costs, RC, and
TIC are multifarious objectives in probabilistic multi-objective TEP incorporating
demand response programs (DRPs). The result observed that the inflicted costs and
additional investment were significantly deferred by implementing a demand response

program through transmission expansion planning (TEP). The work of Falsafi,
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Zakariazadeh, and Jadid ( 2014) presented a multi-objective two-stage stochastic
generation scheduling model using the augmented epsilon constraint method and
TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method. This
work highlights the effectiveness of a demand response reserve to recover the
uncertainty of wind power forecasting in the smart grid. The results show that demand
response and reserve market compensated for the effect of forecasting uncertainty
and reduced the operational cost and air pollutant emissions. Hong and Lin (2013)
presented short-term active power scheduling of a stand-alone system with wind and
PV power uncertainties to simultaneously reduce fuel cost and CO2 emission. The
interactive multi-objective problem is solved by adaptive chaos clonal evolutionary
programming (ACCEP), and the uncertainty of wind and PV powers is modeled by the
fuzzy interval prediction method. The work of Azizipanah-Abarghooee, Niknam, Roosta,
Malekpour, and Zare, (2012) implemented the wind-thermal economic emission
optimal dispatch problem with a teaching-learning algorithm, and the probabilistic of
wind power uncertainty was solved by the stochastic 2m point estimated method. The
proposed work is to analyze energy costs and emissions costs simultaneously. The
probabilistic economic emission dispatch problem considers overestimating and
underestimating available wind power. The results observed that the precise modeling
of uncertainty is essential for generating unit scheduling and generation costs, wind
power can reduce the emissions cost, and the stochastic approach is an efficient way

to cope with uncertain resources for the system operator’s likelihood estimate.

2.19 Literature reviews of advanced forecasting method

Renewable energy forecasting is a more practical application than the various
methods to capture upstream side variation. The prediction accuracy facilitated high
penetration of REs through secure and economical operation. Compared to solar
power, it has been understood that wind and solar power are less predictable
resources due to their highly uncertain characteristics (Ko et al., 2021). Many research

articles have investigated the accuracy improvement method and its impact on the
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power system. ANN-based forecasting models have become widely applicable
practically due to higher accuracy than physical and conventional statistical methods.
Forecasting is essential for the decision-maker to provide information dealing with the
operating system's stability (Nikoobakht, Aghaei, Shafie-Khah, & Catalao, 2019). Wind
and solar power generations are considered a negative load due to uncertainty in
steady-state conditions. Therefore, predicting wind and PV generation curves is a
practical deployment concept, especially for estimating standby capacity and optimal
unit scheduling processes. The increased penetration of RE levels also elevated the
importance of accurate forecasting methods. Adequate renewable energy and load
forecasting are essential to mitigate related uncertainties; this concept provides
conductive planning and operation of energy systems. The accuracy of forecasting is a
challenging task due to the intermittent and randomness of renewable energy data.
Numerous forecasting algorithms have been used in the previous literature to provide
accurate predictions for the several minutes ahead to the few days ahead. The
uncertainty of forecasting harmed the daily power system operation and control.
Therefore, the research articles have recently been paying significant attention to

forecasting uncertainty (Wang, Lei, Zhang, Zhou, & Peng, 2019).

Renewable energy, especially solar PV, will become a significant energy source.
Regressive methods have benefited short-term time series prediction models in the
last decade. Recent articles highlight that deep learning based on artificial neural
networks has the adaptability to solve complex nonlinear problems and a powerful
acceleration capability for difficult computation problems. Recently, artificial neural
networks (ANNs) based prediction method has continuously grown to carry out time-
series application due to their superior working characteristics offered on the nonlinear
models. The deep learning-based ANN has become popular in the time-series
prediction application due to its accelerating function to overcome the difficulty of
complex statical methods. The multi-layer perceptron (MLP)-type ANNs is a helpful

model for complex relationships, but this method cannot assimilate the long- and
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short-term dependencies present in the historical data. The dependencies are the
ability of ANN to identify and remember the behavior patterns from the distant past
and the near past. ANN is a particular type to make functional near-future predictions
of historical sequential behavior patterns. To address this, Recurrent Neural Networks
(RNN) emerged where the networks have internal feedback loops. The prediction of
REs is fundamental to increasing system reliability. The generated power from sources
is the medium-level integration to the distribution networks. In the energy market,
electric production and actual consumption patterns are the factors with the
programmed offer. The high integration of renewable energy intensifies the complexity
of managing power distribution and the distinctions of the ongoing energy balance due
to its unpredictable and intermittent nature. Several methodologies have been
available for the prediction process at different horizons. This work predicted the PV,
wind, and demand power for the day ahead in 1-hour intervals from historical records
during one year using Long Short-Term Memory (LSTM) and Gate Recurrent Units (GRU).
The artificial neural network-based prediction method predicted the near future data
from the data in the past as current input data. A multi-layer perceptron (MLP) neural
network learns the relation between input and output data and does not consider

time series characteristics (Elsaraiti & Merabet, 2022).

Time series prediction of future values is a frequently studied problem in the
electrical power system. Over the last decade, the infrastructure of power systems has
progressively changed from centralized to decentralized systems, allowing the
integration of small-scale distributed generation (DG) scenarios through the distribution
system. The dispersal of DG in the energy market, especially from Renewable Energy
Sources (RESs), has been facilitated by economic and environmental reasons. However,
the high penetration of DG into conventional electricity systems has brought
challenges for system operators to monitor and control the operation and
maintenance of grids. The smaller generation units are directly connected to

distribution networks near the consumer to characterize decentralized systems.



54

Therefore, future energy systems' proactive and transactive nature offers many
opportunities. However, the challenge of future energy systems is related to integrating
the highly intermittent and stochastic nature of RES production into deterministic
energy systems. In this regard, the conventional energy system demands to change
into the modern grid with improved flexibility. This is the reason the prediction topic
has become a necessary tool for all energy sectors: prediction is required to prepare
respective offer strategies for producers, to maximize profit for consumers, to optimize
short and medium-term decisions for energy regulation and dispatching for
Transmission (TSO) and Distribution (DSO) System Operators. According to these facts,
the accuracy of the prediction system has become the point for the automatic
modeling tools for data analytics and intelligent operation control, enabling prosumer-
oriented home energy management systems and reducing energy and operation costs.
Many of the power system’s practical operations greatly rely on scenario-predicted
data, which is especially important for producers', network operators', and market
players’ applications. In the last decade, this scenario-predicted is mainly essential for
the production comes from expected and intermittent RES resources. This intermittent
brings considerable uncertainty about the difference between predicted and actual
production. This uncertainty challenges stability issues, dispatch ability, and electricity
market problems concerning the day-ahead market. The advantage of RES energy in
the electric system is the environmental and economic benefits since the production
cost and levelized cost of energy from RESs are usually lower than the market-clearing
price. The drawback of this source is its difficulty predictability, which will increase
potential costs to compensate for the imbalance problem between demand and

actual production (Succetti, Rosato, Araneo, & Panella, 2020).

The approaches mentioned above usually carry out univariate and multivariate
energy time series. The univariate model involving energy time series considers a single
time series to obtain the prediction result of the future time series. Multivariate is the

way to observe different situations relating to considering two or more time series
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simultaneously, and it is a complex system that generates a broader generalization
capability. The multivariate data is suitable for developing a model to describe the
results of the relationship between the original time series and the related physical
variables. This method is required to analyze data and collect time series data from
different physical variables related to physical phenomena such as wind, solar
radiation, humidity, air pressure, etc. In this work, the forecasting results were tested
on real-world data to show and compare the performance of univariate deep learning
with the basic ARMA model. According to numerical results from the literature, the
multivariate analysis offers better results than the univariate way in most cases. The
accuracy of the work is proved in terms of MAE. Improvements in prediction accuracy
are required in the field of the energy management of distributed energy resources.
The active prosumers in the smart grid need efficient data-driven modeling tools to

enable active participation and diffused coordination tasks (Succetti et al., 2020).

The work of Rosato, Panella, Araneo, and Andreotti (2019)presented that
energy storage is a solution for RESs generation dispatchable, and the dispatchable
work is often combined with the accurate forecasting method to predict generation
and demand profiles. This work is in the microgrid context with renewable embedded
generation and involves responsive load. The structure of power systems is
progressively changing to be flexible to meet the requirements of high RES penetration
in current infrastructures. RES infrastructures generally come from intermitted natural
resources, which favor use to achieve and enhance carbon diversity and climate
change. The future energy infrastructure envisions a scenario of decentralized systems
that will replace the importance of existing bulk power systems. Moreover, in this
framework, many small generating units will be connected to distribution networks,
and all the consumers will become flexible prosumers capable of interacting with
responsive load control programs. However, the uncertainty issues remain a challenge
related to the predicted deviation of forecast and actual generation of RESs. This is the

problem for stability issues and dispatch ability reasons to the day-ahead market.
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Therefore, the effective prediction tool is a feasible solution for these problems for
the virtual power plant (VPP) concept. The active distribution network involved an
option to implement an effective way to handle the intermittent RES generation along
with the load change pattern cooperatively to optimize system management and cost
reduction. To deal with this, an accurate prediction system must be involved to ensure
the aggregation of the above process. Neural networks have been widely used for
prediction purposes, offering better results for time series prediction at different time
horizons using feedforward, recurrent, and deep architectures. The prediction
processes are performed with the local data, such as irradiation, wind speed, and load
data (Rosato et al., 2019). This work presented a distributed learning algorithm for long
short-term  memory (LSTM) networks to learn long-term dependencies for
decentralized VPP, and the distributed average consensus (DAC) protocol is used to
interact with local agents. This work proposed an approach of cooperative learning of
LSTM networks in microgrid management, mainly working as the active distribution
network. The prediction process is that wind and PV power plants operate with their
LSTM network to forecast power generation. Therefore, the complex patterns of RES
energy are necessary to consider through a forecasting model related to the
sustainable energy system. Forecasting can reflect the intermittence and uncertainty
of power supply and demand. The short-term or long-term forecasting model with
intra-hour-ahead or seven days ahead is utilized in the feasibility energy system design,
and it can also reduce undesired regulatory costs when integrating RES sources into
the energy system (Nam, Hwangbo, & Yoo, 2020). This work developed the forecasting
model with the day-ahead prediction for power demand and renewable energy
generation based on LSTM and GRU deep learning methods. The simulation results of
prediction are used to promote feasible and sustainable renewable energy systems in
the active distribution network. This work also compares and evaluates deep learning
performance with conventional statistical models. The deep learning models studied

in this work included long short-term memory (LSTM) and gated recurrent unit (GRU)
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to overcome the drawback of the conventional statistical method, including the Auto-
regressive-Moving-Average (ARMA) model. The performance evaluation of the
forecasting models has a significantly different effect according to the properties of the
available data. The performances of deep learning models have different solutions
depending on the models' forecasting time, training duration, target data, and simple
or ensemble structure. Therefore, selecting an appropriate model needs several issues
to consider. Comparing and evaluating processes using accurate metric numerical
evaluators and selecting appropriate forecasting models for future load demand and
renewable energy generation (Nam et al, 2020). Although the expansion of RES
resources can effectively positively impact economic and environmental issues, the
challenges still need to be solved for using these sources. For this reason, the
combination of fuel-based distributed generation and renewable energy utilization is
still a complementary relationship. Moreover, it is necessary to ensure the optimal
operation of different technologies from the upstream side to generate power. When
the distribution system is considered to operate with both renewable and
conventional fuel energy, planning and scheduling mixed power generation with
different technologies becomes an issue for the upstream side operation. In this regard,
the work on multiple power generation technologies involving investment issues has
become a significantly increased topic. In the last years, real options and Monte Carlo
simulation have been widely applied to analyze the investment issues of different
generation technologies. Most of the research focuses on the optimization problem of
the investment portfolios and the whole power system structure, which involves
different power generation technologies. Optimizing the whole structure and each
generation cycle still has challenges to response RESs uncertainty, participation of
responsive load in the active distribution network, changing electricity markets, energy
policies, and environments. With the development of renewable energy technologies,
distribution networks have been completed to construct multiple-generation

infrastructures. However, due to the uncertainty, each power generation technology's
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actual profit and cost are still a problem. Moreover, the problem of practical usage of
the existing power generation technologies and the task of fulfilling power demand
within the production cycle horizon still needs attention related to uncertainty issues
(Peng, Liu, Zhang, Zeng, & Graham, 2023). Solar irradiance forecasting is required to
plan and schedule solar and grid-combined generating systems. Artificial intelligence
(Al) based artificial neural networks are widely used to train historical solar irradiance
values and meteorological variables such as temperature, humidity, wind speed,
pressure, and precipitation (Gao et al., 2019). The work by Huang et al. (2016) presented
the power of the gated recurrent unit (GRU) with weather forecasts to predict solar
irradiance for 24 hours. The results show that the proposed method reduces the root
mean squared error by 28.4% to the CSpers algorithm, 23.3% more accurate than the
BPNN algorithm, and 11.9% more accurate than the recurrent neural network (RNN).
The prediction error is reduced by 36.6% compared to long short-term memory.
Compared to the ARMA method, the forecast skill of the GRU is improved by 42.0%.
For the five different training processes, the performance of GRU and LSTM is
distinguishable in that both the LSTM and the GRU exceed the accuracy of the
traditional network model. The work by Lee et al. (2018) presented utilizing
convolutional neural networks and long-short-term memory for day-ahead solar
power generation. This work also analyzes time series data in deep learning
communities with data from photovoltaic inverters and national weather centers. This
research considers that weather information is not always available, which depends
on the site location of PV modules and sensors installed. The proposed model predicts
solar power with roughly estimated weather data from national weather centers. The
robustness of the proposed work is sophisticatedly preprocessed with input data
without weather information to reduce unexpected environmental issues. The
extensive simulation is processed with real-life data sets. The study by Chandran et
al., (2021) presented the effectiveness of deep learning algorithms in predicting short-

term wind power generation from wind speed data. This study adopted Long Short-
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Term Memory (LSTM), Gated Recurrent Unit (GRU), and Recurrent Neural Network (RNN)
in the projection of wind farms. The results show that deep learning models are more
applicable techniques in real-life locations than other models. This study discussed
that machine/deep learning algorithms were efficient modeling tools before the
installation of wind farms in geographically unknown areas. The GRU model is suited
for highly non-linear and complex input data sets in real-time. This work compared
conventional statistical method implementation with deep learning model without
NWP inputs to present accurate predictive models. The work by Malakar et al., (2021)
highlights appropriate design choices of Long short- term memory (LSTM) models to
show the impact significantly on short-term forecasting performance. The design
choices involved pre-processing techniques such as deseasonalization, ordering of the
input data, network size, batch size, and forecasting horizon. The study works on three
recent benchmark methods based on random forest, recurrent neural network, and
LSTM regarding forecasting accuracy. The findings discussed that the importance of the
temporal order of the data and the lack of discernible data pre-processing affect the
making of the LSTM stateful model. The result also found that the input data variation
influences the number of nodes and batch size in an LSTM network. The work by
lbrahim et al., (2021) proposed the combination of the adaptive dynamic particle
swarm algorithm (AD-PSO) and guided whale optimization algorithm (Guided WOA) to
create an algorithm. This algorithm helped to select the optimal hyperparameters of
the Long Short-Term Memory (LSTM) network for wind power forecasting. This work is
to carry out 48-hour-ahead wind power prediction for wind farms. The results showed
that the AD-PSO-Guided WOA algorithm outperforms the accuracy of comparative
optimization and deep learning algorithms. The work by Hua et al., (2008) presented
interval prediction of electricity price to solve uncertainty risk in the decision-making
problem. This work highlights that interval prediction is a more interesting topic for
market participants to make bidding strategies and investment decisions rather than

forecasting the value. The interval prediction method is a valuable risk management
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tool for market participants in a deregulated electricity market. After conducting
comprehensive experiments with real-world price data, the results show that the
proposed NCHF is more effective than well-established time series models, such as
ARIMA and GARCH. The work by Huang et al., (2016) presented an interval prediction
model describing power and load prediction uncertainties for virtual power plant
economic dispatch. This work converts the probability function into an interval
prediction deterministic model. The interval-based ED model is a more flexible way of
uncertainty modeling than the complicated probability distribution function (PDF) or
fuzzy membership function (FMF) due to its simple known intervals and uncertain
variables. The results verify that the proposed system is flexible and can be adopted
for the economic dispatch of virtual power plants. The work by Wu, Shahidehpour,
and Li, (2012) presented the comparative application of the Monte Carlo (MC) scenario
generation method and lower and upper bounds interval optimization approaches for
stochastic security-constrained unit commitment problems considering wind power
uncertainty. The results presented that although the scenario method provided more
stable and insensitive results to the number of scenarios, this method takes additional
time due to computation burdens. The interval optimization method provides lower
and upper bounds solutions for the operation cost and generation dispatch with less
computation, but the optimal result is not a guaranteed solution due to the
uncertainty interval sensitively. From this point, interval optimization is not a suitable
method for the simulation problem having discrete type uncertainty variables such as
random outages of generation units and transmission lines in power systems. The work
in (Saez et al., 2015) studied the robust microgrid energy management system (EMS)
for determining the optimal dispatching of generation units using day-ahead renewable
resources and loads data. The fuzzy prediction interval model is applied to represent
the uncertainty of future predictions. The proposed method is demonstrated with local
data such as solar irradiation, wind speed, and load data from the Huatacondo, Chile,

distribution system. The results suggested that the width of the prediction interval
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reflected higher levels of expected CP that significantly impacted the uncertainty. Shi,
Liang, and Dinavahi (2018) work proposed the RNN-based LUBE method to construct
an optimal Pl evaluation index for real-world wind power forecasting. The RNN model
is suitable for time series forecasting, and the new Pl evaluation index is designed to
enhance the model training process. RNN prediction model is optimized with the
dragonfly algorithm to tune the parameters of the prediction model. The delay
embedding theorem reconstructed the chaotic wind power data for better prediction.
The results show that interval prediction is more efficient in quantifying forecasting
uncertainties than the point forecast approach. The work by Wen, Zhou, Yang, and Lu
(2019) presented the accurate residential power load model and the PV power short-
term forecasting with the deep recurrent neural network with long short-term memory
units (DRNN-LSTM). This work highlights the potential accurate short-term forecasting
for grid-connected residential microgrids' economic load dispatch model to reduce
daily costs and increase reliability. The results show that this model promotes system
operator and consumer interaction. The PV power and residential load uncertainties
were optimized in the load dispatch model based on the forecasting results of the
DRNN-LSTM model. The results also presented that energy storage and EVs shifted
community peak load, and utilization of PV power was promoted. The work by Cai,
Pipattanasomporn, Rahman, (2019) proposed hierarchically-structured deep neural
network models for day- ahead load forecasting in commercial buildings. The
performances of the deep learning model are compared with the Seasonal ARIMAX
model in terms of accuracy, computational efficiency, generalizability, and robustness.
This work investigated that the deep learning gated 24- h CNN model outperformed in
a direct multi-step manner and improved the accuracy by 22.6% compared to seasonal
ARIMAX. Compared to the conventional approaches, the results reveal that
hierarchically structured deep learning networks outperformed the conventional
approaches for capturing the data- dependent uncertainty and increasing the

computational efficiency for large-scale applications. The work in (Shen, Ma, Deng,
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Huang, & Kuo, 2021) analysis of three types of deep learning model, convolutional
neural network, long short-term memory neural network, and hybrid model, for
photovoltaic power forecasting. Many tests and verifications were carried out with
different time series data lengths, and three statistical indicators were concluded with
the statistical results under different data lengths. The statistical results reveal that the
three models' performance provided a good solution and acceptable accuracy. This
work analysis SELNet deep learning and data processing ensemble model to reduce
the impact of seasonal factors. The effectiveness of the proposed model compared
with the gated recurrent unit (GRU), TCN, VMD-TCN, and VMD-CNN models in terms of
mean absolute percentage error (MAPE). The result shows this work can provide a
universally applicable prediction of electricity demand in four seasons. It was also
revealed that deep-learning models have excellent performance to reduce

computational time requirements and less computing equipment and parameters.

2.20 Power generation planning

In the microgrid planning stage, choosing the available power sources is vital
for satisfying the demand needed in a specific area. The suitable and available source
selection requires deep analysis of microgrids in a particular area. Power source and
energy storage systems must be sized based on many criteria, such as peak demand
and cost-effective criteria. Types of suitable fuel base generation must also be selected
for the network, which concerns cost-effectiveness and system reliability. In contrast,
this issue must be considered in the system planning stage as three mains: cost-
effective objective, reducing environmental impact, and improving reliability (Gamarra

& Guerrero, 2015).

2.21 Operation Scheduling
Scheduling is a common problem in the feasibility planning stage; it plans the
available resources in a particular area, such as generators and storage devices. This

problem minimizes operational costs, environmental impact, and power quality while
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covering demand requirements. Multiple optimization methods with signal or multi-
objective functions solve the optimal operation of various microgrids. Heuristics and
metaheuristics are widely used in sizing and scheduling generation mix problems
(Gamarra & Guerrero, 2015). This work highlights sources of uncertainty in every step
of the decision-making process, such as uncertainties in modeling, uncertainty during
model exploration, and uncertainties in interpreting results. Generally, uncertainties
can be identified under two main types. External uncertainties concern the lack of
knowledge and the nature of the environment. Internal uncertainties are related to
the structuring process and analysis of the decision-maker. The uncertainty effect,
objective function, and system constraints are the standard parameters that must be
addressed in every commercial microgrid planning process to achieve cost-benefit and
customer satisfaction. Consumer satisfaction means keeping reliable and quality
insurance with a low environmental impact. In these facts, microgrid planning usually
accompanies the optimal searching process. The optimal planning techniques are
applied not only in renewable energy allocation but also in energy management
systems. Energy management systems are the optimization problem to apply in
different fields based on technical, environmental, and economic constraints and

uncertainties (Gamarra & Guerrero, 2015).

This technique has gained attention in energy management systems (EMS) in
smart homes, buildings, and grids in the last decade. Modeling energy decision-making
is considered a sustainable design that plans and controls particular optimization
issues. It has a complex and computational challenge in handling the traditional
optimization method. The emergence of artificial intelligence, inspired by biological
evolution algorithms, has recently been widespread due to its potential capability to
solve this problem. Many research studies have investigated bio-inspired methods for

energy management systems in smart homes, buildings, and grids (Nguyen et al., 2020).

The comprehensive design and operation of an active distribution network with

REs generation and responsive load to capture the intermittence are described as
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follows: Firstly, deep-learning models provide the required information for the
decision-makers in generating wind turbines and PV systems. Then, decision-makers
create an optimal plan scheduling for modifying the optimized distribution system.
Secondly, the management system’s role is to implement system balancing, which is
essential to creating sustainable and economically efficient activities. The system
overload condition has a contrary effect on the efficient energy distribution system.
On the other hand, a lack of demand fulfillment leads to safety and stability, which
creates long-term generation cost problems due to energy-saving issues. The deep-
learning-based Gate Recurrent Unit (GRU) model, designed to extract complex
nonlinear data from real-time series data, improves the wind and PV power generation
predictions. Accurate wind power forecasting improved the system stability and solved
the challenge of efficient operation for the modern distribution network. Deep learning
techniques have recently become popular in RE forecasting due to their effective

prediction methods (Chandran et al., 2021).

2.22 Bio-Inspired Optimization Algorithms

Bio-inspired algorithms are evolutionary algorithms based on nature’s biological
behaviors that make novel and robust searching algorithms. Evolutionary-based and
swarm-based optimization methods are two basic energy management systems

(Nguyen et al., 2020).

2.22.1 Evolutionary Computing (EC)

This approach inspired the evolution of concepts to handle
optimization problems automatically. Genetic Algorithm (GA) is a widespread
evolutionary computing meta-heuristic optimization method. Evolutionary
fittest selection and genetic operator between generations explored the

searching space of the optimization problem (Nguyen et al., 2020).

2.22.2 Swarm Intelligence (SI)
This approach mimics the collective behaviors of living species, such as

ants, bees, and birds, forming a group of operators and making interactions
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between them. These principles created decentralized searching algorithms
that balance exploring and exploiting capabilities. Different techniques have
different ways of exploring and exploiting manners in the searching space.
Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) are
popular heuristic algorithms. Furthermore, along with other modern heuristics,
Artificial Bee Colony (ABC), Bat Algorithm (BA), Cuckoo Search (CS), Grey Wolf
Optimization (GWO), Firefly Algorithm (FA), Social Spider Algorithm (SSA), and
Kestrel-based Search Algorithm (KSA) are the modern swarm intelligence (SI)

techniques (Nguyen et al., 2020).

2.23 Meta-heuristic Optimization Techniques

Metaheuristics has become popular due to its problem-solving techniques. This
technique can find reasonable solutions with a wide range of algorithms where
deterministic are not efficient enough to find reasonable solutions. The metaheuristics
method is a stochastic operator due to creating random solutions and finding
reasonable solutions in a reasonable time. The first class of metaheuristics is iteratively
generated and improved the specific solution until a specific condition is met. The
benefit of the first method is low computational time and high convergence speed.
The drawback is less exploration and easy to trap in the local optimal solution. The
second class of metaheuristics is a group of improved solutions for a given optimization
problem. The group search is a highly exploratory algorithm. However, this method
requires high computational time and space complexity (Khan et al.,, 2019). The Grey
Wolf Optimizer (GWO) is the recent swarm intelligence optimization method that

inspired gray wolves' hunting behavior (Mirjalili & Dong, 2020a).

Meta-heuristic techniques are the less computational complexity solvers that
can handle problems with self-learning, self-optimization, self-processing, and self-
healing. The fast exploration and exploitation capability is the feature of such a

technique to escape from the local optimal and to search for the optimal answer from
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the searching area with adequate diversity. Another advantage of the meta- heuristic
over the deterministic techniques is that it does not need the assumption of certainty

or proportionality (Khan et al., 2019).

2.23.1 Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) was presented in 2014 by (Mirjalili,
Mirjalili, & Lewis, 2014) and mimics the nature hierarchy and hunting behavior
of grey wolves. Grey wolves live in naturally organized packs; the wolves’ class
in a pack is divided into four groups according to the level of power: alpha,
beta, delta, and omega. The alpha is the most decisive wolf leader in the pack
to lead for navigation and hunting. The next-level beta wolves are responsible
for helping alpha wolves in decision-making and leadership. Delta and Omega
wolves are the least potent wolves in the pack. The hunting behavior of GWO
is presented in the figure. The GWO algorithm saves the power hierarchy of
wolves, alpha, beta, and delta wolves as the three best solutions. The rest of
the solutions are considered omega wolves. After defining the dominance
wolves’ level, the position vector of the corresponding wolf is updated as

follows:

Y(t+1)=Y,(t)-AD (2.1)
Where Y (t + 1) presented the position vector of a grey wolf in the t + 1"
iteration, Y (t) shows the position vector of the grey wolf at the t™ iteration, A
is a coefficient, and D is the distance between the grey wolf and the location

of the prey (X,). The distance is calculated as follows:

D=|CY,()-Y(t) (2.2)

A=2ii-a (2.3)
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C=2% (2.9)

Where a is a parameter to balance exploration and exploitation, r; and r, are

the coefficient random parameters between [0,1].

The following equations allow the update of the position of every gray
wolf and make it go around in an n-dimensional search space. The parameter
‘a’ is updated in the current iteration as follows:

5:2*(1___E9;_) (2.5)

Maxiter

The position of each wolf in each iteration is indicated using the alpha, beta,
and delta wolves as follows:
Y,

(iter+1) —

Y +Y,+Y
172 73 (2.6)

3
Where t is the current iteration, and T is the maximum number of iterations.

This is presented as real grey wolves encircling prey in the 3D search space. Yy,

Y,, and Y5 are the new positions of a wolf and are calculated as follows:

Y, =Y, -R *®,) 2.7)
Y,=Y,-R,*(P,) (2.8)
?3 = ?5 _R3 *(f)a) (2.9)

The three best solutions are considered alpha, beta, and delta wolf.
After that, the algorithm iteratively updated the wolves' position and the time-
varying parameters. In each iteration, if a new solution is better than the existing
three best solutions, the existing solution is replaced by the new solution. The

new solutions are now selected as the current iteration's alpha, beta, and delta
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wolf. This iteration process will stop when it meets the end criterion's

satisfaction.

XeXY)

Xy |

(XX YY) \ m"”’”/ X YY)

Figure 2.8 Hunting behavior of gray wolf and position updating of search

agents (Mirjalili et al., 2014)

2.23.2 Multi-objective Grey Wolf Optimizer

Multi-objective Grey Wolf Optimizer (MOGWO) used the archive to store
non-dominated solutions throughout the iteration process according to the
following rules and conditions. The first condition, the new non-dominated
wolf, will be stored in the archive if the archive is empty. The second condition
is that the new non-dominated wolf will replace the existing wolf's position in
the archive if the existing wolf is dominated by a new wolf outside the archive.
The third condition is that the new non-dominated wolf will be stored in the
archive if the new wolf is non-dominated compared to the existing wolf in the
archive and the archive has enough space. The fourth condition, the most
crowded ¢rid segment in the archive, will be removed, and the new wolf will
be entered. If the new wolf is a non-dominated solution compared with the
existing wolf in the archive, there is also not enough space to store it (Mirjalili
& Dong, 2020a). The archive mechanism has two operators to navigate the

space in the maximum size: archive maintenance and leader selection. Archive
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maintenance is responsible for removing the existing gray wolf from crowded
regions once the archive is complete. The function of the grid mechanism is to
divide the objective space into segments. The number of hold gray wolves is
recognized as the crowdedness of each segment (Mirjalili & Dong, 2020a). The
probability of the removed segment eliminating the solution from the segment
is chosen as follows. The probability of removing the solution will be high if
the probability of choosing the equation shows as the crowded segment. The
removing a solution is presented as low probability if the non-dominated
solution does not exist it in the segment. The following equation is the

probability of selecting the seement to choose a leader from the archive.
p; :ni/c (2.10)
p,=c¢/n,+1 (2.11)

Where ni presented the number of non-dominated solutions in the i-the-
segment and c represented a constant set to 1. ni indicates the number of non-
dominated solutions in the i-the-seegment, and c is a constant generally set to
1. This equation indicates that if the segment has few solutions, the candidate
solution will have a higher potential for choosing as a leader candidate. Fig. 5.1
shows the relation of probability values for the segment and the number of
solutions inside. The MOGWO search algorithm around the crowded segment
areas is more likely to find the non-dominated solutions than increase overall
distributions. Fig 3.2 (a) shows the potential for removing a solution from the
archive according to the higher level of the crowded segment. The chosen
solution from the most crowded segment will be accommodated with a new
solution. In a stochastic algorithm, a small probability of crowded regions will
be offered high exploration and avoided trapping in the locally optimal

solutions.
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Figure 2.9 (a) The probability of choosing the leader. (b) The probability

values for removing segment (Mirjalili & Dong, 2020b)

The mentioned leader selection technique chooses three non-
dominated solutions in every iteration step. The selected leaders are the
reference points to update the solutions and position in the population, and

the updated solutions and positions are inserted into the archive according to
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the mentioned rules (Mirjalili & Dong, 2020a). The pseudo-code of the MOGWO
is taken from Goli et al. (2020).

A multi-objective is a group of vectors with more than one objective
function to be minimized or maximized (Mirjalili & Dong, 2020b). The following

equations represented a multi-objective minimization problem:

Minimize:  F(X) = {£, (%), £, (%), ... £, (%)} (2.12)
Subject to: g,(X)20,i=1,2,..m (2.13)
h(X)=0,i=1,2,...p (2.14)
Ib, <x, <ub,i=12,..n (2.15)

Where x presented a vector of objective function involving all variables in the
problem, n showed the number of variables, and m and p presented the
number of inequality and equality constraints, respectively. Lb; represented

the lower bound of the iy, variable, and ub; is the upper bound.

The Pareto optimal front, a vital dominance operator, must compare
the conflict solutions among multiple solutions under multiple objectives
function.” The mathematical formulation of Pareto dominance and Pareto

optimality for the minimization problem is defined as follows:

Two vectors, such as X =(X;,X,,...,X;) and y=(y,,¥,,-Y,). Vector X

dominates vector y (denote as X <y) if:

Vie(.,2,...,0) (2.16)

[(£X)<f(y)]A[Fiel2,..,0:£(X)<f(y)] (2.17)
A solution x € X is called Pareto-optimal if:

{(AyeX|y=<X} (2.18)
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In such conditions, thousands of reasonable choice solutions are
available with different quality. The Pareto optimal solution set is to represent
this condition; this is the set of all nondominated solutions for a given problem.
This set usually includes thousands of reasonable choice solutions,
representing the best trade-offs between the objectives. The Pareto optimal

set is represented as follows:
Pareto-optimal solutions set for all solutions in a minimization problem:
Pareto-optimal solutions set (P S) := {?{,SI eX| Ay <X} (2.19)

The Pareto optimal front is an essential set of multi-objective
optimization processes. This set has the exact solutions as the Pareto optimal
set. The Pareto optimal front is selected to store the best solutions of specific
objectives for all objectives from the optimal solution set. The Pareto optimal
front is the projection from the optimal solution, which only considers specific
objectives. Figure 2.10 presents four possible cases of Pareto's optimal front for

minimization and maximization problems.
This set is presented as follows:
Vie(l,2,...,0) (2.20)

Pareto optimal front (P F) := {fi(?{) | X ePS} (2.21)
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Figure 2.10 Location of Pareto optimal fronts for a bi-objective function in four cases

that were considered minimized or maximized (Mirjalili & Dong, 2020b)
Algorithm: Pseudo-code Multi-objective Gray Wolf Optimizer (MOGWO)
1. Initialize wolf solutions Si (i=1,..., N_wolf)

2. Generate vectors of movement coefficient

3. Evaluate the fitness of each wolf

Pa=the position of the best wolf (alpha) Pg=the position of the second wolf

(camma) Pg=the position of the third best wolf (delta)
4. iter=1

5. repeat

6. for n=1:N_wolf

Reposition the wolves based on Equations (8)- (14)

7. End for

8. Estimate the fitness value of wolves

9. Update Pq, Pp, P&
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10.Update the vectors of movement coefficient

(Equtions (12)-(13))

11. Specify the non-dominate solution (P) (Update Archive)
12. iter=iter+1

13. Until iter>=Max_iter

14. Return Archive

2.23.3 Priori Multi-objective Optimization

In prior multi-objective optimization, multiple objectives are aggregated
using a set of weights to form a single objective. This simple method has low
computational time due to aggregated single-objective algorithms without
storing non-dominated solutions. However, the algorithm required running
several times to search multiple Pareto optimal solutions (Mirjalili & Dong,

2020b). The following equation presented priori multi-objective minimization

problem:
0
Minimize :  f(X) =Y wf(X) (2.22)
i=1
Subject to: g,(X)>0,i=1,2,..m (2.23)
h.(X)=0,i=1,2,...,p (2.24)
Ib, <x,<ub,i=12,..,n (2.25)

Where x shows a vector of all variables in the problem, n represents
the number of variables, and m and p represent the number of inequality and
equality constraints, respectively. lb; is the lower bound of the iy, variable, and

ub; is the upper bound.

2.23.4 Posteriori Multi-objective Optimization
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In this algorithm, the multiple objectives of the problem are maintained
and optimized simultaneously (Mirjalili & Dong, 2020b). Maintaining multi-

objective formulation for a minimization problem is formulated as follows:

Minimize: F(X) = {fl(?o,fz(*?),...,foﬁ} (2.26)
Subject to: g,(X)>0,i=1,2,..m (2.27)
h,(X)=0,i=12,....p (2.28)
b, <x, <ub,,i=L2,...,n (2.29)

Where x shows a vector of all variables in the problem, n represents
the number of variables, and m and p are the number of inequality and
equality constraints, respectively. lb; is the lower bound of the ith variable, and

ub; is the upper bound.

Since the posterior method has applied the rules of Pareto optimal
dominance to compare solutions, this method is required to store non-
dominated solutions as the best solutions. This method can accurately
approximate the Pareto optimal solutions, and the solutions' distribution is
uniform across all objectives. The uniformly distributed Pareto optimal
solutions supported the decision maker to choose different applications and

purposes from many different solutions (Mirjalili & Dong, 2020b).

2.23.5 Interactive Multi-objective Optimization

Interactive multi-objective optimization is the human interactive input
operation that implements decision-making during optimization to guide the
search process to obtain desired regions. The random solution is first generated
from the algorithm, and then the process is evaluated and continued to find

desirable solutions (Mirjalili & Dong, 2020b).
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2.24 Best compromise solution

The best compromise solution (BCS) is provided for searching for the best
solution from the Pareto optimal set. This method is derived from the Euclidean
distance technique. The minimum value of the corresponding objective function is set
as the reference point (fiin, fimin, fumin) available from the corresponding solution from
all objective functions. The best solution is evaluated based on the minimum distance
(d) between the specific and reference points (Khan et al,, 2019). The following

equation expresses the formulation of the minimum distance calculation:

D=[(f, —f

i,min

)2 + (fb_] - f',min )2 + (fck - fk,min)2 ]1/2 (230)

]

d = min(D) (2.31)

2.25 Energy Management Systems Based on Bio-Inspired Algorithms
The concept of efficient EMS has attention recently due to demand growth
and environmental issues. Autonomous and intelligent EMS is decision-making on
scheduling generation and demand requirements to minimize energy utilization within
a certain period. The function of computer-aided EMS is to monitor, supervise,
optimize, and manage the consumer’s consumption pattern, network configuration,
and generation facilities. Its primary function is to make an efficient and cost-effective
structure with supply/demand balancing under operational constraints, RE resources

uncertainties, energy costs uncertainties, and energy demand uncertainties.

In this scenario, demand-side management (DSM) and demand response (DR)
are two essential concepts of EMS. The function of DSM is demand control, such as
planning, executing, and monitoring, influencing consumer energy usage patterns. DSM
systematically disperses energy usage to minimize emissions and peak demand with
the DR model and chooses preferred energy sources. DR is the model of incentive-
based schemes or time-based pricing schemes, such as Time-of-Use (ToU), Real-time

Pricing (RTP), Critical Peak Pricing (CPP), and Inclining Block Rate (IBR). Optimization and
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energy usage can be achieved when the EMS controller obtains the DR data and price

tariff for energy from the service providers.
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Figure 2.11 EMS using bio-inspired approaches (Nguyen et al., 2020).

The EMS with bio-inspired optimization technique is shown in Fig. 4.2.
Generally, types of energy suppliers are traditional and renewable energy sources.
Factors such as peak-to-average ratio, energy demand, electricity cost, emission cost,
operation cost, and user-comfortable lifestyle must be considered in the planning
process. These factors can influence the system's combined use of energy sources.
The controlling process is executed with EMS, which performs as a decision-maker to
schedule optimally according to received information and these factors in a specified

time horizon.

Therefore, the responsibility of EMS is intelligently to handle and manage all
information from the specified system. Applying bio-inspired searching algorithms in
the EMS modeling can enhance exploration and exploitation to provide global
optimization search results. This algorithm is a more powerful tool than an exact
algorithm to solve optimization problems due to its effective search in the feasible

region to provide optimal results (Nguyen et al., 2020).
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2.26 Multi-objective Optimization Method for microgrid operation
Multi-objective optimization is the problem with conflict problems with multi-
criteria objectives with multiple solutions as an optimum solution. The feasible region
is formulated from the group of optimal solutions known as the Pareto optimal front
to provide a solution amongst the conflicting objectives. Meta-heuristic techniques
provide a Pareto optimal front in a single run, while mathematical techniques perform
multiple steps to get an optimal front (Khan et al., 2019). This work implements a
power system optimization problem dealing with three conflicting objectives:
operation cost, PAR reduction, and consumer comfort, with and without coordination.
The difference between with and without coordinate optimization impacts the
decision-making step in day-ahead scheduling. The solution from the Pareto front
solution set is selected using the best compromise solution (BCS) method. In the
coordinate day-ahead optimization, the optimal solution is chosen first from the Pareto
optimal front, and then the decision solution is generated after coordination among
the conflict objective’s function. During the scheduling process, although the operation
cost is the main target to focus on from the upstream aspect, it is necessary to involve
another conflict objective that can affect the flexible operation system. An efficient,
optimal solution is required to satisfy conflicting objectives for implementing the
optimization work in the natural environment. This work considers the optimal day-
ahead load scheduling process equally crucial in a multi-objective framework (Khan et

al., 2019).

The participation of distribution generations and responsive components in the
reconfigurable microgrid will pose challenges in optimal day-ahead scheduling. To this
end, this work presents active microgrid distribution network management for day-
ahead scheduling of existing active components and uncertainty. In the optimal day-
ahead scheduling process, the continuous real-time supervision of active structure,
such as real-time forecasted REs information, real-time aggregate load profile, and

available power generation from system generation units, is required. The optimization
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process performs as a decision-maker to evaluate the optimal set-points of system
generation units and active, responsive load. The multi-objective optimizer defines the
optimal generation dispatch and responsive load participation according to multi-
criteria and related system constraints: wholesale market purchases and RCSs status

(Esmaeili, Anvari-Moghaddam, Jadid, & Guerrero, 2019).

The optimal day-ahead scheduling is performed for a day at one h time step;
its task is to evaluate the optimal dispatch of available resources in real-time. Due to
the possibility of error in REs prediction, it is necessary to consider the worst-case
scenario that can adjust the robustness of system performance to improve system
security during optimal scheduling. Based on the robustness principle, the robust
optimization model applies the interval prediction information wind/PV power output
using the obtained power from the hourly real-time predicted interval. Due to the high
penetration of REs, the accuracy of RE prediction becomes essential for management
systems dealing with marginal operation costs and unexpected system contingencies.
To avoid such shortcomings, it is required to plan the optimal scheduling with
uncertainty and the predicted error to ensure the reliability and economic dispatch of
the real-world system. The previous research explores the day-ahead scheduling
process with mathematical formulation to capture the uncertainty; it does not consider

the temporal characteristics of prediction accuracy (Xu et al., 2023).

The management and planning of microgrids is a problem commonly solved
with optimization methods. The optimization methods can be divided into math and
meta-heuristic approaches. Math optimization is a simplification approach that can be
achieved to simplify the linear model and solve the problem with a specific model.
The meta-heuristic optimization inspired the nature of the ecosystem. The multi-
objective optimization provides multi-optimal points that satisfy the different criteria
of the system requirement. Therefore, a suitable method for selecting the optimal

solution is required (Hajiamoosha et al., 2021).
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In this work, a multi-objective optimization model is applied to solve the
problem of microgrid energy management. The proposed model is to handle the
operation cost, peak demand, and consumer satisfaction simultaneously. Moreover,
the demand response program has cooperated to elevate the microgrid performance
under uncertainty due to RES’ resources. The proposed model is considered energy
management from the upstream aspect; the typical grid-connect model consists of PV,
wind, and fuel-based distributed generation. This planning stage considers uncertain
parameters due to PV and wind generation. A multi-objective gray-wolf optimizer is a
powerful tool for solving multi-objective problems with three different criteria. The
different case studies simulation results and comparative studies validated the

effectiveness of the proposed method.

2.27 Types of Time-series Forecasting

The forecasting method can be classified according to iterative way, direct way,
point forecasts, and probabilistic forecasts. Different types of forecasts are utilized
depending on the desire for different situations, applications, and scenarios. The
following presented the standard time-series forecasting method as groupings (Haben,

Voss, & Holderbaum, 2023).

2.27.1 Point or Probabilistic forecasting

The point and probabilistic forecasts provided multiple estimation
values in each time step to describe the outspread form of future values. Point
forecasting is a fast estimation method with fewer learning and training data
parameters. This can easily be embedded in applications, such as energy
storage controlling models that utilize a single point value per time step rather
than a range of values. The point forecasts reflected the uncertainty and
volatile data. In such cases, the applications of probabilistic forecasting are
more utilizing models for volatile data. The drawback to probabilistic methods
is that they are complex and computationally expensive to produce and store

(Haben et al., 2023).
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2.27.2 Statistical and Machine Learning Methods

Statistical-based time series forecasting has been implemented using
statistical methods, such as ARMA, ARIMA, and exponential smoothing. These
methods are easy to implement and interpret and computationally
inexpensive. Recently, machine- learning techniques have become applied in
time series forecasting, such as neural networks and random forests. The
statistical models preferred clear and linear relations in the data, such as
daily/weekly, seasonality, and clear links to external influences such as
weather. Since model assumptions directly learn the relationships from the
data, failed model assumptions will lead to inaccurate results. Machine learning
is an excellent choice for complicated nonlinear data and unclear probability
relationships. This method is suited for learning many time series data and

hierarchical time series forecasting (Haben et al., 2023).

2.28 Time Series: Basic Definitions and Properties

Time series data are the consecutive sequence data set that chronologically
increases the discrete time index. The critical feature of time series data is stationary
and autocorrelation. The stationary time series is the expected value and the variance,
and each data point comes with an equal distribution of fixed mean and variance.
Autocorrelation can be described as the one-point changes in the time series data
related to the lageed points time series data. Autocorrelations are essential for
identifying historical values to estimate future points. Non-stationary time series are
the values from a distribution with time-varied mean and variance. Stationarity is
essential for traditional time series forecasting models like ARMA and ARIMA. Trends
and seasonality are features that often occur in non-stationary data. The trend is the
macroscopic low-frequency changes in the data with the linear trend, gradual linear
growth in the time series. Seasonality is the changes in the time series occurrence at

fixed regular intervals or fixed periods, such as daily, weekly, and annual levels.
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The fundamental function of forecasting is trying to get approximate or
accurate function describing the future behavior of a time series. Accuracy is generally
defined based on error measures and optimizes the application of interest. Various
forecasting methods that are suited for different applications are available and have
advantages and disadvantages. The context of point forecasting is to provide a single
estimate for each time step tn+1, tn+2, . . ., tn+h in the forecasting horizon.
Probabilistic forecasting generally provides multiple values for each time step and is
usually the better description of the uncertainty of future values. The drawback of
probabilistic forecasting is the high computational costs and the large amount of
training data to generate an accurate estimate. The probabilistic models with sufficient
computational resources and data can provide a better descriptive and informative

estimation of the uncertainty in future values (Haben et al., 2023).

The traditional statistical methods assume that the relative between the
dependent and independent variables is the way of linear trends autoregressive
behaviors. The performance of statistical methods is quite successful and accurate,
and this method is easy to forecast even with few available data. However, this method
is not suited for highly complex nonlinear models. Therefore, increased monitoring has
increasingly allowed machine learning methods to solve complicated patterns in the
data. This model can be trained to learn the complex relationship of the data with
some features. Recently, artificial neural networks become increasingly popular for
time series tasks and forecasting. Sophisticated Deep learning variants, such as
recurrent neural networks, long-short-term memory (LSTM), and gated recurrent unit
(GRU), are the successful models for time series tasks due to the availability to model
the autoregressive relationships. Recurrent architectures convolutional neural
networks (CNN) also provide the best results, and this can be trained efficiently in large

time series data for distribution-level networks (Haben et al., 2023).



84

2.29 Statistical Time series forecasting methods

There are five statistical-based forecasting methods: Artificial Neural Network
(ANN), Support Vector Machine (SVM), Markov Chain, Autoregressive, and Regression
models. All statistical-based models require historical data to execute time- series
forecasting and do not require internal system states to model the process according

to the parameter assessed at the current points (Sobri, Koohi-Kamali, & Rahim, 2018).

2.29.1 Regression

The regression method is a model for determining the functional
relationship between response and predictor parameters. This method is a
repetitive process where the output parameters are applied to analyze, verify,
criticize, and modify the input parameter. Univariate regression analysis refers
to one response parameter, and multivariate regression considers two or more
parameters. The univariate linear regression approach determined the
correlation parameters by fitting a proper linear equation to the data. The linear
fitting kept all response parameters constant in the multiple linear regression
but not for predictor parameters. These two regression methods are commonly
used with the complex correlation between the parameters. The forecasted
data are obtained for any predictor values that diverge from the observed data

(Sobri et al., 2018).

2.29.2 Autoregressive (AR)

Autoregressive is to measure the correlations between dependent and
independent parameters. The categorization process depends on the
conduction of stationary/non-stationary and linear/nonlinear processes. The
stationary time series is the time series that fluctuates in the region of the static

mean (Sobri et al., 2018). The equation is expressed as follows:

X, =D 0X, +0, (2.32)
i=1

X, =0X, , +0,X , +dX 5+ + O, X, O (2.33)
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Where, ¢, is the i"" AR coefficient. X, ;is the time series values. ®, is the white

noise with zero mean and constant variance

2.29.3 Moving average (MA)
The moving average (MA) model uses a weighted factor of historical data
to create a time-series representation. Then, it combines with past noise data to
develop a time-series process (Sobri et al., 2018). The MA of order n is described

as:

(2.34)

-
e
e

|

X =
=0
X, =0, +00_+0,0 ,+..+0 o_, (2.35)

Where 0, is the | MA coefficient. ®,_; is the white noise that is uncorrelated with

random parameters with zero mean and constant variance.

2.30 Autoregressive Moving average (ARMA)

The ARMA has emerged as an adoption model that extracts from statistical and
Box-Jenkins methods. The general form of the ARMA prediction model is shown in Fig
4.2. ARMA model, commonly applied in autocorrelated stationery time-series data, was
a superior tool to predict the following values of particular stationary time-series (Sobri

et al., 2018).

X, = z O.X,; + Z 0,0, (2.36)
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Figure 2.12 Process of ARMA forecasting method (Sobri et al., 2018).
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It required a series of measure data sets for the particular site to forecast the
output of an RE generation with statistical methods. The enormous amount of applied
data set can be reduced without losing the information by employing statistical data
treatment. Generating accurate synthetic data for a typical year represents the actual
statistics of multi-year measure data (Nfaoui, Buret, & Sayigh, 1996). The following

articles are the treatment process for historical data series.

2.30.1 Stationarity

The ARMA model is suited for use as a prediction tool for stationary
historical time series. Stationary is the statistical properties of the time series
model, which have equal mean, variance, and autocorrelations over all-time
horizons. Therefore, statistical forecasting techniques applied the assumption
time-series, which statistical transformations can change stationaries. The
stationeries of times series data make it easier to implement the prediction
process using historical data. Therefore, the time-series sequence needed to
transform stationery provides a clue-searching process for the forecasting

model (B. Singh & Pozo, 2019).

2.30.2 Gaussian transformation

Hourly wind data cannot be directly applied due to its non-Gaussian
distribution. This problem is solved by the Dubey method that modifies shape
parameters of the Weibull random variable close to 3.6 (J. L. Torres, Garcia, De
Blas, & De Francisco, 2005). The Weibull probability distribution function (PDF)

is given as;
PDF, =k/c(v/c)*" exp(—(v/c))" (2.37)

Time series of the particular month of the year are transformed into Gaussian

distribution;
x=k/3.6 (2.38)

Where k and c are the shape and scale parameters of wind speed.



87

2.30.3 Elimination of the seasonal variation and daily variation

The issue of non-stationary seasonal set down the year segment into
monthly periods at the outset. Daily non-stationarity can be removed by
subtracting the hourly mean value from the actual data set. It was also needed
to divide with the standard deviation to decrease the data to a normal process
with a mean of 0 and variance of 1 (Brown, Katz, & Murphy, 1984; Nfaoui et al.,
1996). The time series of the particular month of the year is standardized

velocity to remove diurnal non-stationarity;

. V., —u(t)
Vny)=-—">— (2.39)
(n,y)=—_ o
With the following period function:
d.Y-I '
Z V24i+t
t)=—"= — 1<t<24 (2.40)
WO="=13
a.y-1 a
Z (Vg — ()’
o(t)=| =2 ,1<t<24 (2.41)
® dY

Where V*(n, y) is the standardized hourly average wind speed. V];’yis hourly
average wind speed. u(t) and o(t) are the sample mean and the standard

deviation of all transformed wind speeds in 24 hours.
2.30.4 Parameter Estimation

The Yule-Walker estimator is used to calculate the sample

autocorrelation coefficient (Patterson, 2011);
&% =3(0)1-PpiR5'p,) (2.42)

Where,
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0(k) = 0 for all k> (2.54)
2.31 Performance metrics

The performance index of the forecasting methods can be measured by
different metrics related to the forecast error. The higher percentage of errors index
corresponds to fewer accuracies. This section provides the commonly used definitions
and equations for error calculation metrics (Ghofrani & Alolayan, 2018). Many metrics
can be defined as the validation for forecasting results. Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and Mean Bias Error (MBE) are commonly used error metrics

for forecasting (David et al,, 2016). The formulation of performance metrics is as

follows:
Root Mean Square Error (RMSE) = Jl/nzn: (X, —x,) (2.55)
g
Mean Absolute Error (MAE) = l/niﬁi -X; | (2.56)
g
Mean Bias Error (MBE) :l/nzn:(ii -X;) (2.57)

i=l1

Where, x; is the forecasted time series values
X, is the observed time series values

n is the total number of samples

2.32 Modern Recurrent Neural Networks

RNN networks have only been capable of modeling short-term dependencies
and numerical instability issues. Therefore, gated recurrent units (GRUs) and long short-
term memory (LSTM) are the popular extensions of RNNs. In feedforward networks,
recurrent neural networks work the input data of the input layer X; , a hidden state of
the activation signal from the last time step Z;_;. LSTMs involve a second hidden state
called the cell state. The function of cell state is to memorize the current state and

previous cell state where the training determines memorized for long- and short-term
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values. LSTMs also involve the forget gate to control the forget function of the input
and output state. Weights and activation functions are needed to activate since the
gates are made up of ANN layers. The forget gate controls keep data from the previous
cell state and add data from the current input of the previous activation. The activation
of the input and output is evaluated with a sigmoid function (between 0 and 1), in
which the choice cell state “forgets” when the values are close to 0 or the choice cell

state “kept” when the values are close to 1 (Huawei Technologies Co., 2022).

2.33 Deep Neural Network

Deep learning is a group of stacked perceptrons used to build multi-layer
artificial neural networks based on human neural networks. The artificial neural
network is a computing system of highly interconnected artificial neuron networks that
processes information with dynamic responses to external inputs. Artificial neural
networks possess the same feature as the human brain, such as parallel information

processing, learning, association, classification, and memorizing.

COutput
layer

Dendrites Synapses

Nucleus Hidden

124 [
/4" laver
Input Hidden Output Input
layer layer layer layer
(a) Neuron in the Human Brain (b) Perceptron (c) Deep neural network

Fig. 2.13 Neurons in the human brain and artificial neural network (Huawei

Technologies Co., 2022)

In single-layer perceptron, the input vector X % [x0, x1,**+, xn] T is the dot
product with the weight net W % [wO0, wl,***,wn]T. The net is activated to take an
output function by an activation function called Sgn(net). The single-layer perceptron
is a linear model and can only implement linear classification. The multilayer
perceptron, the fastest-growing artificial feedforward neural network, is the structure

of a hierarchical neuron arrangement to process non-linear data. The inner layer
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neuron of nodes is the computing unit that performs the computing function. The
neurons are to receive the previous values and transmit the value to the subsequent
layer neurons. The same layer neurons are not internally connected, and the data

transmission is one-way between the layers (Huawei Technologies Co., 2022).

2.33.1 Optimizer

The optimizer is the gradient descent algorithm term, often
encapsulating into one object when implemented in an object-oriented
language. The popular optimizers are SGD, Momentum, Nesterov, Adagrad,
Adadelta, RMSprop, Adam, Adamax, Nadam, etc. The optimizers are used to
improve the convergence speed of the algorithm, the stability to a local
extremum, and the efficiency of the hyperparameters. The following presented

the most commonly used optimizers (Huawei Technologies Co., 2022).

2.33.2 Adam Optimizer

Adagrad and Adadelta developed the Adaptive Moment Estimation
(Adam) optimizer. Adam is to identify the adaptive learning rate of the
parameter in a complex neural network. This is also used as weight adjustment
of the network’s different sensitivity parts, which is a complicated process to
calculate the specific learning rate of the sensitive parts. The optimizer is
generally a lower value. Identifying the sensitive parts manually and calculating
the specific learning rate was challenging. The learning rate of the Adam

optimizer setup is 0.0001. The gradient update equation is shown below:

N ) (2.58)

e++/v(n)

Where m and v are the past gradients' first moment (mean) and second

Aw = —

moment (uncentered variance), respectively. m and v can be defined as:

m(n)=am(n-1)+(1—a)g(n) (2.59)

v(n) =bv(n-1)+(1-b)g*(n) (2.60)
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2.33.3 Activation Function

The activation function is essential in neural network learning models
to interpret complex nonlinear functions. The activation function implements
nonlinear characteristics in the neural network. Without the activation function,
the neural network can be represented as a linear function even with many
layers. The sigmoid function is most frequently adopted in the study of
feedforward neural networks. The sigmoid function is monotonic and derivative
continuous to compute output bounded, used in the output layer for binary
classification. This function facilitates the convergence of the network (Huawei

Technologies Co., 2022).

2.33.4 Regularization

Regularization is the practical measure parameter to reduce
generalization error and overfitting in machine learning. There are several
proper techniques to prevent overfittings, such as parameter norm penalty,
dataset expansion, dropout, and early stopping. Dropout is comprehensive and
straightforward in the computation regularization method. The dropout
function has discarded some parts of the output of neurons randomly and
does not update the discarded neurons during the training phase. During the
training, The random dropout process makes constant shield parameters and

generates competitive models (Huawei Technologies Co., 2022).

2.33.5 Loss Function

Error detection function of the target classification is needed during the
training of a deep neural network. This function is presented as a loss function
or an error function. The loss function is to reflect the error between the target
value and the actual value of the network perceptron. The commonly used
loss function is the root mean square error (RMSE), as follows:

J(w) L D> (ty—0y) (2.61)

2n xeX,deD
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Where, w is the model parameter, X is the training examples set, n is the size
of X, D is the gathering of neurons in the output layer, t is the target output,

and o is the actual output (Huawei Technologies Co., 2022).

2.34 Long short-term memory

The deep learning neural network was introduced, and the performances of
such an approach have been assessed in several fields, such as language modeling,
machine translation, image captioning, handwriting generation, image generation, and
time series forecasting. RNNs can connect previous data with the present task, but their
performance is poor in some applications when facing long-term dependencies. LSTMs
are designed to solve the long-term dependency problem by removing or adding
information in a single cell. LSTMs are constructed with several layers, and different
types of layers are connected internally. (1) The Sequence Input layer sets the
dimension of the input sequence at each time step. (2) The LSTM layer has several
hidden units described as long-term dependencies, relying on a recurrent dynamical
model. (3) The Fully Connected layer is a feedforward layer that connects the hidden
units with the output layer in the LSTM layer. This layer acts independently and
statically at every step. (4) The Regression Output layer is the computing layer that
evaluates the mean squared error loss to solve the regression problem during training

time.

The basic structure of RNNs has the vanishing gradient problem: the gradient
decreases when the number of layers increases. The gradient problem is practically
null and prevents the network training process of the deep RNNs with many layers.
The networks with short-term memory do not provide good results dealing with long
sequences. Therefore, the network demanded memorization of all the information in
a complete sequence. Long short-term memory (LSTM) recurrent networks have been
introduced to solve the vanishing gradient problem. LSTM uses three gate units,
namely forget gate, update gate, and output gate, to keep relevant information and

discard irrelevant information. Forget Gate decided to discard and save the information
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using binary numbers (0 and 1), whereas 0 means the information is forgotten and 1
means the information remains. The update gate decided the update and memory
state condition of new information. The output gate generates the output value of a
specific hidden unit, the input of the following hidden unit. The dot product of the
previously hidden unit and the x; current input is passed through the r sigmoid
activation function to compute the current gate values. The tanh activation function
computes the ~ct update values (Torres et al., 2021). The following equations define

such condition:

¢, =tanh(W [a,,x,]+b,) (2.62)
I'"=o(W,[a,,,x,]+b,) (2.63)
" =c(W,[a,_,x,]+b;) (2.64)
I’ =o(W,a,,x]+b,) (2.65)
¢, =I"¢, +I'C,, (2.66)
a, =I"tanhc, (2.67)

Where W, W;, and W, present the weights function of the update gate, forget gate,
and output gate, respectively. by, by and b, are biases that govern the behavior of
update, forget, and output gates, respectively. W, and b, show the weights and bias of

the memory cell.

2.35 Gated recurrent units

Gated recurrent unit (GRU) is a simple version of LSTMs as long- term memory
networks with low computational cost than LSTM networks. This unit is a widely used
version with high convergence and robustness for many problems. GRU is the improved

RNN network version that captures long-range dependencies and effectively uses the
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RNN network. GRU is a simple model with less computational time, and it only uses
two gates, namely the update gate and the Gr relevance gate. The update gate decides
the condition of the memory state to be updated or not updated according to the
memory state candidate. The relevance gate decides the relevance of ¢; 1 to compute

the next candidate for ¢; ( Torres et al., 2021). The following equations presented such

conditions:
I'"=o(W,/[c,,x,]+b,) (2.68)
I'"=o(W,[c_,,x,]+b,) (2.69)
¢, =tanh(W [I""C_,,x ]+Db, (2.70)
c,=I"c, +(1-T")c,, (2.71)
c, =I"¢ +T"¢ (2.72)
a,=c (2.73)

where W, and W,, show the weights function of the update gate and relevance gate,
respectively. b, and b, are the bias that governs the behavior of the update gate and
relevance gate, respectively. W, and b, are the weights and bias of the memory cell

candidate.



CHAPTER Il
RESEARCH METHODOLOGY

The common objective of the energy planning system has been to address the
cost minimization problem (Gamarra & Guerrero, 2015). The planning process needs
other essential objectives to be taken into account, such as environmental cost, power
quality, system reliability, fuel consumption cost, total voltage variation, voltage
stability enhancement, voltage profile improvement, transmission active and reactive
power loss reduction (Gamarra & Guerrero, 2015; Guoping Zhang et al., 2020). The
following chapter describes the common optimization problem in the microgrid
planning process and also discusses techniques to solve energy management

problems:

3.1 Research Methodology

The previous section summarizes the methodology for forecasting solar power,
wind power, and demand using the stochastic base scenario and ARMA models.
Renewable power prediction differs from demand due to its inherent non-stationary,
diurnal nature and seasonal ramps. Solar power forecasting is generally divided into
physics-based models, which apply numerical weather forecasting and solar radiation
data, and statistical models that directly predict historical data. Many research articles
point out that both techniques have their strength and weaknesses. This work uses
statistical methods alone, specifically auto-regressive moving average (ARMA) models
developed for the forecasting model. Although it has some limitations, the ARMA

model is widely applied as a forecasting tool due to its ease of implementation.

Accurate forecasting is vital to guarantee reliable operations conditions and
planning for generation capacities. To solve the problem, uncertainty modeling is

typically executed by statistics base stochastic process. The former is evaluated by
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modeling synthetic samples or scenarios in the input model for decision-making
optimization. The latter model applied a simple stochastic process in the sophisticated
decision-making model. However, it is hard to interface the complex scenario base
forecasting models and the sophisticated decision-making model. This work highlights
the interfacing of the time-series forecasting model with decision-making models. In
the proposed method, the system operation is further incorporated with DR, which
does not require predefined constrain parameters to tackle the deviation from the

forecasting (B. Singh & Pozo, 2019).

Energy efficiency and renewable resources provided guidelines for the
minimization of the environmental impact of the network (Gamarra & Guerrero, 2015).
However, renewable resources have volatile production energy and are unavailable at
their peak power. Forecasting is implemented with optimization problems due to the
uncertain nature of demand and renewable generation, the seasonal availability of

power generation, and the demand for the microgrids forecasted in this system.

The proposed microgrid combines responsive loads, RESs, and non-RESs. Due
to environmental concerns, modern microgrids focus on elevating the integration of
RES resources. Therefore, combining different generation technologies requires optimal
management and planning of the system's resources. Moreover, analyzing a suitable
approach for the system’s uncertainties caused by the energy resources is also
essential. Many research articles have been concerned with uncertainties in microgrids'
energy management in recent years. The demand response program is a topic to
address in managing microgrids. The impact of demand response can effectively solve

the uncertainties in the renewable energy-based microgrid.

The proposed multi-objective framework is formulated for the minimization
problem of operation cost, peak demand, and consumer comfort factor while satisfying
network constraints and demand response. This multi-objective optimization is a
problem that handles multi-criteria complex problems with multiple optimal points

(Pareto-optimal front). The conventional optimization techniques do not have
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sufficient capabilities to solve such a problem. In this work, a deterministic multi-
objective optimization problem is solved iteratively over time by the most updated
and accurate available RE information at each time step. The demand response
program is integrated as an ancillary service to provide reliable operation and consider
uncertainty impact. From the previous research, the estimation of day-ahead
parameters is scheduled based on the predicted system information with a specific
probability function. The proposed work further investigates combining deep learning
and multiple objectives optimization for the microgrid dispatch problem. Due to the
intermittent nature of RE resources and demand, uncertainty becomes a significant
concern related to microgrid energy management systems. In general, the uncertainty
can be described as the divergence probability of the predicted values and the actual
data. As illustrated in Figure 3.1, microgrid energy management is the optimization
problem, which determines the optimal dispatching of resources according to system
objectives. After that, the management system also creates an active distribution
network by providing control commands for responsive loads. This work has executed
the function with relevant technical information, network constraints, grid

characteristics, and forecasted information.

The first step is forecasting in the microgrid environment, which can support
the required information to evaluate the scheduling of generation capacities and
demand requirements for the next day. Various forecasting data can be available based
on different time horizons, from more than a few hours to quite a few days ahead.
The proposed system developed 24-hour-ahead prediction results with a deep neural
network. Secondly, the scheduling scheme was assessed before the next day. The
scheduling of generating capacities is optimized by forecasting results from the first
step, PV/wind power and load profile. As a result, the proposed system controls the
operational status of optimal economic dispatch power from the various energy
resources. Finally, the controllable responsive loads program can be dispatched to

ensure reliability in the system based on the optimal generation scheduling results.
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Figure 3.1 Flowchart of proposed EMS

30 31 32

DG1 34

Figure 3.2 IEEE 34 node test system (Abdelmotteleb, San Roman, & Reneses, 2016)
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3.2 System Modelling for the economical operation of a microgrid
The microgrid is a small-scale distribution network combining renewable and
non-renewable sources to provide local demand optimally. This is a part of the active
distribution networks in which consumers can participate in power sharing to reduce
electricity costs (Chamandoust, Bahramara, & Derakhshan, 2020). The economical
operation is the power system dispatch operation issues, where the system operator
tries to minimize generation costs. Therefore, economical operation cost has become
a dispatching objective in power system operation (Y. Li et al., 2019). This work
presented the uncertainty of power generation and load demands required to balance
effectively by grid operators in the day-ahead dispatch microgrid. In the smart
microgrid, day-ahead scheduling and demand-side management are used to solve the
challenges of the system’s contingencies due to rising uncertainty. The demand side
management interacts with the consumer to encourage consumption patterns to
change to minimize the upstream side's total operation cost and the consumer's
electricity payment. The changing pattern includes load shifting regarding the
availability of output power from generation units, load curtailment according to the
high energy price, and reduced fossil fuel utilization to minimize the operation cost.
Many studies have analyzed the optimal scheduling problem from the economic,

environmental, and technical aspects.

Due to the high penetration of RE resources, energy waste, and operation cost
increment are the issues dealing with intensified uncertainty. The energy management
system is the option that can effectively be performed as an economic benefit flexible
network (Qiu et al., 2022). On the other hand, the intermittent nature of REs is a
disturbance to implementing effective microgrid energy management. Microgrids are a
part of the electricity market in which proper scheduling of local resources is essential
to perform an economically operated system. Although economic operation is the
main issue for microgrids, many discrete factors still exist in the microgrids’

optimization problem. This work uses the IEEE 34 node test system with dispatch and
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non-dispatch DG units as a model for solving the multi-objective day-ahead scheduling
problem. Due to the randomness of RE generation, the proposed system considers
uncertain conditions. A microgrid is a distribution network with bidirectional power
flow; the generated power can be exchanged with the upstream network (Gazijahani,
Hosseinzadeh, Abadi, & Salehi, 2017). The specifications of DG units, such as capacity
and construction, can be found in Figure 3.7. The proposed model’s multi-criteria have
been handled by a multi-objective gray wolf optimizer (MOGWO) to minimize the
objective function simultaneously. Conventional balancing techniques fail to recover
from uncertainty problems. With the emergence of microgrid advanced
communication systems, modern techniques are the option for balancing, such as day-
ahead scheduling, energy storage, and demand side management. The ongoing
research work in the microgrids field is the application of modern techniques for solving
operational control problems (Kumar & Saravanan, 2019). Demand response (DR) is a
part of the Demand-Side Management (DSM) technique; this is the method of
modifying the consumption patterns of consumers to respond to electricity market
prices or the system’s emergency condition. The purpose of such a program is to utilize
downstream control schemes to monitor the effective utilization of energy during peak

hours.

The first objective function is the operation cost minimization problem. The generation
unit in this model involves PV, wind, fuel-base distribution generator, and ¢rid power

exchange:

T

min C' Z Apy + P

operation Wmd wind
t=1

+ [aPDG + bPDG + a] +P gnd grid (u(tgrid _u:ell) (31)

The second optimization problem is the minimization of peak load at each time. PAR
is peak demand at particular hours, presented as the ratio of preferred peak and

average demand at each time. PAR is expressed as follows:

. Pmax
minIl,,, =<=— (3.2)

>

teT
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The third objective function is minimizing consumer dissatisfaction, considering the
time and power gaps. In the consumer comfort problem, operation time delay and
demand gap are considered the metrics of consumer satisfaction level in the
optimization problem. The power gap is defined as the ratio of the preferred and
scheduled power, and the time gap is presented as the ratio of the waiting time to

total operation time, which is expressed as follows:

T, P
. _ shift shift
min[’ dissatisfaction Ttotal total (33)
operation operation

PR

shift
total (34)
operation

Demand elasticity: Mgy =

Subject to,

Power balance constraint:
T
Z P;v + thvind + PE)G + Pgtrid = Pc; (3.5)
t=1

Power exchange constraints:

Ib<u,,

<ub (3.6)

The spinning reserve is considered to protect the system from unexpected conditions,

power outages, and sudden load changes:

G
D[P, —Pi]-Py > Py, (3.7)
g=1

Generation capacities:

Pey <Py, <P (3.8)

Pmin < P < Pmax

wind — © wind — © wind (39)

Pig < Pog <P’ (3.10)
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Pgﬁd < Pglid <Py (3.11)

Constraints to prevent new peak:

t_ < max< t
Pon P <P (3.12)

Dissatisfaction level constraints (Time gap and power gap constraints for dissatisfaction

index):
shift shift
Tsthiﬁ = Tstan - Tstop < 6 (313)
S%P(;,total S Psthiﬂ S 20%Pc;,total (314)

3.3 Study area and Data collection

The study area is the Nakhon Ratchasima district. The Nakhon Ratchasima
district is one of the districts in Thailand located at 14.979900 latitudes and 102.097771
longitudes. Collection and preparation data include three years of historical wind
speed, solar radiation, and historical load profile for a particular region. This data is
used for static modeling purposes by ARMA techniques. The historical wind speed and
solar radiation are downloaded from the Historical Weather Dashboard and National
Climatic Data Center (NCDC) website. Specify that the region’s daily load data are

collected from Provincial Electricity Authority (PEA) load research.



CHAPTER IV

RESULTS AND DISCUSSION

This chapter presents simulation results and discusses the microgrid energy
management system. The discussion parts are regarded with the following aspects:
simultaneous multi-objective implementation, comparison of single and multi-
objective optimization related to generation costs, impacts of demand response
implementation, and impacts of uncertainty on the proposed system. The simulation

results are summarized as five different case studies.

4.1 Problem description

The proposed system combines different generation technologies with
different marginal production costs for different generation technologies. The proposed
multi- objective optimization determined the optimal conditions of energy generation
to provide microgrids with the least cost and the best decisions. The generation
schedule is the combined utilization of different units according to the cost order.
Since the MG is a grid-tied system, the power has been imported and exported from
the main g¢rid. The simulation is performed based on the data from Thailand's power
system, Nakhon Ratchasima City, in 2022 for the operating days. The typical working
day with high power demand during working hours is due to a significant space cooling
and operation system requirement. The power generation is shared and represented
in the system with 20% from REs production, 50% from the main grid, and 30% power
generation from DG units. In this model, the utilization of generation resources is
according to the order of lower electricity production cost. The highest priority of
resources is renewable generation resources (REs), which are non-dispatchable

generation with negligible marginal production costs. DG units are dispatched when
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the lower marginal costs are fully utilized. Therefore, the generation cost to satisfy

demand indicates the power generation system efficiency.

Moreover, the proposed energy management method forms an active
distribution network in which demand-side flexibility investigates the influence on the
generation cost. Based on the hourly generation in the reference condition, demand
response is implemented at a 5%-20% percentage of the hourly consumption and
shifted over 24 hours. Although consumers and system operators practically activate
the level of load shift participation, the flexibility approach is outside the scope of the

studly.

4.2 Forecasting performance analysis and discusses

With rapidly growing capability dealing with big data and computing power,
deep learning is applied in the power system energy management to improve the
accuracy of renewable energy and load profile prediction. The deep learning-based
forecasting model has been developed for deterministic, probabilistic forecasting of
24-hour ahead renewable energy and load profiles. This section discusses the deep
learning model's performance and potential research application in the challenges of
the power system field. Due to the uncertainty of the forecasted data negatively
impacting the daily operation of power systems, current uncertainty assessments have
received sufficient attention to solve the management of power systems. The
proposed model solves the energy management problem with the received
deterministic forecasted data. Five case studies were performed for uncertainty
assessment. Regarding higher accuracy, GRU is used as a forecasting module for the

energy management system where uncertainty assessment is continuously improved.

Although the performance accuracy of the hybrid model provided a better
solution than the conventional single model, it was recommended that this work use
three years of historical time series data length for the prediction process. This work
suggested that conventional deep learning models, convolutional neural networks,

and long short-term memory neural network models are reasonable choices under
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certain circumstances, such as preferring processing time for a specific model and the
historical time series data available from the specific geographic location. In the PV
power prediction, the GRU model implemented the prediction process using solar
iradiation from the National Climatic Data Center (NCDC) website for Nakhon
Ratchasima City, Thailand, over five months of data (April 1, 2022, to September 30,
2022). In the wind power prediction, the model used wind speed data from the
Historical Weather Dashboard for Nakhon Ratchasima City, Thailand, over five months
of data (April 1, 2022, to September 30, 2022). In the demand power prediction, the
model used a historical load profile of load research of the Provincial Electricity
Authority (PEA) over five months of data (April 1, 2022, to September 30, 2022). This
input data set was split into training and test sets. The training data is used to train the
data in the learning process, and the test data is used to test the results in the learning

process.

MATLAB  (R2022b) software was used to train input data for the LSTM
prediction process. The GRU process is a developed RNN architecture to predict the
values of the next time steps of a time-series sequence. The regression network was
trained to the GRU sequence, where responses are training sequences with changing
values in one step. That is, for each time step of the input sequence, the GRU network
learns to predict the value of the next time step. The GRU and LSTM model training
sets have 500 Epochs and 200 hidden layers. The data collected from the selected
site location was collected 24 hours daily for one month, from 6 am to 5 am. The
solar irradiation data were collected at 1-hour intervals for 5 months, including 5x30
x 24 = 3600 measurements. The missing value is filled by the average value of the last
3 hr. After completion of the training process, the forecasting results obtained from
the models are compared with the test data set. The number of past values in the
data set requirement of the series is not dependent on the target vector's size but on
the problem's nature. In this regard, a single execution of the algorithm with a few

historical data will be enough to predict the necessary results in the future time step
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with the necessary horizon. This algorithm considers the day-ahead predicting PV, wind,
and demand power at 1-hour intervals. To evaluate the performance and correctness,
the results of the GRU deep learning algorithm were compared using the extensively
used statical technique ARMA model. Two types of time series prediction models were

implemented in the proposed methodology in this work.

The simulation results show that the deep-learning model has a competitive
prediction performance compared to conventional statistical models. Whether the
length and non-linear characteristic of the collected historical data, such as wind speed
data, solar radiation, and historical load, does not matter upon the performance of the
deep-learning model. Furthermore, Figures 4.1 to 4.6 illustrate that the deep learning
GRU model performed better than the statistical ARMA models. Deep learning is a less
straightforward process than ARMA models to extract the inherent nonlinear features
and high-level invariant structures in time-series data. The deterministic forecasting of
REs and load profiles are predicted with GRU and LSTM deep learning algorithms. The
performance of forecasting methods is tabulated in Table 4.1 using root-mean-square
error (RMSE). The main feature of LSTM and GRU is the internal memory function layers
connections between the processing neural units, which is suited for REs time-series
prediction. The deterministic 24-hour ahead short-term forecasting performance of
GRU and LSTM models are statistically presented in terms of mean absolute error
(MAE) and root-mean-square error (RMSE). It can be seen from the table that the
performance index of the GRU model in specified location random error ranges from
0.1192 to 0.6841. Similarly, the LSTM and ARMA model indexes are between 0.1718-
0.8342 and 6.9427-9.3878, respectively. It has been observed from the results that the
deterministic prediction performance differs in different forecasting methods, and the
single variant prediction method exhibited different error ranges according to different

forecasting methods.
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Table 4.1 Comparison of random error for forecasting methods

ltems GRU LSTM ARMA
PV 0.1337 0.1718 2.6349
Wind 0.6841 0.8342 26723
Load profile 0.1192 0.1759 3.0640
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Figure 4.1 Monthly solar irradiation (April) with ARMA
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Figure 4.2 Monthly Average Load Profile (April) with ARMA
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Figure 4.4 Forecasted and observed day-ahead solar irradiation with GRU.
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Although deep-learning models provided different performances, the results

indicated that they performed better than the statistical ARMA model. Probabilistic
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and deterministic forecasting based on deep learning has paid attention to RE
forecasting. The proposed model provides accurate prediction and reliable data,
allowing for efficient power sharing at future upstream and downstream side
operations. The combined application of artificial intelligence with the optimal energy
efficiency concept appears to have boosted the digitization of the electrical sector,
particularly with energy sustainability and decarburization. The importance of time
series data processing in optimization models is highlighted in this section. A deep-
learning-based LSTM, GRU time series prediction performs as a better time-series
model, while the statistical ARMA model performs poorly in time series prediction. The
reason suggests this work focuses on the development of a prediction module in order
to arrive at high suitability in the advanced energy management system. While
comparing prediction methods, artificial intelligence algorithms have demonstrated
less error and superiority in obtaining favorable outcomes. Obtaining favorable results
necessitates adjusting a certain amount of hyperparameter adjustment. The quality

and quantity of the input data impact the prediction model's performance.

4.3 Parameters and Case Studies

Three power generation technologies are considered: wind, PV, and fuel-fired
distributed generators. The proposed system developed 24-hour ahead-generation
scheduling for microgrids as an active distribution network where end-users can
participate in periodic responsive load programs. The proposed model is considered a
microgrid system on the IEEE test system and tested for five case studies on a standard
I[EEE node system. The location and the links of available resources of MG are from
(Abdelmotteleb et al,, 2016). It is assumed that the uncertainty of the variable
parameter, such as wind speed, solar radiation, and the load profile, is based on the
random error of forecasted information. Since the MG has flexible and inflexible loads,
a responsive load program is only considered for flexible load change. The responsive
load change is implemented between 5%- 20% of the average load demand. The main

grid's power delivery is between 50 and 100 MW. The minimum and maximum
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generation capacity of two DG units are 25MW and 125MW, respectively. The grid
electricity prices are considered according to Thailand’s Time of use (TOU). Since the
PVs and WTs technologies only have operation and maintenance costs (O&M), the
O&M cost for PVs and WTs is 0.10954 $/kWh. The O&M costs for WT and PV are
obtained from (Karimi & Jadid, 2020), and these resources' hourly generation costs are
set as zero. The risks concerned with uncertainty management are considered in this
work. The coefficients of the DG cost function are tabulated in Table 4.2 (Gao Zhang
et al,, 2017). Due to their continuous operation, DGs' startup and shutdown costs are
not considered. In case studies II-V, the multi-objective optimization of the MG is
considered for cost minimization, peak load reduction (PAR), and consumer
satisfaction. In all case studies, the MG participates in demand response (DR) programs;

the maximum DR is 20% of the average load demand.

The proposed model is utilized for forecasting scenarios for the microgrid
energy management design to achieve a cost-effective active distribution network. The
renewable sources considered in this study are wind power and photovoltaic solar
power generation. The power capacity for each generation scenario is determined by
considering the power demand of the target region. The optimal scenarios are
evaluated by economic, peak demand reduction, and consumer comfort aspects. In
this work, the cheapest generation from the RESs scenario provided their total capacity
to the optimal dispatch system. To evaluate the effectiveness of the proposed model,

four case studies are considered as follows:

Case study I: In this case study, the single objective optimization of the MG is
considered only for cost minimization. In order to prove the effectiveness of the multi-
objective proposed system, case study | is to be compared with the following case

studies.

Case study Il  In this case study, the multi-objective optimization of the MG is

considered for cost minimization, peak load reduction (PAR), and consumer satisfaction
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simultaneously. In order to prove the effectiveness of the proposed system, case |l

does not consider the uncertainty effect related to the system’s parameter variable.

Case study lll: The MG solves the same optimization problem as case study Il. This
case study considers the scheduling problem for wind and PV power uncertainties. The
load profile is considered to be accurately forecasted by the operator. This case study

is proven to solve multi-objective optimization with generation uncertainty.

Case study lll: Multi-objective optimization is solved for the MG scheduling problem
under demand uncertainty. This case study is considered to prove the MG multi-criteria

problem under demand uncertainty.

Case study IV: This case study is the same as case Il; the proposed model is solved for
the MG energy management, while the MG experience in REs generation and demand
uncertainty. In order to prove the robustness of the proposed system, this case

considered and solved all uncertainty simultaneously.

Table 4.2 The characteristic of distributed generator

ltems a b Penin (MW) Prmax (MW)
DG1 0.02 10 25 125
DG2 0.015 10.75 25 125

4.4  Performance Comparison of Optimal microgrid dispatch

This section discussed the optimal operation of different case studies based on
single and multi-objective problems to analyze different uncertainty levels that affect
the system and highlight the achievement of multi-objective over single objectives in
optimal dispatch. Figure 4.7-Figure 4.11 demonstrated the optimal power generation
for five case studies from the wind, PV, DGs, and main grid to the demand through the
24-hour horizon. The Figures show that most of the electricity at night and early
morning is supplied from the main grid and local DG generation due to the insufficient

power from wind turbines and lack of power from PV generation. The peak load started
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in the morning at 07:00 hr, coinciding with an increasing time of use tariff. The surplus
demand is shifted when there is an inefficient way to generate it. Thus, the peak load
occurs during working hours between 7:00- and 16:00, so the dispatch units are
required to generate expensive hours. Currently, the demand response is used to
balance the demand when local generation is insufficient to provide high demand. The
demand response program allows the hourly consumption to shift 20% of demand
power within the day, and the lack load is moved to demand response agreement
hours. The conjunction of PV from 8:00 a.m. to 6:00 p.m. and wind generation is
frustrating all day. The high wind and PV power can be observed in the daytime
between 9:00 a.m. and 6:00 p.m. When the PV is not generated, and wind power is at
low capacity than other hours, the high power is imported from the grid between 19:00
hr-20:00 hr and 1:00 hr -6:00 hr. The optimal planning results also indicate that DGs
reduced the generated power at high PV generation. This is the way of elevating wind
and fully utilizing PV power. According to Table 4.2, although the generated power is
higher than the total demand, the production costs are not raised at a specific time.
At 15:00 hr, the total power generated in case Il is 269.3175MW, and the generation
cost is 863.4912 $/hr. In other words, the optimal scheduling process is planned to
generate more power at a specific time without detaching the system's objective
function and contents. The optimization algorithm is implemented for optimal search

for the multi-decision variables while satisfying the load demand.
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In case V, the worst scenario occurs when the system suffers REs and demand
uncertainty at certain hours. The worst case obtained from the prediction results
allows for determining the necessary reserves for a microgrid. The results in case study
-V indicated that the uncertainty by REs resources and demand influence the
microgrid operation schedule costs. Moreover, the uncertainty also impacts the
demand response program, as shown in Figure 4.12. Figure 4.13 demonstrates the total
generation cost of each scenario. While comparing the rate of cost of optimal scenarios
I-V to the without optimization scenario, the performance of optimal scenarios is better

than that of the without optimization scenario.



Table 4.3 Operation Cost Comparison
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Time Case | Case |l Case I Case IV Single Without
($/hn) ($/hr) ($/hr) ($/hr) Objective Optimization
Optimization
1 850.3547  548.7659  1602.6038 909.8174  1348.8052  1178.3895
2 546.8354 6754061  1881.3554 950.3468  375.8713 1166.4242
3 1647.7591 1814.2025 986.5724  1014.8482 755.3541 1262.6394
4 2260.2045 1382.8665 830.3685  546.8436  844.131 1343.1749
5 1597.4741 810.7412  1128.6224 9252776  955.6905 1454.7519
6 1228.4864 674.5382  545.6983  633.1734  896.9522 1551.3196
7 789.8557  1772.5758 922.2043  911.4865  1771.578 1613.097
8 915.1626  1927.3184 816.1838  906.4845  1860.017 1480.4041
9 623.0207  1710.0389 1848.8694 702.5314  1070.0432  1318.4219
10 1007.2585 911.5002  750.1332  1753.1033 1528.6164  1281.7748
11 871.0221  1196.8271 1181.8888 658.9685 414.443 1034.9343
12 931.4334  1057.7202 1543.7718 1003.4643 456.2641 889.1053
13 643.6643  1099.922  665.0263  1671.819  1121.2631 1142.985
14 693.4364  681.9297  553.2851  550.4119  1278.3009  989.6244
15 1935.8251 863.4912  954.7437  1382.0845 1164.2192  1049.4357
16 550.6114  941.7813  1499.6155 1382.839  1420.9453  1203.1379
17 1239.8446 1491.7396 580.3995  1266.3497 929.4854 1130.5521
18 2041.085  2041.5774 601.8911 12827158 1279.9121 1132.3403
19 1205.234  548.5494  806.3561  1943.9574 1066.5643  1539.488
20 1651.4888 546.6343  1413.8903 1020.5354 1605.2763  1344.3061
21 550.4086  1659.43 873.4584  1359.1564 1281.3776  1500.249
22 714.4964  897.854 1618.5924 1058.807  877.6257 1608.6235
23 1280.2971 1966.8542 1571.219  969.86 635.1677 1572.3436
24 1242.2974 1604.3582 1089.0291 9229465  1078.5599  1539.1209
Total 27018 28827 26266 25728 26016 31327




Table 4.4 Peak load Limit
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Time Case ll Case Il Case IV Case V
1 45.3820 50 50 1.2372
2 1.5866 9.6227 50 8.4500
3 5.7101 3.5861 9.5415 30.2988
4 20.0023 50 5.7829 2.3446
5 38.4223 23.3173 26.8279 7.0604
6 3.5374 0 3.3282 0
7 50 42.0055 50 24.4368
8 50 23.7297 0 50
9 21.6324 48.5468 24.2745 50
10 1.9812 31.8058 12.7375 5.4831
11 0 31.3314 9.5113 50
12 8.8724 50 28.2874 26.2175
13 7.8348 22.1608 0 50
14 0 30.3119 11 50
15 50 5.2005 30.8079 3.9629
16 0 50 50 32.6861
17 1.0917 50 50 26.9262
18 0 2.8050 43.6707 50
19 50 0 48.1903 17.9828
20 11.7004 26.0738 42.9103 7.5695
21 44.7376 50 50 17.8145
22 14.4537 13.9775 10.0359 25.4472
23 0.7616 0 50 50
24 45.3820 50 50 17.5532
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Table 4.5 Percentage Demand Elasticity

Time Case Il (%) Case Il (%) Case IV (%) Case V (%)
1 6 29 10 13
2 19 20 3 8
3 6 9 12 7
4 24 13 24 12
5 3 22 23 28
6 28 4 20 4
7 23 28 15 29
8 19 7 14 25
9 5 11 11 27
10 20 4 8 14
11 15 12 18 7
12 10 6 3 3
13 6 6 17 6
14 29 8 18 3
15 24 21 9 3
16 5 8 29 14
17 26 13 12 29
18 20 28 29 20
19 12 8 9 14
20 12 28 3 18
21 q 3 3 17
22 3 11 10 21
23 23 13 4 27

N
s

14 6 29 3
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Table 4.6 Demand Response Comparison

Case Studies Case | Case Il Case lll  Case IV Single Objective

Optimization

Total Demand 339 251 326 307 428
Response (MW)

Table 4.7 Total Generation Capacity in Microgrid

[tem Case | Case |l Case llI Case IV Case V With

Optimization

Grid Power 1314 1674 1634 1723 1630 2400
(MW)
Local 2267 2346 2492 2279 2242 2424
Generation
(MW)

The local generation capacity and gird power of microgrid (MG) for all case
studies is tabulated in Table 4.6. This table shows that the local generation increased
due to the optimal generation scheduling process in single and multi-objective case
studies. The proposed system is the model of the active distribution network to reduce
energy importation from the main grid, and local resources mainly generate energy
requirements. The results summarized in Table 4.6 showed the power imported from
the main grid. The results revealed the facts of microgrid independence. The proposed
model entirely consumes local wind and PV generation energy. It can be observed
that the power from the main g¢rid is decreased purchasing during improved REs
capacity in the daytime (8:00hr-18hr). The case studies showed that the proposed
model minimized the main grid dependency and elevated RE generation regardless of
peak and off-peak periods. The fuel-based DGs are applied as dispatchable generation

units and serve unfulfilled power from non-dispatchable units such as local wind and
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PV generation. Due to high production costs, the DG generation can use total capacity
over other resources in this model. By comparing the case studies in Tables 4.2 and
4.6, it can be observed that the operation costs of the proposed model depend on
DG generation. The operation cost from the fuel generation unit in the microgrid is a
key factor to expense the whole operation—the optimization algorithm searches for a
better objective function solution. When the microgrid is without optimization, the
total operation cost is 31327$. The dependence performance indices of case studies

II-V are 559%, 70%, 68%, 71%, and 62% without optimization, respectively.
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Figure 4.16 Power Trading to Main Grid

Figure 4.23 shows the surplus power of case studies after performing the
optimization. The surplus power is traded back to the upstream network at different
hours. It can be observed from case studies II-V that all generation resources are
running at optimal production levels, and surplus electricity is traded to the network
to gain more profit. This is also the way of natural profit maximization for the overall
interconnected microgrid. Regarding responsive load, the trade power depends on the
combination of total power demand in MW at this hour and shifted load in MW from

nearby hours. In case |, the available generating units produced maximum electric
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power at 15:00 hours, which is about 269.3175 MW, and the total cost of production
is 1935.8251$/hr. Thus, the total electricity demand at this period is 173.3 MW, and
the total shifted load from 16:00 hours to 48 MW. The surplus 49 MW is traded back
to the main grid at 15:00hr. It was noted from Figure 4.7 that from 1:00 hr - to 5:00 hr,

microgrids trade a high amount of power to the grid.

Table 4.8 Total Power Trading back to Main Grid

[tem Case | Case |l Case lll Case IV Case V

Sell Power 352.1016 551.9353 344.3057 440.5191 352.1016
(MW)

4.5 Effect of Demand Response on the Operation Cost

Table 4.2 presents the performance comparison related to the generation costs
of different case studies. The proposed multi-objective model is tested on four
different scenarios based on the level of experiencing variable parameter uncertainty.
In case |, the microgrid, does not participate in multi-criteria optimization, the proposed
model for case | only solved for generation cost reduction. According to Table 4.6,
local generation is more required to compensate and fulfill demand in case lll. Besides,
the energy not supply (ENS) in case | is improved by 121MW (39% improvement)

compared to the worst-case scenario (case V).

The cost of microgrid operation is 31327 $ without considering optimization.
After optimal operation, the cost reached 26016 $, reduced by 17% compared to
without optimal operation. Besides, the ENS is increased by 428MW due to DR
participation in case study I. In case |, the optimal generation scheduling problem is
only based on cost minimization. In other words, the optimization process is not
limited to maximum DR participation. The ENS in Case Il is lower at 26%, 23%, and
189% than in Cases |, Il, and IV. In this case study, the optimal scheduling is implemented

with the uncertainty related to RE generation. The uncertainty related to wind speed
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is 0.68 % more forecasted than actual wind speed. In other words, the forecasted
power from RE resources significantly impacts the generation costs. By implementing
optimal energy management, DR provided the loads shifting program to shift the load
from the energy not supply (ENS) period to the off-peak periods. This way, the peak
load and energy requirement are reduced based on the economical operation. The
results revealed that the proposed multi-objective model reduces the ENS and
generation costs more than single objectives without optimal operation models. In this
regard, the proposed model significantly improves the usage of RE resources, lessens
independence on the main grid, and reduces the generation cost by 17% compared

to without optimal operation.

The case studies in Table 4.3 show that the uncertainty effects related to RE
generation and load profile are significantly miticated by introducing DR in the
microgrid. This table also compared the impact of DR on multi-objective and single-
objective optimization problems. According to Figure 4.14-Figure 4.17, load shifting
commonly occurs when the demand exceeds the total generation capacity due to
insufficient power from RE resources. The load shifting DR is more likely to favor
working hours due to surplus total generated power. Figure 4.18 to Figure 4.22
compares the existing load profile with the load profile after DR participation for five
case studies. The optimal situation for case studies varied the load change pattern at
different hours. It can be observed from this Figure that the daily load profile of the
microgrid is removed from peak load by implementing multi-objective optimization
with the DR program. Participating in the DR program shifts the peak load from on-peak

to off-peak periods.

Moreover, multi-objective is considered to prevent the creation of a new peak
at the on- peak and off-peak periods. It can also be observed that demand response
significantly improves the MG load profile. Figure 4.18 shows the new peak load
created at 70 MW in peak time by DR programs. Although DR reduces system peak

load at peak and off- peak times, a new peak load is created at peak time due to the
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DR program. This is the cause of over-DR after implementing a single objective demand
response model. The new demand is higher than the existing demand after
implementing DR, leading to the extra load at the peak time. Therefore, DR programs
increased peak load by about 29% at peak time. The performance of load shifting

demand response in case | improved peak load at 8:00 hr, 10:00 hr, and 14:00 hr.

In this work, multi-objective optimization is considered an objective function to
avoid DR problems. In this regard, case II-V considered multi-objective optimization for
optimal scheduling problems. In the proposed model, multi-objective implemented
optimal generation scheduling regarding cost minimization, simultaneously preventing
peak load creation and consumer comfort. Table 4. shows the Peak to Average Rates
(PAR) in cases II-IV. The optimization results are the tolerance level of peak load each
hour to prevent new peak creation after load shifting demand response participation.
After DR programs, overall PAR in cases II-V is improved and reaches 1.14 (18%), 1.12
(16%), 1.16 (18%) and 1.24 (18%), respectively. In Figure 4.19 to Figure 4.22, cases Il -
Il load profiles are the results of multi-objective dealing with peak prevention, cost
reduction, and consumer satisfaction simultaneously. Implementing multi-objective
optimization and DR programs prevents the system's peak load from being created in
the new load profile. It can be seen that the day-ahead load shifted by multi-objective-
based DR was reduced over DR after DR implementation, and the proposed model has

a better performance than the traditional single objective-based DR program.

According to simulation results, the flexibility load change reduced the
generation cost and mitigated system uncertainty, especially from non-dispatchable
generation resources and load profiles. RE generation significantly affects the operation
schedule, which depends on the values of RE uncertainty. Similarly, the increment of
REs' power significantly reduced the grid dependency. According to the facts from this
work, since the uncertainty in REs generation and demand impacts the scheduling
process and total operation cost, it can be considered a factor for predicting a 24-hour

bidding price in a day-ahead pricing market.
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200

190 [

180

130

120

110

100

Before Demnad Response

After Demand Response

il

5 10

Time(hr)

15

20

25

Figure 4.24 Comparison of load pattern before and after demand response in Case Il



132

190

Before Demnad Response T T
After Demand Response

180

170 7

Power (MW)
I

140

130

120 —LL .

110 1 1 1 1
0 5 10 15 20 25

Time(hr)

Figure 4.25 Comparison of load pattern before and after demand response in Case IV

210 T T

Before Demnad Response
After Demand Response
200 [ 7

190 §

1.

o

=N

o

o
T

-
~
o
T
1

-
()]
o
T
L

Power (MW)

150 .

140 4

130 .

120 1 1 1 1
0 5 10 15 20 25

Time(hr)

Figure 4.26 Comparison of load pattern before and after demand response in Case V



133

4.6 Simulation results and discussion of multi-objective optimization

The Pareto optimal fronts obtained from the algorithms are provided in Figure
4.25-Figure 4.27. Since the proposed method is a multi-objective minimization
problem, the shape of the Pareto optimal fronts is a convex function, explained in
section 3.4.2. The Figure shows the dominated and non-dominated solutions in a
particular iteration process. The non-dominated solution is stored in the archive based
on the mentioned rules in section 3.4.2 for each iteration process. The best optimal
solution is the choice with the best compromise solution (BCS) method. The optimal
results are shown in the Figure. According to the figures, the optimal solutions were

selected close to the Pareto optimal front.
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CHAPTER V

CONCLUSION AND RECOMMENDATION

5.1  Concluding summary and recommendation

In this work, operation cost is formulated as the combination of RES, power
exchange from the g¢rid, and fuel cost. The fuel cost is usually represented as the
quadratic function of output power. With the high penetration of RE resources, it is
essential to maintain energy balancing, secure generating a scheduling, and make
effective dispatch choices. The adequate forecast information minimizes generation
costs, reduces demand shortage due to RE capacity variation, and enhances power
operation. Due to its unpredictable and unstable nature, it is challenging to forecast
accurate RE capacity over time. Due to the uncertainty and variability of renewable
energy, modern electric power systems need to change flexible networks with
adequate management in short- term operations. Regarding this aspect, most work has
not considered the flexibility needed to meet economic investment decisions for

generation purposes related to renewables generation and demand uncertainty.

The increased penetration of RE resources increases the network's randomness,
volatility, and uncertainty. Such uncertainty challenges network security, such as
safety, reliability, and economic operation generation systems. Therefore, the
upstream power network can control and manage a reliable dispatch of generation
units from the predicted REs generation and demand information. The optimal day-
ahead scheduling of the distribution with REs generation systems is proposed in this
work, and the proposed model also considers the demand response program to
capture REs uncertainty. This problem is described as a multi-criteria optimization

problem, a solved multi-objective gray wolf optimizer. At the same time, It compares
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and analyzes the impact of multi-objective day-ahead scheduling with the existing
works. The simulation result presented the effectiveness of the proposed model in
terms of operation cost, peak load reduction, and consumer comfort. The uncertainty
is the challenge of dealing with the scheduling problem of distribution systems with
highly integrated renewable energy. To deal with this problem, the proposed system
analysis is a multi-objective day-ahead scheduling problem under the renewable

energy uncertainty problem.

The day-ahead unit scheduling was to manage the generation unit optimally
24 hours in advance, with a one-hour time scale. Integrated demand response is
introduced after the day-ahead scheduling process to adjust the aggregate load profile.
In order to perform optimal day-ahead scheduling, the local day-ahead wind, PV, and
load forecasting is vital information for the microgrid EMS system. Optimal day-ahead
scheduling is the optimization problem to minimize operation cost, peak load, and

consumer comfort.

The decision-making ability is to control the risk caused by the system’s
unbalanced condition, as reflected by the confidence level. In the day-ahead optimal
scheduling model, the risk usually comes from the insecure forecast information, which
will destroy system balancing. The simulation results reveal that the proposed model
allocates the maximum power sharing from the cheaper generation units in the total
generation capacity. PV and wind are the cheapest resources, and the proposed
algorithm is preferred to the extent of 100% utilization of these resources. The power
exchange from the grid is the high-paid source at 24 h and the sparing power capacity.
The optimal scheduling is to extend maximum capacity from cheaper sources and
spare the extent of extensive generation. Moreover, the optimization problem can
effectively implement a demand response program to manage the excess load from

the aggregate load profile.
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Regarding the possibility of the proposed model extension, the following points
are mentioned as future work. The proposed system is a step-by-step approach to
energy management, and the implementation process has not been solved in a single
optimization problem. Further work in this field is expanding and improving the energy
management method suited to dynamic environments. In order to improve the
planning model, it can incorporate different generation technologies and electric

vehicles, which can be unpredictable and economically irrational.
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APPENDIX A
MATLAB Codes



Main MOGWO

clear all
clc
drawing flag = 1;

fobj=@ (x)objective function3DG forecast mo (x);
nVar=11;

VarSize=[1l nVar];

% Lower bound and upper bound

lb=] 0.2406 0 50 25 25 0
0.05];

ub=[ 0.2406 0 100 125 125 100
0.21;

GreyWolves num=100;

MaxIt=10; % Maximum Number of Iterations
Archive size=20; % Repository Size

alpha=0.1; % Grid Inflation Parameter

nGrid=11; % Number of Grids per each Dimension

beta=4; %=4; % Leader Selection Pressure Parameter

gamma=2; % Extra (to be deleted) Repository Member Selection
Pressure

o

% Initialization
GreyWolves=CreateEmptyParticle (GreyWolves num) ;

for i=1:GreyWolves num
for j=1l:nVar
GreyWolves (i) .Velocity=0;
GreyWolves (i) .Position=zeros (1l,nVar) ;

%GreyWolves (i, j) .Position=unifrnd(lb,ub);

GreyWolves (i) .Position=unifrnd(lb,ub) ;
GreyWolves (i

GreyWolves (1
end
end

Best.Cost=GreyWolves (i) .Cost;

GreyWolves=DetermineDomination (GreyWolves) ;
Archive=GetNonDominatedParticles (GreyWolves) ;

Archive costs=GetCosts (Archive);

Grid=CreateHypercubes (Archive costs,nGrid, alpha);

for i=1l:numel (Archive)
Archive (1) =GetGridIndex (Archive (i), Grid);
end

% MOGWO main loop

) .Cost=fobj (GreyWolves (i) .Position) ;
GreyWolves (i) .Best.Position=GreyWolves (i) .Position;
) .
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50



y=zeros (3*MaxIt,Archive size);
g=zeros (MaxIt,nVar);

for it=1l:MaxIt

a=2-it* ((2) /MaxIt);
for i=1:GreyWolves num

clear rep?2
clear rep3

)

% Choose the alpha,

beta,

and delta grey wolves

Delta=SelectLeader (Archive,beta);
Beta=SelectLeader (Archive, beta) ;
Alpha=SelectLeader (Archive, beta);

o oo

o

if size (Archive,1)>1
counter=0;

for newi=l:size (Archive, 1)

if sum(Delta.Position~=Archive (newi) .Position)~=0

counter=counter+l;
rep?2 (counter, 1) =Archive (newi) ;

end
end

Beta=SelectLeader (rep2, beta) ;

end

o

hypercube

the

% has one solution,

% This scenario is the same if the second least crowded
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If there are less than three solutions in the least crowded
hypercube, the second least crowded hypercube is also found
to choose other leaders from.

so the delta leader should be chosen from

% third least crowded hypercube.

if size (Archive,1l)>2
counter=0;

for newi=1l:size (rep2,1)

if sum(Beta.Position~=rep2 (newi) .Position)~=0

counter=counter+1l;
rep3 (counter,1l)=rep2 (newi) ;

end
end

Alpha=SelectLeader (rep3, beta);

E
c=2.*rand (1, nVar);

E
=2.*a.*rand (1, nVar

b

g.(3.4) in the paper

g.(3.1) in the paper
D=abs (c.*Delta.Position-GreyWolves (i) .Position);
g.(3.3) in the paper

)-a;

% Egq.(3.8) in the paper
X1=Delta.Position-A.*abs (D) ;

% Egq.(3.4) in the paper
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=2.*rand (1, nVar);

Eg. (3.1) in the paper

=abs (c.*Beta.Position-GreyWolves (i) .Position);
Eg. (3.3) in the paper

=2.*a.*rand(l, nVar)-a;

% Egq.(3.9) in the paper
X2=Beta.Position-A.*abs (D) ;

ool O e Q

Eg. (3.4) in the paper

c=2.*rand (1, nVar);

g.(3.1) in the paper

D=abs (c.*Alpha.Position-GreyWolves (i) .Position);
Eg. (3.3) in the paper

A=2.*a.*rand (1, nVar)-a;

% Eg.(3.10) in the paper

X3=Alpha.Position-A.*abs (D) ;

% Eg.(3.11) in the paper
GreyWolves (i) .Position=(X1+X2+X3) ./3;

o

% Boundary checking
GreyWolves (i) .Position=min (max (GreyWolves (i) .Position,lb),ub);

GreyWolves (i) .Cost=fobj (GreyWolves (i) .Position);
fnew=fobj (GreyWolves (i) .Position);

f=fobj (GreyWolves (i) .Best.Position);

if fnew<=f
f(:,:)=fnew(:,:);
GreyWolves (i) .Best.Position=GreyWolves (i) .Position;
$GreyWolves (1) .Cost=fob]j (GreyWolves (i) .Best.Position);
end

end
[optval,optind]=min (£ (:,:));
bestfx (MaxIt)=optval;
Sbestpos=position (optind, :) ;

GreyWolves=DetermineDomination (GreyWolves) ;
non_dominated wolves=GetNonDominatedParticles (GreyWolves) ;

Archive=[Archive
non_dominated wolves];

Archive=DetermineDomination (Archive) ;
Archive=GetNonDominatedParticles (Archive) ;

for i=1l:numel (Archive)
Archive (1) =GetGridIndex (Archive (i), Grid);
end

if numel (Archive)>Archive size
EXTRA=numel (Archive)-Archive size;
Archive=DeleteFromRep (Archive, EXTRA, gamma) ;
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Archive costs=GetCosts (Archive);
Grid=CreateHypercubes (Archive costs,nGrid, alpha);

end

%disp(['In iteration ' num2str(it) ': Number of solutions in the
archive = ' num2str (numel (Archive)) ':Best Cost ='
num2str (GreyWolves (i) .Cost) ':Best position ='
num2str (GreyWolves (i) .Position)]);

save results

% [optval,optind]l=min (f(:,:));
%bestfx=optval;
Sbestpos=position (optind, :);

% Results

°

costs=GetCosts (GreyWolves) ;
Archive costs=GetCosts (Archive);
Archive position=Archive.Position;

%disp(['In iteration ' num2str (it) ': Number of solutions in the
archive = ' num2str (numel (Archive))]) ;

%$selsect min from Archive
if drawing flag==1

hold off
plot (costs(l,:),costs(2,:),'k.");
hold on
plot (Archive costs (1, :),Archive costs(2,:),'rd');

legend ('Dominated solutions', 'Non-dominated solutions');
xlabel ('Operation Cost
($/kWh) ', '"FontSize',28, 'FontName', 'Times New Roman') ;
ylabel ('PAR', '"FontSize',28, 'FontName', 'Times New Roman') ;
figure;
plot (costs(2,:),costs(3,:),'k.");
hold on
plot (Archive costs(2,:),Archive costs(3,:),'rd");
legend ('Dominated solutions', 'Non-dominated solutions')
xlabel ('PAR', 'FontSize',28, 'FontName', 'Times New Roman'
ylabel ('Consumer
Dissatisfaction', 'FontSize',28, 'FontName', 'Times New Roman');
figure;
plot3(costs(l,:),costs(2,:),costs(3,:),"'k.");
hold on

)i

plot3 (Archive costs(1l,:),Archive costs(2,:),Archive costs(3,:),'rd");
%legend('Grey wolves', 'Non-dominated solutions');
legend ('Dominated solutions', 'Non-dominated solutions');
xlabel ('Operation Cost
($/kWh) ', 'FontSize',28, 'FontName', 'Times New Roman') ;
ylabel ('PAR', 'FontSize',28, 'FontName', 'Times New Roman') ;
zlabel ('Consumer
Dissatisfaction', 'FontSize', 28, 'FontName', 'Times New Roman');



158

grid on
figure;
drawnow

end
bestfx 1(it)=£f(:,1);

bestfx 2 (it)=£(:,2);
bestfx 3(it)=£(:,3);

sdisp ([ ''" num2str (Archive costs) ]);
disp ([ '" num2str (Archive position) 1]);
y(it, :)=[Archive costs(1l,:)];
y(it+MaxIt, :)=[Archive costs(2,:)];
y(it+MaxIt*2, :)=[Archive costs(3,:)];
filename=['bcs cost 1 adfr 2','.xlsx'];
x1lswrite (filename,y) ;
g(it, :)=Archive position(:,:);
filename= ['bcs G 1 adfr 2','.xlsx'];

xlswrite (filename,q);

$disp([ '' num2str (Archive position) ]);
%disp ([ 'In iteration ' num2str(it) ':Cost'
num2str (GreyWolves (i) .Cost) ':Best position ="'
num2str (GreyWolves (i) .Best.Position)]);
Sdisp(['' num2str( £(:,:)) ':'
num2str (GreyWolves (i) .Best.Position) ]);
% 1f drawing flag==
% hold off
%plot (GreyWolves (i) .Cost (:,1),GreyWolves (i) .Cost(:,2),"'*x");
$plot (Archive costs(:,:),'*r'");
$xlabel ('Obj 1').;
$ylabel ('Obj".2"');
Send
splot (bestfx 3, 'Linewidth',2);
$xlabel ('Iteration');
$ylabel ('Best Cost (First Objective)' );
end

Objective Function

function [f] = objective function3DG forecast mo (x)
datal=[ 147.2607 146.8

151.9281 150.3

157.119 155.4

162.5461 158.4

167.9063 166.5

172.8989 174.5
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177.2422 177.5
180.6783 176.6
183.008 179.8
184.1255 180.7
184.016 181.8
182.6872 179.8
180.031 177.9
175.6149 179
168.6586 173.3
160.1163 167
156.0161 160.7
159.5986 163.4
166.8815 173.2
174.0677 178.8
177.511 180.2
178.0595 178.4
177.6684 179.2
176.0256 176.9]; % demand forecast & actual

(gru) //// wholesale price

pv=I[0 0
0 0
0 0
0 0
0 0
0.5750 0
2.0133 0.1747
4.7038 4.3580
8.5583 9.3070

12.6055 12.9876
15.4040 15.6100
16.6730 17.5211
16.3370 16.9766
14.8364 15.9214
11.9471 12.9440
7.6976 8.8252
3.3794 1.3812
0.6151 0

0

[oNeoNeNoNe)
OO OO oo

1; %%% PV power/gru/forecast &actual / MW

wind=[0.1918 0.2406
1.1077 2.4474
2.7287 1.4827
0.0715 0.0768
2.3577 0.1754
1.0640 0.8121
0.0752 0.0024
2.8232 0.0001
3.4542 2.4474
0.1901 0.5492
3.6018 7.6409
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5.7626 10.3165
1.0430 0.2528
7.5667 7.6409
5.9023 5.4731
0.5123 0.6841
5.4016 7.6409
7.4826 10.3165
0.3566 0.5704
9.2593 10.3165

6.3229 5.4731
0.1295 0.7853
2.2546 2.4474

4.0447 2.44741;%%% wind power/gru/forecast&actual/MW
data3=[ O 0
2.664108 0
3.739684 0
1.696395 0
3.758407 0
34.54576 0
124.7138 10.82
520.8635 272.24
741.4423 566.43
884.3228 763.92
939.1666 896.15
920.2418 986.94
835.7125 956.27
672.9625 896.83
433.595 729.12
293.8441 497.11
190.3563 77.82
34.64856 0
0 0
0 0
0 0
0 0
0 0
0 01; $PV irradiation gru forecast/actual
datad=[ 2.4871 2.6822
4.462 5.8115
6.0261 4.9174
1.7895 1.8329
5.7396 2.414
4.4025 4.0234
1.8206 0.58115
6.0949 0.17882
6.5188 5.8115
2.4794 3.5316
6.6104 8.4938
7.7314 9.3878
4.3733 2.7269
8.4662 8.4938
7.7934 7.5997
3.4506 3.7998
7.5665 8.4938
8.4347 9.3878
3.0581 3.5763
9.0555 9.3878
7.9743 7.5997
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2.1816 3.9787

5.6547 5.8115

6.8709 5.81157; % wind gru forecast/actual
X1l=x(:,1); $%Swind
X2=x(:,2); 3PV
X3=x(:,3); $%%grid
X4=x(:,4); $%%$DG1
X5=x(:,5); $%%$DG2
X6=x(:,6); $%%$PAR
X7=x(:,7); $%%waiting time
X8=x(:,8); $%% demand limit
X9=x(:,9); %%%DR elasticity

%lst objective function
z 1=[X1.%0.1095]1+[X2.%0.1095]+[X3.*0.075]+1(
0.02.*X4.72+10.*%X4)+(0.015.%X5.72+10.75.*X5) 1;

z_2=((X6)./(datal(1,2))); $PAR min
$z 2=exp([(24.*X6)./datal(3,1)]) .*datal(3,2);
%3nd objective function %Dissatification min

z 3=X7./24+(X8./datal(1,2)).*X9;

Q

%$3st Constraints
g(:,4)=abs (X7-5);

)

%g(:,5)=[X1l-datal(3,1).*0.005];

o

%$1st Constraint

g(:,1)=X1+X2+X3+X4+X5-datal (1,2)-(10"(5)); Spower balance
constraints

g(:,2)=-[50-X1]1-[50-X2]-[100-X3]-[125-X4]-[125~-

X5]+datal (1,2)+datal (1,2).*0.1; %$spinning resereve constraint

%define pently term
pp=10"(15);
for i=l:size (g, 1)
for j=l:size(g,2)
if g(i,3)>0

penalty(i,J)=pp.*g(i,]);
end
end

end
$compute objective function

sum(penalty,2);
+sum (penalty, 2) ;

N+

Create Empty Particle
function particle=CreateEmptyParticle (n)
if nargin<l

n=1;
end



empty particle.
empty particle.
empty particle.
empty particle.
empty particle.
empty particle.
empty particle.
empty particle.

Position=[];
Velocity=[]
Cost=[];
Dominated=false;
Best.Position=[];
Best.Cost=[];
GridIndex=[];
GridSubIndex=[];

’

particle=repmat (empty particle,n,1);

end

Create Hyper Cubes

function G=CreateHypercubes (costs,ngrid, alpha)

nobj=size (costs,1);

empty grid.Lower=[];
empty grid.Upper=[];

G=repmat (empty |

for j=1:nobj

min cj=min (costs(j,:));
max_ cj=max(costs(j,:))

grid,nobj,1);

’

dcj=alpha* (max cj-min cj);

min_ cj=min__
max_ cj=max

cj-dcj;
cp)| “ifolesy 5

gx=linspace (min_cj,max _cj,ngrid-1);

G(j) .Lower=

[-inf gx];

G(j) .Upper=[gx inf];

end

end

Delete From Cubes

function rep=DeleteFromRep (rep, EXTRA, gamma)

if nargin<3
gamma=1;
end

for k=1:EXTRA
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[occ _cell index occ_cell member count]=GetOccupiedCells (rep):;
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p=occ_cell member count.”gamma;
p=p/sum(p) ;

selected cell index=occ_cell index(RouletteWheelSelection(p)):;
GridIndices=[rep.GridIndex];
selected cell members=find(GridIndices==selected cell index);
n=numel (selected cell members);
selected memebr index=randi ([l n]);
j=selected cell members (selected memebr index);

rep=[rep(l:3-1); rep(j+l:end)];
end

end

Determine domination

function pop=DetermineDomination (pop)
npop=numel (pop) ;

for i=1l:npop
pop (i) .Dominated=false;
for j=1:1i-1
if ~pop(j) .Dominated
if Dominates (pop (i) ,pop(J))
pop (j) .Dominated=true;
elseif Dominates (pop (j),pop (i))
pop (1) .Dominated=true;
break;
end
end
end
end

end

Dominates solution

function dom=Dominates (x,Vy)

if isstruct (x)
x=x.Cost;
end

if disstruct(y)
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y=y.Cost;
end

dom=all (x<=y) && any(x<y);

end

Get costs function

function costs=GetCosts (pop)

nobj=numel (pop (1) .Cost) ;
costs=reshape ([pop.Cost],nobj, []);

end

Get gris index function
function [Index SubIndex]=GetGridIndex (particle,G)

c=particle.Cost;

nobj=numel (c) ;
ngrid=numel (G (1) .Upper) ;

str=["'sub2ind (' mat2str (ones(l,nobj) *ngrid)];

SubIndex=zeros (1,nobj) ;
for j=1:nobj

U=G (j) .Upper;
i=find(c(j)<U,1, "first');
SubIndex (j)=1i;

str=[str ',' num2str(i)];
end

str=[str ");']l;
Index=eval (str);

end

Get non-dominated solution

function nd pop=GetNonDominatedParticles (pop)
ND=~ [pop.Dominated];

nd_pop=pop (ND) ;



end
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Occupied cells

function [occ_cell index occ _cell member count]=GetOccupiedCells (pop)

end

GridIndices=[pop.GridIndex];

occ_cell index=unique (GridIndices);

occ_cell member count=zeros(size(occ_cell index));
m=numel (occ_cell index);

for k=1:m

occ_cell member count (k)=sum(GridIndices==occ_cell index(k));
end

Roulette Wheel Selection

function i=RouletteWheelSelection (p)

end

r=rand;
c=cumsumn (p) ;
i=find(r<=c,1, 'first');

Select Leader

function rep h=SelectLeader (rep,beta)

if nargin<2
beta=1;
end

[occ _cell index occ _cell member count]=GetOccupiedCells (rep):;

p=occ_cell member count.”(-beta);
p=p/sum(p) ;

selected cell index=occ_cell index(RouletteWheelSelection(p)):;
GridIndices=[rep.GridIndex];

selected cell members=find(GridIndices==selected cell index);
n=numel (selected cell members);

selected memebr index=randi ([l n]);
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h=selected cell members (selected memebr index);

rep h=rep (h);
end

BCS selection

clc

clear all

$select = readtable('bcs cost 1.xlsx');
data = xlsread('bcs cost 17 fdar 1.xlsx');
y=zeros (300,1);

for 1i=1:300

f l=min(data(i,:));

disp ([num2str(f 1) 1)
y(i,)=f_1(:,:);
filename= ['bcs min select 17 fdar 1','.xlsx'];

x1lswrite (filename,vy);
end

BCS main

clc

clear all
data=xlsread('bcs min select 17 fdar 1.xlsx');
f l=min(data(1:100,:));

f 2=min(data(101:200,:));
f 3=min(data(201:300,:));

for 1i=1:100
D=sqgrt((data(i,:)-f 1)."%2+(data(i+100,:)-f 2)."2+(data (i+200,:)-
£ 3).72);

disp(['Distance ' num2str(D)]) ;
end
GWO main
format short
clc

clear all
%initialize the parameter
CostFunction=@ (x)objective function3DG arma peakday 1 (x);

N=10; %$no. of wolf

D=5; %¥no. of paramater
d=[5 DJ];

1b=[2.7287 0 50 25 25 1;
ub=[2.7287 0 100 125 125 1;

itermax=100;
wolf.pos=[];
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pop=repmat (wolf, D) ;
%generating the initial population

$for 1 = 1:N

spop (1) .pos = unifrnd(lb, ub, d);

% pop (i) .fx = CostFunction (pop (i) .pos);
%end

position=zeros(5,5);
for i=1:N
pop (i) .pos =unifrnd(lb, ub);
position(i,:)= pop (i) .pos ;
end

fx=CostFunction (position);

[fminval, ind]=min (fx) ; $find minimum value
gbest=position(ind, :);
iter=1;

fgbest=fminval;

a=2-(2.* (iter./itermax)) ;
while iter<=itermax
for j=1:N
position l=position;
%posl=pop (i) .pos;
x=position(j,:);
Al=(2.*a.*rand(1,D))-a; %alpha wolf
Cl=2.*rand(1,D);
fx=CostFunction(position 1);
[alphaval,alphaind]=min (fx) ;
alphapos=position 1 (alphaind, :);
Dalpha=abs ((Cl.*alphapos) -x) ;
X 1=(alphapos-(Al.*Dalpha));

position 1 (alphaind, :)=[]; $beta wolf
fx=CostFunction (position 1);

[betaval, betaind]=min (£x) ;
A2=(2.*a.*rand(1,D))-a;

C2=2.*rand (1,D);

% [betaval,betaind]=min (fx) ;
betapos=position 1 (betaind, :);
Dbeta=abs ( (C2.*betapos) -x) ;

X 2=(betapos- (A2.*Dbeta));

position 1 (betaind, :)=[]; %delta wolf

fx=CostFunction (position 1);
[deltaval,deltaind]=min (£x) ;



A3=(2.*a.*rand(1,D))-a;
C3=2.*rand (1,D);

% [deltaval,deltaind]=min (fx);
deltapos=position 1 (deltaind, :);
Ddelta=abs ((C3.*deltapos) -x);
X 3=(deltapos-(A3.*Ddelta));

Xnew=( (X _1+X 2+X 3)./3);
%check bond

$Xnew=min (Xnew, 1b) ;
$Xnew=max (Xnew, ub) ;
Sfnew=CostFunction (Xnew) ;
if Xnew>ub

Xnew= ub;

end

if Xnew<lb

Xnew=1Db;
end

fnew=CostFunction (Xnew) ;
f=CostFunction (position (i, :));
if fnew<f
f=fnew;
position (i, :)=Xnew;
end
end

Supdate gbest
[fmin, find]=min (fx) ;
if fmin<fgbest
fgbest=fmin;
gbest=position (find, :);
end

[optval,optind]=min (f) ;
bestfx (iter)=optval;
bestpos=position (optind, :);

disp(['iteration:' num2str (iter)
num2str (bestfx (iter)) 'best! position:
Sdisp ([ num2str(f)]);

iter=iter+1;

plot (bestfx, 'Linewidth',2);
xlabel ('Iteration Number');
ylabel ('Best Cost');

grid on

end

GRU load prediction

jean data = readtable('load 5.csv');
data for analysis
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$new solution

'"Best Cost:'

! num2str (bestpos) 1) ;

$Purifyadditional
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% Fill the NaN value with the Nearest value.
jean data.irradiance = fillmissing(jean data.P, 'nearest');
lenofdata = length(jean data.P);

$for i=1 : length(jean data.collect day)
% Jean _data.collect day(i) = strip(jean data.collect day(i),',");
send

Y = jean data.irradiance;

data = Y';

% 2015.01.01 ~ 2019.05.06 (90%) : Training Data Set
3 2019.05.07 ~ 2019.10.31 (10%) : Test Data Set
numTimeStepsTrain = floor (0.9933*numel (data)) ;

dataTrain = data(l:numTimeStepsTrain+l) ;
dataTest = data (numTimeStepsTrain+l:end);

% Normalize sales price to a value between 0 and 1 (Training Data
Set)

mu = mean (dataTrain);

sig = std(dataTrain);

dataTrainStandardized = (dataTrain - mu) / sig;

XTrain = dataTrainStandardized(l:end-1);
YTrain = dataTrainStandardized(2:end);

$LSTM Net Architecture Def sModel
Selection for Prediction
numFeatures = 1;
numResponses = 1;
numHiddenUnits =
layers = [
sequencelnputlLayer (numFeatures)
grulayer (numHiddenUnits, 'OutputMode', 'sequence')
fullyConnectedLayer (numResponses)
regressionlayer];
options = trainingOptions('adam',
'MaxEpochs', 500,
'GradientThreshold',1,
'InitialLearnRate", 0.005,
'LearnRateSchedule', 'piecewise',
'LearnRateDropPeriod', 125,
'LearnRateDropFactor',0.2,
'Verbose', 0,
'Plots', '"training-progress');

200;

% Train LSTM Net
net = trainNetwork (XTrain,YTrain,layers,options);

% Normalize sales price to a value between 0 and 1 (Testing Data

Set) %$Data prediction
dataTestStandardized = (dataTest - mu) / sig;

XTest = dataTestStandardized(l:end-1);
net = predictAndUpdateState (net,XTrain);
[net, YPred] = predictAndUpdateState (net,Y¥Train(end));



% Predict as long as the test period (2019.05.07 ~ 2019.10.31)
numTimeStepsTest = numel (XTest) ;
for 1 = 2:numTimeStepsTest
[net,YPred(:,i)] = predictAndUpdateState (net,YPred(:,i-
1), '"ExecutionEnvironment', 'cpu');
end

% RMSE calculation of test data set
$Predictive evaluation (RMSE)
YTest = dataTest (2:end);

YTest = (YTest - mu) / sig;
rmse = sqrt (mean ((YPred-YTest) .”"2))
3 Denormalize Data %Result and

semantic analysis
YPred = sig*YPred + mu;
YTest = sig*¥YTest + mu;

% X Label : Collect Day
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x data = datetime(jean data.collect date time, 'InputFormat' ,'yyyy-

MM-dd-hh:mm:ss"'") ;

$x_data = (Jjean data.collect day):;

X train = x data(l:numTimeStepsTrain+l);
x train = x _train';

x pred =

x _data (numTimeStepsTrain:numTimeStepsTrain+numTimeStepsTest);
$xx=x_train(l:end-1);

$yy=dataTrain (l:end-1) ;

% Train + Predict Plot

figure

Splot (xx,vyy)

plot (x_train(l:end-1),dataTrain(l:end-1))

$plot (x_train,dataTrain)

hold on

plot (x_pred, [data (numTimeStepsTrain) YPred],'.-")
hold off

xlabel ('Collect Day')

ylabel ('Sales Price')

title('Forecast')

legend ('Observed', 'Forecast')

% RMSE Plot : Test + Predict Plot
disp([':pre ' num2str (YPred) ':test ' num2str(YTest)]):;
figure

%subplot (2,1,1)

plot (YTest)

hold on

plot (YPred,'.-")

hold off

legend ('Observed', 'Forecast')
ylabel ('Demand")

title('Forecast')

$subplot(2,1,2)

$stem (YPred - YTest)
%xlabel ('Collect Day')
Sylabel ('Error')
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$title ('RMSE = ' + rmse)

% Train + Test + Predict Plot

figure

plot (x_data,Y)

hold on

plot (x_pred, [data (numTimeStepsTrain) YPred],'.-")
hold off

xlabel ('Collect Day')

ylabel ('Sales Price')

title('Compare Data')

legend('Raw', 'Forecast')
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Abstract: Smart encrgy management and control systems can improve the efficient use of electricity
and maintain the balance between supply and demand. This paper proposes the modeling of a
decentralized energy management system (EMS) to reduce system operation costs under renewable
generation and load uncentainties. There are three stages of the proposed strategy. First, this paper
applies an autoregressivie moving average (ARMA) model for forecasting PV and wind generations
as well as power demand. Second, an optimal generation scheduling process is designed to minimize
system operating costs, The well-known algorithm of particle swarm optimization (PSO) is applied to
provide optimal generation scheduling among PV and WT generation systems, fuel-based generation
units, and the required power from the main grid. Third, a demand response (DR) program is
introduced to shift Nexible load in the microgrid system to achieve an aclive management system.
Stmulation resultsd the performance of the proposed 4 using f t data for
hourly PV and WT generations and a load profile. The simulation results show that the optimal
generation scheduling can minimize the operating cost under the worst-case uncertainty. The load-
shifting demand response reduced peak load by 4.3% and filled the valley load by 5% in the microgrid
system. The proposed optimal scheduling system provides the minimum total operation cost with a
load-shifting demand response framework.
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1. Introduction

Over the last decades, renewable energy resources {RESs) have been encouraged to
reduce dependency on fuel-based generation and greenhouse gas (GHG) emissions [1-3].
Renewable energy resources are one of the solutions to the above issues and an option
for future clean‘energy. Higher renewable penetration, such as wind and solar, in the
power grid can significantly raise uncertainties in the systems and has adverse effects on
the proper operation of the power systems. As a result, efficient forecasting of the RES
generation has become necessary for the power systems with high RES penetration, and it
has the potential to improve power efficiency and system reliability. Some critical aspects
of power generation forecasting included high RES penetration rates, power supply and
demand imbalances, and optimal system operation. In recent years, time-series statistical
models have been the most commonly applied forecasting technique [4]. The mathematical
formulation of the time-series method was developed and can be applied to observe near-
future predictions based on available historical data [5]. Moreover, an accurate demand
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forecasting can help the utility with decisions in various aspects, such as purchasing and
generating electricity, load switching, and improving system infrastructure. In addition,
demand variation was a significant issue for system management in electricity markets.
This variation created the distribution network’s vulnerability and had an economic effect
on the electricity spot price, at which decisions were made based on the existing plants”
expanded investment. Thus, d d forecasting has also become an essential aspect of the
emergence of competitive electricity markets [6,7].

The distribution network is being deregulated and changed to open a new window
of a competitive electricity market by increasing system efficiencies, reducing operation
costs, and minimizing utilities’ financial losses. The restructured design has been mainly
partitioned into two sectors: the generation side and the load aggregator or end-user
side [5]. While the conventional system has generated energy to meet total power de-
mand requirements every time-step, the restructured system becomes more effective way
for supply-demand balancing that keeps power fluctuation within the threshold level.
Moreover, balancing in the conventional system cannot be achieved quickly due to several
limitations, such as unexpected production outages, power transferring system failures,
and unpredictable system load changing [9]. For this reason, the demand response (DR) has
been changed for a sustainable electricity service system by changing consumers’ behavior
which is responding to the real-time price tariffs program or the incentives offered by the
program and also responding to the jeopardy of the system’s reliability circumstances [10].
Therefore, the new power system infrastructure with a demand response (DR) strategy was
the more effective and lower investment for reliable power system operation. DR programs
did not need more capital investment for system updating for more production units and
power transferring capacities [9]. With the high penetration of distributed generation
resources into the system, the reliable design function of DR provided positive impacts
for the whole system through level-up system security and economic benefit [11]. The DR
program has participated as a role in the active distribution network. The DR also plays as
a chance to mitigate the system fluctuations due to the ability of fast action to meet system
balancing in the eventof resource shortage. It offered adjustment to the demand side rather
than power procurement from the generation side. In this way, the electric consumer can
fully participate in the active distribution network [12].

The microgrid EMS monitors and controls the operational status of optimal power
allocation from the various energy resources to the controllable and critical loads. In
advanced restructured design, controllable loads can be dispatched to ensure system
reliability and stability. The EMS was designed to collect load profiles and forecast the
energy resource information, consumer preference, policy and electricity market price for
optimal power flow (OPF), energy price, load dispatching and g tion scheduling [13].
Decentralized EMS is the autonomous intelligence controller considering several local
controllers. Because local controllers only need to make decisions and communicate locally,
communication congestion and cnmputaﬁoml burden are much lower than that in a
centralized EMS system [14]. The uncertainties of RES and demand can cause difficulty
managing optimal generation. All entities in distribution networks with microgrid clusters
are interconnected systems and have different operational objectives and decision variables
due to'the impact of the local operating environment. Therefore, the centralized energy
management system is no longer an option for the generation scheduling of the distribution
networks with the MG cluster. The decentralized EMS has become a solution to tackle
the microgrid operation [15]. In this scheme, local controllers must determine the optimal
pnwcr output locally. 'Ihe‘re!cm.', the decentralized EMS will significantly reduce the

putational power requi tin the entire microgrid. Because local controllers have
Iocal authority, tmuble-:hmnns secunl) issues could be difficult [14].

Generation scheduling is a common problem in feasible microgrid planning. It was
usually solved by the optimization process. The optimal planning techniques can be ap-
plied to both renewable energy allocation and energy management systems. The energy
manag ¥ 1s applied different optimization methods based on technical, environ-
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tal, and e ic ¢ ints and uncertainties [16]. In recent years, optimal planning

techniques have become popular in the energy management systems in smart homes, smart

buildings, and smart grids. Decisi aking-based energy modeling has become a sustain-

able design for planning and controlling optimization issues [17]. Uncertainties of the RES
generation exacerbated the balancing between generation and demand [2]. Therefore, it
is required to schedule generation units in the microgrid planning stage to closely match
with the forecasted demand profile between generation and demand. The problem of
optimal appliance scheduling with the DR program and the uncertainty of rooftop PV
were analyzed in [18]. In this work, the uncertainty of solar radiation was tackled with
the Weibull probability density function (PDF). This system can reduce computation time
with high computational accuracy. The result showed that the proposed model provided
an economically feasible microgrid operation under solar uncertainty. The work in [19]
presented the optimization of hybrid DG while taking demand and supply uncertainties
into account. The model of demand variation was investigated by the probability density
function. C llable and unc llable DG mitigated the uncertainty of the supply side.
The results d trated that the optimal combination of hybrid DG captured the demand
uncertainty in the reconfigurable microgrid. The bi-level algorithm for decentralized energy
management systems in microgrids was presented in [2]. The first step predicted generation
set-points, while the second step adjusted generation outputs based on various scenarios.
The simulation results provided the stable operation of networked and islanded modes
under the stochastic nature of DG's output power. The work in [20] put forward the ideas
of a decentralized framework with DR from the point of view of a system operator who
wanted to balance supply and demand and changed generation curves to match changes
in demand. The results showed that the proposed algorithm minimized the suppliers’
operation cost, the consumers’ discomfort, and the tr ission system's congestion. The
work in [21] was to demonstrate the active disturbance rejection control (ADRC) paradigm
to ensure the effect of exogenous disturbances on the PV g tion uncertainty. In this
work, the performance of modified ADRC was compared with linear ADRC (LADRC),
conventional ADRC, and improved ADRC (IADRC). The results showed that the proposed
model provided high performance in the tracking system to capture PV uncertainty. The
risk-secking stochastic optimization was proposed to coordinate electricity markets with
wind generation in [22]. The results showed that the procurer profit maximization can be
provided by adjusting the eters of the risk-seeking stochastic optimization model. A
two-stage optimization model was implemented for profit maximization scenarios, and
a probabilistic statistical perspective was used to capture wind power uncertainty. The
risk-averse two-stage stochastic model was proposed for short-term schedules for the
pool electricity market in [23). The results showed that contracts with withdrawal penalty
(CWP) and contracts with option (CWO) were the new options that provided retailers
profit maximization in the pool electricity market. The electricity tariffs and demand un-
certainties were considered to show the effect on the retailer profits /risk and retail price.
The previous model applied a stochastic process that was embedded in the sophisticated
decision-making model [15,20,24-26].

Although the stochastic model was applied inthe operation and planning of the elec-
trical power system, this model generated different seenarios to achieve optimal solutions
and required a significantamount of computation time [27]. Moreover, the stochastic
model is difficult to interface with the complex scenario-based forecasting models and the
sophisticated decision-making model. The work in [25] proposed a decentralized multi-
agent control scheme to manage the power sharing of the distribution network with RESs.
However, the nature of RE resources uncertainty and the role of demand response were
not considered in this work. The results presented that the proposed model provided a
balanced active/ reactive power sharing during stable /unstable demand events. The decen-
tralized multi-agent robust optimal model with integrated demand response was presented
in [29] for the electricity-gas-heat systems. The integrated demand response was used to
handle the uncertainty of RESs. This work showed the effectiveness of the multi-agent
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decentralized robust optimal dispatching compared with the centralized robust optimal
dispatching. The simulation results showed that the demand response market can handle
the nature of RE resources uncertainty. The Benders decomposition technique is introduced
for networked microgrid energy management in [30] to address the unbalanced condition.
Probabilistic scenarios was generated to capture RE resources and demand uncertainty.
The simulation results showed that the increased use of expensive generation resources
constantly increased the operation cost. The proposed model provided a cost-effective
interaction of operators and distributors. Nowadays, the use of electricity is increasing,
and the electricity is generated from various renewable sources such as wind, hydro and
solar power. Therefore, it is very important to plan and manage the power generation for
effectively supplying power systems. This paper focuses on managing power generation

systems to reduce the peak load of the microgrid system using an optimization method.
Three options are available to handle uncertainty problems: generating more power or
buying more energy from the main grid, using energy storage systems, and participating in
a demand response program [31]. Due to economic operation and environmental concems,
the first conventional solution has the drawback of power reserving [32]. The previous
work did not highlight common possible uncertainties in the power network, especially
the intermittent nature of wind and solar generations and demand variation. The concept
of DR cooperation in the microgrid energy management system is to reduce operating
e;?%méwmwwﬁmmm%m%wmm
: e

A
mﬁh—umﬂ?’rm cony e e foropr X systom.
*  The proposed method incorporates the demand response (DR) which does not require
probability constraint parameters to tackle the deviation from the forecasting data.
The rest of the paper is organized as follows. Section 2 presents the proposed method-
ology of the paper. In this section, the forecast technique, well-known particle swarm

optimization technigue, and problem formulation are introduced and discussed. Section 3
presents verification simulation results and discussions. Finally, Section 4 concludes
the paper.

2. Methodology

The proposed strategy consists of three stages. In the first stage, hourly average energy
demand and hourly average WT and PV power generations are predicted by using an
ARMA (2,1) for a particular month. This work used two-year historical data to forecast the
BEant e BE.gs bhan Ao st Jza S darnm-inashoduling aradloble
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a particular time, the required power demand is suggested to shift the valley period. Finally,
the network operators provided the demand decision information to the demand side to
respond to the load in a particular hour. The proposed framework is shown in Figure 1.
The decentralized forecasting and optimization model are implemented using MATLAB
2021. The simulation is performed with an Intel(R) Core(TM) i7-6500U, 2.50 GHz CPU
speed, and 8.00 GB RAM. A flowchart of the proposed decentralized energy management
system is given in Figure 2.

In the next subsections, the forecasting technique used to predict WT ancl PV glmera~
tions and load demand based on hl_-tnncai data is presented. Then, the probl,

based on the particle optimization technique is given and dnscme-ed.
- | ______
|
| }
| JGnd |, |
I I |
| | 1
I e il
I
|
|
|
|
|
|
|
|
I
|
4

Figure 1. The proposed framework of the decentralized energy management syshem.

2.1. Forecasting Technique

An ARMA model bawd on statistical and Box-Jenkins methods was adopted. The
ARMA model is ¢ ly applied to stationary time-series data as it is a superior tool
to predict the future v alues of stationary time-series [13]. The Yule-Walker estimator was
used to estimate the sample autocorrelation coefficient [34] which is expressed by,

£ = Ey,x, ﬁ-tﬂw (1)
=0
where ¢, is the i-th AR coefficient; x,_, is the time series value; w is the white noise with
zero mean and constant variance; and #, is the )-th MA coefficient.

A series of measurement data sets for the specific site is required to forecast the
output of a RES generation using statistical methods. The selected site for obtaining the
historical data is Nakhon Ratchasima Pravinge (14979900 latitudes, 102.097771 longitudes),
Thailand. The historical wind speed, solar irradiation data, and load profile were taken
from the selected site location [15-37]. The enormous amount in the applied data set can
be reduced without losing information by employing statistical data treatment. Synthetic
data for a typical year that represent the actual multi-year measured data statistics can be
generated [35].

The ARMA model is a suitable prediction tool if the historical time-series is station-
ary. The stationary time-series have statistical properties such as all mean, variance and
autocorrelations that are constant or meaningful over all time horizons. Therefore, a sta-
tistical forecasting technique in which the stationary time-series is changed by statistical
transformations will be applied.
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provide a clue to the search process for the forecasting model [39].

For seasonally non-stationary data, the yearly data set is divided into the seasonal
monthly segments. Daily non-stationary data are removed by subtracting the hourly mean
value from the actual data set and dividing it by the standard deviation to reduce the
data to a normal process with a mean of 0 and a variance of 1 [3,40]. The time-series
of the particular month of the year is the standardized velocities for removing diurnal

non-stationary and it can be denoted as
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where X; represents the forecast time-series values; X; represents the observed time series
values and n is the total number of samples.

2.2, Optimal Generation Scheduling

In general, demand shifting and peak shaving that response from the demand side
significantly impacted the whole system context under stringent operating conditions.
The demand-shifting function removes the demand from peak time to an off-peak time
interval to mitigate operation stress in the design and reduce energy costs for end-users.
The system operator’s perspective is to minimize system operation costs by replacing more
expensive energy production with cheaper production [41]. Metaheuristic is a powerful
technique to search feasible solutions from the discrete large search space, while classical
methods cannot find optimal paints from a large search space. The metaheuristic is a robust
optimization technique with high exploring and exploiting. The classical method cannot
solve all types of the optimization problem, and it requires extensive computation time to
obtain the optimum points [16]. Bio-inspired optimization is an emerging metaheuristic
technique inspired by the nature of biological evolution. Swarm intelligence and evolution-
ary computing are twio main types of bio-inspired optimization methods. Particle swarm
optimization (PSO) is a popular swarm intelligence bio-inspired optimization method [17].
The PSO is a robust technique and can search the global optimum points with fast conver-
gence speed [42]. The PSO method is an easy-to-understand optimization method with
few parameters and efficient global best solutions. So, this method has been chosen by the
several researchers,

In this section, optimal generation scheduling is implemented by employing the
particle swarm optimization technique. The working principle of the particle swarm
optimization is inspired by the behavior of swarm species that worked cooperatively and
search their requirement in the search space. The local best experience (Pi.;) and global
best experience (G, ) were used to search for the next movement to guarantee the best
solution. ¢; and c; factors accelerate the best searching positions, and the random numbers
are generated between Wy and Wy, [43]. The velocity of the particle and the particle’s
position are expressed by

V! = wVE 4 cin(Phestt; - XE)) + cara(Ghest! XE), 6)
ke S G g @

where X:‘ is the position of particles and j with.iteration k; \’:I_ is the velocity of particles ¢
and jwith iteration k; cvis the inertial factor; ¢,arecs are the acceleration factors; ryarery are
the random number [0, 1]; P is the best particle and Gj,; is the best global solution.
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two-generation units, PV and wind generations, and required power from the main grid.
The operation cost of the generation unit is taken from [31]. The power purchasing price
from the main grid considered in this study is a time of use (TOU) from [44]. The operating
costs are defined as follows: the purchase price of electricity from the grid is based on the
Thai TOU electricity trading rate on-peak = 0.17 $/kWh and off-peak = 0,076 $/kWh. The
PV and WT only have the operation and maintenance costs [24,45]. The operation and
maintenance costs of PV and WT are 0.1095 $/kWh [24]. Therefore, the purpose of cost
reduction is manage the DGs during on-peak periods where the operating costs are high.
The PSO technique is used for optimizing the arrangement of DGs to generate the energy at
peak load times. The optimization problem formulations of the DR program are defined by

T
Min Coperation = 3, Paindaind + PoyApy + PhyigAgeia + laPg + bFy), 8)
=1

where Cyperanian is the total operation of the system; Py, P .. f‘;" 4and Jf; are the power
delivered from the PV, wind, grid and the generator at time ¢, respectively; a, b are the
cost coefficients of DG units. A, andApy represent the coefficient of the operation and
maintenance cost of wind and PV. A, represents the prices of operation costs.

The proposed objective function of the optimization problem is subject to the following
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the demand forecasting module are given. Finally, simulation results obtained from the
proposed strategy are provided and discussed.

3.1. Test System
The test system that is used for verification of the proposed strategy is illustrated

in Figure 3. As seen in the figure, there are two DG units connected to Buses 22 and 28,
respectively. All information of the test system can be found in [46]. The characteristics of

the cost function of the two DG units are given in Table 1. In addition, there is one wind
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Figure 3. Microgrid test system [46].
Table 1. Generation characteristics of the two DGs.
DGs a b Prins (kW) Prias, (kW)
1 QL0004 30 21.60 30 33
2 0.0003%4 20.81 125 143

3.2. Forecasting Output Potvers of Average Hourly Wind, PV and Load

ARMA (2,1) is implemented in the process of time-series analysis for PV and demand
forecasting. The technique applied two-year hourly wind speed data of a particular month.
ARMA (3,1) is applied for forecasting wind speed. The historical data set of the seasonally
selected data set is used for future average hourly prediction series. Figures 4-6 show
the simulation results obtained based on average solar irradiance, wind speed, and load
profile, respectively. Renewable energy has a capacity limit that changes with time due to
environmental disturbances [47]. The irradiation, temperature, and unexpected weather
condition have a considerable deviation effect on the efficiency and power generation of
the PV system [21,48]. The nature of time-varying is due to exogenous disturbance, which

will affect power generation, and demand. This limitation is known as uncertainty [32,47].

When the system operates with high penetration of RE resources, this system is required to
ensure the balance of generation and demand [49]. In this work, it was assumed that the
error percentage is the percentage of uncertainty. In generation forecasting, the forecast
(MAE) errors of WT and PV were 11.43% and 10.45%, respectively, while in load predicting,
the percentage (MAE) error of the peak day was 17.71%. In this paper, it is assumed that

the error percentage obtained here is the percentage of uncertainty in the microgrid system.
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demand data without considering urcertainty.

*  Case Il: Cost minimization of the microgrid system considering uncertainty, the uncer-
tainty of PV 10.45%, the wind of 11.43%, and the load demand of 17.71%.

*  Case [ll: Cost minimization of the microgrid system for the day-ahead forecast PV
and wind uncertainty (PV of 10.45% and wind of 11.43%) as well as the actual load
demand requirement.

It is assumed that the microgrid system participates in the DR program in all cases.
The amount of maximum power that can be exchanged by the main grid is 300 kW.

The load shifting changed the required amount of load from peak-demand time to
off-peak time to reshape the load profile. In the case studies, the two distributed generators
(DG and DG2) are working as the dispatchable generation while the PV and WT units are
non-dispatchable generations.

In Case I, when the PV and wind generated maximum power during the daytime, the
two DG units and the grid provided less power, as seen in Figure 6. All generation sources
are not able to provide the required demand at peak days. Hence, the DR program will be
applied to solve the power requirements. The option of the proposed strategy is to provide
priority to the DG units while maximizing RES generations. The available resources such
as DG units and the main grid are planned to optimally schedule in the microgrid system.
Figures 68 show the simulation results of the optimal generation scheduling with actual
and forecast data.

mene :,]Ei‘ajl’.ﬁ
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Figure 7. Case 1: Microgrid genration scheduling for peak davawith forecast data.

The objective function and system constraintsare the standard parameters used in the
microgrid scheduling process to achieve cost-benefit under a RES uncertain environment.
According to Figures 7 and §, optimal generation scheduling with a demand response
program can reduce the peak load on peak days at 19-24 h and 1-5 h. Load shifting
occurred in the off-peak period when the total loads are less than the generation capacity at
6-18h. Figures 8 and 9 compare the load d d and the available generation capacity
of Case Il and Case IIL. The capacity difference is high when the PV and wind had not
provided sufficient generation. Moreover, in Cases Il and 111, as the actual demand is
more than the forecast demand, the power requirement is more dependent on the local
dispatchable generation units and the main grid.

Based on Figures 7-9, the loads of the microgrid test system from the three case
studies can be shifted by using the proposed decentralized EMS, as illustrated in Figure 10.
According to Figure 10, the optimization method provided the stable best solution for Cases
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I, 1, and 111, although the microgrid has RE generation and demand uncertainties. After
the optimal generation schedule program has been implemented, the simulation results
provided the preferred amount of power that must be shifted to a particular period.
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Figure 8. Case lI: Microgrid generation scheduling for peak day with actual data,
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system's uncertainty that will impact the distribution system. Therefore, Case Il needs
more generations to immunize against a higher level of uncertainty. Table 2 shows that
production costs increased significantly to cover worst-case RES uncertainties. From Table 3,
the powers from the DG increase with growing uncertainty, and load shift DR also increases
to compensate for the worst case. The optimal scheduling has effectively controlled more
power generation without violating the objective function and system constraints. The
operation costs for the microgrid with and without optimal scheduling are 131,020 § and
137,020 8, respectively. Although the scheduling is implemented with possible system
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respectively. Due to generation uncertainty, the power requirement is more dependent
on the local dispatchable generation units and the main grid. From Figures 5 and 9,
the total generation from available local resources is stable for 24 h. This is because the
optimal schedule process provided the stable operation cost for Cases II, and Il1, although
the microgrid has RE and demand uncertainties. However, in Case l1, the total power
from the main grid and local generation are 7200 kW and 4452 kW, respectively. In Case
111, the total power from the main grid and local generations are 4732 kW and 3767kW,
respectively. Therefore, the grid and local generation's dependency decreased by 52%
and 18%, respectively. However, the DR program of Case Ill is 38% more than that of
Case I1. Thus, the total operational cost is reduced by optimal generation scheduling. The
cost-saving results in the three case studies are 55%, 4%, and 22%, respectively.

The system operation cost minimization is the objective function in case studies, and
demand response is to mitigate system uncertainty by shifting demand. It is noteworthy
that the total RES power is available more at the off-peak time. The possible demand
response after applying the optimal generation scheduling is shown in Figure 10. The
positive power is the required amount of power to shift at the peak time period, while the
negative power is the extra generation capacities at the off-peak time period. The load at
the peak time period of 19—4h can be transferred to the off-peak time of 6-18h. In Case Il
the demand response decreased the peak load by 4.3%, and the valley load filled by 5.0%.
In Case III, the peak load reduced by 7.2%, and the valley load filled by 7.3%.
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Figure 10. Houry - shiftable demand response program in peak day.

According to Figure 11, the optimization method provided the economic costs for
Cases 1, 11, and 111 at peak time (20-23 h), although the microgrid has wind and demand
uncertainties. The optimal operation process maintained the system’s operational security
under 11% PV generation, 10% wind power uncertainty and 17% demand uncertainties.
In all case studies, the dispatch of the DG units and the grid power was able to balance
the generation and demand under uncertainty. In the economic aspect, the optimization
results can provide an economic cost interval of (1355 $/h, 7075 §/h). Table 2 shows the
optimization results of the operation cost over 24 h for the three case studies.
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Figure 11. Comparison of operation cost of case studies and without optimization.
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13 3867 363
14 4520 4312
15 4210 37
16 4227 2727
17 5891 5790 4797
18 2305 427 2174
19 4871 5000 2558
20 8506 6775 5950
21 s 4675 2269
22 7319 4874 2362
3 8983 6960 6326
24 5804 3069 5270 3069
Total 137.020 80287 131,020 104,060

Table 3 shows the impact of system uncertainties on the DR program and generation
resources. After introducing system uncertainties, the load was cut and shifted more than
the load in Case |, and more energy was exchanged from the main grid. It is observed that
Case Il mainly depended on the grid, and local generation was the second option to meet
the peak demand. The DR program was a less desirable option than that of Case lIL In
Case l1, the optimization method provided optimal energy management and distributed
the peak load among the DR, local generation, and the main grid. When the uncertainty
increased in the microgrid system, the electricity generation also increased in the local
generation capacity to meet demand variation from 12,197.1 to 14,330.7 kW.
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To evaluate the performance of the proposed strategy, the energy management system
presented in [48,50-52] is compared with the proposed system in terms of operation cost
minimization. The works in existing and proposed methods considered load-shifting de-
mand response in the distribution network. The method's effectiveness is demonstrated by
operation cost reduction with the system’s uncertainty. The comparison results are shown
in Table 4. The work in [50] proposed multi-agent generation scheduling and demand-side
management without considering system uncertainty. In this work, the proposed system
provided 5% cost savings by shifting the load. The work in [51] investigated the impact of
high penetration of wind power on the operation cost savings with the introduction of de-
mand response. In this work, the wind uncertainty was assumed at 10%, and the operation
cost is saved by 27%. The article [52] optimized the network-load interaction framework to
capture market price DR uncertainty. The results showed that the optimization method can
reduce the network operation cost by 16.9%. The work in [45] represented the PV power on
a sunny and cloudy day, potentially impacting the operation cost. The demand response
with battery energy storage was introduced for industrial microgrid facilities. The results
in this work showed that the proposed model provided a 15.6% cost saving on a cloudy
day and 12.8% on a sunny day.

In the proposed system, the cost saving is 22% with the optimal scheduling method.
T'his is because the objective of the local EMS system is to use full power from RE generation
and expensive DG power used as a dispatchable generation. Consequently, the proposed
method properly considers higher system uncertainties than the existing works. By com-
paring with the results oblained by the existing works, the proposed method provided
higher cost savings than the existing methods under the worst uncertainty. It is shown
that the optimal generation scheduling with demand response can effectively manage local
generation under uncertainties to achieve operational cost savings.

Table 4. Results comparison with existing works.

Atticles System's Uncertainty Operation Cost Reduction
[48] PV uncertainty 15.6%
[50] Not consider 5%
151] Wind uncertainty (10%) X%
1521 Price uncertainty 16%
R, 11% PV uncertainty, 10% wind —
Propese method Uncertainty 23%

4. Conclusions
The energy management system has been used to provide advanced load management
teshniguesend sontral baalitics. this papes prgpesed.a-demntselized enerpp managemant
i gl ; i inadin -
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Abstract: With high penetration of renewable energy sources (RESs), advanced microgrid distribution
networks are considered to be promising for covering uncertainties from the generation side with
demand response (DR). This paper analyzes the effectiveness of multi-objective optimization in the
optimal resource scheduling with consumer faimess under renewable generation uncertainty. The
concepl of consumer falmess is considered to provide optimal conditions for power gaps and time
gaps. At the same time, it is used to mitigate system peak conditions and prevent creating new peaks
with the optimal solution. Multi-objective gray woll optimization (MOGWO) is applied to solve the
complexity of three objective functions. Moreover, the best comy i lution (BCS) approach
i used to determine the best solution from the Pareto-optimal front. The simulation results show

the effectiveness of renéwable power uncertainty on the aggregate load profile and operation cost
minimization. The results also provide the performance of the proposed optimal scheduling with a
DR program in reducing the uncertainty effect of renewable generation and preventing new peaks
due to over-demand response. The proposed DR is meant to adjust the peak-lo-average ratio (PAR)
and generation costs without compromising the end-user’s comfort

Keywords: multi-objective gray woll optimization; demand response; generation scheduling: micro-
grid; rencwable energy uncertainties

1. Introduction

Recently, the awareness of sustainable renewable energy develop in
power demand and the use of advanced < hnology have altered micro-
grid infrastructures [1,2]. The aim of microgrids in both grid-tied and stand-alone modes
is to manage renewable and nonrenewable power generation and load aggregation [3].
Microgrids boost the adoption of renewable energy resources (RESs) to transform sus-
tainable electricity networks [2]. The inherent nature of the RESs brings intermittence
and fluctuation problems to power generation, to a high penetration level in the power
systems [4,5]. The intermittency of RESs can be mitigated by several technical approaches,
such as grid integration, spinning reserves, energy storage (ES) and distributed generation
(DGs), modern forecasting téchniques and demand-side management (DSM) or demand
response (DR). The aim of these technical approaches is to dynamically maintain balance of
power supply and demand at all times [3].

The topics of grid operation, energy resources and optimal demand management
have become crudial. In the conventional power networks, the system operator adjusts
the supply and demand with standby generation units and brings the power from third
parties [5]. Moreover, it is difficult to schedule and manage generation units to compensate
for the intermittence problems. In modemn power distribution networks and microgrids,
the uncertainty problems of high RES penetration can be mitigated by the active DSM
scheme [3]. The microgrid can provide an energy management model locally, which can

hitps:/ Swww mdps.com,/ joumal fenergics
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optimally control the performance of available resources at the generation level and load
aggregation at the demand level with the DSM [3]. Thus, the DSM is a helpful method to
improve the efficiency of the distribution systems and microgrids [6].

The DSM is an active management npﬂon in a smart distribution network. Basically,
the DSM ¢« L a.nd IS ¢ ption patterns. C s can modify
their ¢ to mitigate negative impacts on system stability during peak de-
mand per.lodﬁ 7 ] R.‘llhcr than attempting to generate more power, the DSM takes demand
variation action with the available power level. In this regard, the DSM can significantly
reduce the network's new installation cost and the impacts of peak load problems. A pow-
erful DSM program was achieved by aggregate load profile improvement [5]. According to
the previous analysis, a smooth load profile provided a high-efficiency generation profile
and network stability [9].

Additionally, DR is a helpful demand-side management technology. The DR encour-
ages consumers to reduce and change energy usage during peak demand periods [6].
Two types of the DR are generally offered to consumers: (i) incentive-based and (ii) time-
based DR programs. The incentive-based DR gives rewards to the consumers who adjust
their load profiles or allow some level of control over their apparatus. Direct load control,
uninterruptible service, demand bidding, capacity market programs, and ancillary service
markets are classified as incentive-based DR. On the country, in the time-based DS, the price
of electricity is changed over time according to the generation and demand conditions.
Critical-peak pricing, time-of-use (TOU) pricing, real-time pricing and peak-load-reduction
credits are some approaches to the time-based DR [5].

Furthermore, the DR has become an option for smart microgrids in critical situations,
such as inadequate spinning reserves and expensive power exchange from tie-line capacity
to compensate for lost or insufficient local generation and sudden load changes. In this
regard, optimal generation resource scheduling with the DR becomes the topic of the
microgrid planning stage during network contingency to guarantee particular operation
conditions [10]. Different possible issues are involved in the planning stage while solving
optimization in the powersystems [11,12]. Thus, the microgrid resource scheduling model
can be considered as a multi-objective and multi-constrained optimization problem [13].

Recently, many research articles have focused on a multi-objective and multi-constrained
optimization problem. Moreover, the DS can be widely used for the residential, commer-
cial and industry sectors from the economic ancillary service and technical perspectives.
The work in [14] presented a multi-objective stochastic optimization method with a price-
based DS program for the operation cost and emission minimization. The multi-objective

del was handled by the augmented epsilon constraint method. The article in [15] ana-
lyzed the effects of optimal spinning reserve (SR) approaches to recover wind power and
net demand uncertainties. The optimal work provided economic benefit and can reduce
unexpected interruption. The day-ahead actual power scheduling in stand-alone microgrid
maode was carried out with weighting factors in multi-objective non-linear programming,.
The objectives of this work were to minimize fuel and emission costs [16].

The modified teaching-learning algorithm (MTLA) used to solve the economic load
dispatch problem was presented in [17]. This optimization problem focuses on the uncer-
tainties of fueland emission epst minimization under wind and load demand. The optimal
distributed generation management with demand response was analyzed in [6]. The non-
dominated sorting firefly algorithm (NSFA) was applied for the test system, in which
the objectives were technical index enhancement, considering power losses and voltage
stability [6]. The problem of DG planning with demand response for virtual power players
(VPPs) considering profit maximization analysis with meta-heuristic multi-dimensional

ignaling was examined by the authors of [18]. The work in [19] highlighted the light daily
schedulmg of a microgrid with two types of DR programs considering intermittent RESs
and demands. This optimization problem was executed by the PSO algorithm to minimize
network operation costs. The authors of [20] proposed a demand-response-based home
energy management system to reduce electricity costs and the peak-to-average ratio (PAR).
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The proposed system applied an enhanced differential evolution (DE) harmony search
technique. A multi-objective building energy management system (BEMS) with DR was
analyzed in [21]. This work provided the effective performance of the DR for the smart
house regarding security, economy, and efficiency.

Although DSM can provide system stability, along with technical and economic bene-
fits, the effective implementation of the DSM programs still affects consumer comfort [22].
The DSM or DR can disturb the convenience to consumers [3,5]. Operation-cost mini-
mization and consumption bill reduction are no longer advanced infrastructure solutions.
The electricity service’s qualities and the power communities” satisfaction level have be-
come challenges in power networks. The consideration factors can promote the role and
achievement of the DSM in practical situations [5]. The variability in wind and solar re-
sources created issues in scheduling to meet the hourly demand in one setting [23]. The
work in [24] highlighted the effective deployment of demand response with heteroge-
neous energy storage. The risk-averse stochastic method was applied to maximize profit,
minimize risk, and handle the RES and environmental uncertainty.

Although the peak demand at peak time can be avoided, the peak demand will
increase at valley times due to a nonuniform demand shift toward the troughs. Therefore,
this condition could create a loss of network diversity. Thus, in this work, we propose
a multi-optimization-based method to control this over-demand response using peak-to-
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average ratio (PWE] and genvraiion cost witoul compromising the end-user comitrk
to prevent new peaks at valley time.

The rest of the paper is organized as follows. Section 2 presents the proposed method-
ology of the paper. In this section, the multi-objective optimization technique and problem
formulation are comprehensively discussed. Section 3 presents verification results and
discussions. Finally, Section 4 concludes the paper.

2. Proposed Methodology

In this section, an overview of multi-objective optimization is briefly described, fol-
lowed by an introduction to the multi-objective gray wolf optimization tMO("WO:- mch-
nique. Then, the best compromise solution and mathematical model of the opti
problem are proposed.

2.1. A Brief Introduction to Multi-Objective Optimization

The multi-objective optimization problem is used to find the optimal solution to handle
different criteria with different sets of inequality and equality constraints. Single-objective
optimization was developed to solve a single problem, and multi-objective optimization
to handle more than one optimization problem simultaneously [6]. The probl involve
different criteria that conflict with each other and must be considered simultaneously. There-
fore, multi-criteria optimization searches for optimal solutions to different problems rather




193

Energies 2022, 15, 8989 4of19

than the best solution for a particular problem, i.e., Pareto-optimal front [3]. The general
formulation of the multi-objective optimization problem can be written as

Min F(x) = ﬁIx)._f:[x).,.,.f.-\;!x)lI. ()
Subject to,

X)) €0,i=1,2,..., Ny, @
Sily)<0,i=12,..., Ny, 3)

x= (x4, x0...,%%), (4)

Y= (¥iv2.. . 0. 5)

¥ie {1,2,....k}Lf(x) = flw)A3ie 2,k flx)], (6)

Ppi= {F(x)|x € B}, (4]

where x and y are the vectors representing Equations (4) and (5), respectively. x is the
dominated vector and is shown in Equation (6). Here, no vector can dominate the other
vector solution, so it is the non-dominated solution. A set of all non-dominated solutions is
called the Pareto-optimal set. A set with Pareto-optimal solutions in the Pareto-optimal
set is the Pareto-optimal front. The Pareto-optimal front allows for a better solution for
the conflicting objectives [12]. Unlike the single-objective problems, large and highly
complex searching are the limitations to accurately solving the majority of multi-criteria
problems. The multi-objective optimization provided a non-dominated solutions set as an
approximation method [10].

Different methods have been used to solve the multi-objective problem. Classical
and meta-heuristic methods are the two possible optimization approaches for the multi-
objective functions [17). Usually, the classical approaches transform the multi-objective
optimization problem into a single-objective optimization problem [13]. Currently, the meta-
heuristic techniques are more capable of searching for optimal solutions than the classical
methods for the advanced microgrid problem because of their fast convergence and high
accuracy. The meta-heuristic optimization also provides a more accurate Pareto-optimal
solution than the classical methods [17]. In the next subsection, the proposed multi-objective
gray wolf optimizer is introduced.

2.1.1. Multi-Objective Gray Wolf Optimization

The multi-objective gray wolt optimizer (MOGWO) was developed by the authors
of [12]. It was inspired by gray wolves’ hunting behavior. The top three tiers of wolves lead
this algorithm to search for the best solution. The leader wolf is donated as alpha (), which
is the wolf nearest to the prey. The beta (§) is an alpha follower responsible for maintaining
harmony in the hunting group. In the hierarchy, delta (§)wolves are in the third position
and act as scapegoats. The remaining wolves in the hunting group are donated as delta (4).
The position updating of the MOGWO algorithm is mathematically represented by

Y, =%, #R [P (8)
Yo =Yg “RyP;, (9)
Yy =Ys— RyPy, (10)
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the most crowded segments of the archive, and the leaders are selected from the most-

populated solution of the archive. The MOGWO algorithm is suitable for solving problems

with three objectives [12]. The pseudo-code of the MOGWO adopted from [25] is given as

Algorithm 1.

Algorithm 1 Pseudo-code of MOGWO,

1: Initialize wolf solutions as S;(i = 1,2,..., Nugys), in which Ny is the number of the
gray wolf population
Generate vectors of the movement coefficients
Evaluate the fitness of each wolf as P,, Pgand P;
iter =1
Repeat
fori = 1to N, do
Repositioning the wolves based on Equations (5}-(11)
end for
% Estimate the fitness value of the wolves
10: Update Py, Pg and Py
11 Update the vectors of movement coelficients considering Equations (12)-{14)
12 Specify the non-dominate solution P: Update Archive
13 iter = iter 41
14 Until iter > Max iter
15: Output P: Archive

® MR W e

21.2 Best Compromise Solution

Our methad applies the best compromise solution (BCS) to find the best solution from
the Pareto-optimal set. The BCS method is based on the Euclidean distance technique.
The reference point (f wix: fimin and fi win) from the corresponding objective function is
selected as the minimum value of the available solution for all objectives. The best solution
is obtained as the point which is the minimum distance (d) from the reference point in the
Pareto-optimal set [26]. The following expression is minimum distance formulation.

D = [ [Ua) = fimn)® + (fo) = fiama)® + (ft) = fimin] )
d = min(D), (16)
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The test system that was used for verification of the proposed technique is illustrated
in Figure 1. As can be seen in the figure, two DGs were connected to buses 22 and 28,
respectively. Additionally, there were PV and wind sources connected to buses 12 and 15,
respectively. The test system was connected to the main grid atbus 1. All information of the
test system can be found in [27]. The forecast’s PV and wind power generation are shown
in Figure 2a.b, respectively. The figures clearly show thatthere were uncertainties between
measurement and forecast data of the PV and wind sources. The characteristics of the two
DGs were taken from [14] and are given in Table 1. The electricity prices were assumed
as the time of use (TOU). All points in the feasible‘region represent the non-dominated
solution store in the archive, as seen in Figure 3. The concept of a non-dominated solution
is according to Equations. (4}+7). In'this study, the non-dominated solution was chosen
with the BLS method.
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Figure 1. Test system [27].

— brwean
— -

Teme ihr)

(a)

Figure 2. Forecast and actual power generation of PV and wind units [25]. (a) PV power generation.

(b) Wind power generation.
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Figure 3. Pareto-optimal solutions for operation cost, PAR and consumer dissatisfaction.
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3.2.1. Case Study 1: Multi-Objective Operation Costs Optimization under
RES Uncertainties

In this case study, the simulation results of the optimal generation scheduling are
given for forecast and actual data. The optimal resource scheduling considering optimal
operation cost curves of all the system’s generating units are shown in Figures 4 and 5.
According to the minimum cost problem, DG1 and DG2 are the most expensive generation
units which are scheduled with minimum capacities in the system. The PV and wind
units are more likely to schedule their maximum generation capacities according to cost
minimization. The PV and wind generated more power in the daytime. Therefore, total
generation capacities are higher during the off-peak period (daytime). The participation of
load-response programs according to the uncertainty effect are illustrated in Figures 6 and 7.
As shown in Figures 5 and 9, the proposed DR program shifted the load from peak periods
of 1-5 h and 20-24 h to the valley time of 6-20 h. Therefore, the system scheduling altered
the shape of the load profile after DR participation.

Table 2 shows the operational cost under the RES uncertainty based on actual and
forecast data of 'V and wind units. The P'V generation was scheduled with higher output.
The demand responsé requirements increase, and the operational cost is high. The wind
output was scheduled with lower output, so the demand response decreases, and the
operation level is low. In Case Study 1, it is essential to engage uncertainties of the RES
units and the DR effect, which provide energy in new peak leads to the off-peak time.
Figures 8 and 9 show the statement of new peak creation. Peak-to-average ratio describes
the stability of the system. In Case Study 1, the PAR is at 41% with actual RESs and at 44%
with the forecast RESs.
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Power (kW)

Figure 5. Optimal scheduling with forecast PV and wind data.
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Figure 6. Demand —response schedule with actual PV and wind data

Figure 7. Demand - response schedule with forecast PV and wind data.
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Figure 8. Demand - response schedule with actual PV and wind data.
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Figure 9. Aggregate load reshapes with forecast PV and wind data.

Table 2. Comparison of operational cost with RES uncertainty.
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are shown in Figures 10-13. The participation of responsive loads in the DR programs for
Case Study 2 is shown in Figures 10 and 12. Since the PV and wind powers are scheduled
with uncertainty, the capacity of the DR created a new peak according to Case Study 1.
In Case Study 2, and as shown in Figure 11, the amount of demand that is more than the
optimal generation capacity is moved to an off-peak time based on the optimal hourly
peak (less than 600 kW). The numerical information of the load shifting can be found in
Table 3. According to Table 3, however, the total waiting time of the optimal peak reduction
case is more than that of Case Study 1 (6 h), due to optimal demand distribution. The term
peak-to-average ratio refers to the the quantitative measurement for load profile and the
stability of the system. The system stability metric of the PAR is lower than that of Case
Study 1 when considering the optimal peak load minimization (44% to 43%).

800

600 i
400 - 1

o 200 I
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Figure 10. Optimal demand - response schedule considering peak load reduction.
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Figure 11. Optimal aggregate load reshapes considering peak load reduction.
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Figure 12. Optimal déemand - response schedule considering peak load reduction and user comfort,
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Figure 13. Optimal aggregate load reshapes considening peak load reduction and user comfort.

Uniform optimal load shifting considering consumer comfort is shown in
Figures 12 and 13. The dissatisfactory optimization index'is the difference between ac-
tual and reference consumption at a particular peried. The increase in the different levels
described increases the discomfort. Therefore, the dissatisfaction should be a convex func-
tion, as shown in Figare % In this case, extra loads were changed to off-peak time according
to optimal power-gap and time-gap information. The allowable DR is between 20% and
30% of hourly demand. The detailed information of the optimal load response for 24 h
is presented in Table 4. The index of the PAR was reduced to 37%, and the total waiting
time was 6 h. As observed from simulation results, the peak shaving and load-profile
reshaping had advantages for the proposed renewable energy of the microgrid system. It
also prevented a new peak due to RES uncertainty and load response. Figures 11 and 13
present the results related to the statements above. When the total generation capacity
exceeded the optimal demand response, it can sell power back to the grid. The capacities
of power exchanged from and sold to the grid were 200-300 kW and 100 kW, respectively.
After the power moves from peak time to off-peak time, the extra power form off-time can
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be sold back to the main grid. The results in Figure 14 indicate that the power surplus at
12-17 his sold back to the main grid. The total amounts of power shifted by the DR and the
user comfort DR that can go back to the main grid are 1028 kW and 1287 kW, respectively.

The profits resulting from exchanging power covering the production cost and the con-

sumer comfort case are illustrated in Figures 11 and 13. As the shiftable DR was adjusted
between 20% and 30% for the user comfort, the extra power of user comfort DR was more
than the shift by DR at off-peak time. The demand elasticity factor (j¢,.1,) represents
the simulation results of optimal DR based on power gap and time-gap constraints in each
hour. Numerical results for 0.2200 of the demand elasticity factor at 6 h were related to the
case of 22% of DR. Results in Figure 13 illustrate that when the optimal DR programs were
implemented at peak time, the level of the end-user dissatisfaction index had improved
between 0.45 and 0.7. The level of the end-user dissatisfaction index decreased from 0.45 to
0.19 at an off-peak time. It is indicated that end-user dissatisfaction had better performance
based on the lower waiting time (time gap) and allowable DR (20-30% power gap).
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Figure 14. The amount of power sold to the grid.

Figure 15 shows the end-user dissatisfaction index with DR over 24 h. A summary of
the results of the three objective functions is provided in Table 5.

Table 3. Load shifting dering peak load reduct

Time (h) Power (kW) Waiting Time (h)
7 3604108 5
8 578.5112 7
a SUNBTTA 6
10 5457373 8
11 309.7874 8

L sy £
& SR &
U3 P &
g TR &
fii PR G




204

Energies 2022, 15, 8989

150f 19
07 ¢ . -
0.6
gosr 1
E
204}
g
E.
é 03r 4
:
0.2
01t S g =
] L] 10 15 20 25
Time (hr)
Figure 15. End — user dissatisfaction index with DR
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For comparison, the work in [29] was implemented using adaptive stochastic pro-
gramming to cope with 10% of wind power uncertainty. From the optimal planning with
DR, it has 30% of averall PAR. Moreover, the work in [3] presented optimal allocation
resources with DR and day-ahead real-time pricing (DARTP). The total RES uncertainty
of this work was reduced from 9.93% to 7.20% with the DARTP demand response model.
The overall PAR for this method was 42.6156%. From Table 6, our proposed optimal DR
system guaranteed the RES uncertainty increment up to 27.0136%. Additionally, it is noted
that the configurations of power networks may affect the performance of our proposed
method due to different locations of RESs and line losses from a different network topology.
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Table 6. Comparison with existing strategles.
Refs. PAR (%) RES Uncertainty (%)
[29] 30 10
[30] 426156 9.93
Proposed strategy 37 27.0136
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represents the amount of total power demand from
customers. P, and P, are the parameter for the power
losses and total power generation. C_, and C,, are the
parameters of selling price to the customer and the
cost of power purchased from the customer

TABLE IHOURLY WHOLESALE PRICE AND HOURLY

FORECASTED REGENERATION
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the main grid was not enough: from 10 hr to 13 hr and
20 br to 24 br, and at the ime of expensive the
wholesale market price, such as 14 hr to 17 hr. The
power generation from the DGs is not expensive as
the wholesale energy prices are 16 br to 17 hr
therefore, it is favored to supply more power from
DGs than transfer power from the main grid

G
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mm

m%@w&%mmwm%
il mwpthemend,

fie g
W irpmiﬁ’*pfaﬁ kﬂmﬁuﬁkwmm
grid-connected mode when more demand response
offers a period and at high demand time.

il =1

500

L

S
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Fig. 4. Howrly Darmand recpoass offer to the deenand uids.

IV. CONCLUSION
In this paper, the combined operation of unit
commitment with DSM in the micrognd is a proposed
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Unvarsty of

option for a microgrid management system to
optimize profit and increase dependencies on local
clean energy generation. The load shedding approach
is more significantly effective for island operation
mode to maintain supply/'demand balance and reduce
stress on  geperation resources. The generation
schedule optimized the operation status of the local
generation capacity for both operation modes. The
proposed system's effectivensss maximized the profit
for microgrid operator and the optimal power wansfer
from the utility grid are also considered for grid-
connected mode.
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In the stochastic process, the probability
distnbution fimetion (PDF), mean, vanance vahies of
a random vanable are modeled to evaluate the
forecasted value [7]. For wind power forecastmg, the
Weibull distmbution fimetion 15 used in this paper. In
the case of PV output, the Beta distnbution function 1s
enployed to solve the uncertainty problem The
parameters estmation of Wetbull PDF 15 executed by
the method of the moment [8] The Weibull
probability dismbution fimetion (PDF) 15 grven as

PDF, = k/e(v/e)" " exp(=(x/e)) (1)
The available wind power density from average wind
spead,

PlA=12pcT((k+3)/k) ()]

Where k and ¢ are shape and scale parameters of
wind speed. p 15 the air density, and A 15 the area
relates to the wind stream.

The output power of solar 1s achieved as
B =p"S™L(1-0005(T™-25) @

Beta PDF's of solar variables 15 ziven by
L Clod 4 SR T )

VOB = T i) ! T
e L
i

-
-
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Generation capacities constramts
Py <P, <PR° (10)
i SPu SPI an
P < Py <P’ (12)
PSP SPLY (13

Py, Py, P, are the power delivered from RE, gnid,
and generator. P, presents the total power from the
demand side. P, and Py, are represented as the lne
losses and total power from the generation side

i ﬁwm'?{:ca (WEWE)

e (k)
Fig 1. Howrly Wholesale Electicicy Price [11]
TABLE
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C.  Sohing algorithm

Biologically evolution-inspired technique, gmuc
algorithm (GA) and particle swarm optimization
(PS0), i1s powerful tools to handle the opfl:.m:l
operation micrognd due to nonlinear mapping,
simpheity, and supenior searching capabilities [12].
This paper uses particle swarm opm.z:mn (PS
for optimal RE integrated

production cost increased 30.4294% than the forecast

cost. The actual operation cost 15 lower 31.1151%

than the forecast value due to lower standard

deviation at 4 pm Tbetemhmwsdut'he

generation v has 1 ted total pr 1

costs, Thereﬁon DR:;mcpm:ouwltmm
d d balancing m real-time.

scheduling Particle swarm opuxmzzm (PSO)
inspired the cooperative working behavior of swarm
species to search therr requirement m the search
space. Present posittions m their searchmg space
decide the algorithm searches for the best solution to
guarantee local best expenence (Pbest), global best
expenence (Gbest), and the swarm particles’ next
movement Moreover, the searching positions are
accelerated by the factors ¢ and ¢:, and the random
numbers generated between . and wa.. [12].

V= a7 +ex (Poestt - X! )+ cr(Goest! -X! ) (14)
X=X+ VY as)
Pbest.' and Gbest,* represented local best and

aﬁamwwww#mm

g R T od
= mﬁgm e mw simmpens

Thaibnd (1 i 3 ':"36?17} The
forecasted generation capacity of wind and PV are
shown m Figs. 3 and 4.

Power (LW
¥

Fig 4. Hoczly forecasted and measired wind generation

Figs. 5 and 6 summanze
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Table 2 shows the uncertainty effect on the
system's total operation cost at hugh and low demand
penods. The PV and wind standard deviation results
in 12.819]and 87.2950 at noon; the actual total
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The optimal generation capacity provided more
energy than total demand capacity between 12 am- 6
am and 3 pm -5 pm Therefore, the EMS system
suggested shufting controllable load to those peneds.
In tus scenario, the electric user can participate in the
demand chippmg/shifing action with an incentive
payment to reduce specific electne balls.
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Fig 6 mm«mmmmmm
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{from forecast RE data)

+ % * &
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IV. CONCLUSION
Tllenwkl:.ighhgi:tmdmmpﬂntheophmﬂ
llocation of local g pacity with a d d
response model and RE uncertainty i the gnd-
comnected system In order to tackle RE generation
mty, the stochasty thod 15 employed before
the qmm:zam pmcim Fmtly mathematical
formmulaton 1 tic method for wind
turhu (WT) and pboto'\'oltuc ('PVJ gma&o;
whﬁb}hmﬂmmmmmﬂgm&m
Finally, a demand response offering has been
presented m this paper. The simulation results reveal
that the combination of EMS and the DR allowed the
electricity umtopamc:patemd:gxmtdim'ﬂ:mon
petwork and mamtamed supply-demand
wunder RE uncertamty.
REFERENCES

{11 S E Ahmedi and N. Recaei. "A pew isolated renemable
hwdm.hmmmmwmmmsm

Mﬂdﬂmxﬂm&mwm&\ﬂlls

2020,
{1 ASF S, Hady l\LMWn’dH
2 Shayanfar. "A novel . enegy mamagement of a
m@dvaﬁ\mwﬂo{&m“ﬁ
in presence of demand résponse programs”. Energy. vol. 160,
Pp.257-274. 2018,
] iShﬂ:t)mIiShqnghB Mobsmmadi-hatoo md M
Moradzadeh. based methed 1o consider

URCemAmTes ﬁ:« mlu-ohj«mt enerzy mamagement of
micrognd m presence of demand response”. Energy, vol. 175,

£79-800. 2019
M s Y Sm B Li B. L X ad F L
[ Zhu QI- Zhukmm
cmmﬂs emainties and double

effects” .Appmzw' 27, vol g h
i) x' Wing ¥ Bumg Y. Wang M Zeng ELL Y. wngna
Y. Zhnp “Eneryy management of szan miro-gnd with
B ol v e
c
PP 1069-103?’01 i

0] !lﬁﬁhtkaﬁmwnilmmp.smmd
hw ;m microgrid”. Joumal
ina
of Cleaner Production vel. 277, 2020,

B S K Pamamand N M Pindemiya. “Demimd response i
mmtmehmm market mathematical models

W problems” Elscric Domer Systems
8] A Geoc M Ersoghi A

and K Ulgen "Estmatien '\'mdpwupamlm;

Weibull distribution” Epergy Sources. vol 17, No. 9. pp
9 WiXaD Zou X B. Lou, and DI.m‘Opmni
g]mmhofm \nmm

cmudcmgmlu onplementariry and dmul

.-\whd?nu‘[ywl."?i 2020

1u\lwm1m Qsplthﬁ!

e v et vt Mo
Energy, ol !lllpplﬂ-.s 2017,

1] 1 Wang. J. Lin, J. Chen and H Chen. "A pocental

a zmiq?(mwdn tibated cperational opeimization for
mog:du';y mw and

response”. Trnmsactons

Elxum'-ﬂﬁd\oﬁpu?m"ms

[12] M N Alam "Particle swam

: algorithm and its
codes n MATLAB® . vol. £, pp. 1-10. 2016

3
gy provided by Unitet %mnmmmmu 17,2022 ot D7.40:46 UTC from IEEE Xplore. Restrctions apply.




BIOGRAPHY

Ms. Sane Lei Lei Wynn was born in Shan State, Myanmar, on October 14, 1986. She
received her bachelor’s degree in Electrical Power Engineering from Technological
University (Myeik), Myanmar, in 2007 and her Master’s degree in Electrical Power
Engineering from Yangon Technological University, Myanmar, in 2017. Afterward, she
attended Suranaree University of Technology, Nakhon Ratchasima, Thailand, to pursue
a Ph.D. in electrical engineering. Her research interests include the smart grid and

electricity market.



	Cover
	Approved
	Abstract
	Acknowledgement
	Content
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Reference
	Appendix
	Biography

