TABLE OF CONTENTS

Ρ	a	δ	e
	а	۲	C

ABSTF	RACT (THAI)		
ABSTF	RACT (ENGL	ISH)	
ACKN	OWLEDGEM	ENT	V
TABLE	OF CONTE	NTS	VI
LIST C	OF TABLES		IX
LIST C	OF FIGURES.		X
SYMB	ols and af	BBREVIATIONS	XII
CHAP	TER		
1	INTRODU	CTION	1
	1.1 Gener	al background	1
	1.2 Resea	rch objectives	2
	1.3 Scope	e and limitation of the study	3
2	LITERATU	JRE REVIEWS	4
	2.1 Polym	ner-modified mortar	4
	2.2 Effect	of the addition of polymer latex in mortar	7
	2.2.1	Synthetic polymer	7
	2.2.2	Natural polymer	8
	2.3 Effect	of the addition of silica in mortar	11
	2.4 Prepa	ration of silica from rice husk ash	13
3	RESEARCI	H METHODOLOGY	16
	3.1 Mater	ials	16
	3.2 Experi	imental	16
	3.2.1	Preparation of RSi and CSi	16
		3.2.1.1 Extraction of rice husk sodium silicate	16

Page

TABLE OF CONTENTS (Continued)

		3.2.1.2 Precipitation of RSi and CSi	17
	3.2.2	Characterization of RSi and CSi	17
		3.2.2.1 Fourier transform infrared spectrometer	17
		3.2.2.2 Energy dispersive X-ray florescence spectrometer	17
		3.2.2.3 X-ray diffractometer	17
		3.2.2.4 Branauer-Emmett-Teller analysis	17
		3.2.2.5 Dynamic light scattering measurement	18
		3.2.2.6 Field emission scanning electron microscope	18
	3.2.3	Preparation of rubber composite	18
		3.2.3.1 Mixing and drying of rubber sheet	18
		3.2.3.2 Compounding and vulcanizing of rubber composite	19
	3.2.4	Characterization of rubber composite	19
		3.2.4.1 Cure characteristics	19
		3.2.4.2 Mechanical properties	19
		3.2.4.3 Morphological properties	20
	3.2.5	Preparation of polymer-modified mortar	20
	3.2.6	Characterization of polymer-modified mortar	22
		3.2.6.1 Mechanical properties	22
		3.2.6.2 Water absorption	23
		3.2.6.3 Morphological properties	24
4	RESULTS	AND DISCUSSION	25
	4.1 Charac	cterization of RSi and CSi	25
	4.1.1	Fourier transform infrared spectrometer	25
	4.1.2	Energy dispersive X-ray florescence spectrometer	26
	4.1.3	X-ray diffractometer	26
	4.1.4	Branauer-Emmett-Teller analysis	27

TABLE OF CONTENTS (Continued)

			Page
	4.1.5	Dynamic light scattering measurement	
	4.1.6	Field emission scanning electron microscope.	29
	4.2 Effect	of RSi content on properties of NR/RSi composites.	30
	4.2.1	Cure characteristics	30
	4.2.2	Mechanical properties	32
	4.2.3	Morphological properties.	34
	4.3 Effect	of RSi content on properties of NR/VTES/RSi composites	35
	4.3.1	Cure characteristics	37
	4.3.2	Mechanical properties	38
	4.3.3	Morphological properties	41
	4.4 Effect	of RSi content on properties of NR/XSBR/RSi composites	42
	4.4.1	Cure characteristics	44
	4.4.2	Mechanical properties	46
	4.4.3	Morphological properties	48
	4.5 Effect	of polymer content on properties of PMM	49
	4.5.1	Mechanical properties	50
	4.5.2	Water absorption	52
	4.5.3	Morphological properties.	53
5	CONCLUS	SION AND RECOMMENDATION	56
REF	ERENCES		57
APP	ENDIX A		65
APP	ENDIX B		69
BIO	GRAPHY		84

LIST OF TABLES

Table		Page
2.1	Quality requirements of PMM in JIS A 6203	5
3.1	Rubber compounding chemicals	19
3.2	Sample codes and mix proportions of PMM	21
4.1	Chemical compositions of RSi and CSi	26
4.2	BET surface are, total pore volume, and average pore diameter	
	of RSi and CSi	28
4.3	Average particle sizes of RSi and CSi	29
4.4	Cure characteristics of NR and NR/RSi composites	31
4.5	Mechanical properties of NR and NR/RSi composites.	33
4.6	Mechanical properties of NR/5RSi and NR/VTES/5RSi composites	36
4.7	Cure characteristics of NR and NR/VTES/RSi composites	38
4.8	Mechanical properties of NR and NR/VTES/RSi composites	40
4.9	Mechanical properties of NR, XSBR, and their blends	43
4.10	Cure characteristics of 2NR/XSBR and 2NR/XSBR/RSi composites	45
4.11	Mechanical properties of 2NR/XSBR and 2NR/XSBR/RSi composites	47
4.12	Mechanical properties of NR and rubber composites	50
4.13	Mechanical properties of unadded PMM and PMM	50
4.14	Water absorption of unadded PMM and PMM	52

LIST OF FIGURES

Figure	F	Page
2.1	Physical model of PMM when the force in flexural mode is applied	
2.2	Schematic diagram of PMM preparation procedures	
2.3	NR particle models	9
2.4	Chemical structure of cis-1,4-polyisoprene	9
2.5	Chemical structure of VTES	14
2.6	Chemical structure of XSBR	15
3.1	Dimensions of the type C test specimen according to ASTM D412	20
3.2	Curing of the test specimens.	21
3.3	Dimensions of the briquette-shape test specimen	
	according to ASTM C190	22
4.1	FTIR spectra of RSi and CSi	25
4.2	XRD diffractograms of RSi and CSi	27
4.3	Physisorption isotherms of RSi and CSi	28
4.4	Particle size distributions of RSi and CSi	29
4.5	FESEM images of RSi and CSi	30
4.6	Cure characteristics of NR and NR/RSi composites showing (a) ML and MH	
	and (b) t2 and tc90	31
4.7	Mechanical properties of NR and NR/RSi composites showing	
	(a) M100 and M300, (b) tensile strength, (c) elongation at break, and	
	(d) hardness	33
4.8	FESEM images and EDS mapping of fractured NR and NR/RSi composites	34
4.9	Mechanical properties of NR/5RSi and NR/VTES/5RSi composites showing	
	(a) M100 and M300, (b) tensile strength, (c) elongation at break, and	
	(- \	27

LIST OF FIGURES (Continued)

Pa	age
Chemical handing of NRA/TES/RSi composite	37
,	20
	38
(d) hardness	_40
FESEM images and EDS mapping of fractured NR	
and NR/VTES/RSi composites	.41
Mechanical properties of NR, XSBR, and their blends showing	
(a) M100 and M300, (b) tensile strength, (c) elongation at break, and	
(d) hardness	43
FESEM images of fractured NR, XSBR, and their blends.	44
Cure characteristics of 2NR/XSBR and 2NR/XSBR/RSi composites showing	
(a) ML and MH and (b) ts2 and tc90	_45
Mechanical properties of 2NR/XSBR and 2NR/XSBR/RSi composites showing	
(a) M100 and M300, (b) tensile strength, (c) elongation at break, and	
(d) hardness	47
FESEM images and EDS mapping of fractured 2NR/XSBR	
and 2NR/XSBR/RSi composites	48
	51
'	
-	
	5/1
	Chemical bonding of NR/VTES/RSi composite

SYMBOLS AND ABBREVIATIONS

%	=	Percent
MPa	=	Mega Pascal
g	=	Gram
N	=	Normality
рН	=	Potential of hydrogen ion
°C	=	Degree Celsius
nm	=	Nanometer
m²/g	=	Square meter per gram
М	=	Molarity
rpm	=	Revolutions per minute
wt%	=	Weight percentage
mm	=	Millimeter
cm ⁻¹	=	Reciprocal centimeter
		'
θ	=	Theta
heta kN	= =	·
		Theta
kN	=	Theta Kilonewton
kN mm/min	=	Theta Kilonewton Millimeter per minute
kN mm/min kN/s	= =	Theta Kilonewton Millimeter per minute Kilonewton per second
kN mm/min kN/s N	= = =	Theta Kilonewton Millimeter per minute Kilonewton per second Newton
kN mm/min kN/s N mm ²	= = = =	Theta Kilonewton Millimeter per minute Kilonewton per second Newton Square millimeter
kN mm/min kN/s N mm² g/cm²	= = = = =	Theta Kilonewton Millimeter per minute Kilonewton per second Newton Square millimeter Gram per square centimeter
kN mm/min kN/s N mm² g/cm² cm³/g	= = = = = =	Theta Kilonewton Millimeter per minute Kilonewton per second Newton Square millimeter Gram per square centimeter Cubic centimeter per gram
kN mm/min kN/s N mm² g/cm² cm³/g dNm	= = = = = = = = = = = = = = = = = = =	Theta Kilonewton Millimeter per minute Kilonewton per second Newton Square millimeter Gram per square centimeter Cubic centimeter per gram Decinewton meter
kN mm/min kN/s N mm² g/cm² cm³/g dNm SiO ₂	= = = = = = = = = = = = = = = = = = =	Theta Kilonewton Millimeter per minute Kilonewton per second Newton Square millimeter Gram per square centimeter Cubic centimeter per gram Decinewton meter Silicon dioxide

SYMBOLS AND ABBREVIATIONS (Continued)

MnO_2	=	Manganese dioxide
Fe ₂ O ₃	=	Iron(III) oxide
С	=	Carbon
0	=	Oxygen
Mg	=	Magnesium
Al	=	Aluminum
Si	=	Silicon
Ca	=	Calcium