
CLASSIFICATION OF RICE VARIETIES FROM MILLED RICE
GRAIN IMAGES BY OBJECT DETECTION METHOD

WUTTICHAI WATCHARARAT

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Mathematics

Suranaree University of Technology

Academic Year 2022

การจำแนกพันธุข้์าวจากภาพของเมลด็ข้าวสารด้วยวธิกีารตรวจหาวัตถุ

นายวฒุชัิย วัชรารัตน์

วทิยานพินธน์ ี้เปน็สว่นหนึง่ของการศกึษาตามหลักสตูรปรญิญาวทิยาศาสตรมหาบัณฑติ
สาขาวชิาคณติศาสตรป์ระยกุต์
มหาวทิยาลัยเทคโนโลยสีรุนารี

ปกีารศกึษา 2565

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Asst. Prof. Dr. Jessada
Tanthanuch, for his unwavering support and guidance throughout my research. I am
deeply grateful to my family and friends for their emotional support and encouragement
throughout my studies. Finally, I would like to mention the financial support provided by
the Kitti Bundit scholarship, which made this research possible.

Wuttichai Watchararat

CONTENTS

Page
ABSTRACT IN THAI . I
ABSTRACT IN ENGLISH . II
ACKNOWLEDGEMENTS . III
CONTENTS . IV
LIST OF TABLES . VI
LIST OF FIGURES . VII

CHAPTER
I INTRODUCTION . 1

1.1 Research objective . 2
1.2 Scope and limitations . 2
1.3 Research procedure . 3
1.4 Expected results . 3

II LITERATURE REVIEW . 4
2.1 Digital Image Processing . 4

2.1.1 Grayscale Image . 4
2.1.2 Binary Image . 5
2.1.3 Morphology . 5

2.2 Data Labeling . 9
2.3 Intersection over Union (IoU) . 10
2.4 Non-Maximum Suppression (NMS) . 10
2.5 YOLOv5 model . 11
2.6 Researches Related with the rice grain classification and the object

detection . 13
III RESEARCH METHODOLOGY . 16

3.1 Data Import . 16

V

CONTENTS (Continued)
Page

3.2 Data Engineering for Train and Test data 17
3.3 Modeling by the YOLOv5 model . 19
3.4 Accuracy measurement for the YOLOv5 model 20

IV RESULTS AND DISCUSSION . 23
4.1 Data Engineering . 23
4.2 Accuracy measurement for the YOLOv5 model 25
4.3 Accuracy consideration of the YOLOv5 model 28

V CONCLUSION AND RECOMMENDATION . 29
REFERENCES . 31
APPENDICES

APPENDIX A APPLICATION OF PYTHON CODE IN DATA ENGINEERING
AND MODELING . 35
A.1 The transparency image by Python code in

Jupyter Notebook 36
A.2 A mixed rice grain image and labeling data by

Python code in Jupyter Notebook 37
A.3 Modeling by Python code in Google Colaboratory 40
A.4 Object Detection by Python code in Google Co-

laboratory . 42
A.5 Accuracy measurement for the YOLOv5 model

by Python code in Jupyter Notebook 42
CURRICULUM VITAE . 47

LIST OF TABLES

Table Page
4.1 The total number of rice grains in mixed rice grain images. 25
4.2 The total number of rice grains detected. 25
4.3 The accuracy of the YOLOv5 model with the threshold value = 0.75. 26
4.4 The accuracy of the YOLOv5 model with the threshold value = 0.70. 26
4.5 The accuracy of the YOLOv5 model with the threshold value = 0.65. 26
4.6 The accuracy of the YOLOv5 model with the threshold value = 0.60. 27
4.7 The accuracy of the YOLOv5 model with the threshold value = 0.55. 27

LIST OF FIGURES

Figure Page
2.1 Set translation and set reflection. 7
2.2 Example of dilation. 8
2.3 Example of erosion. 8
2.4 Example of opening. 8
2.5 Example of closing. 9
2.6 Example of data labeling. 9
2.7 Example data of data labeling. 9
2.8 Structure of One-Stage Object Detector. 12
2.9 YOLOv5 model system. 12
3.1 A five-variety rice grain. 16
3.2 A rice grain image. 17
3.3 The noise elimination. 17
3.4 The noise elimination with contour. 18
3.5 Example of overlapping rice grains in a mixed rice grain image. 19
3.6 Result of training the model to detect the location and identify the

varieties of rice grains. 19
3.7 The detection of a mixed rice grains image. 20
3.8 The creation of a filled mixed image. 21
3.9 The detectable area of the YOLOv5 model. 21
3.10 Flowchart of the workflow in this thesis. 22
4.1 The transparency of a rice grains image. 23
4.2 A mixed rice grains image to train model. 24
4.3 The overlapping of a rice grains image. 24
4.4 The graph of the accuracy value of the model. 28

CHAPTER I
INTRODUCTION

In the first half-year of 2022, Thailand was considered the second-largest rice
exporter in the world after India. According to the Isra News Agency (2022), the top
three rice-exporting countries during that period were as follows: India, accounting for
9.27 million tons of rice; followed by Thailand, exporting 3.51 million tons of rice; and
Vietnam, exporting 3.31 million tons of rice. Thailand’s rice exports from January to July
2022 amounted to 4,085,198 tons, valued at 71,105.4 million Thai Baht, according to
the Thai Rice Exporters Association (2022). Thailand’s rice exports are mainly classified
into six types: white rice, jasmine rice, parboiled rice, broken rice, glutinous rice, and
brown rice (Chaiyanukulkitti, 2022). The form of rice can be classified in accordance with
the Notification of the Ministry of Commerce Re: Rice Product Standard B.E. 2559 (Rice
Product Standard, 2016) and Re: Prescribing Thai Hom Mali Rice as a Standard Product
and Thai Hom Mali Rice Product Standard (No. 3) B.E. 2559 (Thai Hom Mali Rice Product
Standard, 2016). This classification takes into account various factors, such as rice variety,
product acquisition process (including husking, milling, and steaming), moisture content,
grain shape and color, and amylose content (which affects the texture of cooked rice).
However, each type of rice has a different price, and the reliability of rice exports is
affected by the amount of adulteration of cheaper rice varieties. Various methods for
detecting rice adulteration are currently being developed, including DNA extraction.

Currently, artificial intelligence (AI) plays a significant role in research related to ob-
ject recognition and detection, such as facial recognition, personal identification, patient
classification, disease diagnosis, and the classification of types and models of vehicles.
In the agriculture-related industry, there have been developments, such as the creation
of an expert egg grading system based on machine vision and artificial intelligence tech-
niques (Omid et al., 2013), the use of deep learning for fruit classification (Mimma et al.,
2022), mushroom classification (Tarawneh et al., 2022), and the detection and species

2

classification of orchid flowers (Steven & Toon, 2015). However, there is also ongoing re-
search related to the use of AI or machine learning techniques in working with rice, such
as the work of Aki, Güllü, and Uçar (2015), Zareiforoush et al. (2016), Cinar and Köklü
(2019, 2021, 2022), Köklü, Cinar, and Taspinar (2021), among others. They have applied
many techniques to classify various varieties of rice grain. The results of these works have
helped in the development of classification performance in terms of both accuracy and
time efficiency.

The aim of this work is to study the use of image data of milled rice grains,
namely Karacadag, Jasmine, Ipsala, Basmati, and Arborio, which are publicly available
from Dr.Murat KÖKLÜ, an instructor at Selçuk University’s Faculty of Technology, Depart-
ment of Computer Engineering and Software. The dataset consists of 15,000 JPEG format
images for each grain of rice, with a resolution of 250x250 pixels (75,000 images in total).
The first stage of our research is the data engineering process which organizes data to be
enable the computer system to recognize different varieties of rice grains in images. The
second stage is the data science stage which provides a model for future image classifica-
tion of other grain varieties. On the last stage, all obtained models will be validated and
verified.

1.1 Research objective

To apply mathematical knowledge in digital image processing field and object
detection techniques for the classification of rice varieties from milled rice grain images.

1.2 Scope and limitations

1. The dataset was selected from muratkoklu, public data of Dr.Murat
KÖKLÜ, the instructor of Selçuk University, Faculty of Technology, Depart-
ment of Computer Engineering, Department of Software, retrieved from
https://www.muratkoklu.com/datasets.

2. Using Python language version 3.7, the programming language to generate images

3

and detect an object, working on ASUS-TUF Gaming FX505DU-AL052T, CPU AMD
Ryzen 7 3750H with Graphic Processing Radeon Vega Mobile Gfx 2.30 GHz, 16GB
RAM, and Microsoft Windows 11 OS.

1.3 Research procedure

The research work proceeded as follows:

1. Study mathematical knowledge in digital image processing for preprocessing data
to train a model.

2. Study the YOLOv5 model and technique for apply a model to detect a rice grain
in an image.

3. Apply a model to detect, classify and locate a rice grain in an image with Python
language.

4. Accuracy measurement for the YOLOv5 model.

1.4 Expected results

It is expected to use the YOLOv5 model as a prototype model to detect, classify
and locate each rice grain in the test images.

CHAPTER II
LITERATURE REVIEW

This chapter presents the algorithm of machine learning to detect an object and
technique for data engineering.

2.1 Digital Image Processing

Digital image processing refers to the process of manipulating and analyzing im-
ages using a computer to convert them into digital data. This allows us to obtain both
qualitative and quantitative information.

2.1.1 Grayscale Image

A grayscale image is typically represented as a matrix of pixel values, where each
pixel represents a point in the image and the value of the pixel represents the intensity
of the grayscale color at that point.

A grayscale image is a 2-dimensional array where the values in the array represent
the intensity of the gray color of each pixel. Each pixel in a grayscale image is represented
by a single scalar value ranging from 0 (black) to 255 (white), where 0 represents the
absence of any light and 255 represents the maximum amount of light, a grayscale image
can be represented as a function f(x, y), where x and y are the spatial coordinates of
the pixel and f(x, y) is the intensity value at that point. This function can be thought
of as a continuous function that describes the intensity variation of the grayscale color
across the image.

The matrix representation of a grayscale image can be used to perform various
mathematical operations on the image, such as filtering, transformation, and analysis.

5

2.1.2 Binary Image

Converting a color image to binary allows it to be displayed on a device with only
two levels of intensity, or 1 bit, where 0 represents black and 1 represents white. This
conversion reduces storage space and is also useful in preprocessing, specifically through
the use of the thresholding binary technique. This technique separates objects from the
background by changing pixel values to either 0 or 1 based on whether they are less than
or greater than/equal to the threshold value, as defined by equation (2.1),

b(x, y) =

0, p(x, y) < Thr
1, otherwise

(2.1)

when b(x, y) is a pixel value of binary image, p(x, y) is a pixel value of the input image
and Thr is the threshold constant value, it is between 0 and the maximum intensity of
the point in the image.

2.1.3 Morphology

In mathematics, morphology is set theory, the objects’ shapes in an image are
a set in morphology. In binary images, the sets are members of integer space Z2, an
element of a set is a tuple (vector in Z2) whose coordinates are the (x, y) coordinates
of a black pixel in the image. Morphological operations bring input images manipulated
by a shape matrix called structuring elements, and the output image is obtained. Most
often this concept is used to separate objects from the background or to modify the
shape of an object with the limitation that the image used to separate the object from
the background must be a binary image.

Let A and B be sets in Z2, with components a = (a1, a2) and b = (b1, b2),
respectively. The translation of A by x = (x1, x2), denoted (A)x, is defined as

(A)x = {c|c = a+ x, for all a ∈ A}. (2.2)

The reflection of B, denoted B̂, is defined as

B̂ = {x|x = −b, for all b ∈ B}. (2.3)

6

The complement of set A is
Ac = {x|x /∈ A}. (2.4)

Finally, the difference of two sets A and B, denoted A− B, is defined as

A− B = {x|x ∈ A, x /∈ B} = A ∩Bc. (2.5)

Set B is commonly as the structuring element in dilation, as well as in other
morphological operations. Let∅ denoting the empty set, the dilation ofA byB, denoted
A⊕ B, is defined as

A⊕ B = {x|(B̂)x ∩ A ̸= ∅}. (2.6)

The erosion of A by B, denoted A⊖ B, is defined as

A⊖ B = {x|(B)x ⊆ A}. (2.7)

Dilation expands an image and erosion shrinks it. The opening of set A by structuring
element B, denoted A ◦B, is defined as

A ◦B = (A⊖ B)⊕ B. (2.8)

The closing of set A by structuring element B, denoted A •B, is defined as

A •B = (A⊕ B)⊖ B. (2.9)

Opening, it’s an operation that brings erosion and dilation together. Image erosion may
help reduce noise in the lost image followed by dilation of the image to help bring the
image back close to the original. Closing, also tends to reduce noise in the lost image
but, with a different sequence of operations, closing starts with a dilation first followed
by an erosion.

7

(a) Set A. (b) Set A translated by point x.

(c) Set B. (d) Reflection of B.

(e) Set A and its complement. (f) The difference of two sets.

Figure 2.1 Set translation and set reflection.

8

Figure 2.2 Example of dilation.
source: https://homepages.inf.ed.ac.uk/rbf/HIPR2/dilate.htm

Figure 2.3 Example of erosion.
source: https://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm

Figure 2.4 Example of opening.
source: https://homepages.inf.ed.ac.uk/rbf/HIPR2/open.htm#guidelines

9

Figure 2.5 Example of closing.
source: https://homepages.inf.ed.ac.uk/rbf/HIPR2/close.htm#variants

2.2 Data Labeling

Data labeling means that we define the objective of the work we want to do so
that the model can understand it. In image detection, labeling involves determining the
location of an object and classifying it by creating a bounding box that covers the object.

Figure 2.6 Example of data labeling.

Figure 2.7 Example data of data labeling.

In Figure 2.7, the first value represents the object type, while the second and
third values indicate the center position of the object in (x, y) form. The fourth and fifth
values represent the width and height of the object, respectively.

10

2.3 Intersection over Union (IoU)

Intersection over Union (IoU) is a common metric used in object detection to
evaluate the performance of an algorithm that detects objects in an image. IoU measures
the similarity between the predicted bounding box (i.e., the region of an image where the
algorithm thinks the object is located) and the ground truth bounding box (i.e., the true
location of the object in the image).

IoU is defined as the ratio of the area of the intersection between the predicted
and ground truth bounding boxes to the area of their union. The formula for calculating
IoU is:

IoU =
Area of Intersection

Area of Union . (2.10)

To calculate the area of intersection, we first determine the overlapping region
between the predicted and ground truth bounding boxes. This is the region where the
predicted box and the ground truth box both have non-zero area. We then calculate the
area of this region.

To calculate the area of union, we add the areas of the predicted and ground truth
bounding boxes and subtract the area of intersection. This is because the intersection is
counted twice (once in each bounding box) when we add the areas of the two boxes.

Once we have calculated IoU for a set of predictions and ground truth boxes,
we can use it as a performance metric to evaluate the accuracy of the object detection
algorithm. A common threshold for determining whether a detection is correct is an IoU
of 0.5 or greater. This means that if the IoU between a predicted bounding box and a
ground truth bounding box is greater than or equal to 0.5, we consider the detection to
be correct.

2.4 Non-Maximum Suppression (NMS)

Non-Maximum Suppression (NMS) is a post-processing step often used in object
detection algorithms to eliminate duplicate detections of the same object.

11

NMS involves three inputs:

1. A set of bounding boxes B = {b1, b2, ..., bn}.

2. A set of confidence scores C = {c1, c2, ..., cn}, where ci is the confidence score for
the i-th bounding box bi.

3. A threshold value θ.

The NMS algorithm works as follows:

1. Sort the bounding boxes in B in descending order of their confidence scores in C .

2. Select the bounding box with the highest confidence score, and remove all other
bounding boxes that have a high overlap with it, i.e. the boxes having an intersec-
tion over union (IoU) greater than a threshold θ. The remaining set of boxes after
this step is denoted as B′.

3. Repeat step 2 until there are no more bounding boxes left in B.

2.5 YOLOv5 model

The YOLOv5 model is a One-Stage Object Detection algorithm that can simulta-
neously detect the object and the area in which it appears in the image. Other object
detection algorithms, such as R-CNN, Fast R-CNN, and Faster R-CNN, are two-stage or multi-
stage algorithms that detect a region of an object before identifying what it is. While Two-
Stage or Multi-Stage Object Detection may be more accurate in detecting objects than
One-Stage Object Detection, the YOLOv5 model offers faster performance. The YOLOv5
model’s operations are divided into four sub-stages: Input, Backbone, Neck, and Head, as
shown in Figure 2.8. In the Input stage, the model imports data, which can be an image,
patches, or an image pyramid. In the Backbone stage, the model processes features using
neural networks such as VGG16, ResNet-50, ResNeXt-101, and Darknet53. The Neck stage
aggregates features using neural networks such as FPN and PANet. Finally, in the Head
stage, the model prepares for prediction using neural networks such as RPN, YOLO, SSD,
RetinaNet, and FCOS.

12

Figure 2.8 Structure of One-Stage Object Detector.

The object analysis process begins with the model looking at grid cells of size
S × S. Each grid cell predicts the bounding box surrounding the object in the image
and the probability that it belongs to the object. The model only predicts objects with
a probability greater than 50%, allowing it to identify which objects are of interest within
the box boundaries. This process is illustrated in Figure 2.9.

Figure 2.9 YOLOv5 model system.

13

2.6 Researches Related with the rice grain classification and the ob-
ject detection

Ren, He, Girshick, and Sun (2016) present a new object detection approach called
Region Proposal Network (RPN), which efficiently generate high-quality region proposals by
sharing full-image convolutional features with the detection network. The RPN is trained
end-to-end and provides region proposals that are used by the Fast R-CNN detection
network. The authors also propose to merge the RPN and Fast R-CNN into a single network,
using ”attention” mechanisms to guide the network’s focus. This integration achieves
state-of-the-art detection performance while maintaining efficiency.

Cinar and Köklü (2019) design a computerized vision system to differentiate be-
tween two different types of rice. The researchers employ several machine learning
approaches, including logistic regression (LR), multilayer perceptron (MLP), support vector
machine (SVM), decision tree (DT), random forest (RF), Naive Bayes (NB), and k-nearest
neighbors (k-NN), to assess the system’s performance. The achieved classification accu-
racy rates are 93.02% for LR, 92.86% for MLP, 92.83% for SVM, 92.49% for DT, 92.39% for
RF, 91.71% for NB, and 88.58% for k-NN.

Zhao, Zheng, Xu, and Wu (2019) provide a comprehensive overview of recent
advances in deep learning-based object detection. The review covers various deep learn-
ing architectures, including Faster R-CNN, YOLO, SSD, and RetinaNet, and examines the
strengths and weaknesses of each method. Overall, the authors highlight the remarkable
progress made in deep learning-based object detection and the potential for further im-
provements in the future. They also discuss recent developments in object detection
with attention mechanisms and multi-scale feature fusion.

Hamzah and Mohamed (2020) conduct a study to explore innovative approaches
in utilizing technology for rice quality classification to avoid contamination. They employ
an artificial neural network (ANN) to detect impurities in rice grains. The results show that
using a multilayer perceptron neural network (MLPNN) in the ANN produces the highest
precision, achieving a rate of 96%.

Truong Hoang , Van Hoai, Surinwarankoon, Duong, and Meethongjan (2020) aim

14

to automate rice recognition using a combination of hand-crafted descriptors and CNN
methods. The researchers conduct their experiment on the VNRICE dataset and achieve
a high level of accuracy using the DenNet21 framework. Their results demonstrate the
effectiveness of their proposed method in rice recognition with an accuracy rate of 99.04%.

Cinar and Köklü (2021) organize a study in which they utilize feature extraction
techniques to analyze five distinct rice varieties from a single brand. The researchers
incorporate morphological, shape, and color features in their analysis, resulting in the
extraction of a total of 106 features after conducting pre-processing operations. Morpho-
logical feature analysis provides 12 characteristics obtained through shape analysis, while
shape features is comprised of four features. Moreover, the researchers extract 90 color
features using five different color spaces, including RGB, HSV, Lab*, YCbCr, and XYZ. The
study aim to identify the top five features that are most effective and specific in distin-
guishing between the rice varieties through various tests. These features are roundness,
compactness, shape factor, aspect ratio, and eccentricity, out of a total of 106 features.
The findings of this research suggest the potential of feature extraction techniques in
classifying rice varieties based on unique characteristics.

Köklü, Cinar, and Taspinar (2021) focus on the classification of the five most fre-
quently grown rice varieties in Turkey, namely Arborio, Basmati, Ipsala, Jasmine, and Kara-
cadag. The dataset consists of 75,000 grain images, with 15,000 images collected for each
rice variety. The second dataset is comprised of 106 features, which includes 12 morpho-
logical, four shape, and 90 color features, extracted from these images. The researchers
apply Artificial Neural Network (ANN) and Deep Neural Network (DNN) algorithms to pro-
cess the feature dataset, and the Convolutional Neural Network (CNN) algorithm for the
image dataset to perform the classification processes. These models produce a signifi-
cantly high level of classification accuracy, with ANN achieving a 99.87% accuracy rate,
DNN achieving 99.95%, and CNN achieving 100% accuracy. These findings suggest that
feature extraction and machine learning techniques can play an instrumental role in ac-
curately classifying rice varieties based on morphological, shape, and color characteristics.

Bhupendra, Moses, Miglani, and Kankar (2022) develop a machine vision system
that constructed a dataset of 8048 high-resolution images of damaged rice grains, span-

15

ning seven damage classes. They use five different state-of-the-art memory-efficient Deep
Convolutional Neural Network (CNN) models, including EfficientNet-B0, ResNet-50, Incep-
tionV3, MobileNetV2, and MobileNetV3, which are fine-tuned for damage classification
of milled rice grains. The study shows that the EfficientNet-B0 model outperformed the
other models with an overall classification accuracy of 98.37%, achieving high individual
class accuracy rates ranging from 95.45% to 100%. Moreover, the model has a significantly
reduced size (47 MB) and a short prediction time of 0.122 seconds, making it an efficient
system for the classification of damaged rice grains.

Cinar and Köklü (2022) explore the classification of five distinct varieties of rice by
utilizing features such as morphology, shape, and color. The researchers collect a total
of 75,000 images of rice grains, with 15,000 images per variety, which are pre-processed
using MATLAB software and prepare for feature extraction. A total of 106 features are ex-
tracted from the images, including 12 morphological, 4 shape, and 90 color features from
various color spaces. To develop classification models, the researchers utilize machine
learning techniques and employed algorithms such as decision tree, k-nearest neighbor,
logistic regression, multilayer perceptron, random forest, and support vector machines.
Results indicate that the random forest algorithm achieves the highest average classifi-
cation accuracy, with an accuracy of 97.99% for morphological features and 98.04% for
morphological and shape features. The logistic regression algorithm achieves a classifi-
cation accuracy of 99.25% for color features, while the multilayer perceptron algorithm
has the highest accuracy of 99.91% when using all three types of features (morphological,
shape, and color). This research sheds light on the potential of utilizing machine learning
algorithms in the classification of rice varieties based on various features.

CHAPTER III
RESEARCH METHODOLOGY

This chapter presents the process used in this research. The process comprises of
4 parts as follows: 1) data import, 2) data engineering for train and test data, 3) modeling
by the YOLOv5 model, 4) accuracy measurement for the YOLOv5 model.

3.1 Data Import

The rice grain image data used in this thesis was obtained from ”muratkoklu”,
public data of Dr.Murat KÖKLÜ, available on https://www.muratkoklu.com/datasets, the
dataset consisting of images of Aborio rice grains, Basmati rice grains, Ipsala rice grains,
Jasmine rice grains, and Karacadag rice grains, with 15,000 images of each variety.

(a) A Arborio rice grain. (b) A Basmati rice grain. (c) A Ipsala rice grain.

(d) A Jasmine rice grain. (e) A Karacadag rice grain.

Figure 3.1 A five-variety rice grain.

17

3.2 Data Engineering for Train and Test data

From an image of a rice grain, the background is not completely black (some pixel
values are not equal to zero), as shown in Figure 3.2.

Figure 3.2 A rice grain image.

We solved this by removing the background of each grain of rice (making it trans-
parent), we use closing and opening in morphological operations to eliminate noise, as
shown in Figure 3.3.

(a) A noisy image. (b) A closing image. (c) A opening image.

Figure 3.3 The noise elimination.

In this particular image, there is a large of noise that cannot be eliminated by using
closing and opening techniques. Instead, we use contour techniques to isolate the main
object in the image, as shown in Figure 3.4.

We created a blank image with a size of 800×800 pixels to generate a mixed rice
grain image using Python and the Jupyter Notebook program. This was done to create
images with multiple objects in one image. The image was created by randomly sampling
images of rice grains from all 5 varieties, with 6,000 images of each variety (30,000 total

18

(a) An image with closing and opening.

(b) An image with closing, opening, and contour.

Figure 3.4 The noise elimination with contour.

images), and placing them in the overall image of the rice grains, resulting in 7,000 images
without overlapping. Each mixed rice grain image contains 20 to 35 different rice grains,
randomly placed in different positions, and we created a file to write data on the variety,
position, and size of each rice grain (labeling data).

For the test data, we created mixed rice grain images for the model to detect rice
grains. However, these images are different from the ones used for training data because it
may occur the overlapping of rice grain in the images for the real situation. Here, we used
a transparent rice grain image to create a rice grain collection to measure the accuracy
of the YOLOv5 model. The mixed rice grain images with the overlap of the rice grains
were done as the followings. The images allow overlap rice grain images in size with an

19

800 × 800 pixels resolution at rates of 0%, 5%, 10%, 15%, 20%, and 25% overlapping.
There were 500 images for each overlapping rate (a total of 3,000 images).

Figure 3.5 Example of overlapping rice grains in a mixed rice grain image.

3.3 Modeling by the YOLOv5 model

We input 7,000 mixed rice grain images to generate the YOLOv5 model via Python
using the Google Colaboratory program. We set the default parameter learning rate at
0.01, batch size at 16 (the number of transmitted data), and epoch at 5 (the number of
training cycles). This allows us to detect the location and identify the rice grain, as shown
in Figure 3.6.

Figure 3.6 Result of training the model to detect the location and identify the varieties
of rice grains.

20

3.4 Accuracy measurement for the YOLOv5 model

To measure the accuracy of the YOLOv5 model, we detect a rice grain in a over-
lapping rice grain image with conf = 0.25 (conf-thres is the smallest value to be shown
or precision). If it is less than 0.25, it will not be shown. The results of detection by the
YOLOv5 model are a detected image and data of a variety, position, and size of a rice
grain.

(a) A detected image. (b) A detected data.

Figure 3.7 The detection of a mixed rice grains image.

We use labeling data to create a filled image with different pixel values (a pixel
value depends on variety), as shown in Figure 3.8 (a).

We bring a mixed rice grain image and convert it to a grayscale image, as shown in
Figure 3.8 (b). Then we reconstruct a filled mixed rice grain image with the shape of the
grain according to the mixed rice grain image and the pixel value according to the filled
image. This gives us an overview of the rice grains with pixel values according to the rice
varieties, as shown in Figure 3.8 (c).

21

(a) A filled image. (b) A grayscale imag.

(c) A filled mixed image.

Figure 3.8 The creation of a filled mixed image.

Figure 3.9 The detectable area of the YOLOv5 model.

22

The accuracy is defined as the ratio of the number of rice grain variety pixels
detected in the detectable area of the YOLOv5 model to the total number of pixels
detected, as shown in Figure 3.10.

We assume that the YOLOv5 model correctly detected the rice grain if the number
of rice grain variety pixels was greater than the threshold value.

Overall, the workflow of this thesis is presented in the following flowchart.

Figure 3.10 Flowchart of the workflow in this thesis.

CHAPTER IV
RESULTS AND DISCUSSION

This chapter presents the results from the data engineering process and the ac-
curacy measurement for the YOLOv5 model.

4.1 Data Engineering
We use Python code and morphological operations to eliminate noise and remove

the background from a rice grain image, The results are shown in Figure 4.1.

(a) A normal rice grain image. (b) A transparent rice grain image.

Figure 4.1 The transparency of a rice grains image.

We use Python code to create a composite image of mixed rice grains, and a text
file to record data on the variety, position, and scale of each grain. The results are shown
in Figure 4.2.

To create an overlapping image of rice grains, the results are shown in Figure 4.3.

24

(a) A mixed rice grain image. (b) Data of rice grains labeling.

Figure 4.2 A mixed rice grains image to train model.

(a) A 0% overlap image. (b) A 5% overlap image. (c) A 10% overlap image.

(d) A 15% overlap image. (e) A 20% overlap image. (f) A 25% overlap image.

Figure 4.3 The overlapping of a rice grains image.

25

4.2 Accuracy measurement for the YOLOv5 model

For the measurement of the accuracy of the YOLOv5 model used in the detection
of all 5 types of rice grains, we set the threshold value at 0.75, 0.7, 0.65, 0.6, and 0.55.

Table 4.1 The total number of rice grains in mixed rice grain images.

overlap
0% 5% 10% 15% 20% 25%

Arborio 3799 4145 4295 4348 4637 4882
Basmatic 3009 3448 3571 3759 3875 3930
Ipsala 2474 2584 2771 2893 3027 3140
Jasmine 4010 4580 4516 4725 5105 5135
Karacadag 4221 4630 4868 4827 5145 5396

Table 4.2 The total number of rice grains detected.

overlap
0% 5% 10% 15% 20% 25%

Arborio 3889 4259 4447 4562 4877 5194
Basmatic 3011 3443 3588 3774 3914 3968
Ipsala 2473 2585 2772 2894 3029 3142
Jasmine 4047 4630 4568 4792 5179 5214
Karacadag 4208 4602 4830 4778 5084 5302

26

Table 4.3 The accuracy of the YOLOv5 model with the threshold value = 0.75.

overlap
0% 5% 10% 15% 20% 25%

Total of True 17418 19117 19579 19940 20805 21176
Total of False 210 402 626 860 1278 1644
Accuracy 0.9881 0.9794 0.9690 0.9586 0.9421 0.9280

Table 4.4 The accuracy of the YOLOv5 model with the threshold value = 0.70.

overlap
0% 5% 10% 15% 20% 25%

Total of True 17459 19229 19757 20170 21145 21612
Total of False 169 290 448 630 938 1208
Accuracy 0.9904 0.9851 0.9778 0.9697 0.9575 0.9471

Table 4.5 The accuracy of the YOLOv5 model with the threshold value = 0.65.

overlap
0% 5% 10% 15% 20% 25%

Total of True 17471 19294 19859 20326 21390 21933
Total of False 157 225 346 474 693 887
Accuracy 0.9911 0.9885 0.9829 0.9772 0.9686 0.9611

27

Table 4.6 The accuracy of the YOLOv5 model with the threshold value = 0.60.

overlap
0% 5% 10% 15% 20% 25%

Total of True 17475 19324 19926 20423 21545 22111
Total of False 153 195 279 377 538 709
Accuracy 0.9913 0.9900 0.9862 0.9819 0.9756 0.9689

Table 4.7 The accuracy of the YOLOv5 model with the threshold value = 0.55.

overlap
0% 5% 10% 15% 20% 25%

Total of True 17475 19332 19952 20460 21630 22228
Total of False 153 187 253 340 453 592
Accuracy 0.9913 0.9904 0.9875 0.9836 0.9795 0.9740

28

4.3 Accuracy consideration of the YOLOv5 model

We plotted the accuracy values of the YOLOv5 model on a graph, with the hori-
zontal axis representing overlapping percentages. Specifically, 1 denotes 25% overlapping,
2 represents 20% overlapping, 3 is 15% overlapping, 4 is 10% overlapping, 5 represents
5% overlapping, and 6 represents non-overlapping.

Figure 4.4 The graph of the accuracy value of the model.

Upon examining the accuracy graph, we observed that the accuracy value for non-
overlapping rice grain images at a threshold of 0.60 was identical to that at a threshold
of 0.55. As a result, we determined that a threshold of 0.60 would be the optimal choice
for assessing the accuracy of the YOLOv5 model.

CHAPTER V
CONCLUSION AND RECOMMENDATION

In this research, our aim is to classify different varieties of rice grains using the
YOLOv5 model as a detection method. We began by preparing rice grain image data and
labeling it to train the YOLOv5 model. To measure the accuracy of the YOLOv5 model, we
used overlapping rice grain images and applied the threshold technique at values of 0.75,
0.70, 0.65, 0.60, and 0.55. The accuracy value of the YOLOv5 model with non-overlapping
rice grain images at a threshold of 0.60 was the same as the accuracy value with non-
overlapping rice grain images at a threshold of 0.55. Based on this, we concluded that a
threshold value of 0.60 is optimal for measuring the accuracy of the YOLOv5 model.

As part of our recommendations, we suggest using data on various rice grain vari-
eties in Thailand to reduce rice adulteration and increase the reliability of exports.

REFERENCES

REFERENCES

Aki, O., Güllü, A., and Uçar, E. (2015). Classification of Rice Grains Using Image Process-
ing and Machine Learning Techniques. International Scientific Conference “UNITECH
2015”, 20 – 21 November, 2015, Gabrovo, 352-354.

Bhupendra, Moses, K., Miglani, A., and Kankar, P. K. (2022). Deep CNN-based damage classi-
fication of milled rice grains using a high-magnification image dataset. Computers and
Electronics in Agriculture, 195(2022), 106811. doi.org/10.1016/j.compag.2022.106811.

Charniak, E. (2018). Introduction to Deep Learning. The MIT Press.

Cinar, I., and Köklü, M. (2019). Classification of Rice Varieties Using Artificial Intelligence
Methods. International Journal of Intelligent Systems and Applications in Engineering
(IJISAE), 7(3), 188–194.

Cinar, I., and Köklü, M. (2021). Determination of Effective and Specific Physical Features
of Rice Varieties by Computer Vision in Exterior Quality Inspection. Selcuk Journal of
Agriculture and Food Sciences (SJAFS), 35(3), 229-243.

Cinar, I., and Köklü, M. (2022). Identification of Rice Varieties Using Machine Learning Algo-
rithms. Journal of Agricultural Sciences (Tarim Bilimleri Dergisi), 28(2), 307-325.

Gonzalez, R. C., and Woods, R. E. (1992). Digital Image Processing. United States of America,
Addison-Wesley Publishing Company.

Hamzah, S. A., and Mohamed, A. (2020). Classification of white rice grain quality using ANN:
a review. IAES International Journal of Artificial Intelligence (IJ-AI), 9(4), 600-608.

Köklü, M., Cinar, I., and Taspinar, Y. S. (2021). Classification of Rice Varieties with Deep
Learning Methods. Computers and Electronics in Agriculture, 187(2021), 1-8.

Köklü, M. (2022). Datasets. Online Education. Availble Source:
https://www.muratkoklu.com/datasets/, 13 September, 2022

32

Aepanich, N., and Urairong, H. (2019). Improving Verification Method for Thai Hom Mali
Rice and Pathumthani Rice Variety. Agricultural Biotechnology Research and Devel-
opment Group, Biotechnology Research and Development Bureau, Department of
Agriculture.

Mimma, N.-E.-A., Ahmed, S., Rahman, T., and Khan, R. (2022). Fruits Classification and
Detection Application Using Deep Learning, Scientific Programming, 2022, Article ID
4194874, 16 pages. https://doi.org/10.1155/2022/4194874

National Bureau of Agricultural Commodity and Food Standards. (2017). Thai jasmine
rice. Agricultural Standards TAS 4000-2017. Ministry of Agriculture and Cooperatives,
published in the Government Gazette. Announcement and general works, volume
134, special section 221 d., 8 September, 2017.

Neapolitan, R. E., and Jiang, X. (2018). Artificial Intelligence: With an Introduction to Ma-
chine Learning. (2 ed.) CRC Press.

Chayanukulkitti, P. (2022). Rice. Bureau of Agricultural and Industrial Trade Promotion,
March, 2022, Retrieved from https://www.ditp.go.th

Omid, M., Soltani, M., Dehrouyeh, M. H., Mohtasebi, S. S., and Ahmadi, H. (2013) An expert
egg grading system based on machine vision and artificial intelligence techniques,
Journal of Food Engineering, 118(1), 70-77.

Ren, S., He, K., Grishick, R., and Sun, J. (2016). Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks.

Steven, P., and Toon, G. (2015). Visual detection and species classification of orchid
flowers. IAPR International Conference on Machine Vision Applications (MVA2015)At:
Tokyo, Japan, 505-509. 10.1109/MVA.2015.7153241.

Tarawneh, O., Tarawneh, M., Sharrab, Y., and Altarawneh, M. (2022). Mushroom
classification using machine-learning techniques. International Computer Sciences

33

and Informatics Conference (ICSIC-2022).At: AMMAN ARAB UNIVERSITY, Jor-
dan, https://www.researchgate.net/publication/362374571_Mushroom_classification
_using_machine-learning_techniques

Thai Rice Exporters Association. (2022). Statistics of rice exports. Retrieved from
http://www.thairiceexporters.or.th

Truong Hoang, V., Van Hoai, D. P., Surinwarangkoon, T., Duong, H.-T., and Meethongjan.,
K. (2020). A Comparative Study of Rice Variety Classification based on Deep Learning
and Hand-crafted Features. ECTI-CIT Transactions, 14(1), 1–10. doi.org/10.37936/ecti-
cit.2020141.204170.

Zareiforoush, H., Minaei, S., Alizadeh, M. R., and Banaka, A. (2016). Qualitative Classification
of Milled Rice Grains Using Computer Vision and Metaheuristic Techniques. Journal
of Food Science Technology, 53(1), 118-131.

Zhao, Z.-Q., Zheng, P., Xu, S.-T., and Wu, X. (2019). Object Detection with Deep Learning:
A Review. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.

APPENDICES

APPENDIX A
APPLICATION OF PYTHON CODE IN DATA ENGINEERING

AND MODELING

36

This chapter presents some Python code using in this thesis.

A.1 The transparency image by Python code in Jupyter Notebook

The transparency image process is the following:
import cv2
import matplotlib . pyplot as plt
from skimage import f i l t e r s
import os
import numpy as np
path = ’C: / Users/Asus/Desktop/JPG/ ’
path2 = ’C: / Users/Asus/Desktop/PNG/ ’
os . chdir (path)
for f i le in os . l i s t d i r () :

i f f i le . endswith (” . jpg”) :
f_name = f”{path } / { f i l e }”
wf_name = path2+f”{ f i l e }” . replace (’ . jpg ’ , ’ .png’)
print (f_name)
print (wf_name)
fimg = cv2 . imread(f_name, 1)
height = fimg . shape[0]
width = fimg . shape[1]
blank_img = np. zeros ((height ,width ,3) , np. uint8)
gray = cv2 . cvtColor (fimg , cv2 .COLOR_BGR2GRAY)
_ , thresh = cv2 . threshold (gray , 0 , 255, cv2 .THRESH_BINARY + cv2 .THRESH_OTSU)
kernel = np.ones((9 ,9) , np. uint8)
mask = cv2 .morphologyEx(thresh , cv2 .MORPH_CLOSE, kernel)
mask = cv2 .morphologyEx(thresh , cv2 .MORPH_OPEN, kernel)
put mask into alpha channel of result
result = fimg .copy ()
result = cv2 . cvtColor (result , cv2 .COLOR_BGR2BGRA)
result [: , : , 3] = mask
gray = cv2 . cvtColor (result , cv2 .COLOR_BGR2GRAY)
using contours to find the biggest object
_ , thresh = cv2 . threshold (gray , 0 , 255, cv2 .THRESH_BINARY + cv2 .THRESH_OTSU)

37

contours , hierarchy = cv2 . findContours (thresh , cv2 . RETR_LIST , \
cv2 .CHAIN_APPROX_SIMPLE)

mx = (0 ,0 ,0 ,0) # biggest bounding box so far
mx_area = 0
for cont in contours :

x , y ,w,h = cv2 .boundingRect (cont)
area = w*h
i f area > mx_area :

mx = x , y ,w,h
mx_area = area

x , y ,w,h = mx
crop_img = result [y : y+h, x : x+w]
plt . imshow(crop_img)
plt .show()
blank_img2 = np. zeros ((height ,width ,4) , np. uint8)
blank_img2[y : y+h, x : x+w] = crop_img
new_width = width
new_height = height
result2 = cv2 . resize (blank_img2 , (int (new_width) , int (new_height)))
cv2 . imwrite (wf_name, result2)

We start by reading an image of a single rice grain in JPEG format. Next, we apply
a grayscale transformation to the image. This process allows us to highlight the distinct
features and characteristics of the rice grain, making it easier to analyze and manipulate.
Finally, we save the grayscale image in PNG format. This format is ideal for storing grayscale
images because it can maintain high-quality detail while minimizing file size, making it
easier to share and store the image.

A.2 A mixed rice grain image and labeling data by Python code in
Jupyter Notebook

The mixed rice grain image and labeling data process is the following:
import cv2
import matplotlib . pyplot as plt

38

import os
import numpy as np
import random

path = ’C: / Users/Asus/Desktop/Train ’
path2 = path+’/Label/ ’
path3 = path+’/IM/ ’
meta_name = path3+’data . csv ’
metaf = open(meta_name, ’w’)
metaf . write (’ F i le name, Arborio , Basmati , Ipsala , Jasmine , Karacadag ,SUM\n’)
os . chdir (path)

imgwidth = 800
imgheight = 800
blank_img = np. zeros ((imgwidth , imgheight ,3) , np. uint8)
for rnn in range(1 ,7001):

blank_img = np. zeros ((imgwidth , imgheight ,3) , np. uint8)
background = blank_img
wf_name = path2+str (rnn) . z f i l l (4)+ ’ . txt ’
f tx t = open(wf_name, ’w’)
k_count = j_count = i_count = b_count = a_count = 0
count_type = np. zeros (5)
numseed = random. randint (20 , 35)
for seedcount in range (1 ,numseed+1):

f i le = random. choice (os . l i s t d i r (path))
i f f i le . endswith (” .png”) :

f_name = f”{path } / { f i l e }”
fimg = cv2 . imread(f_name, cv2 .IMREAD_UNCHANGED)
height = fimg . shape[0]
width = fimg . shape[1]
x , y ,w,h = cv2 .boundingRect (fimg)
countcheck = 0
while True :

countcheck += 1
xoffset = random. randint (0 , imgwidth−w)
yoffset = random. randint (0 , imgheight−h)

39

crop_img2 = blank_img [yoffset : yoffset+h, xoffset : xoffset+w]
summ = crop_img2 .sum()
i f summ==0:

overlay = fimg [y : y+h, x : x+w]
IMREAD_UNCHANGED => open image with the alpha channel

alpha_channel = overlay [: , : , 3] / 255 # convert from 0−255 to 0.0−1.0
overlay_colors = overlay [: , : , : 3]

alpha_mask = np. dstack ((alpha_channel , alpha_channel , alpha_channel))

h, w = overlay . shape [: 2]
background_subsection = background[yoffset : yoffset+h, xoffset : xoffset+w]

composite = background_subsection*(1−alpha_mask)+overlay_colors*alpha_mask

background[yoffset : yoffset+h, xoffset : xoffset+w] = composite
f_name2 = f_name.upper ()
i f f_name2. find (’ARBORIO’)!=−1:

rice_tag = ’0 ’
count_type[0]+=1

i f f_name2. find (’BASMATI’)!=−1:
rice_tag = ’1 ’
count_type[1]+=1

i f f_name2. find (’IPSALA’)!=−1:
rice_tag = ’2 ’
count_type[2]+=1

i f f_name2. find (’JASMINE’)!=−1:
rice_tag = ’3 ’
count_type[3]+=1

i f f_name2. find (’KARACADAG’)!=−1:
rice_tag = ’4 ’
count_type[4]+=1

txt = rice_tag+str ((xoffset+w/2)/ imgwidth)+ ’ ’
+str ((yoffset+h/2)/ imgheight)+ ’ ’
+str (w/imgwidth)+ ’ ’+str (h/ imgheight)

40

f tx t . write (txt+’\n’)
break

i f countcheck>10000:
break

f tx t . close ()
pix_name = str (rnn) . z f i l l (4)+ ’ . jpg ’
plt . imsave(path3+pix_name,blank_img)
metaf . write (pix_name+’ , ’+str (count_type[0])+ ’ , ’+str (count_type[1])+ ’ , ’

+str (count_type[2])+ ’ , ’+str (count_type[3])+ ’ , ’
+str (count_type[4])+ ’ , ’+str (count_type .sum())+ ’\n’)

metaf . close ()
print (’DONE! ’)

To begin, we create a blank image using Python code. Next, we generate a text
file to write data of the variety, position, and scale of each rice grain we want to include
in the image.

Once the text file is complete, we randomly select a rice grain image to input
into the blank image. In this particular code, we are creating a mixed rice grain image
that contains between 20 and 35 rice grains, with each grain placed in a non-overlapping
position on the blank image. However, it’s important to note that if we want to create
a mixed rice grain image with overlapping grains, we can adjust the number of rice grains
and the value of the sum pixels of input area. The average sum value of pixels for each
rice grain image is around 2,000,000 pixels, and the average sum number of pixels for
each rice grain image is around 13,700 pixels (which corresponds to approximately 46
rice grains in an image of size 800 × 800 pixels), then a 5% overlap image is values for
summ=<100,000 and numseed = random.randint(44, 48).

A.3 Modeling by Python code in Google Colaboratory

The modelling by the YOLOv5 model process is the following:
from google . colab import drive
drive .mount(’/content/drive ’)

41

To begin our analysis, we import both the training and testing datasets from Google
Drive. This allows us to leverage flexibility of Google’s cloud-based storage system to
access and work with our data.
! g i t clone https : / / github .com/ ult ra lyt ics /yolov5 # clone
%cd yolov5
%pip ins ta l l −qr requirements . txt # instal l

import torch
import ut i l s
display = ut i l s . notebook_init () # checks

To obtain the necessary code for our YOLOv5 model, we clone the folder from the
following GitHub repository: https://github.com/ultralytics/yolov5. This folder contains
all of the Python code necessary to implement and train the model, allowing us to fine-
tune the model for our particular use case.
%pip ins ta l l −q wandb
import wandb; wandb. login ()

WandB offers a variety of functions to assist with your machine learning workflow,
including the ability to record training results, collect datasets, generate reports, optimize
hyperparameters, and visualize data.

Before training model, it is important to modify the yolov5s.yaml file by changing
the number of classes from nc:80 to nc:5 (the number of classes in model). Addition-
ally, we need to reconstruct the coco128.yaml file to ensure it is aligned with these
modifications.
t ra in : /content/ tra in # path of train dataset
val : /content/ tra in # path of train dataset
Classes
names: # rice variet ies
0: Arborio
1: Basmati
2: Ipsala
3: Jasmine

42

4: Karacadag

Finally, we can train the YOLOv5 model with an image size of 800 and for a total
of 5 epochs. This will enable us to fine-tune the model and optimize its performance for
our specific use case.
! python tra in .py −−img 800 −−epochs 5 −−data coco128 .yaml −−weights yolov5s . pt

A.4 Object Detection by Python code in Google Colaboratory

The object detection by the YOLOv5 model process is the following:
! python detect .py −−weights /content/bestRM. pt −−img 800 −−conf 0.25 −−source /content/ test
−−save−txt

To detect a mixed rice grain image, once the detection process is complete, we
can then save a text file that contains information about each rice grain’s variety, position,
and scale. This data can then be used for further analysis or processing as needed.

A.5 Accuracy measurement for the YOLOv5 model by Python code
in Jupyter Notebook

The accuracy measurement for the YOLOv5 model process is the following:
import cv2
import matplotlib . pyplot as plt
import os
import numpy as np
import random
import re

imgwidth = 800
imgheight = 800
Tr = Fl = 0
Thr = 1
cg1 = ca1 = cb1 = ci1 = cj1 = ck1 = 0

43

cg2 = ca2 = cb2 = ci2 = cj2 = ck2 = 0
print (’THR = ’ ,Thr)
for im in range (1 ,501) :

path = ’C: / Users/Asus/Desktop/T2/LB0K/ ’+str (im) . z f i l l (4)+ ’ . txt ’
pathim = ’C: /Users/Asus/Desktop/T2/IM0K/ ’+str (im) . z f i l l (4)+ ’ . jpg ’
path2 = ’C: / Users/Asus/Desktop/Detect/D0K/ ’+str (im) . z f i l l (4)+ ’ . txt ’
#Original
f tx t = open(path , ’ r ’)
text = f tx t . readline ()
blank_imgo = np. zeros ((imgwidth , imgheight) , np. uint8)
count = 0
count1 = count2 = count3 = count4 = count5 = 0
while text :

text2 = text . sp l i t (” ”)
ricetype = int (text2 [0])+1
xo = int (float (text2 [1]) * imgwidth)
yo = int (float (text2 [2]) * imgwidth)
widtho = int (float (text2 [3])*400)
heighto = int (float (text2 [4])*400)
crop_imgo = blank_imgo[yo−heighto :yo+heighto , xo−widtho : xo+widtho]
crop_imgo . f i l l (ricetype)
text = f tx t . readline ()
count +=1
i f ricetype == 1:

count1 +=1
i f ricetype == 2:

count2 +=1
i f ricetype == 3:

count3 +=1
i f ricetype == 4:

count4 +=1
i f ricetype == 5:

count5 +=1
cg1 +=count
ca1 +=count1
cb1 +=count2

44

ci1 +=count3
cj1 +=count4
ck1 +=count5

fimg = cv2 . imread(pathim)
gray = cv2 . cvtColor (fimg , cv2 .COLOR_BGR2GRAY)
thresh = cv2 . threshold (gray , 0 , 255, cv2 .THRESH_BINARY+ cv2 .THRESH_OTSU) [1]
for i in range (0 ,np. shape(thresh) [0]) :

for j in range (0 ,np. shape(thresh) [1]) :
i f thresh [i , j] == 0:

blank_imgo[i , j] = 0

#IOU
f tx t = open(path2 , ’ r ’)
text = f tx t . readline ()
count = 0
count1 = count2 = count3 = count4 = count5 = 0
T = F = 0
while text :

text2 = text . sp l i t (” ”)
ricetype = int (text2 [0])+1
xo = int (float (text2 [1]) * imgwidth)
yo = int (float (text2 [2]) * imgwidth)
widtho = int (float (text2 [3])*400)
heighto = int (float (text2 [4])*400)
crop_img2 = blank_imgo[yo−heighto :yo+heighto , xo−widtho : xo+widtho]
ct = cn = 0
for i in range (0 ,np. shape(crop_img2) [0]) :

for j in range (0 ,np. shape(crop_img2) [1]) :
i f crop_img2[i , j] == ricetype :

ct +=1
i f crop_img2[i , j] != ricetype :

i f crop_img2[i , j] > 0:
cn+=1

IOU = ct / (ct+cn)
i f IOU >= Thr :

45

T +=1
i f IOU < Thr :

F +=1
text = f tx t . readline ()
count +=1
i f ricetype == 1:

count1 +=1
i f ricetype == 2:

count2 +=1
i f ricetype == 3:

count3 +=1
i f ricetype == 4:

count4 +=1
i f ricetype == 5:

count5 +=1
Tr +=T
Fl +=F
cg2 +=count
ca2 +=count1
cb2 +=count2
ci2 +=count3
cj2 +=count4
ck2 +=count5
print (’Image ’ , str (im) . z f i l l (4) , ’DONE! ! ’)

print (’Grains of Orig inal = ’ ,cg1)
print (’Aborio of Orig inal = ’ ,ca1)
print (’Basmati of Orig inal = ’ ,cb1)
print (’ Ipsala of Orig inal = ’ , ci1)
print (’Jasmine of Orig inal = ’ , cj1)
print (’Karacadag of Orig inal = ’ ,ck1)
print (’Grains Detection = ’ ,cg2)
print (’Aborio Detection = ’ ,ca2)
print (’Basmati Detection = ’ ,cb2)
print (’ Ipsala Detection = ’ , ci2)
print (’Jasmine Detection = ’ , cj2)
print (’Karacadag Detection = ’ ,ck2)

46

print (’Total of True =’ , Tr)
print (’Total of Flase =’ , Fl)
print (’Accuracy = ’ , Tr / (Tr+Fl))

To measure accuracy for the YOLOv5 model, we start with bring data variety in
text file to generate filled image, after that we reconstruct a filled mixed rice grain image
with the shape of the grain according to the mixed rice grain image and the pixel value
according to the filled image. This gives us an overview of the rice grains with pixel values
according to the rice varieties.

The accuracy is defined as the ratio of the number of rice grain variety pixels
detected in the detectable area of the YOLOv5 model to the total number of pixels
detected.

CURRICULUM VITAE

NAME : Wuttichai Watchararat GENDER : Male

EDUCATION BACKGROUND:

• Bachelor of Science (Mathematics), Suranaree University of Technology, Thailand,
2020

SCHOLARSHIP:

• His Majesty the King’s 7th Cycle Birthday Anniversary Suranaree University of Tech-
nology Scholarship

• Kitti Bundit Suranaree University of Technology Scholarship

CONFERENCE:

• The 10th Nonsi Isan National Academic Conference Year 2022 (Best Oral Presenta-
tion), Innovation and Technology, Thailand, 26 November, 2022

• The 9th Undergraduate in Applied Mathematics Conference (Bronze medal Oral
Presentation), Computational Mathematics, Thailand, 23-24 April, 2021

EXPERIENCE:

• Teaching Assistant in Calculus I, Calculus II, and Calculus III.

• Teaching Assistant in Mathematics in daily life.

• Teaching Assistant in Probability and Statistics.

	Cover
	Approved
	Abstract
	Acknowledgement
	Content
	Chapter1
	Chapter2
	Chapter3
	Chapter4
	Chapter5
	Reference
	Appendix
	Biography

