CONTENTS

			Page
ABS	TRACT IN	THAI	
ABS	TRACT IN	ENGLISH	III
ACk	NOWLED	GEMENTS	V
COI	NTENTS		VII
LIST	OF FIGU	RES	X
LIST	OF TABL	_ES	XVI
CH/	PTER		
I	INTRODU	UCTION	1
	1.1 Backs	ground and motivation	1
II	LITERAT	URE REVIEWS	6
	2.1 Ferro	omagnetic materials and hysteresis loop	6
	2.2 Prop	perties of LTP-MnBi	10
	2.2.1	1 Crystal structure	10
	2.2.2	2 Magnetic property	14
		2.2.2.1 Coercivity (<i>H_c</i>)	14
		2.2.2.2 Energy product (<i>BH</i>) _{max}	16
		2.2.2.3 Curie temperature	19
	2.3 Syntł	hesis techniques for LTP-MnBi	19
	2.3.1	1 Chemical reaction method	21
	2.3.2	2 Arc-melting or induction melting method	22
	2.3.3	3 Melt spinning or rapid solidification	
	2.3.4	1 Sintering	
	2.4 Diffu	Jsion	29
	2.5 Stab	oility of magnetic materials	

CONTENTS (Continued)

			Page
	EX	PERIMENTEL METHOD	36
	3.1	LTP-MnBi synthesis	
		3.1.1 Ball milling and sieving	
		3.1.2 Sintering in vacuum	
		3.1.3 Preparation of cross-sectional sample for SEM/EDS	
	3.2	Materials characterizations	40
		3.2.1 X-ray diffraction (XRD)	40
		3.2.2 Scanning electron microscopy (SEM)	42
		3.2.3 Energy dispersive spectroscopy (EDS)	44
		3.2.4 Vibration Sample magnetometer (VSM)	46
		3.2.5 X-ray absorption spectroscopy (XAS)	48
	3.3	Experimental procedures	52
IV	RES	SULTS AND DISSCUSSION	58
	4.1	LTP-MnBi sintered at 275, 325 and 375 °C for 12 hours	59
		4.1.1 Phase identification	59
		4.1.2 Morphology and size distribution	62
		4.1.3 Magnetic properties	64
		4.1.4 Depth profile and diffusion in MnBi layers	68
	4.2	LTP-MnBi sintered at 325 °C for 12, 24 and 48 hours	75
		4.2.1 Phase identification	75
		4.2.2 Magnetic properties	77
		4.2.3 Diffusion in MnBi layers	80
	4.3	Long-term stability of LTP-MnBi	83
		4.3.1 Magnetic properties	84

CONTENTS (Continued)

Page

	4.3.2 Surface morphology of LTP-MnBi powder	85	
	4.3.3 Phase identification	87	
	4.3.4 Local structure of Mn atoms	89	
	4.4 Decomposition of MnBi at 150 °C	94	
	4.4.1 Surface morphology and chemical composition	94	
	4.4.2 Phase identification		
	4.4.3 Chemical composition		
	4.3.4 Magnetic properties		
v	CONCLUSION AND FUTURE RESEARCH	103	
	5.1 Conclusions		
	5.2 Future works		
RE	FERENCES		
CL	CURRICULUM VATAE		

LIST OF FIGURES

Figur	e	Page
2.1	A magnetic material with random domain orientation and aligned domain	
	orientation by magnetization	7
2.2	A hysteresis loop of ferromagnetic materials	8
2.3	Dependence of a rotation magnetic domain with an external magnetic	
	field	9
2.4	Development of magnetic materials for fabricating permanent magnets in	
	the last 100 years	10
2.5	Crystal structure of LTP-MnBi	11
2.6	Rietveld refinement of XRD pattern for annealed $Mn_{52}Bi_{48}$ ribbons	13
2.7	Temperature-dependent coercivity of anisotropic MnBi powders ground	
	for 3 hrs and 7 hrs The Insert shows M-H curves of MnBi powder with	
	a different grinding time at 300K	14
2.8	Demagnetization curves of (a) anisotropic ${\sf Mn}_{55}{\sf Bi}_{45}$ and (b) ${\sf Mn}_{60}{\sf Bi}_{40}$ bonded	1
	magnets under various tested temperatures	15
2.9	Temperature-dependent M-H loops of MnBi ingots annealed for 8 hrs	
	at 535K; the inset shows the M-H loops acquired at 650K	16
2.10	Temperature dependence of the theoretical (BH) _{max} compared with	
	the experimental (<i>BH</i>) _{max} of LTP-MnBi and Nd-Fe-B	18
2.11	Mn-Bi phase diagram	19
2.12	Summary of LTP- MnBi preparation with various techniques	27
2.13	Types of sintering	28
2.14	Various sintering mechanism	29
2.15	Illustration of Fick first law	30

Figure	
2.16 LTP content $\delta(t_a)$ of MnBi as a function of annealing time.	The diffusion
coefficients $D = 1 \times 10^{-12}$ (dotted) and 2×10^{-12} cm ² /s (solid).	The square is
the calculated results by endo peaks of the cycled DSC tra	ace. The insert
shows the VSM loops of MnBi powder ground from arc-me	lting (square),
the 300 °C/3 hr (circle) and 300 °C/30 hr (line)	
2.17 Magnetic Hysteresis loop of LTP-MnBi thin film as fabricate	d (Test 1) and
after 14-days exposure to air (Test 2)	
2.18 Magnetic Hysteresis loop of LTP-MnBi thin film before and	after
degradation (a) and XRD diffraction after growth and 4 mor	nths (b) 34
3.1 The graphical representation showing the procedures for p	reparing
the mixture of Mn and Bi powders before sintering	
3.2 (a) A schematic diagram and (b) photo of an in-house mad	e sintering
system	
3.3 Graphical representation for the resin embedded with MnE	ii and
sandwiched between microscope cover glasses	
3.4 Target surfacing system	
3.5 Argon ion beam slope cutting device (EM TIC 3X, Leica, Ge	rmany) at
the Thailand Science Park	
3.6 Schematic diagram showing X-ray diffraction from an atom	ic plane 41
3.7 X-ray diffractometers used in this work: (a) Bruker D2 phase	er,
(b) Bruker D8 ADVANCE, and (c) Rigaku Smart lab diffractom	neters 42
3.8 Principle of SEM operation	
3.9 Interaction of an electron beam with specimen	
3.10 Principle of EDS.	
3.11 MnBi powder spectrum of the EDS analysis	
3.12 (a) SEM/EDS (JEOL JSM-6010LV) and (b) FE-SEM/EDS (JSM-7	800F Prime) 46
3.13 VSM schematic.	

Figur	Figure		
3.14	VSM (Quantum Design Inc., VersaLab series) was used at Khon Kaen		
	University	47	
3.15	Fundamental processes of X-ray absorption, showing the excited state (a),		
	fluorescent X-ray emission (b), and Augur emission (c) at the relaxation to		
	ground state	50	
3.16	Schematic diagram of the synchrotron light source at SLRI	51	
3.17	A schematic of the beamline 5.2 at SLRI	51	
3.18	Flow-chart of the experimental procedure for the study of the magnetic		
	properties, crystal structure, morphology, and elemental composition of		
	the LTP-MnBi material sintered in vacuum at temperature range of		
	275-375 °C	53	
3.19	Flow-chart of the experimental procedure for the study of the formation		
	mechanism of the sintered LTP-MnBi material sintered in vacuum at		
	temperature range of 275-375 °C	54	
3.20	A standard Quantum Design powder sample holder	55	
3.21	Diagram of long-term stability of LTP-MnBi material at different aging time,		
	including MnBi characterization	56	
3.22	Diagram of a magnetic degradation with an evaluated heating time in		
	ambient oven, including MnBi characterizations	57	
4.1	XRD patterns of LTP-MnBi powder prepared at various annealing		
	temperature at 275 °C, 325 °C and 375 °C for small particle size of		
	(a) < 20 µm and (b) 20-53 µm	61	
4.2	SEM images of the MnBi samples sintered at 275 °C with particle sizes of		
	(a) < 20 μm and (b) 20-53 $\mu m.$ The inset in (a) is the Bi/Mn ratio obtained		
	from the EDS analysis of three specific locations	63	

Figur	re	Page
4.3	The M-H curves with demagnetizing field correction of the MnBi samples	
	sintered at 275, 325 and 375 °C for particle sizes of (a) < 20 μm and	
	(b) 20-53 μ m. The inset in (a) shows the demagnetization curves of	
	raw M (N = 0), corrected M (N = 0.4), corrected B (N = 0.4) of the small	
	MnBi sintered at 325 °C. The (BH) $_{max}$ is the dashed rectangle with	
	maximum area	65
4.4	M-H curves measured at sample temperature of 300K, 350K and 400K for	
	the fresh and 10-month-old MnBi samples sintered at 275 °C showing the	
	increase of coercivity with temperature	68
4.5	The cross-sectional SEM images of (a) as-received Mn powder particle	
	(b) Mn powder particles sintered at 275 °C (c) at 325 °C and (d) at 375 °C	69
4.6	(a) Zoom-in cross-sectional SEM image of the MnBi sintered at 325 °C.	
	Inset illustrates the side-view schematic which may yield to different	
	forming thickness between each side of the crack. (b) The Bi and Mn	
	concentration profiles along the yellow line of (a)	70
4.7	Histograms of the thickness of MnBi layers in the MnBi samples sintered	
	at 275 °C, 325 °C and 375 °C. Each bin of the histogram is 0.05 micron	72
4.8	Arrhenius plot of the diffusion coefficient as a function of inverse	
	temperature	74
4.9	XRD patterns of the MnBi samples with (a) small particle size (< 20 $\mu m)$	
	and (b) large MnBi particle sizes (MnBi 20-53 μm). The MnBi samples were	
	sintered at 325 °C for 12, 24, and 48 hrs	76
4.10	Room temperature M-H curves with demagnetization field correction of	
	(a) the small MnBi particle size and (b) large MnBi particle size samples	
	sintered at 325 °C for 12, 24, and 48 hrs	78
4.11	The energy product, $(BH)_{max}$, of the MnBi samples with particle sizes less	
	than 20 μm as a function of sintering time	79

Figure		Page
4.12	a) A cross-sectional MnBi powder at 325 °C for 48 hr was prepared by	
	ion beam slope cutting device and the zoom-in SEM images of	
	a cross-sectional MnBi powder in the (b) 325 °C_12hr, (c) 325 °C_24hr,	
	and (d) 325 °C _48hr at nearly the crack, respectively	81
4.13	Histogram of the thickness of MnBi layers in the (a) 325 $^{ m oC}$ _12hr,	
	(b) 325 °C_24hr, and (c) 325 °C _48hr. Each bin of the histogram is	
	0.05 μm	81
4.14	Comparison of calculating MnBi layer thickness in the 1^{st} order diffusion	
	equation and experimental MnBi layer thickness prepared at 325 °C for	
	12hr, 24hr, and 48hr, respectively	82
4.15	Room temperature M-H curves with demagnetization field correction of	
	the samples stored in a sealed tube up to 18 months	84
4.16	SEM images of (a) fresh and (b) 18-month-old MnBi powders. The particle	
	size distribution of MnBi powders shown in (c) and (d). The red squares in	
	(a) and (b) are the areas for EDS measurements to determine the	
	elemental composition, as shown in (e)	86
4.17	XRD patterns of the fresh and 18-month-old LTP-MnBi showing at	
	different 2 $ heta$ ranges (a) 20-60 deg. (b) 27.79 – 30 deg. and (c) 32 – 44 deg	88
4.18	(a) Theoretical K-edge XANES spectra of MnO (cal.) and MnBi (cal.),	
	(b) the comparison of theoretical XANES spectrum for MnBi+MnO and	
	experimental XANES spectrum of fresh MnBi, respectively, (c) Mn K-edge	
	XANES spectra of LTP-MnBi and standard samples, (d) Fourier transform	
	of EXAFS spectra of previous samples (fresh MnBi, old MnBi, and standard	
	samples)	91
4.19	Discussion: a relationship of the maximum energy product and diffusion	
	length with a difference period	94

Figure		Page
4.20	SEM images of LTP-MnBi powder heated at 150 $^{\circ}\mathrm{C}$ at different duration;	
	(a) 0, (b) 0.5, (c) 3, (d) 6, (e) 12, (f) 24, and (g) 48hr. Inset shows their	
	corresponding colors of all samples, and the specific points of EDS	
	analysis (A, B, C, and D) in (h)	96
4.21	(a) X-ray diffraction patterns of LTP-MnBi powder heated at 150 $^{\circ}\mathrm{C}$	
	for different duration. (b) The zoom-in patterns of selected conditions	
	revealing several forms of impurities	97
4.22	The Mn K-edge XANES spectra of MnBi powder heated at 150 $^{\circ}\mathrm{C}$ for	
	different duration. Dashed lines represent MnO, Mn_2O_3 and calculated	
	MnBi spectra	99
4.23	(a) Room temperature M-H curves with demagnetization field corrector	
	of MnBi powder heated at 150 $^{\rm o}{\rm C}$ for different duration. (b) Extracted	
	saturation magnetization (M_s), coercivity (H_{ci}) and the calculated energy	
	products ((BH) _{max})	100

LIST OF TABLES

Tabl	e	Page
2.1	Summary of Rietveld analysis on Mn52Bi48 alloy prepared in	
	melted-spinning with different processing step	12
2.2	Refined structural parameters and magnetic moment of MnBi with various	
	annealing temperatures from 10 to 700K	13
2.3	The coercivity of MnBi ingot at different temperatures	16
2.4	Summaries magnetic properties of MnBi (M), NdFe (N) and MnBi/NdFeB (H)	
	with 20 wt% bonded magnet at different temperatures	18
2.5	Variables affecting sinter-ability and microstructure	28
2.6	The saturated magnetization (emu/g at 1 T) after heat treatments for the	
	MnBi samples with different particle sizes. It is noted that, before the heat	
	treatment, the saturation magnetization is about 63 emu/g	35
4.1	The weight percentage of MnBi content and magnetic behaviors of all	
	sintered MnBi sample	66
4.2	The mean, standard deviation, diffusion length, and diffusion coefficient of	
	MnBi prepared by different sintering temperatures	74
4.3	The mean, standard deviation, and the maximum MnBi layer thickness	
	prepared at different sintering time	82
4.4	Magnetic properties (H_{c} , M_{s} , (BH) _{max}) of MnBi sample at different ages	
	or storing periods	85
	Tabl 2.1 2.2 2.3 2.4 2.5 2.6 4.1 4.2 4.3 4.4	 Table 2.1 Summary of Rietveld analysis on Mn52Bi48 alloy prepared in melted-spinning with different processing step