บทคัดย่อภาษาไทย

เนื่องจากในระหว่างการเกิดปฏิกิริยาปลดปล่อยไฮโดรเจนของวัสดุคอมโพสิท LiNH2-LiH จะมีแก๊ส NH3 เกิดขึ้น ซึ่งนอกจากจะทำให้ปริมาณไฮโดรเจนที่จะถูกปล่อยออกมาลดลงแล้ว แก๊สนี้ยังเป็นพิษ ต่อตัวเร่งปฏิกิริยาที่ติดอยู่บนเมมเบรนของเซลล์เชื้อเพลิงอีกด้วย ดังนั้นแนวความคิดที่จะประกบ ้ผิวหน้าของวัสดุคอมโพสิท LiNH₂-LiH แบบอัดเม็ดด้วยชั้นของ LiH (10-30 wt. %) เพื่อทำปฏิกิริยา ้กับ NH3 ที่ปล่อยออกมา ให้เกิดเพียงแก๊ส H2 จึงเกิดขึ้น ซึ่งจากผลการศึกษา พบว่า ในการปลดปล่อย ไฮโดรเจนในรอบแรก ตัวอย่าง LiNH2-LiH แบบอัดเม็ดที่ประกบด้วยชั้นของ LiH ไม่มีสัญญาณของ ้แก๊ส NH₃ ถูกปล่อยออกมา และให้ความจุไ<mark>ฮโด</mark>รเจนอยู่ที่ 3.5-4.0 wt. % แต่จากการทำปฏิกิริยา ้แลกเปลี่ยนไฮโดรเจนแบบเป็นวัฏจักร (รอบที่ <mark>2</mark>-6) พบว่า ตัวอย่าง LiNH₂-LiH แบบอัดเม็ดที่ประกบ ้ด้วยชั้นของ LiH ที่ปริมาณต่ำกว่า (10 wt. <mark>%) มีกา</mark>รปล่อย NH₃ ออกมาด้วยในระหว่างการปลดปล่อย ไฮโดรเจน ในขณะที่ตัวอย่างที่มีการประก[ู]บด้วยชั้นของ LiH ในปริมาณ 30 wt. ยังคงปล่อยออกมา ีเฉพาะแก๊ส H₂ โดยไม่มีแก๊ส NH₃ แล<mark>ะคว</mark>ามจุไฮโ<mark>ดรเ</mark>จนของทั้งสองตัวอย่างลดลงมาอยู่ที่ 2.3-2.6 wt. % ซึ่งสาเหตุของการลดลงของปร<mark>ิมาณ</mark>ไฮโดรเจนที่ปล่อยออกมานี้ ก็เนื่องมาจากการก่อตัวขึ้นของ ้เฟสที่ไม่สามารถเกิดปฏิกิริยาผัน<mark>กลับ</mark>ได้ เช่น Li₂O, LiTi₂O₄, และ Li₅TiN₃ และสำหรับตัวอย่าง LNL-30 %LiH พบว่า นอกจากจะมี<mark>ปริมา</mark>ณของ LiH ที่เพียงพอในการทำปฏิกิริยากับ NH₃ แล้ว ตัวอย่างนี้ ้ยังมีเฟสใหม่ที่เกิดขึ้น ได้แก่ LiH_{1-x}F_x และ Li₂NH_{1-v}F_v ที่ส่งผล<mark>ด</mark>ีต่อคุณสมบัติทางจลนพลศาสตร์ของ ปฏิกิริยาปลดปล่อยและ<mark>กักเ</mark>ก็บไ<mark>ฮโดรเจนและการผันกลับได้</mark>ขอ<mark>งวัส</mark>ดุคอมโพสิทของ LiNH₂-LiH และ เนื่องจากปริมาณไฮโดรเจนที่ได้จากตัวอย่างวัสดุคอมโพสิท LiNH₂-LiH แบบอัดเม็ดที่ประกบด้วยชั้น LiH มีปริมาณที่ค่อนข้างน้<mark>อย ดังนั้นถังกักเก็บที่บรรจุวัสดุไฮไดร์ชนิ</mark>ด MgH₂ ที่มีระบบหมุนเวียนความ ้ร้อนภายใน (โดยบรรจุวัสดุตัวอย่าง~46 ก<mark>รัม ในถังกักเก็บที่ม</mark>ีปริมาตร 96 mL) จึงถูกนำมาใช้ในการ ทดสอบกับเซลล์เชื้อเพลิง ซึ่งเซลล์เชื้อเพลิงที่ต่อกับถังกักเก็บไฮโดรเจนที่บรรจุวัสดุไฮไดร์ชนิด MqH₂ สามารถให้กำลังไฟฟ้ารวม 17 Wh ด้วยค่ากระแสที่คงที่ 0.6 A เป็นระยะเวลา 2 ชั่วโมง 30 นาที

บทคัดย่อภาษาอังกฤษ

During decomposition of LiNH₂-LiH composite, NH₃ emission not only leads to deficient hydrogen content release but also poisons fuel cell catalysts. The idea of sandwiching $LiNH_2$ -LiH pellet with LiH layers (10-30 wt. %) for reacting with NH₃ to produce H₂ is of interest. The LiH-sandwiched LiNH₂-LiH pellets show no sign of NH₃ release with hydrogen capacitates 3.5-4.0 wt. % H₂ during the first cycle. Upon cycling (the 2nd-6th cycles), decomposition of the LiH-sandwiched LiNH₂-LiH pellet with low amount of LiH layer (10 wt. %) reveals NH₃ release, while that with 30 wt. % LiH layers still liberates hydrogen without NH₃ with the reduced capacities of 2.3-2.6 wt. % H₂. Deficient hydrogen content release is described by the formations of irreversible phases of Li_2O , LiTi₂O₄, and Li₅TiN₃. Effective dehydrogenation of 30 wt. % LiH-sandwiched LiNH₂-LiH pellet is due to not only sufficient LiH content to react with NH₃ but also the formation of new active phases of $LiH_{1-x}F_x$ and $Li_2NH_{1-y}F_y$, likely benefiting de/rehydrogenation kinetics and reversibility of LiNH₂-LiH composite. Since reversible hydrogen storage capacity of LiH-sandwiched LiNH₂-LiH pellets is rather low, MgH₂-based hydrogen storage tank (~46 g in 96 mL packing volume) with heat exchanger is selected to combine with fuel cells. Fuel cell stack connected with MgH₂-based tank reveals total electrical power of 17 Wh with constant current of 0.6 A for 2 h 30 min.

