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Abstract

In this paper, a path discovery scheme which supports QoS routing in mobile ad hoc networks (MANETS) in the
presence of imprecise information is investigated. The aim is to increase the probability of success in finding feasible
paths and reduce average path cost of a previously proposed ticket based probing (TBP) path discovery scheme. The
proposed scheme integrates the original TBP scheme with a reinforcement learning method called the on-policy first-
visit Monte Carlo (ONMC) method. We investigate the performance of the ONMC method in the presence of imprecise
information. Our numerical study shows that, in respect to a flooding based algorithm, message overhead reduction can
be achieved with marginal difference in the path search ability and additional computational and storage requirements.
When the average message overhead of the ONMC method is reduced to the same order of magnitude of the original
TBP, the ONMC method gains an improvement of 28% in success ratio and 7% reduction in the average path cost over
the original TBP.
© 2004 Elsevier B.V. All rights reserved.
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begun to receive attention. There are two keys to
support QoS routing, namely, feasible route search
and resource reservation [2-4,12,15]. Feasible
route search can be done by distributed routing or
source routing. In distributed routing, other nodes
apart from the source node are involved in the

1. Introduction

A mobile ad hoc network (MANET) consists of
a set of mobile nodes (hosts) which are equipped
with transmitters and receivers that allow them to
communicate without the need of wire-based

infrastructures.

Most of the existing routing protocols in MA-
NETs have been focused on only best-effort data
traffic. Routing schemes which can support con-
nections with QoS requirements have only recently
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feasible path(s) search and computation by iden-
tifying their neighboring nodes as the next hop
router. On the other hand, in source routing, a
feasible path(s) is computed solely at the source
node. An alternative method is to perform flood-
ing but have the source node calculate some
measure of control over the amount of flooding.
This is a mixed feature of distributed and source
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routing which is the underlying concept of the
Ticket-Based Probing (TBP) scheme [2,3] where
the amount of flooding here can be controlled by
issuing a limited number of logical tickets at the
source node.

The work reported in this paper builds on the
earlier work of [2,3] in that it integrates the rein-
forcement learning (RL) framework into the TBP
scheme. Despite several attractive features—as will
be presented later on, the TBP scheme has some
outstanding challenges. One of such issues relates
to the restricted flooding method: the computation
of a suitable number of logical tickets issued at the
source node. More specifically, the original TBP
scheme relies on an heuristic rule of ticket com-
putation. We enhance the original TBP scheme by
using a RL technique. The RL-based TBP scheme
learns a good rule for issuing tickets by interacting
directly with the environment or by simulation.
Note that there are other works which apply the
RL framework to MANET routing: [16] proposed
a multicast routing approach based on Q-learning
concept, [13] suggested a possible application of
their multiagent routing scheme in MANETsS.
However, these works do not deal explicitly with
QoS requirements or message overhead. More re-
cently in [8] a power-aware routing algorithm is
presented. In [8] the authors extend their work on
cognitive packet networks (CPN) routing protocol
which provides intelligent QoS driven routing for
peer-to-peer connections (see also [7,9]). The CPN
protocol uses smart packets to discover and
maintain lists of neighbor nodes, and to dynami-
cally set up source-to-destination routes. Smart
packets select routes using a RL algorithm rather
than flooding. In this paper, we gather further
experimental evidence on the advantages and
limitations of RL techniques when employed to
solve the underlying problem of QoS routing in
MANETS using flooding based strategies [17]. The
underlying aim of the scheme presented in this
paper is to maximize the probability of success in
finding feasible routes in dynamic topology net-
works in the presence of inaccurate information.

The paper is organized as follows. In the next
section, we present an introduction to the partially
observable Markov decision process (POMDP)
model in which we state the QoS routing problem

in MANETSs. In Section 3, we introduce the RL
technique used in this paper, namely the on-policy
first-visit Monte Carlo method for POMDPs.
Section 4 describes the TBP scheme to support
QoS routing in MANETs. In this section, the
original TBP scheme and the enhanced TBP
scheme are presented. Section 5 presents results
from the numerical study and the final section
provides the conclusion.

2. A POMDP model for MANETS

Partial observability can occur when the
topology of the MANET is highly dynamic. In
such network, each mobile node acts as a router
since there is no fixed infrastructure for routing
support. Every mobile node is free to move and
can enter or leave the network at any instant. In
order to maintain up-to-date routing information
at other mobile nodes, message exchanges between
mobile nodes are required. These information ex-
changes are done periodically or when a topology
change is detected. But even so, imprecise infor-
mation can still arise due to delayed-arrival or lost
update messages and restricted transmission of
updating messages.

Furthermore, within MANETSs which support
quality-of-service (QoS) routing, residual resource
information in the network is critical. In particu-
lar, each mobile node maintains a state of the
network, i.e., the delay and bandwidth informa-
tion to all other destinations in the network. Note
that such information depends on the route and
consequently, on the current topology of the net-
work. The information is propagated through the
MANET according to some updating protocol.
Since an accurate view of such information is dif-
ficult to obtain, each mobile node is faced with
only an “observation” of its environment which is
most likely incomplete and inaccurate. Based on
its current network observation, each mobile node
acts as an agent which must make certain deci-
sions, e.g., how many control messages are needed
to find a feasible path for some new connection
arrival, when and how to perform path mainte-
nance if an existing path is about to break, etc.
Assuming that each node moves independently
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from one another and its future movement (posi-
tion, direction, and velocity) depends only on its
current movement, the future topology of the
network can depend only on the current topology
of the network and is independent of its past. ' If it
is also assumed that the future residual resource
information (e.g., delay and bandwidth at each
link between two connecting mobile nodes) de-
pends only on the current residual resource infor-
mation and not its past, then it is possible to
(approximately) model the state transitions as a
Markov process. In addition, the actual state of
the network is concealed from each agent due to
mobility. We can therefore (approximately) model
the decision-making problem in MANETS as a
partially observable Markov decision process
(POMDP), whose goal is to optimize some per-
formance criterion in finite horizon. The finite
horizon problem is considered here due to the
episodic nature of message exchanges between the
mobile nodes—an episode starts immediately after
a message exchange and terminates at the sub-
sequent message exchange.

Since our motivation to study POMDP RL
algorithms arises from the partial observable
information of network resources due to mobility
in MANETs, the algorithms we seek should be
distributed. Furthermore, such POMDP RL
algorithms should also exhibit low computational
complexity and demand low storage to reserve
onboard processing power on the mobile node.
Naturally, memoryless policies (i.e., policies based
on direct observations) come to light as they tend
to be neither computation nor hardware intensive.
These policies, however, have limited success when
applied to POMDPs. Fortunately, under certain
conditions, optimal memoryless policies can still
be guaranteed for some POMDP RL algorithms as
discussed in the following section.

! There are several mobility models in MANETS in which
divert from this assumption. For example, mobile nodes may
move depending on certain mobile nodes (e.g., in a battlefield or
on the road), or their movements may depend on their past
movement (e.g., in a search and rescue mission, their future and
current movements depend on the path from their starting
point), etc. In this paper, a conference room mobility model is
adopted [2].

3. On-policy first visit Monte Carlo method for
POMDPs

Results in [11] show that for a general class of
non-Markovian decision processes (NMDP), an
optimal memoryless policy can still be guaranteed
if: (i) the first-visit Monte Carlo policy evaluation
and (ii) the undiscounted reward criterion > are
used. Based on the findings in [11], we use an on-
policy first-visit Monte Carlo (ONMC) method
which is originally employed for completely ob-
servable Markov decision processes (MDPs) [14] to
find an observation-based policy in partially o0b-
servable MDPs,

Consider a POMDP with finite sets of states,
actions and observations denoted by X, 4, and 0,
respectively. We consider episodic tasks where
there is a start state distribution and one or more
terminating states. Assume that the terminating
state(s) can be reached eventually regardless of
whatever actions are taken. Let oy_; correspond to
the terminating state and the reward g(oy_;,a) is
zero for all actions.

Suppose that an episode, {0y, ay, g(00, @), - -,
On-1,ay-1,8(0N-1,ay-1)}, where N is the duration
of the episode, is generated under some stationary
deterministic policy # : @ — A. We consider only
the episodes that the observation-action pair (0, a)
occurs, where o € ¢ and a € 4.

Let ¢ be the tth episode in which (o, a) occurs.
Let N, be the number of time steps in episode ¢, and
7,(0,a) where 0< 7,(0,a) <N, — 1 be the time step
when the first-visit of (0,a) occurs. Let O™ (o0,4a)
denote the expected reward when starting from an
observation-action pair (o, a) and a fixed policy =,
is followed thereafter.

Let the initial policy be my and initialize
Q™ (o, a) at the beginning of the episode. For each
episode ¢, generate the actions according to x,. At

2 For any given sequence of horizon T,{og,ag,01,...,
or_1,ar_,}, the total undiscounted return of the sequence is
given by 377 o*g(or, &) where the discount factor o is 1,
g(ok, az) is the reward associated with taking action a; when the
current observation is o;. The discounted reward is when
o € [0,1). Thus, for the wundiscounted return, all rewards
received at the beginning of the sequence are equally significant
as the ones received later in the sequence.
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the end of episode ¢, the estimated observation-
action value function of (o, a) is updated according
to

Qm(o)a) = thl (O’a)

1 Ni—1
+;( > g(ok-,aa—Q"”(o,a))-

k=1(0,a)

Note that the summation term is the accumulative
reward following only the first occurrence of (o, a)
in episode ¢ (thus, the terminology of first-visit).
Then the greedy policy is found by

a* = argmax{Q" (0, a)} (1)

and the e-soft on-policy, € € [0, 1], is implemented
as follows:

m41(0)
e with probability 1 —e+¢/|4],
| aed—{a*} withprobability ¢/|4|,

2

where |4| is the size of the action space. The
algorithm converges to a near optimal policy over
e-soft policies. The convergence results are derived
in [17].

4. TBP scheme to support QoS routing in MANETSs

In this section, the ONMC method for POM-
DPs is integrated into a path discovery scheme
called the Ticket-Based Probing (TBP) scheme.
The scheme is a multipath distributed routing
algorithm for supporting end-to-end delay or
bandwidth requirements proposed to tolerate high
degrees of imprecise state information [2,3]. The
design objective of this algorithm is to maximise
the probability of success in finding a feasible
route in dynamic networks in the presence of
inaccurate information. The basic idea of the
algorithm is outlined as follows. When a source
node s needs to find a route that satisfies a delay
(or bandwidth) requirement to a destination node
d, a number of probes (search messages) are sent
from s towards d. The total number of probes used

in the path discovery is controlled by the initial
number of logical tickets, My. The parameter M, is
computed at the source node s depending on the
contention level of network resources and the
inaccuracy of available information. When a
neighboring node j receives a probe from node s, it
makes copies of that probe and recomputes the
number of tickets to be carried on the copied
probes. The computation of the tickets at node j is
based on the available end-to-end information
(i.e., from node j to d) and cannot exceed the
number of tickets in the probe that node j has
received. The end-to-end information, which is
obtained through probing on an on-demand basis,
is used to guide the distribution of the tickets and
the probes along the directions of most probable
feasible paths towards the destination d. Each
probe carries at least one ticket. Since no addi-
tional tickets are issued along the intermediate
nodes and each probe searches one path, the
number of paths found are also bounded by the
number of tickets M, issued at the source node.
Consequently, the amount of probes that enter the
network is simply controlled by varying My. The
TBP scheme enjoys the following advantages: high
tolerance to a high degree of imprecise state
information; controlled amount of routing over-
head (as opposed to the flooding-based path dis-
covery algorithm); avoidance of any centralized
path computation since it is a distributed routing
process; path optimality consideration since it
takes into account both the cost and the QoS of
the path; and the support of multiple path dis-
covery which helps reduce the level of QoS dis-
ruption.

In this paper, we study a delay-constrained least-
cost routing problem. For this constrained routing
problem, there are two tasks. Firstly, we need to
determine the suitable number of tickets (Mp). In
[2,3], My = Yy + Gy where Y, and G, are the num-
ber of yellow and green tickets, respectively. These
two types of tickets have different purposes. The
yellow tickets are for maximizing the chances of
finding feasible paths while the green tickets are
for maximizing the chances low cost paths.

Secondly, we need to distribute the tickets
among the probes in such a way that it maximizes
the probability of finding a feasible low-cost path.
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In the TBP scheme, the yellow tickets are distrib-
uted along low-delay paths thus resulting in a high
success probability of finding a feasible path. The
strategy for distributing the green tickets is to
favor low-cost paths, therefore, obtaining paths
with smaller costs which may or may not satisfy
the end-to-end requirement. Details of the ticket
distribution can be found in [2,3].

QoS state metrics. A node i is assumed to keep
the up-to-date local state about all outgoing links.
The state information of link (i, j) could include:
(1) delay (i,j) the channel delay of the link,
including the radio propagation delay, the queue-
ing delay, and background processing time [3]; (2)
bandwidth (i, /), the residual (unused) bandwidth
of the link [3], (3) the cost (i,j) which can be for
example the link availability as a function of
residual battery lifetime [1,6,8], forward packet
loss ratio [10] and minimum required energy for
successful reception [5].

4.1. Initial ticket calculation: original TBP scheme

Consider a connection request whose source,
destination nodes and mean end-to-end delay
requirement are s, d and Dreg, respectively. Let D;;
be the mean link delay between node i and j. The
mean end-to-end delay of the lowest delay route
r*,D,(d), is found by

Dn(d) = Z Dy;. (3)

The parameter AD,(d) is the variation of the mean
end-to-end delay which is computed from

AD}(d) = pAD;*(d) + (1 - p)BID,™ (d) — D;(d)].
4

The parameter p is the forgetting factor which
determines how fast AD°!(d) is forgotten, (1 — p)
determines how fast ADI™(d) converges to
|D™¥(d) — D?M(d)|, and B is a parameter chosen
to ensure a large value of AD?*¥(d). Note that by
increasing f, we increase AD™¥(d) and conse-
quently, the certainty that the actual delay falls
in the imprecise range. The parameter Y, is
determined according to these heuristic rules
[2,3]:

(1 if Dreq > Dy(d) + AD,(d),

Dy(d)+ AD,(d) — Dreg
[ 2x AD,(d) X BY]

if D,(d) — AD,(d) < Dreq <D, (d) + A, (d),
\0 if Dreq < D,(d) — AD,(d),

Yo=1

()

where 0y is a system parameter specifying the
maximum allowable number of yellow tickets.

The other parameter, Gy follows a slightly dif-
ferent set of rules:

(1 if Dreq > @ x (D,(d) + AD,(d)),

[© x (Dy(d) + AD(d)) — Dreq " ]
0 x (D,(d) + AD,(t)) — D,(d) ~ ¢

if Ds(d) <Dreq < O x (Ds(d) +ADJ(d)),

[ Dreq — D,(d) + AD,(d)
AD,(d)

if Dy(d) — ADs(d) < Dreq < D,(d),

Gy = 4

]XQG

0 if Dreq < D,(d) — AD(d),

\

(6)

where 8¢ specifies the maximum allowable number
of green tickets, ® > 1 specifies the threshold be-
yond Dreq which we allow to search for large-
delay paths.

The intuitive reasoning behind the above rules
is simple. If Dreq is very large, then a single yellow
ticket suffices. If Dreqg is within the estimated
range, then more yellow tickets are assigned for
more stringent Dreq. In the case where Dreq is less
than the best estimated end-to-end delay, no
tickets are issued since such a tight requirement is
unlikely to be satisfied. The connection request is
rejected or some negotiation for a less stringent
requirement is made. The green tickets undergo a
similar strategy. However, the system parameter,
O, allows a certain degree of lenience to search for
large-delay but least-cost paths. As Dreq de-
creases, G, increases. But as Dreq approaches
D,(d) — AD(d), it becomes more difficult to find a
feasible path so finding a least-cost path is less
significant than finding a feasible path. Therefore,
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G, is decreased in order to reduce the routing
overhead in the network while Y, is increased.
When Dreq becomes too difficult to satisfy, no
green tickets are issued. The selection of the system
parameters (6y, 6; and @) is a practical design
issue. These parameters can depend on level of
overhead control imposed on the network, or the
source—destination distance, etc. [3]. Note also
that, theoretically, the TBP scheme becomes a
flooding scheme when 8y or 0 is infinity.

4.2. Initial ticket calculation: TBP scheme based on
the ONMC method

RL methods (such as the ONMC method) can
be applied to the actual system or simulator to
obtain a good ticket issuing policy which balances
the trade-off in the number of issued tickets and
the probability of discovering feasible paths. More
specifically, the initial number of tickets, Mo, in the
TBP path discovery scheme is determined by the
ONMC method. So instead of calculating M, from
an heuristic rule like in (5) and (6), M,, is selected
from some finite set in a sequential decision-mak-
ing process in the presence of state uncertainty
with the objective of maximizing some perfor-
mance criterion. The role of the agent is played by
each mobile node in the MANET. The network
state uncertainty (partial observability) is due to
the mobility of the nodes in the network.

Consider a .4"-node MANET. Each mobile
node maintains end-to-end delay information to
all the destination nodes in the network. For each
source node s, a policy is determined separately for
each destination node d in the network. Hence, for
each source—destination node pair (s,d), the ob-
servation set is defined as

05:1 = {[qD(m)anD(l)] 1 <m <n, 1 < lSnA},

where n(n,) is the number of discrete end-to-end
delay (end-to-end delay variation) intervals and
go(m) (gap(0)) is the mth (/th) interval on [0, c0).
The variable gap(/) is included to reduce the
uncertainty of the actual end-to-end delay.
Depending on o; € 0y at time k, node s takes
anaction a; € 4 = {0,..., Mp.x} by selecting some
M, € A tickets, where Mg, is the maximum
allowable number of tickets. To maximize the

probability of discovering a feasible path, note
that high-cost (e.g. longer hops) paths can be tol-
erated as long as a feasible path can be discovered.
We omit the green tickets (Gy = 0) and consider
only the yellow tickets so that M, = 0y in order
to put more emphasis on finding feasible paths
rather than low-cost paths. If the action taken is
such that a, = My > 0, the tickets are distributed
in the manner as the original TBP scheme. If at
least one feasible path is found once the path
discovery is completed, a reward g(o;,a;) is gen-
erated. Otherwise, the action is penalized. More
specifically, the reward scheme is defined as

if a; > 0 and at least

one feasible path is found,

—(¢; —loga;) if a, > 0 and no feasible
path is found,

0 if aq, =0,

Cj—IOEak

glo, a) =

™

where {; € #" is the immediate reward parameter
for service type-j. The logic of the above reward
scheme is straightforward: the more tickets issued
at the source node, the more likely a feasible
path(s) can be found but with a trade-off of
introducing more message overhead into the net-
work. Therefore, the obtained reward is less for
large values of @;. On the other hand, issuing
tickets economically reduces the chances of finding
a feasible path(s). Therefore, we penalize the
events if no feasible paths are found when a; > 0.
If a, =0, the connection request is rejected so
there is no message overhead nor reward generated
from such action.

In the event that multiple feasible paths are
discovered, the destination node d selects the least-
cost path. It then returns an acknowledge message
which includes the new end-to-end delay, D (d),
to node s by backtracking the selected path. Upon
receiving the acknowledge message, node s updates
its global network information with the new en-
tries, i.e., D™¥(d) and AD?*¥(d), the latter having
been computed from (4). Note that all other en-
tries to other destination nodes remain the same. If
no feasible route is found, no acknowledgment is
returned and the global information at node s re-
mains unchanged. To maximize the probability of
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discovering a feasible path, note that high-cost
paths (e.g. paths that require high transmission
energy and/or paths that have low residual battery
left) can be tolerated as long as a feasible path can
be discovered.

The path discovery process is repeated for every
connection request at node s until an exchange of
distance vectors occurs at node s. Such exchange
occurs periodically or whenever a topology change
is detected, causing an update to the entries of the
global information at node s—independent of the
previous actions taken (i.e., the number of My se-
lected). For w € @ = {0, 1,...,%"} where & is the
number of delay-constrained service types in the
network, w = j for j > 0 represents a connection
request placed at node s to node d with mean end-
to-end delay requirement Dreg(j), and w = 0 sig-
nifies the end of an episode. Therefore, using the
on-policy first-visit Monte Carlo method in this
scenario, we want to determine a near-optimal
observation-based deterministic policy 7 : Oy X
Q- A

We consider episodes that (w,a) occur where
we Oy x Q. Let 7,(w,a) be the first occurrence
time of (w,a) in episode ¢ where 0< 1,(w,a)<
N, —1 and N, is the duration of episode ¢. Note
that at k=N, — 1, wy_ =0, and g(wy,—1,a) is
zero for all actions. The implementation of the on-
policy first-visit Monte Carlo method is presented
in Appendix A.

5. Numerical results

The performance of the modified TBP schemes
based on the ONMC method are evaluated on
MANETs through simulations. To assess their
performance, the following four metrics are con-
sidered:

Accumulated reward
Y, Accumulated reward in episode ¢
Total number of episodes

7

Success ratio
Total number of accepted connections
" Total number of connection requests ’

Average number of search messages
Total number of search messages sent
Total number or connection requests ’

Average path cost
_ Total cost of all established connections
" Total number of established connections’

Note that one search message is counted each time
a probe is sent over a link. Therefore, a probe
which has traversed / hops in the network has
created / search messages. For the results pre-
sented next we assume the cost of each link to be
uniformly distributed in [0, 1].

We consider a MANET of 36 nodes placed in a
15x 15 square meter area as illustrated in Fig. 1.
The topology of the MANET is randomly gener-
ated by a conference room mobility model [2]. In
particular, each mobile node stays in a current
location for a period of time which is called pause
time. After this period is over, each mobile node
moves to a new location randomly selected within
the area and moves towards it at some constant
velocity. The velocity is uniformly chosen between
0.3 and 0.7 m/s. The time it takes to move to the
new location is called moving time. Each node has
a circular transmission range with a radius of 3 m.
A link is formed between any two mobile nodes
located within this transmission range.

The topology of the network at any given time
depends on the stability of each link. A straight-
forward rule is used here: any link which has been
formed longer than 5 s is declared a stable link,
otherwise it is a transient link where it will not be
included in the path search. Connection requests
are generated at a source node at rate 0.2 con-
nections per second. Each link connecting nodes i
and j has two types of link delays associated to it,
namely, the actual (DY) and announced mean link
delay (l~),-j). The latter type is advertised though
the network and used to calculate the mean end-
to-end delay D;(d), for all nodes j and 4 in the
MANET. Each actual mean link delay is uni-
formly distributed in [0,50] ms. Each announced
mean link delay is subjected to imprecision so that
it is uniformly distributed in the range
Dy; € [Dy — Ay, Dy + Ay, Ay = &ipDyy and &y, is
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4 -
4 2 0 2 4 6 8 10 12 14 16

Fig. 1. Test network model of 36 nodes in a 15x15 square
meter conference room. Each node has a circular transmission
range with a radius of 3 m indicated by the dotted circle around
it. The above figure shows the initial coordinates of each node;
the lower figure depicts the coordinates after starting simula-
tion.

the imprecision rate. 3 The parameters p and f in
(4) are 0.95 and 1, respectively so that AD?*¥(d) =

3 The imprecision rate specifies the largest percentage of
deviation allowed lletween the actual and advertised link delay,
Cimp = max IDij - Dijl/Dij'

0.95AD%(d) + 0.05|D™v(d) — D°¥(d)|. The maxi-
mum hop count allowed in a path is 10.

Simulations are run for three algorithms,
namely, the original Ticket-Based Probing scheme
(TBP), the TBP scheme based on on-policy first-
visit Monte Carlo method (ONMC), and a flood-
ing-based TBP scheme (FLO). The FLO scheme
issues M. tickets for all types of delay-con-
strained services. All these algorithms omit the
green tickets (Gy = 0) and consider only the yellow
tickets so that M., = 0y = 100 tickets, to put
more emphasis on finding feasible paths rather
than low-cost paths. It should be noted that for all
the algorithms, the connection request is immedi-
ately rejected if the mean end-to-end delay
requirement exceeds the best possible end-to-end
delay available. Note also that all algorithms ex-
change distance vectors periodically with the same
interval, ie., every 30 s. Therefore, the same
amount of message overhead is generated from the
distance vectors exchange in each algorithm, so
there is no need to take measurement of this
overhead. For this reason, the only measurement
of overhead is the number of search messages sent
occurred from the feasible path search.

The FLO scheme implemented here constantly
issues M., tickets for all types of delay-con-
strained services. For the remaining algorithms,
the action set (when the connection request is not
rejected) is given by

M, € 4 = {1,10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

Note that this action set has a coarse granularity.
Better results would be expected if a finer granu-
larity is obtained considering the structural and
the dynamic characteristics of the underlying net-
work.

The mean end-to-end delay and delay variation
(in ms) are quantized into these intervals,

gp(m) € {[0,10),[10,20), ..., [240,250), [250,00)},
m=1,...,26,

qAD(l) € {[0’ 10)» [101 Oo)}’

where gp(m) is the mth quantized interval of the
mean end-to-end delay between nodes s and d,
and gap(l) is the I/th quantized interval of the

1=1,2,
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mean end-to-end delay variation between the two
nodes.

The ONMC schemes is trained for 4x 10° con-
nection requests under a 30-s distance vector up-
date interval. Once completed, its performance is
evaluated and compared with the TBP and FLO
schemes—all schemes are evaluated using a simu-
lation run of 1x10° connection requests.

5.1. Accumulated reward per episode

Fig. 2 compares the accumulated reward per
episode of all algorithms as a function of the mean
end-to-end delay requirement at 0.5 imprecision
rate. The pause time is 60 s and the update interval
is 30 s. Note that as the mean end-to-end delay
requirement increases, the easier it is to satisfy and
thus increased accumulated reward per episode is
observed for all algorithms. The TBP scheme
generates the least reward. At mean end-to-end
delay requirements 120-180 ms, the FLO and
ONMC schemes are comparable—indicating that
for such stringent mean end-to-end delay require-
ments, a large number of tickets is preferred. In
[17], it is observed that under 0.5 imprecision rate,
the accumulated rewards per episode generally
lower than those under 0.1 imprecision rate for all
algorithms because it is more difficult to discover
feasible paths when the imprecision rate increases.
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Fig. 2. Accumulated reward per episode with 0.5 imprecision
rate.

07 . T . .
—« TBP

-©- FLO

0.65H

o6

Success ratio

0.35F

03 N L " " L
120 140 160 180 200 220 240

Mean end-to-end delay requirement (msec)

Fig. 3. Success ratio with 0.5 imprecision rate.

5.2. Success ratio

Fig. 3 shows the success ratio of the algorithms
obtained from the same experiment in Section 5.1.
As expected, the FLO scheme produces the best
success ratio since it requires the maximum num-
ber of tickets for the path discovery process.
Therefore, the probability of finding at least one
feasible path is maximized in the FLO scheme. The
next best success ratio corresponds to that of the
ONMC scheme, and finally the TBP scheme. In
[17], it is observed that the success ratio at 0.1
imprecision rate is higher than those observed in
the 0.5 imprecision rate for all algorithms. Note
also that the success ratio increases as the mean
end-to-end delay requirement becomes less strin-
gent since feasible paths become easier to find.

5.3. Average path cost

Fig. 4 compares the average path cost of the
algorithms from the same experiment in Section
5.1. The figure shows that the FLO scheme has the
lowest average path cost whereas the TBP scheme
has the highest path cost of all. The path cost from
the ONMC scheme is close to that of the FLO
scheme. Such results arise from the different
number of tickets issued at the source nodes: the
FLO utilizes the most tickets thus has better
chances in finding least cost paths.
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Fig. 4. Average path cost with 0.5 imprecision rate.

It is also observed that as the mean end-to-end
delay requirement increases, so does the average
path cost. This is because at higher mean end-to-
end delay requirements, the paths discovered tend
to be longer thus increasing the path cost and
therefore bringing up the average path cost.

5.4. Average number of search messages

Fig. 5 compares the average number of search
messages (on a logarithm scale) of the algorithms
from the same experiment in Section 5.1. The fig-
ure shows that the FLO scheme generates the
highest average number of search messages since
the maximum allowed number of tickets is always
issued. On the other hand, the TBP scheme gen-
erates the least average number of search messages
following the heuristic rule in (5). However, this is
at the expense of low success ratio and accumu-
lated reward per episode, and higher average path
cost with respect to other algorithms. The ONMC
scheme produces an average number of search
messages between that of the FLO and TBP
schemes.

It was observed in [17] that both 0.1 and 0.5
imprecision rate cases, the average number of
search messages under the FLO scheme increases
with the mean end-to-end delay requirement. The
reason is because there are more nodes which can

Average number of search messages
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-7 ONMC
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Fig. 5. Average number of search messages with 0.5 impreci-
sion rate.

receive the probes since the criteria * to receive a
probe becomes easier to satisfy as the mean end-
to-end delay requirement increases. Since each
node forwards the probes to its own neighbors, the
ticket distribution propagates over a larger num-
ber of nodes in the network even though the
number of tickets issued at the source node is fixed
(i.e. My, )—giving rise to an increased average
number of search messages. For the case of the
TBP scheme, a reduction in the average number of
search messages is observed. This is due to the
heuristic rule in (5) which decreases the number of
tickets issued at the source node as the mean end-
to-end delay requirement increases. The intuitive
reasoning behind this rule is that more tickets
should be issued at the source node for connection
requests with stringent mean end-to-end delay
requirements since feasible paths are difficult to
find; and as the mean end-to-end delay require-
ment increases, the number of tickets required in
the search should be reduced subsequently since

4 A node j can receive a probe from node i only if the best
case delay scenario is satisfied, i.e., Delay(p) + D;; + D;(d) —
ADj(d) < Dreq, where Delay(p) is the collected path delay on
the path probe p has traversed so far, Dj; is the link delay, D;(d)
is the delay from node j to destination node d, AD;(d) is the
mean end-to-end delay variation and Dreg is the mean end-to-
end delay requirement.
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the feasible path becomes easier to discover. The
gradual reduction of the average number of search
messages under the TBP scheme is observed in
both imprecision cases.

For the ONMC scheme, the average number of
search messages increases with the mean end-to-
end delay requirement as observed with the FLO
scheme—however, at a lower value. This can be
explained by the lower number of issued tickets at
the source node resulting from the trained ticket-
issuing policies.

Although the reduction of the average number
of search messages under the ONMC scheme is
not observed as the TBP scheme, the average
number of search messages is still controlled. This
is observed from the fact that, as the mean end-to-
end delay requirement increases, the average
number of search messages increases only slight-
ly—indicating that the propagation of ticket dis-
tribution in the network is very marginal despite
the more easily-satisfied mean end-to-end delay
requirement. This implies that the number of
tickets issued by the source node is reduced under
the ONMC scheme. The reason is that feasible
paths are easier to discover at higher mean end-to-
end delay requirements, hence less penalty and
more reward is received when fewer tickets are
issued. The ONMC scheme learns to reduce the
tickets through these reward signals.

5.5. Robustness to mobility

Figs. 6-9 shows how mobility affects the accu-
mulated reward per episode, success ratio, average
path cost and average number of search messages.
The algorithms are tested under 0.1 imprecision
rate, the maximum number of allowable tickets
(Mmax) is 100, for mean end-to-end delay require-
ment 180 ms and update interval of 30 s. The
mobility of the test network is varied by increasing
the pause time from 0 to 30, 60, 90 and 120 s—the
network becoming more stationary as the pause
time increases. Fig. 6 shows that for pause times 0
and 30 s, the accumulated reward per episode
differ only slightly between the FLO and ONMC
schemes, while the TBP scheme has the least
accumulated reward per episode. As the nodes
become more stationary, the accumulated reward
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per episode is increased for all algorithms since
more links are stable and it becomes easier to
discover paths.

Fig. 7 shows the success ratio plotted against
the pause time. All algorithms exhibit a consistent
increase in success ratio as the nodes become more
stationary. Once again, the FLO scheme has the
highest success ratio of all while that of ONMC
scheme is almost as good as the FLO scheme, and
the TBP scheme shows the least success ratio. This
can similarly be explained by the reduced mobility
which promotes feasible path searches.
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The average path cost is illustrated in Fig. 8.
The TBP scheme shows an increase in the average
path cost as the pause time increases. This is due to
the fewer number of tickets issued at the source
node. Note that more stable links are available
when the pause time increases and this, in turn,
produces more choices of paths between the source
and destination node. With a few tickets issued by
the original heuristic rule in (5), the TBP can only
explore a small number of paths and is likely to
discover feasible paths with higher costs. On the

other hand, the FLO and ONMC scheme gives a
gradual decline in the average path cost as the
pause time is increased. The decline in the FLO is
monotonic. However, that of ONMC scheme is
non-monotonic due to the reduced number of
tickets issued at the source node when network
becomes more stationary—with fewer tickets,
fewer low cost and feasible paths are discovered.

Fig. 9 confirms this scenario: at pause times 90—
120 s, the average number of search messages from
the ONMC scheme is reduced (due to the reduced
number of tickets). The reason is that feasible
paths can be discovered more easily, hence the
ONMUC scheme learns to issue fewer tickets so as
to minimize the number of search messages.

5.6. Effect of the maximum allowable number of
tickets

So far, the maximum number of allowable
tickets (Mpax) is kept constant at 100. The results
presented next show the effect of decreasing Max.
The purpose of this experiment is to examine the
performance-of the algorithms as each algorithm is
forced to use fewer tickets (thereby reducing the
discrepancy in the amount of message overhead in
each algorithm). The algorithms are tested under
0.1 imprecision rate, for mean end-to-end delay
requirement 180 ms, pause time 60 s and update
interval of 30 s. The parameter My, is varied from
5 to 100 tickets with action sets as follows:

A5 = {1’2y374a5}5

AIO = {la 25 33 4a 57 67 7a 83 97 10}7

Axn = {1,2,4,6,8,10,12, 14, 16, 18, 20},

Ay = {1,10,20,30,40},

Ag = {1, 10,20, 30,40, 50, 60},

Asg = {1, 10,20, 30, 40, 50, 60, 70, 80},

A = {1, 10,20, 30,40, 50, 60, 70, 80, 90, 100}.
Fig. 10 compares the success ratio from this

experiment. As expected, the FLO scheme shows

the highest success ratio with the FLO scheme

giving 1-6% higher success ratio than the ONMC

scheme. In addition, the success ratio of the

ONMC scheme still outperforms the TBP scheme
by 28-62%. Note that the granulity of the action
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space plays a crucial role on the performance of
the ONMC scheme. A finer granulity of action
space gives better choices of actions to select from.
A coarse granulity action space may force the
ONMC scheme to select a higher number of tick-
ets than necessary therefore increasing the message
overhead. We are currently performing further
investigation on the selection of granulity of the
action space and quantization of gp(m) and gap(/)
under various structures and dynamics of the
MANET.

The corresponding results for the average
number of search messages are shown in Fig. 11.
All methods exhibit reduction in the average
number of search messages. Note that the dis-
crepancy in the average number of search mes-
sages between the FLO and the ONMC scheme is
evident as M., is reduced. Furthermore, we ob-
serve that when M, is 5 tickets, the ONMC and
TBP schemes have the same order of magnitude of
the average number of search messages—however,
the ONMC scheme gains 28% higher success ratio
than the TBP scheme.

Fig. 12 shows the corresponding average path
cost. A discrepancy in the average path cost of up
to 3% is observed between the ONMC and FLO
schemes. The ONMC scheme shows an improve-
ment in the average path cost between 7% and 29%
over the TBP scheme. With the same magnitude of
average number of search messages (i.e. when M«
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Fig. 11. Effect of the maximum number of allowable tickets on
the average number of search messages.
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Fig. 12. Effect of the maximum number of allowable tickets on
the average path cost.

is 5 tickets), the ONMC scheme gives 7% lower
average path cost than the TBP scheme.

5.7. Implementation issues

The TBP framework discussed so far is suitable
for medium size networks (say, for instance, less
than 100 nodes). The reason for this is because
each mobile node i must maintain the values of the
mean end-to-end delay, D;(d), and mean end-to-
end delay variations, AD;(d), for all neighbors
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j€V; to all destinations d € {1,...,4°}. Such
values are used to forward the received tickets (see
[2,3]) and are exchanged via a distance-vector
protocol periodically. If a MANET has at most
100 nodes and the maximum node connectivity
degree of 10, and if each D;(d) and AD;(d) require
4 bytes, the maximum storage requirement for
these values at each node i is no more than 8 kB
(100x10x2x4 bytes). For the ONMC scheme,
each node i requires no more than 227 kB
(99x26x2x11x4 bytes) to store entries for all
destinations. That is, there are 99 destination
nodes—for each destination node, one entry is
needed to store an observation-action value at
(qp(m), qap(l), M), where gp(m), m=1,...,26
and gap(1),/ = 1,2 and M, € 4 = {1, 10,20, 30,40,
50,60,70,80,90,100}. In terms of the number of
iterations required to compute one on-line deci-
sion, the ONMC method requires O(|0||4]) itera-
tions where |@| and |4| are the sizes of the
observation and action spaces.

6. Conclusion

In this paper, the TBP scheme based on the
ONMC method studied in [17], is applied to sup-
port QoS routing in a MANET environment. The
reinforcement learning (RL)-based ONMC meth-
od, relies on a look-up table representation which
stores a value function for every observation and
action pair.

The simulation study shows that the TBP
schemes based on the ONMC method can achieve
good ticket-issuing policies, in terms of the accu-
mulated reward per episode, higher success ratio
and lower average path cost, when compared to
the original heuristic TBP scheme and a flooding-
based TBP scheme. The RL-based TBP path dis-
covery scheme (based on the ONMC method) here
proposed, is flexible enough to foster various other
objectives and costs functions proposed in the re-
cent literature. In the present version of the RL-
based TBP algorithm, decisions are made only
once at the source node as new call requests are
offered to the network.

Preliminary numerical results reported here
suggest that the ONMC scheme can control the

amount of flooding in the network. More spe-
cifically, it achieves 22.1-58.4% reduction in the
average number of search messages compared to
the flooding-based TBP scheme with marginal
reduction 0.5-1.7% in success ratio. In addition,
the ONMC scheme can attain 13-24.3% higher
success ratio than the original heuristic TBP
scheme at the expense of higher average message
overhead. However, as the maximum number of
allowable tickets is reduced to a level in which the
average message overhead of the ONMC and the
original TBP schemes are of the same magnitude,
the ONMC scheme still gains 28% higher success
ratio and 7% lower average path cost over the
original heuristic TBP scheme.

In terms of implementation, the savings in the
amount of generated search messages obtained by
the RL-based TBP schemes is at the expense of
reasonable storage and computational require-
ments of on-line decision parameters. The storage
requirements grow linearly with the number of
nodes in the network. The ONMC method re-
quires O(|0||4|) iterations where || and |4| are the
sizes of the observation and action spaces. Note
that |@| depends on the granulity of the quantized
delay intervals whereas |4| depends on the number
of tickets.

From the results of our experimental work
gathered so far, it can be said that RL techniques
can play an important role in controlling search
messages overhead in environments in which the
outcome of a decision is only partially observable.
It is important to note that parameters of the
algorithm and the granularity of, for example, the
action set A4 is important and further investigation
is being carried out at present on these issues. We
are currently investigating methods to further re-
duce the average number of search messages and
the integration of TBP schemes with other
POMDP RL approaches which will be reported in
a forthcoming paper.

Acknowledgements

The paper is part of the first author’s Ph.D.
research work at Imperial College London which



W. Usaha, J. Barria | Ad Hoc Networks 2 (2004) 319-334 333

had been supported by the Royal Thai Govern-
ment.

Appendix A. Algorithm ONMC

On-policy first-visit Monte Carlo method for
M, selection. Let my be the initial policy. Initialise

g~ (w,a).

1. for episode t =1 to T do
2. fork=0toN,—1do
(a) At time step k, node s has an observation
or € O,y of the network, w; = J.
(b) If Dreq(j) < Dy(d) — ADs(d),

(©) M, = 0. Reject the connection request.

(d) Else,

(e) M, = a is selected according to policy
(W)

(f) Get immediate reward g(wi,a;) and next
observation o4 = D™ (d).

3. end

4.  Perform updates: -

5. Q%(w,a) = Q%' (w,a)+1 ( ks (wa) 8 (W T
._Q"t—l (W, a)) A

6.

(w) = a* with Probability 1 — e+ ¢/|4|
"W = aed—{a'} with probability €/|4|

where a* = argmax{Q™(w, a)}.
7. end
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