Extract of the seed coat of *Tamarindus indica* inhibits nitric oxide production by murine macrophages in vitro and in vivo


*School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
National Institute for Occupational Health and Safety, Morgantown, WV 26505, UK
Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand

Received 19 May 2003; accepted 1 December 2003

Abstract

The seed coat extract of *Tamarindus indica*, a polyphenolic flavonoid, has been shown to have antioxidant properties. The present studies investigated the inhibitory effect of the seed coat extract of *T. indica* on nitric oxide production in vitro using a murine macrophage-like cell line, RAW 264.7, and in vitro and in vivo using freshly isolated B6C3F1 mouse peritoneal macrophages. In vitro exposure of RAW 264.7 cells or peritoneal macrophages to 0.2–200 µg/mL of *T. indica* extract significantly attenuated (as much as 68%) nitric oxide production induced by lipopolysaccharide (LPS) and interferon gamma (IFN-γ) in a concentration-dependent manner. In vivo administration of *T. indica* extract (100–500 mg/kg) to B6C3F1 mice dose-dependently suppressed TPA, LPS and/or IFN-γ induced production of nitric oxide in isolated mouse peritoneal macrophages in the absence of any effect on body weight. Exposure to *T. indica* extract had no effect on cell viability as assessed by the MTT assay. In B6C3F1 mice, preliminary safety studies demonstrated a decrease in body weight at only the highest dose tested (1000 mg/kg) without alterations in hematology, serum chemistry or selected organ weights or effects on NK cell activity. A significant decrease in body weight was observed in BALB/c mice exposed to concentrations of extract of 250 mg/kg or higher. Oral exposure of BALB/c mice to *T. indica* extract did not modulate the development of T cell-mediated sensitization to DNB or HCA as measured by the local lymph node assay, or dermal irritation to nonanoic acid or DNF. These studies suggest that in mice, *T. indica* extract at concentrations up to 500 mg/kg may modulate nitric oxide production in the absence of overt acute toxicity.

Keywords: *Tamarindus indica*; Nitric oxide; Macrophage

1. Introduction

Plant materials have long been used as traditional medicines for the treatment of a wide variety of ailments and diseases. Components of *Tamarindus indica*, a tree indigenous to India and South East Asia, have been used as a spice, food component, and snack. According to Thai traditional medicine, the fruit of *T. indica* is regarded as a digestive, carminative, laxative, expectorant and blood tonic. In addition, the seeds of *T. indica* are used as an anthelmintic, anti diarrheal, and an emetic, and the seed coat is used to treat burns and aid in wound healing as well as an antidiysenteric (Farnsworth and Bunyapraphatsara, 1992).

Recently, Punthong (1999) demonstrated the antioxidant activity of the seed coat extract of *T. indica*. The extract is composed of flavonoids including tannins, polyphenols, anthocyanidin, and oligomeric proanthocyanidins. Many of these flavonoids are also components of Pycnogenol®, a nutritional supplement which has been shown to have vasorelaxant activity, increase capillary permeability and participate in the cellular antioxidant network as indicated by its ability to regenerate the ascorbyl radical and to protect endogenous vitamin E and glutathione from oxidative stress (Packer et al., 1999; Rohdewald, 2002). Flavonoids found in various medicinal plants are natural antioxidants with free radical scavenging activity and they have also been