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A Model of Water Pollution Control

Using Finite Element Method
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Abstract

A model for water pollution control of nearly closed water area is described. The
principal constraints are to attain the Chemical Oxygen Demand (COD) standards. The finite
element method is used for the derivation of linear constraints of the constrainted optimization
problem. The objective function is the total volue of removal COD concentration discharging into
the water. The model is applied to Lamtakong Reservoir, which is a nearly closed water area in

Nakhon - Ratchasima province, Thailand.
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A Model of Water Pollution Control

using Finite Element Method
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School of Mathematics
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Abstract

A model for water pollution control of nearly closed water area is described. The
principal constraints are to attain the Chemical Oxygen Demand (COD) standards. The finite
element method s used for the derivation of linear constraints of the constrainted optimization
problem. The objective function is the total volue of removal COD concentration discharging into
the water. The model is applied to Lamtakong Reservoir, which is a nearly closed water area in

Nakhon - Ratchasima province, Thailand.

Iniroduction

The combination of linear programming and finite element methods has shown to be an
effective tool tor constrainted optimization problems. Since the finite element method is not only
suitable for solving the problems with irregular boundaries but also a useful technique for the
derivation of hnear constraints of the optimization problem. Several investigators haved solved
the water pollution control or the thermal diffusion control by this method.

In this paper the numerical model is shown to apply to the water pollution control of
nearty closed water area. This model requires the permanent current and substance dispersion
patterns.  Although tidal residual current is generally used as permanent current, it is difficuit to
simulated the actual current. The required one 15 complex. For simplicity the present study
employs the current due to the influence of river dischitrge. Regarding the substance dispersion,
the model based en two dimensional dispersion equation is used for the calculation of COD
concentration.  For the numerical simulations, of dispersion equation, the finite element
discretization is employed. We assume that the current is smaller than the substance dispersion.

Because the smaller the size of finite elements the better the accuracy, as far as the current is



concerned.  Moreover, the current is one of the most important factors to determined the
dispersion phenominon.
The medel present in this paper makes it possible to apply to the water pollution control

ot a lake or nearly closed water area.

Moddl Formulation
To get constraints of the linear programning, the formulation of the substance dispersion
mode] using the finite element method is applicd. The dispersion of the COD} is described by the
diffuston-convection equation on COD in an arbitrary domain
oCoac 7*C 5°C

i -~_l___.D _D'—— _.RC-—- -
uaxi-vay X 32 }(}yg_* Q=0 ()

where C = C(x,y) is a concentration of COD at the point (x,y) in Q, uand v are flow
velocity in X and Y directions respectively. D, and D, are dispersion coefficicnts in X and
Y directions. R is the substance decaying rate, and Q is the increasing rate of substance

concentration due to a source.

Natations

Cy O
X Cy, ke

Cc. . &

Fig 1. Problem Detinition



Figure I shows a typical dornain ), with the bowndary O can be classificd into two 1 ypes.
They are S, with specified COD concentration and S, with specified tlux of coneentration.

The boundary conditions on S, and S, are :

C-': C,O on SI ___.-_"—__4_(2)
Xt S 3
- (}n ————— e —— o —
PRy 2 &)
Where €, and T, are the given valves, s the normal derivative on the boundary S, | it is
7 2

the flux concentration on S,

The equation (3) may be described as

oC
= qx;‘:_?_qym‘

on
where ¢, and q, are flux in x - and y - directions, £ and m are direction cosines ot the unit

outward normal to S,

Finite El Method for Solving the Probl 1) (2) and (3

The domain {2 is divided into triangular elements. The Galerkin method is then used jor
the formulation of the finite element, using a piccewise linear interpolation base on three-node
triangular elements. The degrees of freedom of the problem are the values of C at the angular
point of the triangles. This method reduced the problemn (13, (2} and (3) into a linear system of

equations with the unknowns vector C and the corresponding matrics

K“ﬁ? U:@C.{ -+ KC‘-BY Vﬁc.’, + S(XYC}' -+ Ii@YCY = F(x ————————— (4)

where F

18 & vector corresponding to the inlegrations involve the function Q over the triangular

elements. The matrices Ky, , Sy and Hy, are matrices obtained by the integrations 1o the
convection, diffusions and the decaying rate RC respective. The subscripted o, B, v are
indicated ol values carresponding to unknows at vertices of the triangular points of the triangles
where [3 is indicating to the numbers of observation points. The equation (4) can be splitted into

the tollowing torm :



K(I.’Y[iU'YCﬁ + K(W;LUYCK + Kmf&:Ust
+K“’YBUYC[5 + KM;LV.(Ck + KDWSV.{ Cs-_
'*Sa[icﬂ + Sakcl + Sascsz
’Hmﬁcli + Ha?.ck - Ha,s:Cﬁ = F(x Tt T T T T T (-q

v

where 3 indicated the observation nodes
€ indicated the inflow points
% indicated the points which is not an observation and is not an inflow.
The points corresponding to 3,€ and A are shown in the figure 1.
Let X, be the removal COD concentration at nodal point € as shown in fig. |, and iet
{C. —x,) be a concentration of control inflow, where X_ be a control. Then by arrangement

procedure the equation (5) leads to:

EqpCp = EnCi, + Ey(C, ~ X
Where :

Eulj = Kaﬂi U.:, + Kov(li V'Y + S[xﬁ - HO’-” l

Eal o= _(Ka}’lU‘Y + KOW)‘VY -+ Sa)_ + Hotl)
Ege = _(Kocysz + Kuyr,vc +Sgs + Heye)

Multiplying both sides of equation (6) by the inverse matrix of leff-hand side coellicient maitrix

equation for C]S’ we obtained

Cﬁ = F’;lli{Eu}\.Cl + E(xs:(csa —Xq ) + Ea}
=g~ tp — ApeXs +hy e (8)

The principal constraints at the observation points of the problem are 1o be satisfied COD

stardards. Therefore, water quality constraints at observation points are

Cp =Cp e e - (9)

where C?_& is the allowable (standard) COD concentration, Substitute the equiation (8) into

equation (9), the constraints of this problem become :



ApeXe 2 jp+ttgthy—Cp  —mmmmm oo ——=(10)

or

ABEXS = bﬁ ——————————————————————————— (1021)

In case of the water pollution control in a river basin is studied, the objective function,
which can be expressed by the sum of the operation cost of treatment plants in the region, Is
usually used. But in some cases that water pollution control in on estuary and a coastal zone is
studied it may difficult how to choose the most suitable objective function.

In this paper, for sake of simplicity, the objective function is chosen to be a linear function of the

form.
I(x) = ijx]
yd

 W'x b

where W is an n-vector representing weight to estimate the rate of each municipality dis

charging wastes and J is the total value of COD concentration to reduce at the inflow points.

Optimal C | Proble

The objective tunction and the constraints are presented as foliows:

Hi
min ijxj U
=1
n
subj. to Zaiixj E:bi =12 ... .m _ U3
J=1
lj X R U g =12, n (14

Where the equation (13) denotes the equation (10), 1 and u are the lower and the upper bounds of
contrel variables which are treatment concentrations of COD, m is the number of observation
points of water guality and n is the number of points of inflow.

N

Solving equations (12), (13) and (14) by simplex method. The optimal removal

concentration x; of the control inflow j are oblained.



Applicati Lamtal Res .
A brief water quality assesment to Lamtakong reservior is treated, of which configuration
is shown in fig. 2. Lamtakong Reservoir is the tipical nearly closed water area with the distance
of about 10 km in the direction of south-north, with about 4 kin widest in the direction east west,
and about 0.4 km. narrowest, with the mean water depth of & m. There are not many points
achieved the COD standards.
The finite element idealization used for analysis of COD is shown in Fig.3. The numbers

of finite elements and nodal points are 260 and 171 respectivly. L

2~ 0. Km.
N
Fig2:.
J
(\ Location (Lamtakong Reservoir)
3




Finite_element discretization; Eighteen points along the coastal line discharge eftluent
into Lamtakong Reservoir. The dam of COD concentration including the effluent discharges of
these points are summarize in Table 1. Flow velocities are known functions (Table 2). The first
step, using of these data COD concentration in the domain at existing stage is calculated. As the
boundary conditions, COD concentration is specified zero on the coast line boundary. The tlux
of concentration is also specified zero on the coast line boundary. The value of dispersion
coefficients D, and D, is determined in terms of the numerical simulations. Table 2 summarizes
the constants used in this computation. B, - B, in fig.4 denote the observation points wich have
to be reduced COD concentrations to jess than 7.0 . We assume that the upper bound of the
removal COD concentration at each inflow is 60% of the existing COD and the lower bound al
each inflow is equal to zero.

Fig. 4 shows the concentration distribution of the COD at the existing stage, which violate
the standards at several observation points. Using the above results, it is posible 1o formulate the
optimal control problem that takes the standards COD satisfy and makes the appropriate objective
function mimimize. The weight Wj of the control inflows are given in table 1. Since COD
concentration at the points E,, E,, E,, E,, E,, and E|; are less than the minimum of the control

cocentration at B, - B, (5.0 <B; < 7.0), they are not considered as the control inflows.

Table 2 Computational Data
D, 2.5 m /sec.
D, 2.5 m’fsec.
-1
R 1o day
Q 0.0 myg/day
Table 3 COD concentration regions (figures 4 and 5)
COD
Region concentratian
(mg/L.)
| ’ 0-3
2 3.1 -5
3 5.1-7
4 7.1 -9
5 9.1 -1t
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Finite Element Discretization



Table 1 COD concentration, Weight and Computational Result at'18 points (E,-E

18)

Inflow E, E, L, E, E E, E, E, E,

COD (mg/L) 9.2 6.3 4.6 36 42 4.0 7.2 B2 8.5

\VJ 1.5 1.t - - - - 1.0 1.2 1.1

X{: (n]g/L) 1.7 1.1 - - - - (} i.0 1.2
Desirable COD (mg/fl.y | 7.5 53 4.6 3.6 4.2 4.0 7.2 7.3 73
Inflow E E, E, E, Eiq E,; Eq E.; Eiy

COD (mg/L) 9.2 LO.0 9.4 2.0 25 3.0 95 10.5 1.3

W, 15 | 16 | 1 - - - i4a {13 | os

X, (mg/) 16 | 18 | 15 - ; - 13 | 1.8 | 25
Desirable COD (mg/l.) | 7.6 8.2 7.9 2.0 2.5 3.0 8.2 8.7 %8
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Table 4 COD concentration at existing stage and after the control stage at

the observation points (B, - Bg)

Observation points COD concentrarion
B Existing stage After control stage
B, 9.5 7.0
B, 83 6.5
B, 6.5 5.0
B, 8.0 6.5
B, 9.2 7.0
B, 8.2 6.3
B, 9.5 7.0
B, 75 6.5

Fig. 5 shows the concentration distribution of COD after the control of the inflow
computed by the fimte element method. The optimal removal COD concentration at each control
wnflow is shown is Table [. According to the result, the COD concentration (less than 7.0 my/L)

are satis tied the observation points.

- LConclusions

A methed of the water pollution conirol is presented. The formulation of the problem is
based on the combination of linear programming and the finite element method. The model is
assumed 1o be the steady state formulation Further improvemems to be exiened 1o the unsteady

state tlow problem.
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