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ABSTRACT

Torsional resonance in a 2-mass rotary system is
suppressed via active compensation. To achieve this
requires two compensators namely forward or input and
feedback compensators. The former provides desired
performance of the overall system. The latter suppresses
resonant behaviour of and stabilizes the system. The
design approach is transfer function synthesis based on
pole-zero assignment, The CB-segment method is
applied for testing stability. The test resuit confirms
stability robustness.
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INTRODUCTION

A rotary system having its rotating components
coupled by a long and deflective shaft usually
experiences torsional resonance. This phenomenon
arises because of the non-homogeneous twist of the
shaft. The resonance causes a limit-cycle oscillation te
angular motion of the system, and shortens the life-span
of mechanical components.

The problem of torsional resonance has become an
interest among engineers for almost 40 years. This is
evident by Cannon [[] who discussed it in terms of
modelling of distributed parameter system. Early
solutions to the problem of torsional resonance
suppression were proposed by Waagen [2] , Tal and
Kuo [3], respectively. Their recommendations were
quite similar on the basis of modification of mechanical
characteristics of the system. The modification could be
changing components’ dimension, and rearranging the
connection of subsystems. Tal and Kuo [3] also
suggested the possibility of using a notch filter to reject
frequency component that could excite the resonance.

Recently, proposed technology to resolve such
problem has become more complex and expensive.
Fujikawa et. al. [4] employed a 32-bit DSP to execute
state-space control law. In [5], H, approach with an
additional adaptive loop was proposed. Estimation of
load speed and shaft torque by Kalman filter, and speed
governing by an LQ controiler were proposed in [6].
All these approaches need a high performance
processor to realize controller and/or observer. We
believe that the problem of torsional resonance
suppression can be resolved by using low-profile analog

technology. In this regard, real-time and robusted
performance can still be achieved satisfactorily.

This article describes our work to resolve the
problem of torsional resonance suppression in a rotary
2-mass system with a long and deflective shaft. The
following section describes the system and its model.
The active compensation scheme based on 2-degrees-
of-freedom configuration is presented. Simulation as
well as practical results follow to confirm the
attainment of robusted performance and stability.

SYSTEM DESCRIPTION AND MODEL

Mechanical systems with physical structure
rendering torsional resonance are commonly
encountered in industry, for example material
transporting systems, manipulators, Xy plotters, etc.
Figure | shows the diagram representing our system
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Figure 1 Diagram represents a 2-mass rotary
system with a long and deflective shaft.
that consists of a dc motor and a rotating load. The
motor and load are coupled together through a shaft of
400 mm long. Oscillation occurring with this system
well reflects that of those industrial applications.
Torsional resonance causes high frequency oscillation
superimposing the speed performance waveform as can
be seen quite clearly from figure 2. The waveform
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Figure 2 Measured speed at load.
indicates a sluggish response with limited average
speed. After the transient stage is over, this average
speed is about 143 rpm due to the saturation limit of
the drive amplifier.



Through out this work, a linear operating range of
the system operation is assumed. Motor and load may
assume second-order dynamics, while first-order for
shaft with coupling. This leads naturally to a third-
order transfer function having a pair of complex poles.
However, higher-order models may be assumed
according to various applications.

Observed data was obtained from exciting the open-
loop system with a unit-step command and passed
through MATLAB™ to fit a third-order model. The
model assumes no zero and is expressed by
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Figure 3 Simulated unit-step response plotted
against measured data.

Figure 3 shows plot of the simulated result based on
equation (1) against the measured response. The
difference is hardly noticeable. The rms value of the
squared error is 0.120. Frequency response plot for the
model (1) is illustrated in figure 4 that exhibits a
resonance peak at 400 rad/sec. It is this resonance that
needs to be suppressed. Regarding to this, our approach
used is pole-zero assignment method [7,8] to achieve
robusted performance. The design and compensator
realization are in the next section.
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Figure 4 Frequency response plot for the model (1).

COMPENSATION AND REALIZATION

Suppression of torsional resonance can be achieved
by transfer function synthesis with pole-zero
assignment method. Theoretically, the achieved system
consists of a plant and two compensators. Figure 5
depicts the block diagram of our compensated system
so called 2-degrees-of-freedom (DOF) configuration.

Referring to figure 5, the feedback compensator ,
Gip(s), helps to eliminate oscillation due to resonance
and stabilize the feedback loop. The forward or input
compensator, Gp(s), drives the system to reach desirable
performance.  Pole-zero assignment technique {7.8]
well suits our objective of resonance suppression. We
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Figure 5 A control system of 2-DOF structure
utilize the same poles for both compensators in our
design to ensure the desired characteristic polynomial
of the compensated system. Zeros of the compensators
are obtained from solving a diophantine equation such
that the overall transfer function is achieved. Equations
(2) and (3) express the input and the feedback
compensators , respectively,
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Gy (s) =15.093— - 107! (s + 2000)
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(2)
4 2 4
G p(s) =16.83 (‘, +2.714 x 10J 5+5.037x loo) (s +14236)
(s +7.186x10%s +19.160 x 10%) s
(3)

Realization of the compensators employs op-amp
technology. The compensation circuits are of biquad
structure with a series connected Pi-element. The
combination possesses a third-order transfer function.
Figure 6 gives the details of circuit configuration and
component values. The compensation circuits are bult
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(a) Compensation circuit

(s?+4x10°s +4x10%) o-3 {5+ 2000)
(52 +7.186x10° 5 +19.160 x 10°) s
C=0.01pF, R;=13.91kQ , R,=R,=R,=R,=22.84 k()
R=2.08kQ ,R=7.25kQ, R,= 1.51 kQ
C=0.1 uF,Rp=3kQ,R =5MQ
(b) Component values for input compensator
(52 +2.714x10%5+ 5,037 x 10%) (s +142.36)
(s +7.186x10°5 +19.160x 10%) ' s
C=0.01 uF, R=13.91 kQ , R,=R,=R,=R,= 22.84 kQ
R,=838.8 kQ ,R=516.11 kQ,R,=1.35kQ
Ce=0.1 uF, Re =R; =70.24 kQ
{ c) Component values for feedback compensator
Figure 6 The combined biquad circuit and Pl-element
with corresponding component values to realize the
compensators.
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into our test bed as illustrated by figure 7. Experiments
were conducted using this equipment. Practical results
are presented in subsequent section. Simulation resuits
can be found in the following section.

Figure 7 Experimental equipment.

SIMULATION RESULTS

In order to assess the performance of compensated
system before attempting experimental works,
simulation and stability test are needed. This section
presents a comparison of simulation results for
resonance suppression using between a notch filter and
our compensation scheme. Then, practical results and
stability test follow in subsequent sections.

Comparison of performances : With our compensated
system, a fast response without any limit-cycle
oscillation can be achieved. Figure 8(a) and 8(b) show
the simulated responses when the 2-mass system is

compensated by a notch filter (see appendix) and our -

compensation scheme, respectively. The response in
figure 8(b) is much faster with less overshoot. Limit-
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Figure 8(a) Simulation result for a system using notch
filter. Response shows P.O. of 10, rise-time 0.3
seconds, and settling time 1.4 seconds.
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Figure 8(b) Simulation results for a system using pole-
zero assignment scheme. Response shows P.O. of 4,
rise-time 20 milli-seconds, and settling time 70 milli-

seconds.

cycle oscillation is .eliminated completely. The

bandwidth of our compensated system is about 150

.rad/sec as cari be observed from figure 9.
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Figure 9 Frequency response plot for compensated

system using 2-DOF configuration.

It is necessary to ascertain that the performance is
robusted due to uncertainty in the plant model. So far,
the design has been based on the nominal plant model
of equation (1). In practice, several factors regarded as
disturbances may contribute to inaccuracy of the model.
This effects the performance of the compensated
system. To assess the performance robustness, we
assume an interval plant model in which its coefficients
can vary within a reasonable range. The defined range
for the coefficient variation is + 30% except that of the
highest order.  Within this range, we obtain the
uppermost and the lowermost plant models as follows

6
- _ 1.72x 10 : . ()
57 +17.395" +211.86x10°5 +950.30x 10
924.0x 10
5249375 + 114.08% 105 + 511.70x10°

Gpl(s) =

Gp(s) = ()

Simulation results obtained from using the models (4)
and (5) represent the boundary of possible responses.
These simulated responses due to unit-step input are

B eialnemiast - Baleid0 LETTITRN
ve

va b
[ENS
to
.

Amophiadeiy sk

[
H

° LR T 68 ToT Cad

0
Tim eiSes)

Figure 10 Unit-step responses obtained from simulation
based on interval plant models.

illustrated in figure 10 indicating insignificant

differences.among them. Therefore, it can be concluded

that the system performance is robusted.

PRACTICAL RESULTS

Our compensated system can provide a smoath and
fast response due to unit-step input. An experimental
result is shown in figure 11 for an input of 1 volt
representing 143 rpm command. The lower-curve is the
measured speed response that shows 4 P.Q., rise-time
30 milli-seconds, settling time 70 milli-seconds, and no
steady-state error. The steady-state speed is limited to
143 rpm due to the saturation limit of power drive
amplifier. This saturation greatly effects the magnitude
of drive control signal during transient. Hence, a



further investigation of the system when non-linearity
present will be necessary.
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Figure 11 Measured speed of the compensated system.

STABILITY TEST

Since our system is assumed linear, stability test can
be done conveniently by checking that all closed-loop
poles lie in the left-half s-plane. Subject to the plant
model uncertainty, a family of system transfer functions
can be derived. On the basis of these transfer functions,
the robustness of stability can be guaranteed iff all
characteristic polynomials belonging to such family are
Hurwitz, In other words, our fixed compensator can
stabilize the whole set of interval plants. Regarding
this, we apply the family of Kharitonov’s polynomials
[9} and the CB-segment method [10]. This approach
has the following advantages: (i) it can be applied for
closed-loop control with a fixed compensator and an
interval plant, and (ii) it requires a smail number of
transfer functions for stability test.

Let G(s) = N(s)/D(s) and Gg(s) = P,(s)/Py(s).

The characteristic polynomial of the closed-loop system
is given by

Q(s) = Pi(s)N(s) + Py(s)D(s) (6).
The problem is to determine the Hurwitz stability of the
family Q(s). Only the coefficients of N(s) and D(s) are
perturbed independently. Assuming these uncertain

polynomials  enter the characteristic polynomial
linearly, hence the term linear interval system.
rs) + 8 y(s)

F G(s) b

C(s) =

Figure 12 A closed-loop system with plant G(s) and
controller C(s).
CB Theorem [10] : The control system of figure 12 is
stable for all G(s)eG(s) iff it is stable for all G(s)e
Gea(s). "
Gea(s) is a one parameter family of transfer functions
and there are at most 32 distinct elements.

Geg(s) = { N(s)

=:(N{s), D(sN e (v (s)xD (S)(‘B} N
D(s)

{v (3)xD (5))y ={N(5), D(s)): N(s) ek , (s), D(s)es, (s) or ()
N(s)es, (5).D(s)ex , ()}

Ky (s): {K,',(s).K,f(s). K (). K (5) } )
FROE {K},(s), K3(5). Kj(s).xj(s)} (10)

sy (s)= [Xl&','}(s)+(l~/l)l<.{(s):ie{O.l].ﬁJ)e{(1.2).(1.3),(14).(3.4)l]
(11)
S, ()= {M',Q(J)Jf([ - K5 pe0l] 6 j) e {(|.2),(L3).(14),(3.4)}I (12)
K, (s)and &, (s) are sets of Kharitonov’s potynomial
derived from the numerator and the denominator of the

plant model. Using the nominal plant (I) results in
linear interval plant model of +30% variation bounded

by (4) and (5). For our case of having 3"-order
compensator, the theorem gives 12 distinct
characteristic polynomials of order 6. Each polynomial
has the parameter A" embedded. Closed-loop poies are
computed with the parameter A varied from 0 to | with
a step of 0.1. Figure 13 illustrates the map of these
closed-loop poles. Since all the poles lie in the left-half
s-plane, the stability robustness is assured.
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Figure 13 Map of the closed-loop system poles.

CONCLUSION

The work herein demonstrates the effectiveness of
active compensation on suppression of torsional
resonance in a 2-mass rotary system. The use of input
and feedback compensators successfully eliminates
limit-cycle oscillation in speed performance of the
system. The compensated system responds smoothly
and rapidly with an overshoot of about 4 percent. Both
simulation and practical results confirm this claim. The
system stability is robusted as demonstrated by the
results of our investigation based on the CB-segment
method. Since our realization and performance analyses
assume linearity of the system, our future works will
take account of the non-linearity due to power
amplifier.  Furthermore, performance and stability
robustness will be analyzed under the assumption of
non-deterministic variation in the coefficients of
interval plant model. These studies will give an
insightful understanding of the nature and practical
limits of an actual system.
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APPENDIX
57 8905 #16310°
5 +36.62x10% ¢ 163 10°
The design of this filter follows the procedures
described in [11],

Notch filter ; G,,..(5) =



