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Chapter I
Introduction

           Many phenomena in the real world can be described by infinite dimensional systems, for
instance; heat conduction, properties of elastic material, fluid dynamics, diffusion-reaction
processes, etc.. The variable that we are studying (temperature, displacement, concentration,
velocity, etc.) is usually referred to as the state. The space in which the state exists is called the
state space, and the equation that the state satisfies is called the state equation which may be one
of the following types: partial differential equation, functional differential equation,
integrodifferential equation, or abstract evolution equation. Stochastic differential equation is also
an infinite dimensional system.
           It is well known that several classes of differential equations with memory effects can be
formulated as abstract semilinear evolution equation with a delay or retardation, i.e., the equation
evolved with time and the principal part of their differential operators are linear and other terms
are nonlinear with respect to a variable in a suitable function space and the unknown function
depends on a delay or historical effects. We sometimes call those evolution equations as a system
and want to study many properties of their solutions.
           Most of the system concern with many types of solutions, for instance, classical solution,
weak solution, strong solution, mild solution, and others. So the meaning of solution should be
defined and the existence of the solution is a fundamental problem that we should answer before
we study other properties of the solution, e. g., uniqueness, continuous dependence on initial data,
stability, etc.
           In the seventeenth century, Bernoulli studied the brachistochrone problem, and
subsequently initiated the classical calculus of variations. After three hundred years of evolution,
optimal control theory has been formulated as a generalized extension of the calculus of
variations.
           A system can be controlled by supplying some control function or control policy to
achieve some purpose. We call the system the controlled system. Optimal control problem is to
find a control policy to minimize or maximize some objective functional subject to a dynamic
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framework.
           In this thesis, we consider semilinear integro-differential equations with time lags on a
Banach space X. The systems are
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         We systematically study local existence, extension, global existence and regularity of mild
solutions. Continuous dependence on initial conditions of those mild solutions and existence
theorem for infinite delay system are investigated. The semigroup theory, especially analytic
semigroup and fractional powers of operator, and the contraction mapping theorem (or the
Banach fixed point theorem) are used to obtain our results (See Ahmed N. U. (1991), Pazy A.
(1983)). Existence of an optimal control and Bolza optimal control problem are studied. Some
examples are presented to complete our work.
           Many authors studied semilinear evolution equations (See Li, X. and Yong, J. (1995),
Ahmed N. U. (1991), Amann, H. (1978)). Some study semilinear evolution equations with delay
(See Wu, J. (1996), Xiang, X., Kuang, H. (2000)). Ahmed, N. U. (1991) gives a result about
global existence and uniqueness of mild solutions for an integrodifferential equation (1.1). In his
results, uniform Lipschitz condition is too strong for discussion of global existence. We will show
that by using a weaker condition, locally Lipchitz condition is enough to guarantee local existence
of mild solutions, and by adding some growth conditions, global existence problem can be solved.
In Amann, H. (1978), he also study local and global existence of mild solutions for semilinear
evolution equations without delay effects. He use an infinitesimal generator A(t) depending on t.
We extend some results in his works to delay systems.
           We consider existence problems in several kinds of situations (See assumption (A), (F1)-
(F6), (G1)-(G6), (H1)-(H2) in Chapter III) that are different from others. It is well known that a
priori estimate is a very important condition to prove extension theorem. A difficulty has been
occurred for giving a priori estimate, because Gronwall’ s inequality is without delay term, so it
cannot be directly used to derive the a priori estimate in our cases. So we derived a Gronwall’s
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lemma with singularity and time lag that is suitable for our system. We use the Gronwall’s lemma
and nearly linear growth condition to obtain a priori estimate. In addition, we use the Moment
inequality under super linear growth condition to obtain a priori estimate for global existence
problem.
           Regularity of mild solutions is also discussed by using technique of fractional power
operators. Continuous dependence of our system is investigated. Our method is easy to extend to
semilinear evolution equations with infinite delay.
          Moreover, we use abstract results about existence of mild solutions to study the existence
of an optimal control for the controlled system corresponding to system (1.1). We consider the
Bolza controlled problem, that is to minimize the functional J, on the admissible control set Uad,
defined by

J(u) = ∫
I

u dt u(t)) (t), xt,(l + ))T(x(ψ ,

where l is a function satisfying some properties,ψ is a nonnegative function. We show how
Balder’s theorem can be applied.
          We give some examples that illustrate our abstract results. These examples show how to
apply our main results to semilinear parabolic controlled systems.
           The thesis is organized as follows: Chapter II mainly introduces theoretical backgrounds
and provides the convenient references to the well known facts of differential equations on
Banach space. Chapter III deals with local existence and uniqueness of mild solutions, extension
theorem, global existence theorem, regularity of mild solutions, continuous dependence on initial
conditions, existence of mild solutions of a system with infinite delay. Chapter IV deals with
existence of an optimal control of Bolza problem . In chapter V, some examples are presented to
demonstrate the applicability of our abstract results. We conclude all results found in chapter VI.



Chapter II
Preliminaries

       In this chapter, we present some important definitions and theorems which are useful for
understanding the results that appear in the following chapters.

2.1 Semigroups
       For Banach spaces X and Y, let L(X, Y) denote the class of all linear and bounded
operators from X into Y, and L(X) for L(X, X).
Definition 2.1.1. Let X be a Banach space. A one parameter family {T(t) | 0 ≤ t < ∞} of bounded
linear operators from X to X is a semigroup of bounded linear operators on X if
(i)  T(0) = I, I is the identity operator on X.
(ii)  T(t+s) = T(t)T(s), for every t, s ≥ 0 (the semigroup property).
Definition 2.1.2. Let {T(t) | 0 ≤ t < ∞ } be a semigroup on a Banach space X. The infinitesimal
generator , A, of this semigroup is defined by

Ax =  x),-T(t)x  (lim
t
1

0t +→

where x belongs to the domain of A or D(A) = { x∈X |   x)-T(t)x  (lim
t
1

0t +→
 exists }.

Definition 2.1.3. Let {T(t) | t ≥ 0} be a semigroup on a Banach space X. T(t) is uniformly
continuous if  

+→0t
lim ||T(t ) – I||L(X) = 0, or equivalently, 

ts
lim
→

||T(s ) – T(t )||L(X) = 0.

Theorem 2.1.4. A linear operator A is the infinitesimal generator of a uniformly continuous
semigroup if and only if A is a bounded linear operator.
Proof. See Pazy (1983), pp. 2.
Definition 2.1.5. A semigroup {T(t) | 0 ≤  t < ∞} of bounded linear operators on X is a strongly
continuous semigroup of bounded linear operators if

+→0t
lim T(t)x  = x, for every x∈X.

           A strongly continuous semigroup of bounded linear operators on X will be called a
semigroup of class C0 or simply a C0 semigroup.
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Theorem 2.1.6. Let {T(t) | t ≥ 0} be a C0 semigroup. Then there exists constants ω ≥ 0 and M ≥ 1
such that

||T(t)||L(X) ≤ tMeω ,
for 0 ≤ t < ∞.
Proof. See Pazy (1983), pp. 4.
Corollary 2.1.7. If {T(t) | t ≥ 0} is a C0 semigroup then for every x ∈ X, t →T(t)x is a continuous
function from [0, ∞) into X.
Proof. See Pazy (1983), pp. 4.
Theorem 2.1.8. Let {T(t) | t ≥ 0} be a C0 semigroup on X and let A be its infinitesimal generator.
Then
(a) For x ∈ X, ∫

+

+→

ht

0
h
1

0t
ds x)s(Tlim  = T(t)x.

(b) For x ∈ X, ∫
t

0
ds x)s(T ∈ D(A) and

A( ∫
t

0
ds x)s(T ) = T(t)x – x.

(c) For x ∈ D(A), T(t)x ∈ D(A), and

dt
d T(t)x = AT(t)x = T(t)Ax.

(d) For x ∈ D(A), T(t)x – T(s)x =  ∫ ∫ ττ=ττ
t

s

t

s
d)x AT(  d Ax)(T .

Proof. See Pazy (1983), pp. 5.
Corollary 2.1.9. If A is the infinitesimal generator of a C0 semigroup T(t) on X then D(A), the
domain of A, is dense in X and A is a closed linear operator.
Proof. See Pazy, A. (1983), pp. 5-6.
Theorem 2.1.10. Let T(t) and S(t) be C0 semigroups of bounded linear operators on X with
infinitesimal generators A and B respectively. If A = B then T(t) = S(t), for t ≥ 0. In other words,
a C0 semigroup T(t), t ≥ 0 is uniquely determined by its infinitesimal generator.
Proof. See Pazy (1983), pp. 6.
Theorem 2.1.11. Let A be the infinitesimal generator of a C0 semigroup T(t) on X. If D(An) is the

domain of An, then I
∞

=1n
D(An) is dense in X.

Proof. See Pazy (1983), pp. 6.
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Theorem 2.1.12 (Hille-Yosida Theorem)
          A linear (unbounded) operator A is the infinitesimal generator of a C0 semigroup of
contractions T(t), t ≥ 0 if and only if
(i)  A is closed and D(A) = X.
(ii)  The resolvent set ρ(A) of A contains [0, ∞) and for every λ > 0,

||R(λ; A)||L(X) ≤ 1/ λ.
Proof. See Pazy (1983), pp. 8.
Corollary 2.1.13. A linear operator A is the infinitesimal generator of a C0 semigroup T(t)
satisfying ||T(t)||L(X) ≤ teω for all t ≥ 0 if and only if
(i)  A is closed and )A(D = X.
(ii)  The resolvent set ρ(A) of A contains the ray { λ | Imλ = 0, λ > ω } and for such λ

 ||R(λ; A)||L(X) ≤ 
ωλ-

1 .
Theorem 2.1.14 A linear operator A with D(A) and R(A) in X is the infinitesimal generator of a
C0 semigroup T(t), t≥ 0 on X satisfying ||T(t)||L(X)≤ M for all t≥ 0 (for some M≥ 1) if and only if
(i)  A is closed, )A(D = X.
(ii) ρ (A) ⊃ (0, ∞ ) and || )A,(R nn λλ ||L(X) ≤ M forλ > 0, and n∈N0= {0, 1, 2, …}.
Proof. See Ahmed(1991), pp. 44.
Theorem 2.1.15. Let A be a densely defined linear operator on a Banach space X satisfying the
following conditions:
(a1)  There exists a 0 < δ < π/2 such that ρ(A) ⊃ Σδ  ≡  { λ ∈ ℜ | |arg λ |< π/2 + δ } ∪ {0}.
(a2)  There exists a constant M>0 such that  || R(λ; A)||L(X)  ≤ M/|λ|, for λ ∈ Σδ\ {0}.
Then A is the infinitesimal generator of a C0 semigroup T(t), t ≥0 satisfying
(c1)  ||T(t)||L(X)  ≤ K, for t ≥ 0 and some constant K > 0.
(c2)  T(t) =  ∫ λλ

Γ

λ
π ,d A) ;(Re t

i2
1

where Γ is a smooth curve in Σδ  running from ∞ ν−ie to ∞ νie for a fixed ν ∈ (π/2, π/2 + δ ) with
the integral converging in the uniform operator topology.
Proof. See Ahmed (1991), pp. 77.
Definition 2.1.16. A C0 semigroup T(t), t ≥ 0 on a Banach space X is said to be differentiable if,
for each x∈X, T(t)x is differentiable for all t > 0.
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Remark 2.1.17. Note that T(t) is not expected to be differentiable at the origin since that would
require its generator to be a bounded operator.
Theorem 2.1.18. If T(t), t ≥ 0 is a differentiable semigroup with A being its infinitesimal
generator  then it is differentiable infinitely many times and, for each n∈N0,
(i)  

ndt

nd T(t) = T(n)(t) = AnT(t) ∈ L(X), for t ≥ 0.

(ii)  T(n)(t) = (AT(t/n))n , for t > 0.
(iii)  T(n)(t) is uniformly continuous for t > 0.
Proof. See Ahmed (1991), pp. 74.

2.2  Analytic Semigroups
Definition 2.2.1. Let ∆ = { z ∈ ℜ | θ1< arg z < θ2 , θ1< 0 < θ2 } and suppose T(z)∈ L(X) for all
z ∈ ∆. The family {T(z)| z ∈ ∆ } is called an analytic semigroup in ∆ if it satisfies the following
properties:
(i)  z → T(z) is analytic in ∆ (in the sense of uniform operator topology, i. e., for all z ∆∈ ,
     x)z(Tx∗  is analytic in ℜ, for all Xx∈ , ∗∗ ∈Xx such that ||x||X≤ 1 and ≤∗

∗
X

||x|| 1, and
      ||T(z)||L(X) = X

1||x||
||x)z(T||sup

≤
).

(ii)  T(0) = I and 
∆∈

→
z

0z
lim T(z)x = x, for all x X∈ .

(iii)  T(z1+z2) = T(z1)T(z2), for all z1, z2 ∈ ∆.
            A semigroup T(t) will be called analytic if it is analytic in some sector∆ containing the
nonnegative real axis.
Theorem 2.2.2. Let A be the Infinitesimal generator of a uniformly bounded C0 semigroup T(t),
t ≥ 0, with 0∈ρ(A). Then the following statements are equivalent:
(a)  T(t) can be extended to an analytic semigroup from the nonnegative real line to a sector
around it, given by ∆δ ≡ { z | |arg z | < δ } for some δ > 0, and ||T(z)||L(X) is uniformly bounded on
every closed subsector  .  ' ,  ' δ<δ∆⊂∆ δδ

(b)  There exists a constant C > 0 such that, for every σ > 0 and τ ≠ 0,
||R(σ + iτ, A)||L( X ) ≤ C/|τ |.

(c)  There exists 0 < δ < π/2, and M ≥1, such that ρ(A) ⊃ Σ ≡ { λ ∈ ℜ | |arg λ | < π/2 + δ }∪{0}
       || R(λ; A)||L(X) ≤ M/|λ|, for λ ∈ Σ\ {0}.
(d)  T(t) is differentiable for all t > 0 and there exists a constant M1 > 0 such that
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||AT(t)||L(X) ≤ (M1/ t ) for t > 0.
Proof. See Ahmed (1991), pp. 82.

2.3 Fractional Powers of Closed Operators
Assumption (F). Let A be a densely defined closed linear operator with D(A) and R(A) in X for
which the resolvent set ρ(A) ⊃ Σ ≡ { λ ∈ ℜ | 0 < ω  < |arg λ | ≤ π } ∪ V0 where V0 is a
neighberhood of zero in ℜ and
                                                 || R(λ; A)||L(X) ≤ M/(1 + |λ| ), for λ ∈ Σ.                                    (2.3.1)
Definition 2.3.1. Let A be the operator satisfying the assumption (F) and letα > 0. Define
                                                   ∫ −= −α−

π
α−

C

1
i2

1 dz)zIA(zA                                               (2.3.2)

where the path C runs in the resolvent set of A from ϑ−∞ ie to ϑ∞ ie , π<ϑ<ω , avoiding the
negative real axis and the origin and α−z is taken to be positive for real positive values of z.
           The integral (2.3.2) converges in the uniform topology for every α > 0 and thus defines a
bounded linear operator α−A . For 0 <α < 1 we can deform the path of integration C into the
upper and lower sides of the negative real axis and obtain
                                               ∫ +=

∞
−α−

π
παα−

0

1sin dt)AtI(tA , 0 <α < 1.                               (2.3.3)

Lemma 2.3.2. Suppose A satisfies the assumption (F) with 0 < ω  < π /2 and let T(t), t ≥ 0 be the
semigroup corresponding to the operator –A. Then for every 0 < α < 1 and x ∈ X we have
                                               ,dt x)t(Tt  xA

0

1-
)(

1- ∫=
∞

α
αΓ

α                                                       (2.3.4)

where )(αΓ is the gamma function atα .
Proof. See Ahmed (1991), pp. 91-92.
Remark 2.3.3. Defining A- 0= I and using the equations
                                                          nA−  = (1/ Γ(n)) ∫

∞
−

0

1n dt)t(Tt ,                                       (2.3.5)

and  (2.3.4) one can verify that the equation (2.3.4) holds for all real numbers α ≥ 0 and not
merely for fractions.
Lemma 2.3.4. For α, β ≥0, A- ( α + β )  = A- α  A- β.
Proof. See Ahmed (1991), pp. 93.
Lemma 2.3.5. There exists a constant 0 < C < ∞ such that  || A- α ||  L( X ) ≤ C, for all 0 ≤ α ≤ 1.
Proof. See Ahmed (1991), pp. 93.
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Lemma 2.3.6. For every x ∈ X, 
0

lim
→α

 A-α x = x.
Proof. See Ahmed (1991), pp. 94.
Remark 2.3.7. Under the assumption (F), it follows from the above results that S(t) ≡  A- t , t ≥ 0
is itself a C0 semigroup in X.
Lemma 2.3.8. The operator A- α, α ≥ 0, is one-to-one.
Proof. See Ahmed (1991), pp. 95.
Definition 2.3.9. Suppose that the operator A satisfies the assumption (F) with 0 < ω  < π /2, so
that –A is the infinitesimal generator of an analytic semigroup T(t), t ≥ 0. For every α ≥ 0,
we define

                                                           






=α

>α
=

−α
α

  0.  for  I,   
  

0,  for  ,)(A  
  A

1-
                                                 (2.3.6)

Clearly by virtue of Lemma 2.3.8, this is a single valued map and its domain D(Aα) equals the
range of A- α, i. e., D(Aα) = R(A- α), for all  α ≥ 0.
Theorem 2.3.10. The operator Aα , 0 ≤ α ≤ 1, as defined in definition 2.3.9, satisfies the following
properties
(i)  Aα is a closed operator with D(Aα ) = R(A- α ).
(ii)  0 < β ≤ α implies D(Aα ) ⊂ D(Aβ ).
(iii) )A(D α  = X, for every α ≥ 0.
(iv)  If βα  , are real then Aα + βx  = Aα Aβx , for x ∈ D(Aγ), where γ ≡  max{ α, β, α + β }.
Proof. See Ahmed (1991), pp. 96.
Theorem 2.3.11. Suppose A satisfies the assumption (F) so that –A is the infinitesimal generator
of an analytic semigroup. Then, for each α satisfying 0 < α < 1, the operator Aα is given by
                                             Aαx  = ∫ +

∞
α

π
απ

0

1-1- sin dr xA)  rI(Ar )( ,                                        (2.3.7)

 for x ∈D(A).
Proof. See Ahmed (1991), pp. 97.
Theorem 2.3.12. Suppose –A is the infinitesimal generator of an analytic semigroup satisfying
the assumption (F). Then for 0 < α < 1 and for every σ > 0,
                                    || Aαx||X  ≤  (1 + M)[σα || x ||X + σ 1−α  || Ax ||X],                                   (2.3.8)
and further,
                                   || Aαx ||X  ≤ 2(1 + M)|| x || α−1

X  || Ax || αX ,                                                (2.3.9)
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 for x ∈ D(A).
Proof. See Ahmed (1991), pp. 98.
Corollary 2.3.13. Let B be a closed operator with D(B) ⊃ D(Aα ) for some α satisfying 0 < α ≤ 1.
Then there exists a constant K1 > 0 such that
                                                    ||Bx||X ≤ K1 ||Aαx||X,                                                            (2.3.10)
for x ∈ D(Aα), and
                                                    ||Bx||X ≤ K1(1 + M)[σα || x ||X + σ 1−α  ||Ax||X],                    (2.3.11)
 for x ∈ D(A) and for every σ > 0.
Proof. See Ahmed (1991), pp. 99.
Theorem 2.3.14. Suppose B is a closed linear operator with D(B) ⊃ D(A) and there exists
constants K > 0 and σ0 > 0 such that, for some 0 < ρ < 1 and every 0 < σ ≤ σ0 ,
                                                       ||Bx||X  ≤  K[ ρ−σ ||x||X + ρ−σ1 ||Ax||X],                               (2.3.12)
 for all x ∈ D(A). Then D(B) ⊃ D(Aα) for ρ < α ≤ 1.
Proof. See Ahmed (1991), pp. 100.
Remark 2.3.15. For an arbitrary ω appearing in assumption (F), the operator -Aα , α ≤ 1/2 is the
generator of a C0-semigroup while for 0 < ω< π /2, -Aα  , 0 < α ≤ 1, is the generator of an
analytic semigroup.
Proof. See Ahmed (1991), pp. 101.
Theorem 2.3.16. Let -A be the infinitesimal generator of an analytic semigroup T(t), t ≥ 0 on X
and suppose 0 ∈ ρ(A). Then the following results hold
(a)  T(t )X ⊂ D( αA ), for t > 0 and all α ≥ 0.
(b)  For x ∈ D( αA ), T(t) αA x = αA T(t )x, for all α ≥0.
(c)  For each t > 0, αA T(t )∈ L(X) and

                                        || αA T(t )||L( X ) ≤ t etK γ−α−
α  ,                                    (2.3.13)

       t > 0, for some constants Kα > 0, 0>γ .
(d)  For 0 < α ≤ 1 and x ∈ D( αA ),

                               ||T(t)x – x ||X ≤ Cα ||xA||t αα
X,                                            (2.3.14)

       for some constant Cα > 0.
Proof. See Ahmed (1991), pp. 101.
Theorem 2.3.17. (Moment Inequality)
For 0 ≤ α < β ≤ 1, there exists a constant Mα, β such that
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                                                 || αA x||X  ≤  Mα, β
)/(1

X
/

X )||x(||)||xA(|| βα−βαβ ,                  (2.3.15)
 for all x∈  D( βA ).
Proof. See Ahmed (1991), pp. 103.

2.4  Differential Equations on Banach Space
           Let X be a Banach space, called the state space and A∈ L(X) with D(A) and R(A) ⊂ X and
consider the differential equation on X given by

                                                






=

>=

. xx(0)

0  t ,Axdt
dx

0

                                                                       (2.4.1)

Definition 2.4.1. The Cauchy problem (2.4.1) is said to have a classical solution if for each given
x0 ∈ D(A) there exists a function x(t) ≡ x(t, x0), t > 0 with values in X, satisfying the following
properties
(i)  x is C([0,∞ ), X)∩C1((0,∞ ), X); that is, x is once continuously differentiable

 with ∈ )t(xdt
d  C((0, ∞ ); X).

(ii) )t(x
dt
d  = Ax(t) for all t > 0, and

(iii)  x(0)  =  x0.
            Clearly the condition (ii) also implies that x(t) ∈ D(A) for all t > 0.
Theorem 2.4.2. Let A be a densely defined linear operator in X with φ≠ρ   )A( . Then the initial
value problem (2.4.1) has a unique classical solution x(t), which is continuously differentiable on
[0, ∞ ), for every initial value x0∈ D(A) if, and only if, A is the infinitesimal generator of a
C0 semigroup T(t).
Proof. See Pazy (1983), pp. 102.
Theorem 2.4.3. If A is the infinitesimal generator of a differentiable semigroup on X then for
every x0∈ X the initial value problem (2.4.1) has a unique classical solution.
Proof. See Pazy (1983), pp. 104.
Corollary 2.4.4. If A is  the infinitesimal generator of an analytic semigroup then for every
x0 ∈ X, the initial value problem (2.4.1) has a unique classical solution.
Proof. See Pazy (1983), pp. 104.
Remark 2.4.5. If A is the infinitesimal generator of a C0 semigroup which is not differentiable
then, in general, if x0∉ D(A), the initial value problem (2.4.1) does not have a classical solution.
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The function t a T(t)x0 is then a “generalized solution” of the initial value problem (2.4.1) which
we will call a mild solution. There are many ways to define generalized solutions of the initial
value problem (2.4.1). All lead eventually to T(t)x0. One such way of defining a generalized
solution of (2.4.1) is the following: A continuous function x on [0,∞ ) is a generalized solution of
(2.4.1) if there are xn∈D(A) such that xn→x(0) as n ∞→  and T(t)xn→x(t) uniformly on
bounded intervals. It is obvious that the generalized solution thus defined is independent of the
sequence (xn), is unique and if x(0)∈D(A) it gives the solution of (2.4.1). Clearly with this
definition of generalized solution, (2.4.1) has a generalized solution for every x0∈X and this
generalized solution is T(t)x0.
Definition 2.4.6. If A is the infinitesimal generator of a C0 semigroup T(t), t ≥ 0 , on X then for
every x0∈X, the function x(t) ≡  T(t)x0, t ≥ 0 is called the mild solution of the initial value
problem (2.4.1).
Theorem 2.4.7. Let A be the generator of a C0 semigroup T(t), t ≥ 0 , on X. Then
(i)  For   x∈ D(An), n∈ ⊆, T(t)x = ∑

≤≤ 1-n k   0

kk x)Ak! /(t  + ∫ ηη−η
t

0

n1-n d)x)(AT( ])!1n/()-(t [

      for t ≥ 0.
(ii) On any finite interval every mild solution of the Cauchy problem (2.4.1) can beapproximated
      to any degree of accuracy by a C∞- function admitting the ∞ -series representation,

∑
∞<≤

η
 k   0

kk A)!k/(t ,

      for a suitable X.  ∈η

Proof. See Ahmed (1991), pp. 150.

Nonhomogeneous Cauchy Problem
           Consider the Cauchy problem,

                                                     






=

>+=

.x)0(x

,0t),t(fAxdt
dx

0

                                                      (2.4.2)

where x0∈X and f ∈ L1([0,∞ ); X).
Definition 2.4.8. (Classical Solution)
           A function x : [0, a)→X is said to be a classical solution of the Cauchy problem (2.4.2) if
(i)  x∈C([0, a); X)∩C1((0, a); X).
(ii) x(t) ∈ D(A) for t ∈ (0, a).
(iii) x satisfies (2.4.2) on (0, a).
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Notation: For M≥ 1 and ∈ω ∇, let G(M,ω ) denote the class of infinitesimal generators of C0

semigroups {T(t) | t≥ 0 } of bounded linear operators on X such that ||T(t)||L(X) ≤ M exp(ω t),
t≥ 0.
Lemma 2.4.9. If the operator A∈G(M, )ω with {T(t) | t } 0 ≥ being the corresponding semigroup
and if the Cauchy problem (2.4.2) has a classical solution x in the sense of definition 2.4.8, then x
is uniquely defined by
                                               ∫ >+=

t

0
0 0.  t s)f(s)ds,-T(t  T(t)x    )t(x                                      (2.4.3)

Proof. See Ahmed (1991), pp. 152.
Definition 2.4.10. (Mild Solution)
            A function x ∈ C(I, X), for any finite interval I ≡ [0, a], is said to be a mild solution of the
Cauchy problem (2.4.2) corresponding to the initial state x0∈X and the input f ∈ L1(I, X) if x is
given by the expression (2.4.3) for t ∈ I.
Theorem 2.4.11. Consider the Cauchy problem (2.4.2) with x0 ∈ D(A) and f ∈ L1([0, a]; X) ∩
C((0, a); X) and suppose that A ∈ G(M, )ω with {T(t) | t ≥ 0} being the corresponding semigroup,
and let
                                                        a), [0,  t z(t),  T(t)x    x(t) 0 ∈+=

where z(t) ∫ ≡∈≡
t

0
a], [0,  I  t s)f(s)ds,-T(t be the associated mild solution. Then, in order that x be

a classical solution, it is necessary and sufficient that any one of the following conditions hold
(i)  z ∈ C1((0, a); X).
(ii) z(t) ∈ D(A) for t ∈ (0, a) and Az(t) ∈ C((0, a); X).
Proof. See Ahmed (1991), pp. 153.
Corollary 2.4.12 Suppose A∈G(M, )ω  with {T(t) | t ≥ 0} being the corresponding semigroup. If
f ∈C1([0, a]; X) and x0∈D(A), then the Cauchy problem (2.4.2) has a unique (classical) solution.
Proof. See Ahmed (1991), pp. 155.
Corollary 2.4.13. Let A∈G(M, )ω  with {T(t) | t ≥ 0} being the corresponding semigroup. Then
for every x0∈D(A) and f∈L1([0, a]; X) satisfying (a) f(t) ∈ D(A) and (b) Af ∈ L1([0, a]; X), the
Cauchy problem (2.4.2) has a unique (classical) solution.
Theorem 2.4.14. Let A ∈ G(M, )ω  with { T(t) | t ≥ 0 } being the corresponding semigroup and
f∈L1([0, a]; X) and x0∈X. Then on any subinterval [0, b], b < a, the mild solution x of the initial
value problem (2.4.2) given by (2.4.3), is the uniform limit of classical solutions.
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Proof. See Ahmed (1991), pp. 155.
         Let I be an interval. A function f : I→X is Hölder continuous with exponent ϑ , 0 <ϑ  < 1
on I if there is a constant L such that

||f(t) – f(s)||X ≤  L|t – s| ϑ ,
for s, t∈I. It is locally Hölder continuous if every t∈I has a neighberhood in which f is Hölder
continuous. We denote the family of all Hölder continuous functions with exponentϑon I by
C ϑ (I; X).
Theorem 2.4.15. Let A be the infinitesimal generator of an analytic semigroup T(t) and
f ∈ Lp([0, T]; X) with 1 < p < ∞ . If x is the mild solution of the problem (2.4.2) then x is Hölder
continuous with exponent (p – 1)/p on [ ε , T], for every ε > 0. If moreover x0∈ D(A) then x is
Hölder continuous with the same exponent on [0, T].
Proof. See Pazy (1983), pp. 110.
Theorem 2.4.16. Let A be the infinitesimal generator of an analytic semigroupT(t).
Let f∈L1([0, T]; X) and assume that for every 0 < t < T, there is a tδ > 0 and a continuous real
valued function Wt( τ ) : [0, ∞ ) ) [0, ∞→  such that

||f(t) - f(s)||X  ≤  Wt(| t-s |)
and

∫ ∞<τ
δ

τ
τt

0

)(tW .    d 

Then for every x0∈ X the mild solution of (2.4.2) is a classical solution.
Proof. See Pazy (1983), pp. 111.
Corollary 2.4.17. Let A be the infinitesimal generator of an analytic semigroup T(t).
If f ∈ L1([0, T]; X) is locally Hölder continuous on (0, T] then for every x0∈X the initial value
problem (2.4.2) has a unique classical solution x.
Lemma 2.4.18. Let A be the infinitesimal generator of an analytic semigroup T(t) and let
f ∈ C ϑ ([0, T]; X). If v1(t)  = ∫ −−

t

0
ds))t(f)s(f)(st(T  then v1(t)∈D(A) for T  t  0 ≤≤ and           

Av1(t) ∈ ϑC ([0, T]; X).
Proof. See Pazy (1983), pp. 113.
Theorem 2.4.19. Let A be the infinitesimal generator of an analytic semigroup T(t) and let
f∈ ϑC ([0, T]; X). If x is the solution of the initial value problem (2.4.2) on [0, T] then
(i)  For every δ > 0, Ax∈ ϑC ([ δ , T]; X) and dt

dx ∈ ϑC ([ δ , T]; X).
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(ii) If x0∈D(A) then Ax and dt
dx are continuous on [0, T].

(iii) If x0 = 0 and f(0) = 0 then Ax, dt
dx ∈ ϑC ([ δ , T]; X).

Proof. See Pazy (1983), pp. 114.
Theorem 2.4.20. Let A be the infinitesimal generator of an analytic semigroup T(t) on X and let
0 ∈ )A(ρ . If f(s) is continuous, f(s) ∈ D((-A) α ), 0 < 1  ≤α and ||(-A)α f(s)||X is bounded, then for
every x0∈ X the mild solution of (2.4.2) is a classical solution.
Proof. See Pazy (1983), pp 115.

Semilinear Evolution Equations
       Consider the semilinear evolution equation

                                          






=

>=+

,x)0(x      

,0t),x,t(fAxdt
dx

0

                                                              (2.4.4)

on a Banach space X.
Definition 2.4.21. A function x ∈ C(I, X), I ≡ [0, a], is said to be a mild solution of (2.4.4) if x
satisfies the integral equation

                                        x(t) = T(t)x0 +  ∫ ∈−
t

0
I.  t ds, ))s(x ,s(f)st(T                                      (2.4.5)

Theorem 2.4.22. Let –A be the infinitesimal generator of a C0 semigroup on a Banach space X
and t  ) f(t, ξa be a continuous X-valued function for each X ∈ξ , and suppose there exists a
positive constant K such that for all ηξ  , ∈X,

||f(t, ξ ) – f(t,η )||X  ≤  K|| ηξ - ||X, for all t ∈ I.
Then, for every x0 ∈ X, the system (2.4.4) has a unique mild solution x ∈ C(I, X). Furthermore,
x0a x is Lipschitz continuous from X to C(I, X).
Proof. See Ahmed (1991), pp. 168.
Corollary 2.4.23. If A and f satisfy the assumptions of Theorem 2.4.22 and v∈C(I, X) then the
integral equation    x(t) = v(t) +  ∫ ∈−

t

0
I,  t ds, ))s(x ,s(f)st(T  has a unique solution x∈C(I, X).

Theorem 2.4.24. Let –A be the infinitesimal generator of a C0 semigroup T(t), t≥ 0 on X and
f :[0,∞ ) × X → X continuous and locally Lipschitz in the sense that, for every r > 0 and t1 > 0
there exists a constant K ≡K(t1, r) such that

|| f(t, ξ )-f(t, η ) ||X  ≤  K|| ηξ - ||X,
for all t ∈ [0, t1] and ξ , η∈Br ≡ { }r   || || | X  ≤ζ∈ζ .
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Then for every x0∈ X, there exists a tm= tmax(x0) ∞≤  such that the Cauchy problem (2.4.4) has a
unique mild solution x∈C([0, tm); X). Further if tm< ∞  then .  ||)t(x||lim X

mtt
∞=

→

2.5 Gronwall’s Lemma
Lemma 2.5.1. Let f, g : [t0, T0]→∇ be continuous functions with g nondecreasing, and which,
for fixed c > 0, satisfy the equality

f(t) ≤  g(t) +  c ∫
t

0t
ds )s(f , for all t∈ [t0, T0].

Then f(t) ≤  g(t) )0tt(ce −   for all t ∈ [t0, T0].
Proof. See Zeidler (1984), pp. 82.
Lemma 2.5.2.
         Let 0 1   <α≤ and suppose that g∈L1(0, T) is nonnegative a. e.. If w ∈ L1(0, T) satisfies the
integral inequality

w(t) ∫ τττ−+≤ α−
t

0t
d )(w)t(K  g(t) ,

for almost all t ∈ [0, T] and for some K > 0 then
w(t) ∫ ττττ−+≤ α

α
α−

t

0t

-1 d ))g()-K(t (m)t(K  g(t) ,

for almost all t ∈ (0, T) where

∑
∞

=
α−Γ

−ξαΓ
α ∈ξ=ξ

1k
))1(k(

1kk)]-(1[   ,   )(m ∇, 0 1   <α≤ .  

Proof. See Amann (1978).
Corollary 2.5.3. Suppose w∈L1(0, T) satisfies

w(t) ∫ τττ−+≤ α−β
t

0
1

-
0 d )(w)t(c  tc ,

for almost all t ∈ (0, T), where c0, c1 are nonnegative constants and 0 1   , <βα≤ then there exists a
constant C ≡ C(α , c1, T) such that

w(t) ≤  c0C t-β , a. e. t ∈ (0, T).
Proof. See Amann(1978).
Lemma 2.5.4. (Abstract Gronwall’s Lemma)
         Let A : X→X be a continuous linear positive operator on the ordered Banach space X with
spectral radius r(A) < 1. Let x, y, g ∈ X. Then x ≤  g + Ax and y = g + Ay always imply x≤ y.
 Proof. See Zeidler (1984), pp. 281.
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Corollary 2.5.5. Let g, h, x∈C([a, b]) with h ≥ 0 on [a, b]. Let H(t) = ∫
t

0
ds)s(h , it follows that if

x(t) ≤  g(t) + ∫
t

0
ds)s(x)s(h ,

for all t∈[a, b],
then

x(t) ≤  g(t)  + ,dse)s(h)s(g
t

0

)s(H)t(H∫ −

for all t∈[a, b].
In particular, if g is monotone increasing and h(s) ≡  c with c > 0, then we obtain

x(t) ≤  g(t) exp(c(t-a)),
for all t ∈ [a, b].
Proof. See Zeidler (1984), pp. 282.
Lemma 2.5.6. (Gronwall’s Lemma with Time Lag)
           Suppose x ∈ C ≡ C([-r, T]; X) satisfies  the following inequality

                                          








∈ϕ=

∈∫+∫+≤

0], [-r, t(t),      x(t)

T],[0, t,ds||x||cds||x(s)||b  a  ||)t(x||
t

0
Cs

t

0

where ∈ϕ C and a, b, c 0 ≥ are constants and || xs||C = X
0r

||)s(x||sup θ+
≤θ≤−

. Then

|| x(t) ||X ≤  ( a + cT||ϕ ||C )e( b+c) t .
Proof. See Xiang and Kuang (2000).



Chapter III
Semilinear Integrodifferential Equations

and Analytic Semigroups
         In this chapter, we study existence of mild solutions for a class of semilinear
integrodifferential equations with finite delay. We discuss this problem in several kinds of
situations. The theory of analytic semigroups, and the Banach contraction mapping theorem are
important tools to prove local existence and uniqueness of mild solutions. We impose an a priori
estimate condition to achieve extension of local mild solutions. A global existence theorem is
proved. We also study the regularity of mild solutions and continuous dependence. The existence
problem of mild solutions for a system with infinite delay is investigated.
           Let X be a Banach space (over IR or ), and r ≥ 0, T > 0, 0 < α < 1 be given. Let L(X) denote the
Banach space of linear and bounded operators on X with the supremum norm. For an
infinitesimal generator –A of an analytic semigroup T(t), t ≥ 0, we can define a fractional power
operator Aα and D(Aα) is the Banach space endowed with the graph norm defined by |||x||| =

||Aαx||X + ||x||X, x ∈ D(Aα). By the invertibility of αA , the graph norm |||||| ⋅  is equivalent to the norm
X||xA|| ||x|| α

α = . Throughout this thesis, we denote by αX , the Banach space )A(D α equipped
with the norm α⋅ |||| . Here are assumptions that are used to prove the existence of solutions and
other related properties.

Assumptions
(A)  –A is the infinitesimal generator of an analytic semigroup T(t) on X satisfying                    ||T

(t)||L(X) ≤ M for all t ≥ 0, and 0 ∈ ρ(–A).

(F1) The function f : Xα → X is locally Lipschitz continuous in x ∈ Xα, i. e., for each ρ > 0 there
exists a constant K1(ρ) > 0 such that

||f(x1) – f(x2)||X  ≤  K1(ρ)||x1 – x2||α,

for all x1, x2 ∈Xα such that ||x1||α  ≤ ρ and ||x2||α  ≤ ρ.

(G1) The function g : Xα → X is locally Lipschitz continuous in x ∈ Xα, i. e., for each ρ > 0 there
exists a constant K2(ρ) > 0 such that
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||g(x1) – g(x2)||X ≤ K2(ρ)||x1 – x2||α, 
for all x1, x2 ∈ Xα such that ||x1||α ≤ ρ and ||x2||α ≤ ρ. 
(F2) The function f : [0, T] × Xα → X satisfies 
(i)  f(•, x) is continuous on [0, T], for each x ∈ Xα. 
(ii) f(t, •) is locally Lipschitz continuous on Xα , for each t ∈ [0, T], i. e., for each t∈ and      ]T,0[

      each there exists a constant K0>ρ 1= K1(t, ρ ) > 0 such that  
||f(s, x1) – f(s, x2)||X ≤  K1|| x1 – x2|| α , 

      for all s∈ and all x]t,0[ 1, x2∈ αX such that || x1|| α ρ≤ , || x2|| α ρ≤ . 
(G2) The function g : [–r, T] × Xα → X satisfies 
(i)  g(•, x) is continuous on [-r, T], for each x ∈ Xα. 
(ii) g(t, •) is locally Lipschitz continuous on Xα, for each t ∈ [–r, T]. 
(F3) The function f : [0, T] × Xα → X satisfies 
(i)  f(•, x) is measurable on [0, T], for each x ∈ Xα. 
(ii) f(t, •) is locally Lipschitz continuous on Xα, for each t ∈ [0, T]. 
(iii) f maps every bounded set in [0, T] × Xα to a bounded set in X. 
(G3) The function g : [-r, T] × Xα → X satisfies 
(i)  g(•, x) is measurable on [-r, T], for each x ∈ Xα. 
(ii) g(t, •) is locally Lipschitz continuous on Xα, for each t ∈ [-r, T]. 
(iii) g maps every bounded set in [-r, T] × Xα to a bounded set in X. 
(F4) The function f : [0, T] × Xα → X satisfies 
(i)  f(•, x)  is locally Hölder continuous on [0, T], for each x∈Xα, i. e., for each x0 ∈ and        αX

      each t∈ [0, T], there exists a neighberhood V⊂ [0, T] α×X  of (t, x0) and a constant L such    
      that 

||f(s1, x) – f(s2, x) ||X ≤ L| s1 – s2 | ,   ν

       for all s1, s2∈[0, t] such that (s1, x), (s2, x)∈ V, for some exponent ∈ν (0, 1). 
(ii) f(t, •) is locally Lipschitz continuous on , for each t ∈ [0, T]. αX

(G4) The function g : [-r, T] × Xα → X satisfies 
(i)  g(•, x) is locally Hölder continuous on [-r, T], for each x ∈ Xα. 
(ii) g(t, •) is locally Lipschitz continuous on Xα, for each t∈[-r, T]. 
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(F5) The function f : Xα → X satisfies a growth condition, i. e., there exists a constant K1 > 0 
such that  

||f(x)||X ≤ K1(1 + ||x||α), 
for all x ∈ Xα. 
(G5) The function g: Xα → X satisfies a growth condition, i. e., there exists a constant K2 > 0 
such that  

||g(x)||X ≤ K2(1 + ||x||α), 
for all x ∈ Xα. 
(F6) Suppose there exists a Banach space E with Xα ΟE ΟX and a constant λ ∈ [1,

α
1 ) such 

that for every ρ > 0 there exists a constant c(ρ) > 0 such that 
||f(x)||X ≤ c(ρ)(1 + || ),  λ

α||x

for every x ∈  satisfying || x ||αX E ≤ ρ. 
(G6) Suppose there exists a Banach space E with Xα ΟE ΟX and a constant λ ∈ [1, 

α
1 ) such 

that for every ρ > 0 there exists a constant d(ρ) > 0 such that 
||g(x)||X ≤ d(ρ)(1 + || ), λ

α||x

for every x ∈  satisfying || x ||αX E ≤ ρ. 
(H1)  h ∈ L1([0, T + r]; L(X)). 
(H2)  h ∈ Lp([0, T + r]; L(X)), for 1 < p < ∞. 
3.1 Local Existence of Mild Solutions 
           We consider semilinear integrodifferential equations as follows: 

                   





∈ϕ=

∈∫ −+=+
−

[-r,0]. t(t),   x(t)          

],T,0(t,ds))s(x(g)st(h))t(x(f)t(Axdt
dx t

r

                                       (3.1.1) 

Definition 3.1.1. A function x ∈ C([-r, T]; Xα) ∩ C1((0, T); X) is called a classical solution of 
the system (3.1.1) if it satisfies the system (3.1.1) with ϕ ∈ C([–r, 0]; Xα). 
Definition 3.1.2. A function x ∈ C([-r, a]; Xα), a ]T,0[∈ , is called a mild solution of the system 
(3.1.1) if it satisfies the integral equation (3.1.2) 

x(t) =   (3.1.2) 





−∈ϕ

∈∫ ∫ ∫ θθθ−−+−+ϕ
−

].0,r[t),t(

],a,0[t,ds]d))(x(g)s(h)[st(Tds))s(x(f)st(T)0()t(T
t

0

t

0

s

r

  



 21

          In the following we deal with the problem of local existence which is one of main parts of 
our thesis. Analytic semigroups, locally Lipschitz condition, and the Banach contraction mapping 
theorem are important tools to solve this problem. An a- priori estimate is a very important 
condition to prove extension theorem. To obtain global existence of mild solutions, we impose a 
nearly linear growth condition and a super linear growth condition. We consider existence 
problems in several kinds of situations.  
          Let C C([0, T]; ) denote the Banach space of all continuous -valued functions 
defined on [0, T], with the supremum norm. For a fixed , let 

denote{ . Then  is a nonempty closed convex subset of . We 
denote T  by 

≡

x∈

θ)(

αX

(ϕ=

θ

αX

([C∈ )X];0,r α−ϕ

CϕC )}0)0(x|C

)X(L d||h

ϕC

∫
+r

0
|| h .     

Lemma 3.1.3. Assume that (A), (F1), (G1), and (H1) hold. For any ϕ ∈ C([–r, 0]; Xα), define a 
mapping G on by  ϕC

   (Gx)(t) = T    ],T,0[t,ds]d))(x~(g)s(h)[st(Tds))s(x(f)st(T)0()t(
t

0

s

r

t

0
∈∫ ∫ θθθ−−+∫ −+ϕ

−

where x∈  and                                                                              (3.1.3) ϕC




−∈ϕ
∈

=
].0,r[t),t(
],T,0[t),t(x

)t(x~

Then G : . ϕC → ϕC

Proof. Let x ∈ . We show that GxϕC  ∈ . Clearly, (Gx)(0) = ϕC ϕ (0). 
First, we show that ||f( (s))||

]T,0[s
sup
∈

x X and ||g(
]T,r[s

sup
−∈

x~ (s))||X are bounded, then we will show that 

Gx is continuous on [0, T].  
By definition of x~ , x~ is a continuous X -valued function on [-r, T], then there exists a 
constantρ> 0 such that ||

α

,||)s(x~ ρ≤α for all s∈[-r, T].  
Since f is locally Lipschitz on Xα, ρ≤α||)s(x|| for all s∈[0, T] and ρ≤ϕ α||)0(|| then 

]T,0[s
sup
∈

||f( (s))||x X ≤ || f(x(s)) – f(x(0)) ||
]T,0[s

sup
∈

X + ||f(x(0))||X 

    ≤ K1(ρ )  + ||f(ϕ(0))||







ϕ− α

∈
||)0()s(x||sup

]T,0[s
X 

 
    ≤ K1(ρ ) )||)0(||||)s(x||sup(

]T,0[s
αα

∈
ϕ+  + ||f(ϕ(0))||X 

                                  ≤ ρ2 X1 ||))0((f|| )(K ϕ+ρ  ≡ M .                                                      (3.1.4) 

  



 22

Note that M depends only on and ρ ϕ . 
Since g is locally Lipschitz on Xα and ρ≤ϕ α||)s(|| for all s∈ [-r, 0], then there exists a constant  
K2(ρ ) such that 

αϕ−ϕρ≤ϕ−ϕ ||)0()s(||)(K||))0((g))s((g|| 2X , 

.||)0(x)s(x||)(K||))0(x(g))s(x(g|| 2X α−ρ≤−

Then     ||g(
]T,r[s

sup
−∈

x~ (s))||X  ≤ X
Ts0

X
0sr

||))s(x(g||sup||))s((g||sup
≤≤≤≤−

+ϕ  

 .                                          ≤ XX
0sr

||))0((g||)||))0((g))s((g(||sup ϕ+ϕ−ϕ
≤≤−

 

                                                       + XX
Ts0

||))0(x(g||)||))0(x(g))s(x(g(||sup +−
≤≤

 

                                         ≤   K2(ρ ) 


  X
0sr

||))0((g||||)0()s(||sup ϕ+



ϕ−ϕ α

≤≤−

                                                      + K2 )(ρ 







ϕ− α

≤≤
||)0()s(x||sup

Ts0
+ ||g(ϕ (0))||X 

                                         ≤  K2(ρ )  X
0sr

||))0((g||||)0(||)||)s(||sup( ϕ+







ϕ+ϕ αα

≤≤−

                                                      + K2 )(ρ 







ϕ+ αα

≤≤
||)0(||)||)s(x||sup(

Ts0
+ ||g( (0))||ϕ X 

                                         K≤ ρ4 2(ρ ) + 2||g(ϕ (0))||X N≡ .                                               (3.1.5) 
Note that N depends only on  and ρ ϕ .  
We now show that Gx is continuous on [0, T).  
Let t∈[0, T) and let  be such that 0 ξ ≤  t < t + ξ < T. Then 
 || (Gx)( ) – (Gx)(t) ||ξ+t α    
 
               ≤    || T(t + )ϕ(0) – T(t)ϕ(0) ||ξ α   
                 + || – ||  ∫ −ξ+

ξ+t

0
ds))s(x(f)st(T ∫ −

t

0
ds))s(x(f)st(T α

                   + || – ||  ∫ ∫ θθθ−−ξ+
ξ+

−

t

0

s

r
ds]d))(x~(g)s(h)[st(T ∫ ∫ θθθ−−

−

t

0

s

r
ds]d))(x~(g)s(h)[st(T α

         ≤   || (T( ) – I)T(t)Aξ
αϕ(0) ||X 

          + || ||  +  ∫ −−−ξ+
t

0
ds))s(x(f))st(T)st(T( α ∫ −ξ+

ξ+t

t
X ds||))s(x(f)st(T||

               + ||  ∫ ∫ θθθ−−−−ξ+ α
−

t

0

s

r
||ds]d))(x~(g)s(h))[st(T)st(T(
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                     +  ∫ ∫ θθθ−−ξ+
ξ+

α
−

t

t

s

r
ds||]d))(x~(g)s(h)[st(T||

         ≤   || (T( ) – I)T(t)Aξ
αϕ(0) ||X 

          + || (T( ) – I)[ ] ||  ξ ∫ −
t

0
ds))s(x(f)st(T α

           + Kα ∫ −ξ+
ξ+

α−
t

t
X ds||))s(x(f||)st(  

            +||(T( ) – I) ||     ξ ∫ ∫ θθθ−−
−

t

0

s

r
ds]d))(x~(g)s(h)[st(T α
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        + Kα ∫ ∫ θθθ−−ξ+
ξ+

−

α−
t

t

s

r
X)X(L ds]d||))(x~(g||||)s(h||[)st(  

                         ≤   || (T( ξ ) – I)T(t)Aαϕ(0) ||X 

          + || (T( ) – I)Aξ α[ ]||X ∫ −
t

0
ds))s(x(f)st(T

              + Kα M
α−

ξ α−

1

1
 

                     + || (T( ) – I)Aξ α[ ]||∫ ∫ θθθ−−
−

t

0

s

r
ds]d))(x(g)s(h)[st(T X 

                                + Kα h N
α−

ξ α−

1

1
. 

Since ϕ(0) ∈ Xα, T(t)Aαϕ(0) ∈ X and T(t) is strongly continuous then ||(T( ξ ) – I)T(t)Aαϕ(0)||X → 0 as ξ → 0+.  

Since f(x(s))∈X, T(t) : is strongly continuous and : then α→ XX αA XX →α

|| (T( ξ ) – I)Aα[ ]||∫ −
t

0
ds))s(x(f)st(T X → 0+. 

Since h(s – θ) ∈ L(X), g : Xα → X and x(s) ∈ Xα then ∈X.  ∫ θθθ−
−

s

r
d))(x~(g)s(h

Since T(t): X →  thenαX ∫ ∫ θθθ−−
−

t

0

s

r
ds]d))(x~(g)s(h)[st(T ∈ αX , and so 

Aα  ∈ X. Since T(t) is strongly continuous then  ∫ ∫ θθθ−−
−

t

0

s

r
ds]d))(x~(g)s(h)[st(T

||(T( ξ ) – I)[ Aα ∫ ∫ θθθ−−
−

t

0

s

r
ds]d))(x~(g)s(h)[st(T ]||X → 0 as ξ → 0+. 

Hence ||(Gx)(t + ) – (Gx)(t)||ξ α → 0 as ξ  → 0+. 

           By a similar argument, it follows that || 0||)T)(Gx()T)(Gx( →−ξ− α as . ξ +→ 0

Then Gx is continuous on [0, T]. 
Hence Gx ∈ . The proof is complete.                                                                                      ϕC

Theorem 3.1.4. ( Local Existence Theorem ) Assume that (A), (F1), (G1), and (H1) hold.  
Let ϕ ∈ C([–r, 0]; Xα) and , for someβ∈ϕ X)0( ]1,(α∈β . Then there exists a positive number t1 such 
that the system (3.1.1) has a unique mild solution on [-r, t1]. 
Proof. Let . Set B ={]T,0(t1 ∈ ]}t,0[t,1||(0)-x(t)|| |Cx 1∈≤ϕ∈ αϕ . 
Define a mapping G on B by 

 (Gx)(t)  =  ],t,0[t,ds]d))(x~(g)s(h)[st(Tds))s(x(f)st(T)0()t(T 1
t

0

s

r

t

0
∈∫ ∫ θθθ−−+∫ −+ϕ

−

where x∈B and                                                                                  (3.1.6) 




−∈ϕ
∈

=
].0,r[t),t(
],t,0[t),t(x

)t(x~ 1

  



 24

           We will show there exists a t1 > 0 such that G maps B to B and G is a contraction mapping. Then by the 
Contraction mapping theorem, G has a unique fixed point in B. This means that the system (3.1.1) has a unique 
local mild solution. 
          Since β  then X Ο X , let cα> β α 1 be a constant such that βα ≤ ||x||c||x|| 1 , for all x∈ . βX

Let  1 + cρ ≡ 1 || βϕ ||)0( . 
As in Lemma 3.1.3, there exists N,M depending only on ρ and ϕ such that 

]T,0[s
sup
∈

||f(x(s))||X ≤ M , 

]T,r[s
sup
−∈

||g(x(s))||X ≤ N , 

provided x∈B. Let and )(K1 ρ )(K 2 ρ be Lipschitz constants of f and g respectively. By the 
properties 2.3.16 (c), (d) of analytic semigroups, since , there exist 
constants > 0 and K

α−β
α ∈ϕ X)0(A

αC −β α > 0 such that  
||T(t)ϕ(0) – ϕ(0)|| ≤ C , α β

α−β
α−β ϕ ||)0(||t

and                                                  
α−

α
α ≤ tK||)t(TA|| )X(L , 

for all t > 0. 

Set K  = M  + )(K1 ρ + ( N + ))(K 2 ρ h . Fix L∈(0, 1). 

Choose t1 = min{1, T, 
α−β

−

α−β
α

α−β 







+ρ

1

L
1 )KKC( }. 

At first, we show that G: B → B. Let x ∈ B.  

Then ρ=ϕ+≤ϕ+≤ βαα ||)0(||c1||)0(||1||)t(x 1|| , for all t∈[0, t1].  
By Lemma 3.1.3, G : . Soϕϕ → CC ϕ∈CGx .  
For t ∈ [0, t1],  
||(Gx)(t) – ϕ(0)||α  

                   ≤   ||T(t)ϕ(0) – ϕ(0)||α +  ∫ − α

t

0
ds||))s(x(f)st(T||

                 +  ∫ ∫ θθθ−− α
−

t

0

s

r
ds||]d))(x~(g)s(h)[st(T||

           ≤   + Kβ
α−β

α−β ϕ ||)0(||tC α  ∫ − α−
t

0
X ds||))s(x(f||)st(

                        + Kα  ∫ ∫ θθθ−−
−

α−
t

0

s

r
X)X(L ds]d||))(x~(g||||)s(h||[)st(

            + K≤ β
α−β

α−β ϕ ||)0(||tC α M
α−

α−

1
t1

 + Kα N ( )∫ θθ
+rT

0
)X(L d||)(h||

α−

α−

1
t1
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                   ≤  C  + Kβ
α−β

α−β ϕ ||)0(||t1 α( M  + N h )
α−

α−

1
t1
1   

                   ≤ + Kβ
α−β

α−β ϕ ||)0(||tC 1 α K
α−

α−

1
t1
1   

                   ≤ + Kβ
α−β

α−β ϕ ||)0(||tC 1 α K
α−β

α−β
1t  

                   
                   ≤  L ≤  1. 

Then G : B → B. 
Next we show that G is a contraction on B.  
Let x1, x2 ∈ B.  

For t ∈ [0, t1], since x1, x2∈B, ρ≤αα ||x||,||x 21|| . We have 
||(Gx1)(t) – (Gx2)(t) ||α 
≤  ∫ −− α

t

0
21 ds||)))s(x(f))s(x(f)(st(T||

 + ∫ ∫  θθ−θθ−− α
−

t

0

s

r
21 ds||]d)))(x~(g))(x~(g)(s(h)[st(T||

≤ Kα  ∫ −− α−
t

0
X21 ds||))s(x(f))s(x(f||)st(

+ Kα  ∫ ∫ θθ−θθ−− α−
t

0

s

0
X21)X(L ds]d||))(x(g))(x(g||||)s(h||[)st(

≤ Kα K1(ρ) ||x∫ − α−
t

0
)ds)st((

]T,0[s
sup
∈

1(s)–x2(s)||α 

                +Kα K2(ρ)( ) || (s) – (s)||∫ θθ−
−

s

r
)X(L d||)s(h|| ∫ − α−

t

0
)ds)st((

]T,0[s
sup
∈

1x 2x α 

 ≤ Kα[ K1(ρ) +( K2(ρ) )] ∫ θθ
+rT

0
)X(L d||)(h||

α−

α−

1
t1

||x1–x2||B 

 ≤ Kα(K1(ρ) + K2(ρ) h )
α−

α−

1
t1
1 ||x1–x2||B 

≤     L||x1 – x2||B. 
Hence G is a contraction on B. By the Contraction mapping theorem, G has a unique fixed point 
x ∈ B, that is    
x(t)  =  (Gx)(t)  =   ].t,0[t,ds]d))(x~(g)s(h)[st(Tds))s(x(f)st(T)0()t(T 1

t

0

s

r

t

0
∈∫ ∫ θθθ−−+∫ −+ϕ

−

Therefore x is the unique mild solution of the system (3.1.1) on [-r, t1].                                         
Remark 3.1.5. By using strong continuity of the semigroup, we can prove the local existence of 
mild solutions for the system (3.1.1) without assuming β∈ϕ X)0( , i. e., one can use  
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,0||)0(A)0(A)t(T||||)0()0()t(T|| X →ϕ−ϕ=ϕ−ϕ αα
α  as t → 0. 

Lemma 3.1.6. Assume (A), (F1), (G1) and (H1) hold. Suppose 0 1≤β<α< and ϕ .  β∈X)0(

If there exists a constant ρ such that if0> )(x • is a possible mild solution of the system (3.1.1) on 
a subset [0, ] of [0, T] and satisfies the estimate T′

ρ≤α||)t(x|| ,  
for all t∈[0, ], then there exists a constant > 0 such that  T′ ∗ρ

∗
β ρ≤||)t(x|| , 

for all t∈[0, ]. T′

Proof. If x( ) is a  mild solution of the system (3.1.1) on a subset [0, ] of  [0, T] 
and || , for all t∈[0,

•

ρ≤

T′

α||)t(x T′ ]. Then, as in the proof of Lemma 3.1.3, there exists constants 
N,M > 0 depending on ρ such that  

,M||))s(x(f||sup X
]T,0[s

≤
′∈

 

N||))s(x~(g||sup X
]T,r[s

≤
′−∈

. 

Then  
         ||x(t)|| β  + +  ≤ βϕ ||)0()t(T|| ∫ − β

t

0
ds||))s(x(f)st(T|| ∫ ∫ θθθ−− β

−

t

0

s

r
ds||]d))(x~(g)s(h)[st(T||

                      ≤ M|| || +  )0(ϕ β ∫ − β−
β

t

0
X ds||))s(x(f||)st(K

                                                 +  ∫ ∫ θθθ−−
−

β−
β

t

0

s

r
X)X(L ds]d||))(x~(g||||)s(h||[)st(K

                      ≤  + βϕ ||)0(||M β−
β−

β 1
1TMK  + β−

β−
β

′
1

1ThNK ∗ρ≡ , 
for all t∈[0, ]. The proof is complete.                                                                                          T′

Theorem 3.1.7. (Extension Theorem) Assume (A), (F1), (G1) and (H1) hold.  
Let ϕ and , for some )X];0,r([C α−∈ β∈ϕ X)0( 1]. ,(α∈β  
Suppose the following a priori estimate holds for the system (3.1.1):  
(AP) There exists a constant ρ > 0 such that if x(⋅) is a possible mild solution of the system (3.1.1) 
on a subset [-r, T′ ] of [-r, T], then ||x(t)||α ≤ ρ , for all t∈[-r, T′ ].  

Then the system (3.1.1) has a unique global mild solution on [-r, T]. 

Proof. By using Lemma 3.1.6, there exists a constant such that ||x(t)|| , for all t∈[0, T∗ρ β
∗ρ≤ ′ ], 

whenever x is a mild solution, by the a priori estimate. 
By Theorem 3.1.4, a local mild solution x1 of the system (3.1.1) exists on [0, t1].  
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Then ||x1(t)|| β , for all t∈[-r, t∗ρ≤ 1]. Set 1ρ = 1 + . ∗ρ

We must show that x1 can be extended to be mild solution of the system (3.1.1) on [-r, T].    
Given , set = 0>δ 1xB ]}t,t[t,1||)t(x)t(y||),t(x)t(y|)X];T,t([Cy{ 11111111 δ+∈≤−=∈ αα

)X];T,t([C 1 α

. 
Then is a nonempty closed convex subset of .  1xB

Define a mapping G on B as follows: For any y1x ∈ 1xB , define  




−∈
δ+∈

=
],t,r[t),t(x

],t,t[t),t(y
)t(y~

11

11

and let 
(Gy)(t) = T(t – t1)x1(t1) +   ∫ −−

t

1t
1 ds))s(y(f)stt(T

                                               + , t∫ ∫ θθθ−−−
−

t

1t

s

r
1 ds]d))(y~(g)s(h)[stt(T ∈[t1, t1+ ].           (3.1.7) δ

By the same argument as in Theorem 3.1.4, there exists a constant δ > 0 such that 

                     








∈=

δ+∈∫ −+=+
−

 ],t[-r,t),t(x y(t)             

],t,t[t,ds))s(y(g)st(h))t(y(fAy)t(ydt
d

11

11
t

r                           (3.1.8) 

has a unique mild solution x2 on [t1, t1+ δ ], provided δ  = min{1, T,
α−β

−

α−β
α

α−β 







+ρ

1

1L
1 )KKC( } 

where L∈(0, 1) is fixed and K = M + )( 1K1 ρ + h))(N 1ρ+ K 2( . It is obvious that δ  is only 
dependent on ρ , i. e., depends only on 1 δ ρ . 
Let z(t) =  





δ+∈
−∈

].t,t[t   if   )t(x
],t,r[t   if   )t(x

112

11

Must show that z is the unique mild solution of the system (3.1.1) on [-r, t1 + δ ].  
Let w be any mild solution of the system (3.1.1) on [-r, t1 + δ ]. We show that w = z on [-r, t1+ δ ].  
On [-r, 0], it is obvious that w = z. 
For t ∈ [0, t1], since x1 is the unique mild solution on [0, t1] then w(t) = x1(t). By definition of z,  
z(t) = x1(t) on [0, t1]. Hence w z on [0, t≡ 1]. 
For t ∈ [t1 , t1 + δ ], since x2 is the unique mild solution on [t1, t1 + δ ] then w(t) = x2(t). 
By definition of z, z(t) = x2(t) on [t1, t1+ δ ]. Hence w ≡ z on [t1, t1+ δ ]. 
Then z is the unique mild solution of the system (3.1.1) on [-r, t1 + δ ].  

By a repeated process, since δ depends only on ρ  we can extend z to [t1 + δ , t1 +2 δ ]. By the same 
argument, we can obtain intervals for existence of mild solutions with equal length δ , 

  



 28

[t1, t1+ ], [tδ 1+ , tδ 1+2 ], …,[tδ 1+n , tδ 1+(n+1) δ ] so that T∈[t1+n δ , t1+(n+1) δ ], for some n. Hence the system 
(3.1.1) has a unique global mild solution on [-r, T].                                         
           We can use main idea of Theorem 3.1.4 to explain local existence of mild solutions for the 
following system that is more complicated than the system (3.1.1).  
          Consider the semilinear evolution system 

        





−∈ϕ=

∈∫ −+=+
−

].0,r[t),t(   x(t)          

],T,0[t,ds))s(x,s(g)st(h))t(x,t(f)t(Axdt
dx t

r

                                    (3.1.9) 

Similarly, we can define classical and mild solutions to the system (3.1.9). Theorem 3.1.4 and 
Theorem 3.1.7 are easily extended to the following. 
Theorem 3.1.8. Assume that (A), (F3), (G3), and (H1) hold. Let ϕ ∈ C([–r, 0]; Xα) and ϕ , for 
some β  Then the system (3.1.9)  has a unique local mild solution. 

β∈X)0(

1]. ,(α∈

Proof. We define a mapping G on  by ϕC

(Gx)(t) = T(t)  + + , t∈[0, T], )0(ϕ ∫ −
t

0
ds))s(x,s(f)st(T ∫ ∫ θθθθ−−

−

t

0

s

r
ds]d))(x~,(g)s(h)[st(T

where x∈ and ϕC x~ is defined as in Lemma 3.1.3.                                                                (3.1.10) 
Must show that G : C . ϕϕ → C

Let x ∈ . We show that (Gx)(t)ϕC α∈X for all t∈[0, T]. 
By (F3) and continuity of x on [0, T], ))(x,(f •• is measurable on [0, T]. Since x is continuous on 
[0, T], {(s, x(s)) | s ∈ [0, T]} is a bounded set in [0, T] × Xα. Since f maps a bounded set in  
[0, T] × Xα to a bounded set in X, there exists a constant M >0 such that ||f(s, x(s))||

]T,0[s
sup
∈

X ≤ M . 

Hence is measurable and bounded on [0, T], therefore it is integrable on [0, T]. 
Since is integrable, f(s, x(s))

))(x,(f ••

))(x,(f •• ∈ X and T(t) : X then .  α→ X α∈∫ − Xds))s(t(T
t

0
x,s(f)s

         By a similar argument, ))(x~,(g •• is also measurable and bounded on [-r, T]. So it is 
integrable on [-r, T]. Since h∈L1([0, T+r]; L(X)) then ∈X for all               s ∈ [0, T]. 

Since T(t) : , then ∈ , for all t          ∈ [0, T]. This 

shows that each term on the right side of (3.1.10) is in .  

∫ θθθθ−
−

s

r
d))(x~,(g)s(h

θθθθ ds]d))(x~,(g) αX

αX

α→ XX ∫ ∫−
−

s

r
h)[st(T −

t

0
s(

Thus (Gx)(t)∈ , for all αX ∈t [0, T]. Clearly, (Gx)(0) = )0(ϕ .  
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Arguing as in Lemma 3.1.3, one sees that Gx is continuous on [0, T]. Hence Gx∈ . Therefore G 
: . Arguing as in Theorem 3.1.4, one shows that there exists t

ϕC

]T,0(ϕϕ → CC 1∈ and a closed 
subset B of such that G : B B is a contraction. By the Contraction mapping theorem, the 
system (3.1.9) has a unique mild solution x∈ B.                                                                             

ϕC →

Theorem 3.1.9. Assume that (A), (F2), (G2), and (H1) hold. Let ϕ ∈ C([–r, 0]; Xα) and , for 
some  Then there exists a t

β∈ϕ X)0(

1]. ,(α∈β 1 = t1 )(ϕ > 0 such that the mild solution of the system (3.1.9) 
exists and unique on [-r, t1]. 

Proof.  Define a mapping G as in (3.1.10). A similar process as in Theorem 3.1.4 yields a unique 
local mild solution x on [-r, t1] for some )(tt 11 ϕ= > 0.                                                                   
Theorem 3.1.10. Assume that (A), (F3), (G3), and (H1) hold. Let ϕ ∈ C([–r, 0]; Xα) and , for 
some  Suppose a priori estimate holds for the system (3.1.9), i. e., there exists a constant > 0 such 
that if x is a possible mild solution of the system (3.1.9) on a subset [-r,

β∈ϕ X)0(

ρ1]. ,(α∈β

)(⋅ T′ ] of [-r, T], the estimate ||x(t)||α 
 holds for all ρ≤ ∈t [-r, ], then the system (3.1.9) has a unique global mild solution on [-r, T]. T′

Proof. By Theorem 3.1.8, the system (3.1.9) has a local mild solution x. Apply a priori estimate and a similar 
process as in Theorem 3.1.4 and the extension theorem, the system (3.1.9) has a unique global mild solution on 
[-r, T].                                                                                             
Theorem 3.1.11. Assume that (A), (F2), (G2), and (H1) hold. Let ϕ ∈ C([–r, 0]; Xα) and , for 
some  Suppose a priori estimate holds for the system (3.1.9), i. e., there exists a constant ρ > 0 
such that if x ( is a possible mild solution of the system (3.1.9) on a subset [-r, T ] of [-r, T], the estimate 
||x(t)||

β∈ϕ X)0(
∗1]. ,(α∈β

)⋅
∗ρ

′

α ≤  holds for all ∈t [-r, ], then the system (3.1.9) has a unique global mild solution on [-r, T]. T′

Proof. By Theorem 3.1.9, the system (3.1.9) has a local mild solution x. Apply a priori estimate and a similar 
process as in Theorem 3.1.4 and the extension theorem, the system (3.1.9) has a unique global mild solution on 
[-r, T].                                                                                             

3.2 A Priori Estimate and Global Existence of Mild Solutions 
Lemma 3.2.1. (Gronwall’s Lemma with Singularity and Time Lag) 
Let C = C([0, ]; XT′ α) and x ∈ C satisfies the following inequality 

  



 30

               ||x(t)||α ≤ a + b  + , t ∈ [0, ],       (3.2.1) ∫ − α
α−

t

0
ds||)s(x||)st( ∫ − α−

t

0
Cs ds||x||)st(c T′

where a, b, c ≥ 0 are constants and ||xs||C = ||x(ξ)||
s0

sup
≤ξ≤

α. Then there exits a constant M1 > 0 (independent of 

a) such that 
||x(t)||α  ≤  M1a, 

for all t∈[0, T ]. ′

Proof. Define v(t) =  = . ∫ − α−
t

0
Cs ds||x||)st( ∫ θθ θ−

α−
t

0
Ct d||x||

We show that v(⋅) is monotonously increasing on [0, T′ ]. 
Let 0 ≤ t1 ≤ t2 ≤ . Then  T′

      v(t1) – v(t2)  =   ∫ θθ−∫ θθ θ−
α−

θ−
α− 2t

0
C2t

1t

0
C1t d||x||d||x||

              = .  ∫ θθ−∫ θ−θ θ−
α−

θ−θ−
α− 2t

1t
C2t

1t

0
C2tC1t d||x||d)||x||||x(||

Since t1 – θ ≤ t2 – θ, v(t1) – v(t2) 0, hence v is monotonously increasing on [0, ].  ≤ T′

Since v is increasing on [0, T ]  and ||′ Cs ||x||  ||)s(x ≤α , we have 
                         ||xt||C     =     ||x(ξ)||

t0
sup

≤ξ≤
α 

                             ≤    [a + b + c ] 
t0

sup
≤ξ≤

∫ −ξ
ξ

α
α−

0
ds||)s(x||)s( ∫ −ξ

ξ
α−

0
Cs ds||x||)s(

                 ≤    [a + c
t0

sup
≤ξ≤

1 ∫ −ξ
ξ

α−

0
Cs ds||x||)s( ] 

                                    ≤     [a + c
t0

sup
≤ξ≤

1v(ξ)] ≤ a + c1v(t). 

So  ||xt||C ≤ a + c1 ∫ − α−
t

0
Cs ds||x||)st( . By Gronwall’s lemma (Corollary 2.5.3), there exists a 

constant M1 > 0 (independent of a) such that ||xt||C ≤ M1a, for all t∈[0, T′ ]. 

Since ||x(t)||α ≤  ||xt||C then  ||x(t)|| ≤ Mα 1a, for all t∈[0, T′ ]. Then the proof is complete.             

           By virtue of the Gronwall’s lemma with singularity and time lag, together with linear 
growth condition, we can prove the following global existence theorem without assuming a priori 
estimate. 
Theorem 3.2.2. (Global Existence Theorem) Assume that (A), (F1), (F5), (G1), (G5) and (H1) hold. Let ϕ 

∈ C([–r, 0]; Xα) and , for some β∈ϕ X)0( 1]. ,(α∈β  Then the system (3.1.1) has a unique global 
mild solution on [-r, T]. 
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Proof. We show a priori estimate holds, i. e., there exists a constant ρ > 0 such that if x (  is a mild 
solution of the system (3.1.1) on a subset [-r,

)⋅

T′ ], T′ ]T,0[∈ , it follows that  
ρ≤α||)t(x|| , 

for all ∈t [-r, ]. T′

Suppose  is a mild solution of the system (3.1.1) on a subset [-r, T)(x ⋅ ′ ] of [-r, T]. 
For ∈t [0, ], since  is a mild solution of the system (3.1.1) and satisfies the equation (3.1.2) 
on [0, T ], by using assumption (F5) and (G5), it follows that 

T′ )t(x

′

     ||x(t)||α     ≤     ||T(t)ϕ(0)||α +  ∫ − α

t

0
ds||))s(x(f)st(T||

         +  ∫ ∫ ξξξ−− α
−

t

0

s

r
ds||]d))(x(g)s(h)[st(T||

                        M||ϕ(0)||≤ α + Kα  ∫ − α−
t

0
X ds||))s(x(f||)st(

                            + Kα  ∫ ∫ ξξξ−−
−

α−
t

0

s

r
X ds]d||))(x(g)s(h||[)st(

      ≤    M||ϕ(0)||α + Kα  ∫ +− α
α−

t

0
1 ds))||)s(x||1(K()st(

              + Kα  ∫ ∫ ξξ+ξ−−
−

α
α−

t

0

s

r
2)X(L ds]d))||)(x||1(K(||)s(h||[)st(

t
      ≤    M||ϕ(0)||α + KαK1  ∫ − α−

0
ds)st(

       + KαK1   ∫ − α
α−

t

0
ds||)s(x||)st(

T
                            + KαK2 ( )d||)T(h||)(ds)st(

r
)X(L

t

0
∫ ξξ−∫ −
−

α−

t s

 

        + KαK2  ∫ ∫ ξξξ−−
−

α
α−

0 r
)X(L ds]d||)(x||||)s(h||[)st(

α− α−
                    ≤     M||ϕ(0)||α + KαK1 

α−
′

1
T 1

 + KαK2  h
α−

′
1
T 1

  

                      + KαK1  ∫ − α
α−

t

0
ds||)s(x||)st(

0
     + KαK2  ∫ ∫ ξξξ−+∫ ξξϕξ−− α

−
α

α−
t

0

s

0
)X(L

r
)X(L ds]d||)(x||||)s(h||d||)(||||)s(h||[)st(

α−1 α−1 t
             ≤    αϕ ||)0(||M  +KαK1 

α−
′

1
T

 + KαK2  h
α−

′
1
T  + KαK1   ∫ − α

α−

0
ds||)s(x||)st(

t 0
               + KαK2 ∫ −∫ ξξϕξ− α−

−
α

0 r
)X(L ds)st](d||)(||||)s(h||[

t s

  

               + KαK2 ∫ ξ∫ ξξ−− α
≤ξ≤

α−

0 s00
)X(L ds||)(x||supd||)s(h||)st(   
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                        ≤   αϕ ||)0(||M  +KαK1 
α−

′ α−

1
T 1

  + KαK2  h
α−

′ α−

1
T 1

 + KαK1   ∫ − α
α−

t

0
ds||)s(x||)st(

              + KαK2 α−
α−

α−
′ϕ 1
1

)X];0,r([C
T||||h   

              + KαK2 ∫ ξ− α
≤ξ≤

α−
t

0 s0
ds||)(x||sup)st(h  

                ≤    a + b  + c , ∫ − α
α−

t

0
ds||)s(x||)st( ∫ − α−

t

0
Cs ds||x||)st(

where a = αϕ ||)0(||M +KαK1 
α−

′ α−

1
T 1

+ KαK2 α−
α−

α−
′ϕ 1
1

)X];0,r([C
T||||h , b = KαK1, c = KαK2 h , and C = 

C([0, ]; X ). By Gronwall’s lemma with singularity and time lag, there exists a constant MT′ α 1 > 0 

(independent of a) such that 
||x(t)||α ≤ M1a, 

for all  t ∈ [0, T ]. ′

On [-r, 0], ||x(t)|| α = || αϕ ||)t( ≤ .|||| )X];0,r([C α−ϕ  Let ρ  = max{ }||||,aM )X];0,r([C1 α−ϕ .  
Then 

||x(t)|| α ≤ ρ , 
for all t ∈ [-r, ]. T′

By Theorem 3.1.4, the system (3.1.1) has a local mild solution x, combining the extension 
theorem and the a priori estimate, the mild solution x can be extended to [-r, T].                           
            We consider another type of global existence problem. Now we will deal with super linear 
growth conditions. The following theorem shows that an a priori estimate for theα - norm of 
solution can be obtained, provided the function f and g satisfy a super linear growth condition and 
we know an a priori estimate in some weaker norm.   
Theorem 3.2.3. Assume that (A), (F1), (F6), (G1), (G6) and (H1) hold. 
Let ϕ ∈ C([–r, 0]; Xα) and ϕ , for some β∈X)0( 1] ,(λα∈β , suppose, there exists a constant 

such that if is a possible mild solution of the system (3.1.1) on a subset [-r, ] of       [-r, T], 
then 

0>ρ )(x • T′

ρ≤E||)t(x|| , 
for all t ∈[-r, ]. Then there exists a constant ρ > 0 such that  T′ ∗

α||)t(x|| ≤ ρ , ∗

for all t∈[-r, ], hence the system (3.1.1) has a unique global mild solution on [-r, T]. T′
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Proof.  Since λ∈ [1,
α
1 ) then α ≤ λα < ≤β 1. Let γ = λα . The embedding relation

βX γX αX E X ,
is true.
Let ρ> 0. Suppose )(x • is a mild solution of the system (3.1.1) on [-r, T′ ] with

ρ≤E||)t(x|| ,           t∈[-r, T′ ]. This means

         








−∈ϕ

′∈∫ ∫ θθ−−+∫ −+ϕ
= −

],0,r[t),t(

],T,0[t,ds]d))(x(g)st(h)[st(Tds))s(x(f)st(T)0()t(T
)t(x

t

0

s

r

t

0

and
,||)t(x|| E ρ≤

for all t∈[-r, T′ ].
By the “ moment inequality”, there exists a constant M γα,  such that

||x(s)||α ≤ Mα,γ(||x(s)|| γ ) λ/1
 ||x(s)|| λ

−λ 1

X ,
for s∈[-r, T′ ].
In addition, since E Ο X and βX Ο γX , it follows that

||x(s)|| λα  ≤ M λ
γα, ||x(s)||γ||x(s)|| 1

X
−λ

              ≤ N λ
βα, ||x(s)|| β ||x(s)|| 1

E
−λ ,

for s∈[-r, T′ ].
Let t∈[0, T′ ]. Then

         ||x(t)|| β  ≤ ||T(t)ϕ(0)|| β  + ∫ − β

t

0
ds||))s(x(f)st(T||

       + ∫ ∫ θθθ−− β
−

t

0

s

r
ds||]d))(x~(g)s(h)[st(T||

= I1 + I2 + I3,
where x~  is defined as in Lemma 3.1.3.
Since β∈ϕ X)0(  then

                    I1  ≤ ||A β T(t)ϕ(0)||X = ||T(t)A β ϕ(0)||X ≤ M||ϕ(0)|| β .
Since ρ≤E||)t(x|| for all t∈[0, T′ ], by (F6) and Theorem 2.3.16 (c), there exists
constants βK and

)(c ρ > 0 such that

          I2   ≤ K β  
0
∫
t

(t – s) β− [c(ρ )(1 + ||x(s)|| λα )]ds

               ≤ K β )(c ρ
0
∫
t

(t – s) β− ds + K β )(c ρ
0
∫
t

(t – s) β− ||x(s)|| λα ds

                       ≤      K β )(c ρ
β−

′ β−

1
T 1

 + K β )(c ρ
0
∫
t

(t – s) β− (N λ
βα, ||x(s)|| β 1

E||)s(x|| −λ )ds

                       ≤      K β )(c ρ
β−

′ β−

1
T 1

 + K β )(c ρ N λ
βα,

1−λρ
0
∫
t

(t – s) β− ||x(s)|| β ds

Similarly, by (G6) we have a constant )(d ρ > 0 such that
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                  I3   ≤  ∫ ∫ θθθ−−+∫ ∫ θθϕθ−− ββ
−

t

0

s

0

t

0

0

r
ds||]d))(x(g)s(h)[st(T||ds||]d))((g)s(h)[st(T||

                       ≤  ∫ ∫ θθϕθ−−
−

β−
β

t

0

0

r
X)X(L ds]d||))((g||||)s(h||[)st(K

                                     +  K β )(d ρ
0
∫
t

(t – s) β− [
 0
∫
s 

||h(s – θ)||L(X)(1 + || x (θ)|| λα )dθ]ds

                      ≤  ϕK  + βK )(d ρ
0
∫
t

(t – s) β− [
 0
∫
s 

||h(s – θ)||L(X)(1 + || x (θ)|| λα )dθ]ds

              ≤  ϕK  + βK )(d ρ
0
∫
t

(t – s) β− (
 0
∫
s 

||h(s – θ)||L(X)dθ)ds

                    + βK )(d ρ
0
∫
t

(t – s) β− [
 0
∫
s 

||h(s – θ)||L(X) λ
αθ ||)(x|| θd ]ds

              ≤ ϕK  + βK )(d ρ h
0
∫
t

(t – s) β− ds

                   + βK )(d ρ N λ
βα,

0
∫
t

(t – s) β− [
 0
∫
s 

||h(θ)||L(X) )||)(x||||)(x(|| 1
E β
−λ θθ θd ]ds

                      ≤      ϕK  + ρ,hK  + βK )(d ρ N λ
βα, h ρλ –1

0
∫
t

(t – s) β−

s0
sup

≤θ≤
||x(θ)|| β ds

              ≤      ϕK  + ρ,hK  + βK )(d ρ N λ
βα, h ρλ –1

0
∫
t

(t – s) β− ||xs||Cds,

where ϕK > 0 is a constant depending only on ϕ , ρ,hK = βK )(d ρ h
β−

′ β−

1
T 1

, and C = C([0,

T′ ];   X α ).
Then

                   ||x(t))|| β ≤ a + b
0
∫
t

(t – s) β− ||x(s)|| β ds + c
 0
∫
t

(t – s) β− ||xs||Cds,

where a = M||ϕ(0)|| β  + βK )(c ρ
β−

′ β−

1
T 1

+ ϕK + ρ,hK , b = βK )(c ρ N λ
βα,

1−λρ , c = βK )(d ρ

N λ
βα, h ρλ –1.

By the Gronwall’s Lemma with singularity and time lag (Lemma 3.2.1), there exists a
constant M1 > 0 such that

||x(t)|| β  ≤ M1a.

Then ||x(t)|| α ≤ c1M1a, for all t∈[0, T′ ]. Set ∗ρ = max{c1M1a, )X];0,r([C|||| α−ϕ }.

Thus ∗
α ρ≤||)t(x|| , for all t∈[-r, T′ ].

By assumptions and Theorem 3.1.4, the system (3.1.1) has a unique local mild solution
x. Combining the extension theorem and the a priori estimate x can be extended to [-r,
T].                
3.3 Regularity of Mild Solutions
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           In the following we discuss the regularity of mild solutions. We study the
connection between mild solution and classical solution. It can be seen that under some
stronger assumptions, the mild solution is a classical one.
Theorem 3.3.1. (Regularity) Assume that (A), (F4), (G4), and (H2) hold. Let ϕ ∈ C
([–r, 0]; Xα) and β∈ϕ X)0( , for some 1] ,(α∈β . If a mild solution x of the system
(3.1.9) exists on [-r, T], then
x ∈ C([-r, T]; Xα) ∩ C1((0, T); X), hence it is a classical solution.
Proof. Suppose the system (3.1.9) has a mild solution x ∈ C([-r, T]; Xα). Then

   








−∈ϕ

∈∫ ∫ θθθθ−−+∫ −+ϕ
= −

].0,r[t),t(

],T,0[t,ds]d))(x,(g)s(h)[st(Tds))s(x,s(f)st(T)0()t(T
)t(x

t

0

s

r

t

0

(3.3.1)
Define









−∈ϕ

∈∫ ∫ θθθθ−−+∫ −+ϕ
=

α
−

ααα

(3.3.2)                                                                                                      ].0,r[t),t(A

],T,0[t,ds]d))(x,(g)s(h)[st(TAds))s(x,s(f)st(TA)0(A)t(T
)t(y

t

0

s

r

t

0

It is easy to see that y∈C([-r, T]; X)
We prove that y is locally Hölder continuous on (0, T].
Firstly, we show that t # f(t, α−A y(t)) is continuous on [0, T].
Since f is locally Hölder continuous in t∈[0, T], locally Lipschitz in x α∈X and y∈ C([-
r, T]; X) then for each t ]T,0[∈ , for a fixed 0>ρ there exists constants )1,0(∈ν , L > 0
and K1= K1 ),t( ρ > 0 such that
                        ||f(t, α−A y(t)) – f(s, α−A y(s))||X
                              ≤  ||f(t, α−A y(t)) – f(s, α−A y(t))||X + ||f(s, α−A y(t)) – f(s, α−A y(s))||X
                              ≤  L||t – s||ν + K1 || α−A y(t) - α−A y(s)||α
                              ≤  L||t – s||ν + K1 ||y(t) - y(s)||X
Then t # f(t, α−A y(t)) is continuous on [0, T]. Therefore it is bounded on [0, T].
Then there exists a constant N1 such that  ||f(t, α−A y(t))||X ≤ N1, for t∈[0, T].
By the same argument as f, t # g(t, α−A y(t)) is continuous on [–r, T].
Then there exists a constant N2 such that ||g(t, α−A y(t))||X ≤ N2, for t∈[-r, T].
By the continuity of t # g(t, α−A y(t)) on [–r, T] and h ∈ Lp([0, T + r]; L(X)), we have

∫ −
−

α−
t

r
ds))s(yA,s(g)st(h ∈ L1([0, T + r]; X).

Thirdly, let t∈(0, T). Choose 0 < δ< 1 such that )t,t( 22
δ+δ− ⊂  (0, T].

Let s1, s2∈ )t,t( 22
δ+δ− . Suppose s1 < s2 and let ξ  = s2 – s1. Then 0 <ξ< 1 and

 ||y(s1 + ξ ) – y(s1)||X
                 ≤ ||T(s1 + ξ ) Aαϕ(0) – T(s1) Aαϕ(0)||X

          + || ∫ θθθθ−ξ+
ξ+

α−α1s

0
1 d))(yA,(fA)s(T  – ∫ θθθθ− α−α1s

0
1 d))(yA,(fA)s(T ||X

         +  || ∫ θ∫ ττττ−θθ−ξ+
ξ+ θ

−

α−α1s

0 r
1 d]d))(yA,(g)(h[A)s(T
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                    – ∫ θ∫ ττττ−θθ−
θ

−

α−α1s

0 r
1 d]d))(yA,(g)(h[A)s(T ||X

         ≤ ||(T( ξ ) – I)T(s1)Aαϕ(0)||X

        + ∫ θθθθ−−ξ α−α1s

0
X1 d||))(yA,(f)s(TA)I)(T(||

        + ∫ θθθθ−ξ+
ξ+

α−α1s

1s
X1 d||))(yA,(f)s(TA||

        + ∫ θ∫ ττττ−θθ−−ξ
θ

−

α−α1s

0
X

r
1 d||]d))(yA,(g)(h)[s(TA)I)(T(||

        + ∫ θ∫ ττττ−θθ−
ξ+ θ

−

α−α1s

1s
X

r
1 d||]d))(yA,(g)(h)[s(TA||

=  I1 + I2 + I3 + I4 + I5.
Choose ∈γ (0, 1-α ), by Theorem 2.3.16 (c), (d), we have
              I1 ≤    ||(T( ξ ) – I)T(s1) Aαϕ (0)||X
                       ≤   γC γξ || γA T(s1)Aαϕ (0)||X,

                    ≤   γC γξ γK γ−
1s ||Aαϕ(0)||X

≤   γC γK γ−
1s ||ϕ(0)||α γξ  ≡  M1

γξ .
By a similar argument, we have

             I2 ≤     γC γξ ∫ θθθθ− α−γ+α1s

0
X1 d||))(yA,(f)s(TA||

                  ≤      γC  N1 γ+αK γξ  ∫ θθ− γ+α−1s

0

)(
1 d)s(

                ≤ γC  N1 γ+αK γξ
)(1

T )(1

γ+α−

γ+α−

                       ≡ M2
γξ .

We have

              I3 ≤ Kα N1 ∫ θθ−ξ+
ξ+

α−1s

1s
1 d)s(    =  α−

α
1

1NK α−ξ1  ≤  α−
α

1
1NK γξ γξ≡ 3M .

Similarly,

               I4 ≤ γC γ+αK γξ  N2 ∫ −∫ θθ−
−

γ−
T

r
)X(L

1s

0
1 ds||)sT(h||d)s(

≤ γC KαN2 
γ−

γ−

1
T1

h γξ

                       ≡     M4
γξ .

Similarly,

               I5 ≤ KαN2 ∫ θθ−ξ+∫ −
ξ+

α−

−

1s

1s
1

T

r
)X(L d)s()ds||)sT(h||(
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≤ KαN2 h
α−

ξ α−

1

1

≤ KαN2 h
γ−

γξ
1

≡     M5
γξ .

Then ||y(s1 + ξ ) – y(s1)||X ≤  (M1+M2+M3+M4+M5) γξ γξ≡ L .
Hence y is locally Hölder continuous in t∈(0, T). The continuity of y at the end point
also holds in a similar way. Therefore y is locally Hölder continuous in t∈(0, T].
           Locally Hölder continuity of t # f(t, α−A y(t) on [0, T] can be shown easily by
using the following
           ||f(s1, α−A y(s1)) – f(s2, α−A y(s2))||X   ≤  L1(|s1 – s2|

θ1 + || α−A y(s1) – α−A  y(s2)||α)

                      ≤  L1(|s1– s2|
θ1 + ||y(s1) – y(s2)||X)

                                                                       ≤  L1(|s1 – s2|
θ1 + L2|s1 – s2| γ )

                                                ≤  L3|s1 – s2| η ,
 η  = min{θ1, γ }, L1, L2 and L3 are constants.

To show t → ∫ −
−

α−
t

r
ds))s(yA,s(g)st(h  is locally Hölder continuous in t∈(0, T].

Since g is locally Hölder continuous in t∈[-r, T] and y is locally Hölder continuous in t
∈(0, T], for any t∈(0, T], there is a δ> 0 such that g and y are Hölder continuous in V
= (t - δ , t + δ )⊂ (0, T]. So there are constants 2θ , 2γ ∈(0, 1) and L4, L5 > 0 such that
for any l1, l2 in V, say l1< l2,

|| ∫ −−∫ −
−

α−

−

α− 2

r
2

1

r
1 ds))s(yA,s(g)s(hds))s(yA,s(g)s(h

ll

ll ||X

        = ||dz))z(yA,z(g)z(g)z(hdz))z(yA,z(g)z(h||
r2

0
222

r1

0
11 ∫ −−−−∫ −−

+
α−

+
α−

ll

lllll X

        ≤ || ∫ −−−−−
+

α−α−
r1

0
2211 dz)))z(yA,z(g))z(yA,zh(z)(g(

l

llll ||X

                   + || ∫ −−
+

+

α−
r2

r1
22 dz))z(yA,z(g)z(h

l

l

ll ||X

        ≤ ∫
+r1

0

l

||h(z)||L(X)(L4|l1 – l2|
θ2 + L5 2

21 || γ− ll  )dz + N2[ ∫
+

+

r2

r1

l

l

||h(z)||pdz] p
1

( ∫
+

+

r2

r1

q dz1
l

l

)

q
1

        ≤ ( ∫
+rT

0
)X(L dz||)z(h|| ) (L4|l1 – l2|

θ2 + L5 2
21 || γ− ll ) + N2[ ∫

+

+

r2

r1

l

l

||h(z)||pdz] p
1

|l1 - l2| q
1

        ≤ 
p
1

rT

0

p
)X(L )dz||)z(h||( ∫

+
( ∫

+rT

0

q dz1 ) q
1

(L6|l1 – l2| η  ) + N2K1|l1 - l2| q
1

       ≤  K2|l1 – l2| κ ,
where K2 is a constant, η= min{θ2, 2γ }, κ  = min{η ,

q
1 } = min{θ2, 2γ ,(p – 1)/p},
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By Corollary 2.4.17, since –A generates an analytic semigroup T(t), t # f(t, A–αy(t) is

locally      Hölder continuous in t∈ [0, T] and t → ∫ −
−

α−
t

r
ds))s(yA,s(g)st(h  is locally Hö

lder continuous in t∈(0, T], the system









−∈ϕ=

∈∫ −+=+
−

α−α−

].0,r[t),t()t(   w                    

],T [0, t,ds))s(yA,s(g)st(h))t(yA,t(f)t(Aw)t(w)dt/d(
t

r

(3.3.3)
has a unique classical solution w∈ C([-r, T]; αX )∩C1((0,T), X).
Rearrange form of w, we obtain

w(t)  = T(t)ϕ(0) + ∫ − α−
t

0
ds))s(yA,s(f)st(T  + ∫ ∫ θθθθ−−

−

α−
t

0

s

r
ds]d))(yA,(g)s(h)[st(T

 = T(t)ϕ(0) + ∫ −
t

0
ds))s(x,s(f)st(T  + ∫ ∫ θθθθ−−

−

t

0

s

r
ds]d))(x~,(g)s(h)[st(T

 = x(t), t ∈ [0, T].
Then x ∈ C1((0, T); X). Hence x ∈ C([-r, T]; Xα) ∩ C1((0, T); X) is a classical solution
o f  t h e  s y s t e m  ( 3 . 1 . 9 ) .                    

Corollary 3.3.2. Assume that (A1), (F4), (F5), (G4), (G5) and (H2) hold.
Let ϕ ∈ C([–r, 0]; Xα) and β∈ϕ X)0( , for some 1] ,(α∈β . Then the system (3.1.9) has a
unique classical solution.
Proof. Since[0,T + r] is a bounded domain then (H2) implies (H1). By assumptions, the
system (3.1.9) has a local mild solution x. Applying the growth condition (F5) and
(G5), by Theorem 3.2.2 x can be extended to [0, T]. By Theorem 3.3.1, the solution x∈
C1((0, T); Xα)). Hence x is the unique classical solution of the system (3.1.9).

           We give a remark here in order to show locally Hölder continuity of mild
solutions of the system (3.1.1).
Remark 3.3.3. The mapping G in Lemma 3.1.3, maps ϕC  into Cθ([0, T]; Xα) for some
θ ∈(0, 1), provided that ϕ(0) ∈ Xβ for some β such that 0 < α < β < 1.
Proof. Let ϕ(0) ∈ Xβ, 0 < α < β < 1.
Recall that )}0()0(x|)X];T,0([Cx{C ϕ=∈= αϕ .
Let x ∈ ϕC . We show that Gx ∈ Cθ([0, T]; Xα) for some θ ∈ (0, 1).
Let 0 ≤ t < t + ξ  ≤ T and 0 < ξ  < 1. Then
||(Gx)(t + ξ ) – (Gx)(t)|| α

      ≤  ||T(t + ξ ) ϕ(0) – T(t)ϕ(0)||α

+ || ∫ ∫ −−−ξ+
ξ+t

0

t

0
ds))s(x(f)st(Tds))s(x(f)st(T ||α

+ || ∫ ∫ θθθ−−−∫ ∫ θθθ−−ξ+
−

ξ+

−

t

0

s

r

t

0

s

r
ds]d))(x~(g)s(h)[st(Tds]d))(x~(g)s(h)[st(T ||α

= I1 + I2 + I3.
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Since )AA(DX)0( αα−β
β =∈ϕ , then α−β

α−βα =∈ϕ X)A(D)0(A . By using Theorem 2.3.16
(c),(d), and the same procedures in Theorem 3.3.1, one can estimate each Ii’s by a
constant multiple of α−βξ . This shows that Gx is Hölder continuous in [0,T] with
exponent ≡θ ∈α−β  (0, 1).            
3.4 Continuous Dependence
Theorem 3.4.1.  Assume that the hypotheses of Theorem 3.2.2 are satisfied. For any ρ
> 0, if x and y are mild solutions of the system (3.1.1) on [-r, T] corresponding to ϕ1

and ϕ2, respectively, then there exists a constant K(ρ) > 0 such that
||x – y|| )X];T,r([C α−  ≤ K(ρ)||ϕ1 – ϕ2|| C([–r, 0]; Xα),

provided 1ϕ , 2ϕ ∈ )X];0,r([C α− with ρ≤ϕ α− )X];0,r([C1 ||||  and ρ≤ϕ α− )X];0,r([C2 |||| .
Proof. First, we show that any mild solution z of the system (3.1.1) on [-r, T]
corresponding to ϕ ∈ C([–r, 0]; Xα) with ||ϕ||C([–r, 0]; Xα) ≤ ρ,  satisfies the estimate

||z|| )X];T,r([C α−  ≤  ρ*,
where ρ* is a constant depending only on ρ.
Proceeding as in the proof of Theorem 3.2.2, it is easy to verify that there exists a
constant 1ρ > 0 such that

1||)t(z|| ρ≤α ,
for t∈[0, T].
Set ∗ρ = max{ ρρ ,1 }. We have ||z|| )X];T,r([C α−  ≤  ρ*.
Thus in particular, ||x|| )X];T,r([C α−  ≤  ρ*, and ||y|| )X];T,r([C α− ≤ ρ*,
Next we show that there exists a constant K(ρ ) > 0 such that

||x – y|| )X];T,r([C α− ≤ K(ρ )||ϕ1 – ϕ2||C([–r, 0]; Xα).
For t ∈ [-r, 0], it is easy to see that

||x(t) – y(t)|| α ≤ ||(ϕ1 – ϕ2)(t)||α ≤ ||ϕ1 – ϕ2||C([–r, 0]; Xα).
For t ∈ [0, T], we have
                  ||x(t) – y(t)||α ≤ ||T(t)(ϕ1 – ϕ2)(0)||α

                 + 
0
∫
t 

||T(t – s)(f(x(s)) – f(y(s)))||αds

                       + 
0
∫
t 

||T(t – s)[
– r
∫
s 

h(s – θ)(g(x(θ)) – g(y(θ)))dθ]||αds

                     = I1 + I2 + I3.

 Obviously, I1 ≤  M||(ϕ1 – ϕ2)(0)||α.
By using (F1) and (G1), one can verify that

                   I2 ≤ KαK1 (ρ*)
0
∫
t 

(t – s) α−  ||x(s) – y(s)||αds.

                        I3 ≤ KαK2 (ρ*)
0
∫
t 

(t – s) α−  [
– r
∫
s

||h(s – θ)||L(X)||x(θ) – y(θ)||αdθ]ds

              ≤ KαK2 (ρ*)
0
∫
t 

(t – s) α−  [
– r
∫
0

||h(s – θ)||L(X)||ϕ1(θ) – ϕ2(θ)||αdθ]ds
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                      + KαK2 (ρ*)
0
∫
t 

(t – s) α−  [
0
∫
s

||h(s – θ)L(X)||x(θ) – y(θ)||αdθ]ds

             ≤      KαK1(ρ*)(
Ts0

sup
≤≤ – r

∫
0

||h(s – θ)||L(X)dθ)(
0
∫
t 

(t – s) α−  ds)
0r

sup
≤θ≤−

||(ϕ1 – ϕ

2)(θ)||α

           + KαK2 (ρ*)(
Ts0

sup
≤≤ 0

∫
s

||h(s – θ)||L(X)dθ)(
0
∫
t 

(t – s) α−

s0
sup

≤θ≤
||x(θ) – y(θ)||α

dθ)ds

             ≤      KαK1(ρ*) h
α−

α−

1
T1

||ϕ1 – ϕ2||C([–r, 0]; Xα)

                       + KαK2 (ρ*) h
0
∫
t 

(t – s) α−  ||xs – ys|| C ds.

Then, for t∈[0, T],
                       ||x(t) – y(t)||α   ≤    M||(ϕ1 – ϕ2)(0)||α

                                                      + KαK1(ρ*) h
α−

α−

1
T1

||ϕ1 – ϕ2||C([–r, 0]; Xα)

                                                        + KαK1(ρ*)
0
∫
t 

(t – s) α−  ||x(s) – y(s)||αds

                                + KαK2(ρ*) h
0
∫
t 

(t – s) α−  ||xs – ys|| C ds.

 By using the Gronwall’s lemma with singularity and time lag, we get
||x(t) – y(t)||α ≤   M1(ρ*)||ϕ1 – ϕ2||C([–r, 0]; Xα),

 for all t∈[0, T], and M1(ρ*) = M+ KαK1(ρ*) h
α−

α−

1
T1

.

Choose K(ρ*) = max{M1(ρ∗), 1}. Then
||x(t) – y(t)||α  ≤  K(ρ*)||ϕ1 – ϕ2||C([– r, 0]; Xα) ,

for all t ∈ [–r, T].
Since ρ* depends on ρ then

      ||x – y|| )X];T,r([C α−   ≤  K(ρ)||ϕ1 – ϕ2||C([–r, 0]; Xα).

Corollary 3.4.2. Assume that the hypotheses of Theorem 3.2.2 are satisfied.
Let ϕ0 ∈ C([–r, 0]; Xα) and xϕ0 be the corresponding mild solution of the system
(3.1.1). Then for any ε > 0 there exists a δ = δ(ε) > 0 such that

||xϕ  – xϕ0|| )X];T,r([C α−  < ε,
provided that ||ϕ – ϕ0||C([–r, 0]; Xα) < δ, xϕ is the mild solution on [-r, T] corresponding to
ϕ ∈           C([–r, 0]; Xα).
Proof. Since 0xϕ ∈ C([–r, T]; Xα) then there exists a constant ρ* > 0 such that

||xϕ0|| )X];T,r([C α− ≤ ρ*.
Let ε > 0 be given. If ϕ ∈ B(ϕ0; 1) then ||ϕ||C([–r, 0]; Xα) ≤  1 + ||ϕ0||C([–r, 0]; Xα) ≤ 1 + ρ ≡ ρ̂ .
By Theorem 3.4.1, there exists a constant K( ρ̂ ) > 0 such that

||xϕ  – xϕ0|| )X];T,r([C α− ≤ K( ρ̂ )||ϕ – ϕ0||C([–r, 0]; Xα).
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Choose δ = min{1,
)ˆ(K ρ

ε } which is positive.

Let ϕ ∈ B(ϕ0; δ).  Then ϕ ∈ B(ϕ0; 1). And   
          ||xϕ  – xϕ0|| )X];T,r([C α− ≤ K( ρ̂ )||ϕ – ϕ0||C([–r, 0]; Xα)

< K( ρ̂ )δ

≤ K( ρ̂ )(
)ˆ(K ρ

ε )  =  ε.

Theorem 3.4.3. Assume that hypotheses of Theorem 3.2.2 are satisfied. For any ρ > 0,
if x, y are mild solutions of the system (3.1.1) on [-r, T] corresponding to h1 and h2,
respectively, then there exists a constant L(ρ) > 0 such that

||x – y|| )X];T,r([C α−  ≤ L(ρ)||h1 – h2||L1([0,  T + r]; L(X)),
provided h1, h2∈L1([0, T+r]; L(X)) with ρ≤+ ))X(L];rT,0([1L1 ||h|| and ρ≤+ ))X(L];rT,0([1L2 ||h|| .
Proof. Firstly, we show that if z is a mild solution of the system (3.1.1) on [-r, T] and z
corresponds to h ∈ L1([0, T + r]; L(X)) with ||h||L1([0, T + r]; L(X)) ≤ ρ, then z satisfies  the
inequality

||z||C([–r, T]; Xα) ≤ ρ*,
for a constant ρ* > 0 depending on ρ. In fact as in the proof of Theorem 3.2.2, it follows
that for t∈ [0, T], by the Gronwall’s lemma with singularity and time lag, there exists a
constant M1 > 0 such that

||z(t)||α ≤ M1,
for all t ∈ [0, T]. Set ρ* ≡ max{M1, )X];0,r([C|||| α−ϕ }. We have

||z||C([–r, T]; Xα) ≤ ρ*,
Next, we show that there exists a constant L(ρ) > 0 such that

||x – y||C([–r, T]; Xα)  ≤ L(ρ)||h1 – h2||L1([0, T + r]; L(X)).
For t ∈ [–r, 0], ||x(t) – y(t)||α = ||ϕ(t) – ϕ(t)||α = 0.
For t ∈ [0, T],

||x(t) – y(t)||α ≤
0
∫
t

||T(t – s)(f(x(s)) – f(y(s)))||αds

      + 
0
∫
t

||T(t – s)[
– r
∫
s

{h1(s – θ)g(x(θ)) – h2(s – θ)g(y(θ))}dθ]||αds

                               =    I1 + I2.
Since f is locally Lipschitz in x α∈X , ∗

α ρ≤||)t(x|| and ∗
α ρ≤||)t(y|| , t∈[-r, T] then there

exists a constant )(K1
∗ρ > 0 such that

I1 ≤ KαK1(ρ*)
0
∫
t

(t – s) α−  ||x(s) – y(s)||αds.

By a similar argument, there exists a constant )(K 2
∗ρ > 0 such that

I2 ≤ Kα
0
∫
t

(t – s) α−  [
– r
∫
s

||h1(s – θ)(g(x(θ)) – g(y(θ)))||X dθ]ds
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+ Kα
0
∫
t

(t – s) α−  [
– r
∫
s

||(h1(s – θ) – h2(s – θ))g(y(θ))||Xdθ]ds

≤ Kα K2(ρ*) (
]T,0[s

sup
∈ – r

∫
T

||h1(s – θ)||L(X)dθ) [
0
∫
t

(t – s) α−  
s0

sup
≤θ≤

||x(θ) – y(θ)|| α ds]

+ KαK2
0
∫
t

(t – s) α−  [
 – r
∫
s

||h1(s – θ) – h2(s – θ)||L(X)(1 + ||x(θ)||α)dθ]ds

≤ Kα K2(ρ*) 1h
0
∫
t

(t – s) α−  ||xs – ys||Cds

+ Kα K2 α−

α−

1
T1

(
Ts0

sup
≤≤ 0

∫
s+r

||(h1 – h2)(θ)|| L(X)dθ) (1 + ∗ρ )
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≤ Kα K2 α−

α−

1
T1

(1 + ρ*)||h1 – h2||L1([0, T + r]; L(X))

+ Kα K2(ρ*) 1h
0
∫

t

(t – s) α−  ||xs – ys||C ds.

Then
                 ||x(t) – y(t)||α  ≤    a(ρ*)||h1 – h2||L1([0, T + r]; L(X))         

                                                + b(ρ*)
0
∫

t

(t – s) α−  ||x(s) – y(s)||αds

                                                   + c(ρ*)
0
∫

t

(t – s) α−  ||xs – ys||Cds,

where a(ρ*) = Kα K2 α−

α−

1
T1

(1 + ρ*), b(ρ*) = KαK1(ρ*), c(ρ*) = Kα K2(ρ*) 1h .

By the Gronwall’s lemma with singularity and time lag and ∗ρ as depends on ρ , there exists a
constant M1 > 0 such that
                                                  ||x(t) – y(t)||α  ≤ M1a(ρ*)||h1 – h2||L1([0, T + r]; L(X))

                                                                         = L(ρ)||h1 - h2||L1([0, T + r]; L(X)).

for all t ∈ [0, T], where L(ρ) = M1a(ρ*) = M1a(ρ),  hence this inequality holds for t∈[-r, T].
Therefore
                                          ||x – y|| )X];T,r([C α−  ≤  L(ρ)||h1 – h2||L1([0, T + r]; L(X)).                            

Corollary 3.4.4. Assume that hypotheses of Theorem 3.2.2 are satisfied.
Let h0∈L1([0, T + r]; L(X)) and 

0hx be the mild solution of the system (3.1.1) corresponding to
h0. Then for any ε > 0 there exists a δ = δ(ε) > 0 such that

,     ||xx|| )X];T,r([C0hh ε<− α−

provided that L(X)) ; ]rT ,0([1L0 ||hh|| +−  <  δ, where  xh is the mild solution of the system (3.1.1)
corresponding to h. That is, the operator H :L1([0, T + r]; L(X))→C([-r, T]; Xα), defined by
H(h) = xh is continuous.
Proof. Let ε > 0. Since h0∈L1([0, T + r]; L(X)) then L(X)) ;]rT ,0([1L0 ||h|| +  < ρ for a constant ρ > 0.
By Theorem 3.4.3 we get that )X];T,r([C0h ||x|| α− ≤  ρ∗ for a constant ρ* > 0. If h ∈ 1L ([0, T + r];
L(X)) and )L(X) ];rT ,0([1L0 ||hh|| +−  < 1, it follows that

)L(X) ];rT ,0([1Lh  + ≤ 1+ ))X(L ];rT ,0([1L0 ||h || + < 1 + ρ  = ρ̂ .
 By Theorem 3.4.3 again, there exists a constant L( ρ̂  ) > 0 such that

)X];T,r([C0hh ||xx|| α−−  ≤ L( ρ̂ ) .||hh|| )L(X) ];rT ,0[ (1L0 +−

Choose δ = min{1, )ˆ(L ρ
ε }.
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Let h ∈ B( 0h ; δ). Then h ∈ B( 0h ;1), and
                     )X];T,r([C0hh ||xx|| α−−  ≤  L( ρ̂ ) )L(X) ];rT ,0([1L0 ||hh|| +−

                                   ≤  L( ρ̂ ) δ
                                  ≤ L( ρ̂ ) 








ρ
ε

)ˆL(
   =  ε.                                                    

Corollary 3.4.5. Assume that hypotheses of Theorem 3.2.2 are satisfied.
If  x )X];T,r([C α−∈ is a mild solution of the system (3.1.1) on [0, T] with ϕ ∈ C([–r, 0]; αX )

and h ∈ 1L ([0, T + r]; L(X)), define G(ϕ , h) = x. Then the operator
G : C([–r, 0]; αX )× 1L ([0, T + r]; L(X))→  )X];T,r([C α−  is continuous.
Proof. Let (ϕn ) be a sequence in C([–r, 0]; αX ) such that ϕn → ϕ in C([–r, 0]; X

α
). Let ( hn) be

a sequence in L1([0, T + r]; L(X)) such that nh → h in 1L ([0, T + r]; L(X)).

For each n, let nx be a mild solution of the system (3.1.1) corresponding to ϕn and nh .
Without loss of generality, we can assume that )X];0,r([C|||| α−ϕ , )X];0,r([Cn |||| α−ϕ and

1))X(L];rT,0([1Ln ||h|| ρ≤+ , for a constant 1ρ > 0.
There exists a constant 2ρ > 0 such that 2)X];T,r([Cn ||x|| ρ≤α− . Setρ= max{ 1ρ , 2ρ }.
By Theorem 3.4.1 and Theorem 3.4.3, there are constants K(ρ) and L(ρ) such that
           )X];T,r([Cn ||xx|| α−− ≤  K(ρ) )X 0]; ,r([Cn |||| α−ϕ−ϕ  + L(ρ) ))x(L];rT ,0([1Ln ||hh || +− .
Since ϕn → ϕ and nh → h then nx → x in )X];T,r([C α− .
So G is continuous on C([–r, 0]; X

α
)×L1([0, T + r]; L(X)). The proof is complete.                

 3.5 A Semilinear System with Infinite Delay
          Consider the following semilinear integrodifferential equation with infinite delay

         








−∞∈ϕ=

∈∫ −+=+
∞−

].0,(t),t(       x(t)          

],T,0[t,ds))s(x,s(g)st(h))t(x,t(f)t(Ax)t(xdt
d t

                         (3.5.1)

Let BC((– ∞, T]; X
α
) denote the Banach space of all  bounded continuous Xα – valued functions

defined on (– ∞, T], with the sup-norm. For a fixed )X];0,((BC α−∞∈ϕ , let ϕC denote
{x )X];T,0([C α∈ | x(0) = )0(ϕ }. Then ϕC is a nonempty closed convex subset of )X];T,0([C α .
           We investigate the existence problem to the system (3.5.1). To obtain local existence of
mild solutions, we impose the following assumptions.
Assumptions
(G7) The function g : ( ∞− , T] × X

α
→ X satisfies



45

(i)  g(•, x) is measurable on (– ∞, T], for each x ∈ X
α

(ii) g(t, •) is locally Lipschitz continuous in  X
α

 , for all t ∈ (– ∞, T], i. e., for any ∈t (– ∞, T] and
      any ρ > 0, there exists a constant K2(t,ρ ) > 0 such that

|| g(s, x1) – g(s, x2) ||X ≤  K2(t, ρ )|| x1 – x2 || α ,   
      for all s ]t,(−∞∈ and x1, x2 α∈X such that ||x1|| α ≤  ρ and ||x2|| α ≤ ρ.

(iii) g maps every bounded set in (– ∞, T] × X
α

  to a bounded set in X.
(H3) h ∈ L1([0, ∞); L(X)).

Definition 3.5.1. A function x )X];a,((C α−∞∈ , a ]T,0(∈ , is called a mild solution of the system
(3.5.1) if it satisfies the integral equation









−∞∈ϕ

∈∫ ∫ θθθθ−−+∫ −+ϕ
= ∞−

].0,(t),t(

],a,0[t,ds]d))(x,(g)s(h)[st(Tds))s(x,s(f)st(T)0()t(T
)t(x

t

0

st

0   (3.5.2)

Theorem 3.5.2. Assume that (A), (F3), (F5), (G5), (G7), (H3) hold. Let ϕ ∈ BC((– ∞, 0]; X
α
)

and β∈ϕ X)0( , for some 1] ,(α∈β . Then the system (3.5.1) has a unique mild solution x ∈
C(( ∞− , T]; X

α
 ).

Proof. Let ϕ ∈ BC((– ∞, 0]; X
α
). Define an operator G on ϕC by

(Gx)(t)   = T(t) )0(ϕ + ∫ −
t

0
ds))s(x,s(f)st(T  + ∫ ∫ θθθθ−−

∞−

t

0

s
ds]d))(x~,(g)s(h)[st(T , t∈[0, T],

where 




−∞∈ϕ
∈

=
].0,(t),t(

],T,0[t),t(x
)t(x~                                                                                                (3.5.3)

By a similar argument as in Lemma 3.1.3, one can show that G : ϕϕ → CC .
As in the proof of Theorem 3.1.4, there exists a positive number t1 depending only onϕ , and a
nonempty closed convex set B subset of ϕC defined by B = { 1||)0()t(|| |C ≤ϕ−ξ∈ξ αϕ , t∈[0,

t1]} such that G : B→B is a contraction.
By the Contraction mapping theorem, G has a unique fixed point x in B.
As in Theorem 3.2.2, applying the growth condition (F5) and (G5) and Lemma 3.1.6, one shows
that if y is a mild solution of the system (3.5.1) on a subset ( T, ′∞− ], it follows that there exists a
constant ρ> 0 such that

||y(t)|| α ≤ ρ ,
for any ∈t ( T, ′∞− ].
By using this a priori estimate, one can obtain interval of existence with equal length δ > 0, [t1,
t1 + δ ], [t1 + δ , t1 + 2 δ ], …, [t1+ n δ , t1 + (n + 1) δ ], …, so that T ∈ [t1+ n δ , t1+ (n + 1) δ ] for an
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n ∈ IN, δ  depends only on ρ . Hence the system (3.5.1) has a unique global mild solution on
( T,∞− ].                                                                                                                                          



Chapter IV 
Optimal Control 

          In this chapter, we study existence of a control for a controlled system with finite delay. 
Existence of optimal control for a more general controlled system is investigated. We also study 
Bolza optimal control problem. 

4.1 A Controlled System with Finite Delay 
          Consider the controlled system with finite delay: 

                      





−∈ϕ=

+∫ −+=+
−

].0,r[t),t()t(x               

),t(Bu ds))s(x,s(g)st(h))t(x,t(f)t(Ax)t(xdt
d t

r

                         (4.1.1)      

          We intend to use main results in the chapter III; especially Theorem 3.2.3, and apply to the 
controlled system (4.1.1) corresponding to the system (3.1.9). Here we impose some assumptions 
that are suitable to guarantee the existence of mild solutions of the controlled system (4.1.1).    

Assumptions  
(A1)  X is a separable reflexive Banach space. -A is the infinitesimal generator of an analytic                  
         semigroup T(t), t ≥ 0 on the Banach space X. 

(B) E is a reflexive Banach space which the controls u take their values and B ∈ L(Lp(I, E),                                

              Lp(I, X)), where I [0, T]. ≡

Definition 4.1.1. For any u ∈ Lp(I, E) and any )X];0,r([C α−∈ϕ , if there exists a constant t0 =  

t0(u, ) > 0 and x ∈ C([-r, tϕ 0]; Xα) such that 

                    (4.1.2) 
















∈ϕ

∫ ∈−+

∫ θθθθ∫ ∫ −−+−+ϕ

=

−

[-r,0]. t(t),

],t,0[t ,ds)s(Bu)st(T                                                          

ds]d))(x,(g)s(h)[st(Tds))s(x,s(f)st(T)0()t(T

)t(x
t

0
0

t

0

t

0

s

r

then the system (4.1.1) is called mildly solvable with respect to u on [-r, t0], and x ∈ C([-r, t0]; 

Xα) is said to be an α–mild solution with respect to u on [-r, t0]. 
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Theorem 4.1.2. Suppose the assumptions (A1), (B), (F2), (F6), (G2), (G6) and (H1) hold.

Let u ∈ Lp(I, E), p > 
α−1

1 , )X];0,r([C α−∈ϕ  and β∈ϕ X)0( , for some 1] ,(α∈β . Then the
system (4.1.1) is mildly solvable on [–r, T] with respect to u, and the α–mild solution is unique.
Proof. By using corollary 2.4.23 and Theorem 3.2.3, it is sufficient to prove that
v(t) = ∫ −

t

0
ds)s(Bu)st(T  is continuous on [0, T].

Suppose 0≤ t1 < t2≤ T. Then
     || v(t2) – v(t2) || α ≤  α∫ −−∫ − ||ds)s(Bu)st(Tds)s(Bu)st(T||

1t

0
1

2t

0
2

                               ≤   ∫ −−− α
1t

0
12 ds||)s(Bu)]st(T)st(T[|| + ∫ − α

2t

1t
2 ds||)s(Bu)st(T||

                               ≤   ∫ −−− α
1t

0
112 ds||)s(Bu)st(T)I)tt(T(|| + ∫ − α−

α
2t

1t
X2 ds||)s(Bu||)st(K

                               =    I1 + I2.
Since 1≤β<α , by using Theorem 2.3.16(c),(d) and Hölder’s inequality, it follows that
                          I1 ≤ )X,I(pLq1

1
12 ||Bu||

t
)tt(C β−

α−β
α−β

α−β − .
                          I2 ≤  αK q1

q1
12 )tt(
α−

α−−
)X,I(pL||Bu|| .

These inequalities yield that v is continuous on [0, T].                                                                   
         We will now study a system that is more general than system (4.1.1). We investigate the
existence of mild solutions of the controlled system. We impose some assumptions that is
sufficient to guarantee existence of mild solutions.

Assumptions
(A2) The function f : [0, T] × Xα × E → X satisfies
(i)  f(⋅, x, u) is continuous on [0,T], for each x ∈ Xα and each u ∈ E.

(ii) f(t, ⋅, ⋅) is continuous on Xα × E, for a. e. t ∈ [0, T].

(iii) f(t, ⋅, u) is locally Lipschitz continous on Xα, for a. e. t ∈ [0, T] and each
       u ∈ E, i. e., for a. e. t ∈ [0, T]and any ρ ≥ 0 there exists a constant K1(t, ρ, u) > 0 such that

||f(s, x1, u) – f(s, x2, u)||  ≤  K1(t, ρ, u)||x1 – x2||α,

       for all s ]t,0[∈ and ||x1||α ≤ ρ and ||x2||α ≤ ρ.

(A3) The function g : [0, T] × Xα × E → X satisfies
(i)  g(⋅, x, u) is continuous on [0, T], for each x ∈ Xα and each u ∈ E.
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(ii) g(t, ⋅, ⋅) is continuous on Xα × E, for a. e. t ∈ [0, T].

(iii) g(t, ⋅, u) is locally Lipschitz continous on Xα, for a. e. t ∈ [0, T] and each u ∈ E, i. e.,
       for a. e. t in [0, T] , for each u in E and any ρ ≥ 0 there exists a constant K2(ρ, u) > 0 such
       that

||g(s, x1, u) – g(s, x2, u)||X ≤ K1(ρ, u)||x1 – x2||α,

       for all s∈[0, t] and  || x1 ||α ≤ ρ and || x2 ||α ≤ ρ.
(H) h ∈ L1([0, T]; L(X)).
           We consider the following controlled system

          








=

∫ ∈−+=+

,x)0(x                 

,]T,0[t ,ds))s(u),s(x,s(g)st(h))t(u),t(x,t(f)t(Ax)t(xdt
d

0

t

0                     (4.1.4)

where u ∈ Uad ( = the admissible control set a nonempty closed convex bounded subset of
Lp(I, E)).
Definition 4.1.3. For every u ∈ Lp(I, E), if there exists a t0 = t0(u) > 0 and x ∈ C([0, t0]; Xα)
such that
        x(t) = T(t)x0 + ∫ −

t

0
ds))s(u),s(x,s(f)st(T

                                            + ∫ ∫ θθθθθ−−
t

0

s

0
,ds]d))(u),(x,(g)s(h)[st(T 0≤ t≤ T,                 (4.1.5)

then the system (4.1.4) is called mildly solvable with respect to u on [0, t0] and x ∈ C([0, t0]; Xα)

is said to be an α–mild solution with respect to u.
Theorem 4.1.4. Assume that assumptions (A1), (A2), (A3) and (H) hold. Then for each u ∈ Uad

and each x0 ∈ X β for some 1] ,(α∈β , there exists a constant t0 = t0(u) > 0 such that the controlled
system (4.1.4) is mildly solvable on [0, t0] with respect to u, and the α–mild solution is unique.
Proof. Let u ∈ Uad. Since u is fixed, define
                                                  f~ (t, x) = f(t, x, u(t)),
                                                  g~  (t, x) = g(t, x, u(t)),
for t∈[0, T] and x α∈X .
We show that f~ and g~ satisfy (F2) and (G2), respectively.
Since f(• , x, )(u • ) and g(• , x, )(u • ) are continuous on [0, T] for each x α∈X and each u∈
Lp(I, E), then f~ ( • , x) and g~ ( • , x) are continuous on [0, T].
Similarly, since f(t,• , u(t)) and g(t,• , u(t)) are locally Lipschitz on αX , then f~ (t,• ) and g~ (t,• )
are locally Lipschitz on αX . Thus f~ and g~ satisfy (F2) and (G2), respectively.
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Since u is fixed, by Theorem 3.1.8, there exists a constant t0= t0(x0, u) > 0 such that the system
(4.1.4) has a unique mild solution on [0, t0]. Therefore the system (4.1.4) is mildly solvable on
[0, t0].                                                                                                                                               

4.2 Existence of Optimal Controls
          In the following we consider a Bolza optimal control problem for the controlled system
(4.1.1). Under the assumptions of Theorem 4.1.2, for each fixed u ∈ Lp(I, E), the system (4.1.1)
is mildly solvable on I = [0, T].

Let Uad be the admissible control subset of Lp(I, E). We consider the Bolza problem (P), i. e.,
(P) : Find u° ∈ Uad such that J(u°) ≤ J(u), for all u ∈ Uad, where

J(u)  =  ∫
I

u dt))t(u),t(x,t(l  + )),T(x( uψ

where xu denotes the mild solution of system (4.1.1) corresponding to the control u ∈ Uad, and
ψ : X α →∇ is a nonnegative continuous function.
{u, xu} is called an admissible state-control pair, or simply admissible pair. For the existence of a
solution of the Bolza problem (P) we shall introduce the following assumptions:
(U) Uad  =  Lp(I, E), B ∈ L(Lp (I, E), Lp(I, X)), 1 < p < ∞, and B is strongly continuous.
(L) The function l: I × Xα × E →∇∪ {∞} is Borel measurable satisfying the following
       conditions:
      1.  l(t, ⋅, ⋅) is sequentially lower semicontinuous on Xα × E for almost all t ∈ I.

      2.  l(t, x, ⋅)  is convex on E  for each x ∈ Xα and almost all t ∈ I .
      3. There exists constants b ≥ 0, c > 0 and φ ∈ L1(I, ∇) such that

l(t, x, u) ≥ φ(t) + b|| x ||α + c|| u || P
E ,

          for all t I∈ .
)(ψ  The function ψ : X α →∇ is continuous and nonnegative.

          We refer to a remarkable result about strong-weak lower semicontinuity of a functional,
Balder gives this result in his paper (See Balder, E. J. (1987)). The result is
Theorem 4.2.1. (Balder’s Theorem)
Let (X, |||| • ) be a separable Banach space, and (V, || • ) a separable reflexive Banach space,
whose dual is denoted by V′ . Let l : ],(VXI +∞−∞→×× be a given measurable function.
The following three conditions
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                               ),,t( ••l  is sequentially l.s.c. on VX × µ -a. e.,
                               ),x,t( •l is convex on V for every x∈X µ -a. e.,
there exist M > 0 and ∈φ L1(∇) such that
                               )v,x,t(l ≥ )t(φ - M(||x|| + |v|)  for all x X∈ , v µ∈V a. e.,
are sufficient for sequential strong-weak lower semicontinuity of lI on )V(L)X(L 11 × .
Moreover, they are also necessary, provided that lI ( v,x ) < ∞+ for some ∈x L1(X), ∈v L1(V),
where lI : L1(X)×L1(V) ] ,[ ∞+−∞→  is the associated integral functional defined by

lI (x, v) ≡ ∫ µI dt))t(v),t(x,t(l .
Proof. See Balder, E. J. (1987), pp. 1399-1404.
           We now present the main theorem for the Bolza problem.
Theorem 4.2.2. Suppose the assumptions (A1), (B), (F2), (G2), (F6), (G6), (H1), (U), (L) and

)(ψ hold. Let )X];0,r([C α−∈ϕ and β∈ϕ X)0( , for some 1] ,(α∈β . Then the Bolza problem
(P) has a solution, i. e., there exists an admissible state-control pair {u°, x°} such that

J(u°)  =  ))T(x(dt))t(u),t(x,t( 0

I

00 ψ+∫ l  ≤ J(u), for all  u ∈ Uad.

Proof: If inf {J(u) | u ∈ Uad} = +∞,  there is nothing to prove.
Assume that inf{J(u) | u ∈ Uad} = m < ∞

By (L)–3, there exists constants b ≥ 0, c > 0 and φ ∈ L1(I, ∇)  such that
l(t, x, u) ≥ φ(t) + b||x||α + c||u|| p

E .

Then
                  J(u) = ))T(x(dt))t(u),t(x,t( u

I
ψ+∫ l

 ≥ ∫ φ
I

dt)t( + b ∫ α
I

dt||)t(x|| + c ∫
I

p
E dt||)t(u|| + ))T(x( uψ

 ≥ –η
 > –∞,

whereη> 0 is a constant. Hence m ≥ –η > –∞.

By the definition of infimum, there exists a minimizing sequence {un} of J, i. e., J(un) → m as
n → ∞. By the assumption (L)-3 again, we have

l(t, x, un)  ≥  φ(t) + b||x||α + c||un|| p
E .

Then
          J(un)   ≥ ∫ φ

I
dt)t( + b ∫ α

I
dt||)t(x|| + c ∫

I

p
E dt||)t(u|| + ))T(x( uψ .

So
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         m - ∫ φ
I

dt)t( - b ∫ α
I

dt||)t(x|| - ))T(x( uψ  ≥ c|| un
 || )E,I(pL .

Therefore || un ||Lp(I, E)  ≤  m1/c for all n, for a constant m1 independent of n.

This shows that {un} is contained in a bounded subset of the reflexive Banach space Lp(I, E). So
{un

 } has a subsequence relabeled as {un} and there is an element u° ∈ Uad such that un →w

u° in Lp(I, E). Let {xn} ⊂ C([-r, T]; Xα) denote the corresponding sequence of solutions for the
integral equation
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Since )E,I(pL
n ||u|| is bounded, by a similar argument to obtaining an a priori estimate as in

Theorem 3.2.3, there exists a constant ρ > 0 such that
|| xn ||C([0, T] ; Xα) ≤ ρ ,  for all n  =  0, 1, 2,….

where x0 denotes the solution corresponding  to u°, that is,
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By assumptions (F2) and (G2), for each t in [0, T], there exists positive constants ),t(K1 ρ ,
),t(K 2 ρ such that

||f(s, xn(s)) – f(s, x°(s))|| ≤ K1(t, ρ)||xn(s) – x°(s)||α, s ∈ [0, t],
and
                           ||g(θ, xn(θ)) – g(θ, x°(θ))|| ≤ K2(t, ρ)||xn(θ) – x°(θ)||α, θ ∈ [–r, t].
Hence

   ||xn(t) – x°(t)||α  ≤    || 
0
∫

t

T(t – s)B(un(s) – u°(s))ds

                    + 
0
∫

t

T(t – s)[f(s, xn(s)) – f(s, x°(s))]ds

                  + 
0
∫

t

T(t – s)[
 -– r  
∫

s

h(s – θ)(g(θ, xn(θ)) – g(θ, x°(θ)))dθ]ds||α
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      ≤   αK
0
∫

t

(t-s) α− ||Bun(s) – Bu°(s)||Xds

                                 + αK K1 (t, ρ) ∫ −− α
α−

t

0

0n ds||)s(x)s(x||)st(

       + αK K2 (t, ρ)
  ∫ θ−θ∫ θθ−− α

≤θ≤−

α−
t

0

0n

s0

s

r
)X(L ds||)(x)(x||sup]d||)s(h||[)st(

                      ≤  αK q1
q1T

α−
α−

||Bun – Bu°||Lp(I, X)

    + αK K1(t, ρ) ∫ −− α
α−

t

0

0n ds||)s(x)s(x||)st(

                                   + αK K2(t, ρ) h
 0
∫

t

(t-s) α− ||x n
s  – x 0

s ||Cds.

By Gronwall’s lemma with singularity and time lag, ||xn(t) – x°(t)||α ≤ M||Bun – Bu°||Lp(I, X),

where M = αK q1
q1T

α−
α−

 is a constant, independent of n.

Since B is strongly continuous, we have ||Bun – Bu°||Lp(I, X) →s 0 as n → ∞. This implies
||xn – x°|| →s 0 in C([-r, T]; Xα).

The assumption (L) implies the assumption of Balder’s theorem. Hence by the Balder’s result,
(u, x) → ∫

I

u dt))t(u),t(x,t(l  is sequential strong-weak lower semicontinuous on L1(I, E)×L1(I,

X). Then J is weakly lower semicontinuous on Lp(I, E). By (L)-3, since J > – ∞, J attains its
minimum at u° ∈ Uad. Therefore the Bolza optimal control Problem (P) has a solution.



Chapter V
Applications

            In this chapter, we present some examples that illustrate our abstract results. These
examples deal with controll problems subject to a class of semilinear evolution equations with
delay. We apply Theorem 4.1.2 and Theorem 4.2.2 to prove the existence of an optimal control.
           The first part of this chapter is about basic concepts of Sobolev spaces, strongly elliptic
operators and related results. The second part consists of our examples that we introduce
constructively to show how our abstract results can be applied.

5.1 Terminology
           In the following we use y = (y1, y2, …, yn) to be a variable point in the n-dimensional
Euclidean space ∇n. For any two such points y = (y1, y2, …, yn) and z = (z1, z2, …, zn) we set

∑=⋅ =
n

1i iizyzy and |y|2 = yy ⋅ .
          An n-tuple of nonnegative integers )..., ,,( n21 ααα=α is called a multi-index and we
define

∑α=α
=

n

1i
i    ||

and
                                              n

n
2

2
1

1 yyyy αααα ⋅⋅⋅=  for y = (y1, y2, …, yn).
Denoting Dk = ky/ ∂∂ and D = (D1, D2, …, Dn) we have
                                              n

n
2

2
1

1 DDDD αααα ⋅⋅⋅=  = 
nn

n
2

2

2
1

1

1

y
...

yy α
α

α
α

α
α

∂
∂

∂
∂

∂
∂ .

          Let Ω be a fixed domain in ∇n with boundary and closureΩ . Assume that Ω∂ is
sufficiently smooth, e. g., Ω∂ is of the class Ck for some suitable k≥ 0, this means that for each
point y Ω∂∈  there is a ball B with center at y such that B∩Ω∂ can be represented in the form
yi = ϕ (y1, …, yi-1, yi+1, …, yn) for some i, and ϕ is a k-times continuously differentiable function.
          For a nonnegative integer m, we denote by Cm(Ω ) (resp. Cm(Ω )) the set of all m-times
continuously differentiable real-valued or complex-valued functions inΩ (resp.Ω ), by )(Cm

0 Ω

the subspace of Cm(Ω ) consisting of those functions which have compact support inΩ .
          For x∈ Cm(Ω ) and ∞<≤ p1 , we define
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                                                  || x ||m, p = p
1

m||

p dy|xD| 







∫ ∑
Ω ≤α

α .                                            (5.1.1)

Also for p = 2 and u, v∈ Cm(Ω ), we define
                                                 (u, v)m =  ∫ ∑

Ω ≤α

αα

m||
dy vDuD .                                                  (5.1.2)

Let )(Ĉm
p Ω be the subset of Cm(Ω ) consisting of those functions x for which ||x||m, p < ∞ .

We define Wm, p(Ω ) and )(W p,m
0 Ω to be the completions in the norm p,m|||| • of  )(Ĉm

p Ω and
)(Cm

0 Ω , respectively. The spaces W m, p(Ω ) consists of functions x∈Lp )(Ω whose derivatives
xDα in the sense of distributions, of order m|| ≤α   are in Lp )(Ω , and )(W p,m

0 Ω is the closure of
)(Cm

0 Ω in Wm, p(Ω ).
           It is well known that W m, p(Ω ) and )(W p,m

0 Ω are Banach spaces with the usual norm
p,m|||| • .Then W m, p(Ω ) is separable, uniformly convex and hence reflexive. Let

Hm )(Ω = Wm, 2 )(Ω , )(Hm
0 Ω = )(W 2,m

0 Ω .
The spaces Hm )(Ω and )(Hm

0 Ω are Hilbert spaces with the scalar product ),( ⋅⋅ given by (5.1.2).
The following imbedding theorem describes various relations among the above spaces.
Theorem 5.1.1. (Sobolev) The following relations among W m, p(Ω ), Cm(Ω ), and Lp )(Ω hold:
(1) W m, p(Ω )⊂ W m, r(Ω ) if pr1 ≤≤ , and the imbedding is continuous;
(2) W m, r(Ω )⊂ W j, p(Ω ) if ∞<≤ p,r1 , j and m are integers such that mj0 <≤ and
      ,n

m
n
j

r
1

p
1 −+> and the imbedding is compact;

(3) W m, p(Ω )⊂ )(L mpn
np

Ω− if mp < n and there exists a constant c1 such that
p,m1

mpn
np,0

||x||c||x|| ≤
−

, for x∈W m, p(Ω );

(4) W m, p(Ω )⊂ C k )(Ω if p
nmk0 −<≤ , and there exists a constant c2 such that

sup{| )y(xDα |; Ω∈≤α y,k  || } ≤ c2||x||m, p, for x∈W m, p(Ω );
(5) (Poincaré Inequality) There exists a constant c = c )(Ω such that

2,02,0Rk ||x||)(c||kx||inf ∇Ω≤+∈ , for x∈ 1
0H (Ω ).

Since Ω∂ is smooth, )(C0 Ω∞ is dense in )(W p,m
0 Ω and L2 )(Ω , )(W p,m

0 Ω  is dense in L2 )(Ω .
From Sobolev’s imbedding theorem, we have that the imbeddings

)(C0 Ω∞ )(W p,m
0 Ω L2 )(Ω .
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           For any η+=σ k > 0, where k is a nonnegative integer andη ∈(0, 1), )(C Ωσ denotes the
Banach space consisting of those functions belonging to )(Ck Ω whose derivatives xDα of order

k|| =α satisfy a uniform Hölder condition with exponentη . The norm in this space is defined as
∑+=
=α

η
α

ΩΩσ
k||)(kC)(C

]xD[||x||     ||x|| ,

with

η≠Ω∈η −
υ−υ=υ
|zy|

|)z()y(|sup][ zy,z,y .

           For a bounded domain Ω  in Rn with a smooth boundary Ω∂ , we consider the differential
operator of order 2m,
                                                  A(y, D) = ∑

≤α

α
α

2m  ||
D)y(a                                                       (5.1.3)

where the coefficients )y(aα are sufficiently smooth complex-valued functions of y inΩ . The
principal part )D,y(A′ of A(y, D) is the operator
                                               A′ (y, D) = ∑

=α

α
α

2m  ||
D)y(a                                                       (5.1.4)

Definition 5.1.2. The operator A(y, D) is strongly elliptic if there exists a constant c > 0 such that
                                              Re(-1)m A′ (y, ξ ) ≥ c| ξ |2m ,                                                        (5.1.5)
for all y Ω∈ and ∈ξ Rn.
           For example the Laplacian operator∆  given by

∑
∂
∂=∆

=

n

1i
2
i

2

y
xx .

           ∆−  is clearly strongly elliptic.
5.2 Optimal Control of a Semilinear System with Finite Delay
           In the following, we give some examples of infinitesimal generator of analytic semigroup
in Example1and the existence of an optimal control for a semilinear parabolic controlled system
with finite delay in Example2. It is important to know which differential operator can be the
infinitesimal generator of an analytic semigroup. We collect some important generators as
follows.
Example 1.
Let A(y, D) = ∑

≤α

α
α

m2||
D)y(a   be a strongly elliptic differential operator inΩ .

With suitable boundary conditions, it can be the infinitesimal generator of an analytic semigroup
in some function spaces.
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The operator
                                                A*(y, D)x = ∑

≤α
α

αα

m2||

|| )x)y(a(D(-1)                                      (5.2.1)

is called the formal adjoint of A(y, D). From the definition of strong ellipticity it is clear that if
A(y, D) is strongly elliptic so is A*(y, D). The coefficients )y(aα of A(y, D) are assumed to be
smooth enough, e. g., )y(aα ∈C2m )(Ω or )(C Ω∞ .
Case1. X = )(Lp Ω , for 1 < p <∞ .
Define

D(Ap) = W 2m, p )(Ω ∩ )(W p,m
0 Ω

and
                                                       Apx = A(y, D)x, for x∈ D(Ap).                                          (5.2.2)
         The domain D(Ap) of Ap contains )(C0 Ω∞ and is therefore dense in Lp )(Ω . Then –Ap is the
infinitesimal generator of an analytic semigroup T(t), t≥ 0 in X (See Pazy, A. (1983)). Therefore
the fractional power operator α

pA and the fractional power space αX can be defined.
Case2.  X = )(L1 Ω . Define
                           D(A1) = { x | x∈W2m – 1, 1 ∩Ω)( )(W 1,m

0 Ω , A(y, D)x )(L1 Ω∈ }                 (5.2.3)
where A(y, D)x is in the sense of distributions. For x∈D(A1), A1 is defined by
                                                      A1x = A(y, D)x.                                                                  (5.2.4)
 –A1 is the infinitesimal generator of an analytic semigroup on L1 )(Ω (See Pazy, A. (1983)).
Example 2. Let X = )(L2 Ω .
           We consider the following controlled problem.

  















∈Ω∂∈=
−∈Ω∈ϕ=

∈∫ ξξξ+

∫ ∇−+∇=+∂
∂

Ω

−

(5.2.5)                                                                                           ],T,0[t,y,0)y,t(x
],0,r[t,y),y,t()y,t(x

],T,0(t,d)t,(u),y(K                                                                                    

ds))y,s(x),y,s(x,y,s(f)st(h))y,t(x),y,t(x,y,t(f)y,t(x)D,y(A)y,t(xt
t

r
21

whereΩ ⊂ Rn is a bounded open domain with sufficiently smooth boundary Ω∂ , A(y, D) is the
strongly elliptic operator defined as in case 1 of example1, )R,]0,r([C 2,1 Ω×−∈ϕ , i. e., ϕ is
once continuously differentiable on [-r, 0] and twice continuously differentiable in Ω ,
u ])T,0[(L2 ×Ω∈ , h )R],rT,0([L1 +∈ and K : R→Ω×Ω is of Hilbert-Schmidt type, i.e., K is
a measurable function such that ∞<∫ ∫ ξξ

ΩΩ
dyd|),y(K| 2 .
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For each ])T,0[(Lu 2 ×Ω∈ , let )y)(t(Bu  = ∫ ξξξ
Ω

d)t,(u),y(K . B∈L( )X,I(L2 ) is continuous

and compact, i. e., B is strongly continuous (See Yosida, K. (1980), pp 277; Renardy, M., Rogers,
R. C. (1993), pp. 262-263).
           Suppose f1 : [0, T]× Ω ×R×Rn→R is continuous and there exists constants K1, N1≥ 0, a
constant 1≥λ such that  

|f1(t, y, ξ ,η )| ≤  K1( 1 + | ξ |λ + |η |λ ),
|f1(t, y, 1ξ , 1η ) – f1(s, y, , 2ξ , 2η )| ≤  N1(|t – s| + | 1ξ – 2ξ | + | 1η – 2η |).

           We now fix 14
3 <α< , ),1( 1

α∈λ , we have the imbedding relation αX  C1 )(Ω (See
Amann, H. (1978), pp. 16). Denote the injection by αj : αX → C1 )(Ω and define f : [0, T]×

αX → X by f(t, x)(y) = f1(t, y, αj (x)(y), ))x(j( α∇ (y)). We have
                            ||f(t, x)||X = )(2L||)x,t(f|| Ω

                                           = 2
1

2 dy|)y)(x,t(f| 







∫
Ω

                                           = 2
1

2
1 dy|))y)(x(j),y)(x(j,y,t(f| 








∫ ∇
Ω

αα

                                           2
1

2
1 dy))|)y)(x(j||)y)(x(j|1(K( 








∫ ∇++≤
Ω

λ
α

λ
α

                                           = K1
2
1

2 dy)|)y)(x(j||)y)(x(j|1( 







∫ ∇++
Ω

λ
α

λ
α

                                           ( )
2
1

2
1C1 dy)||)x(j||1(K 








∫ +≤
Ω

λ

Ω
α

                                           2
1

2
1 dy)||x||c1(K 








∫ +≤
Ω

λ
α

λ

                                           ∫ +≤
Ω

λ
α

λ )||x||c1()dy(K 2
1

1

                                           )||x||1(K1
λ
α+≤ , 











>∫

≤∫
=

λλ

Ω

λ

Ω

1.  c if,c)dy(K

1,c if,)dy(K
K

2
1

1

2
1

1

1

So we have
||f(t, x)||X )||x|| 1(K1

λ
α+≤ .

By a similar argument, we have
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  ||f(t, x1) – f(t, x2)||X =  ||f(t, x1) – f(t, x2)|| )(2L Ω

                             = ( ∫ −
Ω

dy|)y)(x,t(f)y)(x,t(f| 2
21 ) 2

1

                            = ∫ ∇−∇
Ω

αααα
2
1

2
221111 )dy|))y)(x(j),y)(x(j,y,t(f))y)(x(j),y)(x(j,y,t(f|(

                            [ ] 2
1

2
2121

2
1 )dy |))y)(x(j)y)(x(j||)y)(x(j)y)(x(j(|N( ∫ ∇−∇+−≤

Ω
αααα

                             =  N1 ∫ −
Ω

Ωαα
2
1

2
)(1C21 )dy||)x(j)x(j||(

                            2
1

2
211 )dy)||xx||c((N ∫ −≤

Ω
α

                             = N1c α
Ω

−







∫ ||xx||dy 21

2
1

                            α−≤ ||xx||N 211 .
Using a similar procedure to f1, if f2 : [-r, T] Ω× ×∇×∇n→∇ is continuous and satisfies:

|f2(t, y, ηξ, )| ),||||||||1(K 2
λλ η+ξ+≤

|f2(t, y, 11,ηξ ) – f2(t, y, 22 ,ηξ )| |)||(|N 21212 η−η+ξ−ξ≤ .
Then we can define g : [-r, T] XX →× α by g(t, x)(y) = f2(t, y, )y)(x(jα , )y)(x(jα∇ ) to have the
similar properties:
                                            ||g(t, x)||X ≤ 2K ( 1 + λ

α||x|| ),
                                            ||g(t, x1) – g(t, x2)||X ≤ 2N α− ||xx|| 21 .
Now the problem (5.2.5) can be written as

      








∈ϕ=

∈+∫ −+=+
−

[-r,0].t(t),   (t)         x          

],T,0(t),t(Buds))s(x,s(g)st(h))t(x,t(f)t(xA)t(xdt
d t

r
p                       (5.2.6)

Theorem 5.2.1. Suppose the assumptions stated above hold. If there exists a constant ρ> 0 such
that the a priori estimate ||x(t,y)|| )R,]T,0([C Ω× ρ≤  holds, for any possible solution x of the system
(5.2.5), then the system (5.2.6) has a uniqueα - mild solution.
Proof. By using the a priori estimate and applying Theorem 4.1.2, the system (5.2.6) has a unique
α -mild solution.                                                                                                                             
Remark 5.2.2. If λ = 1, by using a similar process as in the Global existence theorem (Theorem
3.2.2), Theorem 5.2.1 is still true without assuming the a priori estimate.
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           We now consider the following cost functional:
J(u) = ∫

T

0

u dt))t(u),t(x,t(l + ))T(x( uψ ,

where l : [0, T] →Ω×Ω× )(L)(C 2
1 ∇ }{+∞∪ , →Ωψ )(L: 2 ∇ is defined by

=ξψ )(  ∫ ξ
Ω

dy|)y(| 2

                    l (t, x, u) =  a(t) ∫ ∇+
Ω

dy]|)y(x||)y(x[| 22  + b(t) ∫
Ω

dy|)y(u| 2

where ∈⋅⋅ )(b),(a C([0, T]; [0, ∞ )) with min b(t) = b > 0.
For each x )(W 2,1 Ω∈ , l (t, x, u) = a(t)||x|| 2

2,1 + b(t)||u|| 2
)(2L Ω . By property of the norm and the

inequality,
              2

2,12
2

2,11
2

2,121 ||x)1(||||x||||)x)1(x|| α−−α−α−+α 2
2,122,11 )||x||||x)(||1( −α−α−≤ ,

∈α [0, 1], it follows that l (t,• , u) is convex in )(C1 Ω  and l (t, x,• ) is convex in )(L2 Ω .
Since a and b are nonnegative and continuous on [0, T] and the norm is continuous, l is
continuous on [0,T] )(L)(C 2

1 Ω×Ω× . Since ),,t( ••l is continuous and convex on
)(L)(C 2

1 Ω×Ω , then l is weakly sequentially lower semicontinuous on )(L)(C 2
1 Ω×Ω ,

(See Zeidler, E. (1990)).Then l is sequentially lower semicontinuous on )(C1 Ω )(L2 Ω× .
          Similar to the discussion in Theorem 5.2.1 and Remark 5.2.2, applying Theorem 4.2.2 we
have the existence of an optimal control as follows.
Theorem 5.2.3.  Under the assumptions as in Theorem 5.2.1, there exists a u0∈ ])T,0[(L2 ×Ω

such that J(u0)≤ J(u), u ])T,0[(L2 ×Ω∈ .



Chapter VI
Conclusion

          We summarize our works into four sections as follows:

6.1 Thesis Summary
          In this thesis, we have studied α - mild solutions for a class of semilinear evolution
equations whose principal operator is the infinitesimal generator of an analytic semigroup in
Banach spaces. We obtained the local existence, global existence, continuous dependence and
regularity of mild solutions. A Bolza optimal control problem of a corresponding controlled
system can be solved. The application of our abstract results is illustrated by some examples.
          We summarize our results:
Part I. Local Existence, Extension and Global Existence
          We obtained main theorems as follows:
Theorem 3.1.4. ( Local Existence Theorem ) Assume that (A), (F1), (G1), and (H1) hold.
Let ϕ ∈ C([–r, 0]; Xα) and β∈ϕ X)0( , for some ]1,(α∈β . Then there exists a positive number t1

such that the system (3.1.1) has a unique mild solution on [-r, t1].
Theorem 3.1.7. (Extension Theorem) Assume (A), (F1), (G1) and (H1) hold.
Let )X];0,r([C α−∈ϕ and β∈ϕ X)0( , for some 1]. ,(α∈β  Suppose a priori estimate holds for
the system (3.1.1), i. e.,
      (AP) There exists a constantρ> 0 such that if )(x • is a possible mild solution of the system
(3.1.1) on a subset [-r, T′ ] of [-r, T], it follows that  ||x(t)||α ≤ ρ , for all t∈[-r, T′ ].

Then the system (3.1.1) has a unique global mild solution on [-r, T].

Theorem 3.2.2. (Global Existence Theorem) Assume that (A), (F1), (F5), (G1), (G5) and (H1)

hold. Let ϕ ∈ C([–r, 0]; Xα) and β∈ϕ X)0( , for some 1]. ,(α∈β  Then the system (3.1.1) has a
unique global mild solution on [-r, T].
Theorem 3.2.3. Assume that (A), (F1), (F6), (G1), (G6) and (H1) hold.
Let ϕ ∈ C([–r, 0]; Xα) and β∈ϕ X)0( , for some 1] ,(λα∈β . There exists a constant 0>ρ such
that if )(x • is a possible mild solution of the system (3.1.1) on a subset [-r, T′ ] of [-r, T], we
have
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ρ≤E||)t(x|| ,
for all t ∈[-r, T′ ]. Then there exists a constant ∗ρ > 0 such that

α||)t(x|| ≤ ∗ρ ,

for all t∈[-r, T′ ], hence the system (3.1.1) has a unique global mild solution on [-r, T].
Part II. Regularity and Continuous Dependence
           Under the same assumptions we can prove that a mild solution is just a classical one. This
shows the connection between mild solution and classical solution.
           Moreover, we have proved continuous dependence of the system (3.1.1). Some important
results of regularity and continuous dependence are as follows:
Theorem 3.3.1. (Regularity) Assume that (A), (F4), (G4), and (H2) hold. Let ϕ ∈ C([–r, 0];

Xα) and β∈ϕ X)0( , for some 1] ,(α∈β . If a mild solution x of the system (3.1.9) exists on [-r, T],
then x ∈ C([-r, T]; Xα) ∩ C1((0, T); X), hence it is a classical solution.
Theorem 3.4.1.  Assume that the hypotheses of Theorem 3.2.2 are satisfied. For any ρ > 0, if x
and y are mild solutions of the system (3.1.1) on [-r, T] corresponding to ϕ1 and ϕ2, respectively,
then there exists a constant K(ρ) > 0 such that

||x – y|| )X];T,r([C α−  ≤ K(ρ)||ϕ1 – ϕ2|| C([–r, 0]; Xα),

provided 1ϕ , 2ϕ ∈ )X];0,r([C α− with ρ≤ϕ α− )X];0,r([C1 ||||  and ρ≤ϕ α− )X];0,r([C2 |||| .

Theorem 3.4.3. Assume that hypotheses of Theorem 3.2.2 are satisfied. For any ρ > 0, if x, y are
mild solutions of the system (3.1.1) on [-r, T] corresponding to h1 and h2, respectively, then there
exists a constant L(ρ) > 0 such that

||x – y|| )X];T,r([C α−  ≤ L(ρ)||h1 – h2||L1([0,  T + r]; L(X)),

provided h1, h2∈L1([0, T+r]; L(X)) with ρ≤+ ))X(L];rT,0([1L1 ||h|| and ρ≤+ ))X(L];rT,0([1L2 ||h|| .

          We extended the method of proving global existence to a system with infinite delay and
obtained a result as follows:
Theorem 3.5.2. Assume that (A), (F3), (F5), (G5), (G7), (H3) hold. Let ϕ ∈ BC((– ∞, 0]; X

α
)

and , β∈ϕ X)0( , for some 1] ,(α∈β . Then the system (3.5.1) has a unique mild solution
x ∈ C(( ∞− , T]; X

α
 ).

Part III. Existence of Optimal Controls
          Existence problem of α - mild solutions of the controlled system (4.1.1) corresponding to
the system (3.1.1) can be solved. Existence problem of a more general controlled system is also
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proved. Existence of an optimal control for a Bolza problem of the system (4.1.1) is presented by
using a Balder’s result. We obtained main results as follows:
Theorem 4.1.2. Under assumptions (A1), (B), (F2), (F6), (G2), (G6) and (H1).

Let u ∈ Lp(I, E), p > 
α−1

1 , )X];0,r([C α−∈ϕ and β∈ϕ X)0( , for some 1] ,(α∈β . Then the
system (4.1.1) is mildly solvable on [–r, T] with respect to u, and the α–mild solution is unique.
Theorem 4.1.4. Assume that assumptions (A1), (A2), (A3) and (H) hold. Then for each u ∈ Uad

and each x0 ∈ X β for some 1] ,(α∈β , there exists a constant t0 = t0(u) > 0 such that the
controlled system (4.1.4) is mildly solvable on [0, t0] with respect to u, and the α–mild solution
is unique.
Theorem 4.2.2. Under assumptions (A1), (B), (F2), (G2), (F6), (G6), (H1), (U), (L) and )(ψ .

Let )X];0,r([C α−∈ϕ and β∈ϕ X)0( , for some 1] ,(α∈β . The special Bolza problem (P) has a
solution, i. e., there exists an admissible state-control pair {u°, x°} such that

J(u°)  =  ))T(x(dt))t(u),t(x,t( 0

I

00 ψ+∫ l  ≤ J(u), for all  u ∈ Uad.

Part IV Applications
           All results in this thesis can be applied to semilinear partial differential equations with
delay. Some examples concerning semilinear parabolic differential equations and the
corresponding Bolza optimal control problems have been presented.
           We also found that

1. Analytic semigroup under fractional power space technique, locally Lipschitz
continuity of f and g, and integrability of the function h are important hypotheses for
obtaining local existence of mild solutions for the system (3.1.1) and (3.1.9).

2. The a priori estimate is a very important condition that is used to prove the extension of
local mild solutions.

3. Gronwall’s lemma with singularity and time lag is an important tool for obtaining on a
priori estimate and global existence. Moreover, the moment inequality under super
linear growth condition gives us a more general theorem of global existence of mild
solutions.

6.2 Limitations
1. The infinitesimal generator A we discussed is independent of t.
2. For the optimal control problem, the control part appears linearly in the control system.
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3. Necessary conditions for optimality have not been presented.

6.3 Suggestion for Further Work
           In the following are important topics that can be studied further.

1. Time optimal control problem and controllability of the systems.
2. Integrodifferential inclusion.
3. Necessary and sufficient condition for optimal controls.
4. System Identification.
5. Stochastic control problems corresponding to our system.
6. Corresponding relaxed controlled system.
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