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Synchrotron light source is the origin of various highly effective x-ray 

techniques for studying properties of materials. This thesis involves two well-known 

techniques including RXES which is highly appropriate for studying electronic band 

structures of materials and XANES technique which is widely used for probing 

physical properties of materials. However, the experiments alone are generally not 

sufficient to gain a deep understanding of material properties. Therefore, in this thesis 

first principle calculation, which is unbiased and well accepted, is employed to help 

gaining a deeper and more accurate understanding of material properties. Three 

materials were chosen as follows. 1) Graphene, its electronic band structures were 

calculated along with RXES spectra employing first principle calculation as 

implemented in the FP-LMTO code. The calculated spectra were analyzed and 

compared with the experiments. The corehole effects on the spectra shifting were also 

taken into account for more accurate analysis, which has never been done before. Good 

agreements between the calculation and the experiment were obtained. 2) Indium 

Nitride, its electronic band structures were calculated with first principles calculation 

based on QSGW approximation as implemented in FP-LMTO code. The calculated 

band gap was highly  accurate  and agree well  with  previous  experiment.  The RXES  
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spectra were calculated at near grazing and near normal angles of incidence in order to 

probe different parts of the electronic band structures. The calculated spectra were 

compared to the experimental ones and help to explain the electronic band structure of 

this material in more detailed. 3) Bi(Mg0.5Ti0.5)O3, first principles calculation as 

implemented in VASP was employed to find the actual structure of this material and 

XANES spectra for the possible structures were calculated with FEFF code in order to 

find the cation off-centering features in the spectra. The results can be used to determine 

the actual structure of the material for the future experiments. In summary, first 

principles calculation is a very powerful method to be used to study the electronic band 

structure and physical structure of materials. The RXES technique is suitable to study 

electronic band structure, while XANES is good for the study of local structure of 

materials. When first principles calculation is used incorporated with the X-ray 

techniques, a much deeper understanding of materials can be obtained which is crucial 

to the development of better materials for electronic devices.           
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เคร่ืองก าเนิดแสงซินโครตอนนบัวา่เป็นแหล่งก าเนิดของเทคนิคเอ็กซ์เรย ์ท่ีมีประสิทธิภาพ
ในการศึกษาคุณสมบติัของสารมากมาย โดยในวิทยานิพนธ์น้ีไดมี้การศึกษาเก่ียวขอ้งกบัเทคนิคสอง
ชนิด คือ RXES ซ่ึงมีประสิทธิภาพสูงในการศึกษาแถบอิเล็กทรอนิกส์ของสารและ XANES ซ่ึงใช้
ในการศึกษาโครงสร้างทางกายภาพของสาร อยา่งไรก็ตาม การทดลองเพียงอยา่งเดียวไม่สามารถท า
ใหเ้กิดความเขา้ใจในเชิงลึกในสารท่ีศึกษาไดดี้เท่าท่ีควร ในวทิยานิพนธ์น้ีการค านวณแบบเฟิร์สพริน
ซิเพิลซ่ึงมีความแม่นย  าและเป็นท่ียอมรับอย่างดีมาช่วยในการท าความเขา้ใจคุณสมบติัของสารให้
แม่น ย  าและลึกซ้ึงมากข้ึน โดยไดเ้ลือกศึกษาสาร 3 ชนิด ดงัน้ี 1) กราฟีน  ค านวณแถบอิเล็กทรอนิกส์
ดว้ยวิธีเฟิร์สพรินซิเพิลพร้อมทั้งค  านวณสเปกตรัม RXES ดว้ยโปรแกรมท่ีถูกสร้างไวใ้น FP-LMTO 
ตลอดจนวเิคราะห์เปรียบเทียบกบัผลการทดลองโดยมีการน าเสนอวธีิการพิจารณาผลของท่ีวา่งท่ีเกิด 
ข้ึนในชั้นพลงังานต ่าสุด ท่ีมีต่อการเล่ือนต าแหน่งของเสปกตรัม RXES เพื่อการเปรียบเทียบท่ีแม่นย  า
ซ่ึงไม่เคยมีใครท ามาก่อน ผลการค านวณและผลการทดลองตรงกนัอย่างมาก 2) อินเดียมไนโตรด์  
ค านวณแถบอิเล็กทรอนิกส์ดว้ยวิธีเฟิร์ส พรินซิเพิลและใช้การประมาณแบบ QSGW ซ่ึงไดถู้กสร้าง
ไวใ้นโปรแกรม FP-LMTO ซ่ึงท าใหไ้ดค้่าช่องวา่งระหวา่งแถบพลงังานท่ีแม่นย  าใกลเ้คียงกบัผลการ
ทดลอง พร้อมทั้งค  านวณสเป็กตรัม RXES ท่ีมุมตกกระทบเกือบขนานและเกือบตั้งฉากกบัระนาบ
ของผลึก เพื่อท่ีจะศึกษาแถบพลงังานท่ีต่างกนัในแถบอิเล็กทรอนิกส์ของสาร ผลการค านวณไดถู้ก
น าไปเปรียบเทียบกบัการทดลอง และท าให้สามารถอธิบายแถบอิเล็กทรอนิกส์ของสารน้ีไดช้ดัเจน
มากข้ึน 3) Bi(Mg0.5Ti0.5)O3 โดยสารน้ีได้ใช้การค านวณแบบเฟิร์ส  พรินซิเพิลด้วย VASP เพื่อ
ค านวณหาโครงสร้างท่ีน่าจะเป็นของสารและท าการค านวณสเป็กตรัม XANES ของสารด้วยชุด
โปรแกรม  FEFF เพื่อศึกษาลกัษณะของสเปกตรัมท่ีเป็นตวับ่งช้ีถึงการเล่ือนออกจากศูนยก์ลางของ
ไอออนบวกในสารน้ี ซ่ึงจะสามารถใช้เป็นแนวทางในการตรวจสอบโครงสร้างท่ีแทจ้ริงของสาร
ดว้ยการทดลองวดัสเป็กตรัม  XANES ในอนาคต โดยสรุป การค านวณแบบเฟิร์สพรินซิเพิลเป็น
เทคนิคท่ีมีประสิทธิภาพสูงในการค านวณโครงสร้างอิเล็กทรอนิกส์และคุณสมบติัเชิงกายภาพของ
สาร เทคนิค RXES เป็นเทคนิคท่ีเหมาะส าหรับใช้ในการศึกษาโครงสร้างอิเล็กทรอนิกส์ของสาร      
ในขณะท่ีเทคนิค XANES เหมาะส าหรับการศึกษาโครงสร้างทางกายภาพของสาร การค านวณแบบ
เฟิร์สพรินซิเพิลร่วมกบัการทดลองดว้ยเทคนิคเอ็กซ์เรยจ์ะสามารถท าให้เกิดความเขา้ใจในสารนั้นๆ     
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CHAPTER I 

INTRODUCTION 

 

1.1 Overview of the calculation approaches 

Advanced light sources based on the synchrotron techniques generate full spectrum 

of x-ray with unprecedented high brilliance of up to billions fold of natural light sources.  

This makes several measurement techniques that probe the structures of materials possible.  

These include a wide range of popularly used x-ray techniques such as protein x-ray 

diffraction techniques (PX), small and wide angle x-ray scattering techniques (SAXS & 

WAXS), photoelectron spectroscopy (PES), x-ray absorption spectroscopy (XAS), angle-

resolved photoemission spectroscopy (ARPES), and resonant x-ray emission spectroscopy 

(RXES).  These techniques are well suited for different scales, systems and the properties of 

interest. However, interpreting the results from the real materials to try to understand their 

properties can be difficult. First principle or “ab initio” calculation can be an effective 

method to solve the issue. First principles calculations are based on quantum level 

calculations of the electronic structures and density functional theory (J. Als-Nielsen, 2001) 

which allow one to model materials without taking any information from the measurements 

except the fundamental information about each element, i.e., the number of protons and 

electrons.  Hence, the approach is highly unbiased. In our studies of selected crystalline 

compounds, we will focus our attentions on the XAS and RXES techniques.  Note that we 

will not focus on the measurement as part of the graduation but rather focus on the 

computations to predict or to interpret measured results, as well as, forming the frameworks 

to properly  compare  computational  results  with  the  experiments.  Most of the measured 
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results shall be obtained from literatures or collaborators.     

RXES technique is one of the powerful techniques to probe electronic band structure 

of materials while XAS is suitable tool for probing local structures of materials. This thesis 

work will use RXES to study perfect crystalline with interesting features in their electronic 

band structures and XAS to study the local structure of the selected material.    

 

1.2  Research objectives 

This research is divided into two parts. The first part aims to study and verify 

electronic band structures of interested materials by first-principle calculations as well as 

forming the proper framework to compare the calculated results with the experimental ones 

from RXES technique. The second aims to study the off-centering defects of cations in a 

selected perovskite structure in order to find probable structure of the material. To confirm 

the proposed local structure model the simulation of x-ray absorption spectroscopy and/or x-

ray emission spectroscopy are generated on the predicted-to-exist defects and compared with 

actual measurements if possible.   

 

1.3  Scope and limitation of the study 

Scope: This thesis covers, first, the study of electronic band structures of Graphene 

and InN by RXES technique. The RXES spectra from available experiments are compared 

to the calculated ones in order to verify the electronic band structure of these materials. 

Second, the study of probable local structure of Bi(Mg0.5Ti0.5)O3 (BMT) and the suggestion 

on how to probe its cations’ off centering by using XAS technique. The calculated spectra 

are performed based on first principle calculations for future experiments to verify its actual 
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structure. The RXES spectra are calculated through LMTO code while the XAS ones are 

done through FEFF code.  

Limitations: Generally, DFT leads to the band gaps that are too small, preventing 

direct comparisons of electronic levels with experiments. However, there are various 

available band gap correction schemes that can be used reasonably well in many cases. In 

many cases, computational results provide valuable relative information even without band 

gap corrections. For example, when the calculated bandgap is reasonably large the calculated 

XAS spectra and XES spectra, which depend on the partial density of states of the conduction 

and valence bands, respectively, are much less sensitive to the precise value of the band gap.  

 

 

 

 

 

 

 



 
 

 

CHAPTER II 

BASIC THEORIES OF X-RAY TECHNIQUES 

 

In this thesis study only two types of x-ray techniques are used and will be discussed 

in this chapter, the x-ray absorption near edge structure (XANES) and resonant x-ray 

emission spectroscopy (RXES).  

 

2.1  X-ray absorption near edge structure 

2.1.1  Basic principle of x-ray absorption 

X-ray absorption spectroscopy (XAS) is a widely popular used technique due 

to its easy accessibility from synchrotron facilities around the world. It is a very powerful 

technique for structural analysis of materials. In XAS, an x-ray beam with sufficient energy 

ejects a core electron from an atom. Each core energy level has a distinct binding energy and 

thus when the x-ray energy is scanned trough the binding energy of a core level the 

absorption cross-section increases abruptly. This gives rise to a so called absorption edge. 

Each absorption edge represents a different core-electron binding energy. The edges are 

named according to the principle quantum number of the excited electron: K for n = 1, L for 

n = 2 M for n = 3, and so on.   

 If x-ray of Intensity I0 are incident on a sample as schematically shown in 

Figure 2.1a the extent of absorption depends on the photon energy E and sample thickness t.  
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Figure 2.1 (a) Schematic of incident and transmitted X-ray beam and (b) absorption 

coefficient µ(E) (Schnohr et al., 2015).  

 

According to Beer’s Law, the transmitted intensity It is defined by 

 

       It(t)= I0e-µ(E)t ,                             (2.1) 

where μ(E) is the energy-dependent X-ray absorption coefficient. Over large energy regions, 

μ(E) is a smooth function of the photon energy, varying approximately as     μ(E) ∼ dZ4/mE3 

(Kelly, 2008). Here d denotes the target density, Z the atomic number and m the atomic mass. 

Therefore, μ(E) decreases with increasing photon energy. If the energy equals or exceeds the 

binding energy of a core electron, a new absorption channel occurs in which the photon is 

annihilated thereby creating a photoelectron and a core-hole. This leads to a sharp increase 

in absorption coefficient as shown schematically in Figure 1.1(b). Above the absorption 

edge, the difference between the photon energy and the binding energy, left-over energy, is 

then converted into kinetic energy of the photoelectron while μ(E) continues to decrease with 

increasing photon energy. The core-hole life time is approximately 10−15 s, the core-hole is 

filled by an electron from a higher energy state. The corresponding energy difference is then 

released mostly via fluorescence X-ray or Auger electron emission (Kelly, 2008).  

2.1.2  Absorption fine structure 

  According to quantum mechanical perturbation theory, the probability of a 

deep core electron from state |𝑖⟩  of an  absorbing atom  transitioning into some unoccupied  
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state |𝑓⟩ is described by Fermi’s Golden Rule:   

                                       µ(E)∝ ∑ |〈f|ê∙r|i〉
Ef>EF

f
|
2
(E-Ef),                                       (2.2) 

where �̂� ∙ 𝒓 the dipole operator for the incident electromagnetic wave interacting with the 

material. µ(𝐸) is the absorption coefficient, which is the sum over all energies above the 

Fermi energy. The core state is typically a 1s, 2s, or 2p state. The dipole operator and delta 

function factors both cause a modulation of the absorption coefficient thus creating the X-

ray absorption fine structure (XAFS). X-ray energies for which the photon can be absorbed, 

the photoelectron will be excited to unoccupied bound states of the absorbing atom as shown 

schematically in Figure 2.2(a) This can lead to a strong increase of the absorption coefficient 

at particular X-ray energies corresponding to the energy difference between the core level 

and the unoccupied states.  

 

 

Figure 2.2 (a) Schematic of the absorption process and (b) absorption coefficient μ(E) versus 

photon energy E including the fine structure above the  edge divided into the XANES and 

EXAFS regions (Schnohr et al., 2015). 
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Figure 2.3 Schematic showing the absorbing atom (yellow) and its first nearest Neighbors 

(blue). An interference pattern is created by the outgoing (solid orange lines) and reflected 

(dashed blue lines) photoelectron waves. 

 

   At the higher energies of incident, the photoelectron is excited to a continuum 

state. The created wave propagates outwards and is scattered by neighboring atoms (Rehr     

et al., 2000) as shown in Figure 2.3. The interference of outgoing and scattered waves 

depends on the photoelectron wavelength and geometry of the absorber environment. The 

former is inversely proportional to the photoelectron momentum and therefore changes with 

photon energy. Thus, the final state is an energy-dependent superposition of outgoing and 

scattered waves. Because the initial state is highly localized at the absorbing atom, the matrix 

element M in Eq. (2.2) depends on the magnitude of the final state wave function at the site 

of the absorbing atom. Constructive or destructive interference of outgoing and scattered 

waves thus increases or decreases the absorption probability, creating an energy-dependent 

fine structure of the absorption coefficient. Figure 2.2(b) schematically shows the μ(E) fine 

structure as a function of photon energy. The fine structure typically consists of two regions, 

namely the X-ray absorption near edge structure (XANES) for the region very close to the 

absorption edge and the extended X-ray absorption fine structure (EXAFS) for the photon 
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energies higher than ~ 30 eV above the edge. XANES is characterized by transitions of the 

photoelectron to unoccupied bands, thus, it is sensitive to the valence states and bandwidth, 

chemical bonding and oxidation states of the absorbing atom (Kelly, 2008). The XANES 

features are also influenced by multiple scattering effects which depend on the geometry of 

the crystal structures. Therefore it is a good technique to distinguish between crystal phases 

or structures which will be one of the main focused points in this thesis. On the other hand, 

EXAFS yields information about the interatomic distances, near neighbor coordination 

numbers, and lattice dynamics.  

2.1.3  Multiple scattering theory and XANES 

Generally, there are two approaches in solving for the absorbing coefficient 

in Eq. (2.2) (Ravel, 2005). The first one is based on the molecular orbital theories and the 

second, multiple scattering theory. Although both methods are computationally distinct from 

each other, it is important to understand that they are formally equivalent, only the choice of 

approximation being used in solving Eq. (2.2) will differentiate them. The detail of each 

approach shall be discussed as follows:  

(1)   Molecular Orbital Theories: 

    The summation in Eq. (2.2) can be evaluated after representing the 

accurate initial and final states (Cowan, 1981). The initial and final states of the system can 

be obtained by solving the Schrodinger’s equation and the absorption coefficient can be 

calculated directly from Eq. (2.2). This can be done by various quantum computational solid 

states physics codes, for examples, LMTO (Cabaret, 1999), Wein2k (Blaha, 2014), VASP 

(Kresse et al., 1994; Kresse et al., 1996) and Siesta (José et al., 2002) VASP and Siesta use 

pseudopotential which do not include core electrons in the calculations, thus the accurate 

initial states |𝑖⟩  are not available. However, by assuming that the distortion of core states of  

an atom in a material is very small and negligible. The core state of the isolate atom can be 

used as |𝑖⟩ for that of the material. The only caution to this approach is that the absolute 
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absorption energy may not be accurate due to the slightly difference in the core state energy 

between the isolate atom and the one in the material. By considering the Fermi’s Golden 

Rule in Eq. (2.2), the initial and final states must have different parities (odd/even). For 

example, the allowed final states for the transition of a 1s (even) state are the p states (odd) 

only. By this assumption, one can use site-projected partial density of states of the absorbing 

atom to describe the absorption coefficient µ(E). This approach was previously performed 

by using VASP code (Limpijumnong et al., 2006). 

(2) Multiple Scattering Theory (Ravel, 2005):  

In this approach, the Eq. (2.2) will be rewritten using a Green’s 

function. A system consists of ions and electrons which create a flat interstitial potential Vint. 

The ions can be considered as scattering sites of potential V.  Therefore, the potential of the 

system can be written as H = H0 + Vint+ V and the one-particle Green’s function as            

G(E) = 1/(E – H + i). Eq. (2.2) can now be rewritten as: 

 

                                              µ(E)∝-
1

π
Im〈i|ϵ*̂∙rG(E)ϵ̂∙r|i〉(E-Ef),                                 (2.3) 

 

where  is the Heaviside step function which assures that the cross section is non-zero only 

above the Fermi energy, EF. G is the full one-electron propagator in the presence of the 

scattering potential which can be written in a series by using Dyson equation as                            

G = G0 + G0TG0, where G0 is the free-electron propagator which is a function that describes 

how an electron propagates between two points in a free space,  G0 = 1/(E – H0 + i), and                          

T = V + VGT is the full atomic scattering matrix (Beeby, 1967; Lloyd et al., 1972). T can be 

written in terms of the single site scattering matrices t as  

 

                            T = t + tG0t + tG0tG0t + . . .                                      (2.4) 

By substituting T from Eq. (2.4) into the Dyson equation, it can be rewritten and recognized 

as a Taylor expansion: 
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                                            G  =  G0 + G0t G0 + G0t G0t G0 + …                                     (2.5) 

 

                                                          G  = (1 - G0t)-1 G0                                                         (2.6) 

 

Eq. (2.4) and (2.5) are the basis of how XANES and EXAFS spectra are generated in FEFF. 

XANES spectra are computed by directly inverting the matrix (1 - G0t) in Eq. (2.6) while 

Eq. (2.5) is used as the basis for EXAFS analysis.                                            

    It is worthwhile to explain the physical interpretation of these 

equations. First of all, after the incident X-ray is absorbed by the absorbing atom and the 

photoelectron is ejected, G describes all the possible ways that the photoelectron scatters 

from the surrounding atoms before the core-hole is refilled. G0 describes how an electron 

travels between two points in space (Rehr et al., 1990). t describes how a photoelectron 

scatters from a single atom. Now consider each term in Eq. (2.5). G0tG0, G0tG0tG0 describes 

all the possible ways that a photoelectron can scatter off a neighboring atom only one time, 

and two times respectively, and the next terms describe the possible ways that the 

photoelectron can scatter three, four, five times and so on.  In the multi scattering theory, 

only closed scattering paths of the photoelectron are considered in the summation for XAS. 

Examples of the scattering paths are schematically shown in Figure 2.4.  Path #1 is an 

example of a single scattering paths #2 and 3 are examples of double scattering paths while 

paths #4 and 5 are examples of triple scattering paths. However, the scattering paths that are 

further away from the absorbing atom have very little effect, therefore only a few scattering 

paths from the few closest neighboring atoms are considered. This scheme is adopted in 

FEFF codes which is widely used for XAS calculations.  
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Figure 2.4  Schematic Examples of scattering paths. Path 1 is a single scattering path. Paths 

2 and 3 are examples of double scattering paths. Paths 4 and 5 are examples of triple 

scattering paths.  

 

In this thesis we use FEFF 8 which implements self-consistent potentials. The 

calculation begins with atoms placing at the positions specified in an input with the electronic 

configurations of free atoms. The potential is then calculated with the muffin-tin potential 

scheme (Mustre de Leon et al., 1991) which is the big improvement in this version of FEFF. 

This gives more accurate results for XANES.  

  XANES calculation can be very useful in the research problems where the 

real structure of the material is not known. In this case, the computational experiments can 

be performed by modifying the input data for FEFF. The calculated XANES from different 

possible model structures can give the hints to the experimental trends and the insights to the 

interpretation of the experimental XANES spectra. In Chapter V, we use FEFF code to 

generate XANES spectra for proposed models of Bi(Mg0.5Ti0.5)O3 in order to find the off-

centering features of this material which can be used to identify the actual structure of 

materials when comparing to future experiments.      

    

1 

2 

3 

4 
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2.2  Resonant x-ray emission spectroscopy  

2.2.1  Introduction 

X-ray emission spectroscopy (XES) is a powerful experimental technique to 

probe electronic band structure of crystal systems. The technique is based on atom-specific 

projection. In XES a core electron excited by an incident x-ray and leave behind a core hole 

which is then recombined with an a valence electron. During the transition process a photon 

of matching energy is emitted. Experiments can be achieved by varying the excitation energy 

in various small steps throughout the core-hole excitation region and measure the emission 

spectra. This technique is made possible because of the development of the third generation 

synchrotron facilities with high brilliance beam based on undulators radiation, new high-

resolution spectrometers and inserting devices which eliminate drawbacks and the low signal 

rates problem that existed at the early stage of the development. While the widely established 

technique of Angle Resolved Photoelectron Spectroscopy (ARPES) is good for determining 

electronic band structures of surfaces, RXES is good for buried interfaces and bulk systems 

which are not accessible for ARPES.   

  XES can be broadly classified into two categories. The first one is called 

“resonant x-ray spectroscopy” (RXES), which is the main focus of this thesis and will be 

discussed again in chapter IV. For RXES, the incident x-ray energy resonates with the 

excitation threshold of the core electron. The second one is called “normal x-ray emission 

spectroscopy” (NXES) or “ordinary x-ray emission”. For NXES, the incident x-ray energy 

is at high enough to ionize the core electron or to excite it to a high energy continuum well. 

By considering the emission energy RXES is further divided into two subcategories, resonant 

elastic and inelastic RXES, also often referred to as resonant inelastic x-ray scattering 

(RIXS). This is explained by Figure 2.5, the schematic representation of the two categories 

of RXES. For the elastic x-ray emission spectroscopy, the initial and final states of the two- 
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steps process are the same which means that the excitation energy (Ein) and the emitted 

energy (Eout) from the electronic relaxation are the same, therefore, no energy loss during the 

process. On the other hand, the final state is not the same as the initial state for RIXS. After 

the core electron is excited, the decay occurs from a valence state or a higher core state and 

emits the energy (Eout) corresponding to the energy differences between the valence and core 

states involved in the decay.  

                     

Figure 2.5  Resonant x-ray emission spectroscopy. The first figure, the incoming x-ray with 

energy Ein excites a core electron into an empty valence state. The middle figure, explains 

the resonant elastic x-ray emission, the excited electron decays and emits the same amount 

of energy as the excited energy, Eout = Ein. The last figure on the right explains the resonant 

inelastic x-ray emission where the electron from a lower valence or core state decay and 

emits the energy less than the excited energy, Eout <  Ein. 

 

RXES can be applied to surface adsorbates which can provide an atom-

specific projection of the electronic structure in samples that has different type of bonding 

(Nilsson et al., 2004).  Combining with theoretical calculations, RXES is a very powerful 

method to obtain more extensive mapping of the bands in crystalline anisotropy such as 

Core Level 

Valence Band 

Ein 

Eout< Ein Eout= Ein 

      Core Excitation RXES elastic RXES inelastic 
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found in the case of ZnO (Preston et al., 2008). RXES can also be used in the cases of highly 

oriented system such as N2 molecules on Ni (100) surface. The angular dependent RXES 

makes it possible to identify the separation of states of different symmetry of the involved 

orbitals. 

2.2.2  Theory of resonant x-ray emission spectroscopy 

In the RXES process, the whole process should be described as a single event 

rather than two independent, XAS and XES, processes as described in Figure 2.6 for the case 

of RIXS. The whole process involves the absorption of one photon and the emission of one 

photon.  In the case that the life time of the intermediate state |m is very short comparing to 

the interaction time between photon and the atom, the absorption and emission processes are 

not independent and cannot be treated separately but as a single scattering event. In the early 

work on theory of broad band solids by (Gel’mukhanov et al., 1997), the important part in 

the whole process is the conservation of momentum. As described in Figure 2.6.             
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Figure 2.6 Initial (|i), intermediate (|m) and final (|f) state of an inelastic x-ray scattering 

process in a single electron picture. In the initial state, a photon with angular frequency 1 

and momentum q1 is present. In the solid, all conduction band states are unoccupied, 

including in particular the core level nc located on atom Rj. In the intermediate state, the 

absorption of the photon has prompted the electron from the core level nc at Rj into 

conduction band state characterized by n (band index) and k (wave vector). In the final state, 

a former valence electron with the quantum number n, k has filled the core vacancy. An 

electron in the conduction band state n, k and a photon with angular frequency 2 and 

momentum q2 are present. 

 

 

If we consider the whole process of translations as a single event, the only 

different between the initial and final state is the additional of the electron-hole pair in the 

final state while the core electron still exists in both states, thus, this does not break the 

translational symmetry. Therefore the momentum is conserved throughout the scattering 

process.  The RXES spectra cross section is calculated based on the transition probabilities 

as described by Kramers-Heisenberg formula (Eisebitt, 2000; Kotani et al., 2001): 
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                 [
dσ

d d2
] ∝ ∑ ∑ |

〈s|p∝|ck〉〈vk|p
β
|s〉

∈ck-∈s-ω1-iΓm/2
|

2

×δ(ω1-2-∈ck+∈vk)c,vk∈BZ ,           (2.7) 

 

where ∈𝑐𝑘, ∈𝑣𝑘 represent the single – particle band energies of a conduction and valence 

band respectively. 𝜔1 represents the incident photon (x-ray absorption) energy 

corresponding to the energy that excites a dipole transition, 𝑝∝, from a core state |s with 

energy ∈𝑠 onto a conduction band state |ck. 𝜔2 represents the photon energy of the x – ray 

emission when a valence electron from the same wave vector recombines with the core hole. 

 and  denote the polarizations of the absorption and emission respectively. The sum is 

calculated over the full Brillouin Zone (BZ). In this formula, we use units with ℎ̅ = 1. Γ𝑚 

represents the life time broadening factor of the core hole, which m denotes the intermediate 

state of the event. The last term with  𝛿 function indicate that energy conservation is valid, 

indicating that the absorbed and emitted photon energies must equal that of the (constant 

wave vector) interband transitions. In other words, at each incident photon energy, ω1, we 

make a horizontal slice or a constant energy line through the band-structure energies and 

then we obtain the k points in the bands which contributes to the vertical interband 

transitions. For those bands, the matrix elements are nonzero by the selection rules. Thus, 

the calculation requirement for this situation is essentially the same as that of an interband 

optical dielectric function except that now the matrix elements involve the resonant factor 

that contains a product of two momentum matrix elements coupling both the conduction and 

valence band states to the same core state. We then plot it as function of the x-ray emission         

energy, ω2.  

  The optical matrix elements between core and band states are calculated in an 

all – electron method based on a muffin – tin type augmentation method such as the muffin 

– tin orbital method (LMTO) or the linearized augmented plane wave (LAPW). In this thesis 

we use the full potential FP - LMTO as will be discussed later in chapter IV.  The contribution 
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from each eigenstate to partial waves in the muffin-tin sphere are readily obtained from the 

eigenvectors of the band-structure problem and the augmentation properties of the basis 

functions to radial solutions inside each sphere. The integration over the Brillouin zone is 

similar to that used in the calculation of the optical joint density of states.  

  It is important to mention that in our current implementation of CRXES, the 

key approximation is that the wave vector of the x-ray is negligible compared to the size of 

the BZ and the two band states involved with the process occur at the same k points. In other 

word, the overall crystal momentum is conserved and the intermediate state with the core 

hole does not break the crystal periodicity.  

2.2.3  Extracting band structure information from RXES experiments 

 2.2.3.1 Recipe for RXES 

   The general procedure of RXES experiment is to record an x-ray 

absorption spectrum at the absorption energy of interest. The recorded absorption spectrum 

gives the information about localize features in the unoccupied states. This can be explained, 

as an example, in Figure 2.7. A series of spectra, RIXS spectra, are then recorded for 

particular excitation energies and this requires a high resolution in the emission channel in 

order to detect small changes in the spectrum as a function of excitation energy. How 

selectively the core electron can be excited into certain region of BZ depends on the 

resolution of the incoming photons and the band structure of the unoccupied states of the 

crystal. This transition probability is described by the    Kramers – Heisenberg formula as 

mentioned in section 2.2.2. 
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Figure 2.7 Illustration of the connection between the band structure and the experimental 

RIXS spectrum. A core electron is promoted in to the CB by a dipole transition. The 

excitation energy hin determines via the resonance condition of the Kramers–Heisenberg 

formula the energy and of the CB electron, which in turn restricts the CB electron to certain 

wave vectors.VB electrons with the same wave vector will contribute preferentially to the 

emission. hin  and hout  are both measured relative to the same core level. The involvement 

of the core level makes RIXS a local probe. Dipole selection rules give additional symmetry 

information. The broad background in the RIXS spectrum is caused by k-unselective 

processes (Eisebitt, 2000). 

 

    The connection between RXES (or RIXS) spectrum and the structure 

is illustrated in Figure 2.7. According to Kramers – Heisenberg formula, the strongest 

contribution, when the resonance occurs, to the scattering process is obtained when the 

incident x-ray energy is high enough to excite a core hole to a formerly unoccupied state at 

the energy Ecore + hin. The choice of which core state will be excited and which CB states 

the core electron will transition is governed by the dipole selection rule.  With the assumption 

that the photon momentum is very small compared to the crystal momentum, the momentum 
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is conserved for the overall process. This means that only the VB electrons with the same 

wave vector as the exited electron in the CB will fill the core hole and contribute to the RXES 

spectrum. How much the contribution from a state will be depends on its transition matrix 

element with the core state. According to Figure 2.7, the energy of certain CB states are 

determined from the RXES spectra (as indicated by horizontal lines), while the momentum 

is determined by the wave vector of the electron in the CB in the final state of the scattering 

(as indicated by the vertical lines). Therefore, the emission spectra are dependent on the          

x-ray excitation energy, as different excitation energies probe different parts of the BZ.  

    Generally, the intensity in the RXES spectrum from experiments are 

not only contributed from the model mentioned above (the “coherent” component) but, in 

fact, RXES spectra are also contributed from the k – unselective transitions according to 

LPDOS. For example, a previous RXES study on diamond by Ma et al. showed that the 

energy dependent LPDOS component, which is called “incoherent” part, is responsible for 

approximately 60% of the RXES intensity.  

2.2.3.2  Experimental difficulties  

 There are a few experimental difficulties dealing with RXES that we 

will discuss in this section as follows (Eisebitt, 2000): 

- Determination of Absorption Threshold 

   In RXES, it is more convenient to express excitation energy 

relative to the CB minimum than the absolute excitation energy. Hence it is crucial to 

determine the absorption threshold with very high resolution. In practice, the real process of 

the determination involves a lot of difficulties such as phonon broadening, the core hole life 

time, experimental resolution or other broadening mechanisms. However, the band structure 

calculation can be used to assist in analyzing the data. The absorption threshold can be 

determined by broadening the unoccupied LPDOS and comparing it to the absorption 

spectrum.  
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- Reflection 

  In RXES, the excitation energies are usually measured close 

to the absorption threshold. If the material bandgap is small the excitation energy is close to 

the x-ray emission features at the VB maximum. Diffusely or specularly reflected radiation 

can be contributed to the RXES spectra depending on the reflectivity and the geometry of 

the sample as in InN which only has a narrow band gap of 0.7 eV.  

- k – unselective Contribution 

If we use high excitation energy far above the excitation 

threshold, the RXES spectrum generally represents the LPDOS (if no correlation satellites 

are present). This recorded spectrum is important because it represents the shape of the k-

unselective contribution to the RXES that can be subtracted from the raw data to give the k 

– selective contribution. This can be seen more clearly in our study of Graphene in chapter 

III. However, this approach is not possible for the material that its core level has other close 

levels at the lower binding energy, such as spin-orbit split partner. In this case, the spectrum 

at high emission energy will not represent the LPDOS but the superposition of the transitions 

to these different levels.   

2.2.4 RXES experiments (Eisebitt, 2000)  

RXES is considered as a new method with young history comparing to a well-

established ARPES. The way to look at its history is to characterize by the band structure 

information gained from the experimental data. The very first experiments showed the 

connection between RXES spectra and the dispersion relations E(k) of the unoccupied and 

occupied states. Energy dependent features of RXES spectra were assigned to high symmetry 

points in the band structure by comparing with calculated band structures from first principle 

calculations. The next step was toward a more quantitative understanding by simulating the 

spectra based on band structure calculations. Later RXES data in conjunction with first 

principle calculations were used to map band structure in a similar way to that of ARPES.  
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    The first time excitation energy dependent features in RXES spectra have 

been observed was in the vicinity of the 2p absorption threshold in crystalline silicon by 

(Rubensson et al., 1990). However, the connection of the spectral changes to electron wave 

vector was not explained at the time. The explicit explanation of the momentum conservation 

in such experiments was not established until (Ma et al., 1992) started to investigate carbon 

1s level in diamond in 1992. The spectra features were assigned to high symmetry points by 

comparing to other results on the diamond band structure.  This was the crucial step toward 

the conclusion that conservation of crystal momentum applies in RXES. This realization has 

stimulated a considerable amount of work in this field since 1992. However, the energy 

dependent features in the RXES spectra were seen only for the crystalline , not for amorphous 

silicon which lacks the long range order (Miyano et al., 1993). From Figure 2.7 we can see 

that it is not easy to separate the information on the occupied and unoccupied states. Which 

k points are selected by a certain excitation energy depends on the unoccupied states. How 

those k points contribute to RXES spectrum depends on the occupied states. The information 

on the band structure can be extracted through this connection. If the band structure of the 

unoccupied states is known then the calculated band structure can be checked by RXES 

experiments by simulating the RXES spectra based on the calculated band structure, as being 

done on Graphene and InN in chapter III and IV respectively. The similar approach has been 

recently performed on ZnO by (Preston et al., 2011).  

  In summary, RXES has unique advantages in the investigation of electronic 

band structure E(k). (1) It is a local and element selective probe. (2) It has a large probing 

depth which makes it possible to investigate buried structures and impurities in materials 

without surface reconstruction issues, hence bulk properties can be investigated. (3) It is 

symmetry selective, for example, if N 1s in InN is investigated then p-type states will be 

probed. (4) No problem with magnetic or electric field from sample charging as in ARPES, 

hence it can even be used to probe insulators.    
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2.2.5  Angular dependence and experimental geometry 

  This part has been theoretically and experimentally performed on  (Preston   

et al., 2011) wurtzite ZnO, which is also applied in our work in this thesis on both for 

graphene and InN. However, the approach on how to compare between experimental and 

calculated data are slightly different as will be explained in chapter IV and V.     

The dipole selection rules in Eq. (2.7) leads to the angular dependence of the 

RXES cross section (will be written as 𝑀∝𝛽 from now on). Strictly speaking, if we consider 

the K edge spectra where the transition occurs from s-core states, only the matrix elements 

which have the p-orbital contribution valence and conduction bands will be included in the 

two dipole-moment matrix elements. The indices  and  in  Eq. (2.7) indicate the Cartesian 

components of the momentum operators of the XAS and XES parts of the process 

respectively. These components are determined by the polarization of the incoming (ei) and 

outgoing (eo) beams. Different independent cross sections can be determined in the crystal 

depending on the crystal symmetry. Here, we introduce two matrix elements pXAS and pXES 

for the XAS and XES momentum operators respectively. The angular dependent of the cross 

sections is determined by |𝑒𝑖 ∙ 𝑒∝
𝑋𝐴𝑆|2|𝑝𝑋𝐸𝑆 ∙ 𝑒𝑜|2. For example, a hexagonal crystal, such as 

wurtzite ZnO and InN, there are four independent components, M11, M33, M13, and M31, 

where 3 refers to the c axis of the crystal and 1 to a direction perpendicular to the c axis 

respectively.  

  Generally, from the theory point of view we describe the polarization 

directions relative to the crystalline symmetry axes versus the experimental geometry. 

Therefore, we have to determine the fraction of the independent components of the cross-

section matrix M that enter measured cross section. In other words, the projections of the 

incoming and outgoing polarization unit vectors on the relevant crystal axes are required for 

the calculation.  The cross-section matrix can now be written as:   
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     Mio=|ei∙e∝
XAS|

2
M∝,β|eo∙eβ

XES|
2
,                            (2.8) 

where eXAS and eXES are the unit vectors along the XAS and XES momentum matrix element 

respectively.  

   There can be many ways to change the experimental conditions: change the 

position of the spectrometer, alter the photon polarizations, rotate the sample, and choose 

different cleavage planes of the same sample.  Hence, it is crucial to consider three different 

sets of coordinates, the laboratory frame coordinates (x ,y, z), the coordinates that are fixed 

to the sample with a specific cleavage plane (x,y,z), and the coordinates which correspond to 

the natural symmetry axis of the crystal (1, 2, 3). As an example from the previous work by 

(Preston et al., 2011). 

        

 

Figure 2.8. The experimental geometry. The laboratory coordinates x, y, z (black) and the 

sample coordinates x, y, z (red) are shown. Photons (black arrows) are incident along z and 

emitted photons are collected along x. The angle between the sample normal and the incident 

beam, θ, is freely changed during the experiment. by  (Preston et al., 2011). 

 

From Figure 2.8, the undulators shine an incident light along z  direction, as 

a result, the polarization is along x. The emission spectrometer is mounted perpendicular to 

the incoming photon in the x’ direction, however, its polarization is not resolved. Finally, the 

sample is mounted on a manipulator which can be rotated about y  axis. On the other hand, 

𝜃 

z 

x 

z 

x 

ei 

ef 
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the z axis is defined to be normal to the cleavage plane of the sample, the x axis is the 

intersection of the cleavage plane with the photon and   y = y. In other words, the incoming 

x-ray being used here is always p-polarized. θ, the angle between the incoming beam and the 

normal to the sample, determines the sample orientation. We then have  

                    ei∙e
XAS=ex∙eXAScosθ+ ez∙e

XASsinθ                            (2.9) 

                                  eo∙eXES=ex∙eXESsinθcos∅+ ey
XES∙sin∅+ez

XEScosθcos∅                    (2.10) 

We also need to average over all possible emitted photon polarization angles in the        z y  

plane, . Since each polarization factor enters modulo squared for input and output, thus, the 

integration over the cos2 φ and sin
2
 factors simply gives a constant factor, ½. We then 

obtain for the total CRXES cross section 

 

        M = 
1

2
[sin

2
θcos2θ(Mxx+Mzz)+sin

4
θMzx+cos4θMxz+sin

2
θMzy+cos2θMxy]        (2.11) 

 

However, here x, y, and z are not yet referred to the crystalline symmetry axes but merely to 

the sample position in the laboratory. For a general cleavage plane with Miller indices (hkl), 

the surface normal is Ghkl/|Ghkl |, which can be expressed in terms of the crystal symmetry 

axes, 1̂, 2̂, 3̂. Let �̂� =  ∑ 𝑎𝑖𝑖 𝑥�̂� , �̂� =  ∑ 𝑏𝑖𝑖 𝑦�̂� and  �̂� =  ∑ 𝑐𝑖𝑖 𝑧�̂� . We can then construct a 

matrix, 

 

          R = (

|a
1
|
2

|a
2
|
2

|a
3
|
2

|b
1
|
2

|b
2
|
2

|b
3
|
2

|c
1
|
2

|c
2
|
2

|c
3
|
2

)                   (2.12) 

 

which allows us to transform from xyz sample coordinates to the crystal axes coordinates 

                    Mij=RijM∝βRβj
T               (2.13) 

Combining these steps, the measured cross section can be written as 

                 M ∝(cos2θ,0,sin
2
θ)RMRT (

sin
2
θ

1

cos2θ

)                             (2.14) 
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In the specific case of a hexagonal crystal cleaved along the c plane the R matrix is just a 

unit matrix, thus, taking into account the symmetries M11 = M22 = M12 = M21, we 

immediately obtain 

        M ∝ M11cos2θ(sin
2
θ+1)+M13cos4θ+M31sin

2
θ(sin

2
θ+1)+M33sin

2
θcos2θ     (2.15) 

For the M plane (1100) cleave, with [0001] oriented along x, we obtain 

         M ∝ M11(1+cos2θ)sin
2
θ+M13sin

4
θ+M31(1+cos2θ)cos2θ+M33sin

2
θcos2θ     (2.16) 

while for the M plane with [1120] oriented along x, we obtain 

                  M ∝ M11+M13                       (2.17) 

The above derivations allow us to simulate any measured spectra directly in terms of the 

calculated cross sections. On the other hand, it is clear that if we consider independent 

choices of measurement angle and cleavage plane, we obtain n equations from which we can 

extract the n(≤9) unique cross sections experimentally and from there can predict those for 

other angles or cleavage planes. This is of use in cases where the band structure cannot (yet) 

be calculated to high accuracy, such as, strongly correlated systems.  



 
 

 

CHAPTER III  

CALCULATION METHODS 

 

 In this chapter, we will discuss about the basic concepts of first-principles calculation 

based on Density Functional Theory (DFT), the approximations which are used in the 

calculations, the basis functions, and the two well known codes which are used in this thesis, 

the Full-Potential Linear Muffin-Tin Orbital Method (FP – LMTO) and the Vienna Ab-initio 

Simulation Package (VASP). The first method is used in the calculation of RXES spectra of 

Graphene and InN while the second one is used for the calculation of the Bi(Ti0.5,Mg0.5)O3. 

More detail about the two methods will be discussed further in this chapter.  

 

3.1  First - principles calculation 

   The self-consistent electronic structure calculation based on the DFT methods are 

often called “ab initio” or “first-principles” because they do not require empirical inputs or 

adjustable parameters from experiments. To deal with the large system of 𝑁𝑛 nuclei and 𝑁𝑒 

electrons explicitly, we begin with writing the Hamiltonian a  

                       H  = −
h̅

2

2
∑

∇I
2

MI
+

1

2

Nn

I
∑ ∑

ZIZJe2

4πϵ0|RI-RJ|
−

h̅
2

2m
∑ ∇i

2Ne

i

Nn

I≠J

Nn

I                            

                                + ∑ ∑
e2

4πϵ0|ri-rj|
− ∑ ∑

ZIe
2

4πϵ0|ri-RI|

Ne

𝑖
Nn

𝐼
Ne

𝑖≠𝑗
Ne

𝑖 ,  (3.1)  

 

where the indices i, j and I, J are used for electrons and nuclei respectively. 𝑀𝐼 and 𝑅𝐼 denote 

nuclear masses and positions while m and 𝑟𝑖 are for electron masses and positions. Although 

this many-particle problem is nearly impossible to solve, fortunately, we can use the Born-

Oppenheimer Approximation to reduce the complications. By considering that the nuclei do 
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not move in the time scale of the electrons, this allows us to separate the Hamiltonian into 

electronic and nuclear parts. 

  The last term in Eq. (3.1), the Coulomb interaction between the nuclei and the 

electrons, can be considered as an external potential 𝑉𝑒𝑥𝑡 seen by electrons. Then, the 

electronic Hamiltonian of the interacting many-body system in the atomic unit                       

(ℎ̅ = 𝑚 = 𝑒 = 1) can be  written as 

     Hel= -
1

2
∑ ∇i

2+
1

2

Ne

i
∑

1

|ri-rj|
+

Ne

i,i≠j
∑ Vext(ri)

Ne

i                             (3.2) 

 Now we have the electronic energy for fixed nuclear positions, we can then solve the 

separately nuclear motion problem. The eigenvalues of the electronic part together with the 

second term of  Eq. (3.1), which is just a constant for fixed positions, now become the 

effective potential energy landscape for the nuclei. At this point, the positions of the nuclei 

can be varied and hence the properties of atomic bonding, energy changes under 

deformation, relaxations of the atoms etc. can be obtained.  

 

3.2  Density Functional Theory (DFT) 

  Generally, directly solving the many-body Schrödinger equation of a system is very 

difficult. To get around that, DFT was introduced as a method to determine the ground-state 

properties of a many-electron system by expressing its total energy as a functional of the 

electron density which has only three instead of 3𝑁𝑒 variables of a many-electron 

wavefunction. The two theorems of Hohenberg and Kohn(HK) (Hohenberg et al., 1964) are 

the main keys to solving the problem. The first theorem states that there is a one-to-one 

mapping relation between the electron density and the external potential which means that 

the electron density uniquely determines the Hamiltonian and the many-body wave 

functions. Hence, each property of the many-body system is a functional of the ground state 

charge density. The second theorem establishes a variational principle for the total energy 

functional so that the ground state energy can be obtained by minimizing the energy over all 
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the possible densities. Although the HK theorem proves that the many electron wave 

function can be substituted by the electron charge density as a basic variable, it does not 

provide an explicit mathematical solution to the problem. Later in 1965, Kohn and Sham 

(Kohn et al., 1965) proposed that the kinetic energy can be expressed in terms of independent 

single particle wave functions. This non-interaction electron system in an effective potential 

consisting of the external potential and the exchange correlation interaction provides the 

same density as the actual interacting system, thus, can be considered as equivalent to each 

other. We now arrive at the set of equations as follows, the Kohn-Sham (KS) equations:  

Heffψi
(r)= (-

∇2

2
+ Veff(r))  ψ

i
(r)= εiψi

(r)(r)                        (3.3) 

Veff = Vext+ ∫ d
3
r'

n(r')

|r-r'|
+Vxc[n]                                        (3.4) 

n(r) = ∑  |ψ
i
(r)|

2
,

Ne

i                                                  (3.5)                                       

where n(r) is the electron density, and Vxc =
δExc [n]

δn(r)
 is the functional derivative of the 

exchange correlation energy Exc [n] with respect to n(r) .  Finally, once these equations are 

solved for n(r) then the total energy can be written as 

E [n]= ∑ εi-
1

2

Ne

i ∫ d
3
rd

3
r' n(r)n(r')

|r-r'|
- ∫ d

3
rVxc[n]n(r)+Exc[n].           (3.6) 

  Although the KS-DFT is considered as an exact theory, the actual exchange-

correlation functional is not known, therefore, further approximations are still required. To 

explain the physical meaning of the exchange-correlation energy 𝐸𝑥𝑐 , let us consider an 

electron sitting in the electron cloud. The electron does not simply see an average charge 

density around itself because the other electrons try to avoid this spot for two reasons, the 

Pauli exclusion principle and electron repulsion. So we may consider this electron as being 

surrounded by a so-called exchange-correlation hole. Thus the exchange-correlation energy 

is essentially the interaction of the electron with its surrounding exchange-correlation hole.   
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At this point we will provide a brief explanation of several exchange-correlation 

functions including the Local Density Approximation (LDA) and Generalized Gradient 

Approximation (GGA) techniques to obtain Exc  in the ground state.  After that we will 

discuss about the GW Approximation (GWA) method to study the one-electron excitations 

of the system. 

   3.2.1  Local Density Approximation (LDA) 

    In the local density approximation (LDA), it is assumed that the 

exchange-correlation energy at each point in space depends solely on the density at that 

point. LDA is a good approximation for the matters that can be considered as a homogeneous 

electron gas, the density n is constant. The exchange correlation energy Exc [n] has been 

calculated in various conditions, e.g. at low density by Wigner (Wigner, 1934) and high 

density by Gell-Mann and Brueckner (Gell-Mann et al., 1957). The interpolation formulas 

between these regimes is also made possible.  LDA (Perdew et al., 1981) calculation starts 

from accurately computing the ground state of the homogeneous electron gas and then 

constructing the exchange-correlation energy per particle, εxc(n) = Exc (n)/N as a function of 

electron density n=N/V. Then we apply the same expression at each point locally all over 

the actual inhomogeneous system. Finally, by integration we get 

Exc
LDA

 
= ∫ d

3
rn(r) εxc(n(r)).                                         (3.6) 

And the LDA exchange-correlation potential can be written as 

Vxc
LDA

 
= 

∂(nεxc)

∂n
.                                                        (3.7) 

Although we assume that the density is varying slowly while LDA being constructed, the 

calculation still works remarkably well even for some realistic systems where the density is 

not slowly varying. This has been explained by the fulfillment of certain sum rules (Jones  

et al., 1989). The exchange-correlation energy is an average property of the exchange-

correlation hole, as a result, it does not critically depend on the details of the pair-correlation  
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function. LDA successfully predicts the total energy, lattice constant, equation of state and 

relaxations of atomic coordinates around defects and at surfaces with less than 5% of error. 

However, one drawback of LDA is that it fails to give a reliable electronic excitation energy 

because it is a theory for the ground state total energy only.  It tends to predict the smaller 

gaps in insulators or semiconductors than the experimental values. Another problem is that 

for the systems that consist of atoms which have localized electrons such as d and f electrons 

LDA tends to fail to give the accurate results even for ground state properties. For the 

systems which have surfaces or for molecules and free atoms, the electron density vary too 

quickly from inside to outside of the systems which means that the electron gas is no longer 

homogeneous, as a result, LDA also fails for these cases.  

 3.2.2  Generalized Gradient Approximation (GGA) 

    Under the assumption that in most materials the electron gas is not 

homogeneous like in the case of LDA. Thus the Exc  should deviate significantly from the 

LDA results. This deviation can be expressed in terms of the gradient and higher spatial 

derivatives of the total charge density. So GGA (Perdew et al., 1996) goes a little bit beyond 

LDA by including the density and also its gradient at each point in space. Therefore the 

exchange correlation energy can be modified to 

Exc
GGA

 
= ∫ dr

3
n(r) f(n|∇n|)                                              (3.8) 

In various cases, it has been shown that GGA gives a better description of the exchange-

correlation hole and gives a more realistic account of energy barriers and adsorption energies 

for molecules. Although GGA predicts very good results for molecular geometries, ground 

state total energies and surface energies, it is not clear whether GGA is an improvement over 

LDA for all ground state properties. In contrast with LDA, GGA typically overestimates 

lattice constants and underestimates phonon energies. 
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     LDA and GGA are basically designed to study ground state 

properties: there is no real justification to interpret the KS one-electron eigenvalues (ϵi of 

Eq. (2.4) as excitation energies, i.e. the energy to extract or add an electron to the system. 

They are usually not applicable for systems with strongly correlated electrons and not 

completely self-interaction free. Thus in the next section we will discuss Green's function 

methods as a tool to study both ground state and excited state properties of the many-body 

problem. 

 

 

3.3  GW Approximation (GWA) 

  GW approximation was originally proposed by Hedin (Hedin, 1965) and named after 

its construction of the electron self-energy from the Green's function (G) and the screened 

interaction (W). GW approach (Van Schilfgaarde et al., 2006) was introduced to improve 

LDA and GGA results by overcoming the problem with the incomplete cancellation of 

artificial self-interaction and the lack of discontinuity of the exchange-correlation potential 

with respect to the number of electrons, the KS eigenvalues cannot represent the quasi 

particle band structure measured by direct and inverse photoemission. In GW approach these 

issues are solved by properly including both dynamical and non-local effects into the 

approximation.  

3.3.1  Green's function 

    The Green's function is a propagator or amplitude of the probability for a 

particle to travel from one position, at time 𝑡 to another position, 𝑟 ′, at time 𝑡′. First of all, 

let us define field operators, ψ†(r',t') and ψ(r,t)  as creation and annihilation operators 

written in the time dependent position basis. If we have a ground state wave function with 

N electrons in the system, |𝑁, 0〉, when these field operators operate on the system we will 

get 𝑁 + 1 or 𝑁 − 1 electron wavefunctions which are not necessarily in the ground state. 
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We can write ⟨N,0|ψ(r,t)ψ†(r',t')|N,0⟩ as a propagator 𝑖𝐺𝑒(𝑟𝑡, 𝑟 ′𝑡′) for an extra electron 

propagating from (𝑟 ′, 𝑡′) to (𝑟, 𝑡) and ⟨N,0|ψ†(r',t')ψ(r,t)|N,0⟩= iG
e(r't',rt) as a propagator 

measuring a missing electron (hole) propagating from (𝑟, 𝑡) to (𝑟′, 𝑡′). Therefore the one-

electron Green's function can be written as  

                              iG(rt,r't')  = ⟨N,0|Tψ(r,t)ψ
†(r',t')|N,0⟩ 

                        =  ⟨N,0|ψ(r,t)ψ
†(r',t')|N,0⟩ for 𝑡 > 𝑡′                                   (3.9) 

                       = -⟨N,0|ψ†(r',t')ψ(r,t)|N,0⟩ for t'> t , 

where T is the time-ordering operator which rearranges operators from right to left after 

increasing time and a minus sign is included for every interchange of fermion operators. 

 The field operator can also be written with the Heisenberg representation ψ†(r',t') = 

eiHtψ†(r)eiHt and insert the closure relation into Eq. (2.9). Note that the limit of energy for 

electrons or holes injection is the chemical potential 𝜇. Thus we can rewrite Eq. (2.9) as 

                      iG(r,r',τ)  = ∑ ⟨N,0|ψ(r)|N+1,n⟩n ⟨N+1,n|ψ†(r')|N,0⟩e-iEnτ,τ>0,En≥μ      

                               =- ∑ ⟨N,0|ψ(r')†|N-1,m⟩m ⟨N-1,m|ψ(r)|N,0⟩e-iEmτ,τ<0,Em<μ,      (3.10) 

where 𝜏 = t-t' m and 𝑛 represent quantum number to specify the state which are not the 

ground state.  En= En
N+1+ E0

N and Em= E0
N+E

m

N-1
 respectively. Eq. (3.10) can also be Fourier-

transformed into the frequency representation as 

iG(r,r',ω) = ∫ iG(r,r',τ) eiωtdτ
∞

-∞
                                                                               

                     = ∑ ⟨N,0|ψ(r)|N+1,n⟩n ⟨N+1,n|ψ†(r')|N,0⟩ ∫ e-i(ω-En+iη)τ∞

0
,En≥μ          (3.11)      

                   = - ∑ ⟨N,0|ψ(r')†|N-1,m⟩m ⟨N-1,m|ψ(r)|N,0⟩ ∫ e-i(ω-Em+iη)τ0

-∞
,Em<μ  

The infinitesimal 𝜂 is always positive to ensure that 𝐺(𝑟, 𝑟′, 𝜔) has the correct analytic 

properties. 

  For any excited state, the quasiparticle amplitudes is defined as 

f
s
(r)=⟨N,0|ψ(r)|N+1,s⟩  for Es= Es

N+1- E0
N , Es≥μ                    (3.12) 
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f
s
(r)=⟨N-1,s|ψ(r)|N,0⟩  for Es= E0

N- Es
N-1 , Es<μ                      (3.13) 

After working out the integrals in the Eq. (2.11), we now get 

G(r,r',ω)  = ∑  
fs(r)fs

*(r')

ω-Es± iηs  ,                                           (3.14) 

where the sum is over both electrons and holes and the ± signs correspond to electrons and 

holes respectively. 

   Now let us review the explicit expression for the single-particle Green's 

function which was derived by Hedin. We begin from the Heisenberg equation of motion 

for the field operator. 

𝑖
𝜕𝜓(𝑥)

𝜕𝑡
= [ψ(x),H]                                                 (3.15) 

Here, 𝑥 denotes space,  𝑡  for time and 𝜎 for spin. The Hamiltonian, H, is split into two parts 

noninteraction (𝐻0) and interaction parts. 

                H= ∫ drψ†(x)H0(x)ψ(x)+ 
1

2
∫ drdr'ψ†(r,t) ψ†(r',t)ν(r,r')ψ(r',t)ψ(r,t)    (3.16) 

Now we can insert H from Eq. (3.16) back into Eq. (3.15) and this is when the second term 

becomes a problem. This term involves a two-particle Green's function, thus, we need to 

decouple this part by introducing the mass operator as  

      ∫ dx''M(x,x'')G(x'',x) =-i ∫ dr''ν(r,r'')⟨N|T[ψ†(r'',t)ψ(r'',t)ψ(r,t)ψ†(r',t)]|N⟩     (3.17) 

The equation of motion for the Green's function can now be derived from Eq. (3.15) 

[i
∂

∂t
-H0(x)] G(x,x')- ∫ dx''M(x,x'') G(x'',x')=δ(x-x')                    (3.18) 

The average Coulomb interaction, VH, can also be included in the non-interacting part, and 

the equation of motion for the Green's function can be rewritten as 

[i
∂

∂t
-H0(x)-VH(x)] G(x,x')- ∫ dx'' ∑ (x,x'') G(x'',x')=δ(x-x')             (3.19) 

∑ in Eq. (3.19) defines the self-energy. The self-energy in terms of the screened Coulomb 

interaction was derived by Hedin (Seitz, 1969) via Schwinger's functional derivative 

method. In this method, the electron-electron interaction itself is screened, thus, the 
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interaction is reduced. By expressing everything in the screened interaction we may arrive 

at a better-converging approximate method. Finally, we get the set of equations 

∑(1,2)=i ∫ d(34)G(1,3
+

)W(1,4)Λ(3,2,4).  : 1≡(r1,σ1,t1)               (3.20) 

G(1,2)=G0(1,2)+ ∫ d(34) G0(1,3)∑(3,4)G(4,2) 

W(1,2)=ν(1,2)+ ∫ d(34) ν(1,3)P(3,4)W(4,2) 

P(1,2)=-i ∫ d(34) G(2,3)Λ(3,4,1)G(4,2
+) 

Λ(1,2,3)=δ(1-2)δ(2-3)+ ∫ d(4567)
δ ∑(1,2)

δG(4,5)
G(4,6)G(7,5)⋀(6,7,3), 

where 𝑊, 𝛬 and 𝑃 are the screened Coulomb potential, the vertex function and the 

polarization function respectively. The first step in solving this formidable set of equations 

through GWA is by assuming the vertex function Λ(1,2,3)=δ(1-2)δ(2-3).  We now get 

∑(1,2)=iG(1,2
+)W(1,2)                                                          (3.21) 

W(1,2)=ν(1,2)+ ∫ d(34) ν(1,3)P(3,4)W(4,2) 

        P(1,2)=-iG(2,1)G(1,2
+

) 

These equations can be solved self-consistently. For more details about GW method, review 

the articles in ref. (Seitz, 1969; Aryasetiawan et al., 1998).  

3.3.2  GW correction to LDA energy 

   The GWA a perturbation approach that is applied to calculate the excitation 

energy from KS eigenfunctions and eigenvalues. It is just a one-shot correction to, for 

example, LDA. In the previous section, quasiparticle excitations were defined in terms of 

the poles of the Green's function, however, we can also introduce a quasiparticle 

wavefunction and energy into the picture under this equation 

(-
∇2

2
+Vext(r)+VH(r)) ϕ

i
(r)+ ∫ dr'∑(r,r'εi

GW)ϕ
i
(r,r') εi

GWϕ
i
(r) ,          (3.22) 
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which looks very similar to the KS equation that was previously introduced 

(-
∇2

2
+Vext(r)+VH(r)) ψ

i
LDA(r)+Vxc

LDA(r)ψ
i
LDA(r)+εi

LDAψ
i
LDA(r)           (3.23) 

From Eq. (3.22) the self-energy (∑) is a non-local and energy-dependent operator, therefore, 

not a Hermitian operator. To solve the Eq. (3.22), we can use the perturbation theory by 

assuming the wavefunctions are the same as those in Eq. (3.23). We can then correct DFT-

LDA eigenvalues by using the first-order perturbation treatment. 

εi
GW=εi

LDA+⟨ψ
i
LDA|(r,r'εi

GW)ϕ
i
(r,r')(r,r',εi

GW)-Vxc
LDA(r)|ψ

i
LDA⟩          (3.24) 

The GW eigenvalues can be obtained by applying a Taylor expansion of ∑(r,r',εi
GW) 

around εi
LDA to Eq. (2.24). Then we get 

                εi
GW=εi

LDA+Zi⟨ψi
LDA|∑(r,r',εi

LDA)-Vxc
LDA(r)|ψ

i
LDA⟩,                   (3.25) 

where Zi= (1- ⟨ψ
i
LDA|

∂

∂ε
∑(r,r',εi

LDA)|ψ
i
LDA⟩)

-1

is a quasiparticle renormalization factor. 

 Finally, we get the energy shift of the one-particle excitations from the KS 

eigenvalues and also their imaginary parts from Eq. (3.25). By Fourier transforming Eq. 

(3.21) over time, we obtain the self-energy, ∑ , as 

∑(r,r'ε)=
i

2π
∫ dε'e-iδε'

G(r,r',ε-ε')W(r,r',ε')                      (3.26) 

G can be approximated by the independent particle G0, from the so-called one-shot G0W0  

G
0(r,r',ε)= ∑

ψi
LDAψi

LDA*

ε-εi
LDA±iηi                                          (3.27) 

The screened Coulomb interaction W can be estimated as 𝑊0 by using the Random Phase 

Approximation (RPA).  

W0=υϵ-1=υ(1-υP)
-1

                                  (3.28) 

Here, W0 is a schematic notation. We should always remember that Eq. (3.28) actually 

represents an integral equation, here υ is actually υ(1,2) and W is W(1,2) etc. We also switch 

to the frequency or energy domain from time domain here so that P can become a dynamic 
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polarization P(r,r',ω). All quantities are expanded in a basis set so that these become matrix 

equations which can practically be solved. Although the GW approximation offers a great 

improvement for the KS theory for calculating excitation energies, it is still not always 

sufficiently accurate. The results depend on other approximations made such as 

pseudopotentials to describe the interaction between valence and core electrons. Moreover, 

GW is applied as a perturbation theory, therefore its accuracy depends directly on the starting 

point. As a result, although the more accurate all-electron band structure methods are used 

in the calculation the corrections to band gaps still tend to be too small. 

 

3.4  Quasiparticle Self-consistent GW Approximation (QSGW) 

  Since the GW approximation is usually applied as a perturbation theory, its result 

depends directly on the accuracy of the starting point. Therefore, the starting point is crucial 

to the success of the calculation. In the QSGW formalism, the best starting point is obtained 

by redefining an effective independent particle Hamiltonian H0=HLDA+ΔVxc with a 

correction to the exchange correlation potentials which must somehow be extracted from the 

self-energy. 

 Van Schilfgaarde et al. (van Schilfgaarde et al., 2006) has proposed the solution to 

this by deriving the self-energy as a functional of G
0
 and initially extracting G

0
 from 

Veff=Vext+VH+Vxc
LDA and then determining Veff

GW=Vext+VH+∑(G
0
). Veff

GW is then mapped back 

to Veff in order to complete the self-consistency circle of the effective potential. This 

approach is equivalent to the requirement that the eigenvalues of Eq. (2.22) become as close 

as possible to those of Eq. (3.23) with the ΔVxc=Vxc
QSGW+Vxc

LDA added to the potential. A non-

local exchange-correlation potential shown in Eq. (2.29) is extracted from the self-energy, 

Vxc
QSGW=

1

2
∑ |ψ

i
〉R [∑

ij
(ℇi)+∑

ij
(ℇj)] 〈ψ

j
|ij  ,                           (3.29) 

where   are the one-electron KS eigenstates and R means the real part. 
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  In Eq. (3.25), only the diagonal matrix elements of the self-energy are needed, while 

in Eq. (3.29) off-diagonal elements are also required. This is important to the success of 

QSGW because it allows the states in the presence of the new potential to be mixed up. In 

other words, not only the eigenvalues but also the eigenstates of the H0 will be adjusted 

although this leads to the instabilities for high energy states. However, this problem can be 

fixed by approximating the self-energy by a diagonal approximation above a certain cut-off 

(Ecut). 

 QSGW has demonstrated a lot of success, for example, in a series of studies by van 

Schilfgaarde and Mark (van Schilfgaarde et al., 2006; Kotani et al., 2007). Its results in band 

gaps has shown excellent agreement for most semiconductors. QSGW gives reasonable 

results even for strongly correlated materials like transition metal oxides and rare earths 

although it is not able to explain fully the spectral functions of these complex materials. 

However, there is still a small systematic error, it tends to slightly overestimate the band 

gaps when compared to experiments. This is believed to be caused by the under-screening 

from the RPA. The correction can be easily done by scaling the final ∆Vxc by about 80 % as 

obtained empirically by comparing QSGW with experiment for a wide variety of 

semiconductors (Aryasetiawan et al., 1998). This correction is referred as the 0.8∑ 

approximation. In this thesis, we apply this method to InN as will be discussed in Chapter 

IV.  

 

3.5  Full-Potential Linear Muffin-Tin Orbital Method (FP-LMTO) 

  There are two major methods to solve the single-particle Schrödinger equation of a 

periodic system, i) variational method and ii) multiple scattering methods. For the variational 

method, the system eigenfunctions are expanded in terms of a fixed set of basis functions  

such as plane wave basis set as implemented in VASP code which is also used in our thesis 

and will be discussed in the next topic. The method usually uses a pseudopotential 
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approximation to describe the interaction between valence and core electrons which only 

uses small number of functions as the basis set.  For the multiple scattering method, the 

potential is usually geometrically approximated by a muffin-tin potential. To gain highly 

accurate results, the former requires a large number of simple basis functions while the latter 

requires a high computational effort since the new matrix eigenvalue problem is more 

complicated. However, the Linear Muffin-Tin Orbital (LMTO) (Methfessel et al., 2000) 

combines the advantages of both methods by using basis sets derived from the scattering 

method which leads to very small basis sets, therefore, less time consuming. 

 In FP-LMTO, the basis sets are defined differently for two main regions. The space 

consists of two regions, i) “muffin-tin spheres” which surround the atomic sites and ii) the 

interstitial region between the spheres. Each muffin-tin orbital is constructed from the 

solution of the Schrödinger equation for its region. All the MTOs are given by the product 

between a spherical harmonic and a radial function centered on each of the atomic sites. The 

region outside the sphere, the solution is a decaying Hankel function. This is referred to as 

the envelope function. Inside the sphere, which the orbital is centered, the solution is 

replaced by a matching linear combination of the solution of the Schrödinger equation at 

some chosen energy ϕ and its energy derivative ϕ̇. The tail of the envelope function is re-

expanded in spherical harmonics about any site that the tail intersects another sphere and is 

matched to a linear combination of ϕ and  ϕ̇. Overall, the function is continuous and 

differentiable everywhere. It is constructed out of the solutions of the Schrödinger equation 

for the muffin-tin potential in each region, although the energy might not be correct. The 

functions can describe the solutions of the eigenstates of energy 휀𝜐 in some energy range 

where the partial waves can still be expanded in the form of Taylor expansion. The 

eigenstates will then be a superposition of these muffin-tin orbitals. The matrix elements of 

the Hamiltonian and the overlap matrices are calculated while the periodic boundary 

conditions are also taken into account by taking Bloch sums over the lattice vectors. To 
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obtain the eigenvalues and eigenvectors, the matrix is then diagonalized. After that the new 

charge density can be constructed by integrating over the Brillouin zone and , finally, the 

KS equations can be solved self-consistently. The integral can be easily calculated over the 

spheres because we already know how the Hamiltonian acts on the ϕ and ϕ̇ but the integrals 

over the interstitial region are more difficult because the shapes are more complicated. 

Therefore, to make the calculation faster, we must let the spheres slightly overlap so they 

fill in all the space and thus the interstitial region disappears and no longer a problem. This 

scheme is so-called atomic sphere approximation (ASA). However, this method is fast but 

not sufficiently accurate for total energy calculations in structures with low-symmetry. 

  The Full-Potential Linear Muffin-Tin Orbital (FP-LMTO) was later introduced  

(Kotani et al., 2010) in order to avoid the restrictions of the muffin-tin shaped potential. In 

FPLMTO, the muffin-tin is only used to construct the basis sets, but the crystal potential 

shape is not approximated. Inside each muffin-tin sphere, the Schrödinger equation is solved 

numerically. Since the potential is very close to spherical the calculation is rather simple. 

The non-spherical terms are then included later. For the interstitial region, the envelope 

function is a improved from the original LMTO method by replacing the Hankel function 

by a smoothed Hankel function. Outside the spheres, the potential is flat and the solution of 

the radial Schrödinger equation is a standard Hankel function with a singularity at the origin. 

In fact, there is the attractive nuclear potential outside the muffin-tin radius so the correct 

wavefunction bends over outside the muffin-tin radius instead of having the singularities. 

Then the smooth Hankel functions were introduced by Methfessel and the others (Bott            

et al., 1998) as a convolution of Gaussians and standard Hankel functions. Its shape can be 

controlled by two parameters, the function decay constant (κ) and the smoothing radius 

(Rsm). Rsm is used to determine how much the function is bent. There still remains one 

problem for FP-LMTO method which is the difficulty in calculating the matrix elements of 

the Hamiltonian over the interstitial region. To overcome this problem all the required 
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quantities need to have dual representations including wavefunctions, charge density and 

potential. In FP-LMTO, the muffin-tins and interstitial region are not completely separated, 

but instead the smooth Hankel functions is applied to smooth out the connection between 

the two regions. The function inside the sphere is corrected by expanding the smooth 

function inside the spheres in spherical harmonics times a radial function. The low angular 

momentum components of this function are replaced by the actual rapidly varying functions 

obtained from the radial solutions of the Schrödinger equation of the true potential inside 

the spheres. Finally, we can represent the charge density, n(r), as a combination of a smooth 

function throughout the unit cell and contributions from inside the muffin-tin spheres as 

follows: 

n(r) = ñ(r)+ ∑ {nR,L(r)-ñR,L(r)}R,L  ,                                   (3.30) 

where ñ(r) and ñR,L(r) are the smooth charge densities throughout the unit cell and inside 

the muffin-tin spheres respectively, which are varying slowly. ñR,L(r) is a true density inside 

the muffin-tin sphere which is varying rapidly near the core. This allows us to find the 

corresponding electrostatic potential rapidly though the Fourier transform method (FFT).  

This method also gets rid of the disadvantages of previous implementations of FP-LMTO, 

such as the need for high angular momentum expansions. The awkward shapes of interstitial 

regions also disappear and the matrix elements are easier to calculate because no cross terms 

between the smooth and the intra-sphere parts.  For these reasons the method is highly 

accurate and very competitive to the so called linearized augmented plane wave (LAPW) 

method which is considered as one of the most accurate methods for band structure 

calculations. More detail on GW and GSGW implementations within FP-LMTO can be 

found in Ref. (van Schilfgaarde et al., 2006; Kotani et al., 2007). 
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3.6  Plane wave basis sets and Bloch’s theorem 

 To calculate infinite number of interacting electrons in the electric field of an infinite 

number of ions.Generally, there are some problems in calculation of the system with infinite 

number of interacting ions, such as, the wave function has to be calculated for each of the 

electron for the entire system which will then be extended over the space of solid, therefore 

the basis set will be infinitely large. However, in the Bloch’s theorem, it is assumes that at 

o K the ions are arranged in a periodic structure and hence the external potential from the 

electrons will also be periodic which means that the wave functions of the infinite crystal 

can be expressed in terms of wave functions at reciprocal space vectors of a Bravais lattice. 

By having periodicity in the crystal we are able to reduce the number of one-electron wave 

functions needed to be calculated down to only the number of electrons in the unit cell. The 

Bloch’s wave functions can be expressed as  

                                                                 Ψn,k(r)=un,k(r)eik.r.                                                (3.31) 

un,k(r) can also be expressed by the expansion of plane waves whose wave vectors are 

reciprocal lattice vectors of the crystal as follows 

                                                         un,k(r)= ∑ cGnk
eiG.r

G  ,                                             (3.32) 

where G is the reciprocal lattice vector. By plugging Eq. (3.32) back into Eq. (3.31), the 

electronic wave functions can now be written as 

Ψn,k(r)= ∑ cGnk
ei(G+k).r.G                                   (3.33) 

The infinite number of electrons for the whole system can then be mapped into the problem 

of expressing the wave function in the reciprocal space vectors only within the first Brillouin 

zone. Though Fourier series can be expanded into infinite number of terms, the terms at 

higher energies have little effect on the results and can be cut out by introducing the energy 

cutoff. The value of the energy cutoff depends on elements in the system being study. 

Therefore, only the plane waves with wave vectors smaller than G + k  will be included. 
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3.7  k-point sampling in VASP code 

  In first-principles calculations, the wave functions must be calculated for infinite 

number of k-points in the Brillouin zone. In practice, electronic states are only calculated for 

a set of representative k-points which are determined by the shape of the Brillouin zone. We 

can obtain the electronic states at nearby k-points by interpolating between the nearby 

sampling k-points. By this approximation, the electronic states can be calculated at a finite 

number of k-points which can finally determine the total energy of the crystal. In the 

calculation of Bi(Ti0.5Mg0.5)O3 by VASP in chapter V, we use the sampling method 

proposed by Monkhorst and Pack (Monkhorst et al., 1976). 

 

3.8   Pseudo potential in VASP code 

 Generally, the Schrödinger equation for the homogeneous non-interacting electron 

gas has the solution which may be expressed as a plane wave function, 

Ψk(r)=Aeik.r,                                                       (3.34) 

where 𝐤 is the wave vector. To describe the rapid oscillating wave functions of core electrons 

accurately, the wave function has to be expanded with a large basis set of plane waves. 

However, this may not be necessary since the physical properties of solids solely depend on 

the valence electrons, therefore, pseudo potential can be used instead of the actual potential. 

Only the valence electrons are explicitly considered in pseudo potential method. This 

removes the rapid oscillation near the core region, however the final results are equivalent 

but much fewer plane waves are required in the calculation. As a result, time consuming and 

computational cost are much less than the original method. The schematic plot of pseudo 

and true potentials and wave functions are shown in Figure 3.1.  
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Figure 3.1 A schematic plot between the pseudo potential and pseudo wave function with 

respect to the distance, r, from the ionic nucleus. The dashed lines represent the 

corresponding pseudo wave function and pseudo potential inside the core radius. 

 

In pseudo potential, the charge within the core radius must be the same as that of the true 

potential wave functions, this is known as norm-conservation (Hamann et al., 1979). The 

pseudo potential must be able to reproduce the proper phase shifts for the scattering at the 

core level. The pseudo potential must be non-local with projectors for different angular 

momentum components. In another word, different angular momentum states have different 

phase shifts. The pseudo potential can be represented using the form (Kleinman et al., 1982) 

as follows: 

V=Vloc+ ∑ (V-Vloc)P̂l,ml,m  ,                                      (3.35) 

where P̂l,m are the projectors which project the electronic wave functions onto the 

eigenfunctions of different angular momentum states. The choice of Vloc is arbitrary and if 

it is made equal to V𝑙 , then the corresponding set of angular momentum projectors are not 

required. The computational time required to evaluate the non-local potentials is 
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proportional to the size of the system.  Later, King-Smith (King-Smith et al., 1991) carried 

out the calculations in real-space and was able to reduce the computational time to the order 

of the system size squared. 

 

3.9  The Hellmann-Feynman theorem 

 According to Hellmann-Feynman theorem, if we define as 𝜆 a parameter in the 

Hamiltonian and ψ(λ) as an eigenfunction. The derivative of energy with respect to λ can be 

written as 

                    
 ∂E

∂λ
=

∂

∂λ
〈ψ|Ĥ|ψ〉= 〈

∂ψ

∂λ
|Ĥ|ψ〉 + 〈ψ |

∂Ĥ

∂λ
| ψ〉 + 〈ψ|Ĥ|
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〉                  

                  
∂E
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|ψ⟩ + 〈ψ |

∂Ĥ

∂λ
| ψ〉 +E ⟨ψ|

∂ψ
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⟩ =E

∂

∂λ
⟨ψ|ψ⟩+ 〈ψ |

∂Ĥ

∂λ
| ψ〉  

      
∂E

∂λ
 = 〈ψ |

∂Ĥ

∂λ
| ψ〉                                                                              (3.36) 

This means that we can calculate a derivative of the total energy 𝐸 of a system with respect 

to a parameter λ can from derivative of the operator Ĥ. And if λ is R, we can calculate the 

forces by applying the Hellmann-Feynman theorem as follows: 

                      Fi=-
∂E

∂Ri

=- ∫ drn(r)
∂Vext(r)

∂Ri

-
∂EII

∂Ri

=- ⟨ψ|
∂Ĥ
∂Ri

|ψ⟩ -
∂EII

∂Ri

,               (3.37) 

where 𝐸𝐼𝐼 is the electrostatic nucleus-nucleus (or ion-ion) interaction. 

 

3.10  Electronic ground state calculations implemented in VASP code 

 As mentioned before, there are several well-known codes that are widely used in 

first-principles calculation to sole the Kohn-Sham equation which give the electronic ground 

state energy and electronic wave functions as results. In this thesis we use FP-LMTO 

(Jarlborg et al., 1976; Jarlborg et al., 1977) and VASP (Kresse et al., 1994; Kresse, G. et al., 

1996) codes. The algorithms implemented in VASP codes mostly use efficient iterative 

matrix-diagonalization schemes such as the conjugate gradient scheme (Teter et al., 1989; 
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Bylander et al., 1990) and a residual minimization scheme-direct inversion in the iterative 

subspace (RMM-DIIS) (Pulay, 1980; Wood et al., 1985). To mix the original and new 

electronic charge density during the self consistency calculation. To mix the original and 

new potential during the self-consistency calculation VASP uses the Broyden/Pulay mixing 

scheme (Pulay, 1980; Johnson, 1988). For potentials, the Vanderbilt’s ultra-soft pseudo 

potentials (US-PP) or project augmented wave (PAW) method is used. These 

implementations allow VASP to have a very small basis-set size even for the transition 

metals or heavy elements. The self-consistency scheme in VASP code is illustrated in         

Figure 3.2.  
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Figure 3.2 The self-consistency scheme used in the VASP codes. 

 

For more details on VASP please check the manual of VASP (Kresse et al., 2014 ). 

 

 

 



 
 

 

CHAPTER IV 

RXES OF GRAPHENE 

 

  This chapter is based on our published work (Zhang et al., 2012) that co-authored 

with L. Zhang and the others who provided the experimental data.  

 

4.1  Introduction 

  The recent discovery of graphene has attracted intense research interest due to three 

main extraordinary properties including: 1) high carrier mobility (Novoselov et al., 2004), 

2) high mechanical strength (Lee et al., 2008), and 3) tuneable band gap (Han et al., 2007). 

There are tremendous efforts on trying to grow graphene through several methods, for 

example, micromechanical cleavage of graphite (Novoselov et al., 2004),  annealing of a 

SiC single crystal at high temperature (Berger et al., 2006), and chemical vapour deposition 

(CVD) epitaxial growth on different metallic surfaces. (Dedkov et al., 2008; Li et al., 2009). 

However, detailed understanding of the electronic structure for both conduction and valence 

bands of graphene has not been paid much attention to. This can be the basis to better 

understand the transport properties of graphene and improve the performance of graphene-

based electronic devices in the future.  

 Powerful x-ray techniques including x-ray-absorption spectroscopy (XAS), x-ray 

emission spectroscopy (XES), and resonant inelastic x-ray scattering (RIXS) have been 

employed to investigate carbon allotropes (Ma et al., 1992; Ma et al., 1993; Carlisle et al., 

1995; Jinghua et al., 2000). XAS and XES provide angular momentum and site resolved 

partial density of states (PDOS) through the matrix elements coupling between the core-hole 

wave function and empty states for XAS, and filled states for XES. In RIXS, one looks at 
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how the XES spectra are varied as a function of the XAS excitation energy. As mentioned 

in chapter III, the two processes are viewed as one resonant scattering process with a hole in 

the valence band and electron in the conduction band without a core hole in the final state. 

The emission intensity is contributed by the resonant transition between two band states at 

the same k point (Kotani, Akio et al., 2001) which means that the crystal momentum is 

conserved. This leads to the band structure mapping which has been applied to various 

materials: graphite (Skytt et al., 1994; Carlisle et al., 1995; Sokolov et al., 2003), diamond 

(Ma et al., 1992), C60 (Guo et al., 1995), C70 (Guo et al., 1995), and SiC (Lüning et al., 

1997). Since graphene has unique properties from being single layer, it is not yet clear how 

the core-hole excitonic localization effect from x-ray absorption will influence its RIXS 

process. Is the intermediate state, which contains an electron in the conduction band and a 

core hole, affected by the exciton localization effect? Would the translational symmetry be 

broken? Or is RIXS free from such an effect because in the final state there is no core hole? 

(Brühwiler et al., 1995; Brühwiler et al., 1996; Carlisle et al., 1996). It is interesting to see 

if graphene will have similar behaviour as observed in broadband metals. 

 In this work, we performed the band structure calculations of graphene using the full-

potential linearized muffin-tin orbital (FP-LMTO) method (Methfessel et al., 2000) and the 

k-conserving RXES spectra of graphene based on the Kramers-Heisenberg formulation 

including the relevant matric elements (Eisebitt, 2000; Shirley, 2000; Preston et al., 2011). 

More detail of this method can also be found in Chapter II. To verify our calculation, the 

calculated RXES spectra is compared to the experimental ones from our collaborator who 

performed all the necessary measurements, also including XAS and XES. A key note in this 

work is the comparison between theory and experiment for RXES spectra of graphene which 

has never been done in other systems. In graphene, the presence or absence of the core hole 

in the final state of these XAS and XES need to be taken into account and a shift in the 

alignment of the RXES spectra is required. 
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4.2  Experimental methods 

  The experiments were performed, by our collaborators (Zhang et al., 2012), on the 

undulator beamline 7.0.120 at Advanced Light Source, Lawrence Berkeley National 

Laboratory. The XAS measurements were performed in total-electron-yield mode from a 

sample drain current with the resolution at 0.1 eV. The emission spectra were measured with 

a grazing incident grating spectrometer mounted with its optical axis perpendicular to the 

incident x-ray beam and in the direction of the polarization vector. The resolution of both 

the monochromator and spectrometer were set to 0.45 eV for the XES and RIXS 

measurements. All the emission spectra were acquired in the same time scale and normalized 

to unity for the strongest inelastic emission feature in each spectrum. Single-layer graphene 

on an SiO2 substrate was prepared following the method described in Ref. 6. The 

microstructure and quality of the graphene films were characterized by Raman spectroscopy 

(ISA Groupe Horiba) using a 488-nm wavelength laser. 

 

4.3 Computational methods 

  The band structure of graphene is calculated using the full-potential linearized 

muffin-tin orbital (FP-LMTO) (Methfessel et al., 2000) method in the local-density 

approximation. The unit cell consists of 2 Carbon atoms. The single layer of graphene is 

accomplished by defining the c axis as 5 Bohr radius which is long enough so that the 

calculation won’t be affected when the unit cell is repeated. We use a k-point set of                   

20 x 20 x 1.   The k-conserving parts or coherent RIXS spectra were calculated in the 

Kramers-Heisenberg formalism (Preston et al., 2011) as described in Chapter II.  
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4.4 Results and discussions 

 

Figure 4.1 XAS and XES spectra compared to theory; see text for details.  

(Zhang et al., 2012)  

 

  In Figure 4.1, we compare the XAS and incoherent XES (measured with 320 eV 

excitation) with various theoretical models. According to the widely accepted final state rule, 

the XAS spectrum should reflect the partial density of states in the presence of the core-hole. 

We therefore carried out calculations in a 2×2×1 supercell with a core hole included on the 

central atom. This significantly changes the local density of states compared to the 

unperturbed graphene and pulls a bound state out of the conduction band. This can be seen 

in Figure 4.2, which shows the PDOS in the supercell on an atom with core hole and without 

core hole compared with the perfect crystal to illustrate their alignment. One can see that 

even the nearest neighbours of the core-hole atom still have some PDOS weight in the bound 

state, so the core hole not only affects the atom itself but also its neighbours. 
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Figure 4.2 Carbon p-like PDOS in graphene; core-hole effect. (Zhang et al., 2012)  

 

 Because the incident X-ray beam is at 60° from the normal and is s-polarized, the 

XAS spectrum can be modeled by  (¾pz+¼px ) PDOS. This conduction band PDOS on the 

atom including the core-hole is shown by the blue dashed line in Figure 4.1 with the bound 

state peak (or core- exciton) aligned with the experimental π* peak.  A slight broadening has 

been applied to the calculated spectrum. The corresponding weighted PDOS form a carbon 

without the core-hole in perfect crystal graphene is shown as the dash-dotted cyan line. We 

can see that the theory with core-hole much better accounts for the experimental line shape, 

in particular the shape of the onset beyond the bound state up to about 290 eV and the 

location of the σ* peak. Even peaks up to about 310 eV can be recognized as weak features 

in the experiment. To further bring theory and experiment in coincidence an increasing 

broadening with increasing energy and an accumulative background would have to be added 

but we prefer not to get into modeling these aspects. The important point is that the π* peak 

of the unperturbed graphene, which corresponds to a saddle point at M is shifted up from the 

bound state by about 1.7 eV. Figure 4.3 shows how the density of states is related to the band 

structure in graphene. 
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Figure 4.3 Band structure and DOS of graphene  (Zhang et al., 2012)  

   

Now returning to the XES in Figure 4.1, according to the final state rule, the latter 

should be represented by the PDOS without core-hole. Moreover, because no polarization 

sensing is done in the XES, we can directly compare with the total p-like PDOS without 

relative weighting of the pz and px. We found that we need to shift down the calculated 

spectrum by about 1.7 eV in order to align this with the XES spectrum. The explanation for 

this is that the core-hole, which pulled down the density of states by about 1.7 eV, is not 

present in the final state of XES and thus to undo this core-hole shift the experimental 

spectrum should be shifted up by 1.7 eV. We can identify the Dirac point as occurring at 

284.7 eV in the XAS spectrum since we know precisely where the Dirac point in the band 

structure is located relative to the π * peak of the PDOS without core hole, and this is in fact 

very close to the position of the π *  bound state with core hole.  
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  Now we are ready to analyze the coherent RXES spectra with the calculations. The 

RXES spectra are calculated according to the Kramers-Heisenberg formula. 

                               ,               (4.1) 

where |𝑐𝑘⟩ represents the conduction band and |𝑣𝑘⟩ the valence band states at k-point k, |𝑠⟩ 

represents the s-like core-state,  𝑝∝ represents the momentum operator for the incoming 

beam and 𝑝𝛽 the momentum of the emitted beam polarization, 1 and 2 are the energies of 

the X-ray absorbed and emitted respectively. Eck, Evk, represent the energies of the conduction 

to which the electron is excited, and the energy of the valence band from which it drops back 

to the core hole, whose energy is Es. The energy conservation for the difference between X-

ray emission and absorption with a vertical interband transition is expressed through the 

delta function. The resonance of the core-hole to the conduction band transition with the 

XAS energy can be explained through the denominator in the matrix element factor with   

representing the core-hole lifetime. The energies in the conduction band are measured 

relative to the Dirac point as our excitation energies and also measure the RXES relative to 

the Dirac point.  According to the alignments that we have worked out above from the XAS-

XES with PDOS, we may consider the spectrum at XAS energy 1  =  284.7 eV to correspond 

to exciting right at the 0 energy, i.e. at the Dirac point but we should then shift the calculated 

spectrum up by 284.7-1.7 = 283 eV as we did with the incoherent XES because the core hole 

is not affecting the RXES. If it were, then the periodicity and hence the k-conservation would 

be broken.  The calculated spectra for various excitation energies are shown compared to the 

experimental spectra with this alignment in Figure 4.4. In other words, the above analysis 

allows us to determine which calculated spectrum should be aligned with which 

experimental spectrum and how to align their energy axes. The two differ by a 1.7 eV shift 

because of the core-hole effect being present in XAS but not in XES or RXES.  In this 

comparison, the incoherent fraction was removed from the  experimental  spectra  according 
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 to the procedure previously mentioned, therefore, they are more precisely the CRXES. 

 

   Figure 4.4 Coherent RXES spectra compared to theory (Zhang et al., 2012). 

 

  Various features are labeled with letters in the CRXES in Figure 4.4 so it is easier to 

follow in the discussion.  The dashed line are used to guide the eye on how these features 

disperse with XAS energy.  First, we would like to note that at low energy we essentially 

see emission from the  bands only because the emitted beam is at right angles from the 

incoming beam, i.e. 30 from the normal and hence primarily corresponds to in-plane 

polarization. At low energy we are close to the Dirac point or K-point in the Brillouin zone. 

The density of states are very low at this point, and hence the spectral weight is low. We 

note that Figure. 4.4 shows calculated spectra scaled by peak height but the absolute intensity 

is low for the low XAS energies. So, the feature labeled A corresponds to the  band close 
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to K. The fact that we see the features B below it extending down to several eV below it 

indicates that we pick up contributions from some range of k-points near K in the spectrum. 

This is related to the core-life time broadening factor in the equation. The fine structure of 

this peak is not resolved in the experiment but the broad shoulder extending down to 265 eV 

is clearly visible in all the experimental spectra. As we now increase in XAS energy we can 

see these features being shifted because we move away from K towards Γ and M.  The lower 

band (feature B) moves down and the upper one (feature A) moves up. At about 285.5 a new 

feature C appears which disperses upward and grows in intensity. This is because we 

approach the M-point in the Brillouin zone. At M there is a large density of states due to a 

saddle point in the band structure (see Figure 4.3).  The agreement between theory and 

experiment in terms of the shape of the spectrum is particularly good in the range 285-288 

eV. The feature D in the theory corresponding to the  bands at K is not visible in the 

experiment because it is too close to the elastic peak and suppressed in the experiment 

because of the near normal direction of the outgoing beam. At higher energies the relation 

with the k-points becomes less clear because then the XAS energy intersects the conduction 

bands at various points including near . The dispersion of the A, B and  C features however 

is quite similar to that observed for graphite by (Carlisle et al., 1995) and the similarity of 

the overall band structure of graphite and graphene can be seen here.  The experimental 

spectra for 284.7 -285.5 eV as excitation energy, show considerable spectral weight in the 

range 280-274 eV, which is not accounted for in the calculated CRXES. This may be because 

of imperfect subtraction of the incoherent part or may indicate sources of carbon different 

from pure graphene, such as defective states due to the interaction with the substrate. This 

could be expected to affect π-bonded states in this energy range.  
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4.5  Conclusion 

  In summary, in order to investigate the electronic properties and band dispersion of 

graphene the first-principles calculations were employed to analyse the XAS, XES and RIXS 

data. The RIXS spectra show distinct dispersive features and are interpreted as being due to 

the conservation of crystal momentum during the RIXS process. Kramers-Heisenberg 

calculations was employed to calculate the k-conserving RIXS spectra with highly accurate 

results.  However, in order to obtain an optimal agreement between the simulated and 

experimental RIXS spectral shapes with varying XAS excitation energies, the shift between 

XAS and XES energy scales due to the presence or absence of the core hole in the final state 

of these two processes had to be taken into account. This regime had never been done before. 

This shift was shown to be consistent with the observed changes in calculated PDOS induced 

by the presence of the core hole. 

 

 



 
 

 

CHAPTER V 

RXES OF INDIUM NITRIDE 

 

5.1  Introduction 

  In this chapter we present the results of an implementation of the Kramers-

Heisenberg equation on top of a quasiparticle self-consistent- (QS) GW band-structure 

calculation with full consideration to the effect of dipole selection rules on the incoming and 

outgoing photons in different polarization and experimental geometries. This enables us to 

calculate spectra that can be directly compared to experiments. The present work can be 

considered another confirmation of  the calculation methods of the RXES spectra which has 

been once tested on ZnO (Preston et al., 2011) which was previously reported . The 

theoretical results are compared to the measured wurtzite InN nitrogen K- edge RXES. We 

focus on wurtzite InN because of a two reasons. First it has the valence band anisotropy 

which can be measured by RXES method. Second, it has high electronic mobility among 

III–V compounds which is the high potential for use in optoelectronic applications while the 

conflicts of its actual electronic band structure and bandgap value still continue. For example, 

some groups reported a wide bandgap  values of ∼ 1.9 eV, according to optical 

measurements (Foley et al., 1986; Westra et al., 1990; Motlan et al., 2002), while others 

proposed that InN has a narrower bandgap  of  ∼ 0.8 eV  (Davydov et al., 2002; Liu et al., 

2011). From ab-initio calculations, different values of band gaps have also been reported 

(Stampfl et al., 1998; Wei et al., 2003; Ahmed et al., 2005). Consequently, it is crucial to 

accurately determine its electronic band structure and band gap. However, due to the nature 

of the calculation, the result is more accurate in the area near the conduction band minimum, 

therefore it should be an excellent tool to apply with InN so the specific area in the Bruillion 
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zone, especially near the band gap region which can be compared directly to the RXES 

experiment, making the material another ideal test case for this calculation method.  

 

5.2  Experimental methods: 

We have measured a single-crystalline bulk InN grown by plasma-assisted molecular 

beam epitaxy (PA-MBE) in this study. The sample was 1 m thick wurtzite InN(0001̅) films 

grown on c plane sapphire with a thin (30 nm) InN buffer layer. The  N K- edge XAS and 

RXES spectra of the sample set were measured at undulator beamlines 7.0.1 at the Advanced 

Light Source (ALS), Lawrence Berkeley National Laboratory. The beamline is equipped 

with spherical grating monochromator.    Emission spectra were recorded using a Nordgren-

type grazing-incidence spherical grating spectrometer with the energy resolution set to 0.4 

eV at the N K-edge   (Nordgren et al., 1989). The energy resolution of the incoming photons 

was set to 0.4 eV for the resonant emission spectra measurements.  At the ALS, the N K-

edge XAS energy axes were calibrated using hexagonal boron nitride at 20° incidence 

(Moscovici et al., 1996). The calibrated photon energies of 406.8 eV, 408.8 eV and 411.8 

eV were in turn used to calibrate the elastic peaks of the corresponding emission spectrum. 

The N K-edge XES was independently calibrated using the 2nd order diffraction L-edge of 

Co (Thompson et al., 2001). XAS spectra were recorded in two geometries: 20° and 70° 

incidence for the sample set. All the x-ray measurements appearing in this chapter were 

performed by our collaborators. 

 

5.3 Computational methods 

The band structure of InN is calculated using the full-potential linearized muffin-tin 

orbital (FP-LMTO) method with the  quasiparticle self-consistent GW (QS-GW) approach 

(Kotani et al., 2007) starting from LDA Hamiltonian as described in Ref. (Preston et al., 

2011).  It is well known that this QS-GW approach, in this all-electron implementation, 
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slightly overestimates band gaps of most semiconductors due to the use of the random-phase 

approximation (RPA) of the polarizability, therefore, in practice a mixture of 0.8 𝑉𝑋𝐶
𝑄𝑆𝐺𝑊

        

+ 0.2 𝑉𝑋𝐶
𝐿𝐷𝐴  is applied to give the best agreement with the experimental band gaps. We obtain 

a band gap of 0.71 eV (0.65 – 0.80 from experiments) for InN, not including spin-orbit 

coupling or the zero-point motion corrections or exciton binding energy corrections. We use             

k-point mesh of 10x10x10 for LDA and 4x4x3 for QS-GW calculations. The lattice 

parameters used in our calculation (Vs the experiment) are 3.495(3.540), 1.62(1.61), 

0.379(0.380) Angstrom for a, c/a and u respectively. The color band structures are weighted 

by N-p character and normalized by the maximum intensity. The k-conserving parts or 

coherent RIXS spectra were calculated in the Kramers-Heisenberg formalism as described 

in Ref. (Preston et al., 2011). 

 

5.4  Results and discussions 

5.4.1  Band structures and partial density of states (PDOS)    

  In InN, the band structure is obtained from GW approximations. In order to 

make a theoretical interpretation of the RXES spectra in InN, the band structure weighted by 

N- K edge character, both in the perpendicular and parallel polarization to the z directions, 

are generated from the band obtained from using GW approximation.    
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Figure 5.1 (a) N-pxy PDOS and Intensity map of the calculated band structure.  The intensity 

of the band is proportional to the pxy character of the band at the point in the BZ.  

 

 

 

Figure 5.1 (b) N- pz PDOS and Intensity map of the calculated band structure. The intensity 

of the band is proportional to the pz character of the band at the point in the BZ. 

 

    InN band structures, weighted by pxy and pz are shown in Figure 5.1. The 

band gap energy from our calculation is 0.71 eV which agrees well with previous published 

results (Wu, 2002; Matsuoka, 2002). The bands and weightings are also in good agreement 

with previously published results (Piper et al., 2007). If we consider the energy range 0-5 eV 
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above VBM in the conduction band, this region is dominated by the first and second lowest 

conduction bands. In particular, the lowest conduction band has low effective mass and 

strong pxy character near K-G-M (p orbitals lie in the K-G-M plane), pz character along G-A 

(pz orbitals point in G-A direction) and mixed character along M-L-A. For the energy range 

5-10 eV, there are a couple interesting points to investigate, one near 8 eV and another near 

10 eV, with significantly high DOS. The band near 8 eV is nearly horizontal and has strong 

pz character near the gamma point along K-G-M and along G-A. Another band which lies at 

about 10 eV also has strong pz character near K and M.  Above 10 eV, the conduction 

becomes even less dispersive at higher energy and it is more difficult to explain the 

relationship between RXES spectrum and each individual band because there are more 

conduction bands contributing to the emission process. We now look into the valence band. 

The top 7 eV of the valence band is dominated by N p- like states. The valence band has 

strongest pxy character along G-A region contributed by the two highest VB between 0 and 

-1 eV. Pz character dominates the top VB, and the one near -6 eV along K-G-M and the third 

and fourth bands along G-A. It has mixed character along M-L-A especially near L 

corresponding to -2 eV which will give high contribution to RXES spectra.    
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Figure 5.2 Calculated (dash red lines) and measured (solid black lines) InN (0001) CRXES 

at (a) near normal(20 degree) and (b) near grazing( 70 degree) incidence. Each spectrum is 

labeled with its excitation energy; photon energy is shown on the right, and energy relative 

to VBM is shown on the left.  

 

5.4.2  CRXES measurement and calculation 

         Figure 5.2 shows the calculated CRXES, and measured RXES for c plane 

wurtzite InN at near normal (NN, 20 degree) and near grazing (NG, 70 degree) incidence at 

different excitation energies. However, in the experiment, the k-conserving resonant 

contribution is only part of this measured spectra (Ma et al., 1992; Skytt et al., 1994). This 

contribution is maximally subtracted under the condition that the spectrum should nowhere 

become negative. Although the spectra are not purely coherent, the coherent part in the 

spectra still dominate the main peak characters at low excitation energy therefore some 

reasonable comparisons to our calculation can still be made.    
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   Our calculated spectra show more detailed peak structures and dispersion 

effect than the experiments. This dues to difficulties in extracting the coherent fraction 

CRXES from the total XES which contains a significant incoherent fraction. Moreover, the 

measured RXES are broadened by the emission spectrometer resolution of 0.4 eV. This also 

happened for the case of WZ ZnO which was previously studied (Preston et al., 2011). 

However, some good agreement is obtained between our theory and experiment for the low 

photon energy region of conduction band. The agreement in qualitative trend between the 

experiments and the calculated spectra is obtained and can be directly related to the band 

dispersion. For NN measurement, incident photons couple predominantly with the pxy 

orbitals, therefore in the absorption process we should look mainly at pxy contributed 

conduction band. If we consider the incident energy between 0-5 eV, coherent emission 

should come from K-G-M part of the BZ. Above 5 eV, the bands become less dispersive 

especially near 8 eV that the bands are almost flat, high DOS, which we expect to see a peak 

with high intensity contributed from wide range of BZ, most part from near K and L in the 

BZ. For NG incidence, the incident photons couple to the pz orbitals, therefore the G-A-L 

part of the BZ gives the most contribution to the emission for lower incident energy, 0-5 eV.  

For the energy range between 5-10 eV, there are a couple interesting points to investigate, 

one near 8 eV contributed by point G in K-G-M and A-G part, and another near 10 eV, 

contributed from K in M-K-G and M in G-M-L part in the BZ with significantly high DOS.  

For higher energy, above 10 eV, the conduction bands become less and less dispersive and 

larger parts of the BZ start to contribute to the CRXES. For both NN and NG, it is difficult 

to isolate specific contributions to the measured spectra after this point. 
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(a)                                             (b) 

 

 

 

 

 

 

Figure 5.3 (a) The near-grazing incident x-ray is polarized in z direction which is nearly 

parallel to z axis of the crystal while the emitted x-ray isn’t filtered and hence has its 

polarization in xy plane which is nearly perpendicular to z axis of the crystal. (b) The near 

normal incident x-ray is polarized in y direction which is nearly normal to z axis of the 

crystal, while the emitted x-ray is not filtered, therefore has it’s polarization in both x and z 

components, which are both nearly perpendicular and parallel to z plane of the crystal.  

 

  Now consider the emission, for NG incidence, the emission is contributed 

significantly by the pxy dominated bands because the emitted photon ray will travel nearly 

parallel to c axis of the crystal thus its electric field lie in xy plane, same as s-polarized and 

p-polarized  orbitals (as shown in Figure 5.3(a)). Thus to interpret the NG spectra we 

consider the pz conduction bands from Figure 5.1(b), as described above and pxy valence 

band from figure 1a(this is the same as saying M31 dominates). For NN incidence, the 

emitted photon ray polarization has both z  and x components, therefore both px and pz also 

contribute to the emission spectra. As a result, both pxy and pz weighted valence bands from 
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Figure 5.1(a) and 5.1(b) contribute to the emission, but only pxy  conduction  bands  from  

figure  1a  contribute to the absorption.  In order to interpret the RXES spectra more easily, 

the color-weighted electronic band structures from Figure 5.1(a) and 5.1(b) are rearranged 

accordingly, as shown in figure 5.4(a) for near-normal incidence and 5.4(b) for near-grazing 

incidence. The points in both valence and conduction bands that contribute to the RXES 

process are marked with the same symbol for each excitation energy.  

 

Figure 5.4 (a) Intensity map of the calculated band structures used for the interpretation of 

RXES near-grazing (NG) spectra. The intensity of the bands is proportional to the pz and pxy 

characters for the unoccupied and occupied bands respectively. The symbols presented in 

the bands mark the points in the bands that electronic transitions take place at each specific 

excitation energy, absorption processes for the unoccupied bands and emission processes for 

the occupied bands.   
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Figure 5.4 (b) Intensity map of the calculated band structures used for the interpretation of 

RXES near-normal (NN) spectra. The intensity of the bands is proportional to the pxy and 

pxy + pz characters for the unoccupied and occupied bands respectively. The symbols 

presented in the bands mark the points in the bands that electronic transitions take place at 

each specific excitation energy, absorption processes for the unoccupied bands and emission 

processes for the occupied bands.   

 

  We now describe the trends in Figure 2 starting with the NG spectra. The 

experimental spectra consists of a strong peak between 0 and -3 eV which gradually develops 

a higher binding energy tail down to about -5 eV as the incident photon energy increases. 

These are the so called N 2p bands. Another weak peak near about -6 eV is due to the 

emission from N 2p states hybridized with In 3d semicore states.  

 According to the band plots and our analysis of the angular effect as 

explained above we can explain how the trends of the peaks in the spectra are related to the 

band dispersive. The first lowest spectrum 2 main peaks between 0 and 2 eV in the calculated 

spectrum ,which are merged into one peak in the experiment, should derive from the upper 
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 two valence bands along G-A . The points in the bands which responsible for the electronic 

transitions are marked as shown in Figure 4(a). When the photon energy increases these two 

bands approach each other and merged into one band as we reach point A at the energy of 4 

eV.  In the second and third (4.4 and 4.9 eV) spectra, the photon energy is high enough to be 

moving upward along A-L in the conduction band. Along this direction, the upper valence 

bands disperse to the higher binding energy and this explains the downward shifting of the 

first peak in the three lowest spectra. The very weak peak between -4 and -6 eV in the first 

three spectra derives from the pxy character in the valence band near -5 eV along A-L.  For 

the photon energy 5.4 eV there are contributions from the same conduction band in three 

regions, one near point M, another two near the gamma point along G-M and G-K. This 

gives rise to broader peaks between 0 and -3 eV derived from the top two valence bands with 

strong pxy character along G-M and G-K. For the 6.9 and 7.4 eV spectra, we move up to 

another conduction band near point M in the conduction band. At this points there are 5 

valence bands between -6 to 0 eV between G-M-L contributing to the emissions which are 

responsible for the broad spectrum tailing down to near -6 eV. The two main peaks near -1 

and -3 eV arise from two bands near M point as marked with the circle in figure 4a which 

are dispersing up as we can see that the two main peaks in the spectra are shifting to the 

higher energy. The broad peak near -3 to -4 eV is stronger in the 7.4 eV spectrum due to 

more contribution from the bands between G-K. The tails of the spectra between -4 to -6 eV 

become less broad for 7.4 eV spectrum as corresponding to the two lower valence bands 

between -5 and -6 become closer as we move from M toward L. At excitation energy 7.9 eV, 

we still look at the same conduction band but stronger contributions once we move toward 

G point in the conduction band, as a result, the most upper conduction bands around G point 

are also closer together. That is why we see the much less broad peak between -1 to -4 eV in 

the spectrum. In addition, we also have a strong contribution between A-G which results in 

the additional (first) peak of the spectrum contributed by the two most upper valence band 
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near 0 eV. At 8.4 eV, there are contributions from many strong points in the conduction 

band, with high DOS since the band is nearly horizontal. The strongest contribution is near 

point A with emission from the most upper conduction band near -1 eV. Another strong point 

is from point G by the emission of the two most upper conduction bands near 0 and -1 eV. 

The most upper bands disperse up along A to G that is why we see the first peak of the 

spectrum moving up to the higher energy. The lower valence bands near point G also 

disperse up rapidly merging with the upper one, therefore we see the peak near -5 eV in the 

7.9 spectrum merging into the peak near -1 eV in the 8.4 eV spectrum.  We also have some 

contribution near point L for the valence band near -2 and -6 eV. On the spectrum 8.9 eV, 

we still see the first peak, near 0 eV, continuing to higher energy since the valence band near 

point A is dispersing up, however, with the weaker contribution. We have the contribution 

from near point G which give rise to the peak near 0 and 1 eV. The weak contribution from 

the conduction band between G and M associates with  the broader peaks between -1 to -4 

eV from different valence bands in that region, including the one near -6 eV. However these 

peaks are not sharp because the contributions are equally weak. The experimental spectrum 

is also spreading, not sharp. On the 9.4, 9.9 and 10.9 eV spectra, we move up onto another 

conduction band and that is why we see the new trends on the peaks. At 9.4 eV, the 

conduction band at K dominates and give rise to the peaks near -2.5 and -5 eV in the 

spectrum. The peak near 2.5 eV can also be seen in the experiment. There are also weaker 

contributions from several points between M-L and A-L which contributed from the valence 

bands between -1.5 to -2 eV and -5 to -6 eV. At 9.9 eV the strongest contribution comes 

from near point K which the valence bands split and disperse up and down. Therefore we 

see the peak near -2 and -5 become spreading out as the bands split apart. Another strong 

contribution comes from the wide range of band between G-M-L because the conduction 

band is nearly horizontal. The valence bands disperse up between -1 to -6 eV. That is why 

we see the peaks in the spectrum shift toward higher energies. At higher photon energies the 
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conduction bands become less dispersive and larger parts of the Briluion zone start to 

contribute to CRXES therefore it is very difficult to isolate specific contribution to the 

measured spectra.  

 For the NN spectra, the situation is a bit more complicated as we must 

consider both pxy and pz valence bands for the emission as explained above.  As we consider 

the energy below 5 eV, we are looking at the conduction CBM between K-G-M Vs G-A-L 

regions for the NG spectra. The most obvious contribution from pz VB in the NN spectra at 

low energies, are the stronger peak, when comparing to the NG spectra, near -6 eV dispersing 

toward lower binding energy while the main peak near  0 eV dispersing toward the higher 

binding energy as the photon energy increases. This is explained as the contribution from 

the strong pz character in the upper VB near 0 eV and the lower VB bear -6 eV near the G 

point as shown in figure 1b. At 7.35 eV we move up to the intersection of CBs at point K 

which give rise to the strong peak   near -3 eV contributed largely from VB near -3 eV with 

strong pz character.  This peak disperses toward lower binding energy as the energy increases 

as the band disperses upward. At 8.35 eV we reach point L in the CB and we can see a 

sharper peak near -1 and -6 eV which are strongly contributed from the VB near -1 and -6 

eV. At this point we can clearly see that there is no contribution from G point as seen in the 

8.4 eV NG spectrum. Moving up from 8.85 to 9.35 eV in the CB near the G point we can 

see that the VB near 0 eV disperses upward therefore we can see the small peak near 0 eV 

disperses to the lower binding energy. The peaks near -3 eV shows that we also have 

contribution from the VB near point L at -3 eV with pz character. Above 9.35 eV the spectra 

have contributions from various points in the BZ but most part is from near L and G points 

that is why we see the similar shapes of spectra as the ones at low energies. Once we hit 9.85 

eV, we again hit the conduction band near point L that is why the spectrum look like the 8.35 

eV spectrum with strong contributions from the VBs near -1 and -6 eV. At 11.35 eV, we 

have contributions from various points  in  the conduction bands but at least we  can see that  
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we have some contribution from point G and K in the conduction band and the tail between 

-2 to -6 eV of the spectrum looks similar to the 7.35 eV and the main peak near 0 eV looks 

similar to the ones at low energies.  

 Overall the calculated CRXES agree well with the experiments in term of 

the trends of the peaks even though the shape of the peaks do not match exactly and the 

experiments do not show as much dispersive detail as the calculation. This is due to the 

difficulty in extracting the coherent part of the measured spectra and the difficulty of making 

pure crystal of InN which may result in a mixed structure between Zincblend and Wurtzite 

structures while it is only Wurtzite structure in the calculation.   

5.4.3  Extracting band-structure information from CRXES 

  The advantage of CRXES over other methods is that it is able to resolve 

conduction bands in both energy and k spaces. It enable us to extract information about 

higher conduction bands in the BZ. For example, by looking at the NG CRXES spectra we 

can see that the 7.9 eV looks similar to the 2.4 eV spectrum. This means that there must be 

a conduction band with strong pz character near 7.9 eV around the G point. This assumption 

can be made with the CRXES spectra independent of the calculated band structure. This 

technique has advantage over XAS because in coherent emission the valence and conduction 

band stated are assumed not to be bothered by the presence of a core hole at the time scale 

of the combined absorption and emission process. Generally in the XAS process the final 

state rule implies that the whole system is relaxed as the core hole presents. Therefore the 

state being detected in XAS is more of the representative of the local states around a Z+1 

impurity rather than the unperturbed state of material.  Therefore it is much more accurate 

to measure the unperturbed conduction bands relative to the valence bands as in the CRXES.  
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5.5  Conclusion 

            We calculated the electronic band structure of InN by using GW calculation and 

confirmed the electronic band gap to be 0.7 eV. We then calculated CRXES spectra based 

on Kramer-Heisenberg rule with the experimental geometry and polarization effect in the 

consideration following the framework that has been previously tested on ZnO. The 

calculated spectra of InN CRXES were compared to the measurements and good agreements 

were obtained. The XAS polarization filtering and use of NN and NG incident allows us to 

focus on different parts of the BZ.  

 

 



 
 

 

CHAPTER VI 

 XANES OF Bi(Mg0.5Ti0.5)O3 

 

  This chapter is based on our work that has recently been published in a ferroelectrics 

journal (Schwertfager et al., 2016).  

 

6.1 Introduction 

   Bi(Mg0.5Ti0.5)O3, henceforth BMT, is one of the promising high-temperature Pb-free 

antiferroelectric materials for future applications because of its antiferroelectric-like 

displacement of Bi cations and its octahedral tilting characteristics.  Because the cation 

ordering of materials in this class directly affects their antiferroelectric properties, it is 

important to understand the actual structure of BMT. X-ray diffraction (XRD) experiment 

by Khalyavin and coworkers (Khalyavin et al., 2006) reveals the crystal structure of BMT.  

They found that the oxygen cages of Mg and Ti are tilted, and the cations are proposed to 

move off-center from the center of their oxygen cages by 0.287, 0.086 and 0.086 Å for Bi, 

Ti, and Mg, respectively.  Because it is unclear whether BMT is an ordered or disordered 

alloy, it is almost impossible to accurately resolve the fine structure (off-centering) of each 

cation species based on the XRD data.  Recently, Suewattana and coworkers (Suewattana    

et al., 2012) performed first principles calculations starting from the experimental structures 

in (Khalyavin et al., 2006), and found that these structures are under internal strain and could 

be relaxed reducing the total energy by ~ 0.7 eV per Bi.  The cations are shifted from the 

center of the oxygen cages by large values, i.e., by 0.505, 0.300 and 0.232 Å, for Bi, Ti, and 

Mg, respectively.  BMT is known to be centrosymmetric.  Therefore, the total polarization 

is expected to vanish.  However, the large cation displacements can lead to a large 
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polarization if the effects are not canceling each other.  Among various experimental 

characterization techniques, x-ray absorption spectroscopy (XAS), which can selectively 

probe the local structure around each element, is highly powerful and suitable to identify 

elemental specific local structures.  However, to aid experimental identification, especially 

for the near edge region of the XAS called x-ray absorption near edge spectra (XANES), the 

first principles calculations of plausible structural models are generally needed to simulate 

the spectra for comparison with the measured results.  

In this thesis, we perform our calculations of Bi, Mg and Ti-edges XANES spectra 

of BMT for different structural models, in order to aid identification of the actual structure 

of this material.  The models studied include a high symmetric structure (the B-cations reside 

at the center of their respective octahedral oxygen cages), the experimental proposed 

structures (based on XRD measurements (Khalyavin et al., 2006) and the calculated structure 

(based on the energy optimization calculations (Suewattana et al., 2012).  

 

6.2  Calculation methods   

  The calculations for XANES spectra of four different BMT structural models 

corresponding to different cation off-centering magnitudes were performed. The model 

structures are shown in Figure 6.1. These four models include:  

1) A high symmetric (ideal) structure 

This structure has the B-cations in the middle of the non-tilted cages.  The 

lattice constant is optimized by using first principle calculation based on local density 

approximation (LDA) as implemented in VASP code.  The computational details of the first 

principles calculations are similar to (Fongkaew et al., 2013).  The k-points mesh of 3x3x3 

was used. The cut-off energy was set at 500 eV.  For the cases that required structural 
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optimizations, the structure was relaxed until the residue force on each and every atom 

became less than 0.001 Ry/Å.  

2) The experimental proposed structure with Pbam space group. And 

3)  The experimental proposed structure with Pnnm space group. 

These two structural models are the experimental ones proposed by 

Khalyavin and coworkers (Khalyavin et al., 2006) based on XRD experiments.  One 

structure is in Pbam and another one in Pnnm space group with Glazer’s tilt systems of 

𝑎+
−𝑏0

0𝑎+
− and 𝑎 +

−𝑏0
0𝑎−

− respectively (subscripts “ +” and “-” denote cation displacements 

along  a  given axis and   the  superscripts  have  their  usual  Glazer’s meaning).     The main  

difference between the two models proposed by Khalyavin and coworkers (Khalyavin et al., 

2006) is the tilting of the diagonal axis of the oxygen cages, one tilted on the x axis and 

another on the y axis. These two structures have very similar lattice parameters and during 

the calculations they were fixed at their respective experimental values of a = 11.3196,             

b = 5.6423, and c = 7.8314 Å for Pbam; and a = 11.3325, b = 5.6501, and c = 7.8159 Å for 

Pnnm structures.  Note that these two structures are very similar when they are viewed in a 

large cluster size. 

4) The fully relaxed BMT structure by (Suewattana et al., 2012), calculated 

by using first principle calculation to relax the experimental proposed Pbam structure.  The 

schematic crystal structures of all models are shown in Figure 6.1.  First principles (ab initio) 

calculations of the XANES spectra based on the structures of all four models were calculated 

by FEFF 8.2 codes (Ankudinov et al., 1998; Ankudinov et al., 2002).  The codes utilize a 

full multiple scattering approach based on ab initio overlapping muffin-tin potentials.  The 

ab initio muffin-tin potentials were obtained by using self-consistent calculations with Hedin 

– Lundqvist exchange – correlation functions (Hedin, 1969).  The self-consistent 
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calculations were performed in the sphere radius 10 Å (containing approximately 325 atoms) 

around the absorber cations.   

    

   

Figure 6.1 Structural models of BMT used in our calculation to calculate XANES spectra. 

(Schwertfager et al., 2016) a)  Ideal cubic perovskite (high symmetric) structure – each cation 

is resided in the center of its oxygen cage, b) and c) the structural models proposed by 

(Khalyavin et al., 2006) based on their XRD data with the assumption of Pbam and Pnnm 

space group, respectively – the cations slightly shifted off-center, and d) the fully relaxed 

Pbam structure based on first-principles calculation proposed by (Suewattana et al., 2012)  

 

The electronic transitions associated with the XANES measurements must follow the 

dipole selection rule.  An X-ray absorbance can be calculated by the Fermi’s golden rule,  

       (6.1) 

where μ() is an x-ray absorbance,  |i, |f, Ei, and Ef are the initial and final states and their 

corresponding energies, respectively,  and D are the photon frequency and the dipole 

operator.  
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In this thesis, we chose to calculate Ti and Mg K-edge and Bi L3-edge XANES.  The 

choices are based on the x-ray energy range that is suitable for actual XAS measurement at 

most synchrotron facilities. At the Synchrotron Light Research Institute (Public 

Organization), Nakhon Ratchasima, Thailand, the XAS beamline can measure in the energy 

range of 1,250 – 10,000 eV; making it possible to measure Mg and Ti K-edge (Bi L3-edge 

requires higher photon energy and is needed to be measured elsewhere).  As a consequence 

of the selection rule, K-edge XANES corresponds to the dipole transition from |s to |p state, 

and L3-edge corresponds to that of |p to |d and |p to |s states.  

 

6.3  Results and discussions 

  XANES technique is a powerful tool to investigate the local structure of the materials 

by speculating each element separately.  Each element’s x-ray absorption spectra take place 

at its characteristic x-ray energy and contain information of its neighboring arrangements.  

For BMT, there are three cations, Bi, Ti, and Mg.  Therefore, the XANES measurement for 

their respective absorption edges can be used to reveal the local structure of this material.  

Here we calculated the expected spectra of all three cation absorbers for four BMT structural 

models.  For the spectra of individual cation (Bi, Ti and Mg), the main features related with 

the off-center shifts of the cation will be discussed.  

6.3.1 Bi L3-edge XANES of BMT 

   The commonly known L3 absorption edge energy of Bi is 13.418 keV.  

Therefore the Bi-L3 edge XANES spectrum has the edge around this value.  The calculated 

Bi L3-edge XANES spectra of the four model structures of BMT are shown in Figure 6.2.  

The XANES spectrum of the ideal structure is clearly different from those of other models 

in general.  The high symmetry of the ideal structure leads to the clear and distinct features.  

There are three broad peaks at three main regions.  The two spectra, generated from the 
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structural models proposed by the experiment (henceforth “experimental models”), have 

very similar features due to their similarity in the local structure around the Bi absorber.  The 

spectra contain a shoulder A around the edge area followed by the main peak B and broader 

peaks C, D and E at the energy of 13,430, 13,439, 13,450, 13,473, and 13,516 eV, 

respectively.  The spectrum from the calculated model with fully relaxed structure contains 

almost all features observed in the experimental spectra with some slight differences.  In 

comparison with the experimental model spectra, the spectrum of the fully relaxed structure 

shows reduction in shoulder A and stronger peak B with the peak position slightly shifted 

toward higher energy by about 1 eV.   Peak C moves closer to peak B and appears only as a 

shoulder.  Peak D is broader and is shifted to the higher energy; merging with peak E thus 

appears as a small shoulder.  Among the four models, the Bi atom stays at the center of the 

oxygen cage for the ideal structure model, but shifted off-center by 0.287 Å for the 

experimental models and by 0.505 Å for the fully relaxed model.  If we investigate the main  

features that varied as the Bi atom moves off-center we can associate the off-center shift with 

(1) the reduction in shoulder A – the ideal structure spectrum has this shoulder appear almost 

as a first peak (2) the enhancement and shifting toward higher energy of peak B – the ideal 

structure spectrum has peak B at about 13,436 eV.  
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Figure 6.2 Bi L3-edge XANES spectra of four different structural models of BMT. 

(Schwertfager et al., 2016)  

 

6.3.2 Ti K-edge XANES of BMT 

The commonly known K absorption edge energy of Ti is at 4,965 eV.   

Therefore the Ti K-edge XANES of BMT has the absorption edge around this value.   The 

calculated Ti K-edge XANES spectra of the four model structures of BMT are shown in 

Figure 6.3.  All spectra can be characterized with a few common features.  At 4,971 eV, there 

is a pre-edge peak A followed by a shoulder/small peak B at 4,981 eV and main peaks C and 

D at 4,988 and 4,990 eV.  At higher energy, there are broad peaks E and F at 5,004 and 5,043 

eV, respectively.  Among four models, the Ti atom stays at the center of the oxygen cage for 

the ideal structure model, shifted off-center by only a small amount of 0.086 Å for the 

experimental models and by a large amount of 0.300 Å for the fully relaxed model.  From 

Figure 6.3, it is clearly seen that for the fully relaxed structure the pre-edge peak A is 
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significantly enhanced.  For the experimental model spectral, the peak only appears as a 

small bump while for the ideal structure peak A vanishes. These indicate that the magnitude 

of the pre-edge peak A goes with the off-centering of Ti. The increase in the pre-edge peak 

A as the Ti shifts off-center is consistent with the finding of Vdrinskii and co-workers 

(Vedrinskii et al., 1998).   Vdrinskii and co-workers calculated Ti K-edge XANES of various 

perovskite ATiO3 and suggested that the pre-edge feature in Ti K-edge XANES spectrum 

can be used to identify Ti off-center shift.  Beside the pre-edge peak A, the main peaks C 

and D are also affected by the off-center shift of Ti.  When there is no off-center shift (the 

ideal structure spectrum) peak C is the largest and peak D appears to be a shoulder.  When 

off-center shift takes place (the other three spectra) peak C is reduced to be a shoulder and 

peak D becomes dominant.  However, the switching of the C and D peaks does not appear 

to go proportionally with the magnitude of the off-centering as the off-center shift for the 

case of experimental models are much smaller than the fully relaxed model be the C and D 

features are almost the same for these cases.  We may conclude Peak B also appears to 

enhance and peak E appears to reduce as a consequence of off-center shift of Ti.  However, 

the magnitude of the enhancement and reduction does not directly related with the amount 

of the shift of Ti.  As we can see from the spectra, the fully relaxed model has the Ti shifted 

off-center the most but the enhancement in peak B and reduction in peak E (compared to 

that of the ideal structure spectrum) are smaller than the experimental model spectra.  
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Figure 6.3 Ti K-edge XANES spectra of four different structural models of BMT. 

(Schwertfager et al., 2016) 

 

6.3.3 Mg K-edge XANES of BMT 

The commonly known K absorption edge energy of Mg is at 1,305 eV. 

Therefore the Mg K-edge XANES of BMT has the absorption edge around this value.   The 

calculated Mg K-edge XANES spectra of the four model structures of BMT are shown in 

Figure 4.  All spectra can be characterized with a few common features.  At 1,307 and 1,309 

eV, there are pre-edge shoulders A and B followed by the main peak C at 1,314 eV and 

smaller peaks D and E at 1,320 and 1,324 eV. At higher energy, there is a broad peak F at 

1,350 eV.  Among the four models, the Mg atom stays at the center of the oxygen cage for 

the ideal structure model, shifted off-center by only a small amount of 0.086 Å for the 

experimental models and by a large amount of 0.232 Å for the fully relaxed model.  From 

Figure 4, it is apparent that the pre-edge shoulder A is related to the off-center magnitude of 

Mg. The pre-edge shoulder A disappears in the ideal structure where there is no off-
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centering.  It is getting stronger in the experimental spectral and is strongest in the relaxed 

structure as the Mg off-centering shift increases.  Main peak C and peak D also change with 

respect to the off-center shift of Mg.  As Mg shifts off-center (starting from at the center in 

the ideal model to slightly shifted off-center in the experimental model to the most off-center 

shift in the fully relaxed model) peak C is getting broader and shifted toward the lower 

energy while peak D is reduced.  Note that, instead of viewing the main peak C to shift 

toward the lower energy, one can view the shift as the shift of the absorption edge position 

down to the lower photon energy as Mg shifts off-center.  A small hump at E is also the 

result of the off-center shift of Mg.  However, the magnitude of the enhancement and 

reduction does not directly relate to the amount of the shift of Mg. Finally the peak F, only 

occurs in the relaxed model and appears as a broad shoulder in the experimental model; 

suggesting that it is associated with the Mg off-center shift.  

 

 

Figure 6.4 Mg K-edge XANES spectra of four different structural models of BMT. 

(Schwertfager et al., 2016) 



82 

 

6.4 Conclusions 

  The calculations were based on first principles calculations for Bi L3-, Ti K- and Mg 

K-edges XANES spectra of Bi(Mg0.5Ti0.5)O3 . Four different crystal structure models were 

proposed in this thesis for the simulation of the XANES spectra including (1) the high 

symmetric structure where the cations are located perfectly at the center of oxygen cages, to 

(2) the two models proposed based on XRD measurements that has the cations shifted off-

center, and (3) the fully relaxed structure model based on first principles calculations that 

found the cations significantly shifted off-center.  Because different models have different 

magnitudes of cation off-center shifts, the identification of the features in the XANES spectra  

that relates with the off-center shift can be identified as follows: 

1) For Bi L3-edge XANES, the reduction in the first shoulder (A) at 13,430 eV and 

the enhancement and shifting toward higher energy of the main peak (B) at 13,439 eV are 

the main features associated with the off-center shift of Bi.  

2) For Ti K-edge XANES, the off-center shift of Ti leads to the increase in the pre-

edge peak (A) at 4,971 eV.   

3) For Mg K-edge XANES, the off-center shift of Mg leads to the shift of the edge 

energy down to the lower photon energy.   

These observed features would be able to aid future experimental identification of the cation 

local structures in this material. 



 
 

 

CHAPTER VII 

CONCLUSION 

 

  This thesis focuses on the use of first-principles calculations to cooperate with 

existing x-ray measurement methods to study electronic band structures and physical 

structure of materials. We have chosen two x-ray techniques for the measurements, RXES 

and XANES, in which their background theories were explained in chapter II. In chapter III, 

we performed the first-principles calculation implemented in FP-LMTO code to calculate 

the electronic band structure of graphene with GW approximation. The RXES spectra were 

calculated based on Kramer Heisenberg rule and then compared to experimental spectra in 

order to verify our calculation. The core-hole effect was taken into account when aligning 

between the calculated and experimental spectra. Great agreement between the calculated 

and experimental results.  In chapter IV, we used first-principles calculation implemented in 

FP-LMTO code to study the electronic band structure of InN with GW approximation, 

similar to what we have done preciously with graphene. However, in this study we focused 

on how RXES could be used to study different bands in the electronic structure, such as px 

and py   or pz, by adjusting the angle of incident. The RXES spectra were also calculated to 

compare with the experimental ones. With the help with our first-principles calculation, 

better understanding of how the experimental spectra relating to the electronic band structure 

of InN was obtained. In chapter V, we used first-principles calculation implemented in VASP 

code to identify the actual structure of BMT and suggest the way to verify its actual structure 

by using XANES measurement. We calculated the XANES spectra for different possible 

structures of BMT using FEFF code.    The off-centering features of the cations in BMT for  
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XANES spectra were identified and may be used in the future to identify the actual structure 

of this material.   All the experimental results appeared in this thesis were obtained by our 

collaborators and we only worked on the calculation parts.  

  In summary, first-principles calculation is a very powerful method to be used to study 

the electronic band structure and physical structure of materials. The RXES technique is 

suitable to study electronic band structure, while XANES is good for the study of local 

structure of materials. When first-principles calculation is used incorporated with the X-ray 

techniques, a much deeper understanding of materials can be obtained.          
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  The electronic structure and band dispersion of graphene on SiO2 have been studied by 

x-ray-absorption spectroscopy (XAS), x-ray-emission spectroscopy (XES), and resonant inelastic 

x-ray scattering (RIXS). Using first-principles calculations, it is found that the core-hole effect is 

dramatic in XAS while it has negligible consequences in XES. Strong dispersive features, due to 

the conservation of crystal momentum, are observed in RIXS spectra. Simulated RIXS spectra 

based on the Kramers-Heisenberg theory agree well with the experimental results, provided a 

shift between RIXS and XAS due to the absence or presence of the core hole is taken into account. 
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The x-ray absorption near edge spectra (XANES) of Bi, Mg and Ti in BMT for different off-

centering magnitudes, associated with different structural models, were calculated by using first-

principles calculations. The models studied include the high symmetric structure, two 

experimental proposed structures (based on an x-ray diffraction experiment) and the calculated 

fully relaxed structure (based on the calculated energy optimization). The features in the XANES 

spectra that relates with the off-center shift of cations were identified. Our calculated XANES 

will aid future experimental identifications of the detailed structure of BMT. 
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