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Abstract. Clustering is a task of grouping data based on similarity. A popular 
k-means algorithm groups data by firstly assigning all data points to the closest 
clusters, then determining the cluster means. The algorithm repeats these two 
steps until it has converged. We propose a variation called weighted k-means to 
improve the clustering scalability. To speed up the clustering process, we 
develop the reservoir-biased sampling as an efficient data reduction technique 
since it performs a single scan over a data set. Our algorithm has been designed 
to group data of mixture models. We present an experimental evaluation of the 
proposed method.  

1   Introduction 

Clustering is the automatic grouping of data based on similarity. There exists a large 
number of clustering techniques, but the most classical and popular one is the 
k-means algorithm [1]. Given a data set containing n objects, k-means partitions these 
objects into k groups. Each group is represented by the centroid of the cluster. Once 
cluster representatives are selected, data objects are assigned to the nearest centers. 
The algorithm iteratively selects new better representatives and reassigns data objects 
until no change is made. At this point the algorithm is said to converge. Even though 
k-means is an effective clustering algorithm, it can sometimes converge to a local 
optimum. Many methods [2,3,4,5] have been developed to extend the k-means with 
the common objective of avoiding converging to a bad local optimum. Some methods 
[6,7,8] search for the best initialization because k-means is known to be sensitive to 
initial point selection. Other research [9] seeks for the global optimum, at the cost of 
computation. These researches try to solve the problem of sub-optimal clustering and 
estimation the appropriate number of clusters [10,11]. 

Another difficulty of clustering with k-means is that it fails to identify clusters with 
large variation in sizes since original large clusters tend to be split. Clustering 
algorithms, such as DBSCAN [12] and CURE [13], have been developed to overcome 
this kind of difficulty. DBSCAN associates a data point with its density obtained by 
counting the number of points in a region of radius ε. The algorithm discovers clusters 
by connecting regions with sufficient high density, a MinPts threshold. DBSCAN 
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works well in spatial clustering, but it is sensitive to the selection of ε and MinPts and 
it fails to efficiently discover clusters with highly different densities. CURE algorithm 
represents a cluster by a set of points, instead of a single representative. Once the 
representative points are chosen, the algorithm then shrinks these points toward the 
centroid of the cluster according to a shrinking factor. CURE is an iterative 
hierarchical-based clustering that works well with discovering cluster of different 
sizes, but it is sensitive to the selection of representatives and shrinking factor. 
Moreover,  with very large data set, these algorithms degrade considerably. 

When clustering massive data set, data reduction is an effective technique to speed 
up the algorithm. Sampling [14,15,16] is a powerful data reduction paradigm to 
remedy the inherent complexity of clustering. Uniform random sampling in which 
every data point has the same probability of being selected has been used extensively 
in data mining and databases [17,18,19,20]. In the case of data sets with large 
variation in cluster sizes, density biased sampling [21,22,23] tends to be a better 
scheme. In density biased sampling, the probability that a data point will be included 
in the sample is varied by the density of a cluster. 

Recent researches [21,22,23] propose several techniques to density biased 
sampling. Our work also follows this path with a step further on extending the 
k-means algorithm to work with a weighted sample. We propose an algorithm on 
density biased sampling based on the reservoir technique and a weighted k-means 
algorithm to cluster a data sample augmented with weights. The proposed algorithms 
are explained in Sections 2 and 3, respectively. We present the experimental results in 
Section 4. The conclusion and our future work are discussed in Section 5. 

2   Data Reduction Biased by Density 

On scalable popular and successful clustering methods such as k-means to work 
against large data sets, many algorithms like BIRCH [24] and CLARANS [14] 
employ the sampling technique to minimize data sets. In BIRCH, a CF-tree structure 
is built after an initial random sampling step. The CF-tree is used as a summarized 
data structure with statistical representations of space regions stored on leaf nodes. 
After the phase of CF-tree building, any clustering algorithm can be applied to the 
leaf nodes. CLARANS also uses uniform sampling to derive initial representative 
objects for the clusters. 

The sampling technique used in these algorithms is uniform random sampling, 
which assigns every object the same probability of being included in the sample. But 
many data sets in real life do not follow the uniform distribution scheme. It instead 
seems to follow the Zipf’s distribution [25], for instance, income and population 
distribution. In these data sets, some areas such as large metropolitan area have much 
higher population density than the small cities. If all the populations have equal 
opportunity of being selected as a representative, sparse areas may be missed and not 
be included in the sample.  

2.1   Density-Biased Sampling  

Density biased sampling [21] is a sampling technique that takes into account the 
different sizes of the groups. Small groups or sparse regions are assigned higher 
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probability to be included in the sample than the large groups or dense regions. By 
biasing the sampling process, small clusters will not be missed or overlooked as outliers. 

Recent advancement on clustering very large data sets in which summarized data 
structure is even too big to fit into main memory, sampling is independently applied 
to the data set prior to the subsequent clustering phase. Palmer and Faloutsos [21] 
develop a non-uniform sampling method for clusters that differ very much in size and 
density. Their method is a generalization of uniform random sampling in that every 
group of data sets can be assigned different probability of being drawn. When 
sampling is biased by group density, smaller groups are oversampling, whereas larger 
groups are under- sampling. Since clusters are not known a priori, Palmer and 
Faloutsos combine the phase of density information extraction with the biased 
sampling phase using the hash-based approach. They argue that the inherent collision 
problem of any hash-based approach will not dramatically degrade the sample. 

Nevertheless, their method is significantly affected by noise due to the tendency of 
oversampling noisy area. Our approach adopts the reservoir technique to eliminate the 
collision problem of hash-based approach and it is independent on the assumption 
regarding cluster distribution to avoid the impact of noise.   

2.2   Density-Biased Reservoir Sampling 

We propose a novel approach of adapting reservoir technique [26,27] to perform a 
density biased sampling on large data sets. Our algorithm can obtain a desired sample 
through a single data set scan. The proposed method is simpler and requires less 
resource than the hash-based method [21]. 

A reservoir-sampling algorithm [26,27] is a simple, unbiased random sampling 
algorithm for drawing a sample of size n without replacement from a population of 
size N (N ≥ n). Vitter [26] has developed a one-pass reservoir-sampling algorithm 
when the population size (N) is unknown and cannot be determined efficiently. The 
term “reservoir” defines a storage area j (j ≥ n, but mostly j = n) to store the potential 
candidates of the sample. The j reservoirs are initialized to store the first j records of 
the file, that is, all areas of the reservoir pool are initially filled up. Then the algorithm 
starts scanning the remaining part of the file with a randomly skipping step. The 
randomly selected record is evaluated as to whether to replace an existing record in 
the reservoir pool. If it passes the test, the position in the reservoir is also randomly 
selected. The process stops when the end of file has been reached and the records in 
the reservoir form a simple random sample of the population. The general procedure 
of reservoir-sampling algorithm [27,28] is given in Figure 1. 

The time complexity of the algorithm is shown [26,27] to be O(n (1+ log(N/n)). In 
the reservoir-sampling algorithm, each record of the file is assigned a uniform (0,1) 
random number. When the reservoir is needed to be updated, each record in the 
reservoir has the same chance to be replaced by the new record. 

Our sampling algorithm generalizes the reservoir scheme for the case of data with 
different density distribution. In our proposed method, the initial step of partitioning 
data into groups resembles that of Palmer and Faloutsos [21]. But our subsequent 
steps are not based on hashing scheme in order to avoid the effect of noise and 
collision problems. 
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Algorithm Reservoir sampling       
      Input:     a sequential file of N population       
      Output:  a random sample of size n (n ≤ N)  

1)  Initialize the reservoir X1, ..., Xn to be the first n records of the file  
2)  Initialize W to be the largest value in a sample of size n from the uniform   

distribution on the interval (0, 1)  
3)  While not eof do  
4)       Generate the random variable S to denote the number of records to be skipped 

over before a new record can enter the reservoir  
5)        If  (not eof)  Then Search for the next potential record to be in the reservoir  
6)                             Else   return X1, ..., Xn  
7)        Update X and W  

Fig. 1. Reservoir-sampling algorithm 

After the initial step of dividing the data space into bins of equal size, the informa- 
tion of the first n groups are put into the n reservoirs residing in main memory (see 
Figure 2a). The collected information includes the number of points in each group and 
the id of the group. 

The algorithm performs a single scan on a data set in a random manner controlled 
by a random variable S with the distribution W. The density biasing (step 7 in Figure 
3) is achieved through the consideration of two consecutive data groups. The δ 
threshold is set to detect the cluster edge. Intuitively, a sudden increase or decrease in 
density with respect to its neighboring area reflects the bordering situation. For 
example, if the group gi contains 30 data points whereas the adjacent group gi+1 
contains only 2 data points, gi+1 is highly probably the boundary area of the cluster. 
With δ being set to 20, for instance, the group gi is then a candidate to be included in a 
sample. The ε value is a threshold to detect noisy and outlier cases. The sparse area is 
presumably to contain noise or outlier, thus, it should not be put in a sample if its 
density even combined with the nearby group is below this ε threshold value. 

 
(a) initialize the reservoir (b) update reservoir randomly 

Fig. 2. Density biasing in a reservoir scheme 
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Figure 2(b) shows the reservoir update for the case of δ and ε values being set to 15 
and 5, respectively. The random variable S is assumed to reach the data group <3,1>. 
On comparison with the adjacent group <3,2>, its density is above the threshold 
values δ and ε (i.e., ||density<3,1> - density<3,2>|| = 25-6 = 19 and density<3,1> + 
density <3,2> = 31), thus, the denser group <3,1> is a candidate to be included in a 
sample and is placed in the reservoir pool at a randomly selected position 1. The 
density-biased sampling proceeds until the skipping variable S reaches the end of the 
data groups. 

Algorithm Density-biased reservoir sampling       

     Input:     a data set of N objects       
     Output:  a  density-biased sample of size n (n ≤ N) associated with weight w  

1)  Partition data into g groups (with group-id 1,2,..., g), g ≥ n  

2)  Initialize the reservoir X1, ..., Xn to be the first n  <group-id, density>-pairs of the 
data groups  

3)  Set W ← exp(log (random()) / n)            // initialize W that will be used in the                
                                                                             //  generation step of a random variable S  

4)  Set  S ← ⎣ log (random()) / log(1-W) ⎦  
5)  While S < g  do  

6)       Read data groups gS  and  gS+1            // read two consecutive data groups  

7)       If  (||density(gS) − density(gS+1)|| > δ ) OR ((density(gS) + density (gS+1)) > ε)       

                                                          //  δ and ε are predefined density threshold values    

          Then  X 1+ ⎣ n∗ random () ⎦  ← <group-id, density> of maximum density{gS , gS+1} 
                                                                 // randomized the reservoir area to be updated  

8)       W ← W ∗ exp(log (random()) / n)          // update W for the skipping process     

9)       S ← ⎣ log (random()) / log(1-W) ⎦          // generate S to denote the number of  
                                                                                  // groups to be skipped over    

10) Return X1, ..., Xn 

Fig. 3. Density-biased reservoir sampling algorithm 

3   Weighted K-Means Algorithm 

The classical k-means algorithm [1] is a fast method to perform clustering. The 
algorithm consists of a simple re-estimation procedure as outlined as follows. The 
original n data points to be clustered are contained in the dataset X = {x1, ..., xn}. The 
k-means algorithm partitions n data points into K sets. The assignment of a data point 
xi to its nearest cluster center cj is decided on the basis of the membership function, 
m(cj|xi). The function returns either one of the {0,1} values:  m(cj|xi) = 1 if  j = 
argmink||xi - ck||

2; it is zero, otherwise. The new centroids of clusters can be computed 
from all data points xi in the cluster. The objective function J of the algorithm is to 
minimize the sum of error squared, J = i = 1:n minj ∈ {1..k} || xi - cj ||

2. 
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Algorithm Weighted k-means       

     Input:   a set of n data points obtained from the density-biased reservoir sampling, 
                 and the number of clusters (K)       
     Output:  centroids of the K clusters  

1)  Initialize the K cluster centers  

2)  Repeat   
                 Assign each data point to its nearest cluster center according to the 

membership function, 

m(cj|xi) =     || xi - cj ||
-p-2  

 
j = 1:k || xi - cj ||

-p-2  

3)              For each center cj, recompute the cluster center cj using the current cluster 
memberships and weights, 

cj = 
i = 1:n  m(cj|xi) w( xi) xi  

 
i = 1:n  m(cj|xi) w( xi)  

                   where w(xi)  is a weight associated with each data point 

4)  Until there is no reassignment of data points to new cluster centers 

Fig. 4. Weighted k-means algorithm 

In k-means algorithm, every data point has equal importance in locating the 
centroid of the cluster. This property does no longer hold in the case of density-biased 
sample clustering, for which each data point represents varied density in the original 
data. Therefore, the clustering algorithm has to consider a weight associated with each 
data point in the computation of cluster centers. The proposed extension to the 
k-means algorithm is called weighted k-means. Figure 4 outlines the algorithm. 

The membership function in the weighted k-means algorithm resembles that of the 
k-harmonic means algorithm [5]. Zhang [5] also introduces the weight function, w(xi), 
in his algorithm to accelerate the recomputation of the new centroids in the next 
iteration. The weight function in our algorithm, however, is introduced for different 
purpose. It represents the density of the original data points. 

4   Experiments and Results 

We perform two sets of experiments to test the quality of our sampling method, which 
is the step prior to clustering, and to measure the quality of the weighted k-means 
algorithm. 

4.1   Performance of Density-Biased Reservoir Sampling  

We evaluate the performance of the proposed reservoir-based density bias sampling 
method against the hash-based sampling method [21]. The efficiency regarding 
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memory usage of our reservoir-based sampling method is obviously better than the 
hash-based method. In the hashing scheme, some amount of memory is needed to 
store the hashing table in addition to the memory required for storing the drawn 
sample. Thus, it requires twice the amount of memory comparative to those required 
by our method. 

Effectiveness of the proposed sampling method is examined by measuring the 
quality of a sample with respect to the number of correctly found clusters. We run 
clustering using the k-means algorithm. We use a synthetic data generator to generate 
d-dimensional data sets having k clusters and N data points. We vary d  from 2 to 5, k 
from 2 to 10, and N from 5,000 to 100,000. 

The measurement Number of Clusters found (NC) is the metric defined in [21]. NC 
is calculated by comparing the distances of the cluster centers found by the clustering 
algorithm with the true cluster centers. We say that the cluster is found if the 
calculated distance is less than a predefined threshold (e.g., 0.001). 

The results in Figure 5 show the NC when run clustering on various sample sizes 
with the presence of noise. The reported results are observed from the experiments 
using 3-dimensional data set having 7 clusters. One cluster contains 50,000 points and 
the other six clusters contain 500 points. The results obtained from other experiments 
on data sets with different dimensions, various number of clusters, and varied number 
of data points are conformed with the one presented in Figure 5, so we omit them for 
brevity. The experimental results reveal the efficiency of the biased reservoir method 
especially in the presence of noise. 
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Fig. 5. Finding clusters of 3-dimensional data on various sample sizes, in the presence of noise 

4.2   Performance of Weighted K-Means Algorithm  

We evaluate the quality of the weighted k-means algorithm against the k-means 
algorithm by using the squared objective function. Lower value of a squared 
objective function reflects a better quality on clustering. The experiments perform on 
the syntactic data sets explained in Section 4.1. The initialization step randomly 
selects data points as initial cluster centroids. We also consider running time of both 
algorithms.  

The performance evaluation as shown on top of Figure 6 is obtained from running 
k-means and weighted k-means algorithms on 3-dimensional data sets of sizes varied 
from 5000, 10000, 20000, 35000, 55000, 75000, to 100000 data points. The number 
of clusters is set to be 10. The experiments are performed on the PC with CPU speed 
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800 MHz, memory 512 MB. Since all data points are used in weighted k-means 
algorithm, the weight function is set to be 1. The parameter p in the membership 
function is set to be 1.3. 

The comparison on clustering quality and running time shown at the bottom of 
Figure 6 reveals the efficiency of running weighted k-means on density-biased 
sample. The experiments are performed on 10% sample of data with two methods of 
sampling: simple random sampling (RS) and density-biased reservoir sampling 
(DBS). The weight function of the weighted k-means algorithm is varied according to 
the density of the original data. 

5   Conclusions 

The k-means is the simplest and most commonly used clustering algorithm. The 
simplicity is due to the use of squared error as the stopping criteria, which tends to 
work well with isolated and compact clusters. Its time complexity depends on the 
number of data points to be clustered and the number of iteration. We propose a 
variation of the k-means to better work with a large data set having much difference 
in cluster density. Our intuition idea is that to cope with massive data set, sampling 
should be the efficient data reduction method. Since the original data is assumed to be 
much varied in cluster sizes, density-biased sampling is an appropriate method to 
preserve the density.  
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We propose a density biased sampling technique based on the reservoir method. 
The inherent advantage of efficient memory usage in the reservoir scheme is adopted 
and extended with the additional capability of dealing with data that are much 
different in density distribution. The proposed technique is designed to lessen the 
effect of noise as it is the case in the hash-based approach. The experimental results 
have shown that the proposed method is as good as the hash-based method in 
discovering correct number of clusters. Our method, moreover, is less sensitive to 
noisy data even when the percentage of noise is greater than 20.  

We also develop the weighted k-means algorithm to better cluster a sample data 
biased by its density. The results demonstrate the efficiency of the algorithm. The 
evaluation of the proposed methods on real large databases and the consideration of 
outliers are our future work. 
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