

A Min Tjoa and J. Trujillo (Eds.): DaWaK 2005, LNCS 3589, pp. 488 – 497, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Weighted K-Means for Density-Biased Clustering

Kittisak Kerdprasop1, Nittaya Kerdprasop1, and Pairote Sattayatham2

1 Data Engineering and Knowledge Discovery Research Unit,
School of Computer Engineering, Suranaree University of Technology,

111 University Avenue, Nakhon Ratchasima 30000, Thailand
{kerdpras, nittaya}@sut.ac.th

http://www.sut.ac.th/engineering/computer/faculty/nittaya
2 School of Mathematics, Suranaree University of Technology
111 University Avenue, Nakhon Ratchasima 30000, Thailand

pairote@sut.ac.th

Abstract. Clustering is a task of grouping data based on similarity. A popular
k-means algorithm groups data by firstly assigning all data points to the closest
clusters, then determining the cluster means. The algorithm repeats these two
steps until it has converged. We propose a variation called weighted k-means to
improve the clustering scalability. To speed up the clustering process, we
develop the reservoir-biased sampling as an efficient data reduction technique
since it performs a single scan over a data set. Our algorithm has been designed
to group data of mixture models. We present an experimental evaluation of the
proposed method.

1 Introduction

Clustering is the automatic grouping of data based on similarity. There exists a large
number of clustering techniques, but the most classical and popular one is the
k-means algorithm [1]. Given a data set containing n objects, k-means partitions these
objects into k groups. Each group is represented by the centroid of the cluster. Once
cluster representatives are selected, data objects are assigned to the nearest centers.
The algorithm iteratively selects new better representatives and reassigns data objects
until no change is made. At this point the algorithm is said to converge. Even though
k-means is an effective clustering algorithm, it can sometimes converge to a local
optimum. Many methods [2,3,4,5] have been developed to extend the k-means with
the common objective of avoiding converging to a bad local optimum. Some methods
[6,7,8] search for the best initialization because k-means is known to be sensitive to
initial point selection. Other research [9] seeks for the global optimum, at the cost of
computation. These researches try to solve the problem of sub-optimal clustering and
estimation the appropriate number of clusters [10,11].

Another difficulty of clustering with k-means is that it fails to identify clusters with
large variation in sizes since original large clusters tend to be split. Clustering
algorithms, such as DBSCAN [12] and CURE [13], have been developed to overcome
this kind of difficulty. DBSCAN associates a data point with its density obtained by
counting the number of points in a region of radius ε. The algorithm discovers clusters
by connecting regions with sufficient high density, a MinPts threshold. DBSCAN

 Weighted K-Means for Density-Biased Clustering 489

works well in spatial clustering, but it is sensitive to the selection of ε and MinPts and
it fails to efficiently discover clusters with highly different densities. CURE algorithm
represents a cluster by a set of points, instead of a single representative. Once the
representative points are chosen, the algorithm then shrinks these points toward the
centroid of the cluster according to a shrinking factor. CURE is an iterative
hierarchical-based clustering that works well with discovering cluster of different
sizes, but it is sensitive to the selection of representatives and shrinking factor.
Moreover, with very large data set, these algorithms degrade considerably.

When clustering massive data set, data reduction is an effective technique to speed
up the algorithm. Sampling [14,15,16] is a powerful data reduction paradigm to
remedy the inherent complexity of clustering. Uniform random sampling in which
every data point has the same probability of being selected has been used extensively
in data mining and databases [17,18,19,20]. In the case of data sets with large
variation in cluster sizes, density biased sampling [21,22,23] tends to be a better
scheme. In density biased sampling, the probability that a data point will be included
in the sample is varied by the density of a cluster.

Recent researches [21,22,23] propose several techniques to density biased
sampling. Our work also follows this path with a step further on extending the
k-means algorithm to work with a weighted sample. We propose an algorithm on
density biased sampling based on the reservoir technique and a weighted k-means
algorithm to cluster a data sample augmented with weights. The proposed algorithms
are explained in Sections 2 and 3, respectively. We present the experimental results in
Section 4. The conclusion and our future work are discussed in Section 5.

2 Data Reduction Biased by Density

On scalable popular and successful clustering methods such as k-means to work
against large data sets, many algorithms like BIRCH [24] and CLARANS [14]
employ the sampling technique to minimize data sets. In BIRCH, a CF-tree structure
is built after an initial random sampling step. The CF-tree is used as a summarized
data structure with statistical representations of space regions stored on leaf nodes.
After the phase of CF-tree building, any clustering algorithm can be applied to the
leaf nodes. CLARANS also uses uniform sampling to derive initial representative
objects for the clusters.

The sampling technique used in these algorithms is uniform random sampling,
which assigns every object the same probability of being included in the sample. But
many data sets in real life do not follow the uniform distribution scheme. It instead
seems to follow the Zipf’s distribution [25], for instance, income and population
distribution. In these data sets, some areas such as large metropolitan area have much
higher population density than the small cities. If all the populations have equal
opportunity of being selected as a representative, sparse areas may be missed and not
be included in the sample.

2.1 Density-Biased Sampling

Density biased sampling [21] is a sampling technique that takes into account the
different sizes of the groups. Small groups or sparse regions are assigned higher

490 K. Kerdprasop, N. Kerdprasop, and P. Sattayatham

probability to be included in the sample than the large groups or dense regions. By
biasing the sampling process, small clusters will not be missed or overlooked as outliers.

Recent advancement on clustering very large data sets in which summarized data
structure is even too big to fit into main memory, sampling is independently applied
to the data set prior to the subsequent clustering phase. Palmer and Faloutsos [21]
develop a non-uniform sampling method for clusters that differ very much in size and
density. Their method is a generalization of uniform random sampling in that every
group of data sets can be assigned different probability of being drawn. When
sampling is biased by group density, smaller groups are oversampling, whereas larger
groups are under- sampling. Since clusters are not known a priori, Palmer and
Faloutsos combine the phase of density information extraction with the biased
sampling phase using the hash-based approach. They argue that the inherent collision
problem of any hash-based approach will not dramatically degrade the sample.

Nevertheless, their method is significantly affected by noise due to the tendency of
oversampling noisy area. Our approach adopts the reservoir technique to eliminate the
collision problem of hash-based approach and it is independent on the assumption
regarding cluster distribution to avoid the impact of noise.

2.2 Density-Biased Reservoir Sampling

We propose a novel approach of adapting reservoir technique [26,27] to perform a
density biased sampling on large data sets. Our algorithm can obtain a desired sample
through a single data set scan. The proposed method is simpler and requires less
resource than the hash-based method [21].

A reservoir-sampling algorithm [26,27] is a simple, unbiased random sampling
algorithm for drawing a sample of size n without replacement from a population of
size N (N ≥ n). Vitter [26] has developed a one-pass reservoir-sampling algorithm
when the population size (N) is unknown and cannot be determined efficiently. The
term “reservoir” defines a storage area j (j ≥ n, but mostly j = n) to store the potential
candidates of the sample. The j reservoirs are initialized to store the first j records of
the file, that is, all areas of the reservoir pool are initially filled up. Then the algorithm
starts scanning the remaining part of the file with a randomly skipping step. The
randomly selected record is evaluated as to whether to replace an existing record in
the reservoir pool. If it passes the test, the position in the reservoir is also randomly
selected. The process stops when the end of file has been reached and the records in
the reservoir form a simple random sample of the population. The general procedure
of reservoir-sampling algorithm [27,28] is given in Figure 1.

The time complexity of the algorithm is shown [26,27] to be O(n (1+ log(N/n)). In
the reservoir-sampling algorithm, each record of the file is assigned a uniform (0,1)
random number. When the reservoir is needed to be updated, each record in the
reservoir has the same chance to be replaced by the new record.

Our sampling algorithm generalizes the reservoir scheme for the case of data with
different density distribution. In our proposed method, the initial step of partitioning
data into groups resembles that of Palmer and Faloutsos [21]. But our subsequent
steps are not based on hashing scheme in order to avoid the effect of noise and
collision problems.

 Weighted K-Means for Density-Biased Clustering 491

Algorithm Reservoir sampling
 Input: a sequential file of N population
 Output: a random sample of size n (n ≤ N)

1) Initialize the reservoir X1, ..., Xn to be the first n records of the file
2) Initialize W to be the largest value in a sample of size n from the uniform

distribution on the interval (0, 1)
3) While not eof do
4) Generate the random variable S to denote the number of records to be skipped

over before a new record can enter the reservoir
5) If (not eof) Then Search for the next potential record to be in the reservoir
6) Else return X1, ..., Xn
7) Update X and W

Fig. 1. Reservoir-sampling algorithm

After the initial step of dividing the data space into bins of equal size, the informa-
tion of the first n groups are put into the n reservoirs residing in main memory (see
Figure 2a). The collected information includes the number of points in each group and
the id of the group.

The algorithm performs a single scan on a data set in a random manner controlled
by a random variable S with the distribution W. The density biasing (step 7 in Figure
3) is achieved through the consideration of two consecutive data groups. The δ
threshold is set to detect the cluster edge. Intuitively, a sudden increase or decrease in
density with respect to its neighboring area reflects the bordering situation. For
example, if the group gi contains 30 data points whereas the adjacent group gi+1
contains only 2 data points, gi+1 is highly probably the boundary area of the cluster.
With δ being set to 20, for instance, the group gi is then a candidate to be included in a
sample. The ε value is a threshold to detect noisy and outlier cases. The sparse area is
presumably to contain noise or outlier, thus, it should not be put in a sample if its
density even combined with the nearby group is below this ε threshold value.

(a) initialize the reservoir (b) update reservoir randomly

Fig. 2. Density biasing in a reservoir scheme

492 K. Kerdprasop, N. Kerdprasop, and P. Sattayatham

Figure 2(b) shows the reservoir update for the case of δ and ε values being set to 15
and 5, respectively. The random variable S is assumed to reach the data group <3,1>.
On comparison with the adjacent group <3,2>, its density is above the threshold
values δ and ε (i.e., ||density<3,1> - density<3,2>|| = 25-6 = 19 and density<3,1> +
density <3,2> = 31), thus, the denser group <3,1> is a candidate to be included in a
sample and is placed in the reservoir pool at a randomly selected position 1. The
density-biased sampling proceeds until the skipping variable S reaches the end of the
data groups.

Algorithm Density-biased reservoir sampling

 Input: a data set of N objects
 Output: a density-biased sample of size n (n ≤ N) associated with weight w

1) Partition data into g groups (with group-id 1,2,..., g), g ≥ n

2) Initialize the reservoir X1, ..., Xn to be the first n <group-id, density>-pairs of the
data groups

3) Set W ← exp(log (random()) / n) // initialize W that will be used in the
 // generation step of a random variable S

4) Set S ← ⎣ log (random()) / log(1-W) ⎦
5) While S < g do

6) Read data groups gS and gS+1 // read two consecutive data groups

7) If (||density(gS) − density(gS+1)|| > δ) OR ((density(gS) + density (gS+1)) > ε)

 // δ and ε are predefined density threshold values

 Then X 1+ ⎣ n∗ random () ⎦ ← <group-id, density> of maximum density{gS , gS+1}
 // randomized the reservoir area to be updated

8) W ← W ∗ exp(log (random()) / n) // update W for the skipping process

9) S ← ⎣ log (random()) / log(1-W) ⎦ // generate S to denote the number of
 // groups to be skipped over

10) Return X1, ..., Xn

Fig. 3. Density-biased reservoir sampling algorithm

3 Weighted K-Means Algorithm

The classical k-means algorithm [1] is a fast method to perform clustering. The
algorithm consists of a simple re-estimation procedure as outlined as follows. The
original n data points to be clustered are contained in the dataset X = {x1, ..., xn}. The
k-means algorithm partitions n data points into K sets. The assignment of a data point
xi to its nearest cluster center cj is decided on the basis of the membership function,
m(cj|xi). The function returns either one of the {0,1} values: m(cj|xi) = 1 if j =
argmink||xi - ck||

2; it is zero, otherwise. The new centroids of clusters can be computed
from all data points xi in the cluster. The objective function J of the algorithm is to
minimize the sum of error squared, J = i = 1:n minj ∈ {1..k} || xi - cj ||

2.

 Weighted K-Means for Density-Biased Clustering 493

Algorithm Weighted k-means

 Input: a set of n data points obtained from the density-biased reservoir sampling,
 and the number of clusters (K)
 Output: centroids of the K clusters

1) Initialize the K cluster centers

2) Repeat
 Assign each data point to its nearest cluster center according to the

membership function,

m(cj|xi) = || xi - cj ||
-p-2

j = 1:k || xi - cj ||

-p-2

3) For each center cj, recompute the cluster center cj using the current cluster
memberships and weights,

cj =
i = 1:n m(cj|xi) w(xi) xi

i = 1:n m(cj|xi) w(xi)

 where w(xi) is a weight associated with each data point

4) Until there is no reassignment of data points to new cluster centers

Fig. 4. Weighted k-means algorithm

In k-means algorithm, every data point has equal importance in locating the
centroid of the cluster. This property does no longer hold in the case of density-biased
sample clustering, for which each data point represents varied density in the original
data. Therefore, the clustering algorithm has to consider a weight associated with each
data point in the computation of cluster centers. The proposed extension to the
k-means algorithm is called weighted k-means. Figure 4 outlines the algorithm.

The membership function in the weighted k-means algorithm resembles that of the
k-harmonic means algorithm [5]. Zhang [5] also introduces the weight function, w(xi),
in his algorithm to accelerate the recomputation of the new centroids in the next
iteration. The weight function in our algorithm, however, is introduced for different
purpose. It represents the density of the original data points.

4 Experiments and Results

We perform two sets of experiments to test the quality of our sampling method, which
is the step prior to clustering, and to measure the quality of the weighted k-means
algorithm.

4.1 Performance of Density-Biased Reservoir Sampling

We evaluate the performance of the proposed reservoir-based density bias sampling
method against the hash-based sampling method [21]. The efficiency regarding

494 K. Kerdprasop, N. Kerdprasop, and P. Sattayatham

memory usage of our reservoir-based sampling method is obviously better than the
hash-based method. In the hashing scheme, some amount of memory is needed to
store the hashing table in addition to the memory required for storing the drawn
sample. Thus, it requires twice the amount of memory comparative to those required
by our method.

Effectiveness of the proposed sampling method is examined by measuring the
quality of a sample with respect to the number of correctly found clusters. We run
clustering using the k-means algorithm. We use a synthetic data generator to generate
d-dimensional data sets having k clusters and N data points. We vary d from 2 to 5, k
from 2 to 10, and N from 5,000 to 100,000.

The measurement Number of Clusters found (NC) is the metric defined in [21]. NC
is calculated by comparing the distances of the cluster centers found by the clustering
algorithm with the true cluster centers. We say that the cluster is found if the
calculated distance is less than a predefined threshold (e.g., 0.001).

The results in Figure 5 show the NC when run clustering on various sample sizes
with the presence of noise. The reported results are observed from the experiments
using 3-dimensional data set having 7 clusters. One cluster contains 50,000 points and
the other six clusters contain 500 points. The results obtained from other experiments
on data sets with different dimensions, various number of clusters, and varied number
of data points are conformed with the one presented in Figure 5, so we omit them for
brevity. The experimental results reveal the efficiency of the biased reservoir method
especially in the presence of noise.

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5
Sample size (%)

N
um

be
r

of
 c

lu
st

er
s

fo
un

d

biased reservoir
hash based

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90

Noise (%)

N
um

be
r

of
 c

lu
st

er
s

fo
un

d

Fig. 5. Finding clusters of 3-dimensional data on various sample sizes, in the presence of noise

4.2 Performance of Weighted K-Means Algorithm

We evaluate the quality of the weighted k-means algorithm against the k-means
algorithm by using the squared objective function. Lower value of a squared
objective function reflects a better quality on clustering. The experiments perform on
the syntactic data sets explained in Section 4.1. The initialization step randomly
selects data points as initial cluster centroids. We also consider running time of both
algorithms.

The performance evaluation as shown on top of Figure 6 is obtained from running
k-means and weighted k-means algorithms on 3-dimensional data sets of sizes varied
from 5000, 10000, 20000, 35000, 55000, 75000, to 100000 data points. The number
of clusters is set to be 10. The experiments are performed on the PC with CPU speed

 Weighted K-Means for Density-Biased Clustering 495

800 MHz, memory 512 MB. Since all data points are used in weighted k-means
algorithm, the weight function is set to be 1. The parameter p in the membership
function is set to be 1.3.

The comparison on clustering quality and running time shown at the bottom of
Figure 6 reveals the efficiency of running weighted k-means on density-biased
sample. The experiments are performed on 10% sample of data with two methods of
sampling: simple random sampling (RS) and density-biased reservoir sampling
(DBS). The weight function of the weighted k-means algorithm is varied according to
the density of the original data.

5 Conclusions

The k-means is the simplest and most commonly used clustering algorithm. The
simplicity is due to the use of squared error as the stopping criteria, which tends to
work well with isolated and compact clusters. Its time complexity depends on the
number of data points to be clustered and the number of iteration. We propose a
variation of the k-means to better work with a large data set having much difference
in cluster density. Our intuition idea is that to cope with massive data set, sampling
should be the efficient data reduction method. Since the original data is assumed to be
much varied in cluster sizes, density-biased sampling is an appropriate method to
preserve the density.

7

9

11

13

15

17

19

5000 10000 20000 35000 55000 75000 100000
Data points

Q
ua

lit
y

of
 o

bj
ec

tiv
e

fu
nc

tio
n

kmeans weightedKM

3

4

5

6

7

8

9

5000 10000 20000 35000 55000 75000 100000

Data points

Ti
m

e

7

9

11

13

15

17

19

21

23

25

500 1000 2000 3500 5500 7500 10000
Data points

Q
u

al
it

y
o

f o
bj

ec
tiv

e
fu

nc
tio

n

RS+Kmeans RS+weightedKM
DBS+Kmeans DBS+weightedKM

0

0.5

1

1.5

2

2.5

3

3.5

4

500 1000 2000 3500 5500 7500 10000

Data points

Ti
m

e

Fig. 6. Performance comparison of weighted k-means against k-means (left) and the running
time comparison (right), results on top are experiments running on the whole data set while
results at the bottom obtained from running on the sample data

496 K. Kerdprasop, N. Kerdprasop, and P. Sattayatham

We propose a density biased sampling technique based on the reservoir method.
The inherent advantage of efficient memory usage in the reservoir scheme is adopted
and extended with the additional capability of dealing with data that are much
different in density distribution. The proposed technique is designed to lessen the
effect of noise as it is the case in the hash-based approach. The experimental results
have shown that the proposed method is as good as the hash-based method in
discovering correct number of clusters. Our method, moreover, is less sensitive to
noisy data even when the percentage of noise is greater than 20.

We also develop the weighted k-means algorithm to better cluster a sample data
biased by its density. The results demonstrate the efficiency of the algorithm. The
evaluation of the proposed methods on real large databases and the consideration of
outliers are our future work.

Acknowledgements

This research has been supported by grants from the Thailand Research Fund (TRF,
MRG4780170), and the National Research Council. The Data Engineering and
Knowledge Discovery Research Unit is fully supported by the research grants from
Suranaree University of Technology.

References

1. MacQueen, J.: Some methods for classification and analysis of multivariate observations.
In Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol.1.
University of California Press (1967) 281-297

2. Hamerly, G., Elkan, C.: Alternatives to the k-means algorithm that find better clusterings.
In Proc. 11th ACM CIKM Int. Conf. on Information and Knowledge Management (2002)
600-607

3. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, New York (1981)

4. Pellog, D., Moore, A.: Accelerating exact k-means algorithms with geometric reasoning.
In Proc. 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (1999)
277-281

5. Zhang, B.: Generalized k-harmonic means - boosting in unsupervised learning. Technical
Report HPL-2000-137. Hewlett-Packard Labs (2000)

6. Bradley, P.S., Fayyad, U.M.: Refining initial points for k-means clustering. In Proc. 15th
Int. Conf. on Machine Learning (1998) 91-99

7. Meila, M., Heckerman, D.: An experimental comparison of model-based clustering
methods. Machine Learning 42(2001) 9-29

8. Pena, J., Lozano, J., Larranaga, P.: An empirical comparison of four initialization methods
for the k-means algorithm. Pattern Recognition Letters 20(1999) 1027-1040

9. Likas, A., Vlassis, N., Verbeek, J.: The global k-means clustering algorithm. Technical
Report IAS-UVA-01-02. Computer Science Institute, University of Amsterdam, The
Netherlands (2001)

10. Pelleg, D., Moore, A.: X-means: Extending k-means with efficient estimation of the
number of clusters. In Proc. 17th Int. Conf. on Machine Learning (2000) 727-734

 Weighted K-Means for Density-Biased Clustering 497

11. Sand, P., Moore, A.: Repairing faulty mixture models using density estimation. In Proc.
18th Int. Conf. on Machine Learning (2001)

12. Sander, J., Ester, M., Kriegel, H.-P., Xu, X.: Density-based clustering in spatial databases:
The algorithm GDBSCAN and its application. Data Mining and Knowledge Discovery
2(1998) 169-194

13. Guha, S., Rastogi, R., Shim, K.: CURE: An efficient clustering algorithm for large
databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data (1998) 73-84

14. Ng, R.T., Han, J.: Efficient and effective clustering methods for spatial data mining. In
Proc. Int. Conf. on Very Large Data Bases (1994) 144-155

15. Zhou, S., Zhou, A., Cao, J., Wen, J., Fan, Y., Hu., Y: Combining sampling technique with
DBSCAN algorithm for clustering large spatial databases. In Proc. Pacific-Asia Conf. on
Knowledge Discovery and Data Mining (2000) 169-172

16. Nanopoulos, A., Theodoridis, Y., Manolopoulos, Y.: C2P: Clustering based on closest
pairs. In Proc. Int. Conf. on Very Large Data Bases (2001) 331-340

17. Singh, G., Rajagopalan, S., Lindsay, B.: Random sampling techniques for space efficient
of large data sets. In Proc. ACM SIGMOD Int. Conf. on Management of Data (1999)

18. Toivonen, H.: Sampling large databases for association rules. In Proc. Int. Conf. on Very
Large Data Bases (1996) 134-145

19. Thompson, S.K., Seber, G.A.F.: Adaptive Sampling. John Wiley & Sons, New York
(1996)

20. Olken, F., Rotem, D.: Sampling from spatial databases. In Proc. Int. Conf. on Data
Engineering (1993) 199-208

21. Palmer, C., Faloutsos, C.: Density biased sampling: An improved method for data mining
and clustering. In Proc. ACM SIGMOD Int. Conf. on Management of Data (2000) 82-92

22. Nanoupoulos, A., Theodoridis, Y., Manolopoulos, Y.: An efficient and effective algorithm
for density biased sampling. In Proc. 11th Int. Conf. on Information and Knowledge
Management (2002) 63-68

23. Kollios, G., Gunopulos, D., Koudas, N., Berchtold, S.: Efficient biased sampling for
approximate clustering and outlier detection in large data sets. IEEE Transactions on
Knowledge and Data Engineering 15(2003) 1-18

24. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An efficient data clustering method for
very large databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data (1996)
103-114

25. Zipf, G.K.: Human Behavior and Principle of Least Effort: An Introduction to Human
Ecology. Addison Wesley, Cambridge, MA (1949)

26. Vitter, J.S.: Random sampling with a reservoir. ACM Transactions on Mathematical
Software 11(1985) 37-57

27. Li, K.-H.: Reservoir-sampling algorithms of time complexity O(n(1 + log(N/n))). ACM
Transactions on Mathematical Software 20(1994) 481-493

28. Devroye, L.: Non-Uniform Random Variate Generation. Springer-Verlag, New York
(1986)

	Introduction
	Data Reduction Biased by Density
	Density-Biased Sampling
	Density-Biased Reservoir Sampling

	Weighted K-Means Algorithm
	Experiments and Results
	Performance of Density-Biased Reservoir Sampling
	Performance of Weighted K-Means Algorithm

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

