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CHAPTER I 

INTRODUCTION 

 

1.1 Principle and reason 

 In recent years, research interest in multiferroic materials with a simultaneous 

coexistence of ferroelectricity and magnetism which has increased due to 

multifunctional applications such as in data storage, sensors, spintronic and 

microelectronic devices and many more (Dong et al., 2003). Bismuth ferrite (BiFeO3), 

one of the very few and the most interesting multiferroic compound, has been attracting 

great attention over the past several decades due to its high ferroelectric curie 

temperature (Tc ~ 1103 K) and antiferromagnetic neel temperature (TN ~ 643 K) in 

perovskite structure (Catalan and Scott, 2009). However, the magnetization of BiFeO3 

is too weak for many applications. The enhancement of the magnetic properties of 

BiFeO3 is also the key to solve these problems (Hill, 2000). 

 Nanoscale effects on the physical and multiferroic properties of BiFeO3 are 

studied because of the potential applications in nanoscale devices (Yang et al., 2012). 

Several studies have been devoted to the improvement of the magnetic properties of 

BiFeO3 through cation substitution realized by B-site (Fe-site) doping, such as 

nonmagnetic metal ion of Cu (Agrawal et al., 2014) or magnetic ions of Co (Batttisha 

et al., 2015) and Ni (Vanga et al., 2015; Zhao et al., 2013; Kumar and Yadav, 2011)  
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which can enhance the magnetization. Increasing of Ni content with decreasing in 

crystallite size of (Nd, Ni) co-doped BiFeO3 can improve magnetization due to the 

suppression of spin cycloid structure (Vanga et al., 2015). Size-dependent magnetic 

properties of BiFeO3 are strongly correlated with decreasing nanoparticle size below 

cycloidal spin wavelength of ~62 nm and uncompensated spin at the surface (Park et 

al., 2007). These factors explain the motivation for this research. Substitution with 

similar radius ions can be attributed to the size effect of nanostructures which can be 

considered as candidates for the enhancement of magnetic properties. Hence, in this 

work, we choose Co, Ni, and Cu ions as the substituents to study and clearly clarify the 

mechanisms underlying the effects on the magnetic properties of the BiFeO3-based 

nanoparticles. 

 Now-a-days, fast-growing market for portable electronic devices is increasing 

and there is an urgent demand for environmental-friendly high-power energy storage 

resources (Zhang et al., 2012). Electrochemical capacitor has been tremendously 

increased in attention over the past few decades filling the gap between batteries and 

conventional dielectric capacitors compared and presented in the “ragone plot” in 

Figure 1.1.  Although, the performance of electrochemical capacitors have advantages 

over the batteries such as a high power density, less weigh, non-toxic metal components 

and long life, but it is available for commercial products to have specific energy 

densities (5-10 Wh/kg) lower than lithium-ion batteries (35-170 Wh/kg) (Burke and 

Miller, 2011). The possible ways that could amend the energy density is enhancing the 

specific capacitance to meet the higher requirements such as portable electronics, 

hybrid electric vehicles, and large industrial equipments (Yu et al., 2013). 
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Figure 1.1 Ragone plot of various energy storage devices (Adapted from (Goodenough 

et al., 2007). 

 

The development of new electrode materials is an essential step for the 

advancement of electrochemical capacitor. In general, the electrode materials can be 

divided into two categories on the basis of the charge storage mechanism: (1) electric 

double-layer capacitors (EDLCs) stored energy through the adsorption /desorption 

process such as carbon materials with very high surface area and (2) pseudocapacitors 

stored energy through the Faradic process such as oxide materials and conducting 

polymers. Mostly, these pseudocapacitors possesss higher energy density due to the 

enhanced capacitance compared with EDLCs (Conway, 1999). A numerous reports 

have been explored using transition metal oxides in recent years. An excellent electrode 

material, hydrated RuOx has high specific capacitance of 720 F/g and electrochemical 

stability due to a large specific area and high conductivity (Zheng and Jow, 1995). 

However, the restrictive price and toxicity of RuO2 have limited practical uses (Lee et 

al., 2012). Therefore, inexpensive nanostructured metal oxides were studied to be used 

as the electrode material for pseudocapacitors such as Fe3O4 (Wang et al., 2006), SnO2 
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(Prasad and Miura, 2004), Bi2O3 (Gujar et al., 2006), Bi2WO6 (Nithya et al., 2013), 

V2O5 (Lee and Goodenough, 1999), In2O3 (Prasad et al., 2004), NiO (Nam et al., 2002; 

Zhao et al., 2013), Co3O4 (Gao et al., 2010) and MnO2 (Qu et al., 2009). Therefore, the 

BiFeO3-based materials with their variable oxidation state have attracted considerable 

attention (Lokhande et al., 2011). In recent years, it has been used as potential active 

electrode materials by the fabrication of various forms, such as thin-film (Lokhande et 

al., 2007) and nanorod electrodes (Rana et al., 2014) showed a high specific capacitance 

of 81 F/g and 450 F/g, respectively. However, the explanation of the electrochemical 

behavior of BiFeO3-based nanoparticles is still unclear and uncompleted. The factors 

such as morphology, electrolyte and conditions of measurements may influence to the 

electrochemical performances. As mentioned above, this research will be great 

important to explore and clearly understand the electrochemical properties of BiFeO3 

nanoparticle electrode and the effect of Co, Ni, and Cu doping, which should be also 

carried out to be used as the candidate for pseudocapacitors. 

In this research, BiFe1-xMxO3 (M = Co, Ni, and Cu) nanoparticles with different 

concentrations of the dopants (x = 0.05, 0.1, 0.2, 0.3) are synthesized with a simple 

solution method. The prepared nanoparticles are characterized by various techniques 

including, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission 

electron microscopy (TEM), X-ray absorption spectroscopy (XAS) and gas absorption 

technique. Magnetic properties at various temperatures of measurement of the 

nanoparticles are studied. Moreover, the electrochemical properties of the nanoparticles 

used as electrode materials were also studied.  
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1.2 Objectives of the dissertation  

1.2.1 To synthesize the BiFe1-xMxO3 (M = Co, Ni and Cu) nanoparticles by 

simple solution method. 

1.2.2 To characterize the microstructure and phase composition of the 

synthesized BiFeO3-based nanoparticles.  

1.2.3 To study of the magnetic properties of the synthesized BiFeO3-based 

nanoparticles at various temperature of measurement.  

1.2.4 To fabricate the BiFeO3-based electrode supercapacitors and study their 

electrochemical properties. 

 

1.3 Limitation of the study 

1.3.1 Synthesis of the BiFe1-xMxO3 (M = Co, Ni and Cu) nanoparticles with x 

= 0, 0.05, 0.1, 0.2, and 0.3. 

1.3.2 Characterization of morphology and structure of the synthesized 

BiFeO3-based nanoparticles. 

1.3.3 Investigation of magnetic properties of the synthesized nanoparticles at 

a temperature of 50 K to 350 K. 

1.3.4 Fabrication of the BiFe1-xMxO3 (M = Co, Ni, and Cu) electrodes.  

1.3.5 Investigation of the electrochemical properties of the fabricated 

electrodes by Cyclicvoltammetry (CV), Galvanostatic charge-discharge (GCD) and 

Electrochemical impedance spectroscopy (EIS).  
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1.4 Location of research 

1.4.1 Advanced Materials Physics Laboratory (AMP), School of Physics, 

Institute of Science, Suranaree University of Technology (SUT), Nakhon Ratchasima, 

30000 Thailand. 

1.4.2 The Center for Scientific and Technological Equipment (SUT), 

Suranaree University of Technology (SUT), Nakhon Ratchasima, 30000 Thailand. 

1.4.3 Department of Physics, Faculty of Science, Khon Kaen University, 

Khon Kaen, 40002 Thailand. 

1.4.4 Synchrotron Light Research Institute (SLRI), 111 Surapat 3, Suranaree 

University of Technology, University Aveneu, Muang District, Nakorn Ratchasima, 

Thailand, 30000. 

 

1.5 Expected results 

1.5.1 Skill and expertise for synthesis, fabrication, and characterization 

techniques of the BiFe1-xMxO3 (M = Co, Ni, and Cu) nanoparticles with the improved 

properties for electrode material of electrochemical capacitors. 

1.5.2 Understanding of the magnetic and electrochemical properties of the 

BiFe1-xMxO3 (M = Co, Ni, and Cu) nanoparticles.  

1.5.3 International publications (ISI). 

 

1.6 Outline of thesis 

 This dissertation is divided into five chapters. The first chapter provides the 

introduction of the thesis. In the next chapter (chapter II), a brief review of information 
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concerning with background of BiFeO3, the theory approach concerning with magnetic 

and electrochemical properties are also detailed in this chapter. Chapter III presents 

chemical and regents and experimental method of the BiFe1-xMxO3 nanoparticles and 

fabrication technique of the BiFe1-xMxO3 electrodes. Moreover, the information of all 

measurements techniques used in this research are also summarized in this chapter. And 

then, the results obtained in this research and discussions of the results are given in 

Chapter IV. Finally, conclusions and suggestions are described, and future works are 

proposed in Chapter V.



 

 

CHAPTER II 

LITERATURE REVIEWS 

 

2.1 Fundamentals of BiFeO3 

2.1.1 Structure of BiFeO3 

 Basic crystal structure is essential to explore the material system. The perovskite 

BiFeO3 was first produced in the late 1950s. The room-temperature phase of BiFeO3 is 

classed as rhombohedral belonging to the space group R3c (Moreau et al., 1971). A 

perovskite-type unit cell with a rhombohedral structure has a lattice parameter of arh = 

3.965 Å and a rhombohedral angle of α = 89.3-89.4˚ at room temperature with 

ferroelectric polarization along [111]pseudocubic (Catalan and Scott, 2009). Alternatively, 

the structure can be characterized in a hexagonal frame of reference by connecting two 

perovskite cubes along with their body diagonal, i.e., [001]hexagonal ǁ [111]pseudocubic. The 

hexagonal lattice parameters are ahex = 5.58 Å and chex = 13.90 Å. Two simple perovskite 

unit cells are shown to illustrate that successive oxygen octahedra along the polar [111] 

axis rotate with opposite sense around [111] as shown Figure 2.1. The red arrows on 

the Fe atoms indicate the orientation of the magnetic moments in the (111) plane (Lubk 

et al., 2009). 
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Figure 2.1 Schematic view of crystal structure of bulk BiFeO3 (Adapted from (Lubk 

et al., 2009). 

 

The Fe magnetic moments are coupled ferromagnetically within the 

pseudocubic (111) planes and antiferromagnetically between the near planes; this is 

called the G-type antiferromagnetic order. If the magnetic moments are oriented 

perpendicularly to the [111] direction, the symmetry also permits a canting of the 

antiferromagnetic sublattices resulting in a macroscopic magnetization called weak 

magnetism (Heeg et al., 2006; Schwab et al., 1997). According to a first-principles 

calculation, the spontaneous polarization of BFeO3 changes depending on whether the 

crystal structure is rhombohedral or tetragonal. The tetragonal structure of the BFeO3 

(Space group: P4mm) possesses polarization of around 150 μC/cm2 along the [001] 

direction, and the rhombohedral structure (Space group: R3c) possesses polarization of 

around 100 μC/cm2 along the [111] direction without strain (Béa et al., 2005; Zhu et 

al., 2008). For BiFeO3, the rotation angle of the octahedras is 11-14˚ around the polar 

[111] axis (Catalan and Scott, 2009), with the directly related Fe-O-Fe angle 154-156˚. 
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The Fe-O-Fe angle is important because it controls both the magnetic exchange and 

orbital overlap between Fe and O, and as such it determines the magnetic ordering 

temperature and the conductivity. 

2.1.2 Magnetism of BiFeO3 

 The BiFeO3 is a multiferroic materials which possesses a polarization 

(ferroelectric) ordering with a high Curie temperature Tc of 1103 K and a spin 

(antiferromagnetic) ordering of G type with a magnetic transition temperature TN of 

643 K (Kumar and Yadav, 2006). The multiferroics have known as material exhibiting 

ferromagnetic and ferroelectric properties at the same time, which have exhibited 

interesting physical as well as a possibility of practical applications for new memory 

device. In this section, this research will list magnetic properties of BiFeO3 

nanostructures that have been measured as following. 

 2.1.2.1 Magnetic symmetry and spin cycloid of BiFeO3 

  Magnetism of BiFeO3 can be attributed to both short- and long- range 

oderings. The local short-range magnetic ordering of BiFeO3 is G-type antiferromagnet. 

One Fe+3 of spin is surrounded by six antiparallel spins on the neighbor of Fe+3 ion. 

Because the structural distortion, the arrangement of the neighboring spins is in fact not 

perfectly antiparallel. The canted spins induce a weak magnetic moment that couples 

with the ferroelectric polarization. Superimposed on this canting, however, is also a 

long-range superstructure consisting of an incommensurate spin cycloid of the 

antiferromagnetically ordered sublattices (Catalan and Scott, 2009). The cycloidal 

model of spin ordering in BiFeO3 was first proposed by Sosnowska et al. (Sosnowska 

et al., 1982), whose group has made a number of detailed studies via XRD, neutron 

scattering, Mossbauer measurements, etc. The cycloid has a very long repeat distance 
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of 64 nm (Lebeugle et al., 2008). The magnetic easy plane (the plane within which the 

spins rotate) is defined by the propagation vector and the polarization vector (as shown 

in Figure 2.2). The canted antiferromagnetic spins (blue and green arrows) give rise to 

a net magnetic moment (purple arrows) that is spacially averaged out to zero due to the 

cycloidal rotation. The spins are contained within the plane defined by the polarization 

vector (red) and the cycloidal propagation vector (black). However, in recent years 

Zalesskii and co-workers (Bush et al., 2003) have proposed that the simple cycloid is 

distorted at low temperatures. However, no published data from either group has 

indicated the phase-transition temperature where the spin reorientation transition 

should occur.  

 

 

Figure 2.2 Scheme of the antiferromagnetic structure of BiFeO3, the magnetic moments 

describe a cycloid with a period of 64 nm (Adapted from (Lebeugle et al., 2008). 

 

 2.1.2.2 Spin-glasslike behavior of BiFeO3 

  The first evidence for spin-glass behavior in BiFeO3 is first that there is 

a large difference between its field-cooled (FC) and zero-field-cooled (ZFC) 

magnetization below 240 K (Singh et al., 2008; Singh et al., 2008) as shown in Figure 

2.3 (weaker FC effects were also reported by Pradhan et al.(Pradhan et al., 2005) and 
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Nakamura  et al. (Nakamura et al., 1993)); second, there is a cusp at 50 K in the 

magnetic susceptibility; and third, the temperature of the cusp in magnetic ac 

susceptibility appears to be dependent upon the frequency of the magnetic field (Singh 

et al., 2008). 

 

 

Figure 2.3 The much difference between Field-cooled (FC) and zero-field-cooled 

(ZFC) magnetization is consistent with a spin-glass state (Catalan and Scott, 2009). 

 

 2.1.2.3 Low-Temperature Ferromagnetism of BiFeO3 

  As explained earlier, BiFeO3 is antiferromagnetic at room temperature, 

with the weak local canting moment being completely cancelled by the averaging out 

effect of the cycloid. However, there are several reports including hysteresis 

measurements in single crystals suggesting that at very low temperatures, there could 

be a weakly ferromagnetic state (Lebeugle et al., 2007). It is important to confirm 

whether or not this is intrinsic because, although the net magnetic moment is minuscule 

(10-6 µB per Fe), it would have important consequences regarding magnetic symmetry 



13 

 

and, thus, also whether or not the linear magnetic coupling is allowed. The existence of 

ferromagnetism at very low temperatures would also reflect an underlying competition 

between antiferromagnetic and ferromagnetic interactions, which, of course, would be 

consistent with the spin-glass state in the intermediate temperature range. On the other 

hand, the observation of ferromagnetic hysteresis at low temperatures is not universal 

and may be explained by even a very small concentration of impurities; Lebeugle et al. 

(Lebeugle et al., 2007), for example, note that just 1 mol% of paramagnetic Fe3+ 

(probably due to the presence of Bi25FeO39) can account for all the low-temperature 

magnetic enhancement in their single crystals. 

 2.1.2.4 Size dependence of BiFeO3 nanocrystals 

  There is a fast-growing body of research devoted to the manufacture and 

characterization of complex nanoscopic shapes other than thin films. These 3D 

nanostructures generally have their own distinctive size effects, and multiferroic 

BiFeO3 is no exception. As more novel size-dependent or morphology-dependent 

properties of BFO nanostructures are being discovered, this implies that a certain 

“property” may be tuned to desired value in future industrial designs. For bulk BiFeO3, 

the magnetic hysteresis loop exhibits a typical antiferromagnetic curve with zero 

coercivity (Mazumder et al., 2007). As the new century unfolds, the newly emerging 

nanotechnology on BiFeO3 recommended a facile and inexpensive approach by 

controlling its dimensions down to 62 nm. For example, Park et al. reported their 

systematical studies on size-dependent magnetic properties of BiFeO3 nanoparticles 

(Park et al., 2007). The nanocrystals of BiFeO3 show enhanced magnetization and 

superparamagnetism correlated with decreasing diameter as shown in Figure 2.4. They 

noted that the magnetic properties of BiFeO3 nanoparticles with a mean size of 245 nm 
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experienced a remarkable similarity to that of the bulk sample which was not so highly 

significant. When the size of the system is less than 95 nm, the magnetic response can 

be initialed whereas the magnetic response of BFO nanoparticles increased rapidly in 

the range of 270-460% for sample below 62 nm. Superparamagnetism of 14 nm 

nanoparticles was also detected in their experiments. Combined with their Mössbauer 

study, it is believed that the increase of magnetization along with the decreasing particle 

size is primarily due to the contribution of uncompensated spins at the surface, strain 

anisotropies, and noncollinear magnetic ordering, leading to frustrated spin systems in 

addition to an increased suppression of the material’s intrinsic spiral structure below a 

certain threshold value of particle size. Similar size-induced magnetism has also been 

reported for BiFeO3 nanowires (Gao et al., 2006) and nanopowders (Mazumder et al., 

2006). This is thought to be due to the large fraction of uncompensated spins from the 

surfaces of the nanocrystals, an effect that is well known from classic antiferromagnets 

such as NiO (Richardson et al., 1991). 
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Figure 2.4 Ferromagnetic hysteresis due to uncompensated surface spins in BiFeO3 

nanocrystals (Park et al., 2007). 

 

2.1.3 Phase decomposition and impurity for BiFeO3 

One major drawback in the research of BiFeO3 bulk and thin films would be 

impurity and this also applies to the development of BiFeO3 nanostructures. In practice, 

most studies have failed to synthesize single phase BiFeO3 samples without generating 

secondary phase such as Bi25FeO39 and Bi2Fe4O9. The initial solution was to let it react 

with excess Bi2O3 followed by leaching with diluted nitric acid to wash away the 

secondary oxides and residual Bi2O3 (Achenbach et al., 1967). Scientists later declared 

that the protective atmosphere such as argon and nitrogen during heating process was 

of help to reduce the secondary phases (Singh et al., 2006; Xie et al., 2008). It has been 

argued that BiFeO3 is metastable in air with respect to Bi2Fe4O9 and Bi25FeO39 based 
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on thermodynamic factors (Selbach et al., 2008). Hence, a decomposition process will 

be resulted as follows  

 

                                       49 BiFeO3 → 12 Bi2Fe4O9 + Bi25FeO39                            (2.1) 

 

 On the other hand, Bi2O3 is widely known to evaporate easily when heated at 

high temperature. Thus, this will lead to the generation of iron-rich phases such as Fe2O3 

or even Fe3O4 (Catalan and Scott, 2009; Lou et al., 2007) as follows 

 

                                               2 BiFeO3 → Fe2O3 + Bi2O3                                       (2.2) 

 

                                     12 BiFeO3 → 4 Fe3O4 + 6 Bi2O3 + O2                                 (2.3) 

 

Palai et al. (Palai et al., 2008) reported the refined Bi2O3-Fe2O3 phase diagram. 

These differential thermal analysis (DTA) data for BiFeO3 and others for which the 

Bi/Fe ratio is varied with a view to determining the liquidus curves and the eutectic and 

peritectic horizontals, produce the phase diagram shown in Figure 2.5. The α, β, and γ 

phases are rhombohedral, orthorhombic, and cubic, respectively.  

In this situation, the properties of the sample, especially the magnetic 

characteristics, will be strongly affected by these impurities. To minimize such problem, 

careful optimization of growth parameters including thermaldynamic and kinetic 

conditions would be required. Meanwhile, upon this circumstance, reaction in hermetic 

systems or low temperature is evidently favorable in obtaining phase-pure perovskite 

samples. 
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Figure 2.5 Compositional phase diagram of Bi2O3-Fe2O3 system (Palai et al., 2008). 

 

2.2 Study of Synthesis of BiFeO3-based nanoparticle 

 Shami et al. (Shami et al., 2011) synthesized BiFeO3 powder by co-precipitation 

route. In the co-precipitation method, The analytical grade iron nitrate nonahydrate 

Fe(NO3)3·9H2O and commercial grade bismuth oxide Bi2O3 (99.98% pure) were used 

as precursors. These were dissolved in nitric acid (HNO3) and deionized water to form 

solutions of 0.4 M. For crystallization and phase formation, powder was calcined at 

different temperatures (400-600) ˚C for 1 h. The solution thus obtained was washed 

with deionized water till a pH of 7 was achieved and were dried in an electric oven at 

100 ˚C. These pellets were further densified by cold iso-static pressing at 250 MPa and 

sintered at 500 ˚C for 2 h. All the heat treatments were carried out in the air. Phase 

formation and crystallite size of the BiFeO3 powders were determined from the XRD 

analysis. The powder calcined at 400 ˚C contains a minor peak of Bi2O3, which 
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diminished at higher temperature. Further increase in calcination temperature up to 600 

˚C, improved the crystallinity of BiFeO3 powders. The crystallite sizes of calcined 

powders were calculated using the Scherrer formula increased (31-93) nm with the 

increase in calcination temperature.  

Kumar et al. (Kumar and Yadav, 2011) prepared BiFe1-xNixO3 (with x = 0, 0.1) 

nanoparticles by the solgel method. Ferric nitrate Fe(NO3)3·9H2O, bismuth nitrate 

Bi(NO3)3·5H2O, nickel nitrate Ni(NO3)2·6H2O were added into the solution of citric 

acid prepared in distilled water. Then, the solution was stirred with constant at 60-70 

˚C to avoid precipitation to obtain a homogeneous mixture. Thereafter ethylene glycol 

was added into the solution at a proportion of citric acid/ethylene glycol ratio of 60:40. 

The gel initially started to swell and filled the beaker. The resultant gel was dried at 100 

˚C in hot air oven for 12h. The obtained powders were calcined at 400 ˚C, leached in 

diluted HNO3. Leaching was done to get a single phase. 

 Wang et al. (Wang et al., 2013) synthesized BiFeO3 nanoparticles through low-

heating temperature solid-state precursor method. The resultant samples were leached 

with 20% HNO3 to remove the unreacted Bi2O3 (~5-7% shown by our preliminary 

experiment) and then washed by deionized water for several times and dried at 80 ˚C 

for 3 h.  BiFeO3 powders were calcined from 450 to 600 ˚C. The particle morphology 

changes from an average length of 80-100 to 400-500 nm as the annealing temperature 

increases from 450 to 600 ˚C. With the increase of annealing temperature from 450 to 

600 ˚C, the particle morphology changes from 80-100 nm spherical-like particles to 

400-500 nm particles with plate and polyhedral like morphologies. This can be 

explained by the increase of temperature that leads to an enhanced diffusion of Bi ions, 
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which consequently accelerates the reaction process and improves the BiFeO3 particles 

growth rate. 

 

2.3 Study of magnetic and electrochemical properties of BiFeO3 

2.3.1 Study of magnetic properties of BiFeO3 

BiFeO3 is one of several rare single-phase room temperature multiferroic 

materials and it has great potential for practical applications exhibiting ferroelectricity 

with high Curie temperature (TC ~ 1103 K), and antiferromagnetic properties below TN 

~ 643 K (Simões et al., 2007) (Catalan and Scott, 2009). The bulk form of BiFeO3 

ceramic has some disadvantages: (1) it is difficult to prepare pure single phase BiFeO3, 

and (2) BiFeO3-based materials have low electrical resistivity. The relatively high 

conductivity of BiFeO3 is believed to be due to the degradation of Fe3+ species to Fe2+ 

species, which creates oxygen vacancies for charge compensation. This has prevented 

its practical applications as piezoelectric or magnetoelectric functional components 

(Simões et al., 2007). The multiferroic nature of BiFeO3 is due to stereochemical 

activity associated with the 6s2 lone pair of Bi3+. It results in lowering of structural 

symmetry and hence ferroelectricity (Mazumder et al., 2006). As shown in Table 2.1, 

much effort has been paid to improve the magnetization through cation substitution (A 

site and B site) in BiFeO3 to get a sizable response to the application of magnetic field. 

For example, the enhancement in magnetic moment by the structural changes, 

suppression of spiral spin structure is observed when A site are partially substituted by 

rare-earth ions in Bi1-xMxFeO3 (M = La, Dy, and Eu) induces a spontaneous 

magnetization (Lahmar et al., 2009; Prashanthi et al., 2010). Besides the A-site doping, 

many literatures are found which are based on B-site doping in BiFeO3 to obtain a 
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collinear magnetic ordering. It was predicted that by substituting such as Mn, Ti, and 

Co ions for the B site in BiFeO3, 

 

Table 2.1 Lists of reports for magnetic properties of BiFeO3 based nanoparticles. 

Materials / preparation method Ms (emu/g) References 

BiFeO3 / solid state - (Teague et al., 1970) 

Bi0.7La0.3FeO3 / solid state 0.02 (Zhang et al., 2006) 

Bi0.9Gd0.1FeO3 / sol-gel 8 (Lotey and Verma, 2012) 

BiFeO3 / sol-gel 0.004 (Jia et al., 2009) 

Bi0.7La0.3FeO3 / solid state 0.15 (Rai et al., 2011) 

Bi0.8Ba0.2FeO3 / chemical route 0.35 (Das and Mandal, 2012) 

BiFe0.75Ni0.25O3 / sol-gel 8.5 (Zhao et al., 2013) 

 

 In study of Park et al. (Park et al., 2007), single-crystalline BiFeO3 

nanoparticles synthesized by a facile sol-gel methodology. A magnetic response in 

BiFeO3 can be initiated when the size of the system is less than about 95 nm. In small 

structures, the surface-to-volume ratio becomes very large with decreasing particle size, 

enhancing the tangible contribution to the particle’s overall magnetization by 

uncompensated spins at the surface. For single-domain antiferromagnetic particles, the 

magnetization is expected to scale as ~1/d (where d is the diameter of the particle), that 

is, as the surface to volume ratio. Magnetization as a function of temperature at an 

applied field strength of 200 Oe, after zero-field cooling (ZFC) and also with field 

cooling (FC) were studied as shown in Figure 2.6(a)-(b). Apparent sharp cusps observed 
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in the magnetization curves at 50 K are reproducible for bismuth ferrite samples with 

particle dimensions over 95 nm (e.g., 245 nm and bulk). A sharp cusp is observed for 

the 245 nm BiFeO3 sample as well as for the bulk and may result from domain wall 

pinning effects as a result of local structural distortions. For BiFeO3 nanoparticles 

possessing diameters of ≤ 95 nm, associated data curves exhibit a broad magnetization 

maximum around Tmax = 85 K, when Tmax represents a spin-glass-like freezing 

temperature. 

 

 

Figure 2.6 (a) Temperature dependence of the magnetization for BiFeO3 nanoparticles 

of varying sizes, showing zero field cooling (ZFC) and field cooling (FC) curves. (b) 

Expanded plots of ZFC and FC curves for BiFeO3 nanoparticles with diameters of 245 

and the bulk (Park et al., 2007). 

 

 Wang et al. (Wang et al., 2013) synthesized BiFeO3 nanoparticles through low-

heating temperature solid-state precursor method. The BiFeO3 powders were calcined 

from 450 to 600 ˚C. The particle morphology changes from an average length of 80-

100 to 400-500 nm as the annealing temperature increases from 450 to 600 ˚C. A 



22 

 

vibrating sample magnetometer (VSM) was used to study the magnetic properties of 

the prepared samples. The magnetization curve measured at room temperature for 

BiFeO3 powders synthesized from 450 to 600 ˚C. The magnetic hysteresis loop of the 

sample attained at 450-550 ̊ C shows linear field dependence due to the fact that BiFeO3 

exhibits an inherent antiferromagnetic order of circular cycloid magnetic structure with 

a critical particle size of 62 nm. With the increase of reaction temperature to 600 ˚C, the 

M-H curves of the samples present a noteworthy hysteresis loop, and the saturation 

magnetization values increase with the temperature as shown in Figure 2.7(a). A partly 

enlarged curve of powders synthesized at 600 ˚C is shown in Figure 2.7(b). The curve 

shows weak ferromagnetism at room temperature with a remanent magnetization value 

(Mr) of approximately 3.3 × 10-5 emu/g and a coercive filed value (Hc) of nearly 40 Oe. 

 

 

Figure 2.7 (a) VSM measurement of different BiFeO3 nanoparticles synthesized from 

450 to 600 ˚C and (b) the partially enlarged curve of BiFeO3 powders synthesized at 

600 ˚C (Wang et al., 2013). 
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 Li et al. (Li et al., 2014) synthesized BiFeO3 and BiFe0.95Cu0.05O3 by the sol-gel 

method and studied the reasons for the enhancement of the magnetic properties. When 

Cu ions are doped into BiFeO3, the doublet peaks around 32˚ slightly shift toward lower 

angle direction. It also suggests that the doping Cu2+ has been completely incorporated 

into the BiFeO3 structure. The crystalline structure and morphology of the samples were 

characterized by X-ray diffraction (XRD) scanning electron microscopy (SEM), 

respectively. It can be seen that the doping of Cu ions at B-sites does not affect the grain 

size and morphology. The samples show a uniformity of grain. The crystal grain of pure 

BiFeO3 is nearly similar to that of the Cu-doped sample, and the average grain size of 

the two samples is about 0.8-1 μm. The magnetic properties of the samples were 

investigated at 300 K using a vibrating sample magnetometer (VSM). The M-H 

hysteresis loop of the BFC sample becomes very slim and close to a straight line. Both 

the values of the coercivity (Hc) and remanent magnetization (Mr) of Cu-doped BiFeO3 

are very small, which indicates that the BiFeO3 material presents antiferromagnetic 

behavior. VSM data show that the magnetic behavior of the Cu-doped BiFeO3 sample 

is similar to that of the pure BiFeO3 sample. DSC measurements demonstrate that the 

substitution of Cu2+ ions at B-sites affects the magnetic order and decreases the Neel 

temperature of BiFeO3. 

 Batttisha et al. (Batttisha et al., 2015) prepared BiFe1−xCoxO3 (x = 0, 0.03, 0.05 

and 0.1) powder by sol-gel technique. The average crystallite sizes of the samples 

calculated using Scherrer’s formula were decreased by doping with Co ions to be equal 

to 42 and 18 nm for BiFeO3, and BiFe0.95Co0.05O3, respectively. Saturation 

magnetization (Ms) at room temperature increases with the decrease in particle size and 

as a result of increasing the cobalt ion concentrations. The weak magnetic property of 
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BiFeO3 nanoparticles should be attributed to the size-confinement effects of the BiFeO3 

nanostructures, which correlate with: a) the increased suppression of the known spiral 

spin structure (period length of 62 nm) with decreasing nanoparticle size and b) 

uncompensated spins and strain anisotropies at the surface. The enhancement of the 

ferromagnetism of the Co-doped BiFeO3 could be attributed to the magnetic moment 

of Co2+ and the possible breakage of the space modulated spin cycloid period. In the 

BiFeO3, there is an existed cycloid modulated period of magnetization of 62 nm which 

make BiFeO3 showing no or weak ferromagnetization. Since the Co2+ ions have similar 

radius as that of Fe3+ ion (0.65 Å for Co2+ and 0.645 Å for Fe3+; six coordinations), a 

structural distortion can be expected. On the other hand, the bond angle of Fe3+-O-Co2+ 

is different with that of Fe3+-O-Fe3+, the magnetic moments of Fe3+ and Co2+ are 

different also, so the net magnetic moment is changed. The changes of both structure 

and net magnetic moment may change the canting of the antiferromagnetic arranged 

neighboring spins and break the spiral spin configuration and then enhance the 

magnetization. 

 Chakrabarti  et al. (Chakrabarti et al., 2015) investigated magnetic properties of 

BiFe1−xCoxO3 (x = 0, 0.01, 0.03 and 0.05) nanoparticles. The average size of nanocube 

as obtained from particle size distribution of TEM images clearly reveals an increase in 

size from 13 nm for x = 0 to 85 nm for x = 0.05. M-H curves for all the samples reveal 

weak ferromagnetic behavior which is being enhanced with the increase of Co ions 

concentration. The substitution of Fe by Co disrupts cycloidal spin structure of BiFeO3 

and improves the ferromagnetic property. Enhancement of the saturation magnetization 

and coercivity by about 10 times in doped BiFeO3 are due to changes in morphology. 

The temperature dependent MS shows a decrease in MS with the increase of 
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temperature. The variation of HC also shows a similar trend as that of MS increasing 

with the increase concentration of Co ions. A clear deviation between ZFC and FC 

curves has been noticed in all the samples. The broad maxima observed in both ZFC 

and FC magnetizations clearly show a deviation from the conventional spin glass 

system. The deviation between ZFC and FC increases with the decrease in temperature 

indicating a possibility of magnetic blocking on decreasing temperature. 

 Zhao et al. (Zhao et al., 2013) synthesized BiFe1−xNixO3 (x = 0, 0.05, 0.10, 0.15, 

0.20, and 0.25) nanoparticles by a sol gel process. Magnetic studies of the Ni-doped 

BiFeO3 nanoparticles were ferromagnetic behavior at room temperature and increased 

with the increasing of Ni concentration. The enhanced magnetization was attributed to 

the suppression of the cycloidal spin structure by Ni substitution and the ferromagnetic 

exchange interaction between the neighboring Fe3+ and Ni3+ ions. The saturation 

magnetizations, coercive field and remanent magnetization are increasing with the 

decreasing of temperature. The ZFC curve for the samples decreases continuously with 

lowering of temperature whereas FC data increases with lowering of temperature. Such 

behavior has been identified to be cluster glass behavior. Superparamagnetism with 

blocking temperature of 10 K, 75 K, 125 K and 200 K for x = 0.05, 0.15, 0.20, and 0.25 

samples can be observed in the ZFC curves. 

 Vanga et al. (Vanga et al., 2015) synthesized Bi0.95Nd0.05Fe1-xNixO3 (x = 0, 0.01, 

0.03 and 0.05) samples by solgel method. For the X-ray diffraction measurement, there 

is slight shift in peak position is observed towards lower angle in the Ni co-doped 

samples due to the higher ionic radius of Ni (0.69 Å) compared to Fe (0.645 Å). The 

crystallite size decreases with increasing in concentration of Ni doping, the presence of 

Ni ion in Fe3+ site acts as an inhibitor and results in decreasing of crystallite size. The 
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inhibition is mainly due to the decrease in surface energy of BiFeO3 with addition of 

dopant, while the bulk energy remains constant. In order to maintain the ratio between 

surface area to bulk volume the crystallite size decreases. An enhancement of 

magnetization is observed with increase in concentration of Ni doping in B-site. The 

saturation magnetization of Bi0.95Nd0.05Fe0.99Ni0.1O3, Bi0.95Nd0.05Fe0.97Ni0.03O3 and 

Bi0.95Nd0.05Fe0.95Ni0.05O3 samples is 0.2, 0.68 and 1 emu/g respectively. Such an 

improved magnetization may be due to the following reasons. (1) The suppression of 

spin cycloid structure of BiFeO3 as the particle size of the samples is less than 62 nm. 

(2) The decrease in crystallite size with the increase in Ni ion concentration gives raise 

to uncompensated spins at the surface which gives contribution to the overall 

magnetization. (3) The interaction between Ni and Fe ions can also improve the 

magnetization. 

2.3.2 Study of electrochemical properties of BiFeO3 

 The bismuth iron oxide in five crystal phase i.e. BiFeO3, Bi2Fe4O9, Bi3Fe5O12, 

Bi4Fe2O9, and Bi46Fe2O72 is well known with their variable oxidation state. That means 

this material may sustain the charges in its phase during the electrochemical charges. 

(Lokhande et al., 2011). Therefore, the perovoskite BiFeO3 nanocrystalline electrode 

have attracted considerable attention, which is exploited as an efficient potential 

candidate by the fabrication of various forms for study of electrochemical properties. 

 Lokhande et al. (Lokhande et al., 2007) studied the BiFeO3 electrodes 

fabricated using electrodeposition method for electrochemical supercapacitors. The 

maximum specific capacitance of 81 F/g was obtained at 20 mV/s and the specific 

energy and specific power as 6.6832 J/g and 3.2958 W/g, respectively in an aqueous 1 

M NaOH electrolyte. As shown in Figure 2.8(a), one pair of redox peak on this cyclic 
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voltammogram is seen, indicating the redox transitions of BiFeO3 between different 

valence states. Since, the voltammetric responses on the positive sweeps are symmetric 

to their counterparts on the negative sweeps; this mixed oxide can be employed as an 

electrode material for electrochemical supercapacitor. The discharge profile as show in 

Figure 2.8(b) that  usually contains two parts; (1) a resistive component arising from 

the sudden voltage drop (linear portion parallel to y-axis) representing the voltage 

changed due to the internal resistance. (2) Capacitive component (curved portion) is 

related to the voltage change due to change in energy within the capacitor. 

 

 

Figure 2.8 (a) The CV curves of BiFeO3 electrodes at different scanning rates (b) The 

charge and discharge curve of BiFeO3 electrode (Lokhande et al., 2007). 

 

 Rana et al. (Rana et al., 2014) developed BiFeO3 in the form of nanorod on 

porous anodised alumina (AAO) templates using wet chemical technique. Cyclic 

voltammograms (CV) of different samples at a scan rate of 50 and 10mV/s in aqueous 

solution of 1M Na2SO4 are shown in Figure 2.9. High value of specific capacitance of 

450 F/g has been calculated. This large value of specific capacitance can be attributed 
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to the nanostructure form of BiFeO3 nanorod. Cyclic voltammograms of different 

samples are quite symmetrical with a mirror image of the current response from voltage, 

indicating ideal pseudo capacitative behavior and excellent reversibility in charging and 

discharging at a constant rate over the voltage range of -0.6 to +0.6V. 

 

 

Figure 2.9 Cyclic voltammograms of BiFeO3 nanorods on AAO at different scan rates 

(Rana et al., 2014). 

 

Jadhav et al. (Jadhav et al., 2016) synthesized nanoflake bismuth ferrite thin 

film by electrodeposition technique. These films were then air annealed at 400 to 600 

˚C temperatures for 2 h. The cyclic voltammetry (CV) measurement was employed to 

explore the BFO electrodes for electrochemical supercapacitor application with NaOH 

electrolyte of different concentrations in a three-electrode system. It was found that the 

BiFeO3 electrode material annealed at 600 ˚C exhibited maximum current density 

which could be attributed to the formation of complete ferrite structure. With the scan 

rate being increased from 10 to 1000 mV/s, the specific capacitance value of BiFeO3 
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electrode was found to decrease from 101.63 F/g to 5.65 F/g, indicating that at lower 

scan rates, inner and outer sites were more active, and thus, full utilization of the 

electrode in NaOH electrolyte solution occured. At higher scan rates, only outer sites 

could be more active than inner sites which were unable to participate in the redox 

reaction in the electrolyte solution. Galvanostatic charge-discharge (GCD) curves at 

various current densities in an electrochemical window from -0.8 V to 0.2 V showed a 

nontriangular symmetry and linear slopes, consolidating the good pseudocapacitive 

behavior. Using galvanostatic charge-discharge curve was found to be 72.2 F/g at 1 A/g 

in 2 M NaOH electrolyte. By charge-discharge tests at a current density of 5 A/g for 

1500 cycles, the specific capacitance of the BFO electrode maintained 82.8 % of its 

initial value, indicating a good stability. The EIS measurement of the BiFeO3 electrode 

at 600 ˚C was studied. The frequency response of capacitance reflects the amount of the 

surface area accessible to the electrolyte. The plot at the high-frequency side was 

parallel to the X-axis suggesting that the charge transfer resistance rates at high-

frequency regions was faster than those at low frequency regions which could be due 

to an inherent property of ferrites. 

 

2.4 Theoretical Approach 

2.4.1 Magnetic properies of materials 

 Magnetism, the phenomenon by which materials assert an attractive or repulsive 

force or influence on other materials, has been known for thousands of years. The 

macroscopic magnetic properties of materials are a consequence of magnetic moments 

associated with individual electrons. Each electron in an atom has magnetic moments 

that originate from two sources. One is related to its orbital motion around the nucleus; 
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being a moving charge, an electron may be considered to be a small current loop, 

generating a very small magnetic field, and having a magnetic moment along its axis 

of rotation, as schematically illustrated in Figure 2.10(a). Each electron may also be 

thought of as spinning around an axis; the other magnetic moment originates from this 

electron spin, which is directed along the spin axis as shown in Figure 2.10(b).  

 

 

Figure 2.10 Demonstration of the magnetic moment associated with (a) an orbiting 

electron and (b) a spinning electron (Adapted from (Callister and Rethwisch, 2013). 

 

Spin magnetic moments may be only in an ‘‘up’’ direction or in an antiparallel 

‘‘down’’ direction. Thus each electron in an atom may be thought of as being a small 

magnet having permanent orbital and spin magnetic moments. The most fundamental 

magnetic moment is the Bohr magneton (µB), which is of magnitude 9.27× 10-24 A m2. 

For each electron in an atom the spin magnetic moment is ±µB (plus for spin up, minus 

for spin down).The spin moment of an electron with spin up will cancel that of one with 

spin down. The net magnetic moment, then, for an atom is just the sum of the magnetic 

moments of each of the constituent electrons, including both orbital and spin 

contributions, and taking into account moment cancellation. The magnetic field of one 

electron is cancelled by an opposite magnetic field produced by the other electron in 
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the pair. The unpaired electron in iron, cobalt and nickel atoms cannot cancel the 

electron magnetic fields, and thus these elements act like a very small magnet. The 

magnetic moments (µ) of atoms relate to the spins of electrons. The most common in 

the magnetic experiment is to apply a magnetic field (H) to a material and measure the 

magnetization (M) induced by the field. The magnetic field induction (B) in a sample 

is described by 

 

                                                      B = H + 4πM  [cgs]                                                (4) 

 

The susceptibility (χ = M / H) and the permeability (µ = B / H) are two quantities 

related to M and B , where the susceptibility is a measure of the increase in magnetic 

moment caused by H and the permeability represents the relative increase in flux caused 

by the presence of the magnetic material.  

The arrangement of the magnetic moment can be used to classify type of 

magnetic behavior. The diamagnetism is present when the magnetic moments are paired 

and overall cancel each other (µnet = 0). Diamagnetism is a very weak form of 

magnetism that is nonpermanent and persists only while an external field is being 

applied. The magnitude of the induced magnetic moment is extremely small, and in a 

direction opposite to that of the applied field. The magnetic susceptibility is negative. 

Diamagnetism is found in all materials; but because it is so weak, it can be observed 

only when other types of magnetism are totally absent. This form of magnetism is of 

no practical importance. Diamagnetic substances, such as carbon, copper, water, and 

plastic.  
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The paramagnetic behavior is present in uncoupled magnetic moment material. 

Each atom possesses a permanent dipole moment by virtue of incomplete cancellation 

of electron spin and/or orbital magnetic moments. In the absence of an external 

magnetic field, the orientations of these atomic magnetic moments are random, such 

that a piece of material possesses no net macroscopic magnetization. In the presence of 

a field, the dipoles align with the external field. Both diamagnetic and paramagnetic 

materials are considered to be nonmagnetic because they exhibit magnetization only 

when in the presence of an external field. Paramagnetic substances, such as platinum, 

aluminum, and oxygen. The susceptibility (χ) is independent of temperature for 

diamagnetics, but that it varies inversely with the absolute temperature for 

paramagnetics as shown in equation: 

 

                                                                χ = 
C

T
                                                                    (5) 

 

   This relation is called Curie’s law, and C is the Curie constant per gram. T is 

the absolute temperature (Cullity and Graham, 2011). However, many paramagnetics 

do not obey this law. They obey instead the more general law called the Curie-Weiss 

law: 

 

                                                               χ = 
C

T - θ
                                                                 (6) 

 

 This adapted law comprises a term θ that is proposed for ferro-or 

antiferromagnetic materials, which incorporates the interaction between magnetic 



33 

 

moments, known as the temperature constant or weiss constant (θ). For any one 

substance, and equal to zero for those substances which obey Curie’s law. When θ is 

non-zero this means that there is an interaction between neighbouring magnetic 

moments and the material is only paramagnetically ordered above the transition 

temperature. If θ is positive then the material undergoes a paramagnetic to 

ferromagnetic transition below the transition temperature and the value of θ relates to 

the transition temperature or simply the Curie temperature (Tc). Antiferromagnetic 

materials have a small positive susceptibility at all temperatures, but their 

susceptibilities in a peculiar way with temperature. The materials obey a Curie-Weiss 

law but with a negative value of θ and below the transition temperature. However, in 

practice the transition temperature between paramagnetic and antiferromagnetic phases 

arises at a positive temperature known as the Neel temperature (TN). 

 Ferrimagnetism is observed in the material that the magnetic moment in the 

neighboring sublattices incomplete cancellation due to their different magnitudes. This 

happens when the populations consist of different materials or ions (such as Fe2+ and 

Fe3+). The macroscopic magnetic characteristics of ferromagnets and ferrimagnets are 

similar; the distinction lies in the source of the net magnetic moments.  

 Anti-ferromagnetism is the magnetic behavior that magnetic moment coupling 

between adjacent atoms or ions occurs in materials. In one such group, this coupling 

results in an antiparallel alignment. The alignment of the spin moments of neighboring 

atoms or ions in exactly opposite directions (µnet = 0). The clue to antiferromagnetism 

is the behavior of susceptibility above Néel temperature (TN). Above TN, the 

susceptibility obeys the Curie-Weiss law for paramagnets but with a negative intercept 

indicating negative exchange interactions. Antiferromagnetic materials occur 
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commonly among transition metal compounds, especially oxides. Examples include 

hematite, metals such as chromium, alloys such as iron manganese (FeMn), and oxides 

such as nickel oxide (NiO). 

 The superparamangetism is the magnetic behavior that occurs in small 

ferromagnetic or ferrimagnetic nanoparticles. In sufficiently small nanoparticles, 

magnetization can randomly flip direction under the influence of temperature. Their 

magnetic susceptibility is between that of ferromagnetic and paramagnetic materials. 

The superparamagnetism occurs in nanoparticles which are single-domain, i.e. 

composed of a single magnetic domain. This is possible when their diameter is below 

3-50 nm, depending on the materials.  

 Ferromagnetism is permanent magnetic that the magnetic moments of the 

domains align along the direction of the applied magnetic field forming a large net 

magnetic moment. Permanent magnetic moments in ferromagnetic materials result 

from atomic magnetic moments due to electron spin-uncancelled electron spins as a 

consequence of the electron structure. There is also an orbital magnetic moment 

contribution that is small in comparison to the spin moment. Furthermore, in a 

ferromagnetic material, coupling interactions cause net spin magnetic moments of 

adjacent atoms to align with one another, even in the absence of an external field 

(Callister and Rethwisch, 2013). Certain metallic materials possess a permanent 

magnetic moment in the absence of an external field, and manifest very large and 

permanent magnetizations. Ferromagnetism substances, such as the transition metals 

iron (as BCC & ferrite), cobalt, nickel, and some of the rare earth metals such as 

gadolinium (Gd). Magnetic susceptibilities as high as 106 are possible for ferromagnetic 

materials. The maximum possible magnetization, or saturation magnetization (Ms), of 
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a ferromagnetic material represents the magnetization that results when all the magnetic 

dipoles in a solid piece are mutually aligned with the external field. The saturation 

magnetization is equal to the product of the net magnetic moment for each atom and 

the number of atoms present. For each of iron, cobalt, and nickel, the net magnetic 

moments per atom are 2.22, 1.72, and 0.60 Bohr magnetons, respectively.  

To describe the magnetization change with applied field of material, the 

hysteresis loop is used. As an H field is applied, the domains change shape and size by 

the movement of domain boundaries. Schematic domain structures are represented at 

several points along the B-versus-H curve in Figure 2.11(a). Initially, the moments of 

the constituent domains are randomly oriented such that there is no net B (or M) field. 

As the external field is applied, the domains that are oriented in directions favorable to 

(or nearly aligned with) the applied field grow at the expense of those that are 

unfavorably oriented. This process continues with increasing field strength until the 

macroscopic specimen becomes a single domain, which is nearly aligned with the field. 

Saturation is achieved when this domain, by means of rotation, becomes oriented with 

the H field. From saturation, point S in Figure 2.11(b), as the H field is reduced by 

reversal of field direction, the curve does not retrace its original path. A hysteresis effect 

is produced in which the B field lags behind the applied H field, or decreases at a lower 

rate. At zero H field (point R on the curve), there exists a residual B field that is called 

the remanence. To reduce the B field within the specimen to zero (point C on Figure 

2.11(b)), an H field of magnitude -Hc must be applied in a direction opposite to that of 

the original field; Hc is called the coercivity. Upon continuation of the applied field in 

this reverse direction, as indicated in the Figure, saturation is ultimately achieved in the 

opposite sense, corresponding to point S'. A second reversal of the field to the point of 
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the initial saturation (point S) completes the symmetrical hysteresis loop and also yields 

both a negative remanence (-Br) and a positive coercivity (+Hc) (Callister and 

Rethwisch, 2013). 

 

 

Figure 2.11 Hysteresis loop of a ferromagnetic behavior (Adapted from (Callister and 

Rethwisch, 2013). 

 

2.4.2 Electrochemical properies of materials 

2.4.2.1 The mechanisms of energy storage in electrochemical capacitor 

Electrochemical capacitors are electrochemical energy storage devices. 

In the past, all electrochemical capacitors were called “double-layer capacitors”. 

However, since some years it is known that double-layer capacitors together with 

pseudocapacitors are part of a new family of electrochemical capacitors called 

supercapacitors, also known as ultracapacitors. The structure of a supercapacitor is 

similar to that of a battery. It consists of two porous electrodes with a current collector 

on each electrode immersed in an electrolyte separated by a dielectric porous separator. 
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When a voltage potential is applied across the current collectors, the positive electrode 

attracts negative ions in the electrolyte, while the potential on the negative electrode 

attracts positive ions. The charge accumulated at both electrode surfaces generates 

energy when discharging as shown in Figure 2.12. The components made up of the 

supercapacitor including the electrodes, the separator, the current collector, as well as 

the electrolyte all are important factors affecting the overall performance of the device 

that must be considered in designing a high-performance supercapacitor device 

(Conway, 1999).  

 Moreover, the distribution of the two types of capacitance depends on the 

material and structure of the electrodes. Based upon current research and development, 

there are three types of electrochemical capacitors: electrochemical double-layer 

capacitors, pseudocapacitors, and hybrid capacitors. An overview of each one of these 

three classes of supercapacitors and their subclasses, distinguished by type of electrode 

material. A graphical taxonomy of the different classes and subclasses of 

supercapacitors is presented in Figure 2.13. There are two ways of supercapacitors 

storing energy in principal based on two types of capacitive behaviors: the electrical 

double layer (EDL) capacitance from the pure electrostatic charge accumulation at the 

electrode interface and the pseudo-capacitance due to fast and reversibility surface 

redox processes at characteristic potentials (Conway, 1999).The principle behind the 

electrochemical capacitor is demonstrated in Figure 2.14. 
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Figure 2.12 Schematic diagram of a supercapacitor device. 

 

 

Figure 2.13 Flow-chart describing the different types of capacitors (Adapted from 

(Frackowiak and Beguin, 2001). 

 

Electrochemical Capacitor 

Double layer capcitor 

Hybrid Capacitor 

Pseudo Capacitor 
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Figure 2.14 The principle charge storage mechanism of (a) EDLC (b) Psudocapacitor 

(Adapted from http://en.wikipedia.org/wiki/Supercapacitor). 

 

Conventional capacitors consist of two conducting electrodes separated by an 

insulating dielectric material. When a voltage is applied to a capacitor, opposite charges 

accumulate on the surfaces of each electrode. The charges are kept separately by the 

dielectric, thus they produce an electric field that allows the capacitor to store energy. 

Conventional capacitors store little energy due to the limited charge storage areas and 

geometric constrains of the separation distance between the two charged plates. The 

capacitance equation of conventional capacitor is as follows: 

 

                                                           C = 
Q

V
= ε 

A

d
                                                             (7) 

 

 Where Q, V, ε, A, and d are charge (Coulombs), electric potential (Volts), the 

dielectric constant of dielectric, conductor surface area, and dielectric thickness, 

respectively. However, supercapacitors based on the EDLCs mechanism can store more 

energy because of the large interfacial area and the atomic range of charge separation 
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distances. The EDLCs utilize an electrochemical double-layer of charge to store energy, 

which store charge electrostatically, or non-Faradaically, and there is no transfer of 

charge between electrode and electrolyte. As voltage is applied, charge accumulates on 

the electrode surfaces. Following the natural attraction of unlike charges, ions in the 

electrolyte solution diffuse across the separator into the pores of the electrode of 

opposite charge as shown in Figure 2.14(a). The concept of the EDLCs was first 

described and modeled by von Helmholtz in the 19th century when he investigated the 

distribution of opposite charge at the interface of colloidal particles (Helmholtz, 1853). 

The Helmholtz double layer model states two layers of opposite charges formed at the 

electrode-electrolyte interface separated by an atomic distance. The model is similar to 

that of two-plate conventional capacitors. This simple Helmholtz EDLCs model was 

further modified by Gouy (Gouy, 1910) and Chapman (Chapman, 1913) on the 

consideration of a continuous distribution of the electrolyte ions (both cations and 

anions) in the electrolyte solution because of thermal motion, which is referred as a 

diffuse layer. Later, Stern (Stern, 1924) combined the Helmholtz model with the Gouy-

Chapman model to explicitly recognize two regions of ion distribution - the inner region 

called the compact layer or stern layer and the diffuse layer. The inner Helmholtz plane 

(IHP) and outer Helmholtz plane (OHP) are used to distinguish the two types of 

adsorbed ions. The capacitance in the EDLCs (Cdl) can be treated as the combination 

of the capacitances from two regions, the differential capacitance of the Helmhoiltz 

layer (CH) and the differential capacitance of the diffusion layer (Cdiff) (Yu et al., 2013). 

Thus, the overall double-layer differential capacitance (Cdl) can be expressed as 

 

                                                           
1

Cdl
= 

1

CH
+

1

Cdiff
                                                            (8) 
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The maximum energy stored and power delivered for such a single cell 

supercapacitor is respectively given in equations (9) and (10): 

 

                                                           E = 
1

2
 CTV2                                                              (9) 

 

                                                             P = 
V2

4 Rs
                                                                     (10) 

 

 where V is the cell voltage (in volts), CT is the total capacitance of the cell (in 

farads) and Rs is the equivalent series resistance (ESR) (in ohms) of the electrochemical 

cell. Carbon electrode materials generally have higher surface area, lower cost, and 

more established fabrication techniques than other materials, such as conducting 

polymers and metal oxides (Conway, 1999) (Halper and Ellenbogen, 2006). Different 

forms of carbon materials that can be used to store charge in EDLC electrodes are 

activated carbons, carbon aerogels, and carbon nanotubes. Applying a voltage at the 

electrochemical capacitor terminals moves electrolyte ions to the opposite polarized 

electrode and forms a double-layer in which a single layer of solvent molecules acts as 

separator.  

 The main difference between the pseudo-capacitance and the EDL capacitance 

lies in that pseudo-capacitance is faradic in origin, involving fast and reversible redox 

reactions between the electrolyte and some electro-active species on the electrode 

surface (Conway, 1999). Pseudocapacitors store charge Faradaically through the 

transfer of charge between electrode and electrolyte as shown in Figure 2.14(b). This is 

accomplished through electrosorption, reduction-oxidation reactions, and intercalation 
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processes. The significance of pseudocapacitive materials is largely recognized by an 

enhanced capacitance relative to EDLC (10-100 times the capacitance), owing to the 

electron transfer reactions that occur during charging, which contrast the electrostatic 

process defined by a process where no Faradaic reactions take place. The amount of 

electric charge stored in a pseudocapacitance is linearly proportional to the applied 

voltage. The energy is stored via Faradaic process, the redox material particle and /or 

reaction sites are uniformly distributed in the electrode layer and both the oxidant (OX) 

and the reductant (Rd) are insoluble in the electrolyte (Yu et al., 2013), the redox process 

can be express as 

 

                                                        OX  + ne- ⟺ Rd                                                         (11) 

 

 where n is the overall electron transfer number involved in the reaction. The 

electrons enter the metal and the metal ions diffuse into the electrolyte for the forward 

reaction. According to the theory of electrochemical thermodynamics, the reversible 

electrode potential induced by the (11) reaction can be expressed as the Nernst form: 

 

                                                        E= EOX/Rd

0  + 
RT

nF
ln (

COX

CRd

)                                              (12) 

 

 where EOX/Rd

0  is the standard electrode potential (25 ˚C, 1.0 atm) of Reaction 

(11), COX
 and CRd

 are the concentrations of OX and reductant Rd within the entire 

electrode layer (mol./cm3), E is the electrode potential (V), R is the universal gas 

constant (8.314 J/K·mol), and T is the temperature (K).  
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 The ability of electrodes to accomplish pseudocapacitance effects by redox 

reactions, intercalation or electrosorption strongly depends on the chemical affinity of 

electrode materials to the ions adsorbed on the electrode surface as well as on the 

structure and dimension of the electrode pores. These Faradaic processes may allow 

pseudocapacitors to achieve greater capacitances and energy densities than EDLCs. 

Because of their high conductivity, metal oxides have also been explored as a possible 

electrode material for pseudocapacitors (Yu et al., 2013). Transition-metal oxide have 

been known to exhibit high capacitance as shown in Table 2.2. Materials exhibiting 

redox behavior for use as electrodes in pseudocapacitors are transition-metal oxides 

(RuO2, MnO2, etc.) as well as conducting polymers (ECP) (polyaniline (PANI), 

polypyrrole (PPy), and poly (3, 4-ethylenedioxythiophene) and their derivatives). A 

good example of material giving pseudo-capacitive property is ruthenium oxide, which 

may be able to achieve higher energy and power densities than similar EDLCs and 

conducting polymer pseudocapacitors due to its intrinsic reversibility of various surface 

redox couples and high conductivity (Wen and Hu, 1992; Conway, 1999). Although 

RuO2 exhibits excellent performances as a pure electrode materials but it unsuitable for 

fore widespread commercial use because the high cost and toxicity of this material. 

Thus, a major area of research is the development of fabrication methods and composite 

materials to reduce the cost without reducing the performance. Pseudocapacitors are 

used as alternative pseudocapacitive materials that are inexpensive and easily 

synthezied by in situ oxidation or electropolymerization. However, the use of transition 

metals as electrodes is often limited by their poor conductivity and dense morphology 

of the oxide and region of electroactivity (Pang et al., 2000). Moreover, these materials 
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typically suffer poor stability from mechanical stress of swelling and shrinking during 

doping and de-doping (Du et al., 2009). 

For hybrid Capacitors, hybrid capacitors attempt to exploit the relative 

advantages and mitigate the relative disadvantages of EDLCs and pseudocapacitors to 

realize better performance characteristics (Yu et al., 2013). Utilizing both Faradaic and 

non-Faradaic processes to store charge, hybrid capacitors have achieved energy and 

power densities greater than EDLCs without the sacrifices in cycling stability and 

affordability that have limited the success of pseudocapacitors. Research has focused 

on three different types of hybrid capacitors, distinguished by their electrode 

configuration: composite, asymmetric, and battery-type respectively. The two most 

studied rechargeable, faradaic electrode components for hybrid capacitor applications 

are PbO2/PbSO4 and NiOOH/Ni(OH)2. The negative electrodes in these hybrid 

capacitors were fabricated using different carbon materials such as activated carbon, 

carbon nano-fibers and activated carbon cloth (Beliakov, 2002). 
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Table 2.2 Summary of the various metal oxide electrodes. 

Electrode 

materials 

Electrolytes Specific 

capacitance (F/g) 

References 

RuO2·H2O 0.5 M H2SO4 650 (Kim and Kim, 2006) 

RuOx·H2O 0.1 M NaOH 1580 (Hu and Chen, 2004) 

MnO2 0.5 M K2SO4 261 (Yang et al., 2007) 

MnO2 0.1 M H2SO4 678 (Pang et al., 2000) 

MnO2/AC 0.65 M K2SO4 29 (Brousse et al., 2004) 

Fe3O4 1M Mn2SO3 170 (Wang et al., 2006) 

SnO2 0.1 M Na2SO4 285 (Prasad and Miura, 2004) 

BiFeO3 thin film 1M NaOH 81 (Lokhande et al., 2007) 

BFO nanorods 1M Na2SO4 450 (Rana et al., 2014) 

Bi2O3 1 M NaOH 98 (Gujar et al., 2006) 

Bi2WO6 1 M KOH 608 (Nithya et al., 2013) 

V2O5 2 M KCl 350 (Lee and Goodenough, 

1999) 

In2O3 0.1 M Na2SO3 190 (Prasad et al., 2004) 

NiO 1 M KOH 138 (Zhao et al., 2007) 

NiO 1 M KOH 278 (Nam et al., 2002) 

Co3O4 6.0M KOH 746 (Gao et al., 2010) 
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2.4.2.2 Electrochemical cell configuration 

In the electrochemical measurement, both of two-electrode and three 

electrode configurations were performed. Three-electrode system consists of a working 

electrode (WE), a counter electrode (CE), and a reference electrode (RE). WE is the 

electrode on which the reaction of interest is occurring. The potential is varied linearly 

with time. RE is the electrode which potential maintains a constant (non-polarizable). 

The connection with this electrode is due to a potential of a single electrode that cannot 

be measured directly. CE is an electrode used to close the current circuit in the 

electrochemical cell. In the configuration system, the current flows through WE and 

CE, while the voltage is measured between the WE and RE. Electrolyte is a solution 

that contains ions and act as charge carriers. This solution provides ions to the electrodes 

during oxidation and reduction. In the electrochemical cell, the ability to store charge 

depends on the accessibility of the ions to the surface-area, so ion size and pore size 

must be optimal. The energy density of cell can be limited by the electrolyte due to the 

cell voltage, and is strongly dependent on the electrolyte breakdown voltage, while the 

power density depends upon the cell’s internal resistance (ESR) that is strongly 

dependent on electrolyte conductivity. There are two types of electrolyte used in ECs: 

organic and aqueous. Aqueous solution provides higher capacitance and power 

compared to the organic electrolytes due to their higher ionic concentration, better 

conductivity (up to 1 S/cm) and smaller ionic size. However, the drawback of aqueous 

electrolyte is low breakdown voltage (~1.23 V determined by the electrochemical 

breakdown of water) (Bockris and Reddy, 1970). Most of commercial ECs recently 

have prefered to use organic electrolytes that provide large window voltages in the 

range of 2.5-2.7 V, and thus enhance the energy density. However, the drawback of 
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organic electrolyte is greater resistance and this limits the cell power density. 

Electrolytes often used are listed in Table 2.3. In the study of electrochemical behaviour 

of the Bi2WO6 nanoparticles (Nithya et al., 2013) investigated in various aqueous 

electrolytes, the redox behaviour and CV integrated current area of Bi2WO6 are high in 

KOH electrolyte compared with the LiOH and NaOH electrolyte. The current response 

in various electrolytes decreases in the order of 6 M KOH > 1 M KOH > 1 M NaOH > 

1 M Na2SO4. The improving for KOH due to its smaller hydration sphere radius, high 

ionic mobility and lower equivalent series resistance that leads to a higher capacitance 

(Nithya et al., 2013). Moreover, the reported conductivity of K+ (73 cm2/Ω mol) ions 

is greater than Na+ ions (50 cm2/ Ω mol) and Li+ ions (38 cm2/ Ω mol) at 25 ˚C (Qu et 

al., 2009). Therefore, 6 M KOH used as electrolyte for the electrochemical 

measurement in this work. 
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Table 2.3 Electrolytes that are used often (Inagaki, Konno et al. 2010). 

Electrolytes Ion size (nm) Electrolytes Ion size (nm) 

 Cation Anion  Cation Anion 

Organic electrolytes   Inorganic 

electrolytes 

  

(C2H5)4N·BF4 (TEA+BF4
−) 0.686 0.458 H2SO4  0.533 

(C2H5)3(CH3)N·BF4 

(TEMA+BF4
−) 

0.654 0.458 KOH 0.26 0.533 

(C2H5)4P·BF4 (TEP+BF4
−)  0.458 Na2SO4 0.36  

(C4H9)4N·BF4 (TBA+BF4
−) 0.830 0.458 NaCl 0.36 0.508 

(C6H13)4N·BF4 (THA+BF4
−) 0.960 0.458 Li·PF6 0.152 0.474 

(C2H5)4N·CF3SO3 0.686 0.540 Li·ClO4 0.152  

 

Note:  a is stokes diameter of hydrated ions, b is the diameter in PC, depending strongly 

on the solvent used.



 

 

CHAPTER III 

EXPERIMENTAL PROCEDURE 

 

 Chapter III describes the experimental method of the research, which can be 

generally catergorized into the following four main sections: 

(1) Sample preparation techniques: synthesis of BiFe1-xMxO3 (M = Co, Ni, 

Cu) nanoparticles by simple solution method and fabrication of the 

BiFe1-xMxO3 (M = Co, Ni, Cu) nanoparticle electrodes. 

(2) Material characterizations: X-ray diffraction (XRD), Scanning electron 

microscopy (SEM), Transmission electron microscopy (TEM), High-

resolution transmission electron microscopy (HRTEM), X-ray 

absorption near edge structure (XANES) and Gas absorption technique. 

(3) Magnetic measurements: Vibrating sample magnetometer (VSM). 

(4) Electrochemical measurements: Cyclic voltammetry (CV), 

Galvanostatic charge-discharge (GCD) and Electrochemical impedance 

spectroscopy (EIS). 

This chapter will give a brief introduction of these techniques and facilities, and 

the background theories of these method will also start one by one.
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3.1 Sample preparation  

3.1.1 Synthesis of BiFe1-xMxO3 (M = Co, Ni, Cu) nanoparticles  

 In this study, BiFe1-xMxO3 (M = Co, Ni, Cu) nanoparticles were synthesized by 

a simple solution method. In the first step, the precursor solution was prepared by 

dissolving 15 mmol each of Bismuth (III) nitrate pentahydrate [Bi(NO3)35H2O, 99.9%, 

Kento], iron (III) nitrate enneahydrate [Fe(No3)2·9H2O, 99.9%, Kento] in ethylene 

glycol solution for 2 h. Then the metal sources i.e. Copper (II) nitrate hydrate 

[Cu(NO3)2·xH2O, 99.99%, Sigma-aldrich], Nickel (II) nitrate hexahydrate 

[Ni(NO3)2·6H2O, 99.9%, Kento] and Cobalt (II) nitrate hexahydrate [Co(NO3)2·6H2O, 

99.9%, Kento] were added to the solution. In each doping material system, four samples 

with different doping concentration of metal sources were introduced with molar 

concentration of 5, 10, 20, and 30 mol %. After that, the solution was mixed together 

under magnetic stirring for 3 h in order to obtain a homogeneous solution and then dried 

at 80 ˚C on a hotplate with stirring for 3 days. To achieve phase homogeneity, the dried 

powders were calcined in air at 600 ˚C for 3 h at a heating rate of 10 ˚C/min. Finally, 

the calcined powders were leached in 20 % diluted HNO3 and deionized water seven to 

ten times and dried in an oven at 70 ˚C for 2 days. The materials used in this research 

are shown in Table 3.1. 
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Table 3.1 List of materials used as starting materials for BiFe1-xMxO3 (M = Co, Ni and 

Cu) nanoparticles preparation, quoting their source and purity. 

Materials Source Purity 

Bismuth(III) nitrate pentahydrate (Bi(NO3)3·5H2O) Kento 99.9% 

Iron(III) nitrate enneahydrate (Fe(No3)2·9H2O) Kento 99.9% 

Copper(II) nitrate hydrate (Cu(NO3)2·xH2O) Sigma-aldrich 99.99% 

Ni(II) nitrate hexahydrate (Ni(NO3)2·6H2O) Kento 99.9% 

Co(II) nitrate hexahydrate (Co(NO3)2·6H2O) Kento 99.9% 

Ethylene glycol Carlo erba reagents  

 

3.1.2 Fabrication of the BiFe1-xMxO3 (M = Co, Ni, Cu) nanoparticle electrodes 

 The working electrodes were prepared by mixing the BiFe1-xMxO3 (M = Co, Ni 

and Cu) nanoparticles, acetylene black as conductive carbon and a polyvinylidene 

difluoride (PVDF) as binders (weight ratio of 80:10:10) using n-methyl-2 pyrrolidone 

(NMP) as a solvent to form a slurry. The slurry was coated on to a nickle foam current 

collector. Then, the electrode was dried at 70 ˚C in a vacuum oven for 12 h and pressed 

at 20 MPa, respectively. Each working electrode contained about 3 mg of electroactive 

material and the area of coating was about 1 cm2. The electrochemical measurement 

was employed to explore the electrodes for electrochemical supercapacitor application 

in 6 M KOH aqueous electrolyte. The process of the electrode fabrication and the 

electrochemical measurement is presented as follows: 
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Figure 3.1 Schematic diagram of fabrication of the electrode and measuring 

electrochemical parameters. 

 

 The flowchart diagram showing the overview of the experimental procedure 

performed in this work is illustrated in Figure 3.2 

 

 

 

 

Mixing of active materials, PVDF and acetylene 

black (80:10:10 wt. %) using NMP (N-methyl-2 

pyrrolidinone) as solvent (200 µl) 

Coating of the slurry (100µl) on a nickel foam plate 

Drying at 60˚C for 12h and pressing the electrodes with 20 MPa 

Electrochemical measurements of the prepared electrodes by a 

potentiostat galvanostat with three-electrode system in 6 M KOH 
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Figure 3.2 Diagram showing preparation and characterization of BiFe1-xMxO3 (M = 

Co, Ni, and Cu) nanoparticles. 

BiFeO3 : Bi(NO3)35H2O + Fe(No3)2·9H2O + Ethylene glycol 

Co-doped BiFeO3 : Bi(NO3)35H2O + Fe(No3)2·9H2O  + 

Co(NO3)2 ·6H2O  + Ethylene glycol 

Ni-doped BiFeO3 : Bi(NO3)35H2O + Fe(No3)2·9H2O  + 

Ni(NO3)2 ·6H2O  + Ethylene glycol 

Cu-doped BiFeO3 : Bi(NO3)35H2O + Fe(No3)2·9H2O  + 

Cu(NO3)2 ·H2O + Ethylene glycol 

Each of the stirring materials was mixed together and stirried for 3 h 

Heated up to 80 ˚C under stirring for 3 days 

Calcined at 600 ˚C for 3 h 

Leaching by 20 % HNO3 concentration and de-ionized water and 

drying at 70 ˚C for 2 days 

The electrochemical properties of BiFeO3-based nanoparticles were 

studied using CV, GCD and EIS method   

The magnetic properties of BiFeO3-based nanoparticles were studied 

using VSM   

BiFeO3-based nanoparticles were characterized by XRD, SEM, 

TEM, XAS and Gas absorption technique   
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3.2 Material characterization  

 In this research, the phase composition and microstructure of the BiFe1-xMxO3 

(M = Co, Ni, Cu) nanoparticles were characterized by XRD, SEM and TEM techniques. 

The surface area and pore size distribution of the nanoparticles was investigated by Gas 

absorption techniques. The valence state of all samples were characterized by using 

XANES. Magnetic properties are evaluated by VSM and electrochemical properties are 

studied on a potentiostat galvanostat (PGSTAT302N) via CV, GCD and EIS 

techniques. The several characterization techniques were used and brief concepts are 

given as follows: 

3.2.1 X-ray diffraction (XRD) 

 X-ray diffraction (XRD) is the most effective methods originally used for 

determining the crystal structure of materials (Leng, 2009). Diffraction methods can 

identify chemical compounds from their crystalline structure, not from their 

compositions of chemical elements. Traditionally, the XRD instrument is called an X-

ray diffractometer. The basic function of a diffractometer is to detect X-ray diffraction 

from materials and to record the diffraction intensity as a function of the diffraction 

angle (2θ). X-ray beams incident on a crystalline solid will be diffracted by the 

crystallographic planes as illustrated in Figure 3.3. The constructive and destructive 

interferences occur if a phase difference is nλ (in phase) and nλ/2 (out of phase). Two 

in-phase incident waves, beam 1 and beam 2, are deflected by two crystal planes (A and 

B). The deflected waves will not be in phase except when the following relationship 

(Bragg equation) is satisfied. 

 

http://en.wikipedia.org/wiki/Chemical_state
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                                                      2dsinθ = nλ                                                                  (3.1) 

 

 Where d is the spacing between the parallel crystal planes, θ is the angle of 

incident beam, λ is the wavelength of the incident X-ray beam and n is an integer. In 

order to keep these beams in phase, their path difference (SQ + QT = 2d sin θ) has to 

equal one or multiple X-ray wavelengths (nλ). The diffractometer records changes of 

diffraction intensity with 2θ. A number of intensity peaks located at different 2θ provide 

a ‘fingerprint’ for a crystalline solid. Identification of crystalline substance and 

crystalline phases in a specimen is achieved by comparing the specimen diffraction 

spectrum with spectra of known crystalline substances.  

 

 

Figure 3.3 Bragg diffraction by crystal planes (Adapted from (Leng, 2009). 

 

In this thesis, the phase and structure analysis of the synthesized nanoparticles 

was carried out by X-ray diffraction (XRD; D2 Advance Bruker) with Cu Kα at λ = 

0.15406 nm as shown in Figure 3.4. The XRD pattern were recorded in the 2θ of 15˚-
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80˚ with the time step of 0.5 and the step size of 0.02. The crystalline phase 

identification was carried out by comparison with the Joint Committee on Powder 

Diffraction Standards (JCPDS) diffraction files. The Rietveld refinement technique 

with TOPAS software was used to investigate the crystal structure. The crystallite size 

of the nanocrystalline samples was measured from the line broadening analysis of the 

diffraction peak at an angle 2-theta of 22.39˚ by using the Debye-Scherer equation 

(Patterson, 1939): 

 

                                                               D = 
kλ

βcosθ
                                                     (3.2) 

 

 where D is the crystallite size (nm), k is the spherical shape factor (0.9), λ is the 

X-ray wavelength, θ is the diffraction angle, and β is the full width at half maximum 

(FWHM) intensity. 

 

 

Figure 3.4 X-ray diffractometer (XRD; Bruker D2, Germany, SUT). 
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3.2.2 Scanning electron microscopy (SEM) 

 Scanning electron microscopy (SEM) is technique used to examine microscopic 

structure by scanning the surface of materials (Leng, 2009). The SEM technique utilizes 

electron beams to scan the suface of a sample specimen (Ni, 2013), as shown in Figure 

3.5. The specimen is irradiated by a focused electron beam and the signals create useful 

images describing the surface morphology of the specimen. The SEM operates under a 

vacuum, and electrons produced by a field emission source are accelerated in a field 

gradient. The beam passes through electromagnetic lenses, focusing onto the specimen. 

As a result of this bombardment different types of electrons are emitted from the 

specimen. This signal electrons emitted from the specimen are collected by a detector 

and amplified. The most common signals used for imaging are secondary electrons, 

backscattered electrons, and characteristic X-rays. In normal conditions, the secondary 

electrons created from inelastic surface scattering can reach the detector in greater 

numbers, depending on incidence angle, and generate topographic information. A 

detector catches the secondary electrons and an image of the sample surface is 

constructed by comparing the intensity of these secondary electrons to the scanning 

primary electron beam. Finally the image is displayed on a screen. Samples must be 

electronically conductive to prevent charging effects that can blur image quality at 

higher resolutions. To avoid this, some insulating samples are gold sputtered to provide 

a nanometer-thick conductive surface layer. In the study of supercapacitors, SEM can 

provide important information about the material surface morphologies for 

investigations of physical modifications or treatments effects on material phases and 

morphologies (Yu et al., 2013) (Frackowiak, 2007). In this work, the morphologies of 
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samples were obtained using scanning electron microscope (SEM. JSM-7800F), as 

shown in Figure 3.6. 

 

 

Figure 3.5 Diagram of major components of SEM (Adapted from (Ni, 2013)). 

 

 

Figure 3.6 Scanning electron microscope (SEM, JSM-7800F, SUT). 
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3.2.3 Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) is an electron microscopy technique 

used to examine observed morphology, particle size distribution and phase composition 

(Williams and Carter, 1996). Similar to SEM, TEM also utilizes a highly focused 

electron beam. However, TEM imaging requires a very thin specimen to achieve good 

image quality. This means that sample preparation is extremely important. A sample 

layer must be thin enough to allow electrons to pass through. An electron gun emits 

high energy beams that can penetrate several microns into a solid. The electrons can 

penetrate through a thin specimen. An image is formed from the interaction of the 

electrons transmitted through the specimen; the image is magnified and focused onto 

an imaging device, such as a fluorescent screen, on a layer of photographic film, or to 

be detected by a sensor such as a CCD camera.  

 In this work, all prepared samples was dispersed in ethanol and then dripped 

and dried on a copper grid and then measured under a 200 keV by using FEI TEM 

(TECNAI G220, FEI, USA), as shown in Figure 3.7. The Bright field TEM images, 

high-resolution (HRTEM) TEM images and corresponding selected areas of electron 

diffraction (SAED) patterns of the samples were also recorded in this work. 
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Figure 3.7 Transmission Electron Microscopes (FEI TEM, TECNAI G220, SUT). 

 

3.2.4 X-ray absorption near-edge spectroscopy (XANES) 

 X-ray Absorption Spectroscopy (XAS) is a powerful technique for the structural 

study of material. This technique based on the measurement of transitions from core 

electronic states of the metal to the excited electronic states and the continuum (Yano 

and Yachandra, 2009). The XAS can divided into 2 regions consist of  X-ray absorption 

near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) 

which studies the fine structure in the absorption at energies greater than the threshold 

for electron release. These two methods give complementary structural information, the 

XANES spectra report the electronic structure and the symmetry of the metal site, and 

the EXAFS reports numbers, types, and distances to ligands and neighboring atoms 

from the absorbing element. The sudden increases in absorption are called absorption 

edges, and correspond to the energy required to eject a core electron into the excited 
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electronic states. XAS measures the energy dependence of the X-ray absorption 

coefficient μ(E) at and above the absorption edge of a selected element. The μ(E) can 

be measured two ways. First way is transmission mode, which is the simplest type of 

XAS measurement. In a transmission experiment, the intensity of the X-ray beam is 

measured before and after a sample and the absorption coefficient μ(E) calculated using 

the equation 3.3. The intensity of the X-ray beam is typically measured using ionisation 

detectors. Second way is Fluorescence mode. In a fluorescence experiment, the 

absorbance of the sample is measured by monitoring the intensity of the X-ray 

fluorescence produced when higher-shell electrons relax into the hole left by the 

photoelectron. The μ(E) is calculated using the equation 3.4 (Lee et al., 1981). 

 

                                                        μ(E)x = -ln (I / I0)                                             (3.3) 

 

                                                        μ(E) = C (F / I0)                                                (3.4) 

 

 where I0 is the X-ray intensity hitting, I is the intensity transmitted, µ(E) is 

absorption coefficient, and x is the thickness of the sample, F is the intensity of the 

fluorescence X-rays, C is approximately constant. An x-ray is absorbed by an atom 

when the energy of the X-ray is transferred to a core-level electron (K, L, or M shell) 

which is ejected from the atom. The absorption discontinuity is known as the K-edge, 

when the photoelectron originates from a 1s core level, and an L-edge when the 

ionization is from a 2s or 2p electron. X-ray absorption near-edge structure (XANES) 

spectra provide detailed information about the oxidation state and coordination 

environment of the metal atoms. The K-edge absorption edge energy increases with 
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increasing oxidation state. In general, the rising edge position shifts when the effective 

number of positive charges. 

 In this work, to characterize the oxidation state of Co, Ni, Cu and Fe, X-ray 

absorption near edge spectra (XANES) of Co, Ni, and Cu K-edge spectra were collected 

in the fluorescence and Fe K-edge spectra were collected in the transmission modes at 

the SUT-NANOTEC-SLRI XAS Beamline (BL 5.2) (electron energy, 1.2 GeV; bending 

magnet; beam current, 80-150 mA; (1.1-1.7) x 1011 photon/s) at the Synchrotron Light 

Research Institute (SLRI), Nakhon Ratchasima, Thailand. Finally, the normalized 

XANES data were processed and analyzed using ATHENA software which included an 

IFEFFIT package (Newville, 2001; Ravel and Newville, 2005). 

3.2.5 Gas absorption techniques  

 In N2 adsorption analysis, a sample is exposed to N2 gas of different pressures 

at a given temperature (usually at -196 ˚C, the liquid-nitrogen temperature). Increment 

of pressure results in increased amount of N2 molecules adsorbed on the surface of the 

sample. The pressure at which adsorption equilibrium is established is measured and 

the universal gas law is applied to determine the quantity of N2 gas adsorbed. Thus, an 

adsorption isotherm is obtained. If the pressure is systematically decreased to induce 

desorption of the adsorbed N2 molecules, a desorption isotherm is obtained. Analysis 

of the adsorption and desorption isotherms in combination with some physical models 

yields information about the pore structure of the sample such as surface area, pore 

volume, pore size and surface nature. The adsorption isotherm can have different shape 

which is based on the adsorbent, adsorbate and the adsorbent adsorbate interaction. 

According to IUPAC adsorption isotherm is classified into six types. 
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Figure 3.8 The IUPAC classification of adsorption isotherms (Adapted from Donohue 

and Aranovich, 1998). 

 

 Generally, pores in materials are classified into three groups according to pore 

size distributions namely, micropores (pore size < 2 nm), mesopores (2-50 nm), and 

macropores (> 50 nm). Type I is the typical isotherm of micro-porous (< 2 nm) 

materials having relatively small external surface area. Type II or anti s-shaped 

adsorption isotherm is the normal forms for macroporous (> 50 nm) and non porous 

adsorbents. Type III is characteristic of non-porous with low adsorbate-adsorbent 

interaction. A hysteresis loop feature in type IV related to the capillary condensation of 

the adsorbate in the mesopores (2-50 nm) materials. Type V isotherm is related to weak 

adsorbateadsobent interaction at low P/P0, while the number of pore in the system is 

limited at middle and high relative pressure. Finally, type VI isotherm is characteristic 

of nonporous adsorbents with homogeneous surface. 
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 The Brunauer Emmett Teller (BET) is a characterization technique to observe 

the specific surface area of materials. The principle measurement of the BET method is 

based on the physical adsorption of gas on the surface of sample and by calculating the 

amount of adsorbate gas corresponding to a monomolecular layer on the surface 

(Brunauer et al., 1938). For BET method, the phenomenon of adsorption can be 

expressed with the following equation. 

 

                                                 
1

W[(
P0
P

)-1]
 = 

1

WmC
+ 

C - 1

WmC
(

P

P0
)                                             (3.5) 

 

 where W is the volume of gas adsorbed at standard temperature and STP 

pressure (273.15 K and 1.103 x 105 Pa) (ml). Wm is the volume of gas adsorbed at STP 

to produce an apparent monolayer on the sample surface (ml). P0 is saturated pressure 

of adsorbate gas (Pa). P is partial vapour pressure of adsorbate gas in equilibrium with 

the surface at 77.4 K. C is dimensionless constant. By decreasing in relative pressure, 

desorption nitrogen was observed. The specific surface area can be calculated by 

 

                                                         aBET = 
WmσNA

mV0
                                                   (3.6) 

 

 where Wm arise from the slop and the intercept of plot between the relative 

pressure and 1/W[(P/P0) - 1] , σ  is the area of the surface occupied by individual gas 

molecules, NA is the Avogadro number, m is the sample mass and V0 is the molar 

volume of gas (22414 cm3/molar at atmospheric pressure).  
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  The Barrett-Joyner-Halenda (BJH) method is a procedure for calculating pore 

size distributions from experimental isotherms using the Kelvin model of pore filling. 

It applies only to the mesopore and small macropore size range (Barrett et al., 1951). 

For the adsorption isotherm depending on the shape of mesopore, Kelvin equation 

represents the relationship between mesopore size and critical condensation pressure. 

The Kelvin equation is used to calculated pore size distribution from desorption 

isotherm. Core radius (r) can be calculated by the Kelvin equation as follows: 

 

                                                       ln
P

P0
 = - 

2γVL

RT

1

r
                                                           (3.7) 

 

 where γ is surface tension, VL is molar volume of liquid adsorptive, R is gas 

constant and T is absolution temperature. If γ and VL of nitrogen at liquid nitrogen 

temperature (77 K) are applied, the following equation can be obtained. 

 

                                                      r = 0.953 / ln (P0 / P)                                           (3.8) 

 

 In this work, the specific surface area (Sp) and porosity of the nanoparticles were 

measured by using the N2 adsorption technique. Using computer interfaced BEL SORP-

miniII instruments, all samples were thoroughly degassed at 80 ˚C for 18 h. Specific 

surface area was calculated by using the BET method. The pore size distributions were 

obtained from the analysis of the adsorption branch of the isotherm by the BJH method. 

3.2.6 Magnetic measurements 

 Vibrating sample magnetrometer (VSM) is the instrument that measures the 

magnetic behavior of  magnetic materials (Foner, 1959; Kirupakar and Vishwanath, 
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2016). The vibrating sample magnetometer operates on the principle that when a sample 

material is placed in a uniform magnetic field as shown in Figure 3.9. If the sample is 

magnetic, this constant magnetic field will magnetize the sample by aligning the 

magnetic domains, or the individual magnetic spins, with the field. As the sample is 

moved up and down. The magnetic field around the sample (magnetic stray field) is 

changing as a function of time and can be sensed by a set of pick-up coils. The 

alternating magnetic field will cause an electric current in the pick-up coils according 

to Faraday's Law of induction, which informs that a changing magnetic field will 

produce an electric field. This current will be proportional to the magnetization of the 

sample. The greater the magnetization, the greater the induced current. The induction 

current is amplified by a transimpedance amplifier and lock-in amplifier. The various 

components are hooked up to a computer interface. Using controlling and monitoring 

software, the system can tell us how much the sample is magnetized and how its 

magnetization depends on the strength of the constant magnetic field. The output is a 

hysteresis curve, which shows the relationship between the induced magnetic flux 

density and the magnetizing force and gives important information about the magnetic 

saturation, the remanence, the coercivity and the level of residual magnetism left in the 

material. 

 In this work, the magnetic measurements were performed using the vibrating 

sample magnetometer (VSM) option in the Quantum Design Versalab instrument. A 

powder of sample was weighed and transferred into a small sample holder, and the 

magnetization were collected in a magnetic field range of ± 30 kOe at various 

temperatures (50, 100, 150, 200, 250, 300, and 350 K). The parameters like saturation 

magnetization (Ms), remanent magnetization (Mr) and coercivity field (Hc) were 
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obtained from the magnetization curve. The zero fieldcooled and field-cooled (ZFC-

FC) magnetizations were also studied in this work. The ZFC spectra were typically 

obtained by cooling in zero magnetic fields from a high temperature to a low 

temperature (350 to 50 K). The magnetization was measured at step wise increasing 

temperatures in a small field (500 Oe). The FC magnetization curve is obtained by 

measuring at stepwise decreasing temperatures in the same small applied field at each 

temperature. 

 

 

Figure 3.9 Schematic diagram of the vibrating sample magnetrometer (VSM) (Adapted 

from McElfresh, 1994) 

 

3.3 Electrochemical measurements 

 Electrochemical behaviors of the prepared BiFe1-xMxO3 (M = Co, Ni and Cu) 

electrodes were studied on a autolab potentiostat galvanostat (PGSTAT 302N). The 

electrochemical method was used to evaluate the electrochemical performance via 

cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and 

galvanostatic charge-discharge (GCD) techniques. To characterize an electrochemical 
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cell, three-electrode configurations was performed. Figure 3.10 gives a schematic view 

of a cell connected to an electrochemical workstation. The three-electrode system 

consists of the active materials, a platinum wire (Pt) and silver/silver chloride 

(Ag/AgCl) electrodes used as working, counter, and reference electrodes, respectively. 

Basically, the current flows thought the CE and the WE, and the voltage is measured 

(or controlled) between RE and WE.  

 

 

Figure 3.10 Experimental set up of electrochemical measurements consist of personal 

computer, potentiostate/galvanostat and electrochemical cell. 

 

 Nova is the electrochemistry software from Metrohm Autolab. This application 

is used to control all compatible instruments and accessories as well as to analyze 

results of the measurements. The view of the Nava software (version 1.10) is shown in 

Figure 3.11.  
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Figure 3.11 View of measurement and set up of the Nova 1.10 software. 
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3.3.1 Cyclic voltammetry  

 Cyclic Voltammetry (CV) is a preferred technique for initial screening of 

materials for electrochemical capacitor applications. The major advantage comes from 

the ability of this technique to provide detailed information about the capacitance and 

its voltage dependence, power characteristics, and the reversibility of the 

electrochemical reaction (Zheng, 2003). The principle of this technique is to apply a 

linear voltage ramp to an electrode between two voltage limits and to measure the 

resulting current. During scanning of the electrode potential (difference between 

working electrode and reference electrode), the current passing between the working 

electrode and the counter electrode can be recorded. The current passing though the 

working electrode is then plotted as a function of electrode potential to yield a CV with 

a typical example plot shown in Figure 3.12. This plot is known as voltammogram, 

which shows three different schematic voltammograms of ideal capacitor, resistive 

capacitor, and faradaic capacitor. An ideal capacitor display a rectangular shape due to 

the capacitance (C) would keep constant at a scan rate. When the resistances present, 

the rounding of the voltammogram corners was observed. However, most EDLC 

devices suffer due to internal resistance; hence they display distorted voltammograms 

with irregular peaks. Prominent peaks that can occur within narrow voltage windows 

are usually evidence of pseudo-capacitive behavior (Conway et al., 1997). The redox 

peak will present with the cell that store energy via redox reaction (electron transfer). 

For sample with different oxidation states, the voltammogram with multiple peaks will 

be observed. 
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Figure 3.12 Cyclic voltammogram of three different electrochemical capacitors: ideal, 

resistive, faradaic capacitors (Adapted from https://en.wikipedia.org/wiki/Pseudo-

capacitance). 

 

 Reversibility is the important parameter in all electrochemical systems. Cyclic 

voltammetry can also provide an indication of the degree of reversibility of an 

electrochemical reaction. By looking at the voltammograms we can see whether the 

reaction is reversible or not. There are three types of the electron transfer process 

including reversible, irreversible and quasi-reversible. In a reversible system, the 

electrode process is defined as electrochemically reversible when the rate of the 

electron transfer is higher than the rate of the mass transport. The electron transfers with 

rapidly rate in both forward and reverse scan. The current ratio between the reverse 

peaks (cathodic peaks, Ip,c) and the forward peaks (anodic peaks, Ip,a) is constant and 

equal to 1.0 and proportional to the concentrations of the active species. The peak 

current (ip) at room temperature is given by the Randles-Sevcik equation (Brownson 

and Banks, 2014; Nithya et al., 2013): 
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                                          ip
rev

= 2.687×10-5 n3/2 ACD1/2ν1/2                                     (3.9) 

 

 where n, A, C, D, and ν are the number of electron transferred/molecule, the 

electrode surface area (cm2), the concentration (mol/cm3), the diffusion coefficient 

(cm2/s), and the potential scan rate (V/s), respectively. The anodic (Ep,a) and cathodic 

peak potentials (Ep,c) are independent of the scan rate. The separation between the 

potentials of the forward and reverse peaks (called peak-to-peak separation), ΔEp, at 

room temperature, at all scan rates is equal to 

 

                                                    ΔE = Ep,a- Ep,c= 
0.059

n
V                                       (3.10) 

 

 In an irreversible process, the electron transfer is lower than that of the mass 

transport and the rate electron transfer in the reverse scan is very slow. The peak current 

and the peak potential, respectively are given by 

 

                                       ip
irrev

 = 0.4958 nFACD1/2 (
αnaF

RT
)

1/2

ν1/2                              (3.11) 

 

                                     Ep= E0-
RT

αnaF
[0.78-ln

K0

D1/2 + ln(
αnaFν

RT
)
1/2

]                              (3.12) 

 

 where α and na are the transfer coefficient and the number of electrons involved 

in the charge transfer step, respectively, F is faradays constant (96,500 C/mol), α is 

transfer coefficient, R is gas constant (8.3145 J/mol K) and T is temperature (K). In 

irreversible process, the cathodic and anodic peak potentials are dependent of the scan 
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rate. A quasi-reversible process is not uncommon that in electron transfer processes one 

observes that at low scan rates the process behaves reversibly, whereas at high scan 

rates the process behaves irreversibly (such behaviour is more easily seen for processes 

that are not complicated by coupled reactions). Processes occurring in the transition 

zone between reversible and irreversible behaviour are called quasireversible. A 

quasireversible process occurs when the rate of the electron transfer is of the same order 

of magnitude as the mass transport. The voltammograms of a quasi-reversible system 

exhibit a larger separation in peak potentials compared to a reversible system. 

In cyclic voltammetry, the enclosed area of the CV curve can be used to estimate 

the electrochemical specific capacitance (CCV) using the following equation (Yan et al., 

2012): 

 

                                                         CCV  = 
1

νm∆V
∫ IdV                                          (3.13) 

 

where I is the response current density discharge current (A/cm2), ∫ IdV is the 

area of the CV curve, υ is the potential scan rate (mV/s), m is the mass of the 

electroactive materials in the electrodes (g/cm2), and ΔV is the potential window (V). 

According to this equation, the specific capacitance of materials decreases with 

increasing of scan rate due to short time at high scan rate caused large internal resistance 

and hardly penetrated of electrolyte ions into inner pores during charge (Yuan et al., 

2008). Moreover, the variations of specific capacitance value are also depend on the 

number of active sites that are actively participated in the redox reactions.  The number 

of active sites (N) is given by the relation (Nithya et al., 2013; Ranjusha et al., 2012): 
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                                                         N = 
C × M × ∆V

F
                                                 (3.14) 

 

 where C is the specific capacitance (F/g), M is the molecular weight (g/mol), V 

is the potential window (V), F is the Faraday’s constant (96,500 C/mol). 

 In this work, the cyclic voltammetry  measurement was performed at a potential 

window in the range of -1.2 V to 0.3 V and different scan rates of 5, 10, 20, 40, 60, 80, 

and 100 mV/s were applied in 6M KOH at room temperature. 

3.3.2 Galvanostatic charge-discharge 

 The charging-discharging (GCD) technique is electrochemical analysis to 

determine the kinetics and mechanism of electrode reactions. Moreover, this technique 

is also one of the most reliable approaches to determine specific capacitance, energy 

density, power density, and cycle life of a supercapacitor (Yu et al., 2013). GCD 

measurements are performed by applying a constant cell current, during which the cell 

voltage is recorded as a function of charging or discharging time. In this work, the GCD 

curves at different current densities of 1, 2, 5, 10, 15, and 20A/g  were tested to 

investigate the capacitance performances of the electrodes. The discharge behavior of 

the electrode was found to be asymmetrical and non-linear, the specific capacitance was 

calculated using the following equation (Nithya et al., 2013): 

 

                                                          CGCD = 
2E

m (∆V)
2                                               (3.15) 

 

where CGCD is the specific capacitance (F/g), E is the energy density, m is The 

total mass of the active material, ∆V is the discharge potential window. The important 
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performance indicators for evaluating an electrochemical supercapacitor such as 

specific energy density (W/kg), specific power density (W/kg) were calculated using 

following equations (Nithya et al., 2013): 

 

                                                        E = 
I ∫  V(t) dt 

m
                                                    (3.16) 

 

                                                               P = 
E

t
                                                             (3.17) 

 

 where ∫ V(t)dt is the integral area of the discharge curve, I is the current density, 

M is the active material and t is the discharge time. Moreover, because of long term 

cycling stability is important for practical applications for supercapacitors. Therefore, 

endurance of the electrodes was tested up to 500 charge-discharge cycles at a current 

density of 10 A/g. 

3.3.3 Electrochemical impedance spectroscopy (EIS) 

 Electrochemical impedance spectroscopy (EIS) is an helpful experimental tool 

to characterize frequency response of a cell electrode for studying the electrochemical 

reaction occurs at the electrode/electrolyte interface (Bard et al., 1980). The 

measurement proceeds by applying sinusoidal potential of small amplitude to the cell 

electrodes and measured the resulting current response to obtain the impedance of the 

system (Taberna et al., 2006). The apply sinusoidal potential and the responding current 

(∆I(ω)) are given as 

 

                                                         ∆I(ω) = ∆I ej(ωt+ϕ)                                          (3.18) 



76 

 

where I is the current amplitude. ω = 2πf is the angular frequency, and Φ is phase 

shift between current response and the potential. The electrochemical impedance Z (ω) 

is defined as 

 

                                                 Z(ω) = 
ΔV

ΔI
 = |Z(ω)|e-jϕ = Z' + jZ''                                (3.19) 

 

 where Z′ and Z′′ are the real part and the imaginary part of the impedance, 

respectively defined as 

 

                                                           Z'
2
 + Z''

2
 = |Z(ω)|2                                             (3.20) 

 

 The impedance responses recorded by the EIS instrument are normally shown 

as Nyquist plots that illustrate the relationship between imaginary part impedance (-Z′′) 

and real part  impedance (Z′) based on the equivalent circuit having the components of 

solution resistance (Rs), charge-transfer resistance (Rct), constant phase element (CPE) 

and Warburg impedance (W). The intercept in the Z' axis at a high frequency refers to 

Rs which stands for ohmic resistance of the electrolyte, internal resistance of the 

electrode material and contact resistance at the electrode/current collector interface 

(Nithya et al., 2013). The semicircle diameter at high frequency region corresponds to 

charge transfer resistance (Rct) in which caused by faradic reaction. The slope of the 

linear curve at low frequency is called the Warburg resistance (W) and was used to 

describe the frequency dependent of ion diffusion into the bulk of the electrode surface. 

For not ideal cell or cell with lack of surface homogeneity, the constant phase element 

(CPE or Q) is used. The parameter “N” obtained from CPE is used to observed the 
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quality of the electrode material (N = 1, 0 and 0.5 < n < 1) indicates the ideal capacitors, 

the insulators, and the moderate capacitor behavior, respectively. To observe these 

parameters, analysis of EIS data can used by modeling or fitting of impedance spectra 

with an equivalent circuit (EC). Depending on the shape of the EIS spectrum, the EC 

model is usually composed of resistors (R), conductors (L), and capacitors (C) 

connected in series or in parallel. After an EC is designed, it can be used to fit the EIS 

spectra with a software program (Yu et al., 2013). In this work, the EIS measurement 

was collected with a frequency range of 0.1 HZ to 100 kHZ. 



 

 

CHAPTER IV 

RESULTS AND DISCUSSION 

 

 Chapter IV demonstrates the experimental results and their discussions. It is 

divided into three different groups of prepared samples: Co-doped BiFeO3, Ni-doped 

BiFeO3 and Cu-doped BiFeO3 nanoparticles, respectively. For each group of study, the 

crystal structure and phase composition of the synthesized nanoparticles can be 

determined by using X-ray diffraction (XRD) results. The morphology of the 

nanoparticles are investigated by scanning electron microscope (SEM) and 

transmission electron microscope (TEM). The electronic structure of the nanoparticles 

was investigated by X-ray absorption spectroscopy (XAS). The specific surface area 

and pore distribution was evaluated by Brunauer-Emmett-Teller (BET) method and 

Barrett-Joyner-Halenda (BJH) method, respectively. The results of the magnetic 

properties at different temperature of measurement are demonstrated. The effects of 

doping concentrations on structural and magnetic properties is discussed. The influence 

of particle size on magnetic properties of the nanoparticles is certainly interpreted. The 

electrochemical behaviors of different electrode materials (Co-doped BiFeO3, Ni-doped 

BiFeO3 and Cu-doped BiFeO3 nanoparticles) were studied by cyclic voltammetry (CV), 

galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) 

method. The effects of doping concentration on the electrochemical properties is also 

discussed. 
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4.1 Co-doped BiFeO3 nanoparticles  

4.1.1 Structural and morphology characterization 

4.1.1.1 X-ray diffraction (XRD) analysis of the Co-doped BiFeO3 

nanoparticles 

  Figure 4.1 shows the XRD patterns of the BiFe1-xCoxO3 (x = 0, 0.05, 0.1, 

0.2, and 0.3) nanoparticles calcined at 600 ˚C for 3h in air atmosphere. The main 

diffraction peaks of all the samples at 2θ = 22.4 ˚, 31.7 ˚, 32.1 ˚, 38.9 ˚, 39.5 ˚, 45.7 ˚, 

51.3 ˚, 51.7 ˚, 56.4 ˚, 57.0 ˚, 57.2 ˚, 66.3 ˚, 67.1 ˚, 70.6 ˚, 71.3 ˚, 71.7 ˚, 75.6 ˚, 76.1 ˚ 

correspond to the crystallite planes of (012), (104), (110), (006), (202), (024), (116), 

(122), (018), (214), (300), (208), (220), (313), (036), (312), (128), and (134), 

respectively for a rhombohedral structure of the main phase BiFeO3 with the space 

group R3c (JCPDS No.86-1518). In all the samples small impurity peaks are presented 

which correspond to the orthorhombic structures of Bi2Fe4O9 (in x = 0.05 and x = 0.1 

samples) with the space group Pbam (JCPDS No.72-1832), the cubic structure of 

CoFe2O4 (in x = 0.2 and x = 0.3 samples) with the space group Fd3m (JCPDS No.02-

1045) and the cubic structure of Co3O4 (in x = 0.2 and x = 0.3 samples) with the space 

group Fd3m (JCPDS No.80-1537). A shift in the peak position was observed towards 

the lower angles in the Co-doped samples. These changes confirm the substitution of 

the Fe site with Co ions and it is evident that the Co ions have been effectively 

incorporated into the crystal structure of BiFeO3 (Batttisha et al., 2015; Khan et al., 

2015; Chakrabarti et al., 2015).  

 



80 

 

 

Figure 4.1 XRD patterns of BiFe1-xCoxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles. 

 

 The crystallite size of the BiFe1-xCoxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) 

nanoparticles is calculated by the Scherrer equation using (012) the peak shown in Table 

4.1. The variations in the crystallite size of the nanoparticles does not linearly depend 

on the Co doping concentration. The crystallite sizes of the BiFe1-xCoxO3 (x = 0, 0.05, 

0.1, 0.2, and 0.3) samples are 88.8, 64.9, 57.8, 58.7, and 54.5 nm, respectively, which 

decrease with the increases in Co doping concentrations, except for  x = 0.2 sample 

with slightly decreasing. Figure 4.2-4.4 shows the Rietveld refinement using TOPAS 

software used to estimate the crystal structure profiles of the BiFe1-xCoxO3 with x = 0, 

0.05, 0.1, 0.2, and 0.3 nanoparticles. The lattice parameters (a and c), unit cell volume 

(V), crystal density (ρ), phase composition (%) of BiFeO3, Bi2Fe4O9, CoFe2O4 and 

Co3O4, residuals of the weighted pattern (Rwp) and pattern (Rp) and goodness of fit 

(GOF) were calculated as shown in Table 4.1. The reliability of fitting such as Rwp, Rp, 
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and GOF is confirmed. The Rwp, and Rp values of fitting less than 10 % and the GOF 

values about 2-3 indicating acceptable matched between experimental and theoretical 

XRD pattern for all samples based on rhombohedral unit cell (R3c) of BiFeO3. The 

lattice parameters a and c, and unit cell volume (V) of Co-doped BiFeO3 samples are 

smaller than undoped BiFeO3. The a-parameter of undoping sample (5.5793 nm) is 

higher than Co-doped BiFeO3 (5.5746-5.5754 nm). Especially, the decrease in c-

parameter from 13.8743 nm for x = 0 to 13.8532 nm for x = 0.2. This reduction may 

occur due to Co3+ (0.54 Å) with a small ionic radius substitutes the Fe3+ (0.645 Å), 

which agree with reports (Chakrabarti et al., 2015; Khan et al., 2015). The quantitative 

analysis shows that the Bi2Fe4O9 phase composition of BiFe1-xCoxO3 in x = 0 to 0.1 

samples decreased from 20.9 to 4.2 %, the CoFe2O4 phase composition in x = 0.2 and 

0.3 samples increased from 4.5 to 18.1 %, respectively, and the Co3O4 phase 

composition in x = 0.2 and 0.3 samples increased from 8.1 to 14.3 %, respectively. This 

is the evidence of that the higher Co doping helped to prevent the formation of the 

Bi2Fe4O9 phase and the development of the spinel phase of CoFe2O4 and Co3O4.  
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Table 4.1 List of Crystallite size (D), lattice parameters (a, c), unit cell volume (V), 

crystal density (ρ), phase composition of BiFeO3, Bi2Fe4O9, CoFe2O4 and Co3O4, 

residuals of the weighted pattern (Rwp),  pattern (Rp), and goodness of fit (GOF) of 

BiFe1-xCoxO3 with x = 0, 0.05, 0.1, 0.2, and 0.3 nanoparticles. 

Parameters x = 0 x = 0.05 x = 0.1 x = 0.2 x = 0.3 

D (nm) 88.8 64.9 57.8 58.7 54.5 

a (Å) 5.5793 5.5747 5.5754 5.5746 5.5748 

c (Å) 13.8743 13.8566 13.8556 13.8532 13.8540 

V (Å)3 374.0372 372.9290 373.0022 372.8312 372.804 

ρ (g/cm3) 8.333 8.362 8.364 8.376 8.383 

BiFeO3 (%) 79.12 91.22 95.78 87.33 67.23 

Bi2Fe4O9 (%) 20.88 8.78 4.22 - - 

CoFe2O4 (%) - - - 4.52 18.05 

Co3O4 (%) - - - 8.14 14.28 

Rwp (%) 7.68 7.58 8.27 7.99 6.25 

Rp (%) 5.98 5.91 6.42 6.19 5.01 

GOF 2.70 2.53 3.01 2.89 2.30 
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Figure 4.2 Rietveld refinement of XRD data for (a) BiFeO3 (b) Co-doped BiFeO3 (x = 

0.05) nanoparticles.  
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Figure 4.3 Rietveld refinement of XRD data for Co-doped BiFeO3 nanoparticles: (a) x 

= 0.1 (b) x = 0.2.  
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Figure 4.4 Rietveld refinement of XRD data for Co-doped BiFeO3 (x = 0.3) 

nanoparticles.  

 

4.1.1.2 Morphology of the Co-doped BiFeO3 nanoparticles by SEM and 

TEM 

  The morphology of the nanoparticles was analyzed by scanning electron 

microscope (SEM) as shown in Figure 4.5. The undoped sample shows the sizes of the 

nanoparticles to be about 100-200 nm, while the Co-doped samples show decreases in 

the sizes of nanoparticles of about 50-150 nm. This indicates that Co doping causes 

decreases in the size of the nanoparticles. The mean particle size from the SEM image 

is in good agreement with the crystallite size calculated by using Scherrer’s formula.  
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Figure 4.5 SEM images of BiFe1-xCoxO3 nanoparticles: (a) x = 0, (b) x = 0.05, (c) x = 

0.1, (d) x = 0.2, and (e) x = 0.3. 

 

 The morphology and structure of Co-doped BiFeO3 nanoparticles was 

investigated by transmission electron microscopy (TEM). Bright field TEM images, 
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high-resolution (HRTEM) TEM images and corresponding selected areas of electron 

diffraction (SAED) patterns are shown in Figure 4.6. The TEM bright field images 

show that the particles sizes obtained were about 50-200 nm. This corrrespong to the 

XRD and SEM results. To better investigate the crystal structure, HRTEM was 

performed, which shows the lattice fringes of the (104), (012), (110), (110), and (110) 

planes with interplanar spacing of approximately 0.281, 0.395, 0.279, 0.279, and 0.279 

nm of the BiFe1-xCoxO3  with x = 0, 0.05, 0.1, 0.2, and 0.3 samples, respectively, which 

correspond to the BiFeO3 structure. This indicates that the nanoparticles are surrounded 

by BiFeO3 nanocrystals. The SAED patterns of the nanoparticles show spotty and ring 

patterns which indicate the characteristics of nanocrystalline BiFeO3 (JCPDS No.86-

1518). 
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Figure 4.6 Bright field TEM images (left), high-resolution (HRTEM) TEM images 

(middle) and corresponding selected areas electron diffraction (SAED) patterns (right) 

of BiFe1-xCoxO3 nanoparticles: (a) x = 0, (b) x = 0.05, (c) x  = 0.1, (d) x = 0.2, and (e) 

x = 0.3. 
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4.1.1.3 X-ray absorption spectroscopy study of the Co-doped BiFeO3 

nanoparticles 

 X-ray absorption near-edge structure (XANES) spectra at the Fe and Co 

K-egde were measured at the room temperature to study the valence state of Fe and Co 

ions in the structure of the Co-doped BiFeO3 samples. Figure 4.7 shows normalized Bi 

M5-edges and Fe K-edges XANES spectra of all samples. The Bi M5-edge XANES 

spectra of BiFe1-xCoxO3 nanoparticles can be seen with x = 0, 0.05, 0.1, 0.2, and 0.3 as 

compared with those of the standard materials with Bi oxidation states are shown in 

Figure 4.7(a). The oxidation states of Bi in all samples are show along with the standard 

samples of Bi2O3 for Bi3+. It was found that the position of the absorption edge at Bi 

M5-edge is similar to Bi2O3 which is typical for Bi in the oxidation state of +3. Figure 

4.7(b) shows the XANES spectra at the Fe K-edge of all the samples, which match that 

of Fe2O3, indicating that the oxidation state of Fe is 3+. Figure 4.8 shows normalized 

Co K-edges XANES spectra of all samples. The Co K-edge XANES spectra of the 

BiFe1-xCoxO3 nanoparticles can be seen with x = 0.05, 0.1, 0.2, and 0.3 as compared 

with those of the standard materials with different Co oxidation states. The position of 

the edge energies for all samples is higher than that for the CoO (Co2+) standard 

samples. The absorption edge at the Co K-edge of all the samples match with Co3O4 

(Mixing of Co2+ and Co3+) standard samples. The edge energies of Bi M5-edge, Fe K-

edge and Co K-edge of BiFe1-xCoxO3 (x = 0.05, 0.1, 0.2, and 0.3) samples are shown in 

Table 4.2-4.4. The edge energies of Bi M5-edge and Fe K-edge of BiFe1-xCuxO3 (x = 

0.05, 0.1, 0.2, and 0.3) samples are close to the Bi2O3 and Fe2O3 standard. The edge 

energies of Co K-edge of BiFe1-xCoxO3 (x = 0.05, 0.1, 0.2, and 0.3) samples are 7721.30, 

7721.38, 7721.46 and 7721.66 eV, respectively, are found to show a slight increase and 



90 

 

to be very close to the Co3O4 (7721.89 eV) standard. Clearly, the oxidation states of Co 

are between 2+ and 3+. The XANES analysis provides strong evidence that mixing of 

Co+2 (~0.65 Å) and Co3+ (~0.545 Å) is substituting the Fe3+ (~0.645 Å) site. The 

tendency of Co3+ seems to slightly increase. Furthermore, the XANES analysis provides 

strong evidence that mixing of Co2+ (0.65 Å) and Co3+ (0.545 Å) substitutes the Fe3+ 

(~0.645 Å) site. Moreover, this provides strong evidence that the presence of Co+3 

(0.545 Å) with a small ionic radius substitutes the Fe3+ (~0.645 Å) site which may cause 

the decreases in crystallite and particle sizes (Khan et al., 2015; Chakrabarti et al., 

2015). 
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Figure 4.7 XANES spectra of BiFe1-xCoxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) 

nanoparticles: (a) Bi M5-edge and (b) Fe K-edge. 
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Figure 4.8 XANES spectra at Co K-edge of BiFe1-xCoxO3 (x = 0, 0.05, 0.1, 0.2, and 

0.3) nanoparticles. 

 

Table 4.2 Absorption edges and oxidation states at Bi M5-edge of all Co-doped BiFeO3 

samples along with the standard samples. 

Samples/standard Absorption edge at 

Bi (eV) 

Edge shift at 

Bi (eV) 

Oxidation state 

Bi2O3 2597.25 0 +3 

BiFeO3 2598.63 1.38 +3 

BiFe0.95Co0.05O3 2598.73 1.48 +3 

BiFe0.9Co0.1O3 2599.29 2.04 +3 

BiFe0.8Co0.2O3 2598.99 1.74 +3 

BiFe0.7Co0.3O3 2599.15 1.90 +3 
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Table 4.3 Absorption edges and oxidation states at Fe K-edge of all Co-doped BiFeO3 

samples along with the standard samples. 

Samples/standard Absorption edge at 

Fe (eV) 

Edge shift at 

Fe (eV) 

Oxidation state 

Fe foil 7112 13.64 0 

FeO 7120.87 4.77 +2 

Fe2O3 7125.64 0 +3 

BiFeO3 7124.62 1.02 +3 

BiFe0.95Co0.05O3 7124.77 0.87 +3 

BiFe0.9Co0.1O3 7124.86 0.78 +3 

BiFe0.8Co0.2O3 7124.87 0.77 +3 

BiFe0.7Co0.3O3 7125.07 0.57 +3 

 

Table 4.4 Absorption edges and oxidation states at Co K-edge of all Co-doped BiFeO3 

samples along with the standard samples. 

Samples/standard Absorption edge 

at Co (eV) 

Edge shift at 

Co (eV) 

Oxidation state 

CoO 7718.24 0 +2 

Co3O4 7721.89 3.65 +2,+3 

BiFe0.95Co0.05O3 7721.30 3.06 +2,+3 

BiFe0.9Co0.1O3 7721.38 3.14 +2,+3 

BiFe0.8Co0.2O3 7721.46 3.22 +2,+3 

BiFe0.7Co0.3O3 7721.66 3.42 +2,+3 
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4.1.1.4 Characterization of surface area and pore size distribution of 

the Co-doped BiFeO3 nanoparticles by BET method and BJH method 

  The N2 adsorption-desorption isotherms and pore size 

distributions obtained by the BET and BJH plot, respectively of the BiFe1-xCoxO3 

nanoparticles are shown in Figure 4.9. Generally, the pores of the materials are 

classified into three groups according to pore size distributions namely, micropores 

(pore size < 2 nm), mesopores (2-50 nm), and macropores (> 50 nm). Figure 4.9(a) 

shows hysteresis loop features of N2 adsorption-desorption isotherms, which indicate 

characteristic of non-porous with weak interaction between sample surface and 

adsorbate in all samples. The presence of micropores and mesopores in particles is 

shown by the BJH curve in Figure 4.9(b). The specific surface area (SBET), the mean 

pore diameter (DMP), the total pore volume (VTP), meso pore diameter (DBJH) and the 

particle size (DBET) of BiFe1-xCoxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles are 

shown in Table 4.5. The SBET and total VTP of Co doping concentrations for x = 0 to x 

= 0.3 samples increase from 3.64 to 9.81 m2/g and 0.0254 to 0.1199 cm3/g, respectively. 

Conversely, the particle size of x = 0 to x = 0.3 samples decreases from 197.8 to 73.0 

nm, respectively. The DMP of undoped samples (25.55 nm) is lower than that of Co-

doped samples (48.89 to 56.55 nm). This may be related to capacitance and capacity 

retention, which will be discussed in Section 4.1.3. All the samples with higher 

concentrations of Co dopant showed a decrease in particle size which shows a tendency 

to increase their specific surface areas, and total pore volume as calculated and cited in 

Table 4.5. By comparison, the average particle size calculated by BET is larger than the 

crystallite size calculated by XRD for all samples as shown in Figure 4.10. The 
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differences in the results occur from aggregates and agglomerates of crystals, which 

indicate that the particles include several crystallites (Gaber et al., 2014).  

 

 

Figure 4.9 N2 adsorption-desorption isotherms (a) and pore-size distribution (b) of the 

BiFe1-xCoxO3 nanoparticles. 
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Table 4.5 Specific surface area (SBET), mean pore diameter (DMP), total pore volume 

(VTP), meso pore diameter (DBJH), particle size (DBET) of BiFe1-xCoxO3 (x = 0, 0.05, 0.1, 

0.2, and 0.3) nanoparticles. 

Samples SBET (m2/g) DMP (nm) VTP (cm3/g) DBJH (nm) DBET (nm) 

BiFeO3 3.64 25.55 0.0254 3.28 197.81 

Bi0.95Co0.05O3 5.05 54.30 0.0336 24.48 142.09 

Bi0.9Co0.1O3 5.96 53.19 0.0792 29.50 120.36 

Bi0.8Co0.2O3 8.17 56.55 0.1156 33.04 87.68 

Bi0.7Co0.3O3 9.81 48.89 0.1199 41.06 72.96 

 

 

Figure 4.10 Variations of crystallite size calculated by XRD and particle size calculated 

from BET of BiFe1-xCoxO3 nanoparticles as a function of Co content (%). 
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4.1.2 Magnetic properties of the Co-doped BiFeO3 nanoparticles 

 Figure 4.11(a)-4.11(e) shows the magnetic hysteresis (M-H) curves of the BiFe1-

xCoxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles at 50, 100, 200, 300 and 350 K of 

temperature. Clearly, the saturation magnetization (Ms) increases linearly with 

increasing Co doping concentrations at all temperatures. The magnetization of BiFeO3 

slightly increases from 0.207 to 0.223 emu/g with increases in temperature from 50 to 

350 K, respectively as shown in Table 4.6-4.7. Conversely, the magnetization of the 

BiFe1-x CoxO3 (x = 0.05, 0.1, 0.2, and 0.3) samples slightly increases with the decreases 

of temperature from 300 to 50 K, except at 200 K which shows the highest level of 

magnetization at 1.43, 2.36, 2.78, and 9.24 for x = 0.05, 0.1, 0.2, and 0.3, respectively. 

The secondary phase of Bi2Fe4O9 in the x = 0 to x = 0.1 samples does not 

influence the increases of the Ms because it exhibits an antiferromagnetic nature with a 

very low Ms, as reported previously (Wang et al., 2009; Rao et al., 2016; Lin et al., 

2015). In this study, the magnetization of the BiFe1-x CoxO3 (x = 0.05, 0.1, 0.2 and 0.3) 

samples at room temperature was 1.08, 2.15, 2.48, and 8.25 emu/g. By comparison, Ms 

of 10% Co-doped BiFeO3 (2.15 emu/g ) of this research is lower than 10% Co-doped 

BiFeO3 (4.2-5.78 emu/g ) in other reports (Montes et al., 2010; Batttisha et al., 2015). 

The observed increases in magnetization may arise from three reasons: (1) From the M-

H curves at temperatures of 50-350 K, The undoped BiFeO3 shows weak ferromagnetic 

behavior, while all Co doping samples exhibit the ferromagnetic behavior with the 

increasing Ms due to increasing of the magnetic source content. (2) The magnetization 

is mainly dependent on the Co content which provides strong evidence of the effects of 

the sizes of the BiFeO3 nanoparticles. It is known that particles on the nanoscale exhibit 

significantly different properties from bulk BFeO3 (Zhang et al., 2005). Improved 
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magnetization may be due to suppression of the spin cycloid structure of the particle 

size when it is less than 62 nm which causes the intrinsic spiral spin structure to be 

incompletely suppressed and the decreases in crystallite size with increases of Co 

content results in an increase in surface-volume ratio and the contribution of 

uncompensated spin at the surface to the total magnetic moment of the particle 

increases. (3) the high Ms of CoFe2O4 nanoparticles (2.0 to 58.30 emu/g ) (Kim et al., 

2003) and Co3O4 nanoparticles (60.76 to 71.09 emu/g ) (Gopinath et al., 2016) were 

measured at room temperature. Thus, the increases in the secondary phase of the 

CoFe2O4 and Co3O4 nanoparticles in the BiFe1-xCoxO3 (x = 0.2 to x = 0.3) samples may 

cause an increase in saturation magnetization. 

The hysteresis loops of all samples indicated improving ferromagnetism by Co 

doping influenced by variations in the coercivity (Hc) between 52.85 to 17970.57 Oe. 

The Hc values increase with decreases of temperature for all samples. At low 

temperature (50 K), the BiFe0.9Co0.1O3 sample shows the highest Hc value of 17970.57 

Oe. The Hc of all samples increases with measurements at low temperature which may 

occur for two reasons: (1) an increase in Hc is the alignment of the magnetic moment in 

the direction of the external magnetic field and (2) thermal fluctuations of nanoparticles 

decrease with the decreases in the temperature (Khan et al., 2015). At higher 

temperatures (300 K), BiFeO3 shows the lowest Hc value of 52.85 Oe. The variations 

of Hc correspond to decreasing of the crystallite size in the multi-domain region. The 

particle size dependence on coercivity can be expressed by the equation (Cullity and 

Graham, 2011): 

 

                                                        Hc = a +  
b

D
                                                       (4.1) 
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Where a and b are constants and D is the particle size. The coercivity may 

decrease with the increase in particle size above a critical size. Thus, the increasing of 

Hc of Co-doped BiFeO3 samples from x = 0 to x = 0.1 is due to the decrease in the 

crystallite size of BiFeO3. Especially, in the x = 0.2 and x = 0.3 samples, the crystallite 

size varies slightly, which is related to slight decreases in the Hc values. This conforms 

to the crystallite-size and the temperature-dependent behavior of BiFeO3 nanoparticle 

(Park et al., 2007). Furthermore, the Hc of the x = 0.2 and x = 0.3 samples are lower 

than the x = 0 to x = 0.1 samples which may due to the presence and variations in the 

small Hc values of CoFe2O4 (No to 193 Oe) (Kim et al., 2003) and Co3O4 (49.32 to 

56.90 Oe) nanoparticles (Gopinath et al., 2016). Thus, the presence of the CoFe2O4 and 

Co3O4 secondary phases influence Hc in the BiFe1-xCoxO3 (x = 0.2 to x = 0.3) samples. 

Clearly, this is evidence that the size effects of BiFeO3 and the presence of CoFe2O4 

and Co3O4 are strongly influenced by the Hc values. Moreover, the remanent 

magnetization (Mr) increases due to increase of the Co content, decrease in the 

crystallite size of BiFeO3 and decrease in temperature.  
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Figure 4.11 Magnetization hysteresis loops at different temperature of BiFe1-xCoxO3 

nanoparticles: (a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.2, and (e) x = 0.3. (f)  

Variations in saturation magnetization as a function of Co content (%). 
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Table 4.6 Coercivity (Hc), saturation manetization (Ms) and remanant magnetization 

(Mr) values of BiFe1-xCoxO3 (x = 0, 0.05, 0.1, and 0.2) samples at different 

temperatures. 

Sample T (K) Hc (Oe) Ms (emu/g) Mr (emu/g) 

x = 0 50 524.35 0.207 0.019 

 100 342.73 0.210 0.017 

 200 108.14 0.206 0.010 

 300 52.85 0.219 0.005 

 350 30.59 0.223 0.004 

x = 0.05 50 256.15 1.088 0.569 

 100 363.71 1.087 0.611 

 200 382.86 1.127 0.480 

 300 400.74 1.080 0.348 

 350 180.74 1.063 0.189 

x = 0.1 50 17970.57 2.323 1.845 

 100 13352.09 2.303 1.788 

 200 3923.34 2.348 1.461 

 300 949.65 2.165 0.857 

 350 335.87 2.039 0.580 

x = 0.2 50 14779.74 2.789 2.126 

 100 10695.73 2.717 2.013 

 200 3263.01 2.786 1.595 

 300 910.82 2.480 0.969 

 350 525.91 2.352 0.731 
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Table 4.7 Coercivity (Hc), saturation manetization (Ms) and remanant magnetization 

(Mr) values of BiFe1-xCoxO3 (x = 0.3) samples at different temperatures. 

Sample T (K) Hc (Oe) Ms (emu/g) Mr (emu/g) 

x = 0.3 50 15400.33 9.179 7.765 

 100 11029.97 9.167 7.392 

 200 3560.41 9.236 5.983 

 300 1003.20 8.250 3.563 

 350 571.12 7.775 2.511 

 

 Figure 4.12-4.14 shows temperature dependent of the magnetization for the un-

doped BiFeO3 and BiFe1-x CoxO3 (x = 0.05, 0.1, 0.2 and 0.3) nanoparticles, showing the 

ZFC (zero field cooling) and FC (field cooling) curves, under 50 K to 350 K with an 

applied field set at 500 Oe. The FC curves of the Co-doped BiFeO3 samples increase in 

magnetization with a lowering of temperature from 350 to 50 K. This may be attributed 

to the development of the incommensurate sinusoidal spin structure (Naik and 

Mahendiran, 2009) and indicates that the Co-doped BiFeO3 samples have typical 

ferromagnetic properties. The decreases in the magnetization of the ZFC curves with 

from a lowering of temperature broad maximum magnetization ~250 to 50K for x = 0 

samples and Co-doped BiFeO3 samples is decrease with a lowering of temperature from 

350 to 50 K is evidence of the antiferromagnetic exchange interaction of the spins 

(Kumar and Yadav, 2011). The feature of the ZFC curves of x = 0 sample shows a 

prominent and broad magnetization maximum around Tmax ~ 250 K, which can be 

attributed to the magnetic blocking mechanism. However, the decrease in the 

magnetization of the ZFC curves for x = 0.05, 0.1, 0.2, and 0.3 samples did not show 
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any form of broad maximum magnetization. The splitting of ZFC and FC 

magnetizations at low temperature also reveals spin-glass transition in BiFeO3 (Singh 

et al., 2008). The ZFC and FC curves of x = 0 samples exhibit an irreversible 

thermomagnetization process below 287 K that is there exist an obvious difference 

between the ZFC curve and FC curve, which increases with decreasing the temperature 

as shown in Figure 4.12(a). The Co doped BiFeO3 (x = 0.05, 0.1, 0.2 and 0.3) samples 

show increases in the difference between the ZFC and FC magnetization curves which 

are greater than 350 K as shown in Figure 4.12(b)-Figure 4.14. This result conform to 

other reports of BiFeO3, which show a magnetic transition below 650 K, indicating that 

the sample becomes ferromagnetic at the Neel temperature when the particle size is 

reduced (Vijayanand et al., 2009). The divergence between FC and ZFC magnetization 

curves of the Co doped BiFeO3 samples more than 350 K is similar to that found for 

other ferro- and ferrimagnetic materials (Joy and Date, 2000). Moreover, a splitting 

between FC and ZFC magnetization curves can attributed to an inhomogeneous mixture 

of AFM and FM (Siwach et al., 2007). The evidence for spin-glass behavior in BiFeO3 

that there is a cusp at 50 K (Catalan and Scott, 2009). The cusp (at about 50 K) in all 

samples with the particle size less than 89 nm could not be observed. This result 

conforms to reports for the presence of the  cusp at about 50 K that can be observed for 

BiFeO3 nanoparticles with particle size larger than 95 nm (Park et al., 2007) and when 

the applied magnetic field is larger than 2 KOe (Huang et al., 2013).  

 The para/antiferromagnetic characteristics and the magnetic susceptibility can 

be explained by the Curie-Weiss law quite well in a high temperature range (Yin et al., 

2009). The temperature dependence of the inverse magnetic susceptibility, 1/χ, and the 
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fitting curves are shown in the inset of Figure 4.12-4.14. The experimental data is fitted 

according to the Curie-Weiss law: 

 

                                                            χ =
C

T - θ
                                                                 (4.2) 

 

 Where χ is susceptibility, θ is the Curie-Weiss temperature and C defines the 

Curie constant. In this equation, Weiss temperature (θ) can either be positive, negative 

or zero. When θ = 0 then the Curie-Weiss law equates to Curie’s law. If θ is positive 

then there is ferromagnetic interaction; if θ is negative then there is antiferromagnetic 

interaction. The Curie constant (C) are 35.73, 60.55, 175.12, 243.59, and 804.61 emu 

K/g Oe for x = 0, 0.1, 0.2, and 0.3 samples, respectively, which increase with increasing 

of Co doping concentration. The Curie-Weiss temperature (θ) value obtained from the 

Curie-Weiss fit of undoped-BiFeO3 at T = 50-130 K and T = 250-350 K is -1641.04 K 

and -1605.18K, respectively. This negative values of the θ indicated the 

antiferromagnetic characteristics of undoped-BiFeO3 with weak FM and without FM 

component. Conversely, the Curie-Weiss law fitting result provides a positive Curie-

Weiss temperature of 74.61, 42.85 , 19.24 and 23.33 K for Co-doped BiFeO3 with x = 

0.05, 0.1 , 0.2 and 0.3, respectively, which is probably due to the strong canted AFM 

ordering with a manifest FM component. In the theory, a Fe3+ ion at an octahedrally 

coordinated site suggests a High-spin (HS) configuration (s = 5/2) or Low-spin (LS) 

configuration (s = 1/2). The calculated magnetic moments of high-spin Fe3+ and low-

spin Fe3+ are 5.92 μB and 1.73 μB, respectively (Griffith, 1961). By fitting with Curie-

Weiss law, the theoretical effective moment can compute from Curie constant by using 

the equation (Kittel, 1986): 
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                                            μ
eff

 = 2.84 √(T - θ) = 2.84 √C                                      (4.3) 

 

  The effective magnetic moment (μeff) values from experiment of the un-doped 

BiFeO3 and Co-doped BiFeO3 samples with x = 0.05, 0.1, 0.2, and 0.3, respectively are 

shown in Table 4.8. The μeff values are increase with increasing of Co doping. The 

effective magnetic moment μeff values obtained from experiment for all samples are 

higher than the theoretical values of high-spin Fe3+ (5.92 μB) and low-spin Fe3+ (1.73 

μB). This fitting results from the experiment indicated that Fe3+ must be in a high spin 

configuration. 
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Figure 4.12 ZFC/FC curves and fitting the data to the Curie-Weiss law (inset) for (a) 

BiFeO3 and (b) BiFe0.95Co0.05O3 nanoparticles.  
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Figure 4.13 ZFC/FC curves and fitting the data to the Curie-Weiss law (inset) for (a) 

BiFe0.9Co0.1O3 and (b) BiFe0.8Co0.2O3 nanoparticles. 
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Figure 4.14 ZFC/FC curves and fitting the data to the Curie-Weiss law (inset) for 

BiFe0.7Co0.3O3 nanoparticles. 

 

Table 4.8 Effective magnetic moment (μeff), Curie-Weiss temperature (θ) obtained from 

Curie-Weiss’s law fitting results for Co-doped BiFeO3. 

Doping level μeff (μB) θ (K) 

x = 0 16.70a, 17.03b -1641.04a, -1605.18b 

x = 0.05 22.14 74.61 

x = 0.1 37.62 42.85 

x = 0.2 44.23 19.24 

x = 0.3 80.65 23.33 

 

a is fitting at T = 50-130 K, b is fitting at T = 250-350 K 
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4.1.3 Electrochemical properties of Co-doped BiFeO3 nanoparticles 

4.1.3.1 Cyclic voltammetry measurement 

  The cyclic voltammetry (CV) curves of the BiFe1-xCoxO3 nanoparticles 

recorded between -1.2 V to 0.3 V at different potential scan rates of 5 to 100 mV/s are 

presented in Figure 4.15(a)-4.15(e). All samples exhibited a pseudocapacitive behavior.  

Well-defined redox peaks were observed for all the samples, indicating that the redox 

transitions of the nanoparticles are similar to the redox properties of bismuth oxide and 

Fe2O3 in hydroxide electrolyte (KOH, NaOH) in various works, which can be attributed 

to the reversible reaction of bismuth (III) to bismuth metal (Vivier et al., 2001) and 

which correspond to the conversion between Fe2+ and Fe3+ (Hang et al., 2005; Wang et 

al., 2014), respectively. The anodic peak could be assigned to the oxidation process of 

Fe2+/Fe3+ (~ -0.78 V) and Bimetal /Bi3+ (~ -0.65 V and -0.51 V), while the cathodic peak 

relate to the reduction process of Bi3+/Bimetal (~ -0.82 V) and Fe3+/Fe2+ (~ -1.10 V), 

respectively. The current response of all electrodes was enhanced when the scan rates 

were increased. The height of the peak current varied and a progressive shift in the 

peaks to higher potentials was observed with increasing scan rates from 5 to 100 mV/s. 

This is attributed to the presence of inner active sites, which completely inhibit the 

redox transitions at higher scan rates of CV, probably owing to the diffusion effect of 

protons within the electrodes (Kötz and Carlen, 2000). The specific capacitances 

calculated for different as synthesized samples at different scan rates from the equation 

3.13. The calculated specific capacitances vs scan rates are plotted in Figure 4.15(f). 

The specific capacitances of all the samples decrease with increasing scan rates. At slow 

scan rates, the ions would have enough time to arrive the electrode surface leading to 

the full utilization of the material. All the electrodes exhibited the highest specific 
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capacitance at a scan rate of 5 mV/s.  The maximum specific capacitance of 397.28 F/g 

at a scan rate of 5 mV/s was obtained for the pure BiFeO3 sample. The specific 

capacitance of the nanoparticles depends linearly on Co doping concentrations with 

continuous decreases. The specific capacitance of the nanoparticles decreases from the 

undoped samples (397.28-183.67 F/g) to BiFe0.7Co0.3O3 samples (216.16-48.61 F/g) at 

5-100 mV/s for CV measurements, respectively. In general, increases in the specific 

surface area in electrochemical capacitors is a likely reason for the increase in the 

specific capacitance, especially in carbon materials. On the contrary, the specific 

capacitance of these BiFe1-xCoxO3 nanoparticles decreases. However, specific 

capacitance does not only depend on surface area, but also on other factors, such as the 

pore size distribution and pore volume (Long et al., 2001; Reddy and Reddy, 2003; 

Khajonrit et al., 2016). All the samples have distributions of different mesopores sizes 

of pores as shown in Figure 4.9, indicating that they have a porous structure, which is 

specific to supercapacitor materials (Long et al., 2001; Reddy and Reddy, 2003). A 

mean pore diameter of the BiFeO3 samples showed small mesopore sizes about 3.28 

nm. This may provide more active sites for chemical reactions (Dubal et al., 2013). The 

decreases in the specific capacitance of the BiFe1-xCoxO3 samples with increases in Co 

doping can possibly be attributed to all samples enriched with mesopores, which were 

decrease in size with increases of Co doping from 24.48, 29.50, 33.04, and 41.06 nm 

for 5, 10, 20, and 30% Co doping samples, respectively. The high specific capacitances 

(468.2 F/g ) of Co3O4 at 10 mV/s 6 M KOH (Xu et al., 2014) and the increase of Co3O4 

phase composition (8.1 to 14.3 %) with Co content with x = 0.2 to x = 0.3 may not help 

in improving capacity retention and specific capacitance. But  the decreases in the 

capacity retention and the specific capacitance in the x = 0.2 to x = 0.3 samples may be 
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due to increases in the phase composition (4.5 to 18.1 %) of CoFe2O4 and the specific 

capacitances of 195 F/g  at 1 mV/s 1 M KOH (Sankar et al., 2015), which were lower 

than those of the BiFeO3 nanoparticles (397.3 F/g ) at the scan rate of 5 mV/s in 6M 

KOH solution. 

 The number of active sites of the electrodes were calculated using equation 3.14. 

The calculated number of active sites involved in the redox reaction at different scan 

rates corresponding to 5-100 mV/s are 1.93-0.89, 1.65-0.75, 1.62-0.68, 1.32-0.41, and 

1.05-0.24 for x = 0, 0.05, 0.1, 0.2, and 0.3 samples, respectively as shown in Table 4.9-

4.10. The number of redox sites participating at lower scan rates is higher compared 

with the higher scan rates. At slow scan rates, the ions would have enough time to arrive 

the electrode surface leading to the full utilization of the material. At higher scan rates, 

the ions would not have enough time to utilize the material and hence the surface 

adsorption process only takes place (Selvan et al., 2008; Nithya et al., 2013). According 

to the equation 3.15, the calculated diffusion co-efficient for 6 M KOH electrolyte at 

different scan rates corresponding to 5-100 mV/s are 2.61-1.38 × 10-16, 1.64-0.76 × 10-

16, 2.01-0.73 × 10-16, 1.43-0.13 × 10-16,and 0.88-0.03 × 10-16 cm2/s in x = 0, 0.05, 0.1, 

0.2, and 0.3 samples, respectively as shown in Table 4.9-4.10. The value of diffusion 

co-efficient depends mainly on the peak current since the other parameters in the 

equation such as the number of electrons transferred during the redox reaction, 

concentration and scan rate. The diffusion co-efficient at lower scan rates is higher 

compared with the higher scan rates. Moreover, since the peak current of BiFeO3 

sample is higher than Co-doped BiFeO3 samples, the value of diffusion co-efficient of 

BiFeO3 is found to be higher than Co-doped BiFeO3 samples. The decreasing of number 

of active sites and diffusion co-efficient correspond to decreasing specific capacitances 
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with increasing of Co doping concentrations. Moreover, the tendency of edge shift 

slightly increase above Bi3+ position with increasing of Co doping with x = 0, 0.05, 0.1, 

0.2, and 0.3 samples, which is 1.38, 1.46, 2.04, 1.74, and 1.90 respectively. This may 

be inactive and did not participate in the redox reaction of the conversion between Bi(0) 

and Bi3+, which may lead to the reduction of height of the peak current and deterioration 

of specific capacitances. 
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Figure 4.15 CV curves of the BiFe1-xCoxO3 nanoparticles: (a) x = 0, (b) x = 0.05, (c) x 

= 0.1, (d) x = 0.2, and (e) x = 0.3. (f) Specific capacitance vs scan rate. 

 

 

 



114 

 

Table 4.9 Specific capacitances, number of active sites (N) and diffusion coefficients 

(D) of BiFe1-xCoxO3 (x = 0, 0.05, and 0.1) samples at various scan rates. 

Sample Scan rate 

(mV/s) 

Specific 

capacitance (F/g) 

Number of 

active site 

Diffusion coefficient 

(cm2/s) × 10-16 

x = 0 5 397.28 1.93 2.61 

 10 373.65 1.82 2.48 

 20 342.79 1.67 2.34 

 40 294.02 1.43 2.00 

 60 250.26 1.22 1.63 

 80 214.23 1.04 1.42 

 100 183.67 0.89 1.38 

x = 0.05 5 339.69 1.65 1.64 

 10 296.41 1.44 1.63 

 20 270.95 1.32 1.59 

 40 241.04 1.17 1.39 

 60 206.61 1.00 1.01 

 80 181.58 0.88 0.80 

 100 155.05 0.75 0.76 

x = 0.1 5 332.69 1.62 2.01 

 10 295.37 1.44 2.00 

 20 269.23 1.31 1.96 

 40 235.07 1.14 1.51 
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Table 4.10 Specific capacitances, number of active sites (N), and diffusion coefficients 

(D) of BiFe1-xCoxO3 (x = 0.1, 0.2, and 0.3) samples at various scan rates. 

Sample Scan rate 

(mV/s) 

Specific 

capacitance (F/g) 

Number of 

active site 

Diffusion coefficient 

(cm2/s) × 10-16 

x = 0.1 60 194.90 0.95 1.01 

 80 165.83 0.81 0.80 

 100 139.93 0.68 0.73 

x = 0.2 5 271.93 1.32 1.43 

 10 223.93 1.09 1.17 

 20 187.79 0.91 0.86 

 40 154.17 0.75 0.47 

 60 124.89 0.61 0.24 

 80 104.17 0.51 0.16 

 100 84.23 0.41 0.13 

x = 0.3 5 216.16 1.05 0.88 

 10 163.77 0.80 0.67 

 20 126.97 0.62 0.33 

 40 97.96 0.48 0.09 

 60 78.01 0.38 0.04 

 80 61.55 0.30 0.03 

 100 48.61 0.24 0.03 
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4.1.3.2 Galvanostatic charge-discharge measurements 

 Galvanostatic charge-discharge measurements were conducted for the 

electrodes at current densities from 1 to 20 A/g which are shown in Figure 4.16(a)-

4.16(e). The specific potential window of -1.2 and 0.3 V is adopted to avoid the 

hydrogen and oxigen evolution reaction. All samples show the nonlinear form of curves 

which exhibit the pseudocapacitive behavior of the nanoparticles. The discharge curve 

consists of a steep voltage (IR) drop due to internal resistance and a capacitive 

component (curved portion) related to the voltage change due to changes in energy 

within the capacitor (Fusalba et al., 1999). This IR drop is a common phenomenon 

occurring in transition metal oxides (Nithya et al., 2013; Yuan et al., 2009). All samples 

show that current density increases with decreases of the discharge time. The maximum 

specific capacitance of 232.24 F/g at 1A/g  current density was obtained from the 

undoped samples (Khajonrit et al., 2016). The specific capacitances calculated for 

different as synthesized samples at different current density from the equation 3.15. The 

charge-discharge curves, demonstrate the relationship between specific capacitance and 

current density in Figure 4.16(f). The specific capacitance at all current densities also 

continuously decreases from x = 0.05 to x = 0.3, which may be due to the fact that the 

surface of the electrode is inaccessible at high charge-discharge rates (Lokhande et al., 

2007), increasing in ionic resistivity and decreasing in charge diffusion deeper into the 

inner active sites (Nithya et al., 2013; Senthilkumar et al., 2013). At a current density 

of 1A/g, all the electrodes exhibited the highest specific capacitance. This indicated that 

a low current density should be suitable for practical applications for the electrodes. 

The specific capacitance of the nanoparticles decreases from undoped samples (232.24-

88.03 F/g) to BiFe0.7Co0.3O3 samples (130.17-13.75 F/g) at 1-20A/g, respectively.  
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Figure 4.16 Galvanostatic charge-discharge curves of the BiFe1-xCoxO3 nanoparticles: 

(a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.2, and (e) x = 0.3. (f) Specific capacitance 

vs current density. 
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Performance with energy density and power density in a Ragone plot of the 

BiFeO3 and Co-doped BiFeO3 electrodes were calculated based on the galvanostatic 

charge-discharge as shown in Figure 4.17. The energy density are decreased with 

increasing of Co doping concentration and increasing of current density, while the 

power density are increased with increasing of current density as shown in Table 4.11-

4.12. Among different electrodes, BiFeO3 electrodes shows highest energy density 

(72.71 Wh/Kg) at current density of 1 A/g. At the current density of 1 A/g, the power 

density are increase with Co doping concentration for x = 0 to x = 0.2 samples. The 

highest power density was observed in Co-doped BiFeO3 (x = 0.05) electrodes (6197.18 

W/Kg) at current densities of 20 A/g.  

 

 

Figure 4.17 Ragone plot showing energy densities and power densities relationship of 

BiFeO3 and Co-doped BiFeO3 electrodes. 
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Table 4.11 Specific capacitance, energy densities, and power densities of BiFe1-xCoxO3 

(x = 0, 0.05, and 0.1) samples at various current densities. 

Sample Current 

density (A/g) 

Specific 

capacitance (F/g) 

Energy density 

(Wh/Kg) 

Power density 

(W/Kg) 

x = 0 1 232.24 72.71 339.48 

 2 176.20 55.67 731.64 

 5 141.03 45.05 1838.66 

 10 102.48 34.04 3133.76 

 15 97.54 32.88 4890.50 

 20 88.03 29.44 6127.17 

x = 0.05 1 222.68 69.69 347.58 

 2 157.92 49.60 724.09 

 5 117.58 37.49 1785.05 

 10 95.12 31.22 3416.41 

 15 81.88 27.54 4932.84 

 20 71.61 24.44 6197.18 

x = 0.1 1 220.08 68.94 364.61 

 2 150.75 47.40 748.75 

 5 113.75 36.28 1847.24 

 10 86.83 28.67 3405.94 

 15 72.45 24.58 4862.64 

 20 57.37 20.06 5869.92 
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Table 4.12 Specific capacitance, energy densities, and power densities of BiFe1-xCoxO3 

(x = 0.2 and 0.3) sample at various current densities. 

Sample Current 

density (A/g) 

Specific 

capacitance (F/g) 

Energy density 

(Wh/Kg) 

Power density 

(W/Kg) 

x = 0.2 1 206.63 64.64 384.14 

 2 131.53 41.17 746.70 

 5 95.06 30.51 1771.77 

 10 73.79 24.53 3357.41 

 15 61.73 21.17 4916.13 

 20 36.98 12.39 5946.67 

x = 0.3 1 130.17 40.71 351.13 

 2 84.08 26.39 736.59 

 5 55.35 17.64 1657.96 

 10 35.89 11.78 2965.03 

 15 17.16 5.79 3723.21 

 20 13.75 4.78 4914.29 

 

Long term cycling stability is important for practical applications for 

supercapacitors. Endurance of the electrodes was tested up to 500 charge-discharge 

cycles at a current density of 10 A/g which is shown in Figure 4.18. The capacity 

retentions of the Co-doped BiFeO3 samples with x = 0, 0.1, 0.20, and 0.30 were 58.59, 

50.40, 28.78, and 25.01 %, respectively, after 500 cycles. Capacity retention can be 

improved by 5 % Co doping. The BiFe0.95Co0.05O3 electrodes showed higher capacity 

retention than the BiFeO3 electrodes. The capacity retention of the BiFe0.95Co0.05O3 
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electrodes (61.70 %) in this work was lower than that of the BiFe0.95Cu0.05O3 electrodes 

(77.13 %) (Khajonrit et al., 2016). It decreased to 82 % after 20 cycles and increased 

to 91 % after 60 cycles, and then slightly decreased to 22% after 500 cycles. The 

increase in capacity retention of 91% after 60 cycles in this electrode may be due to the 

additional cycles needed to fully activate the sample (Wei et al., 2010; Vivier et al., 

2001).  

 

 

Figure 4.18 Capacity retention (%) of the BiFe1-xCoxO3 electrodes after 500 cycles at 

10A/g current density. 

 

4.1.3.3 Electrochemical impedance spectroscopy (EIS) measurements. 

 EIS is a very important tool to investigate electrochemical behavior of 

electrode materials. Figure 4.19 shows Nyquist plots of the nanoparticle electrodes, 

which consist of the real part (Z') vs an imaginary part (Z'') based on the equivalent 

circuit having the components of solution resistance (Rs), charge-transfer resistance 
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(Rct), constant phase element (CPE), and Warburg impedance (W) as shown in Figure 

4.20. The intercept in the Z' axis at a high frequency refers to Rs which stands for ohmic 

resistance of the electrolyte, internal resistance of the electrode material, and contact 

resistance at the electrode/current collector interface (Nithya et al., 2013). The 

semicircle diameter at high frequency region corresponds to Rct in which caused by 

faradic reaction. The small Rct values indicate that all the electrodes providing the 

charge transfer performance at the electrode/electrolyte interface are facile (Nithya et 

al., 2013). The slope of the linear curve at low frequency is called the W and was used 

to describe the frequency dependent of ion diffusion into the bulk of the electrode 

surface. For not ideal cell or cell with lack of surface homogeneity, the CPE or Q is 

used. The parameter “N” obtained from CPE is used to observed the quality of the 

electrode material (N = 1, 0, and 0.5 < n < 1) indicates the ideal capacitors the insulators, 

and the moderate capacitor behavior, respectively (Yu et al., 2013). In this work, the 

EIS measurement was collected with a frequency range of 0.1 HZ to 100 KHz. The 

small values of Rs of the BiFe1-xCoxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) electrodes are 

0.24, 0.27, 0.27, 0.28, and 0.28 Ω, respectively, which suggest that all electrodes 

provide good electrical conductivity of the electrolyte. The semi-circle at high 

frequency corresponds to Rct. The Rct of the BiFe1-xCoxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) 

electrodes are 0.13, 0.07, 0.08, 0.08, and 0.06 Ω, respectively. The N of the electrodes 

are in range of 0.747-0.956. This indicated that the electrodes imply the moderate 

capacitor close to ideal capacitor behavior.  

Generally, the high capacitance can be attributed to the high surface area and 

enhanced electrical conductivity of the electrodes (Guan et al., 2013). But in this work, 

variations in the specific capacitances and capacity retention of the Co-doped BiFeO3 
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electrodes are not attributed to slight increases of surface area and slight differences in 

the Rct CPE, W, and Rs values. The straight lines close to 90˚ are parallel to the 

imaginary axis at low frequencies which indicate a good capacitive behavior and a low 

diffusion resistance of the ions in the structure of the electrodes (Guan et al., 2013; 

Yang et al., 2012; Wang et al., 2011). The more vertical the curve, the more closely the 

supercapacitor performs as an ideal capacitor. Interestingly, increases in Co doping 

concentrations with x = 0 to x = 0.3 correspond to the curves which move away from 

the vertical line. Thus, the vertical curve of the BiFeO3 electrodes close to 90˚ provides 

a greater capacitance with low diffusion resistance of ions in the structure of the 

electrodes than for the Co-doped BiFeO3 samples. This leads to decreases in the specific 

capacitance in BiFe1-xCoxO3 with x = 0 to x = 0.3 samples.  

 

 

Figure 4.19 Nyquist plots of the BiFe1-xCoxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) electrodes. 
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Figure 4.20 Equivalent circuit of the BiFe1-xCoxO3 electrodes: (a) x = 0, (b) x = 0.05, 

(c) x = 0.1, (d) x = 0.2, and (e) x = 0.3. 

 



125 

 

4.2 Ni-doped BiFeO3 nanoparticles  

4.2.1 Structural and morphology characterization 

4.2.1.1 X-ray diffraction (XRD) analysis of the Ni-doped BiFeO3 

nanoparticles 

  The XRD patterns of the BiFe1-xNixO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) 

nanoparticles calcined at 600 ˚C for 3 h are shown in Figure 4.21. It can be seen that all 

the samples are found in the main phase of BiFeO3 revealing the rhombohedral structure 

with the space group R3c with the space group R3c (JCPDS No.86-1518). Small 

impurity peaks of Bi2Fe4O9 (in x = 0, x = 0.05, and x = 0.1 samples) with the space 

group Pbam (JCPDS No.72-1832) and NiFe2O4 (in x = 0.2 and x = 0.3 samples) with 

the space group R3c (JCPDS No.86-2267) were observed.  

 

 

Figure 4.21 XRD patterns of BiFe1-xNixO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles. 
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 The development of the spinel phase of NiFe2O4 helped to prevent the formation 

of the Bi2Fe4O9 phase. A shift in the peak position was observed slight towards the 

lower angles in the Ni-doped samples. These changes confirm the substitution of the 

Fe3+ (~0.645 Å) site with ionic radius of Ni2+ (0.69 Å) (Vanga et al., 2015). The 

crystallite size of BiFeO3 is calculated by the Scherrer equation using (012) the peak 

shown in Table 4.13. The crystallite sizes of 88.8, 40.9, 36.9, 36.2, and 41.1 nm decrease 

with increasing Ni doping concentrations of x = 0, 0.05, 0.1, 0.2, and 0.3, respectively. 

Figure 4.22-4.24 shows the Rietveld refinement using TOPAS software used to estimate 

the crystal structure profiles of the BiFe1-xNixO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) 

nanoparticles. The crystallite size (D), lattice parameters (a and c), unit cell volume (V), 

crystal density (ρ), phase composition (%) of BiFeO3, Bi2Fe4O9, and NiFe2O4, residuals 

of the weighted pattern (Rwp) and pattern (Rp), and goodness of fit (GOF) calculated 

from Rietveld refinement using TOPAS software are shown in Table 12. The reliability 

of fitting such as Rwp, Rp, and GOF is confirmed. The Rwp, and Rp values of fitting less 

than 10 % and the GOF values ~ 2-3 indicating acceptable matched between 

experimental and theoretical XRD pattern for all samples based on rhombohedral unit 

cell (R3c) of BiFeO3. The c-parameter decreases from 13.8743 nm for x = 0 to 13.8652 

nm for x = 0.1. Especially, the increase in a parameter from 5.5793 nm for x = 0 to 

5.5816 nm for x = 0.3, which related with the increasing of Ni doping concentration. 

These confirm that the Fe3+ (~0.645 Å) site is substituted with higher ionic radius of 

Ni2+ (0.69 Å). The crystallite size decreases with increase in concentration of Ni doping, 

the presence of Ni ion in Fe3+ site acts as an inhibitor and results in decrease of 

crystallite size (Ianculescu et al., 2010; Vanga et al., 2015). The inhibition is mainly 

due to the decrease in surface energy of BiFeO3 with addition of dopant, while the bulk 
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energy remains constant. In order to maintain the ratio between surface area to bulk 

volume the crystallite size decreases (Castro et al., 2003; Vanga et al., 2015). The 

quantitative analysis shows that the NiFe2O4 phase composition of BiFe1-xNixO3 (x = 

0.05, 0.1, 0.2, and 0.3) samples are 5.4, 14.8, 35.5, and 66.4 %, respectively, and the 

Bi2Fe4O9 phase composition in x = 0, 0.05, and 0.1 samples are 20.9, 5.1, 4.8 %, 

respectively. 

 

Table 4.13 List of crystallite sizes (D), lattice parameters (a, c), unit cell volume (V), 

crystal density (ρ), phase composition of BiFeO3, Bi2Fe4O9, and NiFe2O4, residuals of 

the weighted pattern (Rwp), pattern (Rp), and goodness of fit (GOF) of BiFe1-xNixO3 (x 

= 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles. 

Parameters x = 0 x = 0.05 x = 0.1 x = 0.2 x = 0.3 

D (nm) 88.8 40.9 36.9 36.2 34.1 

a (Å) 5.5793 5.5800 5.5802 5.5811 5.5816 

c (Å) 13.8743 13.8659 13.8652 13.8688 13.8743 

V (Å)3 374.0372 373.8975 373.8936 374.1176 374.3944 

ρ (g/cm3) 8.333 8.340 8.343 8.348 8.349 

BiFeO3 (%) 79.12 89.87 80.44 64.47 33.56 

Bi2Fe4O9 (%) 20.88 5.11 4.77 - - 

NiFe2O4 (%) - 5.42 14.79 35.53 66.44 

Rwp (%) 7.68 8.48 7.50 8.62 8.06 

Rp (%) 5.98 6.76 5.89 6.76 6.19 

GOF 2.70 2.99 2.75 3.09 3.18 
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Figure 4.22 Rietveld refinement of XRD data for (a) BiFeO3 (b) Ni-doped BiFeO3 (x 

= 0.05) nanoparticle.  
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Figure 4.23 Rietveld refinement of XRD data for Ni-doped BiFeO3 nanoparticle: (a) x 

= 0.1 (b) x = 0.2.  
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Figure 4.24 Rietveld refinement of XRD data for Ni-doped BiFeO3 (x = 0.3) 

nanoparticle.  

 

4.2.1.2 Morphology of the Ni-doped BiFeO3 nanoparticles by SEM and 

TEM. 

  Figure 4.25 shows the SEM images revealing the particle sizes of the 

BiFe1-xNixO3 nanoparticles. The undoped sample shows the nanoparticles sizes to be 

about 100-200 nm, while the Ni-doped samples show decreasing sizes of nanoparticles 

of about 50-100 nm. This indicates that Ni doping causes decreasing sizes of the 

nanoparticles. The mean particle size from the SEM image is in good agreement with 

the crystallite size measured by using Scherrer’s formula.  
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Figure 4.25 SEM images of BiFe1-xNixO3 nanoparticles: (a) x = 0, (b) x = 0.05, (c) x = 

0.1, (d) x = 0.2, and (e) x = 0.3. 

 

 The morphology and structure of the BiFeO3 and Ni-doped BiFeO3 

nanoparticles were investigated by TEM. Bright field TEM images, high-resolution 
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(HRTEM) images and corresponding selected areas of electron diffraction (SAED) 

patterns are shown in Figure 4.26. The TEM bright field images show that the particles 

sizes obtained were about 30-200 nm. This is in agreement with the XRD and SEM 

results. To better investigate the crystal structure, HRTEM was performed, which shows 

the lattice fringes of the (104), (202), (104), (012), and (104) planes with interplanar 

spacing of approximately 0.281, 0.227, 0.281, 0.395, and 0.281 nm of the BiFe1-xNixO3  

with x = 0, 0.05, 0.1, 0.2, and 0.3 samples, respectively, which correspond to BiFeO3. 

This indicates that the nanoparticles are surrounded by BiFeO3 nanocrystals. Moreover, 

the SAED patterns of the nanoparticles show spotty and ring patterns. The spotty rings 

show the characteristics of nanocrystalline BiFeO3 (JCPDS No.86-1518). 



133 

 

 

Figure 4.26 Bright field TEM images (left), HRTEM images (middle), and SAED 

patterns (right) of BiFe1-xNixO3 nanoparticles: (a) x = 0, (b) x = 0.05, (c) x  = 0.1, (d) x 

= 0.2, and (e) x = 0.3. 
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4.2.1.3 X-ray absorption spectroscopy study of the Ni-doped BiFeO3 

nanoparticles. 

  The normalized XANES spectra of Bi M5-edges, Fe K-edges and Ni K-

edge XANES spectra of all samples are shown in Figure 4.27-4.28. The edge energies 

of Bi M5-edge, Fe K-edge, and Ni K-edge of BiFe1-xNixO3 (x = 0.05, 0.1, 0.2, and 0.3) 

samples are shown in Table 4.14-4.16. The edge energies of Bi M5-edge, Fe K-edge, 

and Ni K-edge of BiFe1-xNixO3 (x = 0.05, 0.1, 0.2, and 0.3) samples are close to the 

Bi2O3, Fe2O3, and NiO standard, respectively. The Bi M5-edge XANES spectra of 

BiFe1-xNixO3 nanoparticles can be seen with x = 0, 0.05, 0.1, 0.2, and 0.3 as compared 

with those of the standard materials with Bi oxidation states are shown in Figure 

4.27(a). The oxidation states of Bi in all samples are show along with the standard 

samples of Bi2O3 for Bi3+. It was found that the position of the absorption edge at Bi 

M5-edge is similar to Bi2O3 which is typical for Bi in the oxidation state of +3. Figure 

4.27(b) shows the XANES spectra at the Fe K-edge of all the samples, which match 

that of Fe2O3, indicating that the oxidation state of Fe is 3+. The Ni K-edge XANES 

spectra of BiFe1-xNixO3 nanoparticles can be seen with x = 0.05, 0.1, 0.2, and 0.3 as 

compared with those of the standard materials with different Ni oxidation states are 

shown in Figure 4.8. The absorption edge at the Ni K-edge of all the samples match 

those of Ni+2 of NiO standard samples and the oxidation state of the Ni ion conforms 

with that of the starting materials (Ni+2). Clearly, the XANES analysis provides strong 

evidence that Ni+2 of large ionic radius is substituting the Fe3+ site. 
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Figure 4.27 XANES spectra of BiFe1-xNixO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) 

nanoparticles: (a) Bi M5-edge and (b) Fe K-edge. 
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Figure 4.28 XANES spectra at Ni K-edge of BiFe1-xNixO3 (x = 0, 0.05, 0.1, 0.2, and 

0.3) nanoparticles. 

 

Table 4.14 Absorption edges and oxidation states at Bi M5-edge of all Ni-doped BiFeO3 

samples along with the standard samples. 

Samples/standard Absorption edge at 

Bi (eV) 

Edge shift at 

Bi (eV) 

Oxidation state 

Bi2O3 2597.25 0 +3 

BiFeO3 2598.63 1.38 +3 

BiFe0.95Ni0.05O3 2598.76 1.51 +3 

BiFe0.9Ni0.1O3 2598.65 1.40 +3 

BiFe0.8Ni0.2O3 2599.39 2.14 +3 

BiFe0.7Ni0.3O3 2599.51 2.26 +3 

 



137 

 

Table 4.15 Absorption edges and oxidation states at Fe K-edge of all Ni-doped BiFeO3 

samples along with the standard samples. 

Samples/standard Absorption edge 

at Fe (eV) 

Edge shift at 

Fe (eV) 

Oxidation state 

Fe foil 7112 13.64 0 

FeO 7120.87 4.77 +2 

Fe2O3 7125.64 0 +3 

BiFeO3 7124.62 1.02 +3 

BiFe0.95Ni0.05O3 7124.45 1.19 +3 

BiFe0.9Ni0.1O3 7124.46 1.18 +3 

BiFe0.8Ni0.2O3 7124.28 1.36 +3 

BiFe0.7Ni0.3O3 7124.08 1.56 +3 

 

Table 4.16 Absorption edges and oxidation states at Ni K-edge of all Co-doped BiFeO3 

samples along with the standard samples. 

Samples/standard Absorption edge 

at Ni (eV) 

Edge shift at 

Ni (eV) 

Oxidation state 

Ni foil 8332.82 11.29 0 

NiO 8344.11 0 +2 

BiFe0.95Ni0.05O3 8344.99 0.88 +2 

BiFe0.9Ni0.1O3 8344.94 0.83 +2 

BiFe0.8Ni0.2O3 8344.44 0.33 +2 

BiFe0.7Ni0.3O3 8344.26 0.15 +2 
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4.2.1.4 Characterization of surface area and pore size distribution of 

the Ni-doped BiFeO3 nanoparticles by BET method and BJH method 

  The N2 adsorption-desorption isotherms and pore size distributions 

obtained by the BJH plot of BiFe1-xNixO3 nanoparticles with x = 0, 0.05, 0.1, 0.2, and 

0.3 are shown in Figure 4.29. Figure 4.29(a) shows features of N2 adsorption-desorption 

isotherms. The hysteresis loop features of all samples are characteristic of non-porous 

with low adsorbate-sample surface interaction. The presences of micropores and 

mesopores in particles are shown by the BJH curve (Figure 4.29 (b)). This may be 

related to capacitance and capacity retention, which will be discussed in Secion 4.2.3. 

Table 4.17 shows the specific surface area (SBET), the mean pore diameter (DMP), the 

total pore volume (VTP), and the particle size (DBET) of BiFe1-xNixO3 (x = 0, 0.05, 0.1, 

0.2, and 0.3) nanoparticles. In general, the decrease in the size of BiFeO3 nanoparticles 

is related to an increase in surface area (Park et al., 2007). In this research, the decreases 

in the crystallite size led to a sharp increase in the surface area from 3.64 m2/g of the 

BiFeO3 sample to 21.6 m2/g in the BiFe0.7Ni0.3O3 sample. The particle size decreases 

from 197.8 nm for un-doped samples to 32.9 nm for 30 % Ni-doped samples were 

calculated by using the gas absorption technique. A comparison of the average 

crystallite size calculated by XRD and the average particle size estimated by BET 

showed that the average particle size calculated by BET is larger than the crystallite 

size calculated by XRD in all samples except for the BiFe0.95Ni0.05O3 sample as shown 

in Figure 4.30. The difference in the results occurs from aggregates and/or agglomerates 

of crystals, which indicates that the particles include several crystallites (Gaber et al., 

2014).  
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Figure 4.29 N2 adsorption-desorption isotherms (a) and pore-size distribution (b) of the 

BiFe1-xNixO3 nanoparticles. 
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Table 4.17 Specific surface area (SBET), mean pore diameter (DMP), total pore volume 

(DTP), particle size (DBET) of BiFe1-xNixO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles. 

Samples SBET (m2/g) DMP (nm) VTP (cm3/g) DBJH (nm) DBET (nm) 

BiFeO3 3.64 25.55 0.0254 3.28 197.81 

Bi0.95Ni0.05O3 9.47 49.63 0.1175 2.42 75.99 

Bi0.9Ni0.1O3 14.01 49.91 0.1748 24.48 51.33 

Bi0.8Ni0.2O3 17.65 39.07 0.1724 24.48 40.72 

Bi0.7Ni0.3O3 21.85 39.52 0.2159 24.48 32.89 

 

 

Figure 4.30 Variations of crystallite size calculated by XRD and particle size calculated 

from BET of BiFe1-xNixO3 nanoparticles as a function of Ni content (%). 
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4.2.2 Magnetic properties of the Ni-doped BiFeO3 nanoparticles 

 The magnetic hysteresis (M-H) loops of the BiFe1-xNixO3 (x = 0, 0.05, 0.1, 0.2, 

and 0.3) nanoparticles at 50, 100, 200, 300, and 350 K of temperature are shown in 

Figure 4.31(a)-4.31(e). Figure 4.31(f) shows the saturation magnetization (Ms) 

increases linearly with increasing Ni doping concentrations at all temperatures. 

Interestingly, the magnetization of BiFeO3 decreases with decreasing temperature. 

Conversely, the magnetizations of BiFe1-x NixO3 (x = 0.05, 0.1, 0.2, and 0.3) samples 

increases with decreasing temperature from 350 to 50 K. The BiFe0.7 Ni0.3O3 sample at 

a low temperature (50 K) shows the highest magnetization of 22.12 emu/g. The 

secondary phase of Bi2Fe4O9 in the x = 0 to x = 0.1 samples does not influence the 

increases of the Ms because it exhibits an antiferromagnetic nature with a very low Ms, 

as reported previously (Wang et al., 2009; Rao et al., 2015; Lin et al., 2015). By 

comparison, the magnetization of the BiFe1-x NixO3 (x = 0.05, 0.1, 0.2, and 0.3) samples 

in this study at room temperature were 0.51, 6.43, 12.20, and 19.12 emu/g and at 50 K 

of temperature were 2.87, 7.45, 14.12, and 22.12 emu/g, respectively. These results 

were found to be higher than those reported in the literature, which were 5 % and 25% 

Ni-doped BiFeO3 at 50 K of temperature (1.29 and 8.04 emu/g) (Zhao et al., 2013), 10 

% Ni-doped BiFeO3 at room temperature (~3.04 emu/g) (Kumar and Yadav, 2011), and 

5% Ni-doped BiFeO3 at room temperature (~1.4 emu/g) (Wang and Qi, 2012). The 

observed increases in the magnetization may arise for three reasons: (1) the 

magnetization is increasing linearly with increasing of the magnetic source (Ni) 

content. (2) The magnetization is mainly dependent on the Ni content which provides 

strong evidence of the effects of the sizes of the BiFeO3 nanoparticles. It is known that 

particles on the nanoscale exhibit significantly different properties from bulk BFeO3 
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(Zhang et al., 2005). Improving magnetization may be due to suppression of the spin 

cycloid structure of the particle size when it is less than 62 nm which causes the intrinsic 

spiral spin structure to be incompletely suppressed and the decreases in crystallite size 

with increases of Ni content results in an increase in surface-volume ratio and the 

contribution of uncompensated spin at the surface to the total magnetic moment of the 

particle increases. (3) The high Ms of NiFe2O4 nanoparticles are between 32.1 to 49.1 

emu/g measured at 300 to 80 K of temperature, respectively (George et al., 2006). So, 

the increases of the secondary phase of the NiFe2O4 nanoparticles in the BiFe1-xNixO3 

(x = 0.05 to 0.3) samples may cause an increase in saturation magnetization with a 

decrease in grain size (Morr and Haneda, 1981; Chinnasamy et al., 2001; George et al., 

2006).  

 All the samples show the hysteresis loops are field dependent on magnetization 

measurements indicating weak ferromagnetism with the coercivity (Hc) between 5.51 

to 524.34 Oe. The Hc value shows increases with decreases of temperature in all 

samples. At low temperature (50 K), the BiFeO3 sample shows the highest Hc value of 

524.35 Oe. The Hc of all samples increases with low measurements of temperature 

which may occur for two reasons: (1) an increase in Hc is the alignment of the magnetic 

moment in the direction of the external magnetic field and (2) thermal fluctuations of 

nanoparticles decrease with decreases in the temperature (Khan et al., 2015). At higher 

temperatures (350 K), BiFe0.8Ni0.2O3 shows the lowest Hc value of 5.51 Oe. The 

variations of Hc correspond to the crystallite size, which is in the multi-domain region. 

The particle size dependence on coercivity can be expressed by the equation 4.1. Thus, 

the coercivity may decrease with an increase in particle size above a critical size. The 

Hc of BiFeO3 and BiFe0.95 Ni0.05O3 samples decrease due to a increase in the crystallite 
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size of BiFeO3 and an increase in temperature. This conform to the crystallite-size and 

the temperature-dependent behavior of BiFeO3 (Park et al., 2007). The phase 

composition of NiFe2O4 may influence Hc in the BiFe1-x NixO3 (x = 0.05 to x = 0.3) 

samples. The Hc values of NiFe2O4 nanoparticles are between 50 Oe at 300 K and 263 

Oe at 80 K (George et al., 2006). The NiFe2O4 has a  critical size of 13 to 15nm 

corresponding to the formation of single domain particles (George et al., 2006). In this 

research, the crystallite sizes of the NiFe2O4 nanoparticles were 42.7, 20.9, 32.1, and 

26.1 nm of BiFe1-x NixO3 (x = 0.05, 0.1, 0.2, and 0.3, respectively) samples. The 

variations in the Hc values of BiFe1-x NixO3 (from x = 0.1 to x = 0.3) samples at 150 to 

350 K are related to the variations in the crystallite sizes of the NiFe2O4 nanoparticles, 

especially the decreases of Hc in the BiFe0.8Ni0.2O3 samples. The remanent 

magnetization (Mr) increases with increases of the Ni content due to decreases in the 

crystallite size of BiFeO3 at all temperatures, except in x = 0.2 sample at 300 and 350 

K, which may be due to the increases of the crystallite size of the NiFe2O4 nanoparticles. 

Clearly, this is evidence that the size effects of BiFeO3 and NiFe2O4 are strongly 

influenced by the Hc and Mr values of the BiFe1-x NixO3 nanoparticles. 
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Figure 4.31 Magnetization hysteresis loops at different temperature of BiFe1-xNixO3 

nanoparticles: (a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.2, and (e) x = 0.3. (f)  

Variations in saturation magnetization as a function of Ni content (%). 
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Table 4.18 Coercivity (Hc), saturation manetization (Ms) and remanant magnetization 

(Mr) values of BiFe1-xNixO3 (x = 0, 0.05, 0.1, and 0.2) samples at different temperatures. 

Sample T (K) Hc (Oe) Ms (emu/g) Mr (emu/g) 

x = 0 50 524.35 0.207 0.019 

 100 342.73 0.210 0.017 

 200 108.14 0.206 0.010 

 300 52.85 0.219 0.005 

 350 30.59 0.223 0.004 

x = 0.05 50 90.56 2.869 0.505 

 100 46.00 2.815 0.269 

 200 30.21 2.692 0.184 

 300 13.07 2.512 0.063 

 350 10.68 2.383 0.053 

x = 0.1 50 68.42 7.482 0.805 

 100 59.75 7.365 0.796 

 200 40.12 7.005 0.576 

 300 31.79 6.432 0.461 

 350 25.81 6.105 0.265 

x = 0.2 50 96.68 14.116 2.315 

 100 43.83 13.933 1.231 

 200 25.44 13.298 0.746 

 300 5.58 12.199 0.224 

 350 5.51 11.470 0.150 
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Table 4.19 Coercivity (Hc), saturation manetization (Ms) and remanant magnetization 

(Mr) values of BiFe1-xNixO3 (x = 0.3) samples at different temperatures. 

Sample T (K) Hc (Oe) Ms (emu/g) Mr (emu/g) 

x = 0.3 50 166.74 22.118 4.442 

 100 108.50 21.950 3.171 

 200 40.67 20.939 1.605 

 300 23.39 19.121 0.646 

 350 10.31 17.995 0.411 

 

 The ZFC (zero field cooling) and FC (field cooling) magnetization curves of the 

BiFe1-x NixO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) samples are shown in Figure 4.32-4.34, 

which measured 50 K to 350 K in the applied field 500 Oe. The FC curves of the Ni-

doped BiFeO3 samples increases in magnetization with a lowering of temperature from 

350 to 50 K. This may be attributed to the development of the incommensurate 

sinusoidal spin structure (Naik and Mahendiran, 2009). The decreases in the 

magnetization of the ZFC curves with a lowering of temperature for x = 0 samples and 

Ni-doped BiFeO3 samples suggest a antiferromagnetic property (Kumar and Yadav, 

2011). Temperature broad maximum magnetization of un-doped BiFeO3 and BiFe1-x 

NixO3 (x = 0.05, 0.1, 0.2, and 0.3) samples are ~250 K and ~148, 154, 185, and 210 K, 

respectively. The feature of the ZFC curves of all samples show a prominent and broad 

magnetization maximum, which can be attributed to the magnetic blocking mechanism. 

However, the blocking temperatures (TB) of the Ni-doped BiFeO3 nanoparticles are 

increased with increasing of Ni doping. The splitting of ZFC and FC magnetizations at 

low temperature also reveals spin-glass transition in BiFeO3 (Singh et al., 2008). The 
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deviation between ZFC and FC of all sample increases with decreases in temperature. 

The ZFC and FC curves of x = 0, 0.05, 0.1, 0.2, and 0.3 samples exhibit an irreversible 

thermomagnetization process below ~ 287, 239,  264, 333, and  310 K, respectivrly. 

The temperature dependence of the inverse magnetic susceptibility, 1/χ, and the fitting 

curves are shown in the inset of Figure 4.32-4.34. The experimental is fitted data 

according to the Curie-Weiss law. The Curie constant (C) are 35.73, 699.12, 1911.38, 

4459.63, and 7000.50 emu K/g Oe for x = 0, 0.05, 0.1, 0.2, and 0.3 samples, 

respectively, which increase with increasing of Ni doping concentration. The Curie-

Weiss temperature (θ) value obtained from the Curie-Weiss fit of undoped-BiFeO3 at T 

= 50-130 K and T = 250-350 K and Ni-doped BiFeO3 at T = 250-350 K are shown in 

Table 4.18. This negative values of the θ of all samples indicated the antiferromagnetic 

characteristics with weak FM and without FM component. By fitting with Curie-Weiss 

law, the theoretical effective moment can compute from Curie constant (C). The 

effective magnetic moment (μeff) values from experiment of the un-doped BiFeO3 and 

Ni-doped BiFeO3 samples with x = 0.05, 0.1, 0.2, and 0.3 are shown in Table 4.20. The 

μeff values are increase with increasing of Ni doping. The μeff values obtained from 

experiment for all samples are higher than the theoretical values of high-spin Fe3+ (5.92 

μB) and low-spin Fe3+ (1.73 μB). This fitting results from the experiment indicated that 

Fe3+ must be in a high spin configuration. 
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Figure 4.32 ZFC/FC curves and fitting the data to the Curie-Weiss law (inset) for (a) 

BiFeO3 and (b) BiFe0.95Ni0.05O3 nanoparticles.  
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Figure 4.33 ZFC/FC curves and fitting the data to the Curie-Weiss law (inset) for (a) 

BiFe0.9Ni0.1O3 and (b) BiFe0.8Ni0.2O3 nanoparticles. 
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Figure 4.34 ZFC/FC curves and fitting the data to the Curie-Weiss law (inset) for 

BiFe0.7Ni0.3O3 nanoparticles. 

 

Table 4.20 Effective magnetic moment (μeff), Curie-Weiss temperature (θ) obtained 

from Curie-Weiss law fitting results for Ni-doped BiFeO3. 

Doping level μeff (μB) θ (K) 

x = 0  16.70a, 17.03b -1641.04a, -1605.18b 

x = 0.05 75.36 -449.62 

x = 0.1 124.16 -500.84 

x = 0.2 189.65 -707.43 

x = 0.3 237.62 -774.53 

 

a is fitting at T = 50-130 K, b is fitting at T = 250-350 K 
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4.2.3 Electrochemical properties of Ni-doped BiFeO3 nanoparticles 

4.2.3.1 Cyclic voltammetry measurement 

  The cyclic voltammetry (CV), galvanostatic charge-discharge (GVD), 

and electrochemical impedance spectroscopy (EIS) analyses were used to evaluate the 

electrochemical performance of the BiFe1-xNixO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) 

electrodes. All these electrochemical measurements were conducted in 6 M KOH 

solution using a three-electrode system. The CV measurements were performed 

between -1.2 to 0.3 V at different potential scan rates of 5 to 100 mV/s. Figure 4.35(a)-

4.35(e) show the CV curves of the BiFe1-xNixO3 nanoparticles. The samples exhibited 

a pseudocapacitive behavior. Redox peaks were observed for all the samples, indicating 

the redox transitions of the nanoparticles between different valence states. The current 

response of all electrodes was enhanced when the scan rates were increased. The height 

of the peak current varied and a progressive shift in the peaks to higher potentials was 

observed with increasing scan rates from 5 to 100 mV/s. The specific capacitances 

calculated for different as synthesized samples at different scan rates from the equation 

3.13. The calculated specific capacitances vs scan rates were plotted in Figure 4.35(f). 

The specific capacitances of all the samples decrease with increasing scan rates. This is 

attributed to the presence of inner active sites, which completely inhibit the redox 

transitions at higher scan rates of CV, probably owing to the diffusion effect of protons 

within the electrodes (Kötz and Carlen, 2000). At slow scan rates, the ions would have 

enough time to arrive the electrode surface leading to the full utilization of the material. 

All the electrodes exhibited the highest specific capacitance at a scan rate of 5 mV/s. 

The maximum specific capacitance of 397.3 F/g at a scan rate of 5 mV/s was obtained 

for the pure BiFeO3 sample. The specific capacitance of the nanoparticles depends 
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linearly on Ni doping concentrations with continuously decreases. The specific 

capacitance of these BiFe1-xNixO3 nanoparticles decreases from 397.28-183.67 F/g in 

the undoped BiFeO3 sample to 194.34-123.95 F/g  in the BiFe0.7Ni0.3O3 sample (at 5-

100 mV/s for CV measurement). 

 The number of active sites of the electrodes were calculated using equation 3.14. 

The calculated number of active sites involved in the redox reaction at different scan 

rates corresponding to 5-100 mV/s are 1.93-0.89, 1.76-0.71, 1.57-0.72, 1.44-0.85, and 

0.94-0.60 in x = 0, 0.05, 0.1, 0.2, and 0.3 samples, respectively as shown in Table 4.21-

4.22. The number of redox sites participating at lower scan rates is higher compared 

with the higher scan rates. At slow scan rates, the ions would have enough time to arrive 

the electrode surface leading to the full utilization of the material. At higher scan rates, 

the ions would not have enough time to utilize the material and hence the surface 

adsorption process only takes place (Selvan et al., 2008; Nithya et al., 2013). According 

to the equation 3.9, the calculated diffusion co-efficient for 6 M KOH electrolyte at 

different scan rates corresponding to 5-100 mV/s are 2.61-1.38 × 10-16, 1.53-0.66 × 10-

16, 1.43-0.47 × 10-16, 1.46-0.09 × 10-16, and 1.15-0.02 × 10-16 cm2/s in x = 0, 0.05, 0.1, 

0.2, and 0.3 samples, respectively. The value of diffusion co-efficient depends mainly 

on the peak current since the other parameters in the equation such as the number of 

electrons transferred during the redox reaction, concentration and scan rate. The 

diffusion co-efficient at lower scan rates is higher compared with the higher scan rates. 

Moreover, since the peak current of BiFeO3 sample is higher than Ni-doped BiFeO3 

samples, the value of diffusion co-efficient is found to be higher than Ni-doped BiFeO3 

samples. The decreasing of diffusion co-efficient and number of active sites correspond 

to decreasing of specific capacitance with higher Ni doping concentration. The edge 
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shift above Bi3+ position is 1.38, 1.51, 1.40, 2.14, and 2.26 for x = 0, 0.05, 0.1, 0.2, and 

0.3 samples, respectively, which slightly increase with increasing of Ni doping, except 

x = 0.1. This increase of Ni doping may cause inactive and did not participate in the 

redox reaction of conversion between Bi0 and Bi3+, which may lead to the reduction of 

height of the peak current and deterioration of specific capacitances. 
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Figure 4.35 CV curves of the BiFe1-xNixO3 nanoparticles: (a) x = 0, (b) x = 0.05, (c) x 

= 0.1, (d) x = 0.2, and (e) x = 0.3. (f) Specific capacitance vs scan rate. 
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Table 4.21 Specific capacitances, number of active sites (N) and diffusion coefficients 

(D) of BiFe1-xNixO3 (x = 0, 0.05, and 0.1) samples at various scan rates. 

Sample Scan rate 

(mV/s) 

Specific 

capacitance (F/g) 

Number of 

active site 

Diffusion coefficient 

(cm2/s) × 10-16 

x = 0 5 397.28 1.93 2.61 

 10 373.65 1.82 2.48 

 20 342.79 1.67 2.34 

 40 294.02 1.43 2.00 

 60 250.26 1.22 1.63 

 80 214.23 1.04 1.42 

 100 183.67 0.89 1.38 

x = 0.05 5 361.48 1.76 1.53 

 10 303.16 1.47 1.38 

 20 269.19 1.31 1.02 

 40 234.24 1.14 0.82 

 60 199.53 0.97 0.62 

 80 169.65 0.82 0.57 

 100 145.34 0.71 0.66 

x = 0.1 5 323.25 1.57 1.43 

 10 286.12 1.39 1.27 

 20 260.90 1.27 0.84 

 40 231.97 1.13 0.71 

 60 191.33 0.93 0.50 
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Table 4.22 Specific capacitances, numbers of active site (N) and diffusion coefficients 

of BiFe1-xNixO3 (x = 0.1, 0.2, and 0.3) samples at various scan rates. 

Sample Scan rate 

(mV/s) 

Specific 

capacitance (F/g) 

Number of 

active site 

Diffusion coefficient 

(cm2/s) × 10-16 

x = 0.1 80 171.69 0.83 0.44 

 100 147.08 0.72 0.47 

x = 0.2 5 296.56 1.44 1.46 

 10 274.83 1.34 1.11 

 20 256.00 1.24 0.80 

 40 236.20 1.15 0.37 

 60 216.26 1.05 0.19 

 80 196.58 0.96 0.12 

 100 175.34 0.85 0.09 

x = 0.3 5 194.34 0.94 1.15 

 10 184.76 0.90 0.88 

 20 172.98 0.84 0.44 

 40 159.84 0.78 0.12 

 60 148.77 0.72 0.05 

 80 137.50 0.67 0.03 

 100 123.95 0.60 0.02 
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4.2.3.2 Galvanostatic charge-discharge measurements. 

  The galvanostatic charge-discharge behavior of the electrodes at current 

densities from 1 to 20 A/g are shown in Figure 4.36(a)-4.36(e). The nonlinear curves 

confirm the pseudacapacitive behavior of the material. The discharge curve of the 

electrodes consists of two parts: a steep voltage (IR) drop due to internal resistance and 

a capacitive component (curved portion) related to the voltage change due to changes 

in energy within the capacitor (Fusalba et al., 1999). This (IR) drop is a common 

phenomenon occurring in transition metal oxides (Nithya et al., 2013; Yuan et al., 

2009). The galvanostatic charge-discharge curves measured in all samples show that 

current density increases with decreases of the discharge time. The maximum specific 

capacitance of 232.24 F/g at 1A/g current density was obtained from the undoped 

sample. The specific capacitances calculated for different as synthesized samples at 

different current density from the equation 3.15. The specific capacitance at all current 

densities also continuously decreased from x = 0.05 to x = 0.3 as shown in Figure 

4.36(f). This decrease in the capacitance is due to the fact that the surface of the 

electrode is inaccessible at high charge-discharge rates (Lokhande et al., 2007), 

increasing in ionic resistivity and decreasing in charge diffusion deeper into the inner 

active sites (Nithya et al., 2013; Senthilkumar et al., 2013). Therefore, the specific 

capacitance of the electrodes at a low current density should be suitable for practical 

applications. At a current density of 1 A/g, all the electrodes exhibited the highest 

specific capacitance. In general, increases in the specific surface area in electrochemical 

capacitors is a likely reason for the increase in the specific capacitance, especially in 

carbon materials. On the contrary, the specific capacitance of these BiFe1-xNixO3 

nanoparticles decreases from 232.24-88.09 F/g in the undoped sample to 89.62-9.38 
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F/g in the BiFe0.7Ni0.3O3 samples (at 1-20 A/g  for GCD measurement) with increases 

in the specific surface area. However, specific capacitance does not only depend on 

surface area, but also on other factors, such as the pore size distribution (Long et al., 

2001; Reddy and Reddy, 2003; Khajonrit et al., 2016). All the samples have 

distributions of different mesopores sizes of pores as shown in Figure 4.29, indicating 

that they have a porous structure, which is specific to supercapacitor materials (Long et 

al., 2001; Reddy and Reddy, 2003). The decreases in the specific capacitance of the 

BiFe1-xNixO3 samples with increases in Ni doping can possibly be attributed to all 

samples enriched with mesopores show a mean pore diameter of the BiFeO3 and 5% Ni 

doping samples showed small mesopore sizes (~ 3.28 and 2.42 nm, respectively) which 

were smaller than the 10, 20, and 30% Ni doping samples (~ 24.48 nm). This may 

provide more active sites for chemical reactions (Dubal et al., 2013). Moreover, 

increases in the NiFe2O4 phase composition may influence the specific capacitance due 

to the fact that the specific capacitance of NiFe2O4 nanoparticles (42.8 F/g ) (Yang et 

al., 2013) is lower than that of BiFeO3 nanoparticles (397.28 F/g ) at the same scan rate 

of 5 mV/s in 6 M KOH solution (Khajonrit et al., 2016). This indicates that the increases 

in the phase composition of NiFe2O4 (5.4 to 66.4 %) may lead to decreases in the 

specific capacitances of the BiFe1-xNixO3 (x = 0.05 to 0.3) samples. 
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Figure 4.36 Galvanostatic charge-discharge curves of the BiFe1-xNixO3 nanoparticles: 

(a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.2, and (e) x = 0.3. (f) Specific capacitance 

vs current density. 
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Table 4.23 Specific capacitances, energy densities, and power densities of BiFe1-xNixO3 

(x = 0, 0.05, and 0.1) samples at various current densities. 

Sample Current 

density (A/g) 

Specific 

capacitance (F/g) 

Energy density 

(Wh/Kg) 

Power density 

(W/Kg) 

x = 0 1 232.24 72.71 339.48 

 2 176.20 55.67 731.64 

 5 141.03 45.05 1838.66 

 10 102.48 34.04 3133.76 

 15 97.54 32.88 4890.50 

 20 88.03 29.44 6127.17 

x = 0.05 1 209.35 65.71 371.12 

 2 139.53 43.88 711.21 

 5 93.91 30.06 1651.91 

 10 67.81 22.42 3022.47 

 15 49.71 16.58 4061.22 

 20 38.44 12.94 5065.22 

x = 0.1 1 179.81 56.55 368.32 

 2 114.44 36.01 701.79 

 5 73.65 23.26 1616.80 

 10 46.34 15.08 2919.35 

 15 31.37 10.46 3921.88 

 20 22.20 7.67 4524.59 
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Table 4.24 Specific capacitances, energy densities, and power densities of BiFe1-xNixO3 

(x = 0.2 and 0.3) sample at various current densities. 

Sample Current 

density (A/g) 

Specific 

capacitance (F/g) 

Energy density 

(Wh/Kg) 

Power density 

(W/Kg) 

x = 0.2 1 141.36 44.38 376.75 

 2 84.71 26.64 718.89 

 5 55.38 17.79 1698.94 

 10 35.46 11.69 3007.14 

 15 23.01 7.71 4141.79 

 20 15.64 5.44 4780.49 

x = 0.3 1 89.62 28.12 349.13 

 2 53.74 16.88 709.81 

 5 33.09 10.54 1679.20 

 10 21.46 7.06 2988.24 

 15 12.49 4.25 4135.14 

 20 9.38 3.33 5000.00 

   

 Figure 4.37 shown with energy density and power density of the BiFeO3 and 

Ni-doped BiFeO3 electrodes were calculated based on the galvanostatic charge-

discharge. The energy density are decrease with increasing of Ni doping concentration 

and increasing of current density, while the power density are increase with increasing 

of current density as shown in Table 4.23-4.24. Among different electrodes, BiFeO3 

electrodes shows highest energy density (72.71 Wh/Kg) at current density of 1 A/g. The 
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highest power density was observed in BiFeO3 electrode (6127.17 W/Kg) at current 

densities of 20 A/g. 

 

 

Figure 4.37 Ragone plot showing energy densities and power densities relationship of 

BiFeO3 and Ni-doped BiFeO3 electrodes. 

 

 The cycling performance of the BiFe1-xNixO3 (x = 0.05, 0.1, 0.2, and 0.3) 

electrodes at 10 A/g current density are shown in Figure 4.38. The life cycle (stability) 

of the electrodes is important for practical applications. The capacity retentions of the 

Ni-doped BiFeO3 samples with x = 0, 0.1, 0.20, and 0.30 were 58.59, 42.29, 38.19, and 

34.94 %, respectively, after 500 cycles. Capacity retention can be improved by Ni 

content. BiFe0.95Ni0.05O3 showed the highest of the capacity retention about 82.16 %. It 

increased to 102 % after 80 cycles, and then slightly decreased to 82 % after 500 cycles. 

The capacity retention of over 100 % in this electrode was due to the additional cycles 
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needed to fully activate the sample (Wei et al., 2010; Vivier et al., 2001), which may be 

due to the small mesopore size of about 2.4 nm. 

 

 

Figure 4.38 Capacity retention (%) of the BiFe1-xNixO3 electrodes after 500 cycles at 

10 A/g current density. 

 

4.2.3.3 Electrochemical impedance spectroscopy (EIS) measurements. 

  Figure 4.39 shows Nyquist plots of the BiFe1-xNixO3 (x = 0, 0.05, 0.1, 

0.2, and 0.3) electrodes. The small values of Rs of the BiFe1-xNixO3 (x = 0, 0.05, 0.1, 

0.2, and 0.3) electrodes are 0.24, 0.26, 0.25, 0.25, and 0.24 Ω, respectively, which 

suggests that all electrodes provide good electrical conductivity of the electrolyte. The 

semi-circle at high frequency corresponds to Rct. The small values of Rct of the BiFe1-

xNixO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) electrodes are 0.13, 0.07, 0.08, 0.10, and 0.09 Ω, 

respectively, which indicates that all the electrodes providing the charge transfer 

performance at the electrode/electrolyte interface are facile (Nithya et al., 2013). The 



164 

 

N of the electrodes are in range of 0.747-0.956. This indicated that the electrodes imply 

the moderate capacitor close to ideal capacitor behavior. Generally, the high capacitance 

can be attributed to the high surface area and enhanced electrical conductivity of the 

electrodes (Guan et al., 2013). But in this work, variations in the specific capacitances 

and capacity retention of the Ni-doped BiFeO3 electrodes are not attributed to slight 

increases of surface area and slight differences in the Rct CPE, W, and Rs values. The 

curves move away from the vertical line corresponding to increases in Ni doping 

concentrations. Interestingly, the straight lines close to 90˚ are parallel to the imaginary 

axis at low frequencies indicate a pure capacitive behavior and low diffusion resistance 

of ions in the structure of the electrode. The more vertical the curve the more closely 

the supercapacitor performs as an ideal capacitor (Guan et al., 2013; Yang et al., 2012; 

Wang et al., 2011). This corresponds to the high specific capacitances in the BiFeO3 

electrodes which provide a more perfect capacitance than the Ni-doped BiFeO3 

samples.  

 

 



165 

 

 

Figure 4.39 Nyquist plots of the BiFe1-xNixO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) electrodes. 
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Figure 4.40 Equivalent circuit of the BiFe1-xNixO3 electrodes: (a) x = 0, (b) x = 0.05, 

(c) x = 0.1, (d) x = 0.2, and (e) x = 0.3. 
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4.3 Cu-doped BiFeO3 nanoparticles 

4.3.1 Structural and morphology characterization 

4.3.1.1 X-ray diffraction (XRD) analysis of the Cu-doped BiFeO3 

nanoparticles 

 The XRD patterns of the crystalline powders of BiFe1-xCuxO3 (x = 0, 

0.05, 0.1, 0.2, and 0.3) calcined at 600 ˚C for 3 h are shown in Figure 4.41. All the 

samples show the XRD patterns of the main phases of BiFeO3 revealing the 

rhombohedral structure with the space group R3c (JCPDS No.86-1518) and Bi2Fe4O9 

as the impurity phase with the space group Pbam (JCPDS No.72-1832). By comparing 

the intensity of impurity peaks, all of the Cu-doped samples have higher intensities of 

impurity peaks than undoped sample. The crystallite sizes of 88.8, 75.2, 70.4, 66.6, and 

66.4 nm of the nanoparticles calculated using the Debye-Scherer equation decrease with 

increasing Cu doping concentration x = 0, 0.05, 0.1, 0.2, and 0.3, respectively shown 

in Table 4.25. The variations in the crystallite size of the nanoparticles does not linearly 

depend on the Co doping concentration. This reduction may occur due to Cu3+ (0.54 Å) 

with a small ionic radius substitutes the Fe3+ (0.645 Å). The data reveals that the 

presence of Cu ions in BiFeO3 system prevents the growth of crystal grains. To prevent 

particle growth, the motion of grain boundaries must be impeded. When the moving 

boundaries attached to the ferric interstitials are substituted by Cu ions they offer a 

retarding force on the boundaries (Agrawal et al., 2014). If the retarding force generated 

is more than the driving force for grain growth, the particles cannot grow any longer. 

Figure 4.42-4.44 shows the Rietveld refinement using TOPAS software used to estimate 

the crystal structure profiles of the BiFe1-xCuxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) 

nanoparticles. The variation in the crystallite size of the nanoparticles does not linearly 
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depend on Cu doping concentration. The crystallite size (D), lattice parameters (a and 

c), unit cell volume (V), crystal density (ρ), phase composition (%) of BiFeO3 and 

Bi2Fe4O9, residuals of the weighted pattern (Rwp) and pattern (Rp), and goodness of fit 

(GOF) calculated from Rietveld refinement using TOPAS software are shown in Table 

4.25. The reliability of fitting such as Rwp, Rp, and GOF is confirmed. The Rwp, and Rp 

values of fitting less than 10 %, and the GOF values ~2-3 indicating acceptable matched 

between experimental and theoretical XRD pattern for all samples based on 

rhombohedral unit cell (R3c) of BiFeO3. The lattice parameters a and c, and unit cell 

volume (V) of Co-doped BiFeO3 samples are smaller than undoped BiFeO3. The a-

parameter decreases from 5.5793 nm for x = 0 to 5.5783 nm for x = 0.05. Especially, 

the decrease in c-parameter from 13.8743 nm for x = 0 to 13.8708 nm for x = 0.3, which 

related to the increasing of Cu doping concentration and decreasing of crystallize size. 

These confirm that the Fe3+ (~0.645 Å) site is substituted with lower ionic radius of 

Cu3+ (0.54 Å). The quantitative analysis shows that the Bi2Fe4O9 phase compositions 

decease from 37.45 to 34.24 % for BiFe1-xCuxO3 with x = 0.05 to 0.3 samples, 

respectively. 
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Figure 4.41 XRD patterns of BiFe1-xCuxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) nanoparticles.  
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Table 4.25 List of crystallite sizes (D), lattice parameters (a, c), unit cell volume (V), 

crystal density (ρ), phase composition of BiFeO3 and Bi2Fe4O9, residuals of the 

weighted pattern (Rwp), pattern (Rp), and goodness of fit (GOF) of BiFe1-xCuxO3 (x = 0, 

0.05, 0.1, 0.2, and 0.3) nanoparticles. 

Parameters x = 0 x = 0.05 x = 0.1 x = 0.2 x = 0.3 

D (nm) 88.8 75.2 70.4 66.6 66.4 

a (Å) 5.5793 5.5783 5.5788 5.5791 5.5789 

c (Å) 13.8743 13.8714 13.8712 13.8710 13.8708 

V (Å)3 374.0372 373.8119 373.8814 373.9106 373.8858 

ρ (g/cm3) 8.333 8.348 8.357 8.377 8.398 

BiFeO3 (%) 79.12 62.53 66.39 66.58 65.76 

Bi2Fe4O9 (%) 20.88 37.45 33.61 33.42 34.24 

Rwp (%) 7.68 8.65 7.64 7.24 8.25 

Rp (%) 5.98 6.61 5.80 5.39 6.17 

GOF 2.70 2.86 2.59 2.49 2.89 
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Figure 4.42 Rietveld refinement of XRD data for (a) BiFeO3 (b) Cu-doped BiFeO3 (x 

= 0.05) nanoparticles.  
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Figure 4.43 Rietveld refinement of XRD data for Cu-doped BiFeO3 nanoparticles (a) 

x = 0.1 (b) x = 0.2.  
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Figure 4.44 Rietveld refinement of XRD data for Cu-doped BiFeO3 (x = 0.3) 

nanoparticles.  

 

4.3.1.2 Morphology of the Cu-doped BiFeO3 nanoparticles by SEM and 

TEM 

  Figure 4.45 shows the SEM images revealing the particle sizes of the 

BiFe1-xCuxO3 nanoparticles. The undoped sample shows the nanoparticles sizes to be 

about 100-200 nm, while the Cu-doped samples show decreasing sizes of nanoparticles 

of about 50-100 nm. This indicates that Cu doping causes decreasing sizes of the 

nanoparticles. The mean particle size from the SEM image is in good agreement with 

the crystallite size measured by using Scherrer’s formula.  
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Figure 4.45 SEM images of BiFe1-xCuxO3 nanoparticles: (a) x = 0, (b) x = 0.05, (c) x = 

0.1, (d) x = 0.2, and (e) x = 0.3. 

 

 The morphology and structure of the BiFeO3 and Cu-doped BiFeO3 

nanoparticles were investigated by TEM. Bright field TEM images, high-resolution 

(HRTEM) TEM images, and corresponding selected areas of electron diffraction 
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(SAED) patterns are shown in Figure 4.46. The TEM bright field images show that the 

particles sizes obtained were about 30-200 nm. This is in agreement with the XRD and 

SEM results. To better investigate the crystal structure, HRTEM was performed, which 

shows the lattice fringes of the (104), (202), (104), (012), and (104) planes with 

interplanar spacing of approximately 0.281, 0.227, 0.281, 0.395, and 0.281 nm of the 

BiFe1-xNixO3  with x = 0, 0.05, 0.1, 0.2, and 0.3 samples, respectively, which correspond 

to BiFeO3. This indicates that the nanoparticles are surrounded by BiFeO3 nanocrystals. 

Moreover, the SAED patterns of the nanoparticles show spotty and ring patterns. The 

spotty rings show the characteristics of nanocrystalline BiFeO3 (JCPDS No.86-1518). 
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Figure 4.46 Bright field TEM images (left), high-resolution (HRTEM) TEM images 

(middle), and corresponding selected areas electron diffraction (SAED) patterns (right) 

of BiFe1-xCuxO3 nanoparticles: (a) x = 0, (b) x = 0.05, (c) x  = 0.1, (d) x = 0.2, and (e) 

x = 0.3. 
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4.3.1.3 X-ray absorption spectroscopy study of the Cu-doped BiFeO3 

nanoparticles 

  Figure 447-4.48 shows normalized Bi M5-edges and Fe K-edges 

XANES spectra of all samples. The Bi M5-edge XANES spectra of the BiFe1-xCuxO3 

nanoparticles can be seen with x = 0, 0.05, 0.1, 0.2, and 0.3 as compared with those of 

the standard materials with Bi oxidation states is shown in Figure 4.47(a). The oxidation 

states of Bi in all samples are show along with the standard samples of Bi2O3 for Bi3+. 

It was found that the position of the absorption edge at Bi M5-edge is similar to Bi2O3 

which is typical for Bi in the oxidation state of +3. Figure 4.47(b) shows the XANES 

spectra at the Fe K-edge of all the samples, which match that of Fe2O3, indicating that 

the oxidation state of Fe is 3+. The Cu K-edge XANES spectra of BiFe1-xCuxO3 

nanoparticles as compared with those of the standard materials with different Cu 

oxidation states are shown in Figure 4.48. The absorption edge at the Cu K-edge of all 

the samples does not match those of the Cu+1 and Cu+2 standard samples and the 

oxidation state of the Cu ion differs from that of the starting materials (Cu+2). The edge 

energies of Bi M5-edge, Fe K-edge, and Cu K-edge of the BiFe1-xCuxO3 samples are 

shown in Table 4.26-4.28. The edge energies of Bi M5-edge and Fe K-edge of BiFe1-

xCuxO3 (x = 0.05, 0.1, 0.2, and 0.3) samples are close to the Bi2O3 and Fe2O3 standard, 

respectively. The edge energies of Cu K-edge of BiFe1-xCuxO3 (x = 0.05, 0.1, 0.2, and 

0.3) samples are 8983.93, 8983.68, 8983.16, and 8983.08 eV, respectively, are higher 

than the CuO (8983.01 eV) standard. Clearly, the oxidation state of Cu is not 2+ and 

could be 3+. The XANES feature of the Cu-doped BiFeO3 is similar to that of the Fe 

K-edge of the BiFeO3 parent structure. This suggests that Cu ions likely occupy the Fe 

site in the BiFeO3 structure. Furthermore, the XANES analysis provided strong 
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evidence that Cu+3 (~0.54 Å) of small ionic radius substituting the Fe3+ (~0.645 Å) site 

causes the decrease in particle size. 

 

 

Figure 4.47 XANES spectra of BiFe1-xCuxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) 

nanoparticles: (a) Bi M5-edge and (b) Fe K-edge. 
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Figure 4.48 XANES spectra at Cu K-edge of BiFe1-xCuxO3 (x = 0, 0.05, 0.1, 0.2, and 

0.3) nanoparticles. 

  

Table 4.26 Absorption edges and oxidation states at Bi M5-edge of all Cu-doped BiFeO3 

samples along with the standard samples. 

Samples/standard Absorption edge at 

Bi (eV) 

Edge shift at 

Bi (eV) 

Oxidation state 

Bi2O3 2597.25 0 +3 

BiFeO3 2598.63 1.38 +3 

BiFe0.95Cu0.05O3 2598.25 1.00 +3 

BiFe0.9Cu0.1O3 2598.65 1.40 +3 

BiFe0.8Cu0.2O3 2598.67 1.42 +3 

BiFe0.7Cu0.3O3 2598.77 1.52 +3 
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Table 4.27 Absorption edges and oxidation states at Fe K-edge of all Cu-doped BiFeO3 

samples along with the standard samples. 

Samples/standard Absorption 

edge at Fe (eV) 

Edge shift at 

Fe (eV) 

Oxidation state 

FeO 7120.87 4.77 +2 

Fe2O3 7125.64 0 +3 

BiFeO3 7124.62 1.02 +3 

BiFe0.95Cu0.05O3 7124.33 1.31 +3 

BiFe0.9Cu0.1O3 7124.39 1.25 +3 

BiFe0.8Cu0.2O3 7124.51 1.13 +3 

BiFe0.7Cu0.3O3 7124.71 0.93 +3 

 

Table 4.28 Absorption edges and oxidation states at Cu K-edge of all Cu-doped BiFeO3 

samples along with the standard samples. 

Samples/standard Absorption 

edge at Cu (eV) 

Edge shift at 

Cu (eV) 

Oxidation state 

Cu foil 8978.61 4.4 0 

Cu2O 8979.89 3.12 +1 

CuO 8983.01 0 +2 

BiFe0.95Cu0.05O3 8988.93 5.92 +3 

BiFe0.9Cu0.1O3 8988.68 5.67 +3 

BiFe0.8Cu0.2O3 8989.16 6.15 +3 

BiFe0.7Cu0.3O3 8989.08 6.07 +3 
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4.3.1.4 Characterization of surface area and pore size distribution of the 

Cu-doped BiFeO3 nanoparticles by BET method and BJH method 

 The N2 adsorption-desorption isotherms and pore size distributions 

(BJH plot) of BiFe1-xCuxO3 nanoparticles with x = 0, 0.05, 0.1, 0.2, and 0.3 are shown 

in Figure 4.49. Figure 4.49(a) shows features of N2 adsorption-desorption isotherms. 

The hysteresis loop features of all samples indicate characteristic of non-porous with 

low adsorbate-sample surface interaction. The presence of micropores and mesopores 

in particles is shown by the BJH curve (Figure 4.49 (b)). The BiFe1-xCuxO3 samples 

with x = 0, 0.05, 0.1, 0.2, and 0.3 have specific surface areas of 3.6, 3.9, 4.7, 4.8, and 

6.8 m2/g, respectively. In general, the decrease in the size of BiFeO3 nanoparticles is 

related to an increase in surface area (Park et al., 2007). In this research, we confirm 

that all the samples with higher concentrations of Cu dopant showed a decrease in 

particle size which shows a tendency of increasing their specific surface area as 

calculated and cited in Table 4.27. The observed pores may simplify the improvement 

in the electrolyte contract area, which will increase the concentration of ions in the 

electrode material (Zhang et al., 2010). This may lead to the higher capacitance and 

better capacity retention in the BiFe0.95Cu0.05O3 sample, which will be discussed in 

section 4.3.3. All the samples with higher concentrations of Cu dopant showed a 

decrease in particle size which shows a tendency to increase their specific surface area, 

and total pore volume as calculated and cited in Table 4.29. By comparison, the average 

particle size calculated by BET is larger than the crystallite size calculated by XRD for 

all samples as shown in Figure 4.50. The differences in the results occur from 

aggregates and agglomerates of crystals, which indicate that the particles include 

several crystallites (Gaber et al., 2014).  
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Figure 4.49 N2 adsorption-desorption isotherms (a) and pore-size distribution (b) of the 

BiFe1-xCuxO3 nanoparticles. 
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Table 4.29 Specific surface area (SBET), mean pore diameter (DMP), total pore volume 

(VTP), meso pore diameter (DBJH), particle size (DBET) of BiFe1-xCuxO3 (x = 0, 0.05, 0.1, 

0.2, and 0.3) nanoparticles. 

Samples SBET (m2/g) DMP (nm) VTP (cm3/g) DBJH (nm) DBET (nm) 

BiFeO3 3.64 25.55 0.0254 3.28 197.81 

Bi0.95Cu0.05O3 3.94 33.15 0.0302 2.42 182.43 

Bi0.9Cu0.1O3 4.73 35.64 0.0420 4.21 151.79 

Bi0.8Cu0.2O3 4.81 37.26 0.0449 4.82 148.91 

Bi0.7Cu0.3O3 6.82 36.14 0.0448 5.43 104.76 

 

 

Figure 4.50 Variations of crystallite size calculated by XRD and particle size calculated 

from BET of BiFe1-xCuxO3 nanoparticles as a function of Cu content (%). 
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4.3.2 Magnetic properties of the Cu-doped BiFeO3 nanoparticles 

 Figure 4.51(a)-4.51(d) show the M-H hysteresis loops of the BiFe1-xCuxO3 (x = 

0, 0.05, 0.1, 0.2, and 0.3) nanoparticles at 50, 100, 200, 300, and 350 K of temperature. 

The coercivity (Hc), saturation manetization (Ms) and remanant magnetization (Mr) 

values of Cu-doped BiFeO3 nanoparticles at different temperatures shows in Table 4.28. 

Clearly, the saturation magnetization (Ms) increases linearly with increasing Co doping 

concentrations at all temperatures. The magnetization of BiFeO3 slightly increases from 

0.207 to 0.223 emu/g with increasing in temperatures from 50 to 350 K, respectively, 

except at 200 K which shows slightly decreases level of magnetization at 0.206 emu/g . 

Moreover, the magnetization of the Cu-doped BiFeO3 (x = 0.1, 0.2, and 0.3) samples 

increases with decreasing in temperature from 350 to 50 K, except x = 0.05 samples at 

100 and 200 K of which shows slightly decrease level of magnetization at 0.307 and 

0.306 emu/g, respectively. The saturation magnetization (Ms) (from 0.206 to 0.896 

emu/g) linearly increases with increasing of Cu doping concentration (from x = 0 to x 

= 0.3). It is possible that the Cu doping concentration strongly affected the magnetic 

properties, resulting in enhanced ferromagnetism. This is not due to the presence of the 

secondary phase of Bi2Fe4O9 nanoparticles in the x = 0 to x = 0.1 samples that exhibit 

the antiferromagnetic nature with a very low Ms, as reported previously (Wang et al., 

2009; Rao et al., 2016; Lin et al., 2015). The magnetization dependence on Cu doping 

concentration provides strong evidence of the size effect. It is known that particles of 

the nanoscale exhibit significantly different properties from bulk BFeO3 (Zhang et al., 

2005). The decrease in particle size causes an increasing in surface-volume ratio, and 

the long-range anitiferromagnetic order is frequently interrupted at the surface. The 

contribution of uncompensated spins at the surface to the total magnetic moment of the 
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particles increases. Therefore, an intrinsic spiral spin structure is incompletely 

suppressed, causing weak ferromagnetism in the nanoparticles (Park et al., 2007; Jia et 

al., 2009). A slim hysteresis loop is observed in the BiFeO3 sample and larger loops are 

seen in the Cu-doped samples with x = 0.05 to 0.3. The hysteresis loops of all samples 

indicated improving ferromagnetism by Cu doping influenced by variations in the 

coercivity (Hc) between 21.11 to 1116.67 Oe. The Hc increases with increasing of Cu 

doping concentration and decreasing of the crystallite-size of the nanoparticles. This 

conform to the variations of Hc, which decreases when the crystallite size is in the multi-

domain region (Cullity and Graham, 2011). Moreover, the Hc values increase with 

decreasing of temperature for all samples. This may occur from two reasons: (1) an 

increase in Hc is the alignment of the magnetic moment in the direction of the external 

magnetic field and (2) thermal fluctuations of nanoparticles decrease with decreases in 

the temperature (Khan et al., 2015). Moreover, the remanent magnetization (Mr) 

increases with increases of the Cu content due to decreases in the crystallite size of 

BiFeO3 and decrease in temperature. 
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Figure 4.51 Magnetization hysteresis loops at different temperature of BiFe1-xCuxO3 

nanoparticles: (a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.2, and (e) x = 0.3. (f)  

Variations in saturation magnetization as a function of Cu content (%). 
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Table 4.30 Coercivity (Hc), saturation manetization (Ms) and remanant magnetization 

(Mr) values of BiFe1-xCuxO3 (x = 0, 0.05, 0.1, and 0.2) samples at different 

temperatures. 

Sample T (K) Hc (Oe) Ms (emu/g) Mr (emu/g) 

x = 0 50 524.35 0.207 0.019 

 100 342.73 0.210 0.017 

 200 108.14 0.206 0.010 

 300 52.85 0.219 0.005 

 350 30.59 0.223 0.004 

x = 0.05 50 879.190 0.311 0.051 

 100 704.808 0.306 0.047 

 200 173.951 0.307 0.028 

 300 45.867 0.309 0.015 

 350 21.111 0.307 0.007 

x = 0.1 50 989.272 0.424 0.099 

 100 821.427 0.416 0.091 

 200 357.531 0.410 0.062 

 300 165.219 0.401 0.040 

 350 130.720 0.394 0.028 

x = 0.2 50 1107.785 0.648 0.207 

 100 973.562 0.635 0.191 

 200 495.483 0.617 0.144 

 300 284.901 0.586 0.079 

 350 218.026 0.568 0.079 
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Table 4.31 Coercivity (Hc), saturation manetization (Ms) and remanant magnetization 

(Mr) values of BiFe1-xCuxO3 (x = 0.3) samples at different temperatures. 

Sample T (K) Hc (Oe) Ms (emu/g) Mr (emu/g) 

x = 0.3 50 1116.667 0.891 0.315 

 100 980.476 0.873 0.298 

 200 574.761 0.846 0.242 

 300 325.238 0.795 0.172 

 350 258.095 0.759 0.157 

 

 Figure 4.52-4.54 shows temperature dependent of the magnetization for the un-

doped BiFeO3 and BiFe1-x CuxO3 (x = 0.05, 0.1, 0.2, and 0.3) nanoparticles, showing 

the ZFC (zero field cooling) and FC (field cooling) curves, under 50 K to 350 K with 

an applied field set at 500 Oe. The FC curves of the Cu-doped BiFeO3 samples increases 

in magnetization with a lowering of temperature from 150 to 50 K as shown in Figure 

4.50(b)-4.52. This may be attributed to the development of the incommensurate 

sinusoidal spin structure (Naik and Mahendiran, 2009) and indicates that the Cu-doped 

BiFeO3 samples have typical ferromagnetic properties. The decreases in the 

magnetization of the ZFC curves with a lowering of temperature from 250 to 50 K for 

x = 0 samples and Cu-doped BiFeO3 samples suggest a antiferromagnetic property 

(Kumar and Yadav, 2011). A clear broad magnetization maximum of the ZFC curves of 

x = 0 and 0.05 samples in the blocking temperatures (TB) of ~250 K was observed as 

shown in Figure 4.52. This indicates that there might be magnetic blocking and spin 

glass behavior (Kumar and Yadav, 2011) (Singh et al., 2008). The Cu doped BiFeO3 (x 

= 0.1, 0.2 and 0.3) samples show increases in the blocking temperatures (TB) which are 
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greater than 350 K. This result conform to other reports of BiFeO3, which show a 

magnetic transition below 650 K, indicating that the sample becomes ferromagnetic at 

the Neel temperature when the particle size is reduced (Vijayanand et al., 2009). The 

divergence between FC and ZFC magnetization curves more than 350 K is similar to 

that found for other ferro- and ferrimagnetic materials (Joy and Date, 2000). Moreover, 

a splitting between FC and ZFC magnetization curves can attributed to an 

inhomogeneous mixture of AFM and FM (Siwach et al., 2007).  

 The temperature dependence of the inverse magnetic susceptibility, 1/χ, and the 

fitting curves are shown in the inset of Figure 4.52-4.54. The experimental is fitted data 

according to the Curie-Weiss law. The Curie constant (C) are 35.73, 41.34, 47.69, 88.09, 

and 173.19 emu K/g Oe for x = 0, 0.05, 0.1, 0.2, and 0.3 samples, respectively, which 

increase with increasing of Cu doping concentration. The Curie-Weiss temperature (θ) 

value obtained from the Curie-Weiss fit of undoped-BiFeO3 and Cu-doped BiFeO3 

samples are shown in Table 4.32. This negative values of the θ of all samples indicated 

the antiferromagnetic characteristics with weak FM and without FM component. By 

fitting with Curie-Weiss law, the theoretical effective moment can compute from Curie 

constant (C). The effective magnetic moment (μeff) values from experiment of the un-

doped BiFeO3 and Cu-doped BiFeO3 samples with x = 0.05, 0.1, 0.2, and 0.3 are shown 

in Table 4.32. The μeff values are increased with increasing of Cu doping. The μeff values 

obtained from experiments for all samples are higher than the theoretical values of high-

spin Fe3+ (5.92 μB). This fitting results from the experiment indicated that Fe3+ must be 

in a high spin configuration. 
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Figure 4.52 ZFC/FC curves and fitting the data to the Curie-Weiss law (inset) for (a) 

BiFeO3 and (b) BiFe0.95Cu0.05O3 nanoparticles.  

 

 



191 

 

 
Figure 4.53 ZFC/FC curves and fitting the data to the Curie-Weiss law (inset) for (a) 

BiFe0.9Cu0.1O3 and (b) BiFe0.8Cu0.2O3 nanoparticles. 
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Figure 4.54 ZFC/FC curves and fitting the data to the Curie-Weiss law (inset) for 

BiFe0.7Cu0.3O3 nanoparticles. 

 

Table 4.32 Effective magnetic moment (μeff), Curie-Weiss temperature (θ) obtained 

from Curie-Weiss law fitting results for Cu-doped BiFeO3. 

Doping level μeff (μB) θ (K) 

x = 0  16.70a, 17.03b -1641.04a, -1605.18b 

x = 0.05 26.67a, 18.29b -1682.12 a, -687.36b 

x = 0.1 19.78 -510.66 

x = 0.2 26.68 -459.91 

x = 0.3 37.52 -587.98 

 

a is fitting at T = 50-130 K, b is fitting at T = 250-350 K 
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4.3.3 Electrochemical properties of Cu-doped BiFeO3 nanoparticles 

4.3.3.1 Cyclic voltammetry measurement 

  Figure 4.55 shows the CV curves for the BiFe1-xCuxO3 nanoparticles. 

CV measurements were performed between -1.2 to 0.3 V at different potential scan 

rates of 5 to 100 mV/s in 6 M KOH solution. The samples exhibited a pseudocapacitive 

behavior. The redox peaks were observed for all the samples, indicating the redox 

transitions of the nanoparticles between different valence states. The height of the peak 

currents varied and a progressive shift in the peaks to higher potentials were observed 

with increasing scan rates from 5 to 100 mV/s. The specific capacitances of different 

synthesized samples at different scan rates were calculated from equation 3.13. The 

calculated specific capacitances vs scan rate are plotted in Figure 4.55(f). The specific 

capacitances of all the samples decrease with increasing scan rate. This is attributed to 

the presences of inner active sites, which completely inhibited the redox transitions at 

higher scan rates of CV, probably owing to the diffusion effect of protons within the 

electrode (Kötz and Carlen, 2000). At a scan rate of 5 mV/s, all the electrodes exhibited 

the highest specific capacitance. The maximum specific capacitance of 451.82 F/g at a 

scan rate of 5 mV/s was obtained in the Cu-doped sample with x = 0.05. The specific 

capacitance of the nanoparticles did not linearly depend on Cu doping concentration. 

Specific capacitance tended to increase from x = 0 to x = 0.05 and continuously decease 

from x = 0.10 to x = 0.30.  

 The number of active sites of the electrodes were calculated using equation 3.14. 

The calculated number of active sites involved in the redox reaction at different scan 

rates corresponding to 5-100 mV/s are 1.93-0.89, 2.20-0.96, 2.00-0.77, 1.88-0.77, and 

1.77-0.72 in x = 0, 0.05, 0.1, 0.2, and 0.3 samples, respectively as shown in Table 4.33-
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4.34. By comparison, the calculated number of active sites of Cu-doped BiFeO3 (x = 

0.05) nanoparticles (2.20-0.96) in this work are slightly higher than Bi2WO6 

nanoparticles (2.07-0.32) (Nithya et al., 2013) at scan rates of 5-100 mV/s. The number 

of redox sites participating at lower scan rates is higher compared with the higher scan 

rates. At slow scan rates, the ions would have enough time to arrive the electrode surface 

leading to the full utilization of the material. At higher scan rates, the ions would not 

have enough time to utilize the material and hence the surface adsorption process only 

takes place (Selvan et al., 2008; Nithya et al., 2013). According to the equation 3.9, the 

calculated diffusion co-efficient for 6 M KOH electrolyte at different scan rates 

corresponding to 5-100 mV/s are 2.61-1.38 × 10-16, 2.62-2.19 × 10-16, 1.93-1.03 × 10-

16, 1.77-1.02 × 10-16, and 1.75-0.85 × 10-16 cm2/s in x = 0, 0.05, 0.1, 0.2, and 0.3 samples, 

respectively as shown in Table 4.33-4.34. The value of diffusion co-efficient depends 

mainly on the peak current since the other parameters in the equation such as the 

number of electrons transferred during the redox reaction, concentration and scan rate. 

The diffusion co-efficient at lower scan rates is higher compared with the higher scan 

rates. Moreover, since the peak current of x = 0.05 sample is higher than other samples, 

the diffusion co-efficient value of x = 0.05 sample (2.61 × 10-16 cm2/s) is found to be 

higher than other samples. By comparison, the calculated diffusion co-efficient of 

BiFeO3 and Cu-doped BiFeO3 (x = 0.05) nanoparticles (2.61-0.85 × 10-16 cm2/s) for 6 

M KOH electrolyte at 5-100 mV/s in this work are higher than the diffusion co-efficient 

of Bi2WO6 nanoparticles for 1 M KOH electrolyte (3.6 × 10-17 cm2/s) and 1M KOH 

electrolyte (1.2 × 10-17 cm2/s)  at 2 mV/s (Nithya et al., 2013). The variations of number 

of active sites and diffusion co-efficient correspond to variations of specific 

capacitances of the Cu-doped BiFeO3. 
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 A slight but significant crystallite size decreases from 88 nm in BiFeO3 to 75 

nm after 5 % Cu doping was determined using the Debye-Scherrer equation. This 

crystallite size decrease led to the sharp increase in the specific surface area (SBET) from 

3.6 m2/g in the BiFeO3 sample to 3.9 m2/g in the BiFe0.95Cu0.05O3 sample. This slight 

improvement in crystallinity after 5% Cu doping is likely the main reason for the 

increase in the specific capacitance from 397.28 F/g in the undoped sample to 451.82 

F/g in the Cu-doped sample (at 5 mV/s for CV measurement). However, it was noticed 

that the specific capacitances decreased when the Cu doping concentration was 

increased from 5 to 30 %. The surface area increased from 3.9 m2/g in the 5 %-Cu-

doped sample to 6.8 m2/g in the 30 %-Cu-doped sample. This indicates that specific 

capacitance does not only depend on surface area but also on other factors such as the 

pore size distribution at Cu doping concentrations from 5 to 30% (Long et al., 2001; 

Reddy and Reddy, 2003).  

 All the samples have distributions of different sizes of pores, namely, 

micropores, mesopores, as shown in Figure 4.49, indicating that they have a porous 

structure, which is specific for for supercapacitor materials (Long et al., 2001; Reddy 

and Reddy, 2003).  The improvement in the specific capacitance of the BiFe0.95Cu0.05O3 

sample and the decrease in the specific capacitance of the BiFe1-xCuxO3 samples with 

increasing x is possibly attributed to mesopore size of the BiFe0.95Cu0.05O3 sample, 

which showed the smallest mesopore size of about 2.4 nm. This provides more active 

sites for chemical reactions (Dubal et al., 2013). The BiFe1-xCuxO3 samples showed 

smaller pore diameters which tended to decrease with increasing x. Moreover, the edge 

shift slightly increase above Bi3+ position with increasing of Cu doping, except x = 0.05, 

which is 1.38, 1, 1.40, 1.42, and 1.52 for x = 0, 0.05, 0.1, 0.2, and 0.3 samples, 
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respectively. This result is in good agreement with reversible redox reaction of Bi3+ to 

Bimetal. Increasing of Cu doping, the oxidation state of Bi is increased higher than 3+, 

except x = 0.05 were inactive and did not participate in the redox reaction, which may 

lead to the reduction of height of the peak current and deterioration of specific 

capacitances. In comparison with those of previously reported BiFeO3-based 

electrodes, the specific capacitances of BiFeO3 nanoparticles (373.65 F/g) and BiFe 

0.95Cu0.05O3 (434.45 F/g) tested in 6 M KOH electrolyte are close to that of BiFeO3 

nanorod (450 F/g) tested in 1 M Na2SO4 electrolyte at the same scan rate of 10 mV/s. 

This may be due to difference of electrolyte and a particular structure, that is, an 

anodized alumina template with a rod form with a high porosity and a large surface area 

(Rana et al., 2014).  Interestingly, the specific capacitance of the BiFeO3 nanoparticle 

(342.79 F/g) and BiFe 0.95Cu0.05O3 (395.97 F/g) in this work is higher than that of the 

BiFeO3 thin film electrode (81 F/g) tested in 1 M NaOH electrolyte at the same scan 

rate of 20 mV/s (Lokhande et al., 2007). However, thin-film-based supercapacitors also 

exhibited higher specific capacitances than their bulk electrode owing to their excellent 

electrical contact to the substrate, fast electron transfer, and electrolyte diffusion 

(Lokhande et al., 2011). 
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Figure 4.55 CV curves of the BiFe1-xCuxO3 nanoparticles: (a) x = 0, (b) x = 0.05, (c) x 

= 0.1, (d) x = 0.2, and (e) x = 0.3. (f) Specific capacitance vs scan rate. 
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Table 4.33 Specific capacitances, number of active sites (N) and diffusion coefficients 

(D) of BiFe1-xCuxO3 (x = 0, 0.05, and 0.1) samples at various scan rates. 

Sample Scan rate 

(mV/s) 

Specific 

capacitance (F/g) 

Number of 

active site 

Diffusion coefficient 

(cm2/s) × 10-16 

x = 0 5 397.28 1.93 2.61 

 10 373.65 1.82 2.48 

 20 342.79 1.67 2.34 

 40 294.02 1.43 2.00 

 60 250.26 1.22 1.63 

 80 214.23 1.04 1.42 

 100 183.67 0.89 1.38 

x = 0.05 5 451.82 2.20 2.62 

 10 434.45 2.11 2.88 

 20 395.97 1.93 2.75 

 40 330.23 1.61 2.29 

 60 279.99 1.36 2.09 

 80 235.50 1.15 2.17 

 100 197.65 0.96 2.19 

x = 0.1 5 410.61 2.00 1.93 

 10 372.88 1.81 1.73 

 20 333.74 1.62 1.68 

 40 275.11 1.34 1.28 

 60 227.81 1.11 1.06 
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Table 4.34 Specific capacitances, numbers of active site (N) and diffusion coefficient 

of Cu-doped BiFeO3 (x = 0.1, 0.2, and 0.3) samples at various scan rates. 

Sample Scan rate 

(mV/s) 

Specific 

capacitance (F/g) 

Number of 

active site 

Diffusion coefficient 

(cm2/s) × 10-16 

x = 0.1 80 190.33 0.93 1.05 

 100 158.01 0.77 1.03 

x = 0.2 5 387.17 1.88 1.77 

 10 366.48 1.78 1.59 

 20 329.62 1.60 1.60 

 40 272.37 1.32 1.22 

 60 224.57 1.09 1.04 

 80 184.90 0.90 1.03 

 100 158.14 0.77 1.02 

x = 0.3 5 363.61 1.77 1.75 

 10 342.36 1.66 1.58 

 20 309.64 1.51 1.56 

 40 260.26 1.27 1.18 

 60 217.45 1.06 1.01 

 80 181.72 0.88 0.90 

 100 148.84 0.72 0.85 

 

 



200 

 

4.3.3.2 Galvanostatic charge-discharge measurements 

  Figures 4.56(a)-4.56(e) show the charge-discharge behavior of the 

electrodes at current densities from 1 to 20 A/g. The nonlinear curves confirm the 

pseudacapacitance behavior of the material. The discharge curve of the electrodes 

consists of two parts: a steep voltage drop due to internal resistance and a capacitive 

component (curved portion) related to the voltage change due to change in energy 

within the capacitor (Fusalba et al., 1999). The galvanostatic charge-discharge curves 

tested in all samples show that, with increasing current density, the discharge time 

reduces. The specific capacitances of different synthesized samples at different current 

density were calculated from the equation 3.15. The specific capacitance, as shown in 

Figure 4.56(f), decreases with increasing of current density for all the samples. This 

decrease in the capacitance suggests that the surface of the electrode is inaccessible at 

high charging-discharge rates (Lokhande et al., 2007). Therefore, the specific 

capacitances of the electrodes at a low current density should be suitable for practical 

applications. At a current density of 1 A/g, all the electrodes exhibited the highest 

specific capacitance. The maximum specific capacitance of 233.41 F/g at 1 A/g current 

density was obtained in the Cu-doped sample with x = 0.05. The specific capacitance 

at all current densities increased from x = 0 to x = 0.05 and continuously deceased from 

x = 0.10 to x = 0.30. Performances with energy density and power density in a Ragone 

plot of the BiFeO3 and Cu-doped BiFeO3 electrodes were calculated based on the 

galvanostatic charge-discharge as shown in Figure 4.57.   
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Figure 4.56 Galvanostatic charge-discharge curves of the BiFe1-xCuxO3 nanoparticles: 

(a) x = 0, (b) x = 0.05, (c) x = 0.1, (d) x = 0.2, and (e) x = 0.3. (f) Specific capacitance 

vs current density. 
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 The energy densities are decreased with increasing of Cu content and increasing 

of current density, except x = 0.05 sample which can slightly improve energy density, 

while the power density are increased with increasing of current density as shown in 

Table 4.35-4.36. Among different electrodes, Cu-doped BiFeO3 (x = 0.05) electrode 

shows highest energy density (73.03 Wh/Kg) at current density of 1 A/g. Moreover, the 

highest power density was observed in Co-doped BiFeO3 (x = 0.05) electrode (6413.41 

W/Kg) at current densities of 20 A/g. At the current density of 1 A/g, the power density 

are slightly increased from 308.30 to 360.94 W/Kg with Cu doping concentration for x 

= 0.05 to x = 0.3 samples, respectively.  

 

 

Figure 4.57 Ragone plot showing energy densities and power densities relationship of 

BiFeO3 and Cu-doped BiFeO3 electrodes. 
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Table 4.35 Specific capacitances, energy densities, and power densities of BiFe1-

xCuxO3 (x = 0, 0.05, and 0.1) samples at various current densities. 

Sample Current 

density (A/g) 

Specific 

capacitance (F/g) 

Energy density 

(Wh/Kg) 

Power density 

(W/Kg) 

x = 0 1 232.24 72.71 339.48 

 2 176.20 55.67 731.64 

 5 141.03 45.05 1838.66 

 10 102.48 34.04 3133.76 

 15 97.54 32.88 4890.50 

 20 88.03 29.44 6127.17 

x = 0.05 1 233.41 73.03 308.30 

 2 193.78 60.04 716.41 

 5 146.21 46.39 1788.01 

 10 118.78 38.64 3417.69 

 15 101.79 33.92 4884.00 

 20 96.00 31.89 6413.41 

x = 0.1 1 225.69 70.61 347.11 

 2 167.92 52.89 709.46 

 5 127.31 40.38 1744.90 

 10 100.26 32.67 3331.44 

 15 83.13 27.63 4691.04 

 20 73.42 24.72 6013.51 
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Table 4.36 Specific capacitances, energy densities, and power densities of BiFe1-

xCuxO3 (x = 0.2 and 0.3) sample at various current densities. 

Sample Current 

density (A/g) 

Specific 

capacitance (F/g) 

Energy density 

(Wh/Kg) 

Power density 

(W/Kg) 

x = 0.2 1 221.35 69.32 353.12 

 2 166.64 52.42 721.61 

 5 121.84 39.01 1753.43 

 10 94.64 31.28 3282.80 

 15 78.83 26.83 4644.23 

 20 67.15 23.22 5726.03 

x = 0.3 1 216.60 67.85 360.94 

 2 149.93 47.13 718.07 

 5 103.90 33.22 1728.32 

 10 82.25 26.86 3346.02 

 15 67.93 22.92 4796.51 

 20 49.97 16.56 5274.34 

 

 In addition, Figure 4.58 shows the cycling performance of the BiFe1-xCuxO3 

electrodes at different concentrations of Cu doping with x = 0, 0.05, 0.1, 0.2, and 0.3 at 

10 A/g current density. The cycle life (stability) of the electrodes is important for 

practical applications. Capacity retention can be improved by Cu doping. All of the Cu-

doped electrodes except BiFe0.95Cu0.05O3, BiFe0.9Cu0.1O3, and BiFe0.8Cu0.2O3 showed 

higher capacity retention than the undoped BiFeO3 electrode. The capacity retention of 

the BiFe0.95Cu0.05O3 electrode was high. It increased to 120% after 40 cycles, and then 
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slightly decreased to 77.13 % after 500 cycles. For the BiFe0.9Cu0.1O3 electrode, its 

capacity retention was increased to 107 % after 60 cycles and decreased to 73.15% after 

500 cycles. The capacity retention of over 100 % in this electrode was due to the 

additional cycles needed to fully activate the sample (Wei et al., 2010; Vivier et al., 

2001). This is in agreement with the small mesopore size at low Cu doping 

concentration, which lead to the suppression of electrolyte diffusion into the inner 

region of the electrode (Lokhande et al., 2011; Dubal et al., 2013). The capacity 

retentions of the Cu-doped BiFeO3 samples with x = 0, 0.20, and 0.30 were 58.59, 

61.00, and 52.93 %, respectively, after 500 cycles.  

 

 

Figure 4.58 Capacity retention (%) of the BiFe1-xCuxO3 electrodes after 500 cycles at 

10 A/g current density. 
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4.3.3.3 Electrochemical impedance spectroscopy (EIS) measurements 

  Figure 4.59 shows Nyquist plots of the BiFe1-xCuxO3 (x = 0, 0.05, 0.1, 

0.2, and 0.3) electrodes. The small values of solution resistance (Rs) of the BiFe1-xCuxO3 

(x = 0, 0.05, 0.1, 0.2, and 0.3) electrodes are 0.24, 0.27, 0.26, 0.25, and 0.27 Ω, 

respectively, which suggest that all electrodes provide good electrical conductivity of 

the electrolyte. The semi-circle at high frequency corresponds to Rct. The Rct of the 

BiFe1-xCuxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) electrodes are 0.13, 0.12, 0.09, 0.14, and 

0.9 Ω, respectively, The small Rct values indicate that all the electrodes providing the 

charge transfer performance at the electrode/electrolyte interface are facile (Nithya et 

al., 2013). The N of the electrodes are in range of 0.711-0.956. This indicated that the 

electrodes imply the moderate capacitor close to ideal capacitor behavior. In this work, 

variations in the specific capacitances and capacity retention of the Cu-doped BiFeO3 

electrodes are not attributed to slight increases of surface area and slight differences in 

the Rct CPE, W, and Rs values. The straight lines close to 90˚ are parallel to the 

imaginary axis at low frequencies which indicate a good capacitive behavior and a low 

diffusion resistance of the ions in the structure of the electrodes (Guan et al., 2013; 

Yang et al., 2012; Wang et al., 2011). The more vertical the curve, the more closely the 

supercapacitor performs as an ideal capacitor. Interestingly, increases in Cu doping 

concentrations with x = 0 to x = 0.3 correspond to the curves which move away from 

the vertical line. Thus, the vertical curve of the BiFeO3 electrodes close to 90˚ provides 

a greater capacitance with low diffusion resistance of ions in the structure of the 

electrodes than for the Cu-doped BiFeO3 samples. This leads to decreases in the specific 

capacitances.  
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Figure 4.59 Nyquist plots of the BiFe1-xCuxO3 (x = 0, 0.05, 0.1, 0.2, and 0.3) electrodes. 
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Figure 4.60 Equivalent circuit of the BiFe1-xCuxO3 electrodes: (a) x = 0, (b) x = 0.05, 

(c) x = 0.1, (d) x = 0.2, and (e) x = 0.3. 



 

 

CHAPTER V 

CONCLUSIONS AND SUGGESTIONS 

 

 In this study, BiFe1-xMxO3 (M = Co, Ni, and Cu) nanoparticles were successfully 

synthesized by a simple solution method. In each doping system, five samples have 

different dopant contents from 0 %, 5 %, 10 %, 20 %, and 30 %, respectively. The 

structures and morphologies of all the samples were characterized by XRD, SEM, 

TEM, XAS, and Gas absorption techniques. The magnetic properties were studied by 

VSM, while the electrochemical properties were studied by CV, GCD, and EIS 

techniques. Based on the experimental results, it has been demonstrated that 

understandings of relationship of structure morphology and properties for the BiFe1-

xMxO3 (M = Co, Ni, and Cu) nanoparticles summarized as follows: 

 

5.1 The structure and morphology characterization 

 The XRD patterns of all samples are found in the main phase which correspond 

to BiFeO3 (JCPDS No.86-1518). Small impurity peaks in some samples are present 

which correspond to different phases such as Bi2Fe4O9 (JCPDS No.72-1832), CoFe2O4 

(JCPDS No.02-1045), Co3O4 (JCPDS No.80-1537), and NiFe2O4 (JCPDS No.86-

2267). The crystallite size of Co-doped BiFeO3, Ni-doped BiFeO3, and Cu-doped 

BiFeO3 nanoparticles (88.8-54.5 nm, 88.8-34.1 nm, and 88.8-66.4 nm, respectively) 

decreased with increasing of doping content (from un-doped to 30 %). The variation of
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lattice constant values of BiFeO3 conforms to the doping of Co, Ni, and Cu ions. The 

decrease in lattice constant values of c-parameter with increasing of doping from x = 0 

to x = 0.3 for Co-doped BiFeO3 and Cu-doped BiFeO3 nanoparticles occur due to Co3+ 

(0.545 Å) and Cu3+ (0.54 Å) with a small ionic radius substitutes the Fe3+ (0.645 Å) 

site, respectively. For Ni-doped BiFeO3 nanoparticles, there is an increase in a 

parameter in x = 0 to x = 0.3 samples, which related to the increasing of Ni doping 

concentration. These confirm that the Fe3+ (~0.645 Å) site is substituted with higher 

ionic radius of Ni2+ (0.69 Å). This agrees with the oxidation states results from XAS 

analysis that the oxidation-state of Bi and Fe K edge in all samples is 3+. The oxidation 

states of Co, Ni, and Cu in Co-doped BiFeO3, Ni-doped BiFeO3, and Cu-doped BiFeO3 

nanoparticles are the mixing of 2+ and 3+, 2+, and 3+, respectively. Moreover, the 

variation of lattice constant values of BiFeO3 also conform to the variation of crystallize 

size. According to the morphology observation, the morphology of the nanoparticles 

was investigated by SEM which showed decreasing (100-200 nm for undoping sample 

to 50-150 nm for doping samples) in the particle size of the nanoparticles, which is in 

good agreement with the crystallite size measured by using Scherrer’s formula. The 

TEM bright field images of all samples show that the particles sizes obtained were 

about 50-200 nm. HRTEM of all samples shows the lattice fringes with interplanar 

spacing which correspond to the BiFeO3 structure. Moreover, The SAED patterns of all 

samples show spotty and ring patterns which indicate the characteristics of 

nanocrystalline BiFeO3 (JCPDS No.86-1518). This is in agreement with the XRD and 

SEM results. In this research, we confirm that all the samples with higher 

concentrations of Co, Ni, and Cu dopant showed a decrease in particle sizes, which 

conform to a tendency of increasing their specific surface areas. 
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5.2 The Magnetic properties 

 According to the magnetic property study, the room temperature saturation 

magnetization (Ms) of un-doped BiFeO3, BiFe1-xCoxO3, BiFe1-xNixO3 and BiFe1-xCuxO3 

with x = 0.05-0.3 are 0.219 emu/g, 1.08-8.25 emu/g, 2.51-19.12 emu/g, and 0.31-0.79 

emu/g, respectively. The Ms linearly increases with increasing Co, Ni, and Cu doping 

concentrations (x = 0 to 0.3) and trend to increase with higher temperatures of 

measurement from 50 to 350 K. Clearly, the doping of magnetic materials of Co and Ni 

can improve the Ms, which correspond to their high magnetic moments per atom of 1.72 

and 0.6 μB, respectively. Interestingly, the doping of nonmagnetic material of Cu can 

also improve the Ms. Moreover, the improved magnetization may due to suppression of 

the spin cycloid structure of the particle size when it is less than 62 nm which causes 

the intrinsic spiral spin structure to be incompletely suppressed and the decreases in 

crystallite size with increases of Co, Ni, and Cu doping content results in an increase in 

surface-volume ratio and the contribution of uncompensated spin at the surface to the 

total magnetic moment of the particle increases. The magnetic hysteresis (M-H) curves, 

the Ms of BiFeO3 slightly increases from 0.207 to 0.223 emu/g with increases in 

temperature from 50 to 350 K, respectively. Conversely, the magnetization of the Co, 

Ni, and Cu doping samples increases with decreases in temperature from 300 to 50 K, 

except at 200 K for Co doping samples and x = 0.05 samples at 100-200 K for Cu 

doping samples. Moreover, the increases in the secondary phases of the CoFe2O4 and 

Co3O4 nanoparticles in the BiFe1-xCoxO3 (x = 0.2 to x = 0.3) samples and the NiFe2O4 

nanoparticles in the BiFe1-xNixO3 (x = 0.05 to 0.3) samples also cause an increase in 

saturation magnetization. The coercivity (Hc) of un-doped BiFeO3, BiFe1-xCoxO3 (x = 

0.05-0.3), BiFe1-xNixO3 (x = 0.05-0.3), and BiFe1-xCuxO3 (x = 0.05-0.3) are 52.82 Oe, 
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400.74-1003.20 Oe, 13.07-23.09 Oe, and 45.87-325.24 Oe, respectively. The undoped 

BiFeO3 and Ni-doped BiFeO3 display a very slim hysteresis loop with nonzero remnant 

magnetization and narrow coercive field exhibits antiferromagnetic behavior at room 

temperature, while Co-doped BiFeO3 and Cu-doped BiFeO3 composite samples 

showed enhanced ferromagnetic behavior. The increasing Hc values of BiFe1-xCoxO3 

and BiFe1-xCuxO3 correspond to increasing doping concentration and decreasing of the 

crystallite-size of BiFeO3 below a critical size when the crystallite size is in the multi-

domain region. Not only the size effects of BiFeO3 but the presence of CoFe2O4 and 

Co3O4 are also strongly influenced to the Hc values for BiFe1-xCoxO3 (x = 0.2 and 0.3). 

The increasing of phase composition of NiFe2O4 and decreasing of crystallite sizes of 

NiFe2O4 in BiFe1-xNixO3 (x = 0.05 to 0.3) are related to variations of Hc values, 

especially, decreasing of Hc values of the x = 0.2 samples. The Hc of all samples 

increases with measurements at low temperature due to the alignment of the magnetic 

moment in the direction of the external magnetic field and thermal fluctuations of 

nanoparticles decrease with decreases in the temperature. Moreover, the remanent 

magnetization (Mr) of un-doped BiFeO3, BiFe1-xCoxO3 (x = 0.05-0.3), BiFe1-xNixO3 (x 

= 0.05-0.3), and BiFe1-xCuxO3 (x = 0.05-0.3) are 0.005 emu/g, 0.35-3.57 emu/g, 0.06-

0.65 emu/g, and 0.02-0.17 emu/g, respectively. The Mr values increases due to increases 

of the Co, Ni, and Cu contents with decreasing of the crystallite size of BiFeO3 and 

decreasing of temperature. In order to understanding the effect of doping on the 

magnetic ordering of BiFeO3, the temperature dependent zero-field cooled (ZFC) and 

field cooled (FC) magnetization measurements are carried out from temperature range 

50 K-350 K under applied field of 500 Oe. The feature of the ZFC curves of un-doped 

and Cu-doped BiFeO3 (x = 0.05) sample shows Tmax ~ 250 K, which can be attributed 
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to the magnetic blocking mechanism. However, other doped BiFeO3 samples show 

increases in the blocking temperatures (TB) which are greater than 350 K. The hysteresis 

loop of undoped BiFeO3, Ni and Cu-doped BiFeO3 samples reveal weak ferromagnetic 

at 50-350 K, except Co-doped BiFeO3 samples, which reveal ferromagnetic. This 

correspond to the Curie-Wiess law fitting results. The θ values of all samples are 

negative indicating antiferromagnetic interactions, except all Co-doped BiFeO3 

samples, which are positive indicating ferromagnetic interactions among magnetic ions. 

Moreover, this research found that all magnetic ions in all doped-BiFeO3 samples are 

in the high spin configuration. 

 

5.3 The Electrochemical properties 

 According to the electrochemical property studies, the redox behavior of the 

nanoparticles were studied by CV technique between -1.2 V to 0.3 V at different 

potential scan rates of 5 to 100 mV/s in 6 M KOH solution. This study indicated that 

all samples exhibited a pseudocapacitive behavior. The presence of redox peaks for all 

the samples indicated that the redox transitions of the nanoparticles between different 

valence states and the capacitance of the electrodes was mainly due to the rapid and 

faradic reaction on the electrode/electrolyte interface. The anodic and cathodic peak 

currents in the CV increased with an increase in potential scan rate. The current 

response of all electrodes was enhanced when increasing of the scan rates (5-100 mV/s) 

and decreasing of Co, Ni, and Cu doping concentration, except BiFe0.95Cu0.05O3 

samples were increased. In GCD measurement, all samples show the nonlinear form of 

curves with a steep voltage (IR) drop which exhibit the pseudocapacitive behavior due 

to internal resistance and a capacitive component. The calculated  specific capacitance 
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of all samples decreases with increasing of Co, Ni, and Cu doping concentration, except 

BiFe0.95Cu0.05O3 samples showed the improving of specific capacitance ( 451.82 F/ g) 

for  CV measurement and ( 233.41 F/g) for GCD measurement at scan rate of 5 mV/s 

and current density of 1 A/g, respectively. In comparison with those of previously 

reported BiFeO3-based electrodes, the specific capacitances of BiFeO3 nanoparticles 

(373.65 F/g) and BiFe 0.95Cu0.05O3 (434.45 F/g) tested in 6 M KOH electrolyte are close 

to that of BiFeO3 nanorod (450 F/g) tested in 1 M Na2SO4 electrolyte at the same scan 

rate of 10 mV/s (Rana et al., 2014). Interestingly, the specific capacitance of the BiFeO3 

nanoparticle (342.79 F/g) and BiFe 0.95Cu0.05O3 (395.97 F/g) is higher than that of the 

BiFeO3 thin film electrode (81 F/g) tested in 1 M NaOH electrolyte at the same scan 

rate of 20 mV/s (Lokhande et al., 2007). Among the three different electrodes in each 

system, Cu-doped BiFeO3 showed almost highest specific capacitance compared to 

undoped BiFeO3, Ni-doped BiFeO3 and Co-doped BiFeO3 electrodes at all scan rates 

and current densities. By doping with Co, Ni, and Cu cause to different conditions 

responded to electrochemical perforemances as following: (1) 5 % of Cu doping 

showed the highest of number of active sites of redox reaction and diffusion co-efficient 

(0.96-2.20 and 22.19-2.62 ×10-16 cm2/s, respectively). This lead to highest of 

electrochemical perforemances such as specific capacitance, energy density, power 

density and capacity retention. Conversely, the number of active sites of redox reaction 

and diffusion co-efficient of other samples are decrease with increasing of doping 

concentration from x = 0 to x = 0.3, which correspond to decreasing of the 

electrochemical perforemances.  (2) The increasing composition of the secondary phase 

with lower capacitance than BiFeO3 of CoFe2O4 in Co-doped BiFeO3 (x = 0.2 to 0.3) 

and NiFe2O4 in Ni-doped BiFeO3 (x = 0.05 to x = 0.3). This may lead to decreasing of 
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the specific capacitance of the samples. (3) By XANES analysis, increasing of the Co, 

Ni, and Cu doping concentration with slightly increase of oxidation state of Bi more 

than 3+ may lead to decreasing of the height of the peak current of redox reaction and 

specific capacitances. (4) The mesopore sizes of the BiFeO3 samples showed small 

mesopore sizes (3.28 nm) which were smaller than the Co, Ni, and Cu doping samples, 

which increase with increasing doping concentration, except 5 % of Ni and Cu doping 

samples (2.42 nm). The small mesopore provides more active sites for chemical 

reactions (Dubal et al., 2013), which is in good agreement with the results of calculated 

number of active site of redox reaction and diffusion co-efficient in this work. This may 

result in the high specific capacitances in the samples. (5) by EIS analysis, the vertical 

curve close to 90˚ at low frequencies indicate ideal capacitor behavior and low diffusion 

resistance of ions in the structure of the electrode (Guan et al., 2013; Yang et al., 2012; 

Wang et al., 2011). This corresponds to the high specific capacitances in the BiFeO3 

showed more ideal capacitor behavior with vertical the curve and decease of the specific 

capacitances with higher doping concentration, which away from the vertical line in Co 

and Ni doping samples, except some Cu doping samples. Generally, the high 

capacitance can be attributed to the high surface area and enhanced electrical 

conductivity of the electrodes (Guan et al., 2013). But in this work, variations in the 

specific capacitances of some electrodes are not attributed to slight increases of surface 

area (3.64-21.85 nm) and slight differences in the Rct (0.06-0.13 Ω) and the Rs (0.24 -

0.28 Ω) values. Performance with energy density and power density calculated based 

on the galvanostatic charge-discharge are decrease with increasing of Co, Ni, and Cu 

doping concentration and increasing of current density, except BiFe0.95Cu0.05O3 samples 

showed improving of energy density (73.03-31.89 Wh/kg) and power density (308.30-
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6413.41 W/kg) at current density of 1-20 A/g. The energy density for all electrodes of 

3.33-73.03 Wh/kg were in the range observed between electrochemical capacitor of 1-

10 Wh/kg and battery of 10-100 Wh/kg (González et al., 2016). Among the three 

different electrodes in each system, Cu-doped BiFeO3 showed almost highest energy 

density compared to undoped BiFeO3, Ni-doped BiFeO3, and Co-doped BiFeO3 

electrodes at all current densities. The power densities for all electrodes of 308.30-

6413.41 W/kg were in the range observed between electrochemical capacitor of 500-

10000 W/kg. The capacity retention decrease with increasing Co, Ni, Cu doping 

concentration from x = 0.05 to 0.3. But 5 % of Co and Ni doping and 5 % to 20 % of 

Cu doping can improve the capacity retention. This may due to the electrode needed to 

fully activate for 5 % or 10 % doping with small mesopore size, which cause the 

suppression of electrolyte diffusion into the inner region of the electrode (Lokhande et 

al., 2011; Dubal et al., 2013). This work showed that the Cu-doped BiFeO3 nanoparticle 

with x = 0.05 has excellent electrochemical performance and can be considered as a 

good candidate for supercapacitors. 

 

5.4 Suggestions 

  From the study of the magnetic and electrochemical properties of BiFe1-xMxO3 

(M = Co, Ni, and Cu) nanoparticles, we have many suggestions for future work to make 

clear explaination of the results as listed in the followings, 

 (1) The effect of Co, Ni, and Cu doping with x = 0.05 to 0.3 can directly affect 

the structure and magnetic properties and the doping with x = 0.5 can improve the 

electrochemical properties. This should be studied in more concentrations with x at 

lower than 0.05 and higher than 0.3. 
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 (2) Study of electrochemical properties in the BiFe1-xMxO3 (M = Co, Ni, and 

Cu) nanoparticles using various electrolytes in different concentrations and various 

substrate materials is required to confirm the suitable condition for the fabrication of 

supercapacitor electrodes. 

 (3) Investigation of atomic/electronic structure such as redox valency change of 

the BiFe1-xMxO3 (M = Co, Ni, and Cu) electrodes using in situ X-ray absorption 

spectroscopy (XAS) during the charge-discharge process is essential to have a better 

understanding.
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