
RELEVANT RULE DERIVATION FOR SEMANTIC QUERY
OPTIMIZATION

Junping Sun†, Nittaya Kerdprasop‡, and Kittisak Kerdprasop∗
School of Computer and Information Sciences, Nova Southeastern University

Fort Lauderdale, Florida 33314, USA†
Department of Mathematics, Chulalongkorn University

Bangkok 10330, THAILAND‡
School of Computer Engineering, Suranaree University of Technology

Nakorn Ratchasima, THAILAND∗

ABSTRACT

Semantic query optimization in database systems has
many advantages over the conventional query optimiza-
tion. The success of semantic query optimization will
depend on the set of relevant semantic rules available for
semantic query optimizer. The semantic query optimizer
utilizes a set of available semantic rules to further explore
extra query optimization plans for conventional query op-
timizer to choose. Semantic rules represent the dynamic
database state at an instantaneous time point. Finding
such set of relevant semantic rules can be very beneficial
to support both semantic and conventional query opti-
mizations. In this paper, we will show how to use induc-
tive logic programming approach to derive relevant rules
from the data in a database. Language bias as heuristic is
used to reduce the search space as well as the costs in the
process of inductive rule derivation. Effectiveness and ef-
ficiency of our bias generator algorithm are evaluated and
their evaluation results are presented in this paper.

1 INTRODUCTION

Query optimization in relational database systems has
been an active research subject for many years. The tech-
niques used for relational query optimization can be clas-
sified into conventional query optimization and semantic
query optimization. The conventional query optimiza-
tion utilizes syntactic and logic equivalence transforma-
tion of a query expression, and various statistical esti-
mation profiles of a database. The capabilities of con-
ventional query optimization are limited to syntactic in-
formation in a query expression, however. In compari-
son, semantic query optimization uses not only syntactic
transformations, but also semantic knowledge expressed
by semantic integrity constraints or semantic rules to aid
the query transformation (semantic equivalence transfor-
mation).

Early research work of semantic query optimization
can be traced back to knowledge-based query optimiza-
tion [11], QUIST (QUery Improvement through Semantic
Transformation) [14] [15], deductive logic-based approach

[3] [5], and others [4] [23] [24]. In QUIST [15], King used
a set of integrity constraints as a knowledge base to trans-
form or simplify a query into an optimized one by seman-
tic reasoning. Heuristics such as index introduction, re-
striction introduction, join elimination, contradiction de-
tection, etc. are used to explore more alternatives for con-
ventional query optimizer. Further, if there is contradic-
tion detected between a query and integrity constraints,
then it implies that the query cannot be satisfied. So the
empty answer to the query can be given directly from the
semantic transformation. Of course, the query is seman-
tically optimized since the query can be answered with-
out accessing the physical database. Charkravarthy et
al. [3] proposed a deductive database-based logic model,
which consists of extensional database (EDB), intensional
database (IDB), and integrity constraints (ICs), to for-
malize the semantic query optimization; and resolution
refutation method was used to perform semantic query
transformation. Siegel et al. [21] [22] used automatic rule
derivation method based on deduction to learn new rules
applicable to semantic query transformation. With the
set of user-defined integrity constraints and new derivable
rules associated with EDB and IDB predicates, more op-
portunities can be explored for both semantic query op-
timization and conventional query optimization. All of
these methods mentioned above [3] [5] [11] [14] [15] [20]
[21] [22] conduct semantic transformation based on a set
of integrity constraints, a set of intensional database pred-
icates(IDB), and a set of extensional database predicates
(EDB). But the rich semantics embedded in database in-
stances is overlooked in terms of semantic rule deriva-
tion [21] [22] and semantic query optimization. In this
paper, we will present a heuristic-based approach to in-
duce a set of relevant semantic rules from not only the set
of ICs, IDB and EDB predicates, but also the database in-
stances for semantic query optimization. From this point
of view, more semantic rules will provide more alterna-
tives for semantic query optimization.

2 SEMANTIC RULE DERIVATION

The inductive rule derivation is different from the de-
ductive approach [21] such that: inductive rule deriva-
tion approach is to induce a set of new semantic rules
from both the intensional database (IDB predicates) and
extensional database (EDB predicates and instances),
whereas the deductive approach is to derive new rules
from the intensional database in terms of deductive
database model. As far as the semantic query opti-
mization is concerned, the induction-based rule deriva-
tion methods can provide more opportunities for semantic
query optimization.

Typical rule derivation in a single relational database
table can be found in [2] [12] [13]. Han et al. devel-
oped an attribute-oriented inductive method to discover
rules from a relational database table. Their method in-
tegrated learning from examples techniques from the ma-
chine learning paradigm to extract generalized knowledge
from actual data in databases. Also an attribute-oriented
concept tree was used to guide the learning process and
to reduce the computational complexity. The set of rules
derived by the methods in [2] [12] [13] are complete by
augmenting each of the derived rules with quantitative
votes.

Dz̆eroski and Lavrac̆ [10] put inductive learning in the
context of a set of relation schemas defined either exten-
sionally or intentionally in the framework of deductive
databases. Their approach can induce rules on multi-
ple virtual relations from examples such as positive and
negative tuples, and predefined relation schemas in a de-
ductive database. Discovering semantic rules involving
multiple relation schemas or predicates makes attractive
advances in knowledge discovery in databases comparing
with learning rules from a single extensional relation. It
also increases the difficulty of the learning task due to
the combinatoric complexity in the problem domain of
the multiple virtual relations.

Based on the theory of clausal discovery [7], CLAU-
DIEN (CLAUsal DIscovery ENgine) is the implementa-
tion of an inductive logic programming engine that com-
bines data mining principles with inductive logic pro-
gramming. It discovers clausal regularities (rules) from
unclassified data, and it aims to discover maximally gen-
eral hypothesis, where examples for inductive learning
are represented by Herbrand interpretation. In order to
reduce the computational complexity in the process of
clausal discovery, there is an interface for CLAUDIEN
to accept language bias specification. The language bias
can be used to reduce the size of the search space in the
process of inductive rule derivation and make the process
more efficient.

Due to large volume of data in databases, it is very
important to find the bias information for inductive rule
learning. In this paper we will present bias generating
method for knowledge discovery in databases. The bias
specification will be used for inductive logic programming
engine to derive semantic rules relevant to a query, and
these relevant rules can be used for semantic query opti-

mization process.

3 SEMANTIC QUERY OPTIMIZATION

One of major purposes to derive relevant rules is for
semantic query optimization. In a deductive database
model [3][5], there are three components such as: exten-
sional database (EDB), intensional database (IDB), and
integrity constraints (IC) described as follows:

1. EDB: a set of function-free unit clauses with no vari-
ables;

2. IDB: a set of nonrecursive range-restricted function-
free definite Horn clauses (i.e., with at least one atom
in the body and exactly one atom in head);

3. IC: a set of nonrecursive range-restricted Horn
clauses.

The following example shows how a database query
can be semantically optimized.

Example:

EDB:
EDB1: Employee(Ssno, Salary, Deptno, Age)
EDB2: Department(Deptno, Managerssno, Floorno)
EDB3: Sales(Deptno, Item, Volume)

IDB:
IDB1: Highsalesdept(x1,x2,x3,y2,y3)←

Department(x1,x2,x3),
Sales(x1,y2,y3),
(y3>100000)

IDB2: Highsalesmgrprofile(x2,y2,y4)←
Employee(x2,y2,y3,y4),
Highsalesdept(x1,x2,x3,x4,x5)

IC:
IC1: ←Department(x,y,2)

There are no departments on floor 2.

IC2: (y > 40000)← Employee(x,y,z,u),(u>50)

All employees whose age is greater than 50 have
salary greater than 40000.

By the way, the IDB rule such as:

Highsalesmgrprofile(x2,y2,y4)←
Employee(x2,y2,y3,y4),
Highsalesdept(x1,x2,x3,x4,x5)

can be transformed into the following format with body
of the rule containing only EDB predicates or extensional
relation schemas such as:

Highsalemgrprofile(x2,y2,y4)←
Employee(x2,y2,y3,y4),
Department(y1,x1,y2),
Sales(y1,z2,z3),
(z3>100000)

For a given query such as:

←Highsalesdept(x*,y,2,z*,u)

it can be transformed into the following query by using
IDB rule IDB2 to the following equivalent query:

←Department(x*,y,2),Sales(x*,z*,u),(u>100000)

By replacing the IDB predicates with EDB predi-
cates in a query, query optimization strategies can be
further explored based on heuristics such as: index in-
troduction, join elimination, contradiction detection, etc.
Further, with checking the integrity constraints IC1,
←Department(x,y,2), we find out that the transformed
query cannot be satisfied, so the query can be answered
without accessing the physical database and optimized.
In this research, besides the rules given in IDB and IC,
we will use inductive logic programming approach to de-
rive a set of semantic rules from data in a database in
order to support semantic query optimization.

4 INDUCTIVE LOGIC PROGRAMMING

Some recent inductive learning systems construct log-
ical definitions of relation schemas from examples and
background knowledge (other relation schemas) [6]. The
restricted forms of program clauses [16] are used to rep-
resent training examples, background knowledge, and in-
duced concept descriptions. In this case, learning can be
considered as logic program synthesis and has been re-
cently named as inductive logic programming (ILP).

ILP can be classified into interactive vs. empirical ILP
systems, which learn definitions of single and multiple
relation predicates, respectively. Empirical ILP systems
require all training examples at the start of the learn-
ing process, whereas interactive ILP systems process the
example one by one and possibly generate examples in
the learning process. For empirical ILP, it can be dis-
tinguished between top-down approach and bottom-up
approach.

The top-down approach (general-to-specific) starts
learning from the empty hypothesis which is the most
general hypothesis. The empty hypothesis can imply both
positive and negative examples. Since the hypothesis is
too general, it needs to be further specialized. The spe-
cialization is performed by applying deductive inference
rules (the reverse of inductive inference rules) in order
to remove or modify part of the hypothesis that implies
negative examples. During the search for the correct hy-
pothesis, the ILP systems have to check that the deduced
hypothesis implies less negative examples and most of
positive examples, otherwise that hypothesis is dropped
or modified. The search process is performed repeatedly
until the least specialized hypothesis that implies none
of the negative examples and most of the positive exam-
ples is found and returned as the output of the learning
process.

The bottom-up ILP approach starts the learning pro-
cess from the most specific hypothesis. The selection of
the initial hypothesis clause can be, theoretically, an in-
finite choice [7]. Moreover, pruning part of the search

space is more reliable in a top-down search.

The power of ILP systems is traded with its complex-
ity. Fortunately, the complexity can be controlled by the
feature of the explicit language bias. If the language bias
is specified appropriately, ILP system can discover rules
efficiently. The question is how to find an appropriate
form of the language bias specification. In later section,
we will show our approach to generating language bias
for inductive rule derivation.

Based on the above discussions and Figure 1, we can
formulate the following problem statement:

Problem Statement:

1. Given a query, a set of EDB and IDB predicates,
and a set of ICs, generate a biased grammar as input
for CLAUDIEN to derive a set of relevant semantic
rules.

2. Based on the biased grammar, have CLAUDIEN
perform induction on the set of EDB instances to
derive efficiently a set of rules relevant to the query.

5 CLAUDIEN SYSTEM

CLAUDIEN [7] is a top-down, non-interactive batch
learner. It operates in the nonmonotonic setting, where
each example is a Herbrand interpretation, using only
positive examples. The system starts with the empty
clause, and uses a downward refinement operator to find
the most general clauses true in each of the positive
examples. Further, rather than using a hill-climbing
search strategy as FOIL [18] [19] does, CLAUDIEN uses
a complete depth-first iterative deepening search strat-
egy. Large parts of the search space are pruned by drop-
ping redundant clauses, tautological clauses, or clauses
that already implied by the current hypothesis. Besides
the training examples and background knowledge, CLAU-
DIEN also needs a user-specified language bias to limit
the search space. The language bias L contains a set of
all syntactically well-formed clauses, and the hypothesis
space is thus composed of all possible subsets of L. There-
fore, the discovery task of CLAIDIEN can be stated as
discovering a minimally complete set of rules that satis-
fies a given database and a language bias. The algorithm
of CLAUDIEN can be described in Figure 2:

The CLAUDIEN algorithm starts with the initializa-
tion of a set of candidate clauses Q, which is initialized to
contain the most general clause in L, i.e., Q = { false ←
true }, a null clause which means false. The key concept
underlying CLAUDIEN is that a clause that is false in
the minimal model of the knowledge base KB is overly
general because it implies any examples; thus, it should
be specialized. Further, the language bias can be utilized
to specialize initial set Q. Based on the above discussion,
it is not hard to find the important role of bias specifi-
cation in semantic rule derivation by using CLAUDIEN
with respect to the inductive logic programming.

Language Bias Generator

Query

EDB, IDB, and IC

Declarative Language Bias Specification

DLAB Generator

Learning System

Set of Allowed ClausesEDB Instances

Discovered Semantic Rules

CLAUDIEN

DLAB Generator

Learning System

Figure 1: Input and output of the language bias generator

Algorithm 5.1 CLAUDIEN

Input: Knowledge Base KB
(It contains training examples)
Language Bias L

Output: Set of Characteristic Rules R

begin

1. Initialization

Q = { false ← true }
/* Q is a set of candidate clauses */
R = ∅

2. while Q is not empty do

(a) delete a clause C from Q

(b) if C is true in the minimal model of KB

then add C to R

else add all specialization of C to Q

endif

endwhile

3. Scan all clauses in R to remove the redundant clauses

4. Return the set of discovered rules R.

end

Figure 2: The CLAUDIEN system

6 BIAS SPECIFICATION FOR INDUC-

TIVE RULE DERIVATION

One of the key components in CLAUDIEN system is
the explicit specification of the language bias, which spec-
ifies the desired format that the clauses induced by the
ILP should take. In terms of discovering rules for seman-
tic query optimization, the learning task has to search
for all interesting and valid rules. The number of clauses
in the search space starting the generalized criterion can
be very large, it is critical to specify and use bias to re-
duce the size of the search space. One of the guidance we
use here is to generate bias based on the query, and the
target information such as IC (integrity constraint), IDB
(intensional database), and EDB (extensional database).

DLAB (Declarative LAnguage Bias) [7] in CLAUDIEN
is the extension of syntactic bias format proposed by Adé,
De Raedt, and Bruynooghe [1]. In CLAUDIEN [8] [9], the
concept of template called dlab template is used to specify
the set of clauses allowed in the search space. By doing
that, we could limit the search space in the process of
semantic rule derivation.

In order to derive relevant rules and limit the search
space during the rule derivation, we propose a query
driven language bias generator. The language bias gen-
erator algorithm takes the query pattern, IC, IDB, and
EDB as input and generates language bias in terms of
DLAB template as output.

In order to illustrate the Algorithm 6.1, we give the
following example.

Algorithm 6.1 Language Bias Generator

Input: A Query Clause Q
Set of Integrity Constraints ICs
Set of IDB Predicates and Rules
Set of EDB Predicates

Output: A Biased DLAB Grammar

begin

1. read query Q /* Initialization */

2. repeat

if Q contains IDB predicates

then substitute each IDB predicate with

corresponding EDB predicate(s)

endif

until Q contains no IDB predicates

3. if Q contains constants

then substitute each constants with a variable

declare a variable in a ’dlab variable’
construct

else ’dlab variable’ is empty.

endif

/* Create HeadPredicateList and

BodyPredicateList */

4. for each query clause obtained from step 2 and 3 do

add query clause to the list of BodyPredicateList
search for subsuming integrity constraints S from
the set of ICs

/* subsuming integrity constraint is an integrity

constraint in which */

/* part of it subsumes the body of a given query

clause */

rename variables in S to match corresponding
variables in Q
add S predicates to the list of HeadPredicateList

endfor

/* Compacting HeadPredicateList and

BodyPredicateList */

5. scan HeadPredicateList and remove the redundant
predicates

6. scan BodyPredicateList and remove the redundant
predicates

7. form head of ’dlab template’ from HeadPredicateList

8. form body of ’dlab template’ from BodyPredicateList

9. return a DLAB grammar G

end

Figure 3: The language bias generator

Example:

EDB: father(x,y) mother(x,y) female(x)

IDB: { }

IC: ←mother(x,y),¬female(x)

Query: ?-mother(’Sue’,y),male(y)

EDB Instance:

mother(’Sue’,’Linda’) mother(’Sue’,’Ann’)

mother(’Sue’,’Alice’) mother(’Sue’,’Grace’)

female(’Sue’) female(’Linda’) female(’Ann’)

female(’Alice’) female(’Grace’)

The execution of the Algorithm 6.1 is given as follows:

1. Read the query: ?-mother(’Sue’,y),male(y)

2. No IDB predicate substitution (simplicity of the il-
lustration)

3. Substitute constant with variable in the query:

?-mother(’Sue’, y),male(y)

?-mother(name, y),male(y)

dlab variable(name,1-1,[’Sue’]) where 1-1 means the
first variable of the first predicate in the query.

4. Search for subsuming integrity constraints:

←mother(x,y),¬female(x)

Create HeadPredicateList to contain subsuming IC
predicates which are mother(x,y) and female(x). The
variables in these two predicates are renamed to
match the query clause in 3 (X/name). Thus, the
HeadPredicateList is:

HeadPredicateList =

[mother(name,y),female(name)]

Create BodyPrediateList to contain the query clause
(in 3)

BodyPrediateList = [mother(name,y),male(y)]

5. No redundant predicates removed in both HeadPred-
icateList and BodyPrediateList.

6. Form a DLAB grammar G:

dlab template(’0-len:[mother(name, y),

female(name)]

←0-len:[mother(name,y),male(y)]’)

dlab variable(name,1-1,[’Sue’])

The grammar G generated by Algorithm 6.1 can be
used as a bias to constrain the search space of the CLAU-
DIEN system. The semantic rules induced by CLAU-
DIEN are as follow:

false←male(A)

female(Sue)←true

female(A)←mother(Sue,A)

The last rule derived shows additional integrity con-
straint that can be used for semantic query optimization
since the rule states that every child of Sue is female.

7 EFFECTIVENESS OF THE LANGUAGE

BIAS GENERATOR ALGORITHM

7.1 Experiments and Results

In order to test the effectiveness and efficiency of our
language bias generator algorithm, our experiments were
designed to show the degree of relevance of these derived
rule sets. The efficiency is evaluated based on the search
space reduction with comparison to the exhaustive induc-
tive approach. Effectiveness of the algorithm is evaluated
on the basis of the ability of the discovered semantic rules
in terms of relevance to a query.

The process of experiments can be summarized as fol-
lows:

1. A sample query and a set of data in terms of EDB,
IDB, and IC are used as input to the language bias
generator algorithm Algorithm 6.1.

2. The output from Algorithm 6.1 - a biased DLAB
grammar pattern and the set of EDB instances are
used as input to CLAUDIEN.

3. The output from CLAUDIEN system is a set of dis-
covered semantic rules for evaluating the effective-
ness and efficiency.

4. A set of discovered semantic rules is also compared
against the set of rules which are generated from
the weakest-constraint DLAB grammar, i.e., the
grammar without any constraints. If the weakest-
constraint DLAB grammar feeds to CLAUDIEN, the
CLAUDIEN system must conduct exhaustive induc-
tive derivation against the data set. (The weakest-
constraint grammar is the one that will guide the
CLAUDIEN to search the entire space without any
constraint).

7.2 Data Sets for Experiments

The data sets for evaluating effectiveness of Algo-
rithm 6.1 consist of EDB, IDB, IC, and EDB instances.

EDB:
female(x) male(x)
mother(x,y) father(x,y)
daughter(x,y) son(x,y)
husband(x,y) wife(x,y)
uncle(x,y) aunt(x,y)

IDB:
grandfather(x,y)←father(x,z),parent(z,y)
grandmother(x,y)←mother(x,z),parent(z,y)
parent(x,y)←father(x,y)
parent(x,y)←mother(x,y)
grandson(x,y)←grandfather(y,x),male(x)
grandson(x,y)←grandmother(y,x),male(x)
granddaughter(x,y)←grandfather(y,x),female(x)
granddaughter(x,y)←grandmother(y,x),female(x)
sibling(y,z)←parent(x,y),parent(x,z)
sister(x,y)←sibling(x,y),female(x)
brother(x,y)←sibling(x,y),male(x)

nephew(x,y)←uncle(y,x),male(x)
nephew(x,y)←aunt(y,x),male(x)
niece(x,y)←uncle(y,x),female(x)
niece(x,y)←aunt(y,x),female(x)

IC:
←male(x),female(x)
←mother(x,y),¬female(x)
←father(x,y),¬male(x)
←uncle(x,y),¬male(x)
←aunt(x,y),¬female(x)
←father(x,y),mother(x,y)
←uncle(x,y),aunt(x,y)
←grandfather(x,y),grandmother(x,y)
←grandfather(x,y),¬male(x)
←grandmother(x,y),¬female(x)

Sample Queries

1. List the name(s) of every male child of Sue.

?-mother(’Sue’,y),male(y)

2. List the name(s) of every male child of Mike.

?-father(’Mike’,y),male(y)

3. List the name(s) of every daughter of Laura.

?-mother(’Laura’,y),daughter(y,’Laura’)

4. List the name(s) of every son of Alex.

?-father(’Alex’,y)son(y,’Alex’)

5. List the name(s) of every husband who is a father.

?-husband(x,y),father(x,z)

6. List the name(s) of every person who is a husband
of himself.

?-husband(x,y),husband(y,x)

7. List the name(s) of every parent who is also an uncle
of their children.

?-parent(x,y),uncle(x,y)

8. List the name(s) of every sister of Juris.

?-sister(x,’Juris’)

9. List the name(s) of every brother of Victoria.

?-brother(x,’Victoria’)

10. List the name(s) of every niece who is also a nephew.

?-niece(x,y),nephew(x,y)

For Query 1: ?-mother(’Sue’,y),male(y)
The list of ICs for subsuming is as follows:
←male(x),female(x)
←mother(x,y),¬female(x)
←father(x,y),¬male(x)
←uncle(x,y),¬male(x)
←father(x,y),¬mother(x,y)
←grandfather(x,y),¬male(x)

The grammar G1 generated from Algorithm 6.1:
dlab template(’0-len:[mother(name,y),female(name),

father(name,y),male(y),
female(y),father(y,y),
uncle(y,y),grandfather(y,y)]

←0-len:[mother(name,y),male(y)]’)

dlab variable(name,1-1,[’Sue’])

The set of discovered semantic rules DSR1 is as follows::

female(Sue)←true

female(y)←mother(Sue,y)

false←mother(Sue,y),male(y)

The discovered rule female(y)←mother(Sue,y) implies
that all the children of Sue are female. And the discovered
rule false←mother(Sue,y),male(y) can be used to answer
the query directly without physical database access.

For the query like ?-mother(’Sue’,y),female(y), the
join operation between mother(’Sue’,y) and female(y)
can be eliminated. The original query can be trans-
formed into ?-mother(’Sue’,y) since the discovered rule
female(y)←mother(Sue,y) implies that all of the children
of Sue is female. The cost to answer the original query
can be saved since the query involving join operation has
been replaced by the query involving only select opera-
tion (table scan). Further, if there is an index on x of
mother(x,y), then the index can be used for scan reduc-
tion.

The advantages of introducing Language Bias Gener-
ating Algorithm have at least two following aspects:

1. The algorithm Algorithm 6.1 generates the biased
grammar for CLAUDIEN to conduct inductive rule
derivation in a much smaller space comparing with
the weakest grammar without any constraint and/or
bias.

2. The semantic rules discovered based on the biased
grammar can be used to optimize a query semanti-
cally.

7.3 Analysis of the Experiment Results

The second column in the Table 1 lists the number of
rules discovered for each grammar Gi, 0 ≤ i ≤ 10. The
third column in the table lists the number of rules relevant
to the given query. The set of relevant rule is a set of rules
such that the predicates in the query also appear in each
rule of the set. The fourth column lists the usefulness of
the rule is the ratio of the number of relevant rules to the
total number of discovered rules. The grammar G0 is the
weakest grammar in which both the HeadPredicateList
and BodyPredicateList contain all the predicates in EDB,
IDB and ICs sets. The process of rule derivation with
grammar G0 incurs the largest cost and search space as
well as the largest set of derived rules.

For the rule derivation by using the list of grammars
from G1 to G10, the sizes of their corresponding search
spaces are much smaller than the one with grammar G0.
It shows that our algorithm Algorithm 6.1 does gen-
erate the biased grammar that can be utilized for rule
derivation in a much smaller space as well as lower cost
of CPU. Although there might be the cases in which the
large variances in measuring rule usefulness in Table 1
are possible, it still shows that the biased grammars have
performed much better than the weakest grammar G0

without any constraint.

8 CONCLUSIONS

We developed the language bias generator algorithm
to generate biased language grammar for inductive logic
programming as well as semantic rule derivations. The
experiment results demonstrate both effectiveness and
efficiency of our developed algorithm. For each biased
grammar, the algorithm does generate a set of relevant
rules to a corresponding query given from a set of dis-
covered rules. The high percentage values in measuring
rule usefulness of the grammars G1 − G10 support our
observation of effectiveness. The values such as the size
of the search space and the CPU cost also support our
observation on efficiency since both the size and the CPU
cost with the biased grammars are much smaller than
the weakest grammar without constraint. Further exper-
iments can be conducted in order to achieve smooth ex-
perimental results with lower variance values in different
measurement computation. We believe the richness of
the semantics from EDB, IDB, ICs, EDB instances, and
a given query can be further explored to support semantic
query optimization in intelligent database environments.

9 ACKNOWLEDGMENTS

The authors would like to express sincere thanks to
Dean Edward Lieblein, the faculty and staff at School of
Computer and Information Sciences, Nova Southeastern
University. Thanks also go to Dr. S. Rollins Guild and
Dr. Ping Tan.

References

[1] H. Adé, L. De Raedt, and M. Bruynooghe. Declara-
tive Bias for Specific-to-General ILP systems. In Ma-
chine Learning, Volume 20, Number 1-2, 1995, pp.
119- 154.

[2] Y. Cai, J. Han, and N. Cercone. An Attribute-
Oriented Approach for Learning Classification Rules
from Relational Databases. In Proceedings of IEEE
the 6th International Conference on Data Engineer-
ing, 1990, pp. 281-288.

[3] U. S. Charkravarthy, J. Grant, and J. Minker. Logic-
Based Approach to Semantic Query Optimization.
In ACM Transactions on Database Systems, Volume
15, Number 2, 1990, pp. 162-207.

[4] U. S. Charkravarthy, J. Grant, and J. Minker.
Foundations of Semantic Query Optimization for
Deductive Databases. In Foundations of Deductive
Databases and Logic Programming, Edited by J.
Minker, Morgan Kaufmann Publishers, Los Altos,
CA, USA,1986, pp. 243-273.

[5] U. S. Charkravarthy, Semantic Query Optimization
in Deductive Databases, Ph.D. Thesis, Department
of Computer Science, University of Maryland, Col-
lege Park, MD, USA, 1985.

[6] Shan-Hwei Nienhuys-Cheng and Ronald de
Wolf. Foundations of Inductive Logic Programming,
Springer-Verlag, 1997.

Grammar # of Rules # of Rules Usefulness of CPU Time Size of the
Discovered Relevant the Discovered Rules Search Space

G0 83 0.5∗ 0.60% 70.1 1.0995× 1012

G1 3 2 66.6% 0.25 1024

G2 3 2 66.6% 0.20 1024

G3 2 1 50.0% 0.10 32

G4 2 1 50.0% 0.12 32

G5 3 1 33.3% 0.08 32

G6 1 1 100.0% 0.05 4

G7 7 2 28.6% 0.87 2048

G8 10 1 10.0% 1.83 65536

G9 10 1 10.0% 1.55 65536

G10 9 3 33.3% 5.5 262144

Table 1: Measurement of relevance of derived rules w.r.t. the corresponding queries

[7] L. De Raedt and L. Dehaspe. Clausal Discovery. In
Machine Learning, Volume 26, Number 2/3, 1997,
pp. 99-146.

[8] L. Dehaspe and L. De Raedt. DLAB: A Declarative
Language Bias Formalism. In Proceedings of the In-
ternational Symposium on Methodologies for Intelli-
gent Systems (ISMIS96), Springer-Verlag, 1996.

[9] L. Dehaspe, W. Van Laer, L. De Raedt. CLAU-
DIEN: The Clausal Discovery Engine User’s Guide
3.0. Technical Report CW 239, Department of Com-
puter Science, Katholieke Universiteit Leuven, 1996.

[10] Sas̆o Dz̆eroski and Nada Lavrac̆. Inductive Learning
in Deductive Databases. In IEEE Transactions on
Knowledge and Data Engineering, Volume 5, Num-
ber 6, 1993, pp. 939-949.

[11] M. M. Hammer and S. B. Zdonik. Knowledge Based
Query Processing. In Proceedings of the 6th Interna-
tional Conference on Very Large Data Bases, 1980,
pp. 137-147.

[12] J. Han, Y. Cai, and N. Cercone. Data-Driven Discov-
ery of Quantitative Rules in Relational Databases.
In IEEE Transactions on Knowledge and Data En-
gineering, Volume 5, Number 1, 1993, pp. 29-40.

[13] J. Han, Y. Cai, and N. Cercone. Knowledge Discov-
ery in Databases: An Attribute-Oriented Approach.
In Proceedings of the 18th Very Large Data Bases
Conference. 1992, pp. 547-559.

[14] J. J. King. QUIST: A System for Semantic Query
Optimization in Relational Databases. In Proceed-
ings of the 7th International Conference on Very
Large Data Bases, 1981, pp. 510-517.

[15] J. J. King, Query Optimization by Semantic Reason-
ing, Ph.D. Thesis, Department of Computer Science,
Standard University, CA, USA,1981.

[16] J. W. Lloyd. Foundations of Logic Programming, 2nd

edition, Springer-Verlag, 1987.

[17] S. Muggleton and L. De Raedt. Inductive Logic Pro-
gramming: Theory and Methods. In Journal of Logic
Programming, Volume 19-20, 1994, pp. 629-679.

[18] J. R. Quinlan and R. M. Cameron-Jones. Induction
of Logic Programs: FOIL and Related Systems. In
New Generation Computing, 13(304), 1995, pp. 287-
312.

[19] J. R. Quinlan. Learning Logical Definitions from Re-
lations. In Machine Learning, Volume 5, Number 3,
1990, pp. 239-266.

[20] S. T. Shenoy and Z. M. Ozsoyoglo. Design and Imple-
mentation of a Semantic Query Optimizer. In IEEE
Transactions on Knowledge and Data Engineering,
Volume 1, Number 3, 1989, pp. 345-361.

[21] M. D. Siegel, E. Sciore, and S. Salveter. A Method
for Automatic Rule Derivation to Support Seman-
tic Query Optimization. In ACM Transactions on
Database Systems, Volume 17, Number 4, 1992, pp.
563-600.

[22] M. D. Siegel, Automatic Rule Derivation for Seman-
tic Query Optimization, Ph.D. Thesis, Computer
Science Department, Boston University, MA, USA,
1989.

[23] W. Sun and C. T. Yu. Semantic Query Optimiza-
tion for Tree and Chain Queries. In IEEE Transac-
tions on Knowledge and Data Engineering, Volume
6, Number 1, 1994, pp. 136-151.

[24] C. T. Yu and W. Sun. Automatic Knowledge Acqui-
sition and Maintenance for Semantic Query Opti-
mization. In IEEE Transactions on Knowledge and
Data Engineering, Volume 1, Number 3, 1989, pp.
363-375.

