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บทคัดย่อ 

งานวิจัยนี้ได้แบ่งเป็น 3 ส่วนย่อยตามการศึกษาและล าดับการค้นพบดังนี้ ส าหรับส่วนย่อยที่หนึ่ง เกี่ยวข้อง

กับการสร้างตัวแบบทางพลศาสตร์ของไหล โดยในส่วนนี้ได้น าเสนองานประยุกต์อย่างมีระบบของระเบียบวิธีการ

วิเคราะห์กรุปส าหรับการสร้างตัวแบบของของไหลที่มีความเฉื่อยภายใน และพบว่าโดยการจ าแนกกรุปสามารถ

แบ่งตัวแบบเหล่านี้ได้เป็น 73 คลาส ส าหรับส่วนย่อยที่สอง เกี่ยวข้องกับงานประยุกต์ของระเบียบวิธีการวิเคราะห์

กรุปของสมการอินทิโกร-ดิฟเฟอร์เรนเชียล งานวิจัยในส่วนนี้เกี่ยวข้องกับการใช้สมการอินทิโกร-ดิฟเฟอร์เรนเชียล

แบบอีโวลูชันนารีในการอธิบายสมการคลื่นแบบไม่เชิงเส้น ในงานวิจัยดังกล่าวได้กล่าวถึงการน าเสนอแนวทางใหม่

ของการวิเคราะห์กรุปสมัยใหม่และการประยุกต์ใช้ในตัวแบบทั่วไป ซึ่งท าให้ได้สมการที่ถูกลดรูปและผลเฉลยชัด

แจ้ง และอีกงานประยุกต์หนึ่งของระเบียบวิธีการวิเคราะห์กรุปของสมการอินทิโกร -ดิฟเฟอร์เรนเชียลนั้นน าไปใช้

กับสมการโบลทซ์แมนน์ และได้น าเสนอการจ าแนกกรุปส าหรับสมการดังกล่าวเทียบกับแหล่งต้นทางโดยใช้

ระเบียบวิธีทางพีชคณิต และส าหรับงานในส่วนย่อยที่สามเป็นการศึกษา 2 ปัญหาคือ ปัญหาอินทิกรัลที่หนึ่งของ

สมการเชิงอนุพันธ์สามัญอันดับสอง ซึ่งได้น าเสนอถึงอินทิกรัลที่หนึ่งส าหรับตัวแทนเฉพาะที่เกี่ยวข้องกับสมการเชิง

อนุพันธ์สามัญอันดับสอง ความสัมพันธ์ระหว่างรูปอินทิกรัล สมการที่เกี่ยวข้อง ความสัมพันธ์สมมูล และตัวอย่าง

ประกอบที่แสดงให้เห็นถึงลักษณะและสมบัติส าคัญต่าง ๆ และปัญหาที่สองเป็นการจ าแนกกลุ่มอย่างสมบูรณ์ของ

ระบบสมการของสองสมการเชิงอนุพันธ์สามัญอันดับสองเชิงเส้นที่มีสัมประสิทธิ์เป็นค่าคงตัว ซึ่งได้ปรับแก้วิธีการใช้

แบบบัญญัติจอร์ดองในการศึกษาโครงสร้างสมมาตรของระบบสมการของสมการเชิงอนุพันธ์สามัญอันดับสองเชิง

เส้นที่มีสัมประสิทธิ์เป็นค่าคงตัวที่น าเสนอโดย Wafo Soh (2010) ให้ถูกต้อง โดยงานวิจัยนี้ได้น าเสนอเพียงระบบ

สมการที่มีเพียงสองสมการเท่านั้น 
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Abstracts 

The research performed in the project can be formally separated in three parts. 

All these parts are related by the method of the study and the sequence of 

discoveries. The first part of the project deals with modeling in fluid dynamics. 

A systematic application of the group analysis method for modeling fluids with 

internal inertia is presented. The group classification separates these models into 

73 different classes. The second part of the project deals with applications of the 

group analysis method to integro-differential equations. The research deals with 

an evolutionary integro-differential equation describing nonlinear waves. We 

discuss new approaches developed in modern group analysis and apply them to 

the general model considered in the present paper. Reduced equations and exact 

solutions are also presented. Another application of the group analysis method to 

integro-differential equations related with the Boltzmann equation. The group 

classification with respect to sources is carried out for the equations under 

consideration using the algebraic method. The third part of the first project is 

focused on the study of two problems: (a) on first integrals of second-order 

ordinary differential equations; (b) the complete group classification of systems 

of two linear second-order ordinary differential equations with constant 

coefficients. Here we discuss first integrals of a particular representation 

associated with second-order ordinary differential equations. The relationship 

between the integral form, the associated equations, equivalence transformations, 

and some examples are considered as part of the discussion illustrating some 

important aspects and properties. For group classification the present project 

corrects the way of using Jordan canonical forms for studying the symmetry 

structures of systems of linear second-order ordinary differential equations with 

constant coefficients applied in (Wafo Soh (2010)). The approach is 

demonstrated for a system consisting of two equations. 
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Chapter 1

Introduction

1.1 Background and Significance

Many important physical processes in nature are governed by partial differential equations
(PDEs). For this reason, the knowledge of the mathematical character and properties of
the governing equations are required. Properties of PDEs can be effectively studied by
using their exact solutions. Therefore, there is interest in finding exact solutions of PDEs.
In general, it is not easy to obtain exact solutions of PDEs. One of the methods for
obtaining exact solutions is the group analysis method. It is well-known that the group
analysis method is a powerful and direct approach to construct exact solutions of PDEs.

The research performed in the project can be formally separated in three parts. All
this parts are related by the method of the study and the sequence of discoveries.

1.1.1 Fluids with internal inertia

The first part of the project deals with modeling in fluid dynamics.
Developing new technology requires developing new models in fluid dynamics. Equa-

tions of fluids with internal inertia is the new theory considered in the fluid dynamics.
These equations are obtained on the base of Euler-Lagrange principle. Among fluids with
internal inertia there are intensively studied two classes of models. This project is focused
on group classification of a class of dispersive models [1]1

ρ̇+ ρ div(u) = 0, ρu̇+∇p = 0, Ṡ = 0,
p = ρ δW

δρ
−W = ρ(∂W

∂ρ
− ∂

∂t
(∂W
∂ρ̇

)− div(∂W
∂ρ̇
u))−W, (1.1)

where t is time, ∇ is the gradient operator with respect to space variables, ρ is the fluid
density, u is the velocity field, W (ρ, ρ̇, S) is a given potential, ”dot” denotes the material
time derivative: ḟ = df

dt
= ft + u∇f and δW

δρ
denotes the variational derivative of W

with respect to ρ at a fixed value of u. These models include the non-linear one-velocity
model of a bubbly fluid (with incompressible liquid phase) at small volume concentration
of gas bubbles (Iordanski (1960) [2], Kogarko (1961) [3],Wijngaarden (1968) [4]), and the
dispersive shallow water model (Green & Naghdi (1975) [5], Salmon (1998) [6]). Equations
(1.1) were obtained in [1] using the Lagrangian of the form

L =
1

2
|u|2 −W (ρ, ρ̇, S).

1See also references therein.
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This is an example of a medium behavior dependent not only on thermodynamical vari-
ables but also on their derivatives with respect to space and time. In this particular case
the potential function depends on the total derivative of the density which reflects the
dependence of the medium on its inertia. Another example of models where the medium
behavior depends on the derivatives is constructed in [7] by assuming that the Lagrangian
is of the form:

L =
1

2
|u|2 − ε(ρ, |∇ρ|, S).

One of the methods for studying properties of differential equations is group analysis
[8, 9, 10]. This method is a basic method for constructing exact solutions of partial
differential equations. A wide range of applications of group analysis to partial differential
equations are collected in [11, 12, 13]. Group analysis, besides facilitating the construction
of exact solutions, provides a regular procedure for mathematical modeling by classifying
differential equations with respect to arbitrary elements. This feature of group analysis
is the fundamental basis for mathematical modeling in the present research.

An application of group analysis employs several steps. The first step is a group clas-
sification with respect to arbitrary elements. An algorithm of the group classification is
applied in case where a system of differential equations has arbitrary elements in form of
undefined parameters and functions. This algorithm is necessary since a specialization of
the arbitrary elements can lead to an extension of admitted Lie groups. Group classifica-
tion selects the functions W (ρ, ρ̇, S) such that the fluid dynamics equations (1.1) possess
additional symmetry properties extending the kernel of admitted Lie groups. Algorithms
of finding equivalence and admitted Lie groups are particular parts of the algorithm of
the group classification.

A complete group classification of equations (1.1), where W = W (ρ, ρ̇) is performed
in [14] (one-dimensional case) and [15] (three-dimensional case). Invariant solutions of
some particular cases which are separated out by the group classification are considered
in [14, 15, 16]. Group classification of the class of models describing the behavior of a
dispersive continuum with ε = ε(ρ, |∇ρ|) was studied in [17]. It is also worth to notice
that the classical gas dynamics model corresponds to W = W (ρ, S) (or ε = ε(ρ, S)). A
complete group classification of the gas dynamics equations was presented in [8]. Later,
an exhausted program of studying the models appeared in the group classification of
the gas dynamics equations was announced in [18]. Some results of this program were
summarized in [19].

1.1.2 Application of the group analysis method to
integro-differential equations

The second part of the project deals with applications of the group analysis method to
integro-differential equations.

In applied mathematics and physics a special attention is given to the study of invariant
solutions of integro-differential equations which are directly associated with fundamental
symmetry properties of these equations. Group analysis in this case is an universal tool
for obtaining complete sets of symmetries. However a direct transference of the known
scheme of the group analysis method on integro-differential equations is impossible. The
general algorithm for application of the group analysis to equations with nonlocal terms
was proposed recently [20]. It is worth to notice that this area of the group analysis
method is still developing. In the present research the group analysis method is applied
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to two integro-differential equations: (a) the Rudenko equation, and (b) the Boltzmann
equation with sources.

The Rudenko equation

One of the most general evolution equations used in nonlinear wave physics is the following
one [21, 22]:

(ux − uut − wtt)t = uyy + uzz ,
w =

∫∞
0
K (s) u (t− s) ds . (1.2)

Here the variable t is the time, and x, y, z are the spatial Cartesian coordinates. The
coordinate x is distinguished as a ”longitudinal” one. It coincides with a preferred ori-
entation of the wave propagation. Other coordinates y, z are identified as ”transversal”
ones. They are commonly introduced in the cross-section of a wave beam.

Special cases of the equation (1.2) are well-known. In particular, if the kernel is identi-
cally zero, K (s) ≡ 0, the general equation (1.2) is reduced to the Khokhlov-Zabolotskaya
(KZ) equation [23, 24], describing wave beams in nonlinear media:

(ux − uut)t = uyy + uzz. (1.3)

If the kernel is the delta-function, K = 2δ (s), the model (1.2) leads to the equation

(ux − uut − utt)t = uyy + uzz (1.4)

for nonlinear beams in a dissipative medium [25, 26]. Equation (1.4) is known as the
Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. It is widely used in underwater
acoustics for engineering design of parametric radiating and receiving arrays [26].

If the kernel is proportional to the derivative of the delta-function, K = 2δ′ (s) , the
integro-differential equation (1.2) becomes the Kadomtsev-Petviashvili (KP) equation

(ux − uut − uttt)t = uyy + uzz (1.5)

for nonlinear beams in a dispersive medium [27, 28]. The similar equation

(ux − uut − utttt)t = uyy + uzz (1.6)

for a scattering medium [29] follows from (1.2) when K = 2δ′′ (s).
There exist other models that specify or generalize the equation (1.2), e.g. by including

(1.2) in a coupled systems of nonlinear equations [30, 31].
If the wave field u = u(t, x) is a function of a single spatial (longitudinal) coordinate

x and does not depend on transverse coordinates y, z, equation (1.2) is reduced to well-
known equations for plane waves [32]. In particular, the Riemann-Hopf equation follows
from (1.3), the Burgers equation follows from (1.4), and the Korteweg- de Vries equation
follows from (1.5). The one-dimensional equation with fourth-order derivative for scat-
tering medium suggested and solved in [29] follows from equation (1.6). 1D equations
can be obtained by eliminating the y, z derivatives of 3D equations and the subsequent
integration over dt, provided that the wave field vanishes at t→ ±∞.

A choice of the kernel as a linear combination of the delta-function and its derivatives
of different orders gives a possibility to derive from (1.2) various well-known differential
equations of the physics of nonlinear waves. Symmetries of such equations either have
already been studied (many results obtained until 1995 are collected in [11, 12, 13]), or
can be studied by the standard Lie group methods [8, 33, 9]. However, to the best of our
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knowledge, particular versions of the general equation (1.2) with non-degenerate kernels
which maintain the integro-differential feature of the model have not been studied yet.

The exponential kernel K = exp (−s) is of particular applied interest. Equation
(1.2) with such kernel describes wave beams in relaxing media. In this case the integro-
differential equation is also reduced to a differential equation [21]. To derive such an
equation, it is sufficient to note that the integral term w in (1.2) and the variable u for
the exponential kernel are related by the following equation:

wt + w = u. (1.7)

Reduction of (1.2) to a differential equation is also possible for some more complicated
kernels. For example, if K = exp (−s) cos (ω0 s), then the kernel describes internal dy-
namics of medium with resonant inclusions. In this case, the differential relation between
w and u in equation (1.2) has the form:

(wt + w − u)t + (wt + w − u) + ω2
0w = 0. (1.8)

A special class is formed by ”model” kernels which are non-zero on the finite segment,
for example, within s ∈ (0, 1]. The simplest case is

K =

{
1 if s ≤ 1,
0 if s > 1.

For this kernel the integro-differential equation (1.2) is reduced to the difference-differential
equation:

(ux − uut −∆ut)t = uyy + uzz ,
∆u ≡ u(t)− u(t− 1).

(1.9)

Note that, using the finite shift operator, one rewrites the integral term of equation
(1.2) in the form

w(t) = L̂u(t), L̂ (∂t) =

∫ ∞
0

K (s) exp (−s∂t) ds, (1.10)

where ∂t is the partial derivative with respect to time. The second operator L̂ (∂t) is the
Laplace transform of the function K (s) defining the kernel of equation (1.2).

For example, if a kernel has the form of the Bessel function of zero order, then one has

K = J0 (s) , L̂ (∂t) =
(
1 + ∂2

t

)−1/2
.

Using the tables of the Laplace transform and physical restrictions of the kernel forms,
one can single out all cases when equation (1) can be reduced to a differential equation of
a finite order. In the general case, decomposing the exponential function of the integrand
(9) into power series, one verifies that the resulting differential equation will contain
derivatives of an arbitrary order.

In the present research we use our method [34, 35] to the Rudenko equation.

The Boltzmann equation with sources

The Boltzmann kinetic equation is the basis of the classical kinetic theory of rarefied
gases. Considerable interest in the study of the Boltzmann equation was always the
search for exact (invariant) solutions directly associated with the fundamental properties
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of the equation. After the studies of the class of the local Maxwellians [36, 37, 38] new
classes of invariant solutions were constructed in the 1960s in [39, 40, 41]. A decade later
the BKW-solution was almost simultaneously derived in [42] and in [43]. Contrary to
the Maxwellians, the Boltzmann collision integral does not vanish for this solution. The
discovery of the BKW-solution stimulated a great splash of studies of exact solutions
of various kinetic equations. However, the progress at that time was really limited to
the construction of BKW-type solutions for different simplified models of the Boltzmann
equation [44].

The Boltzmann equation is an integro-differential equation. Whereas the classical
group analysis method has been developed for studying partial differential equations, the
main obstacle for applying group analysis to integro-differential equations comes from
presence of nonlocal integral operators. The direct group analysis for equations with
nonlocal operators was worked out and successfully used in [34, 45, 20]. In particular,
a complete group classification of the spatially homogeneous and isotropic Boltzmann
equation without sources was obtained in [34, 35].

One of the alternative approaches for studying solutions of the Boltzmann equation,
by transition to an equation for a moment generating function, was first considered in
[46, 47]. The BKW-solution was obtained there. In [48], such an approach was applied to
the spatially homogeneous and isotropic Boltzmann equation with sources. The author
of [48] used the group analysis method for studying solutions of the equation for the
generating function. However, it was not taken into account that this equation is still a
nonlocal one.

In the present research we use our method [34, 35] to amend the results of [48]. A
group classification of the equation for a moment generating function with respect to a
source function is obtained.

1.1.3 Application of group analysis to ordinary
differential equations

Many methods of solving differential equations use a change of variables that transform a
given differential equation into another equation with known properties. Since the class
of linear equations is considered to be the simplest class of equations, it was attractive
to transform a given differential equation into a linear equation. This problem, which
is called a linearization problem, is a particular case of the equivalence problem. The
equivalence problem can be formulated as follows. Let a set of invertible transformations
be given. One can introduce the equivalence property according to these transformations:
two differential equations are equivalent if there is a transformation of the given set which
transforms one equation into another. The equivalence problem involves a number of
related problems such as defining a class of transformations, finding invariants of these
transformations, obtaining the equivalence criteria, and constructing the transformation.

The third part of the present project is focused on the study of two problems: (a)
on first integrals of second-order ordinary differential equations; (b) the complete group
classification of systems of two linear second-order ordinary differential equations with
constant coefficients.
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Introduction to the problem of finding first integrals
of second-order ordinary differential equations

We give a short review of results related with an equivalence problem for a second-order
ordinary differential equation. Two types of transformations can be distinguished among
the transformations used in the equivalence problem for second-order ordinary differ-
ential equations: point transformations and the generalized Sundman transformations.
S.Lie [49] also noted that all second-order ODEs can be transformed to each other by
means of contact transformations, thus this set of transformations cannot be applied for
a classification of second-order ODEs.

Among the target equations two classes of equations can be mentioned. One set
of this class was obtained by S.Lie [50]. Lie’s group classification of ODEs shows that
the second-order equations can possess one, two, three or eight infinitesimal symmetries.
The equations with eight symmetries and only these equations can be linearized by a
change of variables. Lie showed that the latter equations are at most cubic in the first
derivative and gave a convenient invariant description of all linearizable equations. A
similar description of the equations with three symmetries were provided in [51, 52].
Another set of target classes corresponds to the Painlevé equations. Analysis of the
classes of equations corresponding to the first and second Painlevé equations was done in
[53, 54].

For the linearization problem one studies the classes of equations equivalent to linear
equations. The first linearization problem for ordinary differential equations was solved by
S.Lie [49]. He found the general form of all ordinary differential equations of second order
that can be reduced to a linear equation by changing the independent and dependent
variables. He showed that any linearizable second-order equation should be at most cubic
in the first-order derivative and provided a linearization test in terms of its coefficients.
The linearization criterion is written through relative invariants of the equivalence group.
A.M.Tresse [55] treated the equivalence problem for second order ordinary differential
equations in terms of relative invariants of the equivalence group of point transformations.
In [56] an infinitesimal technique for obtaining relative invariants were applied to the
linearization problem.

S.Lie also noted that all second order equations can be transformed to each other by
means of contact transformations, and that this is not so for third order equations.

A different approach for tackling the equivalence problem of second order ordinary
differential equations was developed by E.Cartan [57]. The idea of his approach was to
associate with every differential equation a uniquely defined geometric structure of a cer-
tain form. The Cartan approach was further applied by S.S.Chern [58] to third order
differential equations. Since none of the conditions given in [58] are implicit expressions
that could be used as tests for deciding about the type of the studied equation, in a series
of articles [59, 60, 61, 62, 63] the linearization problem was also considered. Linearization
with respect to point transformations is studied in [59], with respect to contact trans-
formations in [60, 61, 62, 63, 64]. The linearization problem was also investigated with
respect to generalized Sundman transformations [65, 66, 67].

The linearization problem via point transformations

τ = ϕ(t, x), u = ψ(t, x)

for a second-order equation ẍ = F (t, x, ẋ) is attractive because of the simplicity of the
general solution of a linear equation: a linearizable second-order ordinary differential
equation is equivalent to the free particle equation u′′ = 0. Thus, if one found linearizing
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transformation, then the general solution of the original equation can be relatively found
easily. Note that for a linearizable equation ẍ = F (t, x, ẋ) the value

u′ =
ẋψx + ψt
ẋϕx + ϕt

is a first integral of the equation. Here subscripts mean derivatives, for example, ϕt =
∂ϕ/∂t, ϕx = ∂ϕ/∂x and etc... This motivated one to study equations possessing a first
integral of the form

I =
ẋÃ(t, x) + C̃(t, x)

ẋB̃(t, x) + Q̃(t, x)
. (1.11)

Notice that a second-order equation equivalent to the free particle equation via the gen-
eralized Sundman transformation also possesses a first integral of the form (1.11).

The authors of [68, 69, 70] came to the form of first integral (1.11) from the study of
λ-symmetries for second-order equations which play a fundamental role. Although the
equation may lack Lie point symmetries, there always exists a λ-symmetry associated to
a first integral I = I(t, x, ẋ). Such a λ−symmetry can be defined in canonical form by the
vector field v = ∂x and the function λ = −Ix/Iẋ. When I is of the form

I = C(t, x) +
1

A(t, x)ẋ+B(t, x)
, (A 6= 0) (1.12)

such a function λ is given by

λ(t, x, ẋ) = γ(t, x)ẋ2 + α(t, x)ẋ+ β(t, x)ẋ (1.13)

where

γ = ACx = −a3 (1.14)

α = 2BCx − Ax/A = −a2 − ACt (1.15)

β = (CxB
2 −Bx)/A = −a1 + At/A− 2BCt. (1.16)

In this way the study of the ODEs that admit first integrals of the form (1.12) can be
seen as a problem of classification of the ODEs that admit v = ∂x as λ−symmetry for
some function λ of the form (1.13).

The case where Cx = 0:

I = C(t) +
1

ẋA(t, x) + C(t, x)

was studied in [71]. It has to be mentioned here that the case where B̃ = 0 was completely
studied in [70].

We denote by B the class of equations corresponding to the particular case when γ = 0
in (1.13). The equations in B are the ODEs of the form

ẍ+ a2(t, x)ẋ2 + a1(t, x)ẋ+ a0(t, x) = 0 (1.17)

that admit first integrals of the form (1.12) with Cx = 0.
A significant subclass of ODEs in B, denoted by A, is constituted by the equations that

admit first integrals of the form A(t, x)ẋ + B(t, x) (that is, C = 0 in (1.12)). By (1.15),
the equations in A are the equations of the form (1.17) that admit v = ∂x as λ−symmetry

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



for some function λ = −a2ẋ + β. According to the results in [70], the coefficients of the
equations in A must satisfy either S1 = S2 = 0, where

S1(t, x) = a1x − 2a2t, S2(t, x) = (a0a2 + a0x)x + (a2t − a1x)t + (a2t − a1x)a1, (1.18)

or, if S1 6= 0, S3 = S4 = 0, where

S3(t, x) =

(
S2

S1

)
x

− (a2t − a1x), S4(t, x) =

(
S2

S1

)
t

+

(
S2

S1

)2

+ a1

(
S2

S1

)
+ a0a2 + a0x.

(1.19)
The equations in A such that S1 = S2 = 0 constitute the subclass A1 and they admit two
functionally independent first integrals of the form A(t, x)ẋ+B(t, x).

Several properties on the linearization through local and nonlocal transformations of
the equations in B have been derived in [72] and [71]. All the equations in A1 pass the
Lie test of linearization (i. e. their coefficients satisfy L1 = L2 = 0). On the contrary,
none of the equations in A2 can be linearized through a local transformation; actually,
there exist equations in A2 that lack Lie point symmetries (see, for example, equations
(2.6) and (4.12) in [70]).

Although there exist equations (1.17) whose coefficients satisfy L1 = L2 = 0 that are
not in A1 (see example 9 in [72]), all of them must belong to B. It is important to remark
that there are equations in B not linearizable through local transformations, apart from
the subclass A2 (as the family appearing in example 2.1 in [73]). In order to linearize
such type of equations one has to consider nonlocal transformations of the form

X = F (t, x), dT = (G1(t, x)ẋ+G2(t, x))dt. (1.20)

The equations in B can be characterized as the unique ODEs (1.17) that can be linearized
through some nonlocal transformation of the form (1.20). When G1(t, x) = 0 in (1.20),
the equation must belong to A2 and conversely. In other words, the equations in A2 are
the unique ODEs (1.17) that can be transformed into the linear equation XTT = 0 by
means of some nonlocal transformation of the form

X = F (t, x), dT = G(t, x)dt. (1.21)

These transformations are known in the literature as generalized Sundman transforma-
tions (see [65],[66], [74, 75, 76, 77, 78] and references therein). Constructive methods to
determine nonlocal linearizing transformations can be derived from the algorithms that
calculate the first integrals ([72], [71]). In particular, local changes of variables that lin-
earize the equations in A1 can be determined by just dealing with first order ODEs. We
remark that such linearizing point transformations usually appear in the literature as
solutions of an involutive system of second-order partial differential equations ([79],[80]).

Complete group classification of systems of two linear second-order
ordinary differential equations with constant coefficients

Recent works by C.Wafo Soh [81] have focused on the study of systems of second-order
ordinary differential equations with constant coefficients. The studies deal with symme-
tries of systems of linear second-order ordinary differential equations with two and three
equations are considered. The goal of the present research is to study the symmetry struc-
ture of a system of n, (n = 2, 3) linear second-order ordinary differential equations with
constant coefficients. Since a change of the dependent and independent variables does not
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change the structure of the admitted Lie group, the author at first simplify the system,
and then calculate the admitted Lie group of the simplified system using the standard
procedure.

The paper [81] concentrated attention on the system of n equations of the form

ẍ = Mx, (1.22)

where the overdot denotes differentiation with respect to t, x is an n-dimensional vector
with complex entries, and M is an n× n matrix with complex entries.

A first simplification of system (1.22) is achieved by using the Jordan normal form J
of the matrix M ,

M = P−1JP.

The change u = Px reduces system (1.22) to the system

ü = Ju. (1.23)

Next, a simplification of system (1.23) is made for coefficients corresponding to diagonal
blocks of the Jordan matrix J : the authors applied scaling. This step is crucial in both
papers. In fact, in case of a diagonal block of the Jordan matrix J , scaling of the dependent
variables does not change the coefficients of this part of the system. Hence, one can
conclude that scaling is applied to the independent variable. Because the independent
variable is real valued, one can only make a real valued scaling. This allows one to
reduce only one component of a diagonal coefficient: either the real or imaginary part of
the eigenvalue of the Jordan matrix J . Whereas in [81] for any eigenvalue (including a
complex eigenvalue) the corresponding coefficients are reduced to the real number 1. This
means that the author [81] considered in the corresponding cases only real eigenvalues.
Therefore, the results of [81] are not complete. For a complete study one also needs to
study complex eigenvalues corresponding to diagonal Jordan blocks.

It is also worth to notice that from the paper it is unclear how the author calculated
an admitted Lie algebra. In the standard procedure, the dependent and independent
variables are real-valued, whereas the results of [81] are obtained for n complex-valued
dependent variables. Does this mean that the authors considered 2n real-valued equations
for calculating the admitted Lie algebra?

The goal of the present research is to correct the approach applied in [81]. The
approach is illustrated by using a complete study of symmetry structures of systems of two
real-valued linear second-order ordinary differential equations with constant coefficients.
In application of this approach to a system with more than two equations one needs
to take into account that if a real-valued matrix M has a complex eigenvalue, then the
conjugate number is also an eigenvalue. Only systems of two second-order equations are
considered here.

1.2 Objectives

1.2.1 Fluids with internal inertia

The research is focused on the group classification of the one-dimensional equations of
fluids (1.1), where the function W = W (ρ, ρ̇, S) satisfies the conditions WSρ̇ρ̇ = 0 and
WS 6= 0.
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1.2.2 Applications of group analysis to integro-differential equa-
tions

The Rudenko equation

The objective is to apply the recently developed approach of the group analysis method
for the Rudenko equation. In the present research the objective is to find admitted Lie
group of transformations using the explained above method.

The Boltzmann equation with sources

In the paper [48] the equation for generating function of the power moments of the Boltz-
mann equation solution was considered. However, this equation is still a nonlocal partial
differential equation, and this property was not taken into account there. The objective
of the present research is to apply the group analysis method developed recently for equa-
tions with nonlocal operators, and to make a group classification of the equation for the
generating function with respect to sources.

1.2.3 Application of group analysis to ordinary
differential equations

On first integrals of second-order ordinary differential equations

The objective of this part of the research is to give a criteria of the existence of a first
integral of the form

I =
ẋA(t, x) + C(t, x)

ẋB(t, x) +Q(t, x)
.

for a second-order ordinary differential equation

ẍ+ a3(t, x)ẋ3 + 3a2(t, x)ẋ2 + 3a1(t, x)ẋ+ a0(t, x) = 0.

Complete group classification of systems of two linear second-order
ordinary differential equations with constant coefficients

The objective is to make a complete group classification of systems of two linear second-
order ordinary differential equations with constant coefficients:

ẍ = Mx,

where

x =

(
x
y

)
, M =

(
m11 m12

m21 m22

)
.

1.3 Scope of the Work

1.3.1 Overall scope and assumptions of the group classification
of fluids with internal inertia

The research is restricted by the study only the case where the function W = W (ρ, ρ̇, S)
satisfies the conditions WSρ̇ρ̇ = 0 and WS 6= 0.
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1.3.2 Applications of group analysis to integro-differential
equations

Overall scope and assumptions of the study of the Rudenko equation

Since it is difficult to find the general solution of the determining equations (3.10) and
(3.11), the following simplification is considered. One can assume that the determining
equation (3.10) is valid for any functions u(t, x, y, z) and w(t, x, y, z) only satisfying the
first equation of (1.2). This allows to use standard procedure for solving determining equa-
tions developed for partial differential equations. After solving the determining equation
(3.10), one can use the found solution for solving the integral determining equation (3.11).

Overall scope and assumptions of the study of the Boltzmann equation
with sources

In the project the equation for generating function of the power moments of the Boltzmann
is analyzed.

1.3.3 Application of group analysis to ordinary
differential equations

Overall scope and assumptions of the study first integrals of
second-order ordinary differential equations

The criteria for existence of first integrals of the form

I =
ẋA(t, x) + C(t, x)

ẋB(t, x) +Q(t, x)
.

for a second-order ordinary differential equation

ẍ+ a3(t, x)ẋ3 + 3a2(t, x)ẋ2 + 3a1(t, x)ẋ+ a0(t, x) = 0

only with L2 = 0 is studied.

Overall scope and assumptions of the study of the group classification of
systems of two linear second-order ordinary differential equations
with constant coefficients

In the research we only study systems with two linear second-order ordinary differential
equations with constant coefficients of the form

ẍ = Mx.

1.4 Outcomes of the research

The outcomes of this research are 5 papers in International journals and 1 paper in
Proceedings of International conference with peer reviewing:

1. S.V.Meleshko
Comment on ”Symmetry breaking of systems of linear second-order ordinary differential
equations with constant coefficients”, Communications in Nonlinear Science and Numer-
ical Simulations, 2011, 16(9), pp.3447-3450.
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2. Ibragimov N.H., Meleshko S.V., Rudenko O.V.
Group analysis of evolutionary integro-differential equations describing nonlinear waves:
General model. J. of Phys. A: Math. and Theor., 2011, 44(31), art.no. 315201.

3. P.Siriwat, S.V.Meleshko
Group classification of one-dimensional non-isentropic equations of fluids with internal in-
ertia. Continuum Mechanics and Thermodynamics, 2012, 24:115-148 (DOI 10.1007/s00161-
011-0209-6).

4. Yu.N.Grigoriev, S.V.Meleshko
On group classification of the spatially homogeneous and isotropic Boltzmann equation
with sources. International Journal of Non-Linear Mechanics, 2012, 47, 1014–1019.

5. S.V.Meleshko, S.Moyo, C.Muriel, J.L.Romero, P.Guha and A.G.Choudhury
On first integrals of second-order ordinary differential equations J. Eng. Math. (DOI
10.1007/s10665-012-9590-9)

6. Yu.N.Grigoriev, S.V.Meleshko and A.Suriyawichitseranee
On the equation for the power moment generating function of the Boltzmann equation.
Group classification with respect to a source function. Proc. 6th Workshop ”Group Anal-
ysis of Differential Equations & Integrable Systems” (Protaras, Cyprus, 2012), University
of Cyprus, Nicosia, 2013, pp. 98-110
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Chapter 2

Group classification of
one-dimensional nonisentropic
equations of fluids
with internal inertia

Abstract A systematic application of the group analysis method for modeling fluids with
internal inertia is presented. The equations studied include models such as the non-linear
one-velocity model of a bubbly fluid (with incompressible liquid phase) at small volume
concentration of gas bubbles (Iordanski (1960), Kogarko (1961), Wijngaarden (1968)),
and the dispersive shallow water model (Green & Naghdi (1976), Salmon (1988)). These
models are obtained for special types of the potential function W (ρ, ρ̇, S) (Gavrilyuk &
Teshukov (2001)). The main feature of the present research is the study of the potential
functions with WS 6= 0. The group classification separates these models into 73 different
classes.

The present research is focused on the group classification of the one-dimensional
equations of fluids (1.1), where the function W = W (ρ, ρ̇, S) satisfies the conditions
WSρ̇ρ̇ = 0 and WS 6= 0.

The report is organized as follows. The next section studies the equivalence Lie group
of transformations. The equivalence transformations are applied for simplifying the func-
tion W (ρ, ρ̇, S) in the process of the classification. In Section 3 the defining equations
of the admitted Lie group are presented. Analysis of these equations separates equa-
tions (1.1) into equivalent classes. Notice that these classes are defined by the function
W (ρ, ρ̇, S). For convenience of the reader, this analysis is split into two parts. A complete
study of one particular case is given in Section 4. Analysis of the other cases is similar but
cumbersome. A complete study of the other cases is provided in Appendix. The result of
the group classification of equations (1.1) where WSρ̇ρ̇ = 0 and WS 6= 0 is summarized in
Table 2.1. The admitted Lie algebras are also presented in this table.

2.1 Equivalence Lie group

For finding an equivalence Lie group the algorithm described in [82, 45] is applied. This
algorithm differs from the classical one [8] by assuming dependence of all coefficients
from all variables including the arbitrary elements. Since the function W depends on the
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derivatives of the dependent variables and in order to simplify the process of finding an
equivalence Lie group, new dependent variables are introduced:

u3 = ρ̇ , u4 = S.

Here u1 = ρ, u2 = u, u3 = ρ̇ and u4 = S, x1 = x, x2 = t. An infinitesimal operator Xe

of the equivalence Lie group is sought in the form [45]

Xe = ξi∂xi + ζuj∂uj + ζW∂W ,

where all the coefficients ξi, ζuj , (i = 1, 2; j = 1, 2, 3, 4) and ζW are functions of the
variables x, t, ρ, u, ρ̇, S, W . Hereafter a sum over repeated indices is implied. The
coefficients of the prolonged operator are obtained by using the prolongation formulae:

ζuβ,i = De
i ζ
uβ − uβ,1De

i ξ
x − uβ,2De

i ξ
t, (i = 1, 2),

De
1 = ∂x + uβ,1∂uβ + (ρxWα,1 + ρ̇xWα,2 + SxWα,3)∂Wα ,
De

2 = ∂t + uβ,2∂uβ + (ρtWα,1 + ρ̇tWα,2 + StWα,3)∂Wα ,

where α = (α1, α2, α3) and β = (β1, β2) are multi-indexes (αi ≥ 0), (βi ≥ 0)

(α1, α2, α3), 1 = (α1 + 1, α2, α3), (α1, α2, α3), 2 = (α1, α2 + 1, α3), (α1, α2, α3), 3 = (α1, α2, α3 + 1)

(β1, β2), 1 = (β1 + 1, β2), (β1, β2), 2 = (β1, β2 + 1)

u(β1,β2) =
∂β1+β2u

∂xβ1∂tβ2
, W(α1,α2,α3) =

∂α1+α2+α3W

∂ρα1∂ρ̇α2∂Sα3
.

The conditions that W does not depend on t, x and u give

ζu1
xi

= 0, ζu1
u = 0, ζu3

xi
= 0, ζu3

u = 0, ζu4
xi

= 0, ζu4
u = 0, ζWxi = 0, ζWuj = 0, (i = 1, 2).

Using these relations, the prolongation formulae for the coefficients ζWα become:

ζWα,i = D̃e
i ζ
Wα −Wα,1D̃

e
i ζ
u1 −Wα,2D̃

e
i ζ
u3 −Wα,3D̃

e
i ζ
u4 , (i = 1, 2),

D̃e
1 = ∂ρ +Wα,1∂Wα , D̃e

2 = ∂ρ̇ +Wα,2∂Wα , D̃e
3 = ∂S +Wα,3∂Wα .

For constructing the determining equations and for their solution, the symbolic computer
Reduce [83] program was applied. Calculations give the following basis of generators of
the equivalence Lie group

Xe
1 = ∂x, X

e
2 = ∂t, X

e
3 = t∂x + ∂u, X

e
4 = t∂t + x∂x,

Xe
5 = t∂t + 2ρ∂ρ − u∂u, Xe

6 = ∂W , X
e
7 = −u∂u + ρ∂ρ −W∂W + t∂t,

Xe
8 = ρϕ(S)∂W , X

e
9 = ρ̇g(ρ, S)∂W , X

e
10 = h(S)∂S,

where the functions g(ρ, S), ϕ(S) and h(S) are arbitrary. Here only the essential part of
the operators Xe

i , (i = 5, 6, ..., 10) is written.
Since the equivalence transformations corresponding to the operators Xe

5 , Xe
6 , Xe

7 ,
Xe

8 ,Xe
9 and Xe

10 are applied for simplifying the function W in the process of the group
classification, let us present these transformations. Because the function W depends on
ρ, ρ̇ and S only, the transformations of these variables are presented:

Xe
5 : ρ′ = ρe2a, ρ̇′ = ρ̇, S ′ = S W ′ = W ;

Xe
6 : ρ′ = ρ, ρ̇′ = ρ̇, S ′ = S W ′ = We−2a;

Xe
7 : ρ′ = ρea, ρ̇′ = ρ̇, S ′ = S W ′ = W + a;

Xe
8 : ρ′ = ρ, ρ̇′ = ρ̇, S ′ = S W ′ = ρϕ(S)a+W ;

Xe
9 : ρ′ = ρ, ρ̇′ = ρ̇, S ′ = S W ′ = ρ̇g(ρ, S)a+W

Xe
10 : ρ′ = ρ, ρ̇′ = ρ̇, S ′ = q(S, a) W ′ = W ;
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Here a is the group parameter.

2.2 Defining equations of the admitted Lie group

An admitted generator X is sought in the form

X = ξx∂x + ξt∂t + ζρ∂ρ + ζu∂u + ζS∂S,

where the coefficients ξx, ξt, ζρ, ζu, ζS are functions of (x, t, ρ, u, S). Calculations showed
that

ξx = (k2t+ k3)x+ k4t+ k5, ξt = k2t
2 + (k1 + 2k3)t+ k7.

ζρ = ρ(k8 − k2t), ζ
u = k2(−ut+ x)− u(k1 + k3) + k4,

ζS = ζS(S),

k2(3Wρ̇ρ̇ρ̇ρ̇+Wρ̇ρ̇ρρ+ 3Wρ̇ρ̇) = 0, (2.1)

−3Wρ̇ρ̇S ρ̇ζ
S + 3Wρ̇ρ̇ρ̇ρ̇

2(k1 + 2k3 − k8)− 3Wρ̇ρ̇ρρ̇ρk8

+3Wρ̇ρ̇ρ̇(2k3 − k8)− ρk2(3Wρ̇ρ̇ +Wρ̇ρ̇ρρ) = 0,
(2.2)

k2(Wρρρρ̇ρ̇ρ−Wρρρ̇ρ̇+ 3Wρρρ̇ρ̇ρ̇
2 −Wρρρρ+Wρρ) = 0, (2.3)

ζSρ(WρρS −Wρρρ̇S ρ̇)−Wρρρρ̇ρ̇ρ
2k8 −Wρρρ̇ρ̇ρ(2k1 + 2k3 + k8)

+Wρρρ̇ρ̇ρ̇
2ρ(k1 + 2k3 − k8) +Wρρρρ

2k8 +Wρρρ(2k1 + 2k3 + k8)
+k2ρ̇(Wρρρ̇ρ̇ρ

2 + 5Wρ̇ρ̇ρρ+ 3Wρ̇ρ̇) = 0,
(2.4)

k2(Wρρρ̇S ρ̇ρ
2− 3Wρρ̇S ρ̇ρ+ 3Wρρ̇ρ̇S ρ̇

2ρ− 3Wρ̇ρ̇S ρ̇
2 + 3Wρ̇S ρ̇−WρρSρ

2 + 3WρSρ− 3WS) = 0,
(2.5)

−Wρρρ̇S ρ̇ρ
2k8 − 2Wρρ̇S ρ̇ρk1 − 2Wρρ̇S ρ̇ρk3 +Wρρ̇S ρ̇ρk8 +Wρρ̇ρ̇S ρ̇

2ρ(2k3 + k1 − k8)
+Wρ̇ρ̇S ρ̇

2(k8 − k1 − 2k3) +Wρ̇S ρ̇(2k1 + 2k3 − k8) +WρρSρ
2k8 +WρSρ(2k1 + 2k3 − k8)

+WS(k8 − 2k1 − 2k3) + ρ̇ρk2(Wρρ̇ρ̇Sρ+ 3Wρ̇ρ̇S) + ζSS (−Wρρ̇S ρ̇ρ+Wρ̇S ρ̇+WρSρ−WS)
+ζS(−Wρρ̇SS ρ̇ρ+Wρ̇SS ρ̇+WρSSρ−WSS) = 0,

(2.6)
where ki, (i = 1, 2, . . . , 8) are constant. The determining equations (2.1)–(2.6) define the
kernel of admitted Lie algebras and its extensions. The kernel of admitted Lie algebras
is determined for all functions W (ρ, ρ̇, S) and it consists of the generators

Y4 = ∂x, Y5 = ∂t, Y6 = t∂x + ∂u.

Extensions of the kernel depend on the value of the function W (ρ, ρ̇, S). They can only
be operators of the form

k1X1 + k2X2 + k3X3 + k8X8 + ζS∂S,

where
X1 = t∂t − u∂u − ρ̇∂ρ̇,

X2 = t2∂t + tx∂x + (x− ut)∂u − tρ∂ρ − (ρ+ 3tρ̇)∂ρ̇,
X3 = 2t∂t + x∂x − u∂u − 3ρ̇∂ρ̇ − ρ∂ρ,

X8 = ρ∂ρ + ρ̇∂ρ̇.

Since the function W (ρ, ρ̇, S) depends on ρ̇, the term with ∂ρ̇ is also presented in the
generators.

Relations between the constants k1, k2, k3, k8 and ζS(S) depend on the function
W (ρ, ρ̇, S).
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2.3 Case k2 6= 0

If k2 6= 0, then equation (2.1) gives

3Wρ̇ρ̇ρ̇ρ̇+Wρρ̇ρ̇ρ+ 3Wρ̇ρ̇ = 0.

The general solution of this equation is

W (ρ, ρ̇, S̃) = ρ3g(z, S) + ϕ0(ρ, S), (2.7)

where z = ρ̇ρ−3. Substituting (8) into (4), one obtains

ρϕ0ρρρ − ϕ0ρρ = 0.

The general solution of this equation is

ϕ0 = ρ3µ(S) + ρI(S) + J(S), (2.8)

where without loss of the generality by virtue of the equivalence transformation corre-
sponding to the operator Xe

8 , it can be assumed that I(S) = 0. Equation (6) gives that
J ′ = 0. By virtue of the equivalence transformation corresponding to Xe

7 , it can also be
assumed that J = 0. Substituting the obtained W into (2.2) and splitting it with respect
to ρ, one obtains gzzz = 0 or g = ϕ2(S)z2, where ϕ2 6= 0. Notice that the linear part of
the function ϕ2 is also omitted because of the equivalence transformations corresponding
to the generator Xe

9 . The remaining part of equation (2.2) becomes

ϕ′2ζ
S − 2ϕ2(k3 + k8) = 0. (2.9)

If ϕ′2 = 0 or ϕ2 = q 6= 0, then k3 = −k8 and equation (5) becomes

µ′ζS + 2k1µ = 0. (2.10)

For µ′ = 0 the function W does not depend on S. Since this case has been studied in
[14], it is excluded from further study in the present research. Thus, one has to assume
that µ′ 6= 0. From (2.10) one gets ζS = −2k1µ/µ

′. Changing the entropy S̃ = µ(S), one
has

W (ρ, ρ̇, S̃) = q
ρ̇2

ρ3
+ ρ3S̃,

and the extension of the kernel is given by the generators

X1 − 2S̃∂S̃, X2, X3 −X8.

In the final Table 1 this is model M1, where the tilde sign is omitted.
If ϕ′2 6= 0, then from (2.2) and (2.9), one obtains

ζS = 2
ϕ2

ϕ′2
(k3 + k8),

µ′ϕ2(k3 + k8) + ϕ′2µ(k1 + k3 + k8) = 0. (2.11)

If µ 6= 0 then, the last equation defines

k1 = −(k3 + k8)(1 +
µ′ϕ2

µϕ′2
). (2.12)
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Differentiation (2.12) with respect to S gives

(k3 + k8)(
µ′ϕ2

µϕ′2
)′ = 0. (2.13)

If (
µ′ϕ2

µϕ′2
)′ = 0 or µ = q1ϕ

k
2, then the general solution of equations (2.1) - (2.6) is

W (ρ, ρ̇, S̃) =
ρ̇2

ρ3
S̃ + q1ρ

3S̃k,

where S̃ = ϕ2(S). The extension of the kernel is given by the generators

X2, X3 −X8, X8 − (k + 1)X1 + 2S̃∂S̃.

In the final Table 1 this is model M2.

If (
µ′ϕ2

µϕ′2
)′ 6= 0, then the general solution of equations (2.1) - (2.6) is

W (ρ, ρ̇, S̃) =
ρ̇2

ρ3
S̃ + ρ3µ(S̃), (µ 6= q1S̃

k),

and the extension of the kernel is given by the generators

X2, X3 −X8.

In the final Table 1 this is model M3.
If µ = 0, then

W (ρ, ρ̇, S̃) =
ρ̇2

ρ3
S̃,

and the extension of the kernel is given by the generators

X1, X2, X3 −X8, X8 + 2S̃∂S̃.

In the final Table 1 this is model M4.
Remark. The last two cases do not satisfy the restriction Wρ̇ρ̇S 6= 0 announced in the

title. For the case where k2 6= 0 it is not necessary to separate the study into the cases
Wρ̇ρ̇S 6= 0 and Wρ̇ρ̇S = 0. Whereas for the analysis of the case where k2 = 0, one needs to
make this separation.

2.4 Results of the group classification

The result of the group classification of equations (1.1) is summarized in Table 2.1.
The linear part with respect to ρ̇ of the function W (ρ, ρ̇, S) is omitted. The equivalence
transformation corresponding to the operator Xe

10 is also used. This transformation allows
one to simplify the dependence on entropy of the function W (ρ, ρ̇, S).

The first column in Table 2.1 presents the number of the extension, forms of the func-
tion W (ρ, ρ̇, S) are presented in the second column, extensions of the kernel of admitted
Lie algebras are given in the third column, restrictions for functions and constants are in
the fourth column.
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Table 2.1: Group classification

w(ρ, ρ̇, S) Extensions Remarks

M1 q0ρ
−3ρ̇2 + ρ3S X1 − 2S∂S , X2, X3 −X8

M2 ρ−3ρ̇2S + q1ρ
3Sk X2, X3 −X8, X8 − (k + 1)X1 + 2S∂S

M3 ρ−3ρ̇2S + ρ3µ(S) X2, X3 −X8 µ′ 6= q1S
k

M4 ρ−3ρ̇2S X1, X2, X3 −X8, X8 + 2S∂S
M5 φ(ρ, ρ̇) + S ∂S
M6 ϕ(ρ)ρ̇2 + S ∂S , X1 − 2S∂S
M7 ϕ(ρ)ρ̇2 + η(ρ) + S ∂S η′′ 6= 0

M8 ϕ(ρ)ρ̇2 + η(ρ)S X1 − 2S∂S η′′ 6= 0
M9 ϕ(ρ)ρ̇ ln |ρ̇| + S X3 − 2S∂S , ∂S
M10 ϕ(ρ)ρ̇ ln |ρ̇| + η(ρ) + S ∂S η′′ 6= 0

M11 ϕ(ρ)ρ̇ ln |ρ̇| + η(ρ)S X3 − 2S∂S η′′ 6= 0

M12 (q1ρ + q0) ln |ρ̇| + η(ρ) + S X3 −X1, ∂S q20 + q21 6= 0

M13 ϕ(ρ) ln |ρ̇| + η(ρ) + S ∂S ϕ′′ 6= 0

M14 (q1ρ + q0) ln |ρ̇| + h(ρ, S) X3 −X1 (q20 + q21)hρρS 6= 0

M15 ϕ(ρ)(ln |ρ̇| + S) + η(ρ) + q2S X3 −X1 + ∂S ϕ′′ 6= 0

M16 ϕ(ρ)ρ̇k+2 + S kX3 − 2(k + 1)X1 + 2(k + 2)S∂S , ∂S k(k + 1)(k + 2) 6= 0

M17 ϕ(ρ)ρ̇k+2 + η(ρ) + S ∂S η′′ 6= 0

M18 ϕ(ρ)ρ̇k+2 + η(ρ)S kX3 − 2(k + 1)X1 + 2(k + 2)S∂S η′′ 6= 0

M19 ρλg(ρ̇ρk) + η(ρ) + S ∂S
M20 g(ρ̇ρk) + q1ρ

2 + S −2kX1 + (2k + 1)X3 + 2X8, ∂S
M21 ρg(ρ̇ρk) + q1ρ ln ρ + S (k + 1)(X3 −X1) +X8 + S∂S , ∂S
M22 ρλg(ρ̇ρk) + S −2(k + λ)X1 + (2k + λ + 1)X3

+2X8 + 2λS∂S , ∂S λ(λ− 1) 6= 0

M23 g(ρ̇ρk) + S ln ρ −2kX1 + (2k + 1)X3 + 2X8

M24 ρg(ρ̇ρk) + Sρ ln ρ (k + 1)(X3 −X1) +X8

M25 ρλ(g(ρ̇ρk) + S) −2(k + λ)X1 + (2k + λ + 1)X3 + 2X8 λ(λ− 1) 6= 0

M26 g(ρ̇ρk) +Q(ρS) + q1 lnS −2kX1 + (2k + 1)X3 + 2X8 − 2S∂S
M27 ρλg(ρ̇ρk) +Q(ρS) −2(k + λ)X1 + (2k + λ + 1)X3 + 2X8 − 2S∂S λ 6= 0

M28 q0ρ̇ρ
λ ln |ρ̇| + S X3 − 2S∂S , X8 − λX1 + (2λ + 1)S∂S , ∂S

M29 q0ρ̇ρ
λ ln |ρ̇| + η(ρ) + S 2X8 − 2λX1 + (2λ− ν − 1)X3 + 2(ν + 2)S∂S , ∂S η′′ = q1ρ

ν 6= 0

M30 q0ρ̇ρ
λ ln |ρ̇| + η(ρ) + S ∂S η′′ 6= q1ρ

ν , η′′ 6= 0

M31 q0ρ̇ρ
λ ln |ρ̇| + η(ρ)S X3 − 2S∂S η′′ 6= 0

M32 q0ρ̇ρ
λ ln |ρ̇| + Sρ ln ρ X3 − 2S∂S , −λX1 +X8 + 2λS∂S

M33 q0ρ̇ρ
λ ln |ρ̇| + S(ρ ln ρ + q1) X3 − 2S∂S q1 6= 0

M34 q0ρ̇ρ
λ ln |ρ̇| + Sρ ln ρ + q2 lnS 2(X8 − λX1 + λX3) +X3 − 2S∂S q2 6= 0

M35 q0ρ̇ρ
λ ln |ρ̇| + Sρ ln ρ + q2S

α 2(1− α)(X8 − λX1 + λX3) +X3 − 2S∂S q2α(α− 1) 6= 0

M36 q0ρ̇ρ
λ ln |ρ̇| + S(ln ρ + q1) X3 − 2S∂S

M37 q0ρ̇ρ
λ ln |ρ̇| + S(ln ρ + q1) + αS lnS −2λαX1 + (2αλ + 1)X3 + 2αX8 + 2(α− 1)S∂S α 6= 0

M38 q0ρ̇ρ
λ ln |ρ̇| + Sρν+2 X3 − 2S∂S , −λX1 +X8 + (2λ− ν − 1)S∂S (ν + 2)(ν + 1) 6= 0

M39 q0ρ̇ρ
λ ln |ρ̇| + S(ρν+2 + q1) X3 − 2S∂S q1(ν + 2)(ν + 1) 6= 0

M40 q0ρ̇ρ
λ ln |ρ̇| + Sρν+2 + q1 lnS −2λX1 + (2λ + 1)X3 + 2X8 − 2(ν + 2)S∂S q1(ν + 2)(ν + 1) 6= 0

M41 q0ρ̇ρ
λ ln |ρ̇| + Sρν+2 + q2S

α 2λ(α− 1)X1 + (α(ν + 1− 2λ) + 2λ + 1)X3 (ν + 2)(ν + 1) 6= 0,
+2(1− α)X8 − 2(ν + 2)S∂S q2α(α− 1) 6= 0

M42 q0ρ̇ρ
λ ln |ρ̇| + g(ρS) + q2 lnS −2λX1 + (2λ + 1)X3 + 2X8 − 2S∂S

M43 q0ρ̇ρ
λ ln |ρ̇| + ρνg(ρS) + q2S

−ν −2λX1 + (2λ− ν + 1)X3 + 2X8 − 2S∂S ν 6= 0

M44 ρλ(q1 + q0 ln(ρν |ρ̇|)) + S −2(λ + ν)X1 + (λ + 2ν + 1)X3
+2X8 + 2λS∂S , ∂S

M45 q0ρ
λ ln |ρ̇| + η(ρ) + S ∂S η 6= ρλ(q1 + q2 ln ρ)

M46 q0ρ
λ ln |ρ̇| + η(ρ) + S X3 −X1, ∂S η′′ 6= q1ρ

(λ−2),
λ(λ− 1) = 0

M47 q0ρ
λ ln(|ρ̇|ρν) + S X3 −X1, (1− λ)X1 + 2X8 + 2λS∂S , ∂S λ(λ− 1) = 0

M48 q0 ln |ρ̇| + S ln ρ + f(S) X3 −X1

M49 ρ(q0 ln |ρ̇| + S ln ρ) + f(S) X3 −X1 f ′ 6= 0
M50 ρ(q0 ln |ρ̇| + S ln ρ) X3 −X1, X8

M51 q0 ln |ρ̇| + φ(ρS) + q1 lnS X3 −X1, X1 + 2X8 − 2S∂S (zφ(z)′)′′ 6= 0

M52 ρ(q0 ln |ρ̇| + φ(ρS)) + q1S
−1 X3 −X1, X8 − S∂S (zφ(z)′)′′ 6= 0

M53 ρλ(q0 ln |ρ̇| + φ(ρS)) + f(S) X3 −X1 λ(λ− 1) = 0,
(Sf ′ + λf)′ 6= 0,
(zφ(z)′)′′ 6= 0

M54 q0ρ
λ(ln |ρ̇| + S) + η(ρ) + q1S X3 −X1 + ∂S λ(λ− 1) 6= 0,

η′′ 6= ρλ−2(ν ln ρ + q2)

M55 q0ρ
λ(ln(|ρ̇|ρν) + S) + q1ρ

λ X3 −X1 + ∂S , λ(λ− 1) 6= 0
2(λ− 1)X1 + 2X8 − (λ + 2ν + 1)∂S

M56 q0ρ
λ(ln(|ρ̇|ρν) + S) + q1ρ

λ + q2S X3 −X1 + ∂S q2λ(λ− 1) 6= 0

M57 q0ρ
λ(ln(|ρ̇|ρν) + S) + q1ρ

λ + q2e
κS −2(κ(λ + ν) + λ)X1 + 2κX8 + 2λ∂S q2λ(λ− 1) 6= 0

+(2λ + κ(λ + 2ν + 1))X3

M58 q0ρ
λ(ln(|ρ̇|ρν) + g(ρS)) + q2S

−λ −2(λ + ν)X1 + (λ + 2ν + 1)X3 + 2X8 − 2S∂S λ(λ− 1) 6= 0,

(zλ+1g′(z))′′ 6= 0

M59 q0ρ
λρ̇k+2 + η(ρ) + S −2(2k + λ + 2 + (k + 1)ν)X1 (k + 1)(k + 2) 6= 0,

+(kν + 3k + 2λ + 2)X3 η′′ = q1ρ
ν 6= 0

+2(k + 2)(X8 + (ν + 2)S∂S , ∂S
M60 q0ρ

λρ̇k+2 + η(ρ) + S ∂S (k + 1)(k + 2) 6= 0,
η′′ 6= q1ρ

ν , η′′ 6= 0

M61 q0ρ
λρ̇k+2 + S 2(k + 1)X1 − kX3 − 2(k + 2)S∂S , (k + 1)(k + 2) 6= 0

(k + λ + 1)X3 + 2(k + 1)X8 − 2λS∂S , ∂S
M62 q0ρ

λρ̇k+2 + g(ρS) + q2 lnS −2λX1 + (k + 2λ + 2)X3 + 2(k + 2)(X8 − S∂S) (k + 1)(k + 2) 6= 0
(zg′(z))′′ 6= 0

M63 q0ρ
λρ̇k+2 + ρνg(ρS) + q2S

−ν −2(ν(k + 1) + λ)X1 + (k(ν + 1) + 2λ + 2)X3 ν(k + 1)(k + 2) 6= 0

+2(k + 2)(X8 − S∂S) (zν+1g′(z))′′ 6= 0

M64 q0ρ
λρ̇k+2 + Sη(ρ) 2(k + 1)X1 − kX3 − 2(k + 2)S∂S (k + 1)(k + 2) 6= 0,

η′′ 6= q1ρ
ν , η′′ 6= 0

M65 q0ρ
λρ̇k+2 + S(ln(ρSβ) + q2) 2(k + 1− βλ)X1 + (β(k + 2λ + 2)− k)X3 (k + 1)(k + 2) 6= 0

+2(k + 2)(βX8 − S∂S)

M66 q0ρ
λρ̇k+2 + ρ ln(ρ)S 2(k + 1)X1 − kX3 − 2(k + 2)S∂S , (k + 1)(k + 2) 6= 0

2λ(X3 −X1) + (k + 2)(X3 + 2X8 − 2S∂S)
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Table 2.1. Continue
w(ρ, ρ̇, S) Extensions Remarks

M67 q0ρ
λρ̇k+2 + S(ρ ln(ρ) + q2) 2(k + 1)X1 − kX3 − 2(k + 2)S∂S q2 6= 0,

(k + 1)(k + 2) 6= 0

M68 q0ρ
λρ̇k+2 + Sρ ln ρ + q2 lnS 2λ(X3 −X1) + (k + 2)(X3 + 2X8 − 2S∂S) q2 6= 0,

(k + 1)(k + 2) 6= 0

M69 q0ρ
λρ̇k+2 + S(ρ ln ρ + q2S

β) 2(β(k + λ + 1) + k + 1)(X3 −X1) βq2 6= 0,
−(k + 2)X3 + 2(k + 2)(βX8 + S∂S) (k + 1)(k + 2) 6= 0

M70 q0ρ
λρ̇k+2 + Sρν 2(k + 1)X1 − kX3 − 2(k + 2)S∂S , ν 6= 0,

(k + λ + 1)X3 + 2(k + 1)X8 (k + 1)(k + 2) 6= 0
−2(λ + ν(k + 1))S∂S)

M71 q0ρ
λρ̇k+2 + S(ρν + q2) 2(k + 1)X1 − kX3 − 2(k + 2)S∂S q2 6= 0,

(k + 1)(k + 2) 6= 0

M72 q0ρ
λρ̇k+2 + Sρν + q2 lnS 2λ(X3 −X1) + (k + 2)(X3 + 2X8 − 2νS∂S) q2 6= 0,

(k + 1)(k + 2) 6= 0

M73 q0ρ
λρ̇k+2 + S(ρν + q2S

β) 2β(λ + ν(k + 1)) + ν(k + 1)(X3 −X1) q2β 6= 0,
−(k + 2)(βν − β + ν)X3 (k + 1)(k + 2) 6= 0
+2(k + 2)(βX8 + νS∂S)

2.5 Appendix. Case k2 = 0

For further study the knowledge of ζS(S) plays a key role. For example, for k2 = 0
equation (2.2) becomes

Wρ̇ρ̇Sζ
S = Wρ̇ρ̇ρ̇ρ̇k1 + 2k3(Wρ̇ρ̇ρ̇ρ̇+Wρ̇ρ̇)− k8(Wρ̇ρ̇ρ̇ρ̇+Wρ̇ρ̇ρρ+Wρ̇ρ̇). (2.14)

In the present research we study the case where

Wρ̇ρ̇S = 0.

By virtue of the equivalence transformation corresponding to the generator Xe
9 , the

general solution of the equation Wρ̇ρ̇S = 0 is

W (ρ, ρ̇, S̃) = φ(ρ, ρ̇) + h(ρ, S),

where φρ̇hS 6= 0. Since for φρ̇ρ̇ = 0 equations (1.1) are equivalent to the gas dynamics
equations, it is assumed that φρ̇ρ̇ 6= 0. Equation (2.14) reduces to

k1a+ k3b− k8c = 0, (2.15)

where
a = ρ̇φρ̇ρ̇ρ̇, b = 2(ρ̇φρ̇ρ̇ρ̇ + φρ̇ρ̇), c = −(ρ̇φρ̇ρ̇ρ̇ + ρφρ̇ρ̇ρ + φρ̇ρ̇).

In the further study the following strategy is used. Notice that equation (2.4) is linear
with respect to ζS with the coefficient hρρS, i.e.,

hρρSζ
S = A

with some function A = A(ρ, ρ̇, S) which is independent of ζS. If hρρS = 0, then due to
equivalence transformations one can also assume that

h(ρ, S) = η(ρ) + µ(S),

where µ′ 6= 0. In this case equation (2.6) leads to

ζS = (−2k1µ− 2k3µ+ k8µ+ c0)/µ′,

where c0 is an arbitrary constant. The admitted generator takes the form

X = k1(X1 − 2S̃∂S̃) + k3(X3 − 2S̃∂S̃) + k8(X8 + S̃∂S̃) + c0∂S̃, (2.16)
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where S̃ = µ(S). Remaining equations are (2.2) and (2.4). The relations between con-
stants k1, k3 and k8 depend on the functions η(ρ) and φ(ρ, ρ̇). If hρρS 6= 0, then the
function ζS is defined by equation (2.4). In this case one needs to satisfy the system of
equations (2.2), (2.6) and the condition that ζS = ζS(S).

The analysis of the relations between the constants k1, k3 and k8, follows to the
algorithm developed for the gas dynamics equations [8]: the vector space Span(V ), where
the set V consists of the vectors (a, b, c) with ρ, ρ̇ and S are changed, is analyzed. This
algorithm allows one to study all possible subalgebras without omission.

2.5.1 dim(Span(V )) = 3

If the function W (ρ, ρ̇, S) is such that dim(Span(V )) = 3, then equation (2.15) is only
satisfied for

k1 = 0, k3 = 0, k8 = 0.

In this case equations (2.4) and (2.6) become

ζShρρS = 0, ζSS (ρhρS − hS) + ζS(ρhρSS − hSS) = 0.

Since for ζS = 0 there are no extensions of the kernel of admitted Lie algebras, one has
to consider ζS 6= 0. The general solution of the first equation, after using the equivalence
transformation corresponding to the generator Xe

8 , is

h = µ(S),

where µ′ 6= 0. The general solution of the second equation is ζS = c/µ′. Hence

W (ρ, ρ̇, S̃) = φ(ρ, ρ̇) + S̃,

and the extension of the kernel is given by the generator

∂S̃,

where S̃ = µ(S). In the final Table 1 this is model M5.

2.5.2 dim(Span(V )) = 2

There exists a constant vector (α, β, γ) 6= 0, which is orthogonal to the set V :

αa+ βb+ γc = 0. (2.17)

This means that the function φ(ρ, ρ̇) satisfies the equation

(α + 2β + γ)ρ̇φρ̇ρ̇ρ̇ + γρφρ̇ρ̇ρ = −(2β + γ)φρ̇ρ̇. (2.18)

The characteristic system of this equation is

dρ̇

(α + 2β + γ)ρ̇
=
dρ

γρ
=

dφρ̇ρ̇
−(2β + γ)φρ̇ρ̇

. (2.19)
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Case γ = 0

Because φρ̇ρ̇ 6= 0 and (α, β, γ) 6= 0, one has that α + 2β 6= 0. The general solution of
equation (2.18) is

φρ̇ρ̇ = ϕ̃(ρ)ρ̇k, (2.20)

where ϕ̃(ρ) 6= 0 is an arbitrary function and k = 2β/(α + 2β). Since dim(Span(V )) = 0
for (ρϕ̃′/ϕ̃)′ = 0, one has to assume that (ρϕ̃′/ϕ̃)′ 6= 0.

Substitution of (2.20) into (2.15) gives

k8ϕ̃
′ρ− ϕ̃(k(k1 + 2k3 − k8) + 2k3 − k8) = 0. (2.21)

The case k8 6= 0 leads to (ρϕ̃′/ϕ̃)′ = 0. Hence, k8 = 0 and equation (2.21) becomes

k(k1 + 2k3) + 2k3 = 0. (2.22)

Let k = 0. Due to equation (2.21) one gets k3 = 0. Integrating (2.20), one finds
φ = ϕ(ρ)ρ̇2. Equation (2.4) becomes

hρρSζ
S + 2hρρk1 = 0. (2.23)

Assume that hρρ = 0, this means that after using the equivalence transformation
corresponding to the generator Xe

8 , one has that h = µ(S), where µ′ 6= 0. Equation (2.6)
after integration gives

ζS = −2k1µ/µ
′ + c0/µ

′,

where c0 is a constant of the integration. Thus,

W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇2 + S̃.

and the extension of the kernel is given by the generators

∂S̃, X1 − 2S̃∂S̃,

where S̃ = µ(S). In the final Table 1 this is model M6.
Assume that hρρ 6= 0. For the existence of an extension of the kernel, equation (2.23)

implies that h(ρ, S) = η(ρ)µ(S) + µ2(S), where µη′′ 6= 0. In this case equation (2.4)
becomes

µ′ζS + 2k1µ = 0.

If µ′ = 0, then µ′2 6= 0, k1 = 0 and equation (2.6) gives ζS = c0/µ
′
2. Thus,

W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇2 + η(ρ) + S̃,

and the extension of the kernel is given by the generator

∂S̃,

where S̃ = µ2(S). In the final Table 1 this is model M7.
If µ′ 6= 0, then ζS = −2k1µ/µ

′, and equation (2.6) gives

(µ′2/µ
′)′ = 0.

Hence, without loss of generality one can assume that µ2 = 0. Therefore,

W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇2 + η(ρ)S̃.
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and the extension of the kernel is given by the generator

X1 − 2S̃∂S̃,

where S̃ = µ(S). In the final Table 1 this is model M8.
Remark. In the cases where µ′ 6= 0 one can assume that µ2(S) = f(µ(S)). This

simplifies calculations.
Let k 6= 0. Equation (2.22) gives

k1 = −2k3
1 + k

k
.

The function φ(ρ, ρ̇) is obtained by integrating equation (2.20). The integration depends
on the value of k.

Let k = −1, then
φ = ϕ(ρ)ρ̇ ln |ρ̇|. (2.24)

Substituting (2.24) into (2.4), one obtains

ζShρρS + 2k3hρρ = 0. (2.25)

If hρρ = 0, then h = µ(S) with µ′ 6= 0, and equation (2.6) leads to

ζS = −2k3µ/µ
′ + c0/µ

′.

Therefore,
W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇ ln |ρ̇|+ S̃,

and the extension of the kernel is given by the generators

X3 − 2S̃∂S̃, ∂S̃,

where S̃ = µ(S). In the final Table 1 this is model M9.
If hρρ 6= 0, then

h(ρ, S) = µ(S)η(ρ) + µ2(S), (µη′′ 6= 0).

Equation (2.4) becomes µ′ζS + 2k3µ = 0.
If µ′ = 0, then µ′2 6= 0, k3 = 0 and equation (2.6) gives ζS = c0/µ

′
2. Thus,

W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇ ln |ρ̇|+ η(ρ) + S̃,

and the extension of the kernel is defined by the generator

∂S̃,

where S̃ = µ2(S). In the final Table 1 this is model M10.
If µ′ 6= 0, then

ζS = −2k3µ(S)/µ′.

Similar to the case k = 0, equation (2.6) gives µ2 = 0. Therefore

W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇ ln |ρ̇|+ η(ρ)S̃, (η′′ 6= 0),

and the extension of the kernel is given by the generator

X3 − 2S̃∂S̃,
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where S̃ = µ(S). In the final Table 1 this is model M11.
Let k = −2, then

φ = ϕ(ρ) ln |ρ̇|. (2.26)

Equation (2.4) becomes
ζShρρS − k3ϕ

′′ = 0 (2.27)

Assuming that hρρS = 0, one has

h(ρ, S) = η(ρ) + µ(S),

where µ′ 6= 0. Equation (2.6) leads to

ζS = c0/µ
′. (2.28)

Therefore
W (ρ, ρ̇, S̃) = ϕ(ρ) ln |ρ̇|+ η(ρ) + S̃,

and (a) for ϕ′′ = 0, one has two admitted generators

X3 −X1, ∂S̃,

(b) for ϕ′′ 6= 0, there is the only admitted generator

∂S̃.

Here S̃ = µ(S). In the final Table 1 case (a) is model M12 and case (b) is model M13.
Assuming that hρρS 6= 0, one has

ζS = k3
ϕ′′

hρρS
.

Notice that here k3 6= 0, otherwise there is no an extension of the kernel of admitted Lie
algebras. Hence, (

ϕ′′

hρρS

)
ρ

= 0. (2.29)

If ϕ′′ = 0, then equation (2.6) is also satisfied. Therefore there is the only extension

X3 −X1,

and
W (ρ, ρ̇, S̃) = (q1ρ+ q0) ln |ρ̇|+ h(ρ, S),

where (q2
0 + q2

1)hρρS 6= 0. In the final Table 1 this is model M14.
If ϕ′′ 6= 0, then equations (2.29) and (2.6) give

h(ρ, S) = ϕ(ρ)µ(S) + η(ρ) + q2µ(S),

where µ′ 6= 0. Therefore,

W (ρ, ρ̇, S̃) = ϕ(ρ)(ln |ρ̇|+ S̃) + η(ρ) + q2S̃, (ϕ′′ 6= 0),

and the extension of the kernel is

X3 −X1 + ∂S̃,
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where S̃ = µ(S). In the final Table 1 this is model M15.
Let k(k + 1)(k + 2) 6= 0 in (2.20), then

φ = ϕ(ρ)ρ̇(k+2) (2.30)

Substituting (2.30) into (2.4), one obtains

ζShSρρk − 2k3(k + 2)hρρ = 0. (2.31)

If hρρ = 0, then one can consider that h = µ(S), where µ′ 6= 0. Equation (2.6) is

ζS = 2k3
(k + 2)

k
µ/µ′ + c0/µ

′.

In this case
W (ρ, ρ̇, S̃) = ρ̇k+2ϕ(ρ) + S̃,

and the extension of the kernel is given by the generators

kX3 − 2(k + 1)X1 + 2(k + 2)S̃∂S̃, ∂S̃,

where S̃ = µ(S). In the final Table 1 this is model M16.
If hρρ 6= 0, then for an existence of an extension of the kernel, equation (2.31) requires

that
h(ρ, S) = η(ρ)µ(S) + µ2(S),

where µη′′ 6= 0. Equation (2.31) becomes

ζSµ′k − 2k3(k + 2)µ = 0.

If µ′ = 0, then µ′2 6= 0, k3 = 0 and equation (2.6) gives ζS = c0/µ
′
2. Thus,

W (ρ, ρ̇, S̃) = ρ̇k+2ϕ(ρ) + η(ρ) + S̃, (η′′ 6= 0).

and the extension of the kernel is given by the generator

∂S̃,

where S̃ = µ2(S). In the final Table 1 this is model M17.
If µ′ 6= 0, then

ζS = 2k3
(k + 2)

k
µ/µ′,

Similar to the case k = 0, equation (2.6) gives µ2 = 0. Therefore,

W (ρ, ρ̇, S̃) = ρ̇k+2ϕ(ρ) + η(ρ)S̃, (η′′ 6= 0),

and the extension of the kernel is given by the generator

kX3 − 2(k + 1)X1 + 2(k + 2)S̃∂S̃,

where S̃ = µ(S). In the final Table 1 this is model M18.
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Case γ 6= 0.

In this case the general solution of (2.19) is

φ = ρλg(z), (g′′ 6= 0), (2.32)

where z = ρ̇ρk, k = −(α+ 2β)/γ− 1, λ = 2(β +α)/γ + 1. Substituting φ into (2.14), one
obtains

zg′′′k0 + g′′k̃0 = 0, (2.33)

where k0 = k1 + 2k3 − k8(k + 1) and k̃0 = 2k3 − k8(2k + λ + 1). If k0 6= 0, then
dim(Span(V )) ≤ 1, hence, k0 = 0 and k̃0 = 0, which mean that

k1 = −k8(k + λ), k3 = k8(2k + λ+ 1)/2.

Equation (2.4) becomes

ζShSρρ + k8(ρhρρρ − (λ− 2)hρρ) = 0. (2.34)

Assume that hρρS = 0 or
h(ρ, S) = η(ρ) + µ(S),

where µ′ 6= 0. Equation (2.4) and (2.6) become, respectively,

k8(ρη′′′ − (λ− 2)η′′) = 0, ζS = k8λµ/µ
′ + c0/µ

′.

If ρη′′′ − (λ− 2)η′′ 6= 0, then k8 = 0. Thus,

W (ρ, ρ̇, S̃) = ρλg(ρ̇ρk) + η(ρ) + S̃,

and there is the only extension of the kernel of admitted Lie algebras corresponding to
the generator

∂S̃,

where S̃ = µ(S). In the final Table 1 this is model M19.
If ρη′′′ − (λ− 2)η′′ = 0 or

η =


q1ρ

2, λ = 0,
q1ρ ln(ρ), λ = 1,
q1ρ

λ, λ(λ− 1) 6= 0.

Then,
W (ρ, ρ̇, S̃) = ρλg(ρ̇ρk) + η(ρ) + S̃,

and the extension of the kernel of admitted Lie algebras corresponding to the generators
is

−(k + λ)X1 +
(2k + λ+ 1)

2
X3 +X8 + λS̃∂S̃, ∂S̃,

where S̃ = µ(S). In the final Table 1 these models correspond to M20-M22.
Assume that hSρρ 6= 0 in (2.34), then

ζS = −k8(ρhρρρ − (λ− 2)hρρ)/hSρρ.

Since ζS = ζS(S), one has

−ρhρρρ + (λ− 2)hρρ
hSρρ

= H(S), (2.35)
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and ζS = k8H(S).
If H = 0, then the general solution of (2.35) is

hρρ(ρ, S) = µ(S)ρλ−2. (2.36)

Hence,
h(ρ, S) = µ(S)η(ρ) + µ2(S),

where µ′(S) 6= 0 and

η =


ln ρ, λ = 0,
ρ ln(ρ), λ = 1,
ρλ, λ(λ− 1) 6= 0.

Equation (2.6) gives

k8

(
λµ′2 + µ′

(
ρ2η′′ − λ(ρη′ − η)

))
= 0.

This equation leads to: (a) if λ = 0, then k8 = 0, (b) if λ 6= 0, then µ′2k8 = 0. Hence,
an extension of the kernel of admitted Lie algebras occurs for λ 6= 0. In this case µ′2 = 0,
which allows one to assume that µ2 = 0. Thus,

W (ρ, ρ̇, S̃) = ρλg(ρ̇ρk) + S̃η(ρ),

and the extension is given by the generator

−(k + λ)X1 +
(2k + λ+ 1)

2
X3 +X8.

In the final Table 1 these models correspond to M23-M25.
If H 6= 0, then equation (2.35) leads to

h = ρλQ+ µ2,

where µ = µ(S), µ2 = f(µ(S)), Q = Q(z), z = ρµ and µ′ 6= 0. Here H(S) = µ/µ′ 6= 0.
Substitution of

W (ρ, ρ̇, S̃) = ρλg(ρ̇ρk) + ρ−λQ(ρµ(S)) + f(µ(S))

into (2.6) gives
µf ′′ + (λ+ 1)f ′ = 0.

Hence,
f ′ = cµ−(λ+1).

Integration of this equation depends on λ:

µ2 =

{
q1 lnµ, λ = 0,
q1µ

−λ, λ 6= 0.

Thus,
λ = 0 : W (ρ, ρ̇, S̃) = g(ρ̇ρk) +Q(ρS̃) + q1 ln S̃,

λ 6= 0 : W (ρ, ρ̇, S) = ρλ(g(ρ̇ρk) +Q(ρS̃)).

The extension of the kernel is given by the generator

−(k + λ)X1 +
(2k + λ+ 1)

2
X3 +X8 − S̃∂S̃,

where S̃ = µ(S). In the final Table 1 these models correspond to M26-M27.
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2.5.3 dim(Span(V )) = 1

Let dim(Span(V )) = 1. There exists a constant vector (α, β, γ) 6= 0 such that

(a, b, c) = (α, β, γ)B

with some function B(ρ, ρ̇, S) 6= 0. Since φρ̇ρ̇ 6= 0, one has β − 2α 6= 0, and

ρφρρ̇ρ̇ = λφρ̇ρ̇, ρ̇φρ̇ρ̇ρ̇ = kφρ̇ρ̇,

where

λ =
3α− β − γ
β − 2α

, k =
α

β − 2α
.

These relations give
φρ̇ρ̇ = c1ρ

λρ̇k, (2.37)

where c1 6= 0 is constant. Equation (2.2) becomes

k1k + 2k3(k + 1)− k8(k + λ+ 1) = 0. (2.38)

Integration of (2.37) depends on the value of k. Notice that k2 + λ2 6= 0, otherwise
dim(Span(V )) = 0.

Case k = −1.

Integrating (2.37), one obtains
φ = q0ρ

λρ̇ ln |ρ̇|. (2.39)

Equation (2.38) gives
k1 = −λk8,

and equation (2.4) becomes

hSρρζ
S = −2k3hρρ − k8(ρhρρρ − hρρ(2λ− 1)). (2.40)

Assuming that hSρρ = 0 or

h(ρ, S) = η(ρ) + µ(S), (µ′ 6= 0),

equation (2.40) is reduced to the equation

ρη′′′k8 − (k8(2λ− 1)− 2k3)η′′ = 0. (2.41)

The general solution of equation (2.6) is

ζS = (k8(2λ+ 1)− 2k3)
µ

µ′
+
c0

µ′
,

where c0 is an arbitrary constant.
If η′′ = 0, then without loss of the generality one can assume that η = 0. Equation

(2.41) is satisfied. Thus,
W (ρ, ρ̇, S̃) = q0ρ̇ρ

λ ln |ρ̇|+ S̃,

and the extension of the kernel of admitted Lie algebras is defined by the generators

X3 − 2S̃∂S̃, X8 − λX1 + (2λ+ 1)S̃∂S̃, ∂S̃,
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where S̃ = µ(S). In the final Table 1 this model corresponds to M28.
If η′′ 6= 0, then

k3 = k8

(
λ− 1

2
− ρη′′′

2η′′

)
. (2.42)

Because k3 is constant, one has

k8

(
ρη′′′

η′′

)′
= 0.

Assume that (
ρη′′′

η′′

)′
= 0

or η′′ = q1ρ
ν , where ν is constant. Substituting η′′ into (2.42), one gets

k3 = k8

(
λ− ν + 1

2

)
.

Thus
W (ρ, ρ̇, S̃) = q0ρ̇ρ

λ ln |ρ̇|+ η(ρ) + S̃, (η′′ = q1ρ
ν , q1 6= 0),

and the extension of the kernel of admitted Lie algebras is defined by the generators

2X8 − 2λX1 + (2λ− ν − 1)X3 + 2(ν + 2)S̃∂S̃, ∂S̃,

where S̃ = µ(S) and q1 6= 0. In the final Table 1 this model corresponds to M29.
If (

ρη′′′

η′′

)′
6= 0,

then k8 = 0,
W (ρ, ρ̇, S̃) = q0ρ̇ρ

λ ln |ρ̇|+ η(ρ) + S̃,

and the extension of the kernel of admitted Lie algebras is defined by the only generator

∂S̃.

In the final Table 1 this model corresponds to M30.
Assuming that hSρρ 6= 0, equation (2.40) gives

ζS = −2k3
hρρ
hSρρ

− k8
ρhρρρ − hρρ(2λ− 1)

hSρρ
. (2.43)

Differentiating equation (2.43) with respect to ρ, one obtains

2k3

(
hρρ
hSρρ

)
ρ

+ k8

(
ρhρρρ − hρρ(2λ− 1)

hSρρ

)
ρ

= 0. (2.44)

If
(
hρρ
hSρρ

)
ρ

= 0, then h = η(ρ)µ(S) + f(µ(S)), and equation (2.44) becomes

k8

(
ρη′′′

η′′

)′
= 0. (2.45)

Here µ′η′′ 6= 0.
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If
(
ρη′′′

η′′

)′
6= 0, then k8 = 0. Equation (2.6) gives

f(µ) = c0µ. (2.46)

Changing the function η such that η + c0 → η, one obtains

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇|+ η(ρ)S̃, (η′′ 6= 0),

and the extension of the kernel is given by the only generator

X3 − 2S̃∂S̃,

where S̃ = µ(S). In the final Table 1 this model corresponds to M31.

If

(
ρη′′′

η′′

)′
= 0, then η′′ = ρν , where ν is constant. Further study depends on ν.

If ν = −1, then
η = ρ ln ρ. (2.47)

Substitution of (2.47) into (2.6) gives

2(k3 − λk8)(f ′µ− f) = (c1 − k8f), (2.48)

where c1 is a constant of the integration.
Assume that f ′µ− f = 0, then f = q1µ, and equation (2.48) becomes

q1k8µ = c1.

Because µ′ 6= 0, one obtains q1k8 = 0 and c1 = 0. If q1 = 0, then

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇|+ S̃ρ ln ρ,

and the extension of the kernel is given by the generators

X3 − 2S̃∂S̃, −λX1 +X8 + 2λS̃∂S̃,

where S̃ = µ(S). In the final Table 1 this model corresponds to M32. If q1 6= 0, then
k8 = 0. Thus,

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇|+ S̃(ρ ln ρ+ q1), (q1 6= 0),

and the extension is given by the only generator

X3 − 2S̃∂S̃.

In the final Table 1 this model corresponds to M33.
If f ′µ− f 6= 0, then

k3 = λk8 +
c1 − k8f

2(f ′µ− f)
. (2.49)

Differentiating the last equation with respect to µ, one gets(
c1 − k8f

f ′µ− f

)′
= 0

or
c0(f ′µ− f) = c1 − k8f,
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where c0 is constant. Notice that if c0 = 0, then an extension of the kernel only occurs
for k8 6= 0. This means that f = const which is without loss of generality can be assumed
f = 0, and then f ′µ− f = 0. Hence one has to assume that c0 6= 0. This implies that

f ′µ− αf = q3,

where k8 = c0(1−α) and c1 = c0q3. Notice that by virtue of the equivalence transformation
corresponding to the generator Xe

7 one can assume that αq3 = 0. We also note that for
α = 1 one obtains k8 = q3 = 0, which prohibits an extension of the kernel. Hence, α 6= 1.
The extension of the kernel of admitted Lie algebras is given by the only generator

2(1− α)(X8 − λX1 + λX3) +X3 − 2S̃∂S̃,

where
W (ρ, ρ̇, S̃) = q0ρ̇ρ

λ ln |ρ̇|+ S̃ρ ln ρ+ f(S̃),

S̃ = µ(S) and

f(S̃) =

{
q2 ln(S̃), α = 0;

q2S̃
α, α(α− 1) 6= 0.

In the final Table 1 these models correspond to M34 and M35.
If ν = −2 , then h = µ(S) ln ρ+ f(µ(S)). Integrating equation (2.6), one has

(2k3 − (2λ+ 1)k8)(µf ′ − f)− µk8 = c1, (2.50)

where c1 is a constant of the integration. If f ′µ − f = 0 or f = q1µ, then k8 = 0, and
c1 = 0, and

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇|+ S̃(ln ρ+ q1). (2.51)

The extension of the kernel in this case is given by the only generator

X3 − 2S̃∂S̃.

In the final Table 1 this model corresponds to M36. If f ′µ− f 6= 0, then

2k3 = (2λ+ 1)k8 +
c1 + µk8

µf ′ − f
,

and, hence, (
c1 + k8µ

µf ′ − f

)′
= 0

or
c0(µf ′ − f) = c1 + k8µ,

where c0 is constant. Notice that if c0 = 0, then k8 = 0, and there is no an extension of
the kernel of admitted Lie algebras. Hence, c0 6= 0, and

f ′µ− f = q3 + αµ,

where k8 = c0α and c1 = c0q3. The general solution of the last equation is

f = αµ ln(µ) + q1µ− q3.

Thus, the extension of the kernel of admitted Lie algebras is given by the generator

−2λαX1 + (2αλ+ 1)X3 + 2αX8 + 2(α− 1)S̃∂S̃,
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where
W (ρ, ρ̇, S̃) = q0ρ̇ρ

λ ln |ρ̇|+ S̃(ln ρ+ q1) + αS̃ ln(S̃),

and S̃ = µ(S). Notice also that the previous case (2.51) is included in the present case
by setting α = 0. In the final Table 1 this model corresponds to M37.

Let (ν + 1)(ν + 2) 6= 0, then h = ρν+2µ(S) + f(µ(S)), and equation (2.6) gives

(2k3 − (2λ− ν − 1)k8)(µf ′ − f) + (ν + 2)fk8 = c1. (2.52)

If f ′µ− f = 0 or µ2 = q1µ, then

(ν + 2)µq1k8 = c1.

Because (ν + 2)µ′ 6= 0, one obtains that q1k8 = 0 and c1 = 0. If q1 = 0, then

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇|+ S̃ρν+2,

and the extension of the kernel is given by the generators

X3 − 2S̃∂S̃, −λX1 +X8 + (2λ− ν − 1)S̃∂S̃,

where S̃ = µ(S). In the final Table 1 this model corresponds to M38.
If q1 6= 0, then k8 = 0. Thus

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇|+ S̃(ρν+2 + q1), (q1 6= 0),

and the extension of the kernel is given by the only generator

X3 − 2S̃∂S̃.

In the final Table 1 this model corresponds to M39.
If µf ′ − f 6= 0, then

2k3 = (2λ− ν − 1)k8 +
c1 − (ν + 2)fk8

µf ′ − f
,

and, hence,
c1 − (ν + 2)fk8

µf ′ − f
= c0,

where c0 is constant. Notice that if c0 = 0, then an extension of the kernel only occurs
for f = const, whereas by virtue of the equivalence transformation corresponding to the
generator Xe

7 one can assume that f = 0, and then f ′µ− f = 0. Hence, c0 6= 0, and

f ′µ− αf = q2,

where

c1 = c0q2, k8 = c0
1− α
ν + 2

.

Here, as in the previous case, one has to require that α 6= 1. Hence,

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇|+ S̃ρν+2 + f(S̃),

and the admitted generator is

2λ(α− 1)X1 + (α(ν + 1− 2λ) + 2λ+ 1)X3 + 2(1− α)X8 − 2(ν + 2)S̃∂S̃,
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where

f =

{
q2 ln(S̃), α = 0;

q2S̃
α, α(α− 1) 6= 0.

In the final Table 1 these models correspond to M40 and M41.

Returning to (2.44), if

(
hρρ
hSρρ

)
ρ

6= 0, then equation (2.44) gives

2k3 = −k8

(
ρhρρρ − hρρ(2λ− 1)

hSρρ

)
ρ

/

(
hρρ
hSρρ

)
ρ

. (2.53)

Thus, (
ρhρρρ − hρρ(2λ− 1)

hSρρ

)
ρ

/

(
hρρ
hSρρ

)
ρ

= const

or
ρhρρρ −HhSρρ = k0hρρ

where k0 is constant and H = H(S) is some function. Notice that for H = 0 one has the

contradiction

(
hρρ
hSρρ

)
ρ

= 0. Hence, H(S) 6= 0. The general solution of the last equation

(up to an equivalence transformation) is

h(ρ, S) = ρνg(ρµ(S)) + f(µ(S)), (2.54)

where µ′ 6= 0. Equation (2.6) becomes

µf ′′ + (ν + 1)f ′ = 0. (2.55)

Thus,
W (ρ, ρ̇, S̃) = q0ρ

λρ̇ ln |ρ̇|+ ρνg(ρS̃) + f(S̃),

and the extension is given by the only generator

−2λX1 + (2λ− ν + 1)X3 + 2X8 − 2S̃∂S̃.

Here S̃ = µ(S), and

f(S̃) =

{
q2 ln(S̃), ν = 0;

q2S̃
−ν , ν 6= 0.

In the final Table 1 these models correspond to M42 and M43.

Case k = −2.

Integrating (2.37), one obtains

φ = q0ρ
λ ln |ρ̇|, (q0 6= 0). (2.56)

Substituting (2.56) into (2.2), one gets

k1 = −k3 + k8
1− λ

2
.

Equation (2.4) becomes

2hSρρζ
S = 2q0k3ρ

λ−2λ(λ− 1)− k8(2ρhρρρ − 2(λ− 2)hρρ + q0ρ
λ−2λ(λ2 − 1)). (2.57)
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Assuming that hSρρ = 0 or

h(ρ, S) = η(ρ) + µ(S), (µ′ 6= 0),

equation (2.6) and (2.4) are reduced to the equations, respectively,

ζS =
k8λµ+ c0

µ′
, (2.58)

q0λ(λ− 1)(2k3 − k8(λ+ 1)) = 2k8ρ
2−λ(η′′′ρ− η′′(λ− 2)), (2.59)

where c0 is the constant of integration.
Let λ(λ− 1) 6= 0. Equation (2.59) gives

k3 = k8

(
λ+ 1

2
+

(η′′′ρ− η′′(λ− 2))

q0λ(λ− 1)ρλ−2

)
,

Differentiating this equation with respect to ρ, one has

k8

(
ρ2−λ(η′′′ρ− η′′(λ− 2))

)
ρ

= 0.

If
(
ρ2−λ(η′′′ρ− η′′(λ− 2))

)
ρ

= 0, then η′′ = ρλ−2(q̃1 + q0λ(λ − 1)ν ln(ρ)) or, by virtue of

equivalence transformations,
η = ρλ(q1 + q0ν ln(ρ)).

Here ν and q1 are constant. Thus,

W (ρ, ρ̇, S̃) = ρλ(q1 + q0 ln(ρν |ρ̇|)) + S̃,

and the extension of the kernel is given by the generators

−2(λ+ ν)X1 + (λ+ 2ν + 1)X3 + 2X8 + 2λS̃∂S̃, ∂S̃.

In the final Table 1 this model corresponds to M44. If
(
ρ2−λ(η′′′ρ− η′′(λ− 2))

)
ρ
6= 0, then

k8 = 0. Thus,
W (ρ, ρ̇, S̃) = q0ρ

λ ln |ρ̇|+ η(ρ) + S̃,

and the extension of the kernel is given by the only generator

∂S̃.

In the final Table 1 this model corresponds to M45.
Let λ(λ− 1) = 0. Equation (2.59) becomes

k8(η′′′ρ− η′′(λ− 2)) = 0.

If η′′ 6= q1ρ
(λ−2), then k8 = 0. Thus

W (ρ, ρ̇, S̃) = q0ρ
λ ln |ρ̇|+ η(ρ) + S̃,

and the extension of the kernel is given by the generators

−X1 +X3, ∂S̃.
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In the final Table 1 this model corresponds to M46. If η′′ = q1ρ
(λ−2) or

W (ρ, ρ̇, S̃) = q0ρ
λ ln(|ρ̇|ρν) + S̃, (λ(λ− 1) = 0),

then the extension of the kernel is given by the generators

−X1 +X3, (1− λ)X1 + 2X8 + 2λS̃∂S̃, ∂S̃.

In the final Table 1 this model corresponds to M47.
Assuming that hSρρ 6= 0 in equation (2.57), one obtains

2ζS = q0λ(λ− 1)(2k3 − k8(λ+ 1))
ρλ−2

hSρρ
− 2k8

ρhρρρ − (λ− 2)hρρ
hSρρ

. (2.60)

Differentiating the last equation with respect to ρ, one gets

q0λ(λ− 1)(2k3 − k8(λ+ 1))

(
ρλ−2

hSρρ

)
ρ

= 2k8

(
ρhρρρ
hSρρ

− (λ− 2)hρρ
hSρρ

)
ρ

. (2.61)

If λ(λ− 1) = 0, then equation (2.61) becomes

k8

(
ρhρρρ
hSρρ

− (λ− 2)hρρ
hSρρ

)
ρ

= 0.

Let (
ρhρρρ
hSρρ

− (λ− 2)hρρ
hSρρ

)
ρ

= 0,

then
ρhρρρ +H(S)hSρρ = (λ− 2)hρρ, (2.62)

where H = H(S) is a function of the integration. A solution of the last equation depends
on the function H(S).

Assuming that H = 0, one has ζS = 0,

h(ρ, S) = µ(S)ρλ ln ρ+ f(µ(S)),

where µ′ 6= 0. Equation (2.6) becomes

k8(λf ′ + q0(λ− 1)ρλ) = 0. (2.63)

If λ = 0, then equation (2.63) gives k8 = 0. Thus,

W (ρ, ρ̇, S̃) = q0 ln |ρ̇|+ S̃ ln ρ+ f(S̃),

and the extension of the kernel is given by the only generator

X1 −X3.

If λ = 1, then equation (2.63) becomes k8f
′ = 0. For f ′ 6= 0 one has k8 = 0,

W (ρ, ρ̇, S̃) = ρ(q0 ln |ρ̇|+ S̃ ln ρ) + f(S̃), (f ′ 6= 0),

and the extension of the kernel is given by the only generator

X1 −X3.
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In the final Table 1 these models correspond to M48 and M49. For f ′ = 0 one has

W (ρ, ρ̇, S̃) = ρ(q0 ln |ρ̇|+ S̃ ln ρ),

and the extension of the kernel is given by the generators

X1 −X3, X8.

In the final Table 1 this model corresponds to M50.
Assuming that H 6= 0 in (2.62), one obtains

h(ρ, S) = ρλφ(ρµ(S)) + f(µ(S)), (2.64)

where µ′ 6= 0. Substitution of h(ρ, S) into (2.6) gives

k8(µf ′ + λf)′ = 0. (2.65)

If (µf ′ + λf)′ = 0 or

f =

{
q1 ln(µ), λ = 0,
q1µ

−1, λ = 1,

then
W (ρ, ρ̇, S̃) = ρλ(q0 ln |ρ̇|+ φ(ρS̃)) + f(S̃),

and the extension of the kernel is given by the generators

X1 −X3, (1− λ)X1 + 2X8 − 2S̃∂S̃.

In the final Table 1 these models correspond to M51 and M52. If (µf ′ + λf)′ 6= 0, then
k8 = 0,

W (ρ, ρ̇, S̃) = ρλ(q0 ln |ρ̇|+ φ(ρS̃)) + f(S̃),

and the extension of the kernel is given by the only generator

X1 −X3.

In the final Table 1 this model corresponds to M53.
Returning to (2.61), let λ(λ− 1) 6= 0. Assume also that(

ρλ−2

hSρρ

)
ρ

= 0,

which means that
h(ρ, S) = q0µ(S)ρλ + η(ρ) + f(µ(S)),

where µ′ 6= 0. Then equations (2.61) becomes

k8

(
ρ2−λ(ρη′′′ − (λ− 2)η′′

)
ρ

= 0.

If
(
ρ2−λ(ρη′′′ − (λ− 2)η′′

)
ρ
6= 0, then k8 = 0. Substituting into (2.6), one obtains

k3f
′′ = 0. (2.66)

Since for k3 = 0 there is no extension of the kernel, one has f ′′ = 0. Thus,

W (ρ, ρ̇, S̃) = q0ρ
λ(ln |ρ̇|+ S̃) + η(ρ) + q1S̃,
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and the extension of the kernel is given by the only generator

X1 −X3 − ∂S̃.

In the final Table 1 this model corresponds to M54.
If
(
ρ2−λ(ρη′′′ − (λ− 2)η′′

)
ρ

= 0, then η′′ = ρλ−2(ν̃ ln ρ + q̃1), where ν̃ and q̃1 are

constant. Using equivalence transformations, one finds that η = ρλ(q0ν ln ρ + q1), where
ν̃ = q0νλ(λ− 1) and q̃1 = q1λ(λ− 1) + q0ν(2λ− 1). In this case

k1 = −(k3 − k8
λ− 1

2
), ζS = (2k3 − k8(λ+ 2ν + 1))/(2µ′),

and equation (2.6) becomes

(2k3 − k8(λ+ 2ν + 1))f ′ − 2k8λf = q̃2,

where q̃2 is constant. The last equation can be rewritten in the form

αf ′ − lf = q̃2,

where

k8 =
l

2λ
, k3 =

α

2
+

l

2λ

λ+ 2ν + 1

2
.

Further analysis depends on the constants α and l. Notice that for the existence of an
extension of the kernel of admitted Lie algebras, one needs to require that α2 + l2 6= 0.
Hence, for α = 0, one has l 6= 0, which means that without loss of generality one can
assume that f = 0. In the case f = 0 one obtains

W (ρ, ρ̇, S̃) = q0ρ
λ(ln(|ρ̇|ρν) + S̃) + q1ρ

λ,

and the extension of the kernel is given by the generators

X1 −X3 − ∂S̃, 2(λ− 1)X1 + 2X8 − (λ+ 2ν + 1)∂S̃.

In the final Table 1 this model corresponds to M55. For α 6= 0, one has

f =

{
q2µ, l = 0;
q2e
−κµ l 6= 0,

and

k1 = −κ(λ+ ν) + λ

2λ
, k8 =

κ

2λ
, k3 =

1

2
+

κ

4λ
(λ+ 2ν + 1),

where l = κα and q2 6= 0 is constant. Thus, one obtains:
(a) for the function f(S̃) = q2S̃:

W (ρ, ρ̇, S̃) = q0ρ
λ(ln(|ρ̇|ρν) + S̃) + q1ρ

λ + q2S̃, (q2 6= 0),

and the extension of the kernel is given by the only generator

−X1 +X3 + ∂S̃;

(b) for the function f(S̃) = q2e
κS̃:

W (ρ, ρ̇, S̃) = q0ρ
λ(ln(|ρ̇|ρν) + S̃) + q1ρ

λ + q2e
κS̃, (q2 6= 0),
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and the extension of the kernel is given by the only generator

−2(κ(λ+ ν) + λ)X1 + 2κX8 + (2λ+ κ(λ+ 2ν + 1))X3 + 2λ∂S̃.

In the final Table 1 these models correspond to M56 and M57.

Assume that

(
ρλ−2

hSρρ

)
ρ

6= 0, then from (2.61) one finds

k3 = k8

 (ρhρρρ−(λ−2)hρρ
hSρρ

)ρ

q0λ(λ− 1)(ρ
λ−2

hSρρ
)ρ

+
λ+ 1

2

 . (2.67)

Since for k8 = 0 there is no an extension, then(
ρhρρρ
hSρρ
− (λ−2)hρρ

hSρρ

)
ρ(

ρλ−2

hSρρ

)
ρ

= const

or
ρhρρρ +H(S)hSρρ = (λ− 2)hρρ + νρλ−2, (2.68)

where ν is constant and H(S) is some function. Notice that for H(S) = 0 one obtains

hρρ = (ν ln ρ+ µ(S))ρλ−2,

which leads to the contradiction (
ρλ−2

hSρρ

)
ρ

= 0.

Hence, one has to assume that H(S) 6= 0, which gives

hρρ(ρ, S) = ρλ−2(ν̃ ln ρ+ g̃(ρµ(S)))

or
h(ρ, S) = ρλ(ν ln ρ+ g(ρµ(S))) + f(µ(S)),

where µ′ 6= 0. Equation (2.6) gives f = q2µ
−λ. Thus

W (ρ, ρ̇, S̃) = q0ρ
λ
(

ln(|ρ̇|ρν) + g(ρS̃)
)

+ q2S̃
−λ,

and the extension of the kernel is given by the only generator

−2(λ+ ν)X1 + 2X8 + (λ+ 2ν + 1)X3 − 2S̃∂S̃.

In the final Table 1 this model corresponds to M58.

Case (k + 1)(k + 2) 6= 0

Returning to integration of (2.37), if (k + 2)(k + 1) 6= 0, then one obtains

φ = q0ρ
λρ̇k+2 (2.69)

Substituting (2.69) into (2.2), one has

k3 = −k1
k

2(k + 1)
+ k8

k + λ+ 1

2(k + 1)
,
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and equation (2.4) becomes

ζShSρρ + hρρ

(
k1
k + 2

k + 1
+ k8

2k + λ+ 2

k + 1

)
+ k8ρhρρρ = 0. (2.70)

Assuming that hSρρ = 0, one finds

h(ρ, S) = η(ρ) + µ(S),

where µ′ 6= 0. Equation (2.70) becomes

η′′
(
k1
k + 2

k + 1
+ k8

2k + λ+ 2

k + 1

)
+ k8ρη

′′′ = 0. (2.71)

Let η′′ 6= 0, then

k1 = −k8
k + 1

k + 2

(
2k + λ+ 2

k + 1
+
ρη′′′

η′′

)
.

Differentiating the last equation with respect to ρ, one gets

k8

(
ρη′′′

η′′

)′
= 0. (2.72)

If
ρη′′′

η′′
= k0 = const, then η′′ = q1ρ

ν , where ν = k0. This gives that

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + η(ρ) + S̃, (η′′ = q1ρ

ν 6= 0),

and the extension of the kernel is given by the generators

−k + 1

k + 2

(
2k + λ+ 2

k + 1
+ ν

)
X1 +

kν + 3k + 2λ+ 2

2(k + 2)
X3 +X8 + (ν + 2)S̃∂S̃, ∂S̃,

where η′′ = q1ρ
ν , S̃ = µ(S) and q1 6= 0. In the final Table 1 this model corresponds to

M59, (k2 + λ2 6= 0).

If

(
ρη′′′

η′′

)′
6= 0, then k8 = 0,

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + η(ρ) + S̃,

and the extension of the kernel is given by the only generator

∂S̃.

In the final Table 1 this model corresponds to M60, (k2 + λ2 6= 0).
Considering (2.71), let η′′ = 0. Without loss of the generality one can assume that

η = 0. Equation (2.6) gives

ζS = − µ
µ′

(
k1
k + 2

k + 1
+ k8

λ

k + 1

)
+
c0

µ′
.

Thus,
W (ρ, ρ̇, S̃) = q0ρ

λρ̇k+2 + S̃,
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and the extension of the kernel of admitted Lie algebras is defined by the generators

X1 −
k

2(k + 1)
X3 −

k + 2

k + 1
S̃∂S̃,

k + λ+ 1

2(k + 1)
X3 +X8 −

λ

k + 1
S̃∂S̃, ∂S̃.

In the final Table 1 this model corresponds to M61, (k2 + λ2 6= 0). Returning to (2.70),
assume that hSρρ 6= 0. Then

ζS = − hρρ
hSρρ

(
k1
k + 2

k + 1
+ k8

2k + λ+ 2

k + 1

)
− k8

ρhρρρ
hSρρ

.

Differentiating this equation with respect to ρ, one finds(
hρρ
hSρρ

)
ρ

(
k1
k + 2

k + 1
+ k8

2k + λ+ 2

k + 1

)
+ k8

(
ρhρρρ
hSρρ

)
ρ

= 0. (2.73)

If

(
hρρ
hSρρ

)
ρ

6= 0, then

k1 = −k8
k + 1

k + 2

2k + λ+ 2

k + 1
+

(
ρhρρρ
hSρρ

)
ρ(

hρρ
hSρρ

)
ρ

 .

Extension of the kernel occurs only for(
ρhρρρ
hSρρ

)
ρ(

hρρ
hSρρ

)
ρ

= const,

which means that
ρhρρρ −H(S)hSρρ = ν̃hρρ,

where H(S) is some function and ν is constant. Notice that for H(S) = 0 one has

hρρ(ρ, S) = ρν̃µ(S)

which leads to the contradiction

(
hρρ
hSρρ

)
ρ

= 0. Hence, H(S) 6= 0, and then

hρρ(ρ, S) = ρν̃ g̃(ρµ(S)),

or
h(ρ, S) = ρνg(ρµ(S)) + f(µ(S)),

where µ′ 6= 0 and (zν+1g′(z))′′ 6= 0. Equation (2.6) leads to the condition

µf ′ + νf = q̃2,

where q̃2 is constant. The general solution of the last equation depends on ν:

f(µ) =

{
q2 ln(µ), ν = 0,
q2µ

−ν , ν 6= 0.
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Thus, setting S̃ = µ(S), one gets

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + ρνg(ρS̃) + f(S̃),

and the extension of the kernel of admitted Lie algebras is defined by the generator

−ν(k + 1) + λ

k + 2
X1 +

k(ν + 1) + 2λ+ 2

2(k + 2)
X3 +X8 − S̃∂S̃.

In the final Table 1 these models correspond to M62 and M63, (k2 + λ2 6= 0).

If

(
hρρ
hSρρ

)
ρ

= 0, then h(ρ, S) = µ(S)(η(ρ) + f(µ(S))), where η′′µ′ 6= 0. Equation

(2.73) becomes

k8

(
ρη′′′

η′′

)′
= 0.

If

(
ρη′′′

η′′

)′
6= 0, then k8 = 0, equation (2.6) leads to the equation

µf ′′ + 2f ′ = 0.

A solution of the last equation is f(µ) = c1/µ+c0, where c0 and c1 are constant. Without
loss of generality, one can assume that c1 = c0 = 0. Thus,

k3 = −k1
k

2(k + 1)
, ζS = −k1

k + 2

k + 1

µ

µ′
,

and
W (ρ, ρ̇, S̃) = q0ρ

λρ̇k+2 + S̃η(ρ).

The extension of the kernel consists of the generator

2(k + 1)X1 − kX3 − 2(k + 2)S̃∂S̃.

In the final Table 1 this model corresponds to M64, (k2 + λ2 6= 0).

If
ρη′′′

η′′
= k0 = const, then η′′ = q̃1ρ

ν−2, where ν = 2(k0 + 1). One can choose the

function η(ρ) as follows

η =


ln(ρ), ν = 0,
ρ ln(ρ), ν = 1,
ρν , ν(ν − 1) 6= 0.

This reduces equation (2.6) to the equations

ν = 0 : aµf ′ = b+ q̃2µ
−1,

ν = 1 : aµf ′ + bf = q̃2µ
−1,

ν(ν − 1) 6= 0 : aµf ′ + νbf = q̃2µ
−1.

(2.74)

where a = k1(k + 2) + k8(λ+ ν(k + 1)), b = k8(k + 1) and q̃2 is constant. Notice that the
condition a2 + b2 = 0 leads to the relations k1 = 0 and k8 = 0. These conditions do not
allow an extension of the kernel of admitted Lie algebras. Hence, one has to assume that
a2 + b2 6= 0.
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Let us consider the case ν = 0, where η = ln(ρ). In this case a 6= 0, because otherwise
b = 0. Using equivalence transformations, the general solution of equation (2.74)ν=0 has
the representation:

f = β ln(µ) + q2,

where β and q2 are constant. Substituting the representation of the function f(µ) into
equation (2.74)ν=0, one finds that βa = b and q̃2 = 0. Therefore,

k1 = a
k + 1− λβ

(k + 1)(k + 2)
, k3 = a

β(k + 2λ+ 2)− k
2(k + 1)(k + 2)

, k8 = a
β

k + 1
,

and
W = q0ρ

λρ̇k+2 + S̃
(

ln
(
ρS̃β

)
+ q2

)
,

where S̃ = µ(S). The extension of the kernel of admitted Lie algebras is defined by the
only generator

k + 1− βλ
k + 2

X1 +
β(k + 2λ+ 2)− k

2(k + 2)
X3 + βX8 − S̃∂S̃.

In the final Table 1 this model corresponds to M65, (k2 + λ2 6= 0). In other two cases
ν = 1 and ν(ν − 1) 6= 0 one has to solve the equation

aµf ′ + νbf = q̃2µ
−1, (ν 6= 0). (2.75)

By virtue of equivalence transformations the function f is equivalent to the function
f̃ = f − rµ−1, where r is constant. The change f = f̃ + rµ−1 reduces equation (2.75) to
the equation

aµf̃ ′ + νbf̃ = (q̃2 + (a− νb)r)µ−1.

This means that for a − νb 6= 0 one can assume in (2.75) that q̃2 = 0. Therefore the
analysis of solutions of equation (2.75) is reduced to the study of solutions of either the
homogeneous equation

aµf ′ + νbf = 0, (2.76)

or the nonhomogeneous equation

µf ′ + f = q2µ
−1, (q2 6= 0). (2.77)

The function f = 0 is the trivial solution of equation (2.76). In this case k1 and k3

are arbitrary. Thus
W (ρ, ρ̇, S̃) = q0ρ

λρ̇k+2 + S̃η(ρ),

and the extension of the kernel consists of the generators

2(k + 1)X1 − kX3 − 2(k + 2)S̃∂S̃, (k + λ+ 1)X3 + 2(k + 1)X8 − 2(λ+ ν(k + 1))S̃∂S̃).

Here S̃ = µ(S). In the final Table 1 these models correspond to M66 and M70, (k2+λ2 6= 0).
The only nontrivial solution of equation (2.76) has the representation

f(µ) = q2µ
β, (q2 6= 0, β 6= −1).

Substituting the representation into equation (2.76), it becomes

β(k1(k + 2) + k8(λ+ ν(k + 1))) + k8ν(k + 1) = 0. (2.78)
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If β = 0, then k8 = 0, and

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + S̃(η(ρ) + q2),

with the extension
2(k + 1)X1 − kX3 − 2(k + 2)S̃∂S̃.

In the final Table 1 these models correspond to M67 and M71, (k2 + λ2 6= 0). If β 6= 0,
then equation (2.78) gives

k1 = −k8
β(λ+ ν(k + 1)) + ν(k + 1)

β(k + 2)
.

Thus,

k3 = k8
β(kν + k + 2λ+ 2) + kν

2(k + 2)β
, ζS = k8

ν

β

µ

µ′
,

and the potential function is

W (ρ, ρ̇, S) = q0ρ
λρ̇k+2 + S̃(η(ρ) + q2S̃

β), (q2β(β + 1) 6= 0).

The extension of the kernel of admitted Lie algebras is defined by the only generator

2
β(λ+ ν(k + 1)) + ν(k + 1)

(k + 2)
(X3 −X1)− (βν − β + ν)X3 + 2βX8 + 2νS̃∂S̃.

In the final Table 1 these models correspond to M69 and M73, (k2 + λ2 6= 0).
The representation of the general solution of equation (2.77) is f = q2µ

−1 ln(µ). Sub-
stituting the representation into equation (2.75), it gives

q̃2 = aq2, a− νb = 0.

Hence,

k1 = −k8
λ

k + 2
.

Thus,
W (ρ, ρ̇, S̃) = q0ρ

λρ̇k+2 + S̃η(ρ) + q2 ln(S̃), (q2 6= 0),

and the extension of the kernel is defined by the generator

2λ(X3 −X1) + (k + 2)(X3 + 2X8 − 2νS̃∂S̃).

In the final Table 1 these models correspond to M68 and M72, (k2 + λ2 6= 0).

2.5.4 dim(Span(V )) = 0

In this case the vector

(ρ̇φρ̇ρ̇ρ̇, 2(ρ̇φρ̇ρ̇ρ̇ + φρ̇ρ̇), −(ρ̇φρ̇ρ̇ρ̇ + ρφρ̇ρ̇ρ + φρ̇ρ̇))

is constant. This condition implies that

φ = q0ρ̇
2.
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Substituting φ into (2.2) and (2.4), one gets, respectively,

k3 =
1

2
k8,

ζShSρρ + 2k1hρρ + k8(ρhρρρ + 2hρρ) = 0. (2.79)

Assume that hSρρ 6= 0, then

ζS = −2ak1 − k8b, (2.80)

where a =
hρρ
hSρρ

, b =
ρhρρρ + 2hρρ

hSρρ
. Differentiating (2.80) with respect to ρ, one obtains

2k1aρ + k8bρ = 0. (2.81)

If aρ = 0 then, h(ρ, S) = η(ρ)µ(S) + f(µ(S)), where η′′µ′ 6= 0. Equation (2.81)
becomes

k8

(
ρη′′′

η′′

)′
= 0.

If

(
ρη′′′

η′′

)′
6= 0, then k8 = 0, and equation (2.6) becomes

k1f
′′ = 0.

Since for k1 = 0 there is no extension of the kernel, without loss of generality one can
assume that f = 0. Thus,

W = ρ̇2q0 + η(ρ)S̃,

and the extension of the kernel is given by the generator

X1 − 2S̃∂S̃,

where S̃ = µ(S). In the final Table 1 this model corresponds to M64, (k = λ = 0).

If

(
ρη′′′

η′′

)′
= 0 or η′′ = ρν−2. Finding the function η(ρ) depends on the value of ν.

Let ν(ν − 1) 6= 0, then η = ρν and equation (2.6) becomes

2k1µf
′′ + νk8 (µf ′′ + f ′) = 0. (2.82)

If f ′′ = 0, then f = q1µ and equation (2.82) is reduced to the equation

k8q1 = 0.

Hence, if q1 6= 0, then k8 = 0 and

W = ρ̇2q0 + (ρν + q1)S̃, (q1 6= 0),

the extension of the kernel is given by the generator

X1 − 2S̃∂S̃,

In the final Table 1 this model corresponds to M71, (k = λ = 0).
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If q1 = 0, then k8 is arbitrary, and

W = ρ̇2q0 + ρνS̃.

The extension of the kernel is given by the generators

X1 − 2S̃∂S̃, X3 + 2X8 − 2νS̃∂S̃.

In the final Table 1 this model corresponds to M70, (k = λ = 0).
If f ′′ 6= 0, then equation (2.82) gives that

µf ′′ − βf ′ = 0, (µ 6= 0),

where β is constant and

k1 = −νk8
(β + 1)

2β
. (2.83)

Thus,
W = ρ̇2q0 + ρνS̃ + f(S̃),

and the extension of the kernel is given by the generator

−ν(β + 1)X1 + βX3 + 2βX8 + 2νS̃∂S̃, (β 6= 0).

Here

f =

{
q1 ln(S̃), β = −1,

q1S̃
β+1, β 6= −1.

In the final Table 1 these models correspond to M72 and M73, (k = λ = 0).
For ν = 1 one has η = ρ ln(ρ). Further analysis of this equation is similar to the

previous case:
W = q0ρ̇

2 + S̃(ρ ln ρ+ q1), (q1 6= 0) : X1 − 2S̃∂S̃,

W = q0ρ̇
2 + S̃ρ ln ρ : X1 − 2S̃∂S̃, X3 + 2X8 − 2λS̃∂S̃,

W = q0ρ̇
2 + S̃ρ ln ρ+ f(S̃) : −(k + 1)X1 + kX3 + 2kX8 + 2S̃∂S̃, (k 6= 0),

where

f =

{
q1 ln(S̃), β = −1,

q1S̃
β+1, β 6= −1,

and q1 6= 0. In the final Table 1 these models correspond to M67, M66, M68 and M69, (k =
λ = 0), respectively.

Let ν = 0, then η = ln(ρ), and equation (2.6) becomes

k8 = 2k1µf
′′.

This equation gives
k1(µf ′′)′ = 0.

Since for k1 = 0 there is no extension, one has that µf ′′ is constant or after using equiva-
lence transformation, one finds

f = µ(β ln(µ) + q2).

Thus,
W = q0ρ̇

2 + S̃(ln(ρS̃β) + q2) : X1 + β(X3 + 2X8)− 2S̃∂S̃.
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In the final Table 1 this model corresponds to M65, (k = λ = 0).
If in equation (2.81) aρ 6= 0, then there exists a constant ν and a function H(S) such

that
b− νa+H(S) = 0

or
ρhρρρ +H(S)hSρρ = (ν − 2)hρρ.

Hence,
k1 = νk8/2.

Notice that if H = 0 then aρ = 0, hence H 6= 0. In this case

h = ρνg(ρµ(S)) + f(µ(S)), (2.84)

where µ′ 6= 0. Equation (2.6) becomes

µf ′′ + (ν + 1)f ′ = 0. (2.85)

Thus,
W = q0ρ̇

2 + ρνg(ρS̃) + f(S̃) : −νX1 +X3 + 2X8 − 2S̃∂S̃.

In the final Table 1 these models correspond to M62 and M63, (k = λ = 0).
If hSρρ = 0, then

h = η(ρ) + µ(S),

where µ′ 6= 0, and equations (2.4) (or (2.79)) and (2.6) become, respectively,

2k1η
′′ + k8(ρη′′′ + 2η′′) = 0. (2.86)

(ζSµ′)′ = −2k1µ
′ (2.87)

Equation (2.87) gives
ζS = (−2k1µ+ c0)/µ′ (2.88)

Hence, if η′′ = 0, then one can assume that η = 0. In this case

W = q0ρ̇
2 + S̃,

and the extension of the kernel is given by the generators

X1 − 2S̃∂S̃, X3 + 2X8, ∂S̃.

In the final Table 1 this model corresponds to M61, (k = λ = 0).
If η′′ 6= 0, then equation (2.86) leads to

k1 = −k8

(
ρη′′′

2η′′
+ 1

)
.

This gives that

k8

(
ρη′′′

η′′

)′
= 0.

For ρη′′′ = νη′′ one has
2k1 + k8(ν + 2) = 0.
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In this case
W = q0ρ̇

2 + η(ρ) + S̃, (η′′ = q1ρ
ν),

and the extension of the kernel is given by the generators

−(ν + 2)X1 +X3 + 2X8 + 2(ν + 2)S̃∂S̃, ∂S̃.

In the final Table 1 this model corresponds to M59, (k = λ = 0).

For
(
ρη′′′

η′′

)′
6= 0 one has the only generator ∂S̃. In the final Table 1 this model

corresponds to M60, (k = λ = 0).
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Chapter 3

Group analysis of evolutionary
integro-differential equations
describing nonlinear waves:
General model

Abstract The research deals with an evolutionary integro-differential equation describ-
ing nonlinear waves. Particular choice of the kernel in the integral leads to well-known
equations such as the Khokhlov-Zabolotskaya equation, the Kadomtsev-Petviashvili equa-
tion and others. Since solutions of these equations describe many physical phenomena,
analysis of the general model studied in the project is important. One of the methods for
obtaining solutions differential equations is provided by the Lie group analysis. However,
this method is not applicable to integro-differential equations. Therefore we discuss new
approaches developed in modern group analysis and apply them to the general model
considered in the present research. Reduced equations and exact solutions are also pre-
sented.

3.1 Physical statement and main physical parame-

ters

For definiteness, a concrete physical object is considered which is most simple and, at
the same time, can be adequately described by models like (1.2). Namely, we will deal
with high-intensity acoustic waves. The general equation (1.2), as well as majority of the
particular models (1.3)-(1.8) have been written at first for nonlinear acoustic waves.

Note that equation (1.2) is written in certain dimensionless variables in order to reduce
all coefficients of the equation into unity. To discuss a physical meaning of mathematical
models we rewrite equation (1.2) using initial physical notations:

∂

∂τ

[
∂p

∂x
− ε

c3ρ
p
∂p

∂τ
−W

]
=
c

2
∆⊥p, (3.1)

W =
m

2c

∂

∂τ

∫ τ

−∞
K

(
τ − τ ′

t0

)
∂ p

∂τ ′
dτ ′

=
m

2c

∂2

∂τ 2

∫ ∞
0

K

(
ξ

t0

)
p (~r, τ − ξ) dξ.

(3.2)
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Here x is the coordinate along the direction of wave propagation; ∆⊥ is the Laplace
operator written in the coordinates y, z on the orthogonal plane, τ = t − x/c is the
time in the moving system of coordinates propagating with the sound velocity c, ε is the
parameter of nonlinearity, and ρ is the density of a medium. The acoustic pressure p is
chosen as the wave field variable. The constant m characterizes the ”force” of time delay
processes, and t0 is the typical “memorizing time” of a medium.

Let us note an important point before passing to further discussion. The natural
question arises: why is the coordinate x instead of time t used as a ”slow” (evolutionary)
variable in equations (1.2) and (3.1)? The answer is that the difference between x and t
depends only on the way of description which depends on the statement of problem and
ease of analysis of results. In the case of non-wave problems (e.g description of turbulence)
the problem is posed as follows. At the initial moment t = 0 a distribution of the velocity
field in space u( t = 0, x) = u0(x) is given, and the solution u(t, x) is sought with growing
time t > 0. In the corresponding experiment, sensors measuring the velocity field are
placed in various locations, and the measurement is made by all sensors at the same
time t1. These results determine the spatial structure of the field u( t1, x). Then similar
measurements performed at t2 give the field profile u(t2, x). Repeating the measurements
we trace the field evolution with respect to time.

When propagating waves are of interest, the experiment is done in a different way. The
only sensor placed at the position x1 measures the variation of the signal with respect
to time: u(x1, t). Then the sensor is moved to another position x2 > x1 and the signal
u(x2 , t) is measured. By moving the sensor of the vibration velocity (or the acoustic
pressure) farther and farther from the source of wave, we trace the evolution of the form
of the wave profile as the wave propagates. In real experiments a wave gets distorted
at distances of the order of thousand wavelengths, whereas, for a good reconstruction of
the wave profile within its each length λ, one has to place no fewer than ten sensors. In
this case the method of the ”slow time” is very inconvenient. Moreover, this method is
completely inappropriate in those cases when the wave profile contains shock fronts whose
extent is very small, e.g. 10−4λ.

But in various acoustic problems, e.g. those dealing with standing waves in a resonator,
it is convenient to utilize the “slow time” instead of the “slow coordinate.” It is clear that
the resonator has a limited length and, by measuring the field at the lowest modes, it
is quite realistic to place several sensors along the length of the resonator and perform
simultaneous measurement with them at various moments of time.

Let us return to the physical model (3.1), (3.2). The integration within the limits
−∞ < τ ′ < τ in the first integral (3.2) means that the wave behavior at a given moment
τ is determined by the values of the field variable at the preceding moments from τ to
the infinitely distant past. Consequently, the kernel K (τ) describing the “memory” of
a medium, must be nonzero only at positive values of its argument and tend to zero for
τ → +∞. Decreasing can be non-monotone and can look like oscillatory damping (see
the example leading to formula (7)).

In order to understand how the concrete form of the kernel is related with the measured
characteristics of the medium, we shall consider the simplest model of a plane wave moving
in a medium without nonlinearity. In other words, let us consider the equation

∂p

∂x
− m

2c

∂2

∂τ 2

∫ ∞
0

K

(
ξ

t0

)
p (x, τ − ξ) dξ = 0. (3.3)

Let us establish a relation of a kernel with the dispersion law. A solution is sought in the
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form
p = exp (−iω t+ ik x) , k = k′ + ik′′. (3.4)

Here k is the wave number, and k′, k′′ are its real and imaginary parts. Substituting (3.4)
into (3.3), we find

k′ = −mω
2t0

2c

∫ ∞
0

K (s) sin (ωt0 s) ds,

k′′ =
mω2t0

2c

∫ ∞
0

K (s) cos (ωt0 s) ds.

(3.5)

The first formula in (3.5) gives a frequency-dependent addition to the velocity of the
wave propagation: c (ω) = c (1− ck′ (ω) /ω). The second one defines the absorption
coefficient or the law of spatial decrease of the wave amplitude: p0 exp (−k′′x).

Evidently, the integrals (3.5) must be convergent for physically feasible kernels. The
concrete form of a kernel can be reconstructed on the base of corresponding physical
model, or on the base of experimental measurements.

A relaxing medium provides an important model known as the Mandelstam-Leontovich
model (see [21, 84]). The kernel for this model has the exponential form (see the example
leading to formula (1.7)). In this case

k′ = −mω
2c

(ωt0)2

1 + (ωt0)2 , k′′ =
mω

2c

ωt0

1 + (ωt0)2 · (3.6)

The frequency dependencies (3.6) of the dispersion k′ and the absorption k′′ were con-
firmed repeatedly in experiments. One could proceed in an opposite way. First establish
the dependencies (3.6) as empirical generalization of measured data, and then recon-
struct the kernel by means of a standard procedure. This procedure exploits the causality
principle according to which two functions k′ and k′′ cannot be arbitrary but should be
connected by relations of Kramers-Kronig’s type [32].

The method of kernel reconstruction has been utilized for deriving mathematical mod-
els used in medical applications of ultrasound [85]. It is known that, within the most
interesting frequency range, the absorption of the ultrasound in soft tissues behaves like
k′′ ∼ ω2−ν , 0 < ν < 1. It is easy to reconstruct the kernel K(s) = sν−1 and verify that
the corresponding absorption coefficient

k′′ =
m

2ct0
Γ(ν) cos

(π
2
ν
)

(ωt0)2−ν (3.7)

has the correct frequency dependence. Note that the considered power kernel has a
singularity at s = 0 and is not integrable in semi-infinite limits. However, the convolution
of this kernel with the oscillating function describing a wave provides convergence of the
integral for k′′. This example demonstrates a wide variety of situations which can be met
in applications.

In conclusion of this section we demonstrate how one has to change variables in equa-
tion (3.1), (3.2) to reduce it to the simplest normalized form (1.2). One has to set

τ → t0t, p→ p0u, x→ x0x, y → y0y, z → z0z, (3.8)

where the constant t0 (the ”memory” time) is defined by the structure of kernel, and the
other constants are:

p0 =
m

2ε
c2ρ , x0 =

2

m
ct0 , y0 = z0 =

ct0√
m
· (3.9)
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3.2 Admitted Lie group

As for differential equations an admitted Lie group of integro-differential equation (1.2) is
defined by the determining equations. These equations are integro-differential equations
for the coordinates of the infinitesimal generator

X = ξt∂t + ξx∂x + ξy∂y + ξz∂z + ζu∂u + ζw∂w,

where the coordinates ξt, ξx, ξy, ξz, ζu and ζw are functions depending on the vari-
ables (t, x, y, z, u, w). The system (1.2) comprises a partial differential equation and an
integro-differential equation. The determining equation related with the partial differen-
tial equation is obtained by the standard procedure:

ζutx − uζutt − 2utζ
ut − ζwttt = ζuyy + ζuzz , (3.10)

where the coefficients ζutx , ζutt , ζut , ζwttt , ζuyy and ζuzz are the coefficients of the prolonged
generator X:

X = X + ζutx∂utx + ζutt∂utt + ζut∂ut + ζwttt∂wttt + ζuyy∂uyy + ζuzzx ∂uzz .

The general theory of constructing determining equations for integro-differential equa-
tions can be found in [20]. Formerly the determining equation related with integro-
differential equation is obtained applying the following strategy. First, one has to con-
struct the canonical Lie-Bäcklund operator equivalent to the generator X:

X̃ = (ζu − ξtut − ξxux − ξyuy − ξzuz)∂u + (ζw − ξtwt − ξxwx − ξywy − ξzwz)∂w.

Then the Lie-Bäcklund operator has to be prolonged up to the maximum order of deriva-
tives of the equation. Finally, the determining equation is obtained by applying the
prolonged Lie-Bäcklund operator to the equation, where the actions of the derivatives are
considered in terms of the Frechet derivatives:

ψw(t, x, y, z) =

∫ ∞
0

K(s)ψu(t− s, x, y, z) ds. (3.11)

Here

ψu(h1) = ζu(h2)− ξt(h2)ut(h1)− ξx(h2)ux(h1)− ξy(h2)uy(h1)− ξz(h2)uz(h1),
ψw(h1) = ζw(h2)− ξt(h2)wt(h1)− ξx(h2)wx(h1)− ξy(h2)wy(h1)− ξz(h2)wz(h1),

where for the sake of simplicity of the presentation we denoted

h1 = (t, x, y, z), h2 = (t, x, y, z, u(t, x, y, z), w(t, x, y, z)).

The determining equations (3.10) and (3.11) have to be satisfied for any solution of equa-
tions (1.2). Notice that the determining equation (3.11) is still an integral equation.

Since it is difficult to find the general solution of the determining equations (3.10)
and (3.11), the following simplification is considered. One can assume that the determin-
ing equation (3.10) is valid for any functions u(t, x, y, z) and w(t, x, y, z) only satisfying
the first equation of (1.2). This allows to use standard procedure for solving determining
equations developed for partial differential equations. After solving the determining equa-
tion (3.10), one can use the found solution for solving the integral determining equation
(3.11). It has to be noticed that this way of solving the determining equations (3.10) and
(3.11) can give a particular solution. In the present research this method is used.

The described method of solving the determining equations (3.10) and (3.11) will be
illustrated on the one-dimensional case of equations (1.2). For the other cases final results
will be presented in next sections.
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3.2.1 One-dimensional case

In the one-dimensional case equations (1.2) are

∂

∂t
(ux − uut − wtt) = 0, w(t, x) =

∫ ∞
0

K(s)u(t− s, x) ds. (3.12)

The admitted generator is sought in the form

X = ξt(t, x, u, w)∂t + ξx(t, x, u, w)∂x + ζu(t, x, u, w)∂u + ζw(t, x, u, w)∂w.

Applying the group analysis method to the first equation, one finds that

ξt = t(ξ′/2 + k1)t+ g, ζu = u(k1 − ξ′/2)− tξ′′/2− g′,
ζw = −(6ξ′w + t3ξ′′′)/12 + 3wk1 + t2µ+ tη + ζ.

(3.13)

where k1 is constant, ξ = ξ(x), ζ = ζ(x), η = η(x), µ = µ(x) and g = g(x) are arbitrary
functions.

Remark. There is another representation of the first equation of (3.12). This equation
is obtained by integrating with respect to t and setting the arbitrary function of the
integration to zero:

ux − uut − wtt = 0, w(t, x) =

∫ ∞
0

K(s)u(t− s, x) ds. (3.14)

In this case the first step in finding admitted Lie group leads to (3.13) with the particular
case of the function µ = −ξ′′/2.

The determining equation for the second equation of (3.12)

w(t, x) =

∫ ∞
0

K(s)u(t− s, x) ds.

is the equation

(ζ̃w − ξ̃twt − ξ̃xwx)(t, x) =

∫ ∞
0

K(s)(ζ̃u − ξ̃tut − ξ̃xux)(t− s, x) ds, (3.15)

where

ξ̃t(t, x) = ξt(t, x, u(t, x), w(t, x)), ξ̃x(t, x) = ξx(t, x, u(t, x), w(t, x)),

ζ̃w(t, x) = ζw(t, x, u(t, x), w(t, x)), ζ̃w(t, x) = ζw(t, x, u(t, x), w(t, x)).

Substituting the coefficients (3.13) into (3.15), let us satisfy equation (3.15). Notice
that

(ξ̃xwx)(t, x) =

∫ ∞
0

K(s)(ξ̃xux)(t− s, x) ds,

and
ξ̃t(t− s) = ξ̃t(t)− s

(
k1 + 1

2
ξ′
)
,

ζ̃u(t− s) =
(
k1 − 1

2
ξ′
)
u(t− s)− 1

2
(t− s)ξ′′ − g′.

Here and further, the argument x is omitted, further tilde is also omitted. The determining
equation (3.15) becomes

−ζw(t) +
∫∞

0
K(s)

(
ζu(t− s)− s

(
k1 + 1

2
ξ′
)
ut(t− s)

)
ds

= (6ξ′w + t3ξ′′′)/12− 3wk1 − t2µ− tη − ζ +
(
k1 − 1

2
ξ′
)
w − g′

∫∞
0
K(s) ds

−1
2
ξ′′
(
t
∫∞

0
K(s) ds−

∫∞
0
sK(s) ds

)
+
(

1
2
ξ′ + k1

) ∫∞
0
sK(s)ut(t− s) ds

= t3ξ′′′/12− 2wk1 − t2µ− tη − ζ − g′
∫∞

0
K(s) ds

−1
2
ξ′′
(
t
∫∞

0
K(s) ds−

∫∞
0
sK(s) ds

)
+
(

1
2
ξ′ + k1

) ∫∞
0
sK(s)ut(t− s) ds.
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Let us calculate ∫∞
0
sK(s)ut(t− s) ds = −

∫∞
0
sK(s) du(t− s)

= −sK(s)u(t− s)|∞0 +
∫∞

0
(K(s) + sK ′(s))u(t− s) ds

= w +
∫∞

0
sK ′(s)u(t− s) ds.

Here it is assumed that
sK(s)u(t− s)|∞0 = 0.

The determining equation becomes

t3ξ′′′/12− 2wk1 − t2µ− tη − ζ − g′
∫∞

0
K(s) ds

−1
2
ξ′′
(
t
∫∞

0
K(s) ds−

∫∞
0
sK(s) ds

)
+
(

1
2
ξ′ + k1

) ∫∞
0
sK(s)ut(t− s) ds

= t3ξ′′′/12− 2wk1 − t2µ− tη − ζ − g′
∫∞

0
K(s) ds− 1

2
ξ′′
(
t
∫∞

0
K(s) ds−

∫∞
0
sK(s) ds

)
+
(

1
2
ξ′ + k1

) (
w +

∫∞
0
sK ′(s)u(t− s) ds

)
= t3ξ′′′/12 + w(1

2
ξ′ − k1)− t2µ− tη − ζ − g′

∫∞
0
K(s) ds− 1

2
ξ′′
(
t
∫∞

0
K(s) ds−

∫∞
0
sK(s) ds

)
+
(

1
2
ξ′ + k1

) ∫∞
0
sK ′(s)u(t− s) ds

= t3ξ′′′/12− t2µ− tη − ζ − g′
∫∞

0
K(s) ds− 1

3
ξ′′
(
t
∫∞

0
K(s) ds−

∫∞
0
sK(s) ds

)
+
∫∞

0

((
1
2
ξ′ + k1

)
sK ′(s) +

(
1
2
ξ′ − k1

)
K(s)

)
u(t− s) ds = 0.

Since u = 0, w = 0 is a solution of equations (3.12), the determining equation has to be
satisfied on this solution. Thus, one obtains

−t3ξ′′′/12 + t2µ+ tη + ζ + g′
∫∞

0
K(s) ds

+1
3
ξ′′
(
t
∫∞

0
K(s) ds−

∫∞
0
sK(s) ds

)
= 0,

(3.16)

and, hence, ∫ ∞
0

((
1

2
ξ′ + k1

)
sK ′(s) +

(
1

2
ξ′ − k1

)
K(s)

)
u(t− s) ds = 0.

Since u(t, x) is an arbitrary, the last equation gives(
1

2
ξ′ + k1

)
sK ′(s) +

(
1

2
ξ′ − k1

)
K(s) = 0,

which means that ξ′ is constant, for example, ξ = 2kx+ k0. Thus,

(k + k1) sK ′(s) + (k − k1)K(s) = 0,

or K(s) = K0s
α, and

(k + k1)α + (k − k1) = 0.

Equation (3.16) becomes

t2µ+ tη + ζ + g′
∫ ∞

0

K(s) ds = 0.

This equation implies

µ = 0, η = 0, ζ = −g′
∫ ∞

0

K(s) ds.

To prevent problems with convergency of the integral
∫∞

0
K(s) ds, one can assume that

g′ = 0.
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Remark. One can call the transformations corresponding to the generators

X = g∂t − g′∂u

formally admitted. These generators can be used for constructing invariant solutions.
Thus, one obtains that the Lie group corresponding to the generators

X1 = ∂x, X2 = ∂t,

X3 = ktt∂t + kxx∂x + kuu∂u + kww∂w,

is admitted by equations (3.12). Here

kt = k + k1, kx = 2k, ku = k1 − k, kw = 3k1 − k,
(k + k1)α + (k − k1) = 0.

(3.17)

Notice also that
ku = αkt, kt 6= 0.

Since the integro-differential equations are nonlocal, not any admitted Lie group has
the property to transform a solution of integro-differential equations into a solution. How-
ever, for the transformations corresponding to the generators X1 and X2 it is trivial to
check that these transformations possess this property. Let us also check that the scaling
group corresponding to the generator X3 maps any solution of equations (3.12) into a
solution of the same equations.

The transformation corresponding to the generator X3 is

t′ = teak
t

, x′ = xeak
x

, u′ = ueak
u

.

which maps a function u(t, x) into the function

u′(t′, x′) = eak
u

u(t′e−ak
t

, x′e−ak
x

).

Let us consider the transformation of the integral∫∞
0
K(s′)u′(t′ − s′, x′) ds′

= eak
u ∫∞

0
K(s′)u((t′ − s′)e−akt , x′e−akx) ds′

= eak
u ∫∞

0
K(s′)u(t′e−ak

t − s′e−akt) ds′
= ea(ku+kt)

∫∞
0
K(s′e−ak

t
eak

t
)u(t− s′e−akt) d(s′e−ak

t
)

= ea(ku+kt)
∫∞

0
K(seak

t
)u(t− s) ds

= ea(ku+kt)
∫∞

0
K0(seak

t
)αu(t− s) ds

= ea(ku+(α+1)kt)
∫∞

0
K0s

αu(t− s) ds
= ea(ku+(α+1)kt)w(t, x)

Thus, for checking one only needs to check that

−kw + ku + (α + 1)kt = 0.

Indeed
−kw + ku + (α + 1)kt =

= −3k1 + k + k1 − k + (α + 1)(k + k1)
= k1(−3 + 1 + α + 1) + k(1− 1 + α + 1)

= k1(α− 1) + k(α + 1) = 0.
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Here the condition (3.17) was used. One also needs to check the other conditions:

ku − kt − kx = 2ku − 2kt = kw − 3kt

Indeed,
ku − kt − kx = k1 − k − (k + k1)− 2k = −4k,

2ku − 2kt = 2(k1 − k)− 2(k + k1) = −4k,
kw − 3kt = 3k1 − k − 3(k + k1) = −4k.

3.2.2 Classification of subalgebras

The commutator table of the Lie algebra L3 = {X1, X2, X3} is

X1 X2 X3

X1 0 0 kxX1

X2 0 0 ktX2

X3 −kxX1 −ktX2 0

The set of automorphisms is defined by the commutators table:

A1 : x′1 = x1 + a1k
xx3,

A2 : x′2 = x2 + a2k
tx3,

A3 : x′1 = x1e
a3kx , x′2 = x2e

a3kt .

where only changeable coordinates of the automorphisms are presented.
If α = 1, then kx = 0, and the operator X1 composes a center of the Lie algebra. Thus

the one-dimensional optimal system of subalgebras consists of the subalgebras

{X3 + λX1, X2 + γX1, X1},

where γ = ±1.
If α 6= 1, then kx 6= 0, and the one-dimensional optimal system of subalgebras consists

of the subalgebras
{X3, X2 + λX1, X1}.

For α 6= 0, using the automorphism A3 the subalgebra X2 + λX1 can be also reduced to
X2 ±X1.

3.2.3 Invariant solutions

The optimal system of subalgebras of the Lie algebra L3 defines the complete set of
representations of solutions invariant with respect to L3.

Case α = 1

The subalgebra {X3 + λX1}. The generator {X3 + λX1} is

t∂t + u∂u + λ∂x.

It is convenient to separate on two cases (a) λ = 0, (b) λ 6= 0. The invariants are

λ = 0 : u/t, x;
λ 6= 0 : u/t, texλo , (λo = −1/λ).
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Invariant solutions have the representations

λ = 0 : u = tϕ(x);
λ 6= 0 : u = tϕ(y), (y = texλo).

Notice that for λ = 0 the integral

w =

∫ ∞
0

K0s(t− s)ϕ(x) ds = K0ϕ(x)

∫ ∞
0

s(t− s) ds,

is divergent. Hence, one has only to consider the case λ 6= 0. In this case

w(t, x) = K0

∫∞
0
s(t− s)ϕ((t− s)exλo) ds = K0e

−3xλo
∫ −∞
y

(y − z)zϕ(z) d(y − z)

= K0e
−3xλo

∫∞
0
s(y − s)ϕ(y − s) ds = e−3xλoW (y).

wt = e−2xλoW ′, wtt = e−xλoW ′′,

where we used the relations

s = t− ze−xλo = e−xλo(texλo − z) = e−xλo(y − z).

Equation (3.14) becomes

y
(
(λϕ+ 1)ϕ′ − ϕ2

)
= K0

d2

dy2

(∫ ∞
0

s(y − s)ϕ(y − s) ds
)
.

The subalgebra {X2 + γX1}. The generator {X2 + γX1} is ∂t + γ∂x. The invariants
are

u, y = x− γt.
An invariant solution has the representation

u = ϕ(y).

Hence, one has

w(t, x) = K0

∫∞
0
sϕ(x− γ(t− s)) ds = K0

∫ −∞
y

(y − z)ϕ(z) d(y − z)

= K0

∫∞
0
sϕ(y − s) ds = W (y).

wt = −γW ′, wtt = W ′′,

where we used the relations

s = t+ γ(z − x) = −γ(x− γt) + γz = −γ(y − z).

Equation (3.14) becomes

(1 + γϕ)ϕ′ = K0
d2

dy2

(∫ ∞
0

s(y − s)ϕ(y − s) ds
)
.

The subalgebra {X1}. The generator {X1} is ∂x. The invariants are

u, t.

An invariant solution has the representation

u = ϕ(t).

Hence, one has

w(t, x) = K0

∫ ∞
0

sϕ(t− s) ds.

Equation (3.14) becomes

−ϕϕ′ = K0
d2

dt2

(∫ ∞
0

sϕ(t− s) ds
)
.
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3.2.4 Case α 6= 1.

The subalgebra {X3}. The generator {X3} is

X3 = ktt∂t + kxx∂x + kuu∂u, (kx 6= 0),

where the constants kt, kx and ku are defined by (3.17). Substituting the representation
of the invariant solution

u = xk
u/(2k)ϕ(y), t = yxk

t/(2k)

into the second equation of (3.14), one has

w =
∫∞

0
K0s

αu(t− s) ds = K0x
ku/(2k)

∫∞
0
sαϕ((t− s)x−kt/(2k)) ds

= −K0x
((1+α)kt+ku)/(2k)

∫ −∞
tx−kt/(2k)(y − z)αϕ(z) dz

= K0x
((1+α)kt+ku)/(2k)

∫ y
−∞(y − z)αϕ(z) dz

= K0x
((1+α)kt+ku)/(2k)W (y) = K0x

(kt+2ku)/(2k)W (y),

where we used the relations

s = t− zxkt/(2k) = xk
t/(2k)(tx−k

t/(2k) − z) = xk
t/(2k)(y − z), (1 + α)kt + ku = kt + 2ku,

and

W (y) =

∫ y

−∞
(y − z)αϕ(z) dz.

The derivatives are changed as follows

∂ϕ

∂t
=
y

t
ϕ′,

∂ϕ

∂x
= − k

t

2k

y

x
ϕ′,

∂

∂t

(
∂W

∂t

)
=

∂

∂t

(y
t
W ′
)

=
1

t2
(
−yW ′ + y (yW ′)

′)
=
y2

t2
W ′′.

Thus, the first equation of (3.14) becomes

ux − uut − vtt = ux − uut − ∂2

∂t2

∫∞
0
K0s

αu(t− s) ds
= ku

2k
xk
u/(2k)

x
ϕ− kt

2k
xk
u/(2k)y
x

ϕ′ − xku/(2k)ϕxk
u/(2k) y

t
ϕ′ −K0

x(kt+2ku)/(2k)y2

t2
W ′′

= ku

2k
xk
u/(2k)

x
ϕ− kt

2k
xk
u/(2k)y
x

ϕ′ − xku/(2k)ϕxk
u/(2k) y

t
ϕ′ −K0yx

(2ku−kt)/(2k)W ′′

= xk
u/(2k)

x

(
ku

2k
ϕ− kt

2k
yϕ′ − ϕx(kx+ku−kt)/(2k)ϕ′ −K0x

(ku−kt+kx)/(2k)W ′′
)

= xk
u/(2k)

x

(
ku

2k
ϕ− kt

2k
yϕ′ − ϕϕ′ −K0W

′′
)

= 0.

Here, the following relation was used

ku + kx − kt = k1 − k + 2k − (k + k1) = 0.

Thus, the reduced equation is

αϕ+ ((α− 1)ϕ− y)ϕ′ = (1− α)K0

∫ ∞
0

sαϕ′′(y − s) ds,

where

W ′′(y) =
d2

dy2

(∫ y

−∞
(y − z)αϕ(z) dz

)
=

d2

dy2

(∫ ∞
0

sαϕ(y − s) ds
)

=

∫ ∞
0

sαϕ′′(y − s) ds.
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The subalgebra {X2 + λX1}. The generator {X2 + λX1} is ∂t + λ∂x. The invariants
are

u, y = x− λt.

An invariant solution has the representation of a traveling wave type

u = ϕ(y).

As in the previous case one only needs to study the case λ 6= 0. If λ > 0, then one has

w(t, x) = K0

∫∞
0
sαϕ(x− λ(t− s)) ds = λ−α−1K0

∫∞
y

(z − y)αϕ(z) d(z − y)

= λ−α−1K0

∫∞
0
sαϕ(y + s) ds = W (y).

wt = −λW ′, wtt = λ2W ′′,

where

s = t+
z − x
λ

= −x− λt
λ

+
z

λ
=
z − y
λ

.

The reduced equation is

(1 + λϕ)ϕ′ = λ1−αK0

∫ ∞
0

sαϕ′′(y + s) ds. (3.18)

If λ < 0, then

w(t, x) = K0

∫∞
0
sαϕ(x− λ(t− s)) ds = K0(−λ)−α−1

∫ −∞
y

(y − z)αϕ(z) d(y − z)

= (−λ)−α−1K0

∫∞
0
sαϕ(y + s) ds = W (y).

Equation (3.14) becomes

(1 + λϕ)ϕ′ = (−λ)1−αK0

∫ ∞
0

sαϕ′′(y + s) ds. (3.19)

Combining equations (3.18) and (3.19), one has

(1 + λϕ)ϕ′ = |λ|1−αK0

∫ ∞
0

sαϕ′′(y + s) ds. (3.20)

The subalgebra {X1}. The generator {X1} is ∂x. The invariants are u, t. An invariant
solution has the representation

u = ϕ(t).

Hence, one has

w(t, x) = K0

∫ ∞
0

sαϕ(t− s) ds.

Equation (3.14) becomes

−ϕϕ′ = K0

(∫ ∞
0

sαϕ′′(t− s) ds
)
.
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3.3 Two-dimensional equation

The studied equations are

∂

∂t
(ux − uput − wtt) = uyy, w(t, x, y) =

∫ ∞
0

K(s)u(t− s, x, y) ds.

The first step gives the generator

X = ξt(t, x, y, p, w)∂t + ξx(t, x, y, p, w)∂x + ξy(t, x, y, p, w)∂y
+ζu(t, x, y, p, w)∂p + ζv(t, x, y, p, w)∂w,

where the coefficients are

ξt = (2tξ′ + ξ′′y2 + 3h′y)/6 + tk1 + g, ξy = ξ, ξy = (4yξ′ + 3yk1)/6 + h,
ζu = ((6k1 − 4ξ′)− ξ′′′y2 − 2tξ′′ − 6g′ − 3yh′′)/6,

ζv = (3k1 − ξ′)w + t2µ+ tη + ζ,
(3.21)

Here k1 is constant, ξ = ξ(x), h = h(x), g = g(x), ζ = ζ(t, x, y), η = η(t, x, y) and
µ = µ(t, x, y) are arbitrary functions.

The determining equation for the second equation

w(t, x, y) =

∫ ∞
0

K(s)u(t− s, x, y) ds.

is the equation

(ζv − ξtwt − ξxwx − ξywy)(t, x, y) =

∫ ∞
0

K(s)(ζu − ξtut − ξxux − ξyuy)(t− s, x, y) ds.

Substituting the coefficients (3.21) into the last equation, one obtains

µ = 0, η = 0, ζ = 0, g′ = 0, h′′ = 0,(
1

3
ξ′ + k1

)
sK ′(s) +

(
2

3
ξ′ − k1

)
K(s) = 0,

which means that ξ′ is constant, for example, ξ = 3kx+ k0. Thus,

(k + k1) sK ′(s) + (2k − k1)K(s) = 0,

or
K(s) = K0s

α,

and
(k + k1)α + (2k − k1) = 0.

Therefore, the admitted Lie algebra is defined by the generators

X1 = ∂x, X2 = ∂t, X3 = y∂t + 2x∂y, X4 = ∂y,
X5 = 2t(k + k1)∂t + 6kx∂x + (4k + k1)y∂y + 2(k1 − 2k)u∂u + 6v(k1 − k)∂w.
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3.4 3-dimensional case

The studied equations are

∂

∂t
(ux − uut − wtt) = uyy + uzz, w(t, x, y, z) =

∫ ∞
0

K(s)u(t− s, x, y, z) ds.

The first step gives the generator

X = ξt(t, x, y, u, z, w)∂t + ξx(t, x, y, u, z, w)∂x + ξy(t, x, y, u, z, w)∂y
+ζu(t, x, y, u, z, w)∂u + ζw(t, x, y, z, u, w)∂w

with the coefficients

ξt = t(ξ′ + 2k1) + 3ξ′′(z2 + y2)/4 + (h′y + f ′z)/2 + g,

ξx = 5ξ, ξy = 3ξ′y + zk2 + yk1 + h, ξz = 3ξ′z + zk1 − yk2 + f,

ζu = 2(k1 − 2ξ′)u− 3ξ′′′(z2 + y2)/4− ξ′′t− g′ − (h′′y + f ′′z)/2,

ζw = w(6k1 − 7ξ′) + ξ′′′t3/3 + t2µ+ tη + ζ.

where k1, k2 are constant, ξ = ξ(x), h = h(x), g = g(x), f = f(x), ζ = ζ(x, y, z),
η = η(x, y, z) and µ = µ(x, y, z) are arbitrary functions. It is obvious that the generator
corresponding to the rotation in the plain y and z is admitted. This generator is defined
by k2:

X = z∂y − y∂z.

Excluding this generator one obtains

ξt = t(ξ′ + 2k1) + 3ξ′′(z2 + y2)/4 + (h′y + f ′z)/2 + g,

ξx = 5ξ, ξy = y(3ξ′ + k1) + h, ξz = z(3ξ′ + k1) + f,

ζu = 2(k1 − 2ξ′)u− 3ξ′′′(z2 + y2)/4− ξ′′t− g′ − (h′′y + f ′′z)/2,

ζw = w(6k1 − 7ξ′) + ξ′′′t3/3 + t2µ+ tη + ζ.

The determining equation for the second equation

w(t, x, y, z) =

∫ ∞
0

K(s)u(t− s, x, y, z) ds

is the equation

(ζw − ξtwt − ξxwx − ξywy − ξzwz)(t, x, y, z)

=
∫∞

0
K(s)(ζu − ξtut − ξxux − ξyuy − ξzuz)(t− s, x, y, z) ds.

Substituting the coefficients into the last equation, one obtains

g = k3, h = 2k4x+ k5, f = 2k6x+ k7

ξt = t(k + 2k1) + k4y + k6z + k3, ξx = 5(kx+ k0), ξy = y(3k + k1) + 2k4x+ k5,

ξz = z(3k + k1) + 2k6x+ k7, ζu = 2(k1 − 2k)u, ζw = w(6k1 − 7k).

(k + 2k1) sK ′(s) + 2(2k − k1)K(s) = 0,
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which means that
K(s) = K0s

α,

and
k(α + 4) + 2k1(α− 1) = 0.

The admitted generators are

X1 = ∂x, X2 = ∂t, X3 = z∂y − y∂z, X4 = y∂t + 2x∂y,

X5 = z∂t + 2x∂z, X6 = ∂y, X7 = ∂z,

X8 = t(k + 2k1)∂t + 5kx∂x + (3k + k1)y∂y + (3k + k1)z∂z
+2(k1 − 2k)u∂u + w(6k1 − 7k)∂w.

3.5 Exponential kernel

There exists one known exact solution to 1D equation for an exponential kernel [21, 84]:

ux − uut − wtt = 0,
w =

∫∞
0

exp (−s) u (t− s) ds.

One can seek for it in the form of a traveling wave:

u = u(t+ αx).

The solution has the form:

t+ γ =
1

∆
ln
|u− α + ∆|1−∆

|u− α−∆|1+∆
.

Here α, ∆ and γ are the constants. This solution has evident physical meaning for the
parameters ∆ > |α|, 0 < ∆ < 1. This is shown in Fig. ?? and the solution describes the
shape of a single shock front in a relaxing medium.

It is interesting to derive this solution using computed symmetries.
Since for the exponential kernel K(s) = e−s one has the relation (1.7):

wt = u− w,

equations
uxt − uutt − u2

t = wttt (3.22)

and
ux − uut = wtt (3.23)

can be reduced to the partial differential equations, respectively,

uxtt − (1 + u)uttt − 3ututt + uxt − uutt − u2
t = 0, (3.24)

and
uxt − (1 + u)utt − u2

t + ux − uut = 0. (3.25)

Admitted Lie groups of these equations are as follows. The admitted Lie group of
equation (3.24) is defined by the generators

X1 = ∂x, X2 = g(x)∂t − g′(x)∂u,
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where the function g = g(x) is an arbitrary function. The admitted Lie group of equation
(3.25) is defined by the generators

X1 = ∂x, X2 = ∂t, X3 = x∂t − ∂u.

The commutators table of the algebra {X1, X2, X3} is

X1 X2 X3

X1 0 0 X2

X2 0 0 0
X3 −X2 0 0

The generator X2 is a center of the Lie algebra. The set of automorphisms is defined by
the commutators table:

A1 : x′2 = x2 + a1x3,
A3 : x′2 = x2 − a3x1.

The one-dimensional optimal system of subalgebras consists of the subalgebras

{X3 + λX1, X2, X1}.

Representations of invariant solutions are

X3 + λX1 : u = −x
λ

+ ϕ(x2 − 2λt), (λ 6= 0),
X3 : u = − t

x
+ ϕ(x),

X2 : u = ϕ(x),
X1 : u = ϕ(t).

and the reduced equations are

X3 + λX1 : (4λ3(ϕ′ + ϕϕ′)− λ2ϕ2)
′
+ 1 = 0,

X3 : ϕ′ + 1
x
ϕ = 0,

X2 : ϕ′ = 0,
X1 : (ϕ′ + ϕϕ′ + ϕ2/2)′ = 0.

The solution
u = u(t+ αx)

is invariant with respect to the operator X1 − αX2 = ∂x − α∂t. The subalgebra corre-
sponding to this operator is equivalent to the subalgebra with the generator: X1. The
reduced equation of an invariant solution corresponding to the generator X1 is

ϕ′ =
k − ϕ2

2(1 + ϕ)
.

where k is an arbitrary constant of the integration. The general solution of this equation
depends on the constant k:

k = α2 > 0 : t+ c0 = 1
α

ln
(
|ϕ+α|1−α
|ϕ−α|1+α

)
,

k = −α2 < 0 : t+ c0 = − ln(ϕ2 + α2)− 2
α

arctan(ϕ
α

),
k = 0 : t+ c0 = −2 ln(ϕ) + 2

ϕ
.
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3.6 Delay equation

It is desirable to derive an exact solution for any kernel which does not permit the re-
duction of integral equation to the differential one. Such an example exists. That is the
model kernel which is nonzero on the finite segment, say, s ∈ [0, 1]. The simplest case
is K = 1, s ≤ 1; K = 0, s > 1. For this kernel the integral equation is reduced to the
difference-differential equation

ux − uut −∆ut , ∆u ≡ u(t)− u(t− 1).

Its solution can be sought in the form of a traveling wave: u = u(t + αx). The reduced
equation can be integrated one time. The solution is u (t− 1) = 1

2
[u2 (t) + 2 (1− α)u (t)− β2].

Here α and β are constant. This formula defines a mapping u (t)→ u (t− 1) which offers
easy possibility to construct curves representing profiles of the wave. These profiles are
shown in Fig. ??. They display the image of a shock front in medium with constant
”memory” within the segment [0, 1].

The equation
ux(t, x) = (u(t, x) + 1)ut(t, x)− ut(t− 1, x)

is a delay differential equation. Algorithm for applying the group analysis method to
delay differential equations is given in [20, 86, 45]. Calculations show that the admitted
Lie group is defined by the generators

X1 = ∂t, X2 = ∂x, X3 = x∂t − ∂u.

Representations of invariant solutions are given in the previous case. The reduced
equations are

X3 + λX1 : 2λ2(ϕ′(z)(ϕ(z) + 1) + ϕ′(z + 2λ)) = 1,
X3 : ϕ′ + 1

x
ϕ = 0,

X2 : ϕ′ = 0,
X1 : ϕ′(t)(ϕ(t) + 1) + ϕ′(t− 1) = 0.

The reduced equations can be integrated

X3 + λX1 : λ2(ϕ2(z) + 2ϕ(z) + ϕ2(z + 2λ)) = z + c0,
X3 : ϕ = c0/x,
X2 : ϕ = c0,
X1 : ϕ2(t) + 2ϕ(t) + 2ϕ(t− 1) = c0.

3.7 Conclusion

The nonlinear integro-differential evolution equation (1.2) considered in the present re-
search is not an exotic model. It encapsulates numerous mathematical models formu-
lated by differential evolution equations and differs from them significantly not only in its
form, but mostly due to its physical content meaning. Namely, any dispersion (frequency-
dependent phase velocity) must be strongly connected with frequency-dependent absorp-
tion. Such connection follows from the causality principle. For example, waves having
infinite velocities of propagation which are allowed by differential equations of Burgers
and Korteweg-de Vries type must disappear on their way, since otherwise a cause ap-
pears at a certain point later than its effect. The causality principle is given in physical
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models by integral Kramers-Kronig relations. Consequently, a consistent model must
contain integral terms, in other words, be represented in an integro-differential form.
Though this conclusion is well known, mathematical models described by purely differen-
tial evolution equations have been widely accepted in the nonlinear wave physics due to
their simplicity compared to the integro-differential models. It seems that the consistent
integro-differential nonlinear models will meet more applications in future.

The present research provides a first step in application of the Lie group analysis to
Equation (1.2). The approach used in this research is described in [20]. The analysis
of the determining equation for the integro-differential equation allows, in particular, to
single out a class of kernels used for deriving mathematical models in medical applications
of ultrasound [85].

Note that for particular kernels the integro-differential equation (1.2) becomes a partial
differential equation or a delay partial differential equation. In these cases the complete
group classification of equation (1.2) can be obtained. In the case of partial differential
equations the classical group analysis is used. For delay partial differential equations
the analysis developed in [86, 45] and described in [20] is applied. A complete study of
particular cases is given in the report. This provides a new result in the application of
the group analysis method to partial and delay partial differential equations.

Along with admitted Lie groups, representations of exact solutions and reduced equa-
tions are constructed in the report. A complete solution and a physical interpretation of
some of them is presented.

We hope that more results will be obtained in future by applying the above approach
for solving concrete models of physical significance as well as for new mathematical de-
velopments. In particular, it is interesting to make the preliminary group classification of
exceptional kernels by applying the method of an a priory use of symmetries [87] to the
integro-differential equations of the form (1.2).
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Chapter 4

On the equation for the power
moment generating function of the
Boltzmann equation. Group
classification with respect to a
source function

Abstract
An admitted Lie group of transformations for the spatially homogeneous and isotropic

Boltzmann equation with sources was firstly studied by Nonnenmacher [1984]. In fact,
in this paper the equation for generating function of the power moments of the Boltz-
mann equation solution was considered. However, this equation is still a nonlocal partial
differential equation, and this property was not taken into account there. In the present
research the admitted Lie group of this equation is studied using original method de-
veloped by Grigoriev and Meleshko [1986] for group analysis of equations with nonlocal
operators. This method allows us to correct Nonnenmacher’s approach. A group classi-
fication of the equation for the generating function with respect to sources is obtained.
In the process of the group classification the algebraic method considered in Nikitin and
Popovych [2001] is applied.

4.1 General Equations

The Fourier image of the spatially homogeneous and isotropic Boltzmann equation with
sources has the form [88]

ϕt(y, t) + ϕ(y, t)ϕ(0, t) =

∫ 1

0

ϕ(ys, t)ϕ(y(1− s), t) ds+ q̂(y, t). (4.1)

Here the function ϕ(y, t) is related with the Fourier transform ϕ̃(k, t) of the isotropic
distribution function f(v, t) by the formulae

ϕ(k2/2, t) = ϕ̃(k, t) =
4π

k

∫ ∞
0

v sin(kv)f(v, t).dv

Similarly, the transform of the source function q(v, t) is

˜̂q(k, t) =
4π

k

∫ ∞
0

v sin(kv)q(v, t) dv,
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and
˜̂q(k, t) = q̂(k2/2, t).

The inverse Fourier transform of ϕ̃(k, t) gives the distribution function

f(v, t) =
4π

v

∫ ∞
0

k sin(kv)ϕ̃(k, t) dk.

Normalized moments of the distribution function are introduced by the formulae

Mn(t) =
4π

(2n+ 1)!!

∫ ∞
0

f(v, t)v2n+2dv, (n = 0, 1, 2...). (4.2)

Following [89], one can obtain a system of equations for the moments (4.2) from (4.1). It
is sufficient to substitute the expansions in power series

ϕ(y, t) =
∞∑
n=0

(−1)nMn(t)
yn

n!
, q̂(y, t) =

∞∑
n=0

(−1)nqn(t)
yn

n!
,

into (4.1), where

qn(t) =
1

(2n+ 1)!!
4π

∫ ∞
0

q(v, t)v2n+2dv, (n = 0, 1, 2...)

are the normalized moments of the source function. As a result, one derives the moment
system considered in [48]:

dMn(t)

dt
+Mn(t)M0(t) =

1

n+ 1

n∑
k=0

Mk(t)Mn−k(t) + qn(t). (4.3)

For q(v, t) = 0 this system was derived in [43] in a very complicated way.
Let us define moment generation functions for the distribution function f(v, t) and for

the source function q(v, t):

G(ω, t) =
∞∑
n=0

ωnMn(t), S(ω, t) =
∞∑
n=0

ωnqn(t).

Multiplying equations (4.3) by ωn, and summing over all n, one obtains for G(ω, t) the
equation

∂2(ωG)

∂t∂ω
+M0(t)

∂(ωG)

∂ω
= G2 +

∂(ωS)

∂ω
. (4.4)

Here the obvious relations are used

∞∑
n=0

(n+ 1)ωnMn(t) =
∂(ωG)

∂ω
,

∞∑
n=0

(n+ 1)ωnqn(t) =
∂(ωS)

∂ω
,

∞∑
n=0

ωn
n∑
k=0

Mk(t)Mn−k(t) = G2.

In contrast to the case of homogeneous relaxation with q(v, t) = 0, the gas density M0(t) ≡
ϕ(0, t) is not constant. From equation (4.3) for n = 0 one can obtain

M0(t) =

∫ t

0

q0(t′)dt′ +M0(0).
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Notice also that
M0(t) = G(t, 0). (4.5)

This is the reason why equation (4.4) has a nonlocal term. This fact was not taken
into account in [48] in the process of finding an admitted Lie group. The lack of this
condition can lead to incorrect admitted Lie groups. In the present research this omission
is corrected.

4.2 Admitted Lie algebra of the equation for the gen-

erating function

Equation (4.4) is conveniently rewritten in the form

(xut)x − u2 + u(0)(xu)x = g, (4.6)

where u(0) = u(t, 0). Here ω = x, G = u and (ωS)ω = g.
As mentioned, because of the presence of the term u(0), equation (4.6) differs from

a partial differential equation. Hence, the classical group analysis method cannot be
applied to this equation. A method that can be used for such equations with nonlocal
terms was developed in [34, 45, 20]. In this section the latter method is applied for finding
an admitted Lie group of equation (4.6).

The admitted generator is sought in the form

X = τ(t, x, u)∂t + ξ(t, x, u)∂x + ζ(t, x, u)∂u.

According to the algorithm [34, 45, 20], the determining equation for equation (4.6) is

xψtx + ψt + u(0)(xψx + ψ)− 2ψu+ ψ(0)(xu)x = 0, (4.7)

where

ψ(t, x) = ζ(t, x, u(t, x))− ut(t, x)τ(t, x, u(t, x))− ux(t, x)ξ(t, x, u(t, x)), ψ(0) = ψ(t, 0).

After substituting the derivatives utx, utxx and uttx found from equation (4.6) and its
derivatives with respect to x and t into (4.7), one obtains the determining equation

ζtxx
2 + ζtx+ ζugx+ ζuu

2x+ gξ + u2ξ − 2uxζ + uxζ(0)

−x (gtτ + gxξ + g(τt + ξx))− τtu2x− ξxu2x− xux(0)(uxx+ u)ξ(0)

+u(0)(ζxx
2 − ζuux− uξ + xζ + xξxu+ xτtu)− τxuttx2 − x2uxuttτu

−utuxxξux2 − uxxξtx2 + utuxx(ζuux− τtux+ τuu(0)x− ξxux+ ξu)
+ut(ξxx+ ζxux

2 − ξ − τtxx2 − 2τux(g + u2) + u(0)x(2τuu− xτx))

+u2
tx(τu − xτxu) + xut(0)(τ − τ(0))(uxx+ u) + u2

xx
2(ξuu(0)− ξtu)

+xux(x(τtu(0) + ζ(0) + ζtu)− ξtxx− ξt − 2ξug − 2ξuu
2 + 2ξuuu(0))

−u2
tuxτuux

2 − utu2
xξuux

2 = 0.

(4.8)

Here
τ(0) = τ(t, 0, u(t, 0)), ξ(0) = ξ(t, 0, u(t, 0)), ζ(0) = ζ(t, 0, u(t, 0)),

ut(0) = ut(t, 0), ux(0) = ux(t, 0).
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Differentiating the determining equation (4.8) with respect to utt, uxx, and then with
respect to ut and ux, one gets

τu = 0, τx = 0, ξu = 0, ξt = 0.

Hence,
τ = τ(t), ξ = ξ(x),

and
τ(0) = τ.

Differentiating the determining equation with respect to ut, and then ux, one finds

ζuu = 0

or
ζ(t, x, u) = uζ1(t, x) + ζ0(t, x).

The coefficient with uxux(0) in the determining equation (4.8) gives ξ(0) = 0. Continuing
splitting the determining equation (4.8) with respect to ut, and then ux, one finds

ζ1(t, x) = −x−1ξ(x) + ζ10(t).

Hence,
ζ(0) = ζ(t, 0) = u(0)(ζ10(t)− ξ′(0)) + ζ0(t, 0).

The coefficient with uxu(0) leads to the condition

ζ10 = −τt + ξ′(0).

Differentiating the determining equation with respect to u twice, one has

ξx = 2
ξ

x
− ξ′(0).

The general solution of this equation is

ξ = x(c1x+ c0).

Equating the coefficient with ux to zero, one derives

τtt(t) = ζ0(t, 0).

The coefficient with u(0) in the determining equation (4.8) gives

xζ0x + ζ0 = 0.

This equation only has one solution which is nonsingular at x = 0:

ζ0(t, x) = 0.

Hence, ζ0(t, 0) = 0, and
τ = c2t+ c3.

The remaining part of the determining equation (4.8) becomes

gt(c2t+ c3) + xgx(c1x+ c0) = −2g(c1x+ c2). (4.9)
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Thus, the admitted generator has the form

X = c0X0 + c1X1 + c2X2 + c3X3,

where
X0 = x∂x, X1 = x(x∂x − u∂u), X2 = t∂t − u∂u, X3 = ∂t. (4.10)

The values of the constants c0, c1, c2, c3 and relations between them depend on the
function g(t, x).

The trivial case of the function
g = 0,

satisfies equation (4.9), and corresponds to the case of the spatially homogeneous and
isotropic Boltzmann equation without a source term. In this case, the complete group
classification of the Boltzmann equation was carried out in [34, 35] using its Fourier image
(4.1) with q̂(y, t) = 0. The four–dimensional Lie algebra L4 = {Y1, Y2, Y3, Y4} spanned
by the generators

Y0 = y∂y, Y1 = yϕ∂ϕ, Y2 = t∂t − ϕ∂ϕ, Y3 = ∂t (4.11)

defines the complete admitted Lie group G4 of (4.1). There are direct relations between
the generators (4.10) and (4.11).

Indeed, since the functions ϕ(y, t) and u(x, t) are related through the moments Mn(t),
(n = 0, 1, 2, ...), it is sufficient to check that the transformations of moments defined
through these functions coincide.

Let us consider the transformations corresponding to the generators Y0 and X0:

Y0 = y∂y : t = t, y = yea, ϕ = ϕ;
X0 = x∂x : t = t, x = xea, u = u.

The transformed functions are ϕ(y, t) = ϕ(ye−a, t) and u(x, t) = u(xe−a, t). The transfor-
mations of moments are, respectively:

Mn(t) = (−1)n
∂nϕ(y, t)

∂yn |y=0

= (−1)n
∂nϕ(ye−a, t)

∂yn |y=0

= (−1)ne−na
∂nϕ

∂yn
(0, t)

= e−naMn(t);

Mn(t) = n!
∂nu(xe−a, t)

∂xn |x=0
= e−nan!

∂nu

∂xn
(0, t) = e−naMn(t).

Hence, one can see that the transformations of moments defined through the functions
ϕ(y, t) and u(x, t) coincide.

The Lie groups of transformations corresponding to the generators Y1 and X1 are

Y1 = yϕ∂ϕ : t = t, y = y, ϕ = ϕeya;
X1 = x(x∂x − u∂u) : t = t, x = x

1−ax , u = (1− ax)u.

These transformations map the functions ϕ(y, t) and u(x, t) to ϕ(y, t) = eyaϕ(y, t) and

u(x, t) =
1

1 + ax
u(t,

x

1 + ax
). The transformations of moments are, respectively:

Mn(t) = (−1)n
∂nϕ(y, t)

∂yn |y=0

= (−1)n
∂n(eyaϕ(y, t))

∂yn |y=0

= (−1)n
((

∂

∂y
+ a

)n
ϕ

)
(0, t);

Mn(t) = n!
∂nu(x, t)

∂xn |x=0
= n!

∂n

∂xn

(
1

1 + ax
u(t,

x

1 + ax
)

)
|x=0

.
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Using computer symbolic calculations with Reduce [83] one can check that these trans-
formations of moments also coincide.

The Lie groups of transformations corresponding to the generators Y2 and X2 are

Y2 = t∂t − ϕ∂ϕ : t = tea, y = y, ϕ = ϕe−a;
X2 = t∂t − u∂u : t = tea, x = x, u = ue−a.

These transformations map the functions ϕ(y, t) and u(x, t) to ϕ(y, t) = e−aϕ(y, te−a) and
u(x, t) = e−au(x, te−a). The transformations of moments are, respectively:

Mn(t) = (−1)n
∂nϕ(y, t)

∂yn |y=0

= (−1)ne−a
∂nϕ(y, te−a)

∂yn |y=0

= (−1)ne−a
∂nϕ

∂yn
(0, te−a) = Mn( te−a)e−a;

Mn(t) = n!
∂nu(x, t)

∂xn |x=0
= n!e−a

∂nu(x, te−a)

∂xn |x=0

= n!e−a
∂nu

∂xn
(0, te−a) = Mn(te−a)e−a.

The case where the transformations of moments corresponding to the generators Y3 =
∂t and X3 = ∂t coincide is trivial. These direct relations between the Lie algebras confirm
correctness of our calculations.

4.3 Comparison with the results of the paper

by T.F.Nonnenmacher

Let us formulate the results of [48] using the variables of the present research. The
admitted generator obtained in [48] has the form

Zg = τ(t) (∂t −M0(t)u∂u) + αu∂u + (γ − δ)x(x∂x − u∂u)− γx∂x, (4.12)

where

m0(t) =

t∫
0

M0(t′) dt′, τ(t) =

β − α t∫
0

e−m0(t′) dt′

 em0(t),

α, β, γ and δ are constant. The function g(t, x) has to satisfy the equation

τ(t)
∂g

∂t
+ x(x(γ − δ)− γ)

∂g

∂x
= −2 (x(γ − δ) +M0(t)τ(t)− α) g. (4.13)

Since M0(t) is unknown, comparison of our results is only possible for g = 0. Moreover,
in contrast to equation (4.9), the source function g(t, x) in (4.13) as a solution of equation
(4.13) depends on the function M0(t), whereas the function M0(t) also depends on the
source function. This makes equation (4.13) nonlocal and very complicated.

Comparing the operator Zg for g = 0 with (4.10), one obtains that the part related
with the constants γ and δ coincides with the result of the present report, whereas the part
related with the constants α and β is completely different. Indeed, in this case equation
(4.13) is satisfied identically, M0(t) = M0(0), and for

M0(0) 6= 0 : m0(t) = tM0(0), τ(t) = βetM0(0) + α
M0(0)

(
1− etM0(0)

)
;

M0(0) = 0 : m0(t) = 0, τ(t) = β − αt.
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The admitted generator (4.13) becomes

M0(0) 6= 0 : Z0 =
(
β − α

M0(0)

)
etM0(0) (∂t −M0(0)u∂u) + α

M0(0)
∂t

+(γ − δ)x(x∂x − u∂u)− γx∂x;
M0(0) = 0 : Z0 = β∂t − α(t∂t − u∂u) + (γ − δ)x(x∂x − u∂u)− γx∂x.

One can see that the above results coincide with [48] only for M0(0) = 0. The case
M0(0) = 0 corresponds to a gas with zero density which is not realistic. For M0(0) 6= 0,
the coefficient with the exponent etM0(0) plays a crucial role. This coefficient only vanishes
for

α = M0(0)β. (4.14)

In this case the admitted Lie algebra found in [48] is a proper subalgebra of the Lie
algebra defined by the generators (4.10). Thus, all invariant solutions with (α, β, γ, δ) =
(M0(0)β, β, γ, δ) considered in [48] are particular cases of invariant solutions obtained in
[34, 20]. In particular, the well-known BKW-solution is an invariant solution with respect
to the generator YBKW = c(Y1−Y0) +Y3. In the Lie algebra (4.10) this solution is related
with the generator XBKW = c(X1−X0)+X3. Other classes of invariant solutions studied
in [48] correspond to (4.14) with the particular choice β = 0.

4.4 On equivalence transformations of the equation

for the generating function

For the group classification one needs to know equivalence transformations. Let us find
some of them using the generators (4.10) and considering their transformations of the left
hand side of equation (4.6)

Lu = xutx + ut − u2 + u(0)(xux + u).

The transformations corresponding to the generator X0 = x∂x map a function u(t, x)
into the function

u(t, x) = u(t, xe−a),

where a is the group parameter. Hence,

Lu = Lu.

One can check that the Lie group of transformations

t = t, x = xea, u = u, g = g

is an equivalence Lie group of equation (4.6).
Similarly, one derives that the transformations corresponding to the generator X3 = ∂t

define the equivalence Lie group:

t = t+ a, x = x, u = u, g = g.

The transformations corresponding to the generator X2 = t∂t − u∂u map a function
u(t, x) into the function

u(t, x) = e−au(te−a, x).
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Hence,
Lu = e−2aLu.

One can conclude that the transformations

t = t, x = xea, u = u, g = ge−2a

compose an equivalence Lie group of equation (4.6).
The transformations corresponding to the generator X1 = x(x∂x−u∂u) map a function

u(t, x) into the function

u(t, x) =
1

1 + ax
u(t,

x

1 + ax
).

Hence,
Lu = (1− ax)2Lu

and the transformations

t = t, x =
x

1− ax
, u = (1− ax)u, g = (1− ax)2g

compose an equivalence Lie group of transformations.
Thus, it has been shown that the Lie group corresponding to the generators

Xe
0 = x∂x, X

e
1 = x(x∂x − u∂u − 2g∂g), X

e
2 = t∂t − u∂u − 2g∂g, X

e
3 = ∂t

is an equivalence Lie group of equation (4.6).

4.5 Group classification

Group classification of equation (4.6) is carried out up to the equivalence transformations
considered above.

Equation (4.9) can be rewritten in the form

c0h0 + c1h1 + c2h2 + c3h3 = 0, (4.15)

where
h0 = xgx, h1 = x(xgx + 2g), h2 = tgt + 2g, h3 = gt. (4.16)

One of the methods for analyzing relations between the constants c0, c1, c2 and c3

consists of employing the algorithm developed for the gas dynamics equations [8]: one
analyzes the vector space Span(V ), where the set V consists of the vectors

v = (h0, h1, h2, h3)

with t and x are changed. This algorithm allows one to study all possible admitted Lie
algebras of equation (4.6) without omission. Unfortunately, it is difficult to implement.

In [90] an algebraic algorithm for group classification was applied, which essentially re-
duces this study to a simpler problem. Here we follow this algorithm1. Observe here that
because of the nonlinearity of the equivalence transformations corresponding to the gener-
ator X1, it is difficult to select out equivalent cases with respect to these transformations,
whereas the algebraic algorithm free of this complication.

1The authors thank the anonymous referee for pointing to the possibility of applying to the analysis
of equation (4.15) the algorithm considered in [90]
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First, let us study the Lie algebra L4 composed by the generators {X0, X1, X2, X3}.
The commutator table is

X0 X1 X2 X3

X0 0 X1 0 0
X1 −X1 0 0 0
X2 0 0 0 −X3

X3 0 0 X3 0

The inner automorphisms are

A0 : x̂1 = x1e
a,

A1 : x̂1 = x1 + ax0,
A2 : x̂3 = x3e

a,
A3 : x̂3 = x3 + ax2,

where only the changed coordinates are presented.
Second, one can notice that the results of using the equivalence transformations cor-

responding to the generators Xe
0 , X

e
1 , X

e
2 , X

e
3 are similar to changing coordinates of a

generator X with regarding to the basis change. These changes are similar to the inner
automorphisms. Indeed, the coefficients of the generator X are changed according to the
relation [8]:

X = (Xt)∂t + (Xx)∂x + (Xu)∂u.

Any generator X can be expressed as a linear combination of the basis generators:

x̂0X̂0 + x̂1X̂1 + x̂2X̂2 + x̂3X̂3 = x0X0 + x1X1 + x2X2 + x3X3, (4.17)

where
X̂0 = x∂x, X̂1 = x(x∂x − u∂u), X̂2 = t∂t − u∂u, X̂3 = ∂t.

Using the invariance of a generator with respect to a change of the variables, the basis
generators Xi, (i = 0, 1, 2, 3) and X̂i, (i = 0, 1, 2, 3) in corresponding equivalence trans-
formations are related as follows

Xe
0 : X0 = X̂0, X1 = e−aX̂1, X2 = X̂2, X3 = X̂3;

Xe
1 : X0 = X̂0 + aX̂1, X1 = X̂1, X2 = X̂2, X3 = X̂3;

Xe
2 : X0 = X̂0, X1 = X̂1, X2 = X̂2, X3 = eaX̂3;

Xe
3 : X0 = X̂0, X1 = X̂1, X2 = X̂2 − aX̂3, X3 = X̂3.

Substituting these relations into the identity (4.17), one obtains that the coordinates of
the generator X in the basis B = {X0, X1, X2, X3} and in the basis B̂ = {X̂0, X̂1, X̂2, X̂3}
are related similar to the changes defined by the inner automorphisms.

This observation allows us to use an optimal system of subalgebras of the Lie algebra L4

for studying equation (4.15). The construction of such an optimal system is not difficult.
Moreover, it is simplified if one notices that L4 = F1

⊕
F2, where F1 = {X0, X1} and

F2 = {X2, X3} are ideals of the Lie algebra L4. This decomposition gives possibility to
apply a two-step algorithm [18, 91]. The result of construction of an optimal system of
subalgebras is presented in Table 1.

For obtaining functions g(t, x) using the optimal system of subalgebras one needs to
substitute the constants ci corresponding to the basis generators of a subalgebra into
equation (4.15), and solve the system of equations thus obtained. The result of group
classification is presented in Table 2, where α and k are constant and the function Φ is
an arbitrary function of its argument.
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Table 4.1: Optimal system of subalgebras
Algebra Algebra

1. {X2 + αX0, X3 + βX0, X1} 11. {X2, X3}
2. {X0, X1, X3} 12. {X3 + αX0, X1}
3. {X0, X1, X2} 13. {X0, X1}
4. {X0, X2, X3} 14. {X2 + αX0}
5. {X2, X3} 15. {X2 +X1}
6. {X2 −X0, X1 + X3} 16. {X2}
7. { αX2 − 2X0, X3} 17. {X3 + αX0}
8. {X2 +X1, X3} 18. {X3 +X1}
9. {X0, X2} 19. {X3}
10. {X2 + αX0, X1} 20. {X0}

21. {X1}

Table 4.2: Group classification
No. Function Admitted generators Condition
1. g = kx−2 {X2 +X0, X3, X1}
2. g = kx2(xt+ 1)−4 {X2 −X0, X1 + X3}
3. g = kxα { αX2 − 2X0, X3} α 6= −2

4. g = kx−2e2x−1 {X2 +X1, X3}
5. g = kt−2 {X0, X2}
6. g = kx−2t2(α−1) {X2 + αX0, X1} α 6= 1
7. g = kx−2e2αt {X3 + αX0, X1} α 6= 0
8. g = t−2Φ(xt−α) {X2 + αX0}
9. g = x−2e2x−1

Φ(tex
−1

) {X2 +X1}
10. g = Φ(xe−αt) {X3 + αX0}
11. g = x−2Φ(t+ x−1) {X3 +X1}
12. g = Φ(x) {X3}
13. g = Φ(t) {X0}
14. g = x−2Φ(t) {X1}
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Chapter 5

On first integrals of second-order
ordinary differential equations

Abstract
Here we discuss first integrals of a particular representation associated with second-

order ordinary differential equations. The linearization problem is a particular case of the
equivalence problem together with a number of related problems such as defining a class
of transformations, finding invariants of these transformations, obtaining the equivalence
criteria, and constructing the transformation. The relationship between the integral form,
the associated equations, equivalence transformations and some examples are considered
as part of the discussion illustrating some important aspects and properties.

5.1 Invariants of a class of second-order equations

We recall some known properties of a second-order equation,

ẍ+ a3(t, x)ẋ3 + 3a2(t, x)ẋ2 + 3a1(t, x)ẋ+ a0(t, x) = 0. (5.1)

This form of equation is conserved with respect to any change of the independent and
dependent variables

τ = ϕ(t, x), u = ψ(t, x). (5.2)

In fact, derivatives are changed by the formulae

u′ = g(t, x, ẋ) =
Dtψ

Dtϕ
=
ψt + ẋψx
ϕt + ẋϕx

,

u′′ = P (t, x, ẋ, ẍ) =
Dtg

Dtϕ
=
gt + ẋgx + ẍgẋ
ϕt + ẋϕx

= (ϕt + ẋϕx)
−3(ẍ(ϕtψx − ϕxψt) + ẋ3(ϕxψxx − ϕxxψx)

+ẋ2(ϕtψxx − ϕxxψt + 2(ϕxψtx − ϕtxψx))

+ẋ(ϕxψtt − ϕttψx + 2(ϕtψtx − ϕtxψt)) + ϕtψtt − ϕttψt).

(5.3)

Here Dt is the operator of the total derivative with respect to t, and

∆ = ϕtψx − ϕxψt 6= 0.

Since the Jacobian of the change of variables ∆ 6= 0, the equation

u′′ + b3(τ, u)u′3 + 3b2(τ, u)u′2 + 3b1(τ, u)u′ + b0(τ, u) = 0 (5.4)
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becomes (5.1), where

a1 = ∆−1 (ϕxψxx − ϕxxψx + ϕ3
xb0 + 3ϕ2

xψxb1 + 3ϕxψ
2
xb2 + ψ3

xb3) ,

a2 = ∆−1 (3−1(ϕtψxx − ϕxxψt + 2(ϕxψtx − ϕtxψx)) + ϕtϕ
2
xb0

+ϕx(2ϕtψx + ϕxψt)b1 + (ϕtψ
2
x + 2ϕxψtψx)b2 + ψtψ

2
xb3) ,

a3 = ∆−1 (3−1(ϕxψtt − ϕttψx + 2(ϕtψtx − ϕtxψt)) + ϕ2
tϕxb0

+(ϕ2
tψx + 2ϕtϕxψt)b1 + (2ϕtψtψx + ϕxψ

2
t )b2 + ψ2

tψxb3) ,

a0 = ∆−1 (ϕtψtt − ϕttψt + ϕ3
t b0 + 3ϕ2

tψtb1 + 3ϕtψ
2
t b2 + ψ3

t b3) .

(5.5)

Two quantities play a major role in the study of equations (5.4):

L1 = −∂Π11

∂u
+
∂Π12

∂τ
− b0Π22 − b2Π11 + 2b1Π12,

L2 = −∂Π12

∂u
+
∂Π22

∂τ
− b3Π11 − b1Π22 + 2b2Π12,

where

Π11 = 2(b2
1 − b2b0) + b1τ − b0u, Π22 = 2(b2

2 − 3b1b3) + b3τ − b2u,

Π12 = b2b1 − b3b0 + b2τ − b1u.

Under point transformation (5.2) these components are transformed as follows [92]:

L̃1 = ∆(L1ϕt + L2ψt), L̃2 = ∆(L1ϕx + L2ψx). (5.6)

Here tilde means that a value corresponds to system (5.1): the coefficients bi are exchanged
with ai, the variables τ and u are exchanged with t and x, respectively.

S.Lie [49] showed that any equation with L1 = 0 and L2 = 0 is equivalent to the
equation u′′ = 0. R.Liouville [92] also found other relative invariants, for example,

v5 = L2(L1L2τ − L2L1τ ) + L1(L2L1u − L1L2u)−

b3L
3
1 + 3b2L

2
1L2 − 3b1L1L

2
2 + b0L

3
2,

and

w1 = L−4
1

(
−L3

1(Π12L1 − Π11L2) +R1(L2
1)τ − L2

1R1τ + L1R1(b1L1 − b0L2)
)
,

where
R1 = L1L2τ − L2L1τ + b2L

2
1 − 2b1L1L2 + b0L

2
2.

Notice that for the Painlevé equations L1 6= 0 and L2 = 0, v5 = 0 and w1 = 0.

Remark 5.1.1. Without loss of generality one can assume that L1 6= 0 and L2 = 0,
otherwise a change of the dependent and independent variables such that the functions
ϕ(t, x) and ψ(t, x) satisfy the equation

ϕyL1 + ψyL2 = 0

leads to this case. For the sake of simplicity we study equations with L1 6= 0 and L2 = 0.
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5.2 General difficulties of the equivalence problem

Despite the fact that the criteria for linearizability can be simply checked, there are
certain difficulties for finding the linearizing transformation. Let us consider a second-
order ordinary differential equation

y′′ + b(x, y)y′2 + c(x, y)y′ + d(x, y) = 0, (5.7)

where the coefficients satisfy the conditions

cy = 2bx, dyy − bxx − bxc+ byd+ dyb = 0. (5.8)

The transformation
t = ϕ(x), u = ψ(x, y) (5.9)

mapping equation (5.7) into the equation u′′ = 0 is found from the compatible conditions

ψyy = ψyb, 2ψxy = ϕ−1
x ψyϕxx + cψy, ψxx = ϕ−1

x ψxϕxx + ψyd, (5.10)

2ϕ′ϕ′′′ − 3ϕ′′ 2

ϕ′ 2
= H, (5.11)

where H = 4(dy+bd)−(2cx+c2). Notice that by virtue of the second equation of (5.8) the
function H = H(x). To solve the system (5.10), (5.11), one has to firstly solve equation
(5.11). The change ϕ′ = g−2 reduces equation (5.11) into the equation

g′′ +
1

4
Hg = 0. (5.12)

It is well-known that the Riccati substitution

g′ = gv

reduces equation (5.12) into the Riccati equation

v′ + v2 +
1

4
H = 0.

Thus, in order to solve equation (5.11) one has to be able to solve the Riccati equation,
which is not solvable in the general case.

The example presented above shows that the solution of the linearization problem
is only theoretical: in many applications it becomes impossible to find the linearizing
transformation. A similar problem is also encountered in finding the intermediate integral.

5.3 Existence of the First Integral

The existence of the first integral of the form:

I = A(t, x) +
1

B(t, x)ẋ+Q(t, x)
, (B 6= 0), (5.13)

of a second-order equation requires that the necessary form of the equation is (5.1), where
the coefficients are related by the equations

a0 = (Qt − AtQ2)/B, a1 = (Bt +Qx − 2AtBQ− AxQ2)/(3B),

a2 = (Bx − AtB2 − 2AxBQ)/(3B), a3 = −AxB.
(5.14)
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The sufficient conditions for existence of an intermediate integral of the form (5.13) are
obtained if one considers (5.14) as equations for the functions A(t, x), B(t, x) and Q(t, x)
with given coefficients ai(t, x), (i = 0, 1, 2, 3).

Equations (5.14) give

At = B−1G, Ax = −B−1a3, Qt = a0B +B−1GQ2,

Bt = −Qx + 2GQ+ 3a1B − a3B
−1Q2,

(5.15)

where
G = B−1(Bx − 3a2B + 2a3Q).

The function G(t, x) is introduced for simplicity of calculations.
The equations (Ax)t = (At)x and (Bx)t = (Bt)x give

Gx = −B−1Qxa3 − a3t + 3a1a3 + 3a2G−B−2a2
3Q

2 +G2,

Qxx = B−2(QxB(3a2B − 4a3Q+ 3BG)−GtB
3 +B3(3a1x − 3a2t + 2a0a3)

+(6a2a3 − a3x)BQ
2 − 4a2

3Q
3 + 4a3BGQ

2).
(5.16)

The equation (Qxx)t = (Qt)xx becomes

Gtt = B−4(4GtQxB
3 − 3GtB

4a1 + 4GtB
2a3Q

2 − 2Q2
xB

2G− 2Ga2
3Q

4

+3QxB
3(2a2t − a1x − a0a3)− 4QxBGa3Q

2 +B4G2a0 +B4G(a0x + 3a0a2)
+B4(a0ta3 + a1tx + 3a1xa1 − 2a2tt − 6a2ta1 + a3ta0 + 3a0a1a3 − λ1)
−3B2a3Q

2(a1x − 2a2t + a0a3)).
(5.17)

The equation (Gtt)x − (Gx)tt = 0 leads to S = 0, where

S ≡ 12GtQxB
3G− 6G2

tB
4 − 6Q2

xB
2G2 + 12GtB

2Ga3Q
2 − 12QxBG

2a3Q
2

+12(a1x − 2a2t + a0a3)B2(GtB
2 −QxBG−Ga3Q

2)− 6G2a2
3Q

4 + 3B4Gλ1

−B4(λ1x − 3a2λ1 + 6(a1x − 2a2t + a0a3)2).

Furthermore the equations

Sx − 6(G+ a2)S = 0, B2St − 6(QxB −B2a1 + a3Q
2)S = 0

are
Ba3Qx = 3B2Gµ1 − 5B2G2 +B2(3a1a3 − µ2)− a2

3Q
2, (5.18)

Gt = (15B2λ1)−1(6QxBλ1(5G− µ1)− 3B2G(λ1t + 6a1λ1) + 6a3λ1Q
2(5G− µ1)

+B2(λ1µ1t + 12a1xλ1 − 24a2tλ1 + λ1tµ1 + 12a0a3λ1 + 6a1λ1µ1)),
(5.19)

where all coefficients µi, (i = 1, 2, ..., 7) are presented in the Appendix.
For further analysis one needs to consider two cases: a) a3 6= 0 and b)1 a3 = 0. It is

also worth noting that because of the relative invariant v5 the property for a3 not to be
equal to zero is an invariant property of the point transformations conserving L2 = 0.

1This case has been studied in the literature.
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5.3.1 Case a3 6= 0

Let a3 6= 0, then equation (5.19) gives

Qx = (Ba3)−1(3B2Gµ1 − 5B2G2 +B2(3a1a3 − µ2)− a2
3Q

2).

Thus, all first-order derivatives of the unknown functions A(t, x), B(t, x), Q(t, x) and
G(t, x) are found:

At = B−1G, Ax = −B−1a3, Qt = Ba0 +B−1GQ2,

Qx = (−5B2G2 + 3B2Gµ1 +B2(3a1a3 − µ2)− a2
3Q

2)/(Ba3),

Bt = (5BG2 − 3BGµ1 +Bµ2 + 2Ga3Q)/a3, Bx = BG+ 3Ba2 − 2a3Q,

Gt = (−10G3 + 8G2µ1 −Gµ3 + λ1µ4)/a3, Gx = 6G2 + 3G(a2 − µ1)− a3t + µ2.
(5.20)

The overdetermined system (5.20) is compatible if the conditions

(At)x − (Ax)t = 0, (Bt)x − (Bx)t = 0,

(Qx)t − (Qt)x = 0, (Gt)x − (Gx)t = 0
(5.21)

are satisfied. Notice also that by virtue of (5.20), equations (5.15) are satisfied. Hence, it
is not necessary to substitute the first-order derivatives into the intermediate equations
(5.16) and (5.17).

The conditions (5.21) are reduced to the equations

H ≡ 12G3a3 −G2µ5 −Gµ6 − µ7 = 0, (5.22)

75G4 − 80µ1G
3 + 5q2G

2 − q1G− q0 = 0, (5.23)

where coefficients qi, (i = 0, 1, 2) are presented in the Appendix. Let us also add to this
set of equations the following equations:

Hx = 0, Ht = 0. (5.24)

The equation (5.22) is a polynomial equation of third degree with respect to G. Ex-
cluding from equations (5.23) and (5.24) the value

G3 = (G2µ5 +Gµ6 + µ7)/(12a3),

equations (5.23) and (5.24) become

5α1G
2 + β1G+ γ1 = 0, α2G

2 + β2G+ γ2 = 0, 25α3G
2 + β3G+ 25γ3 = 0, (5.25)

where all coefficients αi, βi and γi, (i = 1, 2, 3) are presented in Appendix.
In solving equation (5.22) with respect to G, one has to also satisfy the conditions

Gt = (G)t and Gx = (G)x. Satisfying these conditions is equivalent to satisfying equations
(5.24). Thus, further study is just an algebraic study of equations (5.22) and (5.25). This
study depends on the coefficients αi, βi, (i = 1, 2, 3).

For example, assume that α1 6= 0. From the first equation of (5.25) one finds G2.
Substituting G2 into (5.22) and the remaining equations of (5.25), one obtains linear
equations with respect to G. One needs to study resolving these linear equations with
respect G. This depends on the coefficients of these equations. Notice that one does not
need to differentiate equations any more.
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5.4 Case G = 0

Let us consider the case G = 0 without restrictions for2 λ2. Then

At = 0, Ax = −a3/B, Qt = a0B,
Bt = (−QxB + 3a1B

2 − a3Q
2)/B, Bx = 3a2B − 2a3Q.

(5.26)

The equations (Ax)t − (At)x = 0 and (Bx)t − (Bt)x = 0 give

Qxa3B = −a3tB
2 + 3a1a3B

2 − a2
3Q

2, (5.27)

QxxB
2 +QxB(2a3Q− 3a2B) +B3(3a2t − 3a1x − 2a0a3)

+BQ2(a3x − 6a2a3) + 2B2Q(3a1a3 − a3t) + 2a2
3Q

3 = 0.
(5.28)

5.4.1 Case a3 6= 0

If a3 6= 0, then equation (5.27) defines

Qx = (−a3tB
2 + 3a1a3B

2 − a2
3Q

2)/(a3B). (5.29)

This reduces equation (5.28) and the equation (Qx)t − (Qt)x = 0:

(a3tx − 3a2ta3 + 2a0a
2
3)a3 − a3ta3x = 0,

a3tt − 3a3ta1 + (a0x − 3a1t + 3a0a2)a3 = 0.
(5.30)

Thus, if equation (5.1) satisfies the conditions (5.30), then the overdetermined system of
equations consisting of equations (5.26) and (5.29) is involutive.

For example, for a3 = 1 the conditions (5.30) can be solved

a0 = 3a2t/2, a1 = a2x/2 + 3a2
2/4 + ϕ,

where ϕ(x) is an arbitrary function. This means that all equations of the form

ẍ+ ẋ3 + 3a2ẋ
2 + (a2x/2 + 3a2

2/4 + ϕ)ẋ+ 3a2t/2 = 0 (5.31)

with arbitrary functions a2(t, x) and ϕ(x) have the intermediate integral

I = A+
1

B(ẋ+ 3
2
a2) +H

,

where the functions A(x), B(x) and H(x) are solutions of the equations

A′ = −1/B, B′ = −H, H ′ = 3Bϕ−H2/B.

Notice that for a2t = 0 equation (5.30) can be reduced to a first-order ordinary differ-
ential equation by the standard change ẋ = y(x) whereas for a2t 6= 0 this technique is not
applicable.

2There is no restrictions for λ2
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5.4.2 Case a3 = 0

In this case equation (5.27) is satisfied and equation (5.28) becomes

Qxx = 3Qxa2 − 3B(a2t − a1x). (5.32)

The equation (Qxx)t − (Qt)xx = 0 gives

3Qxη = B(ηt + 3a1η − λ1), (5.33)

where η = a1x − 2a2t. Hence, for η = 0 one has that3 λ1 = 0, and there are no other
additional equations for the functions A(t, x), B(t, x) and Q(t, x). This means that the
system of equations consisting of equations (5.26) and (5.32) is involutive. If η 6= 0, then
one can find Qx. The equations (Qx)t − (Qt)x = 0 and (Qxx)x − (Qx)x = 0 give the
conditions

3ηηtt = 4η2
t − 3ηtηa1 + 15ηtλ1 + 9η2(a0x − a1t + 3a0a2 − 2a2

1)
−9η(λ1t + a1λ1) + 9λ2

1,

ηηtx = ηtηx + 3ηxλ1 − 2η3 + 3η2a2t − 3ηλ1x.

(5.34)

Thus, if equation (5.1) satisfies the conditions (5.34), then the overdetermined system of
equations consisting of equations (5.26) and (5.33) is involutive.

5.5 Examples

In this section we consider examples of first integrals of the form

I =
A(t, x)ẋ+B(x, t)

ẋ+Q(x, t)
. (5.35)

Example 5.5.1. The equation associated with the first integral I in (5.35) is given by

ẍ+
Ax
∆
ẋ3+

1

∆
(At+Bx+AxQ−AQx)ẋ

2+
1

∆
(Bt+AtQ−AQt+BxQ−BQx)ẋ+

1

∆
(QBt−BQt) = 0,

(5.36)
where ∆ = AQ−B.

Proof. Re-arranging (5.35), we obtain

I(ẋ+Q(x, t)) = A(t, x)ẋ+B(x, t)

which immediately yields

I(ẍ+Qxẋ+Qt) = Aẍ+ Axẋ
2 + Atẋ+Bxẋ+Bt

(Aẋ+B)(ẍ+Qxẋ+Qt) = (ẋ+Q(x, t))(Aẍ+ Axẋ
2 + Atẋ+Bxẋ+Bt)

2

This equation is closely related to the (unparametrised) geodesic equations of some
connection Γ on U ∈ R2

ẍc + Γcabẋ
aẋb = vẋc,

3Notice that for not linearizable equation (5.1) without loss of generality one can assume that λ1 6= 0.
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for xa(t) = (x(t), y(t)). Eliminating the parameter t yields the second-order ODE for y
as a function of x

d2y

dx2
= a(x, y)

(
dy

dx

)3

+ b(x, y)

(
dy

dx

)2

+ c(x, y)

(
dy

dx

)
+ d(x, y) = 0, (5.37)

where

a(x, y) = −Γ2
11, b(x, y) = Γ1

11 − 2Γ2
12, c(x, y) = 2Γ1

12 − Γ2
22, d(x, y) = Γ1

22.

In other words, any second order ODEs with cubic nonlinearity in the first derivatives
of the form (5.36) gives rise to some projective structures.

Example 5.5.2. A quasimonomial q over K is defined as

q = xc =
n∏
i=1

xcii ci ∈ K.

A quasimonomial function is a finite sum of quasimonomials f : C → Σ, where Σ =
C ∪ {∞}, defined as

x −→
∑

ai

n∏
j=1

x
cij
j .

We assume A = xαtβ, B = xγtδ and Q = 1 in (5.36) to obtain the second-order
equation

ẍ+
α

x(1− xγ−α)
ẋ3 +

α + β x
t

+ γxγ−α

x(1− xγ−α)
ẋ2 +

β x
t

+ β x
γ−α+1

t
+ γxγ−α

x(1− xγ−α)
ẋ+

β x
γ−α+1

t

x(1− xγ−α)
= 0,

(5.38)
which admits the first integral

I =
xαtβ(ẋ+ xγ−α)

ẋ+ 1
.

Claim 5.5.1. Setting α = −1, β = 1 = δ, γ = 0, we obtain the first integral of

ẍ+
1

x(x− 1)
ẋ3 +

(
1

x(x− 1)
+

1

t(1− x)

)
ẋ2 +

1

t

(
1 + x

1− x

)
ẋ+

x

t(1− x)
= 0 (5.39)

as

I =

(
t

x

)
· ẋ+ x

ẋ+ 1
.

Example 5.5.3. The first integral of another second-order equation

ẍ+
t

x2(x− 1)
ẋ3 +

(
2

1− x
− (1 + x)t

(1− x)x2
+

1

x

)
ẋ2 +

(
1

1− x
+

1− t
(1− x)x

)
ẋ+

1

1− x
= 0

(5.40)
is

I = et/x
ẋ+ x

ẋ+ 1
.

Example 5.5.4. Let us set A = Q−1 = eα(x)t and B = b (constant) in (5.35). Then we
obtain the equation

(1−b)ẍ+eα(x)t(α′(x)tẋ+α(x))ẋ2+2(α′(x)tẋ+α(x))ẋ+e−α(x)t(α′(x)tẋ+bα(x)) = 0, (5.41)

corresponding first integral is

I =
eα(x)tẋ+ b

ẋ+ e−α(x)t
.
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5.5.1 Time-independent case

Consider At = Bt = Qt = 0. Thus the equation (5.35) becomes

ẍ+
Ax
∆
ẋ3 +

1

∆
(Bx + AxQ− AQx)ẋ

2 +
1

∆
(AtQ− AQt +BxQ−BQx)ẋ = 0, (5.42)

which can be expressed as

ẋ = y, ẏ = − 1

∆

(
Axy

3 + (Bx + AxQ− AQx)y
2 + (BxQ−BQx)y

)
. (5.43)

This yields the flow equation

dy

dx
= − 1

∆

(
Axy

2 + (Bx + AxQ− AQx)y + (BxQ−BQx).
)

Assume A = 1, thus ∆ = Q−B. The flow becomes

dy

dx
− ∆′(x)

∆(x)
y =

B2

∆

d

dx
(
Q

B
).

This immediately yields

y = − 1

Q/B − 1
+ C1.

Thus we obtain

t =

∫
dx

C1Q− (C1 + 1)B(x)
.

5.5.2 Reduction

Let Ax = 0 and set

1

∆
(At +Bx−AQx) = b(x, t) =

1

2
φx

1

∆
(Bt +AtQ−AQt +BxQ−BQx) = c(x, t) = φt.

(5.44)
A large number of second-order ODEs in the Painlevé-Gambier classification system

belong to the following class of equations, namely

ẍ+
1

2
φxẋ

2 + φtẋ+B(t, x) = 0.

This equation yields the Lagragian description via Jacobi’s last multiplier. Writing this
equation in the form

ẍ = F(t, x, ẋ) = −[
1

2
φxẋ

2 + φtẋ+B(t, x)],

the Jacobi last multiplier M is given by the solution of

d

dt
lnM = −∂F

∂ẋ
.

In the present case we have

M =
∂2L

∂ẋ2
= expφ(t, x).
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We then obtain the Lagrangian as

L(t, x, ẋ) = eφ(t,x) ẋ
2

2
+ f1(t, x)ẋ+ f2(t, x).

Conditions for Lagrangians
Let us express φ in terms A,B,Q and find the conditions for Lagrangian. Defining

φx =
2

∆
(At +Bx − AQx),

φt =
1

∆
(Bt + AtQ− AQt +BxQ−BQx),

immediately yields

φxt =
2

∆
(A′′(t) +Bxt − A′(t)Qx − AQxt)−

2

∆2
(A′(t)Q+ AQt −Bt)(A

′(t) +Bx − AQx),

φtx =
1

∆
(Btx+A′Qx−AQtx+BxxQ−BQxx)−

1

∆2
(AQx−Bx)(Bt+A

′Q−AQt+BxQ−BQx).

Claim 5.5.2. The second-order nonlinear equation of the form

ẍ+ b(x, t)ẋ2 + c(x, t)ẋ+ d(x, t) = 0

admits Lagrangian provided

2A′′ +Bxt − 3A′Qx − AQxt −BxxQ+BQxx)(AQ−B) =

A′Q(2A′ + 3Bx − 3AQx) + (AQt −Bt)(2A
′ +Bx − AQx)

−(AQx −Bx)(BxQ−BQx),

where b(x, t), c(x, t) defined as (8) and d(x, t) = 1
∆

(QBt −BQt).

Outline of proof. It follows from the compatibility condition φxt = φtx.
2

Example 5.5.5. Set A = 1, ∆ = AQ − B = xαtβ and assume Q = xγ in (5.45), the
equation becomes

ẍ− α

x
ẋ2 +

(
(γ − α)xγ−1 − β

t

)
ẋ− βxγ

t
= 0 (5.45)

whose first integral is

I =
ẋ+ xγ − xαtβ

ẋ+ xγ
.

Let us find the condition γ and α for which equation (5.45) gives Lagrangian descrip-
tion.

Claim 5.5.3. For γ = α or γ = 1 equation (5.45) yields a Lagrangian description.

Proof. Equate 1
2
φx = −α

x
and φt = (γ−α)xγ−1− β

t
. It immediately yields φxt = 0 and

φtx = (γ − α)(γ − 1)xγ−2. Thus from the compatibility condition we obtain our criteria.
2
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5.6 Conclusion

Any second-order ordinary differential equation which possesses a first integral of the
form (1.11) has to be cubic with respect to the first-order derivative (5.1). The present
research gives a complete criteria of the existence of a first integral of the form (1.11) for
a second-order ordinary differential equation (5.1) which is reduced to the equation with
L2 = 0. Despite that any second-order ordinary differential equation (5.1) can be reduced
to the equation with L2 = 0, the complete solving of the problem requires the sufficient
conditions be given using coefficients of the original equation (not reduced). This is still
an open problem.

Appendix

Coefficients are

µ1 = (λ1x − 3a2λ1)/λ1,

µ2 = (µ1x + 3a3t − 3a2µ1 + µ2
1)/3,

µ3 = (λ1ta3 − 24a1a3λ1 + 6λ1µ
2
1 + 10λ1µ2)/(5λ1),

µ4 = (µ1ta3 + 12a3(a1x − 2a2t + a0a3 + a1µ1)− 6µ3
1 − 4µ1µ2 + 5µ1µ3)/(15λ1),

µ5 = a3x − 6a2a3 + 10a3µ1,

µ6 = (a3ta3 − 6a1a
2
3 + 18a3µ

2
1 + a3µ2 − a3µ3 − 3µ1µ5)/5,

µ7 = (3a2ta
2
3 − µ2xa3 − 2a0a

3
3 − 18a1a

2
3µ1 + 6a2a3µ2 + a3λ1µ4 + 54a3µ

3
1

−4a3µ1µ2 − 3a3µ1µ3 − 9µ2
1µ5 − 15µ1µ6 + µ2µ5)/5,

α1 = 720a2
3µ

2
1 − 432a1a

3
3 + 144a2

3µ2 − 144a2
3µ3 − 80a3µ1µ5 − 300a3µ6 − 5µ2

5,

β1 = 1728a1xa
3
3 − 3456a2ta

3
3 + 1776a0a

4
3 + 3024a1a

3
3µ1 − 1680a2

3λ1µ4 − 3456a2
3µ

3
1

−1008a2
3µ1µ2 + 1008a2

3µ1µ3 + 432a3µ
2
1µ5 + 1040a3µ1µ6 − 300a3µ7 − 25µ5µ6,

γ1 = 48a0xa
4
3 − 144a1ta

4
3 + 48µ2ta

3
3 + 144a0a2a

4
3 − 432a1a

3
3µ2 − 144a2

3λ1µ1µ4 + 96a2
3µ

2
2

+864a2
3µ

2
1µ2 − 48a2

3µ2µ3 − 144a3µ1µ2µ5 + 320a3µ1µ7 − 240a3µ2µ6 − 25µ5µ7,

α2 = −72µ5ta
3
3 + 432a1a

3
3µ5 + 2592a3

3λ1µ4 − 1296a2
3µ

2
1µ5 + 1152a2

3µ1µ6 − 72a2
3µ2µ5

−2160a2
3µ7 + 264a3µ1µ

2
5 + 180a3µ5µ6 − 5µ3

5,

β2 = −72µ6ta
3
3 + 432a1a

3
3µ6 − 144a2

3λ1µ4µ5 − 1296a2
3µ

2
1µ6 + 1728a2

3µ1µ7

−72a2
3µ2µ6 − 72a2

3µ3µ6 + 264a3µ1µ5µ6 − 60a3µ5µ7 + 240a3µ
2
6 − 5µ2

5µ6,

γ2 = −72µ7ta
3
3 + 432a1a

3
3µ7 − 72a2

3λ1µ4µ6 − 1296a2
3µ

2
1µ7 − 72a2

3µ2µ7 − 144a2
3µ3µ7

+264a3µ1µ5µ7 + 240a3µ6µ7 − 5µ2
5µ7,

α3 = −2µ5xa3 − 432a1a
3
3 + 18a2a3µ5 + 1296a2

3µ
2
1 + 144a2

3µ2 − 72a2
3µ3

−242a3µ1µ5 − 336a3µ6 + 3µ2
5,

β3 = −1212a1xa
3
3 + 2424a2ta

3
3 − 10µ5ta

2
3 + 30µ5xa3µ1 − 1244a0a

4
3 + 4644a1a

3
3µ1

+120a1a
2
3µ5 − 270a2a3µ1µ5 + 1540a2

3λ1µ4 − 18336a2
3µ

3
1 − 1548a2

3µ1µ2 + 468a2
3µ1µ3

+3312a3µ
2
1µ5 + 5090a3µ1µ6 − 30a3µ2µ5 + 20a3µ3µ5 + 850a3µ7 + 75µ5µ6,

γ3 = −2µ7xa3 + 12a1a
2
3µ6 + 30a2a3µ7 − 36a3µ

2
1µ6 − 38a3µ1µ7 − 4a3µ2µ6

+2a3µ3µ6 + 6µ1µ5µ6 + 3µ5µ7 + 10µ2
6,
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q0 = a0xa
2
3 − 3a1ta

2
3 − a3tµ2 + µ2ta3 + 3a0a2a

2
3 − 3a1a3µ2 − 3λ1µ1µ4 + µ2

2,

q1 = 36a1xa3 − 72a2ta3 + 3a3tµ1 + 37a0a
2
3 + 45a1a3µ1 − 35λ1µ4 − 18µ1(µ2

1 + µ2 − µ3),

q2 = a3t + 3a1a3 + 3µ2
1 − 2µ2 + 2µ3.
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Chapter 6

Complete group classification of
systems of linear second-order
ordinary differential equations with
constant coefficients

Abstract.
The present research corrects the way of using Jordan canonical forms for studying

the symmetry structures of systems of linear second-order ordinary differential equations
with constant coefficients applied in [81]. The approach is demonstrated for a system
consisting of two equations.

6.1 Equivalence Lie group

The first step in group classification is the step of obtaining an equivalence Lie group.
The equivalence Lie group allows one to change the coefficients of the original system of
equations. For completeness, this group is presented here.

Let us consider the system of equations

ẍ = m11x+m12y,
ÿ = m21x+m22y,

where mij are real-valued constants. The functions x(t) and y(t) are also real-valued. In
matrix form, these equations are written as

ẍ = Mx,

where

x =

(
x
y

)
, M =

(
m11 m12

m21 m22

)
.

The equivalence Lie group of this system is defined by the generators:

Xe
1 = ∂t, Xe

2 = x∂x +m12∂m12 −m21∂m21 , Xe
3 = y∂y −m12∂m12 +m21∂m21 ,

Xe
4 = t∂t − 2(m22∂m22 +m21∂m21 +m11∂m11 +m12∂m12),
Xe

5 = y∂x +m21∂m11 + (m22 −m11)∂m12 −m21∂m22 ,
Xe

6 = x∂y −m12∂m11 − (m22 −m11)∂m21 +m12∂m22 .
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The transformations corresponding to the generators Xe
2 , Xe

3 and Xe
4 define scaling of

the coefficients if one scales the variables x, y and t, respectively. The transformations
corresponding to the generators Xe

5 and Xe
6 define the change of the coefficients if one

takes linear combinations of the dependent variables x and y. Since the transformations
corresponding to these generators are used for simplifying the canonical form, let us
present them here:

Xe
2 : x̃ = xea, m̃12 = m12e

a, m̃21 = m21e
−a;

Xe
3 : ỹ = yea, m̃12 = m12e

−a, m̃21 = m21e
a;

Xe
4 : t̃ = tea, m̃11 = m11e

−2a, m̃12 = m12e
−2a, m̃21 = m21e

−2a, m̃22 = m22e
−2a;

Xe
5 : x̃ = x+ ay, m̃11 = m11 + am21, m̃12 = m12 + a(m22 −m11)− a2m21, m̃22 = m22 − am21;

Xe
6 : ỹ = y + ax, m̃11 = m11 − am12, m̃21 = m21 − a(m22 −m11)− a2m12, m̃22 = m22 + am12.

Here only changeable variables are presented. There are also four involutions correspond-
ing to the discrete transformations

E1 : x̃ = −x;
E2 : ỹ = −y;

E3 : t̃ = −t;
E4 : x̃ = y, ỹ = x.

6.2 Canonical forms

For a real-valued 2× 2 matrix M , the Jordan matrix is one of the following three types,

J1 =

(
a 0
0 b

)
, J2 =

(
a c
−c a

)
, J3 =

(
a 1
0 a

)
,

where a, b and c > 0 are real numbers. The matrix P has also real-valued entries in these
cases. The simplification of system (1.23) through scaling of the dependent variables and
independent variables depends on the form of the Jordan matrix.

6.2.1 Case J = J1

Since a and b are real-valued, it is well-known that for a = b the corresponding system
of equations (1.23) with J = J1 is reduced to the free particle system. The admitted Lie
algebra in this case is also well-known and consists of the generators:

X1 = ∂t, X2 = ∂x, X3 = ∂y, X4 = t∂x, X5 = t∂y, X6 = x∂x, X7 = y∂y, X8 = t∂t,
X9 = x∂t, X10 = y∂t, X11 = y∂x, X12 = x∂y,

X13 = x(y∂y + x∂x + t∂t), X14 = y(y∂y + x∂x + t∂t), X15 = t(y∂y + x∂x + t∂t).

If a 6= b, then using the equivalence transformations corresponding one part of the set
of admitted generators is

X1 = ∂t, X2 = x∂x, X3 = y∂y.

The remaining generators are defined by the formulae

X = ϕ(t)∂x, Y = ψ(t)∂y,

where
ϕ′′ = aϕ, ψ′′ = bψ.
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The general solution of these equations depends on the signs of the coefficients. Notice also
that using the involution E4 and the scaling of the independent variable corresponding to
Xe

4 , the coefficient a can be reduced to ±1, where the sign coincides with the sign of a.
Thus one obtains the cases:

(a.1) a = 1, b = 0: X4 = et∂x, X5 = e−t∂x, X6 = ∂y, X7 = t∂y;
(a.2) a = 1, b = k2 > 0: X4 = et∂x, X5 = e−t∂x, X6 = ekt∂y, X7 = e−kt∂y;
(a.3) a = 1, b = −k2 < 0: X4 = et∂x, X5 = e−t∂x, X6 = sin(kt)∂y, X7 = cos(kt)∂y;
(a.4) a = −1, b = 0: X4 = sin(t)∂x, X5 = cos(t)∂x, X6 = ∂y, X7 = t∂y;
(a.5) a = −1, b = −k2 < 0: X4 = sin(t)∂x, X5 = cos(t)∂x, X6 = sin(kt)∂y, X7 =

cos(kt)∂y;
Notice that the last two cases are missing in [81]. Considering the commutators tables,

one can show that the structure of these Lie algebras also differs from the structure of
the Lie algebras presented in [81]. However, in term of the dimension of the symmetry
Lie algebra no new dimension arises.

6.2.2 Case J = J2

Using the scaling corresponding to Xe
4 , and the involutions E1, E2, E4 (if necessary),

system (1.23) with J = J2 is reduced into the system

ẍ = ax+ y, ÿ = −x+ ay.

Calculations give the admitted Lie algebra corresponding to the generators

X1 = y∂x − x∂y, X2 = x∂x + y∂y, X3 = ∂t,
X4 = etq1 (cos(tq2)∂x − sin(tq2)∂y) , X5 = etq1 (sin(tq2)∂x + cos(tq2)∂y) ,
X6 = e−tq1 (cos(tq2)∂x + sin(tq2)∂y) , X7 = e−tq1 (sin(tq2)∂x − cos(tq2)∂y) ,

where

q1 =

√√
1 + a2 + a

2
, q2 =

√√
1 + a2 − a

2
.

This case is also missing in [81].

6.2.3 Case J = J3

In this case system (1.23) is
ẍ = ax+ y, ÿ = ay. (6.1)

One part of the set of admitted generators is

X1 = ∂t, X2 = y∂x, X3 = x∂x + y∂y.

The remaining generators are defined by the formula

X = c(t∂t − 2(y + ax)∂y) + ϕ∂x + (ϕ′′ − aϕ)∂y,

where the constant k and the function ϕ = ϕ(t) satisfy the equations

ca = 0, ϕ(4) − 2aϕ′′ + a2ϕ = 0.

Thus, one has three cases:
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(c.1) if a = 0, then ϕ = p4t
3 + p3t

2 + p2t+ p1, and the additional generators are

X4 = ∂x, X5 = t∂t − 2y∂y, X6 = t3∂x + 6t∂y, X7 = t2∂x + 2∂y, X8 = t∂x;

(c.2) if a = −k2 < 0, then c = 0 and ϕ = (p1t + p2) sin(kt) + (p3t + p4) cos(kt), and
the additional generators are

X4 = sin(kt)∂x, X5 = cos(kt)∂x,
X6 = 2k cos(kt)∂y + t sin(kt)∂x, X7 = t cos(kt)∂x − 2k sin(kt)∂y.

(c.3) if a = k2 > 0, then c = 0 and ϕ = (p1t+p2)ekt+(p3t+p4)e−kt, and the additional
generators are

X4 = ekt∂x, X5 = e−kt∂x, X6 = ekt(t∂x + 2k∂y), X7 = e−kt(t∂x − 2k∂y).

Here pi, (i = 1, 2, 3, 4) are constant.
In [81], the last case is presented incorrectly. One can check that the generator ∂x is

not admitted by system (6.1) in case (c.3).
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Chapter 7

Summary

7.1 Fluids with internal inertia

A systematic application of the group analysis method for modeling fluids with internal
inertia is considered in the third part of the research. The equations studied include mod-
els such as the nonlinear one-velocity model of a bubbly fluid (with incompressible liquid
phase) at small volume concentration of gas bubbles, and the dispersive shallow water
model. These models are obtained for special types of the potential function W (ρ, ρ̇, S).
The main feature of the present research is the study of the potential functions with
Wρ̇ρ̇S 6= 0. The group classification separates these models into 73 different classes. The
result is published in [93].

7.2 Applications of group analysis to

integro-differential equations

7.2.1 The Rudenko equation

The research deals with an evolutionary integro-differential equation describing nonlinear
waves. A particular choice of the kernel in the integral leads to well-known equations
such as the Khokhlov-Zabolotskaya equation, the Kadomtsev-Petviashvili equation and
others. Since the solutions of these equations describe many physical phenomena, the
analysis of the general model studied in this paper is important. One of the methods
for obtaining solutions of differential equations is provided by the Lie group analysis.
However, this method is not applicable to integro-differential equations. Therefore, in the
research we discuss new approaches developed in modern group analysis and apply them
to the general model considered in this paper. Reduced equations and exact solutions are
also presented. The result is published in [94].

7.2.2 The Boltzmann equation with sources

This part of the research considered in the project is started after visiting Suranaree
University of Technology by Professor Yu.N.Grigoriev. We started with the following
problem. In [48] the classical group analysis method was applied to the equation which
was obtained from the spatially homogeneous and isotropic Boltzmann equation with
sources. The derived equation is still a nonlocal partial differential equation. However,
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this property was not taken into account there. In the present paper this lack of [48] is
corrected. The result is published in [95, 96].

7.3 Application of group analysis to ordinary

differential equations

7.3.1 On first integrals of second-order ordinary differential equa-
tions

This part of the research considered in the project is devoted to the study of intermediate
integrals of a second-order ordinary differential equation of the form

I =
ẋA(t, x) + C(t, x)

ẋB(t, x) +Q(t, x)
.

This research is started after visiting Suranaree University of Technology by Professor
Sibusiso Moyo (DUT, South Africa). The sufficient conditions for existence of an inter-
mediate integral of the form presented above are obtained. The result is published in
[97].

7.3.2 Complete group classification of systems of two linear
second-order ordinary differential equations
with constant coefficients

Recent works by Wafo Soh [81] have focused on the study of systems of second-order
ordinary differential equations with constant coefficients. The studies deal with symme-
tries of systems of linear second-order ordinary differential equations with two and three
equations are considered. The research conducted in the project corrects the way of using
Jordan canonical forms for studying the symmetry structures of systems of linear second-
order ordinary differential equations with constant coefficients applied by Wafo Soh. The
result is published in [98].

7.4 Acknowledgements
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metry structures of systems of linear second-order ordinary differential equations with
constant coefficients applied in [1]. The approach is demonstrated for a system consisting
of two equations.
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1. Introduction

Recent works by Wafo Soh [1] have focused on the study of systems of second-order ordinary differential equations with
constant coefficients. The studies deal with symmetries of systems of linear second-order ordinary differential equations
with two and three equations are considered. The goal of the paper is to study the symmetry structure of a system of
n = 2 linear second-order ordinary differential equations with constant coefficients. Since a change of the dependent and
independent variables does not change the structure of the admitted Lie group, the author at first simplify the system,
and then calculate the admitted Lie group of the simplified system using the standard procedure.

The paper [1] concentrated attention on the system of n equations of the form

€x ¼ Mx; ð1:1Þ

where the overdot denotes differentiation with respect to t, x is an n-dimensional vector with complex entries, and M is an
n � n matrix with complex entries.

A first simplification of system (1.1) is achieved by using the Jordan normal form J of the matrix M

M ¼ P�1JP:

The change u = Px reduces system (1.1) to the system

€u ¼ Ju: ð1:2Þ

Next, a simplification of system (1.2) is made for coefficients corresponding to diagonal blocks of the Jordan matrix J: the
author applied scaling. This step is crucial in the paper. In fact, in case of a diagonal block of the Jordan matrix J, scaling of the
dependent variables does not change the coefficients of this part of the system. Hence, one can conclude that scaling is
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applied to the independent variable. Because the independent variable is real valued, one can only make a real valued scal-
ing. This allows one to reduce only one component of a diagonal coefficient: either the real or imaginary part of the eigen-
value of the Jordan matrix J. Whereas in [1] for any eigenvalue (including a complex eigenvalue) the corresponding
coefficients are reduced to the real number 1. This means that the author [1] considered in the corresponding cases only real
eigenvalues. Therefore, the results of [1] are not complete. For a complete study one also needs to study complex eigenvalues
corresponding to diagonal Jordan blocks.

It is also worth to notice that from the paper it is unclear how the author calculated an admitted Lie algebra. In the stan-
dard procedure, the dependent and independent variables are real-valued, whereas the results of [1] are obtained for n com-
plex-valued dependent variables. Does this mean that the authors considered 2n real-valued equations for calculating the
admitted Lie algebra?

The goal of the present paper is to correct the approach applied in [1]. The approach is illustrated by using a complete
study of symmetry structures of systems of two real-valued linear second-order ordinary differential equations with con-
stant coefficients. In application of this approach to a system with more than two equations one needs to take into account
that if a real-valued matrix M has a complex eigenvalue, then the conjugate number is also an eigenvalue. Only systems of
two second-order equations are considered here.

2. Equivalence Lie group

The first step in group classification is the step of obtaining an equivalence Lie group. The equivalence Lie group allows
one to change the coefficients of the original system of equations. For completeness, this group is presented here.

Let us consider the system of equations

€x ¼ m11xþm12y;

€y ¼ m21xþm22y;

where mij are real-valued constants. The functions x(t) and y(t) are also real-valued. In matrix form, these equations are writ-
ten as

€x ¼ Mx;

where

x ¼
x

y

� �
; M ¼

m11 m12

m21 m22

� �
:

The equivalence Lie group of this system is defined by the generators:

Xe
1 ¼ @t; Xe

2 ¼ x@x þm12@m12 �m21@m21 ; Xe
3 ¼ y@y �m12@m12 þm21@m21 ;

Xe
4 ¼ t@t � 2ðm22@m22 þm21@m21 þm11@m11 þm12@m12 Þ;

Xe
5 ¼ y@x þm21@m11 þ ðm22 �m11Þ@m12 �m21@m22 ;

Xe
6 ¼ x@y �m12@m11 � ðm22 �m11Þ@m21 þm12@m22 :

The transformations corresponding to the generators Xe
2; Xe

3 and Xe
4 define scaling of the coefficients if one scales the vari-

ables x, y and t, respectively. The transformations corresponding to the generators Xe
5 and Xe

6 define the change of the coef-
ficients if one takes linear combinations of the dependent variables x and y. Since the transformations corresponding to these
generators are used for simplifying the canonical form, let us present them here:

Xe
2 : ~x ¼ xea; ~m12 ¼ m12ea; ~m21 ¼ m21e�a;

Xe
3 : ~y ¼ yea; ~m12 ¼ m12e�a; ~m21 ¼ m21ea;

Xe
4 : ~t ¼ tea; ~m11 ¼ m11e�2a; ~m12 ¼ m12e�2a; ~m21 ¼ m21e�2a; ~m22 ¼ m22e�2a;

Xe
5 : ~x ¼ xþ ay; ~m11 ¼ m11 þ am21; ~m12 ¼ m12 þ aðm22 �m11Þ � a2m21; ~m22 ¼ m22 � am21;

Xe
6 : ~y ¼ yþ ax; ~m11 ¼ m11 � am12; ~m21 ¼ m21 � aðm22 �m11Þ � a2m12; ~m22 ¼ m22 þ am12:

Here only changeable variables are presented. There are also four involutions corresponding to the discrete
transformations

E1 : ~x ¼ �x;

E2 : ~y ¼ �y;
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E3 : ~t ¼ �t;

E4 : ~x ¼ y; ~y ¼ x:

3. Canonical forms

For a real-valued 2 � 2 matrix M, the Jordan matrix is one of the following three types,

J1 ¼
a 0
0 b

� �
; J2 ¼

a c

�c a

� �
; J3 ¼

a 1
0 a

� �
;

where a, b and c > 0 are real numbers. The matrix P has also real-valued entries in these cases. The simplification of system
(1.2) through scaling of the dependent variables and independent variables depends on the form of the Jordan matrix.

3.1. Case J = J1

Since a and b are real-valued, it is well-known that for a = b the corresponding system of Eq. (1.2) with J = J1 is reduced to
the free particle system. The admitted Lie algebra in this case is also well-known and consists of the generators:

X1 ¼ @t; X2 ¼ @x; X3 ¼ @y; X4 ¼ t@x; X5 ¼ t@y; X6 ¼ x@x; X7 ¼ y@y; X8 ¼ t@t ; X9 ¼ x@t; X10 ¼ y@t ;

X11 ¼ y@x; X12 ¼ x@y; X13 ¼ x y@y þ x@x þ t@t
� �

; X14 ¼ y y@y þ x@x þ t@t
� �

; X15 ¼ t y@y þ x@x þ t@t
� �

:

If a – b, then using the equivalence transformations, one part of the set of admitted generators is

X1 ¼ @t; X2 ¼ x@x; X3 ¼ y@y:

The remaining generators are defined by the formulae

X ¼ uðtÞ@x; Y ¼ wðtÞ@y;

where

u00 ¼ au; w00 ¼ bw:

The general solution of these equations depends on the signs of the coefficients.
Notice also that using the involution E4 and the scaling of the independent variable corresponding to Xe

4, the coefficient a
can be reduced to ±1, where the sign coincides with the sign of a. Thus one obtains the cases:

(a.1) a = 1, b = 0 : X4 = et@x, X5 = e�t@x, X6 = @y, X7 = t@y;
(a.2) a = 1, b = k2 > 0 : X4 = et@x, X5 = e�t@ x, X6 = ekt@y, X7 = e�kt@y;
(a.3) a = 1, b = �k2 < 0 : X4 = et@x, X5 = e�t@x, X6 = sin(kt)@y, X7 = cos(kt)@y;
(a.4) a = �1, b = 0 : X4 = sin(t)@x, X5 = cos(t)@x, X6 = @y, X7 = t@y;
(a.5) a = �1, b = �k2 < 0 : X4 = sin(t)@x, X5 = cos(t)@x, X6 = sin(kt)@y, X7 = cos(kt)@y;

Notice that the last two cases are missing in [1]. Considering the commutators tables, one can show that the structure of
these Lie algebras also differs from the structure of the Lie algebras presented in [1].

However, in term of the dimension of the symmetry Lie algebra no new dimension arises.

3.2. Case J = J2

Using the scaling corresponding to Xe
4, and the involutions E1, E2, E4 (if necessary), system (1.2) with J = J2 is reduced into

the system

€x ¼ axþ y; €y ¼ �xþ ay:

Calculations give the admitted Lie algebra corresponding to the generators

X1 ¼ y@x � x@y; X2 ¼ x@x þ y@y; X3 ¼ @t; X4 ¼ etq1 cosðtq2Þ@x � sinðtq2Þ@y
� �

;

X5 ¼ etq1 sinðtq2Þ@x þ cosðtq2Þ@y
� �

; X6 ¼ e�tq1 cosðtq2Þ@x þ sinðtq2Þ@y
� �

; X7 ¼ e�tq1 sinðtq2Þ@x � cosðtq2Þ@y
� �

;

where

q1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

þ a
2

s
; q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2
p

� a
2

s
:

This case is also missing in [1].
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3.3. Case J = J3

In this case system (1.2) is

€x ¼ axþ y; €y ¼ ay: ð3:3Þ

One part of the set of admitted generators is

X1 ¼ @t; X2 ¼ y@x; X3 ¼ x@x þ y@y:

The remaining generators are defined by the formula

X ¼ cðt@t � 2ðyþ axÞ@yÞ þu@x þ ðu00 � auÞ@y;

where the constant k and the function u = u(t) satisfy the equations

ca ¼ 0; uð4Þ � 2au00 þ a2u ¼ 0:

Thus, one has three cases:

(c.1) if a = 0, then u = p4t3 + p3t2 + p2t + p1, and the additional generators are

X4 ¼ @x; X5 ¼ t@t � 2y@y; X6 ¼ t3@x þ 6t@y; X7 ¼ t2@x þ 2@y; X8 ¼ t@x;

(c.2) if a = �k2 < 0, then c = 0 and u = (p1t + p2)sin(kt) + (p3t + p4)cos(kt), and the additional generators are

X4 ¼ sinðktÞ@x; X5 ¼ cosðktÞ@x; X6 ¼ 2k cosðktÞ@y þ t sinðktÞ@x; X7 ¼ t cosðktÞ@x � 2k sinðktÞ@y:

(c.3) if a = k2 > 0, then c = 0 and u = (p1t + p2)ekt + (p3t + p4)e�kt, and the additional generators are

X4 ¼ ekt@x; X5 ¼ e�kt@x; X6 ¼ ektðt@x þ 2k@yÞ; X7 ¼ e�ktðt@x � 2k@yÞ:

Here pi, (i = 1,2,3,4) are constant.
In [1], the last case is presented incorrectly. One can check that the generator @x is not admitted by system (3.3) in case

(c.3).

Acknowledgements

The present research was partially supported by NRCT (SUT).

References

[1] Wafo Soh C. Symmetry breaking of systems of linear second-order differential equations with constant coefficients. Commun Nonlinear Sci Numer
Simul 2010;15:139–43.

3450 S.V. Meleshko / Commun Nonlinear Sci Numer Simulat 16 (2011) 3447–3450

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



J Eng Math
DOI 10.1007/s10665-012-9590-9

On first integrals of second-order ordinary differential
equations

S. V. Meleshko · S. Moyo · C. Muriel ·
J. L. Romero · P. Guha · A. G. Choudhury

Received: 2 May 2012 / Accepted: 3 October 2012
© Springer Science+Business Media Dordrecht 2013

Abstract Here we discuss first integrals of a particular representation associated with second-order ordinary
differential equations. The linearization problem is a particular case of the equivalence problem together with a
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1 Introduction

Many methods of solving differential equations use a change of variables that transform a given differential equation
into another equation with known properties. Since the class of linear equations is considered to be the simplest
class of equations, it is attractive to transform a given differential equation into a linear equation. This problem,
which is called a linearization problem, is a particular case of the equivalence problem. The equivalence problem
can be formulated as follows. Let a set of invertible transformations be given. One can introduce the equivalence
property according to these transformations: two differential equations are equivalent if there is a transformation
of the given set that transforms one equation into another. The equivalence problem involves a number of related
problems such as defining a class of transformations, finding invariants of these transformations, obtaining the
equivalence criteria, and constructing the transformation.

1.1 Introduction to the problem

We give a short review of results related to an equivalence problem for a second-order ordinary differential equation
(ODE). Furthermore, we distinguish two types of transformations used in the equivalence problem for second-order
ODEs, namely point transformations and generalized Sundman transformations. Lie [1] also noted that all sec-
ond-order ODEs can be transformed into each other by means of contact transformations and that this is not so for
third-order equations. Thus this set of transformations cannot be applied to a classification of second-order ODEs.

Among the target equations, two classes of equations can be mentioned. One set of this class was obtained by
Lie [2]. Lie’s group classification of ODEs shows that the second-order equations can possess one, two, three, or
eight infinitesimal symmetries. The equations with eight symmetries can be linearized by a change of variables.
Lie showed that the latter equations are at most cubic in the first derivative and gave a convenient invariant descrip-
tion of all linearizable equations. A similar description of the equations with three symmetries was provided in
[3,4]. Another set of target classes corresponds to the Painlevé equations. Analysis of the classes of equations
corresponding to the first and second Painlevé equations was performed in [5,6].

For the linearization problem one studies those classes of equations that are equivalent to linear equations. The
first linearization problem for ODEs was solved by Lie [1]. He found the general form of all ODEs of second order
that can be reduced to a linear equation by changing the independent and dependent variables. He showed that any
linearizable second-order equation should be at most cubic in the first-order derivative and provided a linearization
test in terms of its coefficients. The linearization criterion is written through relative invariants of the equivalence
group. Tresse [7] treated the equivalence problem for second-order ODEs in terms of relative invariants of the
equivalence group of point transformations. In [8] an infinitesimal technique for obtaining relative invariants was
applied to the linearization problem.

A different approach to tackling the equivalence problem of second-order ODEs was developed by Cartan [9].
The idea of his approach was to associate with every differential equation a uniquely defined geometric structure of
a certain form. The Cartan approach was further applied by Chern [10] to third-order differential equations. Since
none of the conditions given in [10] is an implicit expression that could be used as a test for determining the type
of the studied equation, in a series of articles [11–15] the linearization problem was also considered. Linearization
with respect to point transformations is studied in [11], with respect to contact transformations in [12–16]. The
linearization problem was also investigated with respect to the generalized Sundman transformations [17–19].

The linearization problem via point transformations

τ = ϕ(t, x), u = ψ(t, x)

for a second-order equation ẍ = F(t, x, ẋ) is attractive because of the simplicity of the general solution of a linear
equation: a linearizable second-order ODE is equivalent to the free particle equation u′′ = 0. Thus, if one found the
linearizing transformation, then the general solution of the original equation could be found easily. Note that for a
linearizable equation ẍ = F(t, x, ẋ) the expression

123123

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



On first integrals of second-order ordinary differential equations

u′ = ẋψx + ψt

ẋϕx + ϕt

is a first integral of the equation. Here subscripts mean derivatives, for example, ϕt = ∂ϕ/∂t, ϕx = ∂ϕ/∂x and so
on. This motivated the authors of [20–22] to study equations possessing a first integral of the form

I = ẋ Ã(t, x)+ C̃(t, x)

ẋ B̃(t, x)+ Q̃(t, x)
. (1)

Notice that a second-order equation equivalent to the free particle equation via the generalized Sundman transfor-
mation also possesses a first integral of the form (1).

The authors of [20–22] came to the form of first integral (1) from the study of λ-symmetries for second-order
equations that play a fundamental role in the study of λ-symmetries. Although the equation may lack Lie point
symmetries, there always exists a λ-symmetry associated to a first integral I = I (t, x, ẋ). Such a λ-symmetry can
be defined in canonical form by the vector field v = ∂x and the function λ = −Ix/Iẋ . When I is of the form

I = C(t, x)+ 1

A(t, x)ẋ + B(t, x)
, (A �= 0), (2)

such a function λ is given by

λ(t, x, ẋ) = γ (t, x)ẋ2 + α(t, x)ẋ + β(t, x), (3)

where

γ = ACx = −a3, (4a)

α = 2BCx − Ax/A = −a2 − ACt , (4b)

β =
(

Cx B2 − Bx

)
/A = −a1 + At/A − 2BCt . (4c)

In this way the study of ODEs that admit first integrals of the form (2) can be seen as a problem of classification
of ODEs that admit v = ∂x as a λ-symmetry for some function λ of the form (3).

The case where Cx = 0,

I = C(t)+ 1

ẋ A(t, x)+ C(t, x)
,

was studied in [23]. It must be mentioned here that the case where B̃ = 0 in (1) was thoroughly examined in [22].
We denote by B the class of equations corresponding to the particular case where γ = 0 in (3). The equations in

B are ODEs of the form

ẍ + a2(t, x)ẋ2 + a1(t, x)ẋ + a0(t, x) = 0 (5)

that admit first integrals of the form (2) with Cx = 0.
A significant subclass of ODEs in B, denoted by A, is constituted by the equations that admit first integrals of

the form A(t, x)ẋ + B(t, x) [that is, C = 0 in (2)]. By (4b), the equations in A are the equations of the form (5)
that admit v = ∂x as λ-symmetry for some function λ = −a2 ẋ +β. According to the results in [22], the coefficients
of the equations in A must satisfy either S1 = S2 = 0, where

S1(t, x) = a1x − 2a2t , S2(t, x) = (a0a2 + a0x )x + (a2t − a1x )t + (a2t − a1x ) a1, (6)

or, if S1 �= 0, S3 = S4 = 0, where

S3(t, x) =
(

S2

S1

)

x
− (a2t − a1x ) , S4(t, x) =

(
S2

S1

)

t
+

(
S2

S1

)2

+ a1

(
S2

S1

)
+ a0a2 + a0x . (7)

The equations in A such that S1 = S2 = 0 constitute the subclass A1, and they admit two functionally independent
first integrals of the form A(t, x)ẋ + B(t, x).

Several properties of the linearization through local and nonlocal transformations of the equations in B are derived
in [23,24]. All the equations in A1 pass the Lie test of linearization (i.e., their coefficients satisfy L1 = L2 = 0). In
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S. V. Meleshko et al.

contrast, none of the equations in A2 can be linearized through a local transformation; actually, there exist equations
in A2 that lack Lie point symmetries [see, for example, Eqs. (2.6) and (4.12) in [22]].

Although there exists Eq. (5) whose coefficients satisfy L1 = L2 = 0, which are not in A1 (see Example 9 in
[24]), they must all belong to B. It is important to remark that there are equations in B not linearizable through
local transformations, apart from the subclass A2 (as the family appearing in Example 2.1 in [25]). To linearize
such types of equations, one must consider nonlocal transformations of the form

X = F(t, x), dT = (G1(t, x)ẋ + G2(t, x)) dt. (8)

The equations in B can be characterized as the unique ODEs (5) that can be linearized through some nonlocal
transformation of the form (8). When G1(t, x) = 0 in (8), the equation must belong to A2 and vice versa. In other
words, the equations in A2 are the unique ODEs (5) that can be transformed into the linear equation XT T = 0 by
means of some nonlocal transformation of the form

X = F(t, x), dT = G(t, x)dt. (9)

These transformations are known in the literature as generalized Sundman transformations (see [17,18,26–30]
and references therein). Constructive methods to determine nonlocal linearizing transformations can be derived
from the algorithms that calculate the first integrals [23,24]. In particular, local changes of variables that linearize
the equations in A1 can be determined by just dealing with first-order ODEs. We remark that such linearizing
point transformations usually appear in the literature as solutions of an involutive system of second-order partial
differential equations [31,32].

1.2 Invariants of a class of second-order equations

We recall some known properties of a second-order equation:

ẍ + a3(t, x)ẋ3 + 3a2(t, x)ẋ2 + 3a1(t, x)ẋ + a0(t, x) = 0. (10)

This form of equation is conserved with respect to any change of the independent and dependent variables:

τ = ϕ(t, x), u = ψ(t, x). (11)

In fact, derivatives are changed by the formulae

u′ = g(t, x, ẋ) = Dtψ

Dtϕ
= ψt + ẋψx

ϕt + ẋϕx
,

u′′ = P(t, x, ẋ, ẍ) = Dt g

Dtϕ
= gt + ẋ gx + ẍ gẋ

ϕt + ẋϕx

= (ϕt + ẋϕx )
−3

(
ẍ (ϕtψx − ϕxψt )+ ẋ3 (ϕxψxx − ϕxxψx )

+ ẋ2 (ϕtψxx − ϕxxψt + 2 (ϕxψt x − ϕt xψx ))

+ ẋ (ϕxψt t − ϕt tψx + 2 (ϕtψt x − ϕt xψt ))+ ϕtψt t − ϕt tψt

)
.

(12)

Here Dt is the operator of the total derivative with respect to t , and

Δ = ϕtψx − ϕxψt �= 0.

Since the Jacobian of the change of variables Δ �= 0, the equation

u′′ + b3(τ, u)u′3 + 3b2(τ, u)u′2 + 3b1(τ, u)u′ + b0(τ, u) = 0 (13)

becomes (10), where
a1 = Δ−1

(
ϕxψxx − ϕxxψx + ϕ3

x b0 + 3ϕ2
xψx b1 + 3ϕxψ

2
x b2 + ψ3

x b3
)
,

a2 = Δ−1
(
3−1 (ϕtψxx − ϕxxψt + 2 (ϕxψt x − ϕt xψx ))+ ϕtϕ

2
x b0

+ϕx (2ϕtψx + ϕxψt ) b1 + (
ϕtψ

2
x + 2ϕxψtψx

)
b2 + ψtψ

2
x b3

)
,

a3 = Δ−1
(
3−1 (ϕxψt t − ϕt tψx + 2 (ϕtψt x − ϕt xψt ))+ ϕ2

t ϕx b0

+ (
ϕ2

t ψx + 2ϕtϕxψt
)

b1 + (
2ϕtψtψx + ϕxψ

2
t

)
b2 + ψ2

t ψx b3
)
,

a0 = Δ−1
(
ϕtψt t − ϕt tψt + ϕ3

t b0 + 3ϕ2
t ψt b1 + 3ϕtψ

2
t b2 + ψ3

t b3
)
.

(14)
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On first integrals of second-order ordinary differential equations

Two quantities play a major role in the study of Eqs. (13):

L1 = −∂Π11

∂u
+ ∂Π12

∂τ
− b0Π22 − b2Π11 + 2b1Π12,

L2 = −∂Π12

∂u
+ ∂Π22

∂τ
− b3Π11 − b1Π22 + 2b2Π12,

where

Π11 = 2
(

b2
1 − b2b0

)
+ b1τ − b0u, Π22 = 2

(
b2

2 − 3b1b3

)
+ b3τ − b2u,

Π12 = b2b1 − b3b0 + b2τ − b1u .

Under point transformation (11) these components are transformed as follows [33]:

L̃1 = Δ(L1ϕt + L2ψt ) , L̃2 = Δ(L1ϕx + L2ψx ) . (15)

Here the tilde means that a value corresponds to system (10): the coefficients bi are exchanged with ai , the variables
τ and u are exchanged with t and x , respectively.

Lie [1] showed that any equation with L1 = 0 and L2 = 0 is equivalent to the equation u′′ = 0. Liouville [33]
also found other relative invariants, for example,

v5 = L2 (L1L2τ − L2L1τ )+ L1 (L2L1u − L1L2u)− b3L3
1 + 3b2 L2

1L2 − 3b1L1L2
2 + b0 L3

2

and

w1 = L−4
1

(
−L3

1 (Π12L1 −Π11L2)+ R1

(
L2

1

)
τ

− L2
1 R1τ + L1 R1 (b1L1 − b0 L2)

)
,

where

R1 = L1L2τ − L2L1τ + b2L2
1 − 2b1L1L2 + b0 L2

2.

Notice that for the Painlevé equations L1 �= 0 and L2 = 0, v5 = 0 and w1 = 0.

Remark 1.1 Without loss of generality one can assume that L1 �= 0 and L2 = 0; otherwise a change of the
dependent and independent variables such that the functions ϕ(t, x) and ψ(t, x) satisfy the equation

ϕy L1 + ψy L2 = 0

leads to this case. For the sake of simplicity we study equations with L1 �= 0 and L2 = 0.

1.3 General difficulties of the equivalence problem

Despite the fact that the criteria for linearizability can be simply checked, there are certain difficulties associated
with finding the linearizing transformation. Let us consider a second-order ODE

y′′ + b(x, y)y′2 + c(x, y)y′ + d(x, y) = 0, (16)

where the coefficients satisfy the conditions

cy = 2bx , dyy − bxx − bx c + byd + dyb = 0. (17)

The transformation

t = ϕ(x), u = ψ(x, y) (18)

mapping Eq. (16) into the equation u′′ = 0 is found from the compatible conditions

ψyy = ψyb, 2ψxy = ϕ−1
x ψyϕxx + cψy, ψxx = ϕ−1

x ψxϕxx + ψyd (19)
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S. V. Meleshko et al.

and

2ϕ′ϕ′′′ − 3ϕ′′ 2

ϕ′ 2 = H, (20)

where H = 4(dy + bd)− (2cx + c2). Notice that by virtue of the second equation of (17), the function H = H(x).
To solve systems (19) and (20), one must first solve Eq. (20). The change ϕ′ = g−2 reduces Eq. (20) to the equation

g′′ + 1

4
Hg = 0. (21)

It is well known that the Riccati substitution

g′ = gv

reduces Eq. (21) to the Riccati equation

v′ + v2 + 1

4
H = 0.

Thus, to solve Eq. (20), one must be able to solve the Riccati equation, which is not solvable in the general case.
The example presented above shows that the solution of the linearization problem is only theoretical: in many

applications it becomes impossible to find the linearizing transformation. A similar problem is also encountered in
finding the intermediate integral.

2 Existence of first integral

The existence of the first integral of the form

I = A(t, x)+ 1

B(t, x)ẋ + Q(t, x)
, (B �= 0), (22)

of a second-order equation requires that the necessary form of the equation be (10), where the coefficients are
related by the equations

a0 = (
Qt − At Q2

)
/B, a1 = (

Bt + Qx − 2At B Q − Ax Q2
)
/(3B),

a2 = (
Bx − At B2 − 2Ax B Q

)
/(3B), a3 = −Ax B.

(23)

The sufficient conditions for the existence of an intermediate integral of the form (22) are obtained if one considers
(23) as equations for the functions A(t, x), B(t, x), and Q(t, x)with given coefficients ai (t, x), (i = 0, 1, 2, 3).

System (23) gives

At = B−1G, Ax = −B−1a3, Qt = a0 B + B−1G Q2, Bt = −Qx + 2G Q + 3a1 B − a3 B−1 Q2, (24)

where

G = B−1 (Bx − 3a2 B + 2a3 Q) .

The function G(t, x) is introduced in order to simplify the calculations.
The equations (Ax )t = (At )x and (Bx )t = (Bt )x give

Gx = −B−1 Qx a3 − a3t + 3a1a3 + 3a2G − B−2a2
3 Q2 + G2,

Qxx = B−2
(
Qx B (3a2 B − 4a3 Q + 3BG)− Gt B3 + B3 (3a1x − 3a2t + 2a0a3)

+ (6a2a3 − a3x ) B Q2 − 4a2
3 Q3 + 4a3 BG Q2

)
.

(25)

The equation (Qxx )t = (Qt )xx becomes

Gtt = B−4
(
4Gt Qx B3 − 3Gt B4a1 + 4Gt B2a3 Q2 − 2Q2

x B2G − 2Ga2
3 Q4

+3Qx B3 (2a2t − a1x − a0a3)− 4Qx BGa3 Q2 + B4G2a0 + B4G (a0x + 3a0a2)

+B4 (a0t a3 + a1t x + 3a1x a1 − 2a2t t − 6a2t a1 + a3t a0 + 3a0a1a3 − λ1)

−3B2a3 Q2 (a1x − 2a2t + a0a3)
)
.

(26)
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On first integrals of second-order ordinary differential equations

The equation (Gtt )x − (Gx )t t = 0 leads to S = 0, where

S ≡ 12Gt Qx B3G − 6G2
t B4 − 6Q2

x B2G2 + 12Gt B2Ga3 Q2 − 12Qx BG2a3 Q2

+12 (a1x − 2a2t + a0a3) B2
(
Gt B2 − Qx BG − Ga3 Q2

) − 6G2a2
3 Q4 + 3B4Gλ1

−B4
(
λ1x − 3a2λ1 + 6 (a1x − 2a2t + a0a3)

2) .
Furthermore, the equations

Sx − 6 (G + a2) S = 0, B2St − 6
(

Qx B − B2a1 + a3 Q2
)

S = 0

are

Ba3 Qx = 3B2Gμ1 − 5B2G2 + B2 (3a1a3 − μ2)− a2
3 Q2, (27a)

Gt = (
15B2λ1

)−1 (
6Qx Bλ1 (5G − μ1)− 3B2G (λ1t + 6a1λ1)+ 6a3λ1 Q2 (5G − μ1)

+B2 (λ1μ1t + 12a1xλ1 − 24a2tλ1 + λ1tμ1 + 12a0a3λ1 + 6a1λ1μ1)
)
,

(27b)

where all coefficients μi , (i = 1, 2, . . . , 7) are presented in the Appendix.
For further analysis one needs to consider two cases: (a) a3 �= 0 and (b)1 a3 = 0. It is also worth noting that

because of the relative invariant v5, the property for a3 which is not equal to zero, is an invariant property of the
point transformations conserving L2 = 0.

2.1 Case a3 �= 0

Let a3 �= 0; then Eq. (27b) gives

Qx = (Ba3)
−1

(
3B2Gμ1 − 5B2G2 + B2 (3a1a3 − μ2)− a2

3 Q2
)
.

Thus, all first-order derivatives of the unknown functions A(t, x), B(t, x), Q(t, x), and G(t, x) are found:

At = B−1G, Ax = −B−1a3,

Qt = Ba0+B−1G Q2, Qx = (−5B2G2+3B2Gμ1+B2 (3a1a3−μ2)−a2
3 Q2

)
/(Ba3),

Bt =
(
5BG2 − 3BGμ1 + Bμ2 + 2Ga3 Q

)
/a3, Bx = BG + 3Ba2 − 2a3 Q,

Gt = (−10G3 + 8G2μ1 − Gμ3 + λ1μ4
)
/a3, Gx = 6G2 + 3G (a2 − μ1)− a3t + μ2. (28)

The overdetermined system (28) is compatible if the conditions

(At )x − (Ax )t = 0, (Bt )x − (Bx )t = 0,
(Qx )t − (Qt )x = 0, (Gt )x − (Gx )t = 0

(29)

are satisfied. Notice also that by virtue of Eqs. (28), (24) are satisfied. Hence, it is not necessary to substitute the
first-order derivatives into the intermediate Eqs. (25) and (26).

The conditions in (29) reduce to equations

H ≡ 12G3a3 − G2μ5 − Gμ6 − μ7 = 0, (30a)

75G4 − 80μ1G3 + 5q2G2 − q1G − q0 = 0, (30b)

where the coefficients qi (i = 0, 1, 2) are presented in the Appendix. Let us also add to this set of equations the
following ones:

Hx = 0, Ht = 0. (31)

Equation (30a) is a polynomial equation of third degree with respect to G. If we exclude from Eqs. (30b) and (31)
the value

G3 =
(

G2μ5 + Gμ6 + μ7

)
/(12a3) ,

then Eqs. (30b) and (31) become

1 This case has been studied in [23].
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S. V. Meleshko et al.

5α1G2 + β1G + γ1 = 0, α2G2 + β2G + γ2 = 0, 25α3G2 + β3G + 25γ3 = 0, (32)

where all coefficients αi , βi , and γi , (i = 1, 2, 3) are presented in the Appendix.
In solving Eq. (30a) with respect to G, one must also satisfy the conditions Gt = (G)t and Gx = (G)x . Satis-

fying these conditions is equivalent to satisfying Eq. (31). Thus, further study simply entails an algebraic study of
Eqs. (30a) and (32). This study depends on the coefficients αi , βi , (i = 1, 2, 3).

For example, assume that α1 �= 0. From the first equation of (32) one finds G2. Substituting G2 into (30a) and
the remaining equations of (32), one obtains linear equations with respect to G. One needs to study resolving these
linear equations with respect to G. This depends on the coefficients of these equations.

3 Case G = 0

Let us consider the case G = 0 without restrictions for λ2. Then

At = 0, Ax = −a3/B, Qt = a0 B,
Bt = ( − Qx B + 3a1 B2 − a3 Q2)/B, Bx = 3a2 B − 2a3 Q.

(33)

The equations (Ax )t − (At )x = 0 and (Bx )t − (Bt )x = 0 give

Qx a3 B = −a3t B2 + 3a1a3 B2 − a2
3 Q2, (34a)

Qxx B2 + Qx B (2a3 Q − 3a2 B)+ B3 (3a2t − 3a1x − 2a0a3)

+B Q2 (a3x − 6a2a3)+ 2B2 Q (3a1a3 − a3t )+ 2a2
3 Q3 = 0.

(34b)

3.1 Case a3 �= 0

If a3 �= 0, then Eq. (34a) defines

Qx =
(
−a3t B2 + 3a1a3 B2 − a2

3 Q2
)
/(a3 B) . (35)

This reduces Eq. (34b) and the equation (Qx )t − (Qt )x = 0 to
(

a3t x − 3a2t a3 + 2a0a2
3

)
a3 − a3t a3x = 0,

a3t t − 3a3t a1 + (a0x − 3a1t + 3a0a2) a3 = 0. (36)

Thus, if Eq. (10) satisfies condition (36), then the overdetermined system of equations consisting of Eqs. (33) and
(35) is involutive.

For example, for a3 = 1 condition (36) can be solved as follows:

a0 = 3a2t/2, a1 = a2x/2 + 3a2
2/4 + ϕ,

where ϕ(x) is an arbitrary function. This means that all equations of the form

ẍ + ẋ3 + 3a2 ẋ2 +
(

a2x/2 + 3a2
2/4 + ϕ

)
ẋ + 3a2t/2 = 0 (37)

with arbitrary functions a2(t, x) and ϕ(x) have the intermediate integral

I = A + 1

B(ẋ + 3
2 a2)+ H

,

where the functions A(x), B(x), and H(x) are solutions of the equations

A′ = −1/B, B ′ = −H, H ′ = 3Bϕ − H2/B.

Notice that for a2t = 0 Eq. (36) can be reduced to a first-order ODE by the standard change ẋ = y(x), whereas
for a2t �= 0 this technique is not applicable.
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On first integrals of second-order ordinary differential equations

3.2 Case a3 = 0

In this case, Eq. (34a) is satisfied and Eq. (34b) becomes

Qxx = 3Qx a2 − 3B (a2t − a1x ) . (38)

The equation (Qxx )t − (Qt )xx = 0 gives

3Qxη = B (ηt + 3a1η − λ1), (39)

where η = a1x − 2a2t . Hence, for η = 0 one has that2 λ1 = 0, and there are no other additional equations for the
functions A(t, x), B(t, x), and Q(t, x). This means that the system of equations consisting of Eqs. (33) and (38)
is involutive. If η �= 0, then one can find Qx . The equations (Qx )t − (Qt )x = 0 and (Qxx )x − (Qx )x = 0 give the
conditions

3ηηt t = 4η2
t − 3ηtηa1 + 15ηtλ1 + 9η2

(
a0x − a1t + 3a0a2 − 2a2

1

) − 9η (λ1t + a1λ1)+ 9λ2
1,

ηηt x = ηtηx + 3ηxλ1 − 2η3 + 3η2a2t − 3ηλ1x .
(40)

Thus, if Eq. (10) satisfies condition (40), then the overdetermined system of equations consisting of Eqs. (33)
and (39) is involutive.

4 Examples

In this section we consider examples of first integrals of the form

I = A(t, x)ẋ + B(x, t)

ẋ + Q(x, t)
. (41)

Example 4.1 The most general equation associated with the first integral I in (41) is given by

ẍ + Ax

Δ
ẋ3 + 1

Δ
(At + Bx + Ax Q − AQx ) ẋ2

+ 1

Δ
(Bt + At Q − AQt + Bx Q − B Qx ) ẋ + 1

Δ
(Q Bt − B Qt ) = 0, (42)

where Δ = AQ − B.

Proof Rearranging (41) we obtain

I (ẋ + Q(x, t)) = A(t, x)ẋ + B(x, t),

which immediately yields

I (ẍ + Qx ẋ + Qt ) = Aẍ + Ax ẋ2 + At ẋ + Bx ẋ + Bt ,

(Aẋ + B)(ẍ + Qx ẋ + Qt ) = (ẋ + Q(x, t))(Aẍ + Ax ẋ2 + At ẋ + Bx ẋ + Bt ). ��
This equation is closely related to the (unparameterized) geodesic equations of some connection Γ on U ∈ R2

ẍ c + Γ c
ab ẋa ẋb = vẋ c

for xa(t) = (x(t), y(t)). Eliminating the parameter t yields the second-order ODE for y as a function of x

d2 y

dx2 = a(x, y)

(
dy

dx

)3

+ b(x, y)

(
dy

dx

)2

+ c(x, y)

(
dy

dx

)
+ d(x, y) = 0, (43)

where

a(x, y) = −Γ 2
11, b(x, y) = Γ 1

11 − 2Γ 2
12, c(x, y) = 2Γ 1

12 − Γ 2
22, d(x, y) = Γ 1

22.

2 Notice that for Eq. (10), which is not linearizable, one can assume without loss of generality that λ1 �= 0.
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S. V. Meleshko et al.

In other words, any second-order ODEs with cubic nonlinearity in the first derivatives of the form (42) gives rise
to some projective structures.

Example 4.2 A quasimonomial q over K is defined as

q = xc =
n∏

i=1

xci
i , ci ∈ K.

A quasimonomial function is a finite sum of quasimonomials f : C → �, where � = C ∪ {∞}, defined as

x −→
∑

ai

n∏
j=1

x
ci j
j .

We assume A = xαtβ , B = xγ tδ and Q = 1 in (42) to obtain the second-order equation

ẍ + α

x(1 − xγ−α)
ẋ3 + α + β x

t + γ xγ−α

x(1 − xγ−α)
ẋ2 + β x

t + β xγ−α+1

t + γ xγ−α

x(1 − xγ−α)
ẋ + β xγ−α+1

t

x(1 − xγ−α)
= 0, (44)

which admits the first integral

I = xαtβ(ẋ + xγ−α)
ẋ + 1

.

4.1 Claim

Setting α = −1, β = 1 = δ, γ = 0 we obtain the first integral of

ẍ + 1

x(x − 1)
ẋ3 +

(
1

x(x − 1)
+ 1

t (1 − x)

)
ẋ2 + 1

t

(
1 + x

1 − x

)
ẋ + x

t (1 − x)
= 0 (45)

as

I =
(

t

x

)
ẋ + x

ẋ + 1
.

Example 4.3 The first integral of the second-order equation

ẍ + t

x2(x − 1)
ẋ3 +

(
2

1 − x
− (1 + x)t

(1 − x)x2 + 1

x

)
ẋ2 +

(
1

1 − x
+ 1 − t

(1 − x)x

)
ẋ + 1

1 − x
= 0 (46)

is

I = et/x ẋ + x

ẋ + 1
.

Example 4.4 Let us set A = Q−1 = eα(x)t and B = b (constant) in (41). Then we obtain the equation

(1 − b)ẍ + eα(x)t (α′(x)t ẋ + α(x))ẋ2 + 2(α′(x)t ẋ + α(x))ẋ + e−α(x)t (α′(x)t ẋ + bα(x)) = 0. (47)

The corresponding first integral is

I = eα(x)t ẋ + b

ẋ + e−α(x)t .
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On first integrals of second-order ordinary differential equations

4.2 Time-independent case

Consider At = Bt = Qt = 0. Thus Eq. (41) becomes

ẍ + Ax

Δ
ẋ3 + 1

Δ
(Bx + Ax Q − AQx ) ẋ2 + 1

Δ
(At Q − AQt + Bx Q − B Qx ) ẋ = 0, (48)

which can be expressed as

ẋ = y, ẏ = − 1

Δ

(
Ax y3 + (Bx + Ax Q − AQx ) y2 + (Bx Q − B Qx ) y

)
. (49)

This yields the flow equation

dy

dx
= − 1

Δ

(
Ax y2 + (Bx + Ax Q − AQx ) y + (Bx Q − B Qx )

)
.

Assume A = 1; thus, Δ = Q − B. The flow becomes

dy

dx
− Δ′(x)
Δ(x)

y = B2

Δ

d

dx

(
Q

B

)
.

This immediately yields

y = − 1

Q/B − 1
+ C1.

Hence we obtain

t =
∫

dx

C1 Q − (C1 + 1)B(x)
.

4.3 Reduction

Let Ax = 0 and set

1

Δ
(At + Bx − AQx ) = b(x, t) = 1

2
φx ,

1

Δ
(Bt + At Q − AQt + Bx Q − B Qx ) = c(x, t) = φt . (50)

A large number of second-order ODEs in the Painlevé–Gambier classification system belong to the following
class of equations:

ẍ + 1

2
φx ẋ2 + φt ẋ + B(t, x) = 0.

This equation yields the Lagrangian description via Jacobi’s last multiplier. If we write this equation in the form

ẍ = F(t, x, ẋ) = −
[

1

2
φx ẋ2 + φt ẋ + B(t, x)

]
,

then the Jacobi last multiplier M is given by the solution of

d

dt
ln M = −∂F

∂ ẋ
.

In the present case we have

M = ∂2L

∂ ẋ2 = eφ(t, x).

We then obtain the Lagrangian as

L(t, x, ẋ) = eφ(t, x) ẋ2

2
+ f1(t, x)ẋ + f2(t, x).
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4.4 Conditions for Lagrangians

Let us express φ in terms A, B, Q and find the conditions for the Lagrangian. Defining

φx = 2

Δ
(At + Bx − AQx ) ,

φt = 1

Δ
(Bt + At Q − AQt + Bx Q − B Qx )

immediately yields

φxt = 2

Δ

(
A′′(t)+ Bxt − A′(t)Qx − AQxt

) − 2

Δ2

(
A′(t)Q + AQt − Bt

) (
A′(t)+ Bx − AQx

)
,

φt x = 1

Δ

(
Btx + A′Qx − AQtx + Bxx Q − B Qxx

) − 1

Δ2 (AQx − Bx )
(
Bt + A′Q − AQt + Bx Q − B Qx

)
.

4.5 Claim

A second-order nonlinear equation of the form

ẍ + b(x, t)ẋ2 + c(x, t)ẋ + d(x, t) = 0

admits a Lagrangian provided

2A′′ + Bxt − 3A′Qx − AQxt − Bxx Q + B Qxx (AQ − B)

= A′Q
(
2A′ + 3Bx − 3AQx

) + (AQt − Bt )
(
2A′ + Bx − AQx

) − (AQx − Bx ) (Bx Q − B Qx ) ,

where b(x, t) and c(x, t) are defined as (8) and d(x, t) = 1
Δ
(Q Bt − B Qt ).

Outline of proof. It follows analogously to the argument in Sect. 4.3 and makes use of the compatibility condition
φxt = φt x . ��
Example 4.5 Set A = 1, Δ = AQ − B = xαtβ , and assume Q = xγ in (51); the equation becomes

ẍ − α

x
ẋ2 +

(
(γ − α)xγ−1 − β

t

)
ẋ − βxγ

t
= 0 (51)

whose first integral is

I = ẋ + xγ − xαtβ

ẋ + xγ
.

Let us find the conditions γ and α for which Eq. (51) gives a Lagrangian description.

4.6 Claim

For γ = α or γ = 1 Eq. (51) yields a Lagrangian description.

Proof Equate 1
2φx = −α

x and φt = (γ − α)xγ−1 − β
t . This immediately yields φxt = 0 and φt x = (γ − α)(γ −

1)xγ−2. Thus from the compatibility condition we obtain our criteria. ��

5 Conclusion

Any second-order ODE that possesses a first integral of the form (1) must be cubic with respect to the first-order
derivative (10). This paper gives complete criteria of the existence of a first integral of the form (1) for a second-order
ODE (10), which is reduced to an equation with L2 = 0. Despite the fact that any second-order ODE (10) can be
reduced to an equation with L2 = 0, the complete solution of the problem requires that sufficient conditions be
given using coefficients of the original equation (not reduced). This is still an open problem.
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Appendix

The following coefficients μi appear in Eqs. (27a) and (27b) in Sect. 2:

μ1 = (λ1x − 3a2λ1) /λ1,

μ2 = (
μ1x + 3a3t − 3a2μ1 + μ2

1

)
/3,

μ3 = (
λ1t a3 − 24a1a3λ1 + 6λ1μ

2
1 + 10λ1μ2

)
/ (5λ1) ,

μ4 = (
μ1t a3 + 12a3 (a1x − 2a2t + a0a3 + a1μ1)− 6μ3

1 − 4μ1μ2 + 5μ1μ3
)
/ (15λ1) ,

μ5 = a3x − 6a2a3 + 10a3μ1,

μ6 = (
a3t a3 − 6a1a2

3 + 18a3μ
2
1 + a3μ2 − a3μ3 − 3μ1μ5

)
/5,

μ7 = (
3a2t a2

3 − μ2x a3 − 2a0a3
3 − 18a1a2

3μ1 + 6a2a3μ2 + a3λ1μ4 + 54a3μ
3
1

−4a3μ1μ2 − 3a3μ1μ3 − 9μ2
1μ5 − 15μ1μ6 + μ2μ5

)
/5.

In addition, the coefficients αi , βi , γi appear in Sect. 2.1 and Eq. (32):

α1 = 720a2
3μ

2
1 − 432a1a3

3 + 144a2
3μ2 − 144a2

3μ3 − 80a3μ1μ5 − 300a3μ6 − 5μ2
5,

β1 = 1728a1x a3
3 − 3456a2t a

3
3 + 1776a0a4

3 + 3024a1a3
3μ1 − 1680a2

3λ1μ4 − 3456a2
3μ

3
1

−1008a2
3μ1μ2 + 1008a2

3μ1μ3 + 432a3μ
2
1μ5 + 1040a3μ1μ6 − 300a3μ7 − 25μ5μ6,

γ1 = 48a0x a4
3 − 144a1t a

4
3 + 48μ2t a

3
3 + 144a0a2a4

3 − 432a1a3
3μ2 − 144a2

3λ1μ1μ4 + 96a2
3μ

2
2

+864a2
3μ

2
1μ2 − 48a2

3μ2μ3 − 144a3μ1μ2μ5 + 320a3μ1μ7 − 240a3μ2μ6 − 25μ5μ7,

α2 = −72μ5t a
3
3 + 432a1a3

3μ5 + 2592a3
3λ1μ4 − 1296a2

3μ
2
1μ5 + 1152a2

3μ1μ6 − 72a2
3μ2μ5

−2160a2
3μ7 + 264a3μ1μ

2
5 + 180a3μ5μ6 − 5μ3

5,

β2 = −72μ6t a
3
3 + 432a1a3

3μ6 − 144a2
3λ1μ4μ5 − 1296a2

3μ
2
1μ6 + 1728a2

3μ1μ7

−72a2
3μ2μ6 − 72a2

3μ3μ6 + 264a3μ1μ5μ6 − 60a3μ5μ7 + 240a3μ
2
6 − 5μ2

5μ6,

γ2 = −72μ7t a
3
3 + 432a1a3

3μ7 − 72a2
3λ1μ4μ6 − 1296a2

3μ
2
1μ7 − 72a2

3μ2μ7 − 144a2
3μ3μ7

+264a3μ1μ5μ7 + 240a3μ6μ7 − 5μ2
5μ7,

α3 = −2μ5x a3 − 432a1a3
3 + 18a2a3μ5 + 1296a2

3μ
2
1 + 144a2

3μ2 − 72a2
3μ3

−242a3μ1μ5 − 336a3μ6 + 3μ2
5,

β3 = −1212a1x a3
3 + 2424a2t a

3
3 − 10μ5t a

2
3 + 30μ5x a3μ1 − 1244a0a4

3 + 4644a1a3
3μ1

+120a1a2
3μ5 − 270a2a3μ1μ5 + 1540a2

3λ1μ4 − 18336a2
3μ

3
1 − 1548a2

3μ1μ2 + 468a2
3μ1μ3

+3312a3μ
2
1μ5 + 5090a3μ1μ6 − 30a3μ2μ5 + 20a3μ3μ5 + 850a3μ7 + 75μ5μ6,

γ3 = −2μ7x a3 + 12a1a2
3μ6 + 30a2a3μ7 − 36a3μ

2
1μ6 − 38a3μ1μ7 − 4a3μ2μ6

+2a3μ3μ6 + 6μ1μ5μ6 + 3μ5μ7 + 10μ2
6.

The qi that follow appear in Eq. (30b):

q0 = a0x a2
3 − 3a1t a2

3 − a3tμ2 + μ2t a3 + 3a0a2a2
3 − 3a1a3μ2 − 3λ1μ1μ4 + μ2

2,

q1 = 36a1x a3 − 72a2t a3 + 3a3tμ1 + 37a0a2
3 + 45a1a3μ1 − 35λ1μ4 − 18μ1

(
μ2

1 + μ2 − μ3
)
,

q2 = a3t + 3a1a3 + 3μ2
1 − 2μ2 + 2μ3.
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Abstract
The paper deals with an evolutionary integro-differential equation describing
nonlinear waves. A particular choice of the kernel in the integral leads
to well-known equations such as the Khokhlov–Zabolotskaya equation, the
Kadomtsev–Petviashvili equation and others. Since the solutions of these
equations describe many physical phenomena, the analysis of the general model
studied in this paper is important. One of the methods for obtaining solutions
of differential equations is provided by the Lie group analysis. However,
this method is not applicable to integro-differential equations. Therefore, we
discuss new approaches developed in modern group analysis and apply them
to the general model considered in this paper. Reduced equations and exact
solutions are also presented.

PACS numbers: 02.30.Rz, 05.45.−a, 11.10.Lm, 42.65.−k, 43.25.−x, 52.35.Py
Mathematics Subject Classification: 35C99, 35C07, 35G20, 74J30, 76Q05

1. Introduction

One of the most general evolution equations used in nonlinear wave physics is as
follows [1, 2]:

(ux − uut − wtt )t = uyy + uzz,

w =
∫ ∞

0
K(s)u(t − s) ds.

(1)
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Here the variable t is the time, and x, y, z are the spatial Cartesian coordinates. The coordinate
x is distinguished as a ‘longitudinal’ one. It coincides with a preferred orientation of the
wave propagation. The other coordinates y, z are identified as ‘transversal’ ones. They are
commonly introduced in the cross-section of a wave beam.

Special cases of equation (1) are well known. In particular, if the kernel is identically zero,
K(s) ≡ 0, the general equation (1) is reduced to the Khokhlov–Zabolotskaya (KZ) equation
[3, 4], describing wave beams in nonlinear media:

(ux − uut )t = uyy + uzz. (2)

If the kernel is the delta-function, K = 2δ(s), model (1) leads to the equation

(ux − uut − utt )t = uyy + uzz (3)

for nonlinear beams in a dissipative medium [5, 6]. Equation (3) is known as the Khokhlov–
Zabolotskaya–Kuznetsov (KZK) equation. It is widely used in underwater acoustics for the
engineering design of parametric radiating and receiving arrays [6].

If the kernel is proportional to the derivative of the delta-function, K = 2δ′(s), the
integro-differential equation (1) becomes the Kadomtsev–Petviashvili (KP) equation

(ux − uut − uttt )t = uyy + uzz (4)

for nonlinear beams in a dispersive medium [7, 8]. The similar equation

(ux − uut − utttt )t = uyy + uzz (5)

for a scattering medium [9] follows from (1) when K = 2δ′′(s).
There exist other models that specify or generalize equation (1), e.g. by including (1) in

a coupled systems of nonlinear equations [10, 11].
If the wave field u = u(t, x) is a function of a single spatial (longitudinal) coordinate x

and does not depend on the transverse coordinates y, z, equation (1) is reduced to well-known
equations for plane waves [12]. In particular, the Riemann–Hopf equation follows from (2), the
Burgers equation follows from (3) and the Korteweg–de Vries equation follows from (4). The
one-dimensional equation with fourth-order derivative for the scattering medium suggested
and solved in [9] follows from equation (5). 1D equations can be obtained by eliminating
the y, z derivatives of 3D equations and the subsequent integration over dt, provided that the
wave field vanishes at t → ±∞.

A choice of the kernel as a linear combination of the delta-function and its derivatives
of different orders gives a possibility of deriving from (1) various well-known differential
equations of the physics of nonlinear waves. Symmetries of such equations either have
already been studied (many results obtained until 1995 are collected in [13–15]) or can be
studied by the standard Lie group methods [16–18]. However, to the best of our knowledge,
particular versions of the general equation (1) with non-degenerate kernels which maintain the
integro-differential feature of the model have not been studied yet.

The exponential kernel K = exp(−s) is of particular applied interest. Equation (1) with
such kernel describes wave beams in relaxing media. In this case, the integro-differential
equation is also reduced to a differential equation [1]. To derive such an equation, it is
sufficient to note that the integral term w in (1) and the variable u for the exponential kernel
are related by the following equation:

wt + w = u. (6)

Reduction of (1) to a differential equation is also possible for some more complicated
kernels. For example, if K = exp(−s) cos(ω0s), then the kernel describes the internal
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dynamics of the medium with resonant inclusions. In this case, the differential relation
between w and u in equation (1) has the form

(wt + w − u)t + (wt + w − u) + ω2
0w = 0. (7)

A special class is formed by ‘model’ kernels which are non-zero on the finite segment,
for example, within s ∈ (0, 1]. The simplest case is

K =
{

1 if s � 1,
0 if s > 1.

For this kernel the integro-differential equation (1) is reduced to the difference-differential
equation

(ux − uut −�ut)t = uyy + uzz,

�u ≡ u(t)− u(t − 1).
(8)

Note that, using the finite shift operator, one rewrites the integral term of equation (1) in
the form

w(t) = L̂u(t), L̂(∂t ) =
∫ ∞

0
K(s) exp(−s∂t ) ds, (9)

where ∂t is the partial derivative with respect to time. The second operator L̂(∂t ) is the Laplace
transform of the function K(s) defining the kernel of equation (1).

For example, if a kernel has the form of the Bessel function of zero order, then one has

K = J0(s), L̂(∂t ) = (
1 + ∂2

t

)−1/2
.

Using the tables of the Laplace transform and physical restrictions of the kernel forms, one
can single out all cases when equation (1) can be reduced to a differential equation of finite
order. In the general case, decomposing the exponential function of the integrand (9) into
power series, one verifies that the resulting differential equation will contain derivatives of an
arbitrary order.

The discussion of the properties of a kernel is continued below by considering the
formulations of main physical problems.

2. Physical statement and main physical parameters

For definiteness, a concrete physical object is considered which is most simple and, at the same
time, can be adequately described by models like (1). Namely, we will deal with high-intensity
acoustic waves. The general equation (1), as well as majority of the particular models (2)–(7),
has been written at first for nonlinear acoustic waves.

Note that equation (1) is written in certain dimensionless variables in order to reduce all
coefficients of the equation into unity. To discuss a physical meaning of mathematical models,
we rewrite equation (1) using initial physical notations:

∂

∂τ

[
∂p

∂x
− ε

c3ρ
p
∂p

∂τ
−W

]
= c

2
�⊥p, (10)

W = m

2c

∂

∂τ

∫ τ

−∞
K

(
τ − τ ′

t0

)
∂ p

∂τ ′ dτ ′

= m

2c

∂2

∂τ 2

∫ ∞

0
K

(
ξ

t0

)
p(�r, τ − ξ) dξ. (11)
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Here x is the coordinate along the direction of wave propagation, �⊥ is the Laplace operator
written in the coordinates y, z on the orthogonal plane, τ = t − x/c is the time in the
moving system of coordinates propagating with the sound velocity c, ε is the parameter of
nonlinearity and ρ is the density of a medium. The acoustic pressure p is chosen as the wave
field variable. The constant m characterizes the ‘force’ of time delay processes and t0 is the
typical ‘memorizing time’ of a medium.

Let us note an important point before passing to further discussion. The natural question
arises: why is the coordinate x instead of time t used as a ‘slow’ (evolutionary) variable in
equations (1) and (10)? The answer is that the difference between x and t depends only on
the way of description which depends on the statement of problem and ease of analysis of
results. In the case of non-wave problems (e.g. description of turbulence), the problem is
posed as follows. At the initial moment t = 0, a distribution of the velocity field in space
u( t = 0, x) = u0(x) is given, and the solution u(t, x) is sought with growing time t > 0.
In the corresponding experiment, sensors measuring the velocity field are placed in various
locations, and the measurement is made by all sensors at the same time t1. These results
determine the spatial structure of the field u( t1, x). Then similar measurements performed at
t2 give the field profile u(t2, x). Repeating the measurements we trace the field evolution with
respect to time.

When propagating waves are of interest, the experiment is performed in a different way.
The only sensor placed at the position x1 measures the variation of the signal with respect to
time: u(x1, t). Then the sensor is moved to another position x2 > x1 and the signal u(x2 , t)

is measured. By moving the sensor of the vibration velocity (or the acoustic pressure) farther
and farther from the source of wave, we trace the evolution of the form of the wave profile
as the wave propagates. In real experiments a wave gets distorted at distances of the order of
thousand wavelengths, whereas, for a good reconstruction of the wave profile within its each
length λ, one has to place no fewer than ten sensors. In this case, the method of the ‘slow
time’ is very inconvenient. Moreover, this method is completely inappropriate in those cases
when the wave profile contains shock fronts whose extent is very small, e.g. 10−4λ.

But in various acoustic problems, e.g. those dealing with standing waves in a resonator,
it is convenient to utilize the ‘slow time’ instead of the ‘slow coordinate’. It is clear that the
resonator has a limited length and, by measuring the field at the lowest modes, it is quite
realistic to place several sensors along the length of the resonator and perform simultaneous
measurement with them at various moments of time.

Let us return to the physical model (10), (11). The integration within the limits
−∞ < τ ′ < τ in the first integral (11) means that the wave behavior at a given moment
τ is determined by the values of the field variable at the preceding moments from τ to the
infinitely distant past. Consequently, the kernel K(τ) describing the ‘memory’ of a medium
must be nonzero only at positive values of its argument and tend to zero for τ → +∞. This
decrease can be non-monotone and can look like oscillatory damping (see the example leading
to formula (7)).

In order to understand how the concrete form of the kernel is related to the measured
characteristics of the medium, we shall consider the simplest model of a plane wave moving
in a medium without nonlinearity. In other words, let us consider the equation

∂p

∂x
− m

2c

∂2

∂τ 2

∫ ∞

0
K

(
ξ

t0

)
p(x, τ − ξ) dξ = 0. (12)

Let us establish a relation of a kernel with the dispersion law. A solution is sought in the form

p = exp(−iωt + ik x), k = k′ + ik′′. (13)
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Here k is the wave number, and k′ and k′′ are its real and imaginary parts, respectively.
Substituting (13) into (12), we find

k′ = −mω
2t0

2c

∫ ∞

0
K(s) sin(ωt0 s) ds,

k′′ = mω2t0

2c

∫ ∞

0
K(s) cos(ωt0 s) ds.

(14)

The first formula in (14) gives a frequency-dependent addition to the velocity of the wave
propagation: c(ω) = c(1 − ck′(ω)/ω). The second one defines the absorption coefficient or
the law of spatial decrease of the wave amplitude: p0 exp(−k′′x).

Evidently, integrals (14) must be convergent for physically feasible kernels. The concrete
form of a kernel can be reconstructed on the base of the corresponding physical model, or on
the base of experimental measurements.

A relaxing medium provides an important model known as the Mandelstam–Leontovich
model (see [1, 19]). The kernel for this model has the exponential form (see the example
leading to formula (6)). In this case,

k′ = −mω
2c

(ωt0)
2

1 + (ωt0)2
, k′′ = mω

2c

ωt0

1 + (ωt0)2
. (15)

The frequency dependences (15) of the dispersion k′ and the absorption k′′ were confirmed
repeatedly in experiments. One could proceed in an opposite way. First, establish the
dependences (15) as an empirical generalization of measured data, and then reconstruct the
kernel by means of a standard procedure. This procedure exploits the causality principle
according to which two functions k′ and k′′ cannot be arbitrary but should be connected by
the relations of Kramers–Kronig’s type [12].

The method of kernel reconstruction has been utilized for deriving mathematical models
used in the medical applications of ultrasound [20]. It is known that, within the most
interesting frequency range, the absorption of the ultrasound in soft tissues behaves like
k′′ ∼ ω2−ν , 0 < ν < 1. It is easy to reconstruct the kernel K(s) = sν−1 and verify that the
corresponding absorption coefficient

k′′ = m

2ct0
�(ν) cos

(π
2
ν
)
(ωt0)

2−ν (16)

has the correct frequency dependence. Note that the considered power kernel has a singularity
at s = 0 and is not integrable in semi-infinite limits. However, the convolution of this kernel
with the oscillating function describing a wave provides the convergence of the integral for
k′′. This example demonstrates a wide variety of situations which can be met in applications.

In the conclusion of this section we demonstrate how one has to change variables in
equations (10) and (11) to reduce these to the simplest normalized form (1). One has to set

τ → t0t, p → p0u, x → x0x, y → y0y, z → z0z, (17)

where the constant t0 (the ‘memory’ time) is defined by the structure of kernel and the other
constants are

p0 = m

2ε
c2ρ, x0 = 2

m
ct0, y0 = z0 = ct0√

m
. (18)
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3. Admitted Lie group

As for differential equations, an admitted Lie group of integro-differential equation (1) is
defined by the determining equations. These equations are integro-differential equations for
the coordinates of the infinitesimal generator

X = ξ t∂t + ξx∂x + ξy∂y + ξz∂z + ζ u∂u + ζw∂w,

where the coordinates ξ t , ξx , ξy , ξz, ζ u and ζw are functions depending on the variables
(t, x, y, z, u,w). The system (1) comprises a partial differential equation and an integro-
differential equation. The determining equation related to the partial differential equation is
obtained by the standard procedure:

ζ utx − uζutt − 2utζ
ut − ζwttt = ζ uyy + ζ uzz , (19)

where the coefficients ζ utx , ζ utt , ζ ut , ζwttt , ζ uyy and ζ uzz are the coefficients of the prolonged
generator X:

X = X + ζ utx ∂utx + ζ utt ∂utt + ζ ut ∂ut + ζwttt ∂wttt + ζ uyy ∂uyy + ζ uzzx ∂uzz .

The general theory of constructing determining equations for integro-differential
equations can be found in [21]. Formerly the determining equation related to the integro-
differential equation is obtained applying the following strategy. First, one has to construct
the canonical Lie–Bäcklund operator equivalent to the generator X:

X̃ = (ζ u − ξ tut − ξxux − ξyuy − ξzuz)∂u + (ζw − ξ twt − ξxwx − ξywy − ξzwz)∂w.

Then the Lie–Bäcklund operator has to be prolonged up to the maximum order of derivatives
of the equation. Finally, the determining equation is obtained by applying the prolonged
Lie–Bäcklund operator to the equation, where the actions of the derivatives are considered in
terms of the Frechet derivatives:

ψw(t, x, y, z) =
∫ ∞

0
K(s)ψu(t − s, x, y, z) ds. (20)

Here

ψu(h1) = ζ u(h2)− ξ t (h2)ut (h1)− ξx(h2)ux(h1)− ξy(h2)uy(h1)− ξz(h2)uz(h1),

ψw(h1) = ζw(h2)− ξ t (h2)wt (h1)− ξx(h2)wx(h1)− ξy(h2)wy(h1)− ξz(h2)wz(h1),

where for the sake of simplicity of the presentation we denoted

h1 = (t, x, y, z), h2 = (t, x, y, z, u(t, x, y, z), w(t, x, y, z)).

The determining equations (19) and (20) have to be satisfied for any solution of equations (1).
Note that the determining equation (20) is still an integral equation.

Since it is difficult to find the general solution of the determining equations (19) and (20),
the following simplification is considered. One can assume that the determining equation (19)
is valid for any functions u(t, x, y, z) andw(t, x, y, z) only satisfying the first equation of (1).
This allows us to use the standard procedure for solving determining equations developed for
partial differential equations. After solving the determining equation (19), one can use the
found solution for solving the integral determining equation (20). It has to be noted that this
way of solving the determining equations (19) and (20) can give a particular solution. In this
paper, this method is used.

The described method of solving the determining equations (19) and (20) will be illustrated
on the one-dimensional case of equations (1). For the other cases, final results will be presented
in the following sections.
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3.1. One-dimensional case

In the one-dimensional case, equations (1) are

∂

∂t
(ux − uut − wtt ) = 0, w(t, x) =

∫ ∞

0
K(s)u(t − s, x) ds. (21)

The admitted generator is sought in the form

X = ξ t (t, x, u,w)∂t + ξx(t, x, u,w)∂x + ζ u(t, x, u,w)∂u + ζw(t, x, u,w)∂w.

Applying the group analysis method to the first equation, one finds that

ξ t = t (ξ ′/2 + k1)t + g, ζ u = u(k1 − ξ ′/2)− tξ ′′/2 − g′,

ζw = −(6ξ ′w + t3ξ ′′′)/12 + 3wk1 + t2μ + tη + ζ,
(22)

where k1 is constant, ξ = ξ(x), ζ = ζ(x), η = η(x), μ = μ(x) and g = g(x) are arbitrary
functions.

Remark. There is another representation of the first equation of (21). This equation is
obtained by integrating with respect to t and setting the arbitrary function of the integration to
zero:

ux − uut − wtt = 0, w(t, x) =
∫ ∞

0
K(s)u(t − s, x) ds. (23)

In this case, the first step in finding admitted Lie group leads to (22) with the particular case
of the function μ = −ξ ′′/2.

The determining equation for the second equation of (21)

w(t, x) =
∫ ∞

0
K(s)u(t − s, x) ds

is the equation

(̃ζ w − ξ̃ twt − ξ̃ xwx)(t, x) =
∫ ∞

0
K(s)(̃ζ u − ξ̃ tut − ξ̃ xux)(t − s, x) ds, (24)

where

ξ̃ t (t, x) = ξ t (t, x, u(t, x), w(t, x)), ξ̃ x(t, x) = ξx(t, x, u(t, x), w(t, x)),

ζ̃ w(t, x) = ζw(t, x, u(t, x), w(t, x)), ζ̃ w(t, x) = ζw(t, x, u(t, x), w(t, x)).

Substituting the coefficients (22) into (24), let us satisfy equation (24). Note that

(̃ξ xwx)(t, x) =
∫ ∞

0
K(s)(̃ξ xux)(t − s, x) ds,

and

ξ̃ t (t − s) = ξ̃ t (t)− s
(
k1 + 1

2ξ
′),

ζ̃ u(t − s) = (
k1 − 1

2ξ
′)u(t − s)− 1

2 (t − s)ξ ′′ − g′.

Here and further, the argument x is omitted, and further tilde is also omitted. The determining
equation (24) becomes

−ζw(t) +
∫ ∞

0
K(s)

(
ζ u(t − s)− s

(
k1 +

1

2
ξ ′

)
ut (t − s)

)
ds

= (6ξ ′w + t3ξ ′′′)/12 − 3wk1 − t2μ− tη − ζ +

(
k1 − 1

2
ξ ′

)
w − g′

∫ ∞

0
K(s) ds
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−1

2
ξ ′′

(
t

∫ ∞

0
K(s) ds −

∫ ∞

0
sK(s) ds

)
+

(
1

2
ξ ′ + k1

) ∫ ∞

0
sK(s)ut (t − s) ds

= t3ξ ′′′/12 − 2wk1 − t2μ− tη − ζ − g′
∫ ∞

0
K(s) ds

−1

2
ξ ′′

(
t

∫ ∞

0
K(s) ds −

∫ ∞

0
sK(s) ds

)
+

(
1

2
ξ ′ + k1

) ∫ ∞

0
sK(s)ut (t − s) ds.

Let us calculate∫ ∞

0
sK(s)ut (t − s) ds = −

∫ ∞

0
sK(s) du(t − s)

= −sK(s)u(t − s)|∞0 +
∫ ∞

0
(K(s) + sK ′(s))u(t − s) ds

= w +
∫ ∞

0
sK ′(s)u(t − s) ds.

Here it is assumed that

sK(s)u(t − s)|∞0 = 0.

The determining equation becomes

t3ξ ′′′/12 − 2wk1 − t2μ− tη − ζ − g′
∫ ∞

0
K(s) ds

−1

2
ξ ′′

(
t

∫ ∞

0
K(s) ds −

∫ ∞

0
sK(s) ds

)
+

(
1

2
ξ ′ + k1

)∫ ∞

0
sK(s)ut (t − s) ds

= t3ξ ′′′/12 − 2wk1 − t2μ− tη − ζ − g′
∫ ∞

0
K(s) ds

− 1

2
ξ ′′

(
t

∫ ∞

0
K(s) ds −

∫ ∞

0
sK(s) ds

)

+

(
1

2
ξ ′ + k1

) (
w +

∫ ∞

0
sK ′(s)u(t − s) ds

)

= t3ξ ′′′/12 + w

(
1

2
ξ ′ − k1

)
− t2μ− tη − ζ − g′

∫ ∞

0
K(s) ds

− 1

2
ξ ′′

(
t

∫ ∞

0
K(s) ds −

∫ ∞

0
sK(s) ds

)

+

(
1

2
ξ ′ + k1

) ∫ ∞

0
sK ′(s)u(t − s) ds

= t3ξ ′′′/12 − t2μ− tη − ζ − g′
∫ ∞

0
K(s) ds

− 1

3
ξ ′′

(
t

∫ ∞

0
K(s) ds −

∫ ∞

0
sK(s) ds

)

+
∫ ∞

0

((
1

2
ξ ′ + k1

)
sK ′(s) +

(
1

2
ξ ′ − k1

)
K(s)

)
u(t − s) ds = 0.

Since u = 0,w = 0 is a solution of equations (21), the determining equation has to be satisfied
on this solution. Thus, one obtains

−t3ξ ′′′/12 + t2μ + tη + ζ + g′
∫ ∞

0
K(s) ds +

1

3
ξ ′′

(
t

∫ ∞

0
K(s) ds −

∫ ∞

0
sK(s) ds

)
= 0,

(25)
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and hence, ∫ ∞

0

((
1

2
ξ ′ + k1

)
sK ′(s) +

(
1

2
ξ ′ − k1

)
K(s)

)
u(t − s) ds = 0.

Since u(t, x) is an arbitrary, the last equation gives(
1

2
ξ ′ + k1

)
sK ′(s) +

(
1

2
ξ ′ − k1

)
K(s) = 0,

which means that ξ ′ is constant, for example, ξ = 2kx + k0. Thus,

(k + k1)sK
′(s) + (k − k1)K(s) = 0,

or K(s) = K0s
α , and

(k + k1)α + (k − k1) = 0.

Equation (25) becomes

t2μ + tη + ζ + g′
∫ ∞

0
K(s) ds = 0.

This equation implies

μ = 0, η = 0, ζ = −g′
∫ ∞

0
K(s) ds.

To prevent problems with the convergence of the integral
∫ ∞

0 K(s) ds, one can assume that

g′ = 0.

Remark. One can call the transformations corresponding to the generators

X = g∂t − g′∂u
formally admitted. These generators can be used for constructing invariant solutions.

Thus, one obtains that the Lie group corresponding to the generators

X1 = ∂x, X2 = ∂t ,

X3 = kt t∂t + kxx∂x + kuu∂u + kww∂w

is admitted by equations (21). Here

kt = k + k1, kx = 2k, ku = k1 − k, kw = 3k1 − k,

(k + k1)α + (k − k1) = 0.
(26)

Note also that

ku = αkt , kt �= 0.

Since the integro-differential equations are nonlocal, not every admitted Lie group has the
property to transform a solution of integro-differential equations into a solution. However, for
the transformations corresponding to the generators X1 and X2, it is trivial to check that these
transformations possess this property. Let us also check that the scaling group corresponding
to the generator X3 maps any solution of equations (21) into a solution of the same equations.

The transformation corresponding to the generator X3 is

t ′ = teak
t

, x ′ = xeak
x

, u′ = u eak
u

,

which maps a function u(t, x) into the function

u′(t ′, x ′) = eak
u

u(t ′ e−akt , x ′ e−akx ).
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Let us consider the transformation of the integral∫ ∞

0
K(s ′)u′(t ′ − s ′, x ′) ds ′ = eak

u

∫ ∞

0
K(s ′)u((t ′ − s ′) e−akt , x ′ e−akx ) ds ′

= eak
u

∫ ∞

0
K(s ′)u(t ′ e−akt − s ′ e−akt ) ds ′

= ea(k
u+kt )

∫ ∞

0
K(s ′ e−akt eak

t

)u(t − s ′ e−akt ) d(s ′ e−akt )

= ea(k
u+kt )

∫ ∞

0
K(s eak

t

)u(t − s) ds

= ea(k
u+kt )

∫ ∞

0
K0(s eak

t

)αu(t − s) ds

= ea(k
u+(α+1)kt )

∫ ∞

0
K0s

αu(t − s) ds

= ea(k
u+(α+1)kt )w(t, x).

Thus, for checking one needs to only check that

−kw + ku + (α + 1)kt = 0.

Indeed

−kw + ku + (α + 1)kt = −3k1 + k + k1 − k + (α + 1)(k + k1)

= k1(−3 + 1 + α + 1) + k(1 − 1 + α + 1)

= k1(α − 1) + k(α + 1) = 0.

Here condition (26) was used. One also needs to check the other conditions:

ku − kt − kx = 2ku − 2kt = kw − 3kt .

Indeed,

ku − kt − kx = k1 − k − (k + k1)− 2k = −4k,

2ku − 2kt = 2(k1 − k)− 2(k + k1) = −4k,

kw − 3kt = 3k1 − k − 3(k + k1) = −4k.

3.2. Classification of subalgebras

The commutator table of the Lie algebra L3 = {X1, X2, X3} is

X1 X2 X3

X1 0 0 kxX1

X2 0 0 ktX2

X3 −kxX1 −ktX2 0.

The set of automorphisms is defined by the commutator table:

A1 : x ′
1 = x1 + a1k

xx3,

A2 : x ′
2 = x2 + a2k

tx3,

A3 : x ′
1 = x1 ea3k

x

, x ′
2 = x2 ea3k

t

,

where only changeable coordinates of the automorphisms are presented.
If α = 1, then kx = 0, and the operator X1 composes a center of the Lie algebra. Thus,

the one-dimensional optimal system of subalgebras consists of the subalgebras
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{X3 + λX1, X2 + γX1, X1},
where γ = ±1.

If α �= 1, then kx �= 0, and the one-dimensional optimal system of subalgebras consists
of the subalgebras

{X3, X2 + λX1, X1}.
For α �= 0, using the automorphism A3, the subalgebra X2 + λX1 can also be reduced to
X2 ±X1.

3.3. Invariant solutions

The optimal system of subalgebras of the Lie algebra L3 defines the complete set of
representations of solutions invariant with respect to L3.

3.3.1. Case α = 1

The subalgebra {X3 + λX1}. The generator {X3 + λX1} is

t∂t + u∂u + λ∂x.

It is convenient to separate two cases (a) λ = 0 and (b) λ �= 0. The invariants are

λ = 0: u/t, x;
λ �= 0: u/t, t exλo (λo = −1/λ).

Invariant solutions have the representations

λ = 0: u = tϕ(x);
λ �= 0: u = tϕ(y) (y = texλo ).

Note that for λ = 0, the integral

w =
∫ ∞

0
K0s(t − s)ϕ(x) ds = K0ϕ(x)

∫ ∞

0
s(t − s) ds

is divergent. Hence, one has only to consider the case λ �= 0. In this case,

w(t, x) = K0

∫ ∞

0
s(t − s)ϕ((t − s) exλo ) ds = K0 e−3xλo

∫ −∞

y

(y − z)zϕ(z) d(y − z)

= K0 e−3xλo

∫ ∞

0
s(y − s)ϕ(y − s) ds = e−3xλoW(y).

wt = e−2xλoW ′, wtt = e−xλoW ′′,

where we used the relations

s = t − z e−xλo = e−xλo (t exλo − z) = e−xλo (y − z).

Equation (23) becomes

y((λϕ + 1)ϕ′ − ϕ2) = K0
d2

dy2

(∫ ∞

0
s(y − s)ϕ(y − s) ds

)
.
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The subalgebra {X2 + γX1}. The generator {X2 + γX1} is ∂t + γ ∂x . The invariants are

u, y = x − γ t.

An invariant solution has the representation

u = ϕ(y).

Hence, one has

w(t, x) = K0

∫ ∞

0
sϕ(x − γ (t − s)) ds = K0

∫ −∞

y

(y − z)ϕ(z) d(y − z)

= K0

∫ ∞

0
sϕ(y − s) ds = W(y).

wt = −γW ′, wtt = W ′′,
where we used the relations

s = t + γ (z− x) = −γ (x − γ t) + γ z = −γ (y − z).

Equation (23) becomes

(1 + γ ϕ)ϕ′ = K0
d2

dy2

(∫ ∞

0
s(y − s)ϕ(y − s) ds

)
.

The subalgebra {X1}. The generator {X1} is ∂x . The invariants are

u, t.

An invariant solution has the representation

u = ϕ(t).

Hence, one has

w(t, x) = K0

∫ ∞

0
sϕ(t − s) ds.

Equation (23) becomes

−ϕϕ′ = K0
d2

dt2

(∫ ∞

0
sϕ(t − s) ds

)
.

3.4. Case α �= 1.

The subalgebra {X3}. The generator {X3} is

X3 = kt t∂t + kxx∂x + kuu∂u (kx �= 0),

where the constants kt, kx and ku are defined by (26). Substituting the representation of the
invariant solution

u = xk
u/(2k)ϕ(y), t = yxk

t /(2k)

into the second equation of (23), one has

w =
∫ ∞

0
K0s

αu(t − s) ds = K0x
ku/(2k)

∫ ∞

0
sαϕ((t − s)x−kt /(2k)) ds

= −K0x
((1+α)kt+ku)/(2k)

∫ −∞

tx−kt /(2k)
(y − z)αϕ(z) dz

= K0x
((1+α)kt+ku)/(2k)

∫ y

−∞
(y − z)αϕ(z) dz

= K0x
((1+α)kt+ku)/(2k)W(y) = K0x

(kt+2ku)/(2k)W(y),
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where we used the relations

s = t − zxk
t /(2k) = xk

t /(2k)(tx−kt /(2k) − z)

= xk
t /(2k)(y − z), (1 + α)kt + ku = kt + 2ku,

and

W(y) =
∫ y

−∞
(y − z)αϕ(z) dz.

The derivatives are changed as follows:
∂ϕ

∂t
= y

t
ϕ′,

∂ϕ

∂x
= − kt

2k

y

x
ϕ′,

∂

∂t

(
∂W

∂t

)
= ∂

∂t

(y
t
W ′

)
= 1

t2
(−yW ′ + y(yW ′)′) = y2

t2
W ′′.

Thus, the first equation of (23) becomes

ux − uut − vtt = ux − uut − ∂2

∂t2

∫ ∞

0
K0s

αu(t − s) ds

= ku

2k

xk
u/(2k)

x
ϕ − kt

2k

xk
u/(2k)y

x
ϕ′ − xk

u/(2k)ϕxk
u/(2k) y

t
ϕ′ −K0

x(k
t+2ku)/(2k)y2

t2
W ′′

= ku

2k

xk
u/(2k)

x
ϕ − kt

2k

xk
u/(2k)y

x
ϕ′ − xk

u/(2k)ϕxk
u/(2k) y

t
ϕ′ −K0yx

(2ku−kt )/(2k)W ′′

= xk
u/(2k)

x

(
ku

2k
ϕ − kt

2k
yϕ′ − ϕx(k

x+ku−kt )/(2k)ϕ′ −K0x
(ku−kt+kx)/(2k)W ′′

)

= xk
u/(2k)

x

(
ku

2k
ϕ − kt

2k
yϕ′ − ϕϕ′ −K0W

′′
)

= 0.

Here, the following relation was used:

ku + kx − kt = k1 − k + 2k − (k + k1) = 0.

Thus, the reduced equation is

αϕ + ((α − 1)ϕ − y)ϕ′ = (1 − α)K0

∫ ∞

0
sαϕ′′(y − s) ds,

where

W ′′(y) = d2

dy2

(∫ y

−∞
(y − z)αϕ(z) dz

)
= d2

dy2

(∫ ∞

0
sαϕ(y − s) ds

)

=
∫ ∞

0
sαϕ′′(y − s) ds.

The subalgebra {X2 + λX1}. The generator {X2 + λX1} is ∂t + λ∂x . The invariants are

u, y = x − λt.

An invariant solution has the representation of a traveling wave type

u = ϕ(y).

As in the previous case, one needs to study only the case λ �= 0. If λ > 0, then one has

w(t, x) = K0

∫ ∞

0
sαϕ(x − λ(t − s)) ds = λ−α−1K0

∫ ∞

y

(z− y)αϕ(z) d(z− y)

= λ−α−1K0

∫ ∞

0
sαϕ(y + s) ds = W(y).

wt = −λW ′, wtt = λ2W ′′,
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where

s = t +
z− x

λ
= −x − λt

λ
+
z

λ
= z− y

λ
.

The reduced equation is

(1 + λϕ)ϕ′ = λ1−αK0

∫ ∞

0
sαϕ′′(y + s) ds. (27)

If λ < 0, then

w(t, x) = K0

∫ ∞

0
sαϕ(x − λ(t − s)) ds = K0(−λ)−α−1

∫ −∞

y

(y − z)αϕ(z) d(y − z)

= (−λ)−α−1K0

∫ ∞

0
sαϕ(y + s) ds = W(y).

Equation (23) becomes

(1 + λϕ)ϕ′ = (−λ)1−αK0

∫ ∞

0
sαϕ′′(y + s) ds. (28)

Combining equations (27) and (28), one has

(1 + λϕ)ϕ′ = |λ|1−αK0

∫ ∞

0
sαϕ′′(y + s) ds. (29)

The subalgebra {X1}. The generator {X1} is ∂x . The invariants are u, t . An invariant solution
has the representation

u = ϕ(t).

Hence, one has

w(t, x) = K0

∫ ∞

0
sαϕ(t − s) ds.

Equation (23) becomes

−ϕϕ′ = K0

(∫ ∞

0
sαϕ′′(t − s) ds

)
.

4. Two-dimensional equation

The studied equations are

∂

∂t
(ux − uput − wtt ) = uyy, w(t, x, y) =

∫ ∞

0
K(s)u(t − s, x, y) ds.

The first step gives the generator

X = ξ t (t, x, y, p,w)∂t + ξx(t, x, y, p,w)∂x + ξy(t, x, y, p,w)∂y
+ ζ u(t, x, y, p,w)∂p + ζ v(t, x, y, p,w)∂w,

where the coefficients are

ξ t = (2tξ ′ + ξ ′′y2 + 3h′y)/6 + tk1 + g, ξy = ξ, ξy = (4yξ ′ + 3yk1)/6 + h,

ζ u = ((6k1 − 4ξ ′)− ξ ′′′y2 − 2tξ ′′ − 6g′ − 3yh′′)/6,

ζ v = (3k1 − ξ ′)w + t2μ + tη + ζ,

(30)
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Here k1 is constant, ξ = ξ(x), h = h(x), g = g(x), ζ = ζ(t, x, y), η = η(t, x, y) and
μ = μ(t, x, y) are arbitrary functions.

The determining equation for the second equation

w(t, x, y) =
∫ ∞

0
K(s)u(t − s, x, y) ds

is the equation

(ζ v − ξ twt − ξxwx − ξywy)(t, x, y)

=
∫ ∞

0
K(s)(ζ u − ξ tut − ξxux − ξyuy)(t − s, x, y) ds.

Substituting the coefficients (30) into the last equation, one obtains

μ = 0, η = 0, ζ = 0, g′ = 0, h′′ = 0,(
1

3
ξ ′ + k1

)
sK ′(s) +

(
2

3
ξ ′ − k1

)
K(s) = 0,

which means that ξ ′ is constant, for example, ξ = 3kx + k0. Thus,

(k + k1)sK
′(s) + (2k − k1)K(s) = 0,

or

K(s) = K0s
α,

and

(k + k1)α + (2k − k1) = 0.

Therefore, the admitted Lie algebra is defined by the generators

X1 = ∂x, X2 = ∂t , X3 = y∂t + 2x∂y, X4 = ∂y,

X5 = 2t (k + k1)∂t + 6kx∂x + (4k + k1)y∂y + 2(k1 − 2k)u∂u + 6v(k1 − k)∂w.

5. Three-dimensional case

The studied equations are

∂

∂t
(ux − uut − wtt ) = uyy + uzz, w(t, x, y, z) =

∫ ∞

0
K(s)u(t − s, x, y, z) ds.

The first step gives the generator

X = ξ t (t, x, y, u, z,w)∂t + ξx(t, x, y, u, z,w)∂x + ξy(t, x, y, u, z,w)∂y
+ ζ u(t, x, y, u, z,w)∂u + ζw(t, x, y, z, u,w)∂w

with the coefficients

ξ t = t (ξ ′ + 2k1) + 3ξ ′′(z2 + y2)/4 + (h′y + f ′z)/2 + g,

ξx = 5ξ, ξy = 3ξ ′y + zk2 + yk1 + h, ξz = 3ξ ′z + zk1 − yk2 + f,

ζ u = 2(k1 − 2ξ ′)u− 3ξ ′′′(z2 + y2)/4 − ξ ′′t − g′ − (h′′y + f ′′z)/2,

ζw = w(6k1 − 7ξ ′) + ξ ′′′t3/3 + t2μ + tη + ζ,
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where k1, k2 are constant, and ξ = ξ(x), h = h(x), g = g(x), f = f (x), ζ = ζ(x, y, z),
η = η(x, y, z) and μ = μ(x, y, z) are arbitrary functions. It is obvious that the generator
corresponding to the rotation in the planes y and z is admitted. This generator is defined by k2:

X = z∂y − y∂z.

Excluding this generator, one obtains

ξ t = t (ξ ′ + 2k1) + 3ξ ′′(z2 + y2)/4 + (h′y + f ′z)/2 + g,

ξx = 5ξ, ξy = y(3ξ ′ + k1) + h, ξz = z(3ξ ′ + k1) + f,

ζ u = 2(k1 − 2ξ ′)u− 3ξ ′′′(z2 + y2)/4 − ξ ′′t − g′ − (h′′y + f ′′z)/2,

ζw = w(6k1 − 7ξ ′) + ξ ′′′t3/3 + t2μ + tη + ζ.

The determining equation for the second equation

w(t, x, y, z) =
∫ ∞

0
K(s)u(t − s, x, y, z) ds

is the equation

(ζw − ξ twt − ξxwx − ξywy − ξzwz)(t, x, y, z)

=
∫ ∞

0
K(s)(ζ u − ξ tut − ξxux − ξyuy − ξzuz)(t − s, x, y, z) ds.

Substituting the coefficients into the last equation, one obtains

g = k3, h = 2k4x + k5, f = 2k6x + k7

ξ t = t (k + 2k1) + k4y + k6z + k3, ξ x = 5(kx + k0), ξy = y(3k + k1) + 2k4x + k5,

ξ z = z(3k + k1) + 2k6x + k7, ζ u = 2(k1 − 2k)u, ζw = w(6k1 − 7k).

(k + 2k1)sK
′(s) + 2(2k − k1)K(s) = 0,

which means that

K(s) = K0s
α,

and

k(α + 4) + 2k1(α − 1) = 0.

The admitted generators are

X1 = ∂x, X2 = ∂t , X3 = z∂y − y∂z, X4 = y∂t + 2x∂y,

X5 = z∂t + 2x∂z, X6 = ∂y, X7 = ∂z,

X8 = t (k + 2k1)∂t + 5kx∂x + (3k + k1)y∂y + (3k + k1)z∂z

+ 2(k1 − 2k)u∂u + w(6k1 − 7k)∂w.
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Figure 1. The solution describing the shape of front in a relaxing medium. Curves 1, 2 and 3
are constructed for α = 0 and � = 1, 0.75 and 0.5, correspondingly. The dashed curve 2′ is
constructed for the values � = 0.75 and α = 0.15.

6. Exponential kernel

There exists one known exact solution to the 1D equation for an exponential kernel [1, 19]:

ux − uut − wtt = 0,

w =
∫ ∞

0
exp(−s)u(t − s) ds.

One can seek for it in the form of a traveling wave:

u = u(t + αx).

The solution has the form

t + γ = 1

�
ln

|u− α +�|1−�

|u− α −�|1+�
.

Here α, � and γ are the constants. This solution has evident physical meaning for the
parameters � > |α|, 0 < � < 1. This is shown in figure 1 and the solution describes the
shape of a single shock front in a relaxing medium.

It is interesting to derive this solution using computed symmetries.
Since for the exponential kernel K(s) = e−s one has relation (6):

wt = u− w,

equations

uxt − uutt − u2
t = wttt (31)

and

ux − uut = wtt (32)
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can be reduced to the partial differential equations, respectively,

uxtt − (1 + u)uttt − 3ututt + uxt − uutt − u2
t = 0, (33)

and

uxt − (1 + u)utt − u2
t + ux − uut = 0. (34)

Admitted Lie groups of these equations are as follows. The admitted Lie group of equation
(33) is defined by the generators

X1 = ∂x, X2 = g(x)∂t − g′(x)∂u,

where the function g = g(x) is an arbitrary function. The admitted Lie group of equation (34)
is defined by the generators

X1 = ∂x, X2 = ∂t , X3 = x∂t − ∂u.

The commutator table of the algebra {X1, X2, X3} is

X1 X2 X3

X1 0 0 X2

X2 0 0 0
X3 −X2 0 0.

The generator X2 is a center of the Lie algebra. The set of automorphisms is defined by the
commutator table:

A1: x ′
2 = x2 + a1x3,

A3: x ′
2 = x2 − a3x1.

The one-dimensional optimal system of subalgebras consists of the subalgebras

{X3 + λX1, X2, X1}.
The representations of invariant solutions are

X3 + λX1: u = −x
λ

+ ϕ(x2 − 2λt) (λ �= 0),

X3: u = − t

x
+ ϕ(x),

X2: u = ϕ(x),

X1: u = ϕ(t),

and the reduced equations are

X3 + λX1: (4λ3(ϕ′ + ϕϕ′)− λ2ϕ2)′ + 1 = 0,

X3: ϕ′ +
1

x
ϕ = 0,

X2: ϕ′ = 0,
X1: (ϕ′ + ϕϕ′ + ϕ2/2)′ = 0.

The solution

u = u(t + αx)

is invariant with respect to the operator X1 − αX2 = ∂x − α∂t . The subalgebra corresponding
to this operator is equivalent to the subalgebra with the generator X1. The reduced equation of
an invariant solution corresponding to the generator X1 is

ϕ′ = k − ϕ2

2(1 + ϕ)
,
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Figure 2. Solution describing the shape of wave front in the medium with the constant ‘memory’
inside the time interval [0, 1]. Curves 1 and 2 are constructed for α = 0 and the values of β = 1
and 0.5, correspondingly. The dashed curve 2′ is constructed for the values β = 0.5 and α = 0.25.

where k is an arbitrary constant of integration. The general solution of this equation depends
on the constant k:

k = α2 > 0: t + c0 = 1

α
ln

( |ϕ + α|1−α

|ϕ − α|1+α

)
,

k = −α2 < 0: t + c0 = − ln(ϕ2 + α2)− 2

α
arctan

(ϕ
α

)
,

k = 0: t + c0 = −2 ln(ϕ) +
2

ϕ
.

7. Delay equation

It is desirable to derive an exact solution for any kernel which does not permit the reduction of
an integral equation to the differential one. Such an example exists. That is the model
kernel which is nonzero on the finite segment, say s ∈ [0, 1]. The simplest case is
K = 1, s � 1; K = 0, s > 1. For this kernel the integral equation is reduced to the
difference-differential equation

ux − uut −�ut = 0, �u ≡ u(t)− u(t − 1).

Its solution can be sought in the form of a traveling wave: u = u(t + αx). The reduced
equation can be integrated one time. The solution is u(t − 1) = 1

2 [u2(t)+ 2(1 −α)u(t)−β2].
Here α and β are constant. This formula defines a mapping u(t) → u(t − 1) which offers
easy possibility of constructing curves representing the profiles of the wave. These profiles
are shown in figure 2. They display the image of a shock front in the medium with constant
‘memory’ within the segment [0, 1].

The equation

ux(t, x) = (u(t, x) + 1)ut (t, x)− ut (t − 1, x)

is a delay differential equation. The algorithm for applying the group analysis method to delay
differential equations is given in [21–23]. Calculations show that the admitted Lie group is
defined by the generators

X1 = ∂t , X2 = ∂x, X3 = x∂t − ∂u.
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The representations of invariant solutions are given in the previous case. The reduced
equations are

X3 + λX1: 2λ2(ϕ′(z)(ϕ(z) + 1) + ϕ′(z + 2λ)) = 1,
X3: ϕ′ + 1

x
ϕ = 0,

X2: ϕ′ = 0,
X1: ϕ′(t)(ϕ(t) + 1) + ϕ′(t − 1) = 0.

The reduced equations can be integrated:
X3 + λX1: λ2(ϕ2(z) + 2ϕ(z) + ϕ2(z + 2λ)) = z + c0,

X3: ϕ = c0/x,

X2: ϕ = c0,

X1: ϕ2(t) + 2ϕ(t) + 2ϕ(t − 1) = c0.

8. Conclusion

The nonlinear integro-differential evolution equation (1) considered in this paper is not an
exotic model. It encapsulates numerous mathematical models formulated by differential
evolution equations and differs from them significantly not only in its form, but mostly due to
its physical content meaning. Namely, any dispersion (frequency-dependent phase velocity)
must be strongly connected with frequency-dependent absorption. Such connection follows
from the causality principle. For example, waves having infinite velocities of propagation
which are allowed by the differential equations of Burgers and Korteweg–de Vries type must
disappear on their way, since otherwise a cause appears at a certain point later than its effect.
The causality principle is given in physical models by integral Kramers–Kronig relations.
Consequently, a consistent model must contain integral terms, in other words, be represented
in an integro-differential form. Although this conclusion is well known, mathematical models
described by purely differential evolution equations have been widely accepted in the nonlinear
wave physics due to their simplicity compared to the integro-differential models. It seems that
the consistent integro-differential nonlinear models will meet more applications in future.

This paper provides a first step in the application of the Lie group analysis to
equation (1). The approach used in this paper is described in [21]. The analysis of the
determining equation for the integro-differential equation allows us, in particular, to single
out a class of kernels used for deriving mathematical models in the medical applications of
ultrasound [20].

Note that for particular kernels, the integro-differential equation (1) becomes a partial
differential equation or a delay partial differential equation. In these cases the complete group
classification of equation (1) can be obtained. In the case of partial differential equations, the
classical group analysis is used. For delay partial differential equations, the analysis developed
in [22, 23] and described in [21] is applied. A complete study of particular cases is given in
the paper. This provides a new result in the application of the group analysis method to partial
and delay partial differential equations.

Along with admitted Lie groups, the representations of exact solutions and reduced
equations are constructed in the paper. A complete solution and a physical interpretation of
some of them are presented.

We hope that more results will be obtained in future by applying the above approach
for solving the concrete models of physical significance as well as for new mathematical
developments. In particular, it is interesting to make the preliminary group classification of
exceptional kernels by applying the method of an a priory use of symmetries [24] to the
integro-differential equations of the form (1).
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a b s t r a c t

In Nonenmacher (1984) [1] an admitted Lie group of transformations for the spatially homogeneous

and isotropic Boltzmann equation with sources was studied. In fact, the author is Nonenmacher (1984)

[1] considered the equation for a generating function of the power moments of the Boltzmann equation

solution. However, this equation is still a non-local partial differential equation, and this property was

not taken into account there. In the present paper the admitted Lie group of this equation is studied,

using our original method developed for group analysis of equations with non-local operators

(Grigoriev and Meleshko, 1986; Meleshko, 2005; Grigoriev et al., 2010 [2–4]). The Lie groups obtained

are compared with Nonenmacher (1984) [1]. The deficiency of Nonenmacher (1984) [1] is corrected.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The Boltzmann kinetic equation is the basis of the classical
kinetic theory of rarefied gases. Considerable interest in the study
of the Boltzmann equation was always the search for exact
(invariant) solutions directly associated with the fundamental
properties of the equation. After the studies of the class of the
local Maxwellians [5–7] new classes of invariant solutions were
constructed in the 1960s in [8–10]. A decade later the BKW-
solution was almost simultaneously derived in [11,12]. Contrary
to the Maxwellians, the Boltzmann collision integral does not
vanish for this solution. The discovery of the BKW-solution
stimulated a great splash of studies of exact solutions of various
kinetic equations. However, the progress at that time was really
limited to obtaining BKW-type solutions for different simplified
models of the Boltzmann equation.1

The Boltzmann equation is an integro-differential equation.
Whereas the classical group analysis method has been developed
for studying partial differential equations, the main obstacle for
applying group analysis to integro-differential equations comes
from presence of non-local integral operators. The direct group
analysis for equations with non-local operators was worked out
and successfully used in [2–4]. In particular, a complete group
classification of the spatially homogeneous and isotropic
Boltzmann equation without sources was obtained in [2,14].

One of the alternative approaches for studying solutions of the
Boltzmann equation, by transition to an equation for a moment
generating function, was first considered in [12]. The BKW-
solution was obtained there. In [1], such an approach was applied
to the spatially homogeneous and isotropic Boltzmann equation
with sources. The author of [1] used the group analysis method
for studying solutions of the equation for the generating function.
However, it was not taken into account that this equation is still a
non-local one. In the present paper we use our method [2,14] to
amend the results of [1]. A group classification of the equation for
a moment generating function with respect to a source function is
obtained.

2. General equations

The Fourier image of the spatially homogeneous and isotropic
Boltzmann equation with sources has the form [15]

jtðy,tÞþjðy,tÞjð0,tÞ ¼

Z 1

0
jðys,tÞjðyð1�sÞ,tÞ dsþ q̂ðy,tÞ, ð1Þ

where the Fourier transform

~jðk,tÞ ¼
4p
k

Z 1
0

v sinðkvÞf ðv,tÞ dv,

of the distribution function f ðv,tÞ is defined by the formula

~jðk,tÞ ¼jðk2=2,tÞ:

Similarly, the transform of the source function qðv,tÞ is

~̂q ðk,tÞ ¼
4p
k

Z 1
0

v sinðkvÞqðv,tÞ dv,
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and

~̂q ðk,tÞ ¼ q̂ðk2=2,tÞ:

The inverse Fourier transform of ~jðk,tÞ gives the distribution
function

f ðv,tÞ ¼
4p
v

Z 1
0

k sinðkvÞ ~jðk,tÞ dk:

Normalized moments of the distribution function are introduced
by the formulae

MnðtÞ ¼
4p

ð2nþ1Þ!!

Z 1
0

f ðv,tÞv2nþ2 dv, ðn¼ 0;1,2, . . .Þ: ð2Þ

Following [16], one can obtain a system of equations for the
moments (2) from (1). It is sufficient to substitute the expansions
in power series

jðy,tÞ ¼
X1
n ¼ 0

ð�1ÞnMnðtÞ
yn

n!
, q̂ðy,tÞ ¼

X1
n ¼ 0

ð�1ÞnqnðtÞ
yn

n!
,

into (1), where

qnðtÞ ¼
1

ð2nþ1Þ!!
4p
Z 1

0
f ðv,tÞv2nþ2 dv, ðn¼ 0;1,2, . . .Þ,

are the normalized moments of the source function. As a result,
one derives the moment system considered in [1]

dMnðtÞ

dt
þMnðtÞM0ðtÞ ¼

1

nþ1

Xn

k ¼ 0

MkðtÞMn�kðtÞþqnðtÞ: ð3Þ

For qðv,tÞ ¼ 0 this system was derived in [12] in a very
complicated way.

Let us define moment generation functions for the distribution
function f ðv,tÞ and for the source function qðv,tÞ:

Gðo,tÞ ¼
X1
n ¼ 0

onMnðtÞ, Sðo,tÞ ¼
X1
n ¼ 0

onqnðtÞ:

Multiplying Eq. (3) by on, and summing over all n, one obtains for
Gðo,tÞ the equation

@2ðoGÞ

@t@o
þM0ðtÞ

@ðoGÞ

@o
¼ G2
þ
@ðoSÞ

@o
: ð4Þ

Here the obvious relations are used

X1
n ¼ 0

ðnþ1ÞonMnðtÞ ¼
@ðoGÞ

@o ,
X1
n ¼ 0

ðnþ1ÞonqnðtÞ ¼
@ðoSÞ

@o ,

X1
n ¼ 0

on
Xn

k ¼ 0

MkðtÞMn�kðtÞ ¼ G2:

In contrast to the case of homogeneous relaxation with qðv,tÞ ¼ 0,
the gas density M0ðtÞ �jð0,tÞ is not constant. From Eq. (3) for
n¼0 one can obtain

M0ðtÞ ¼

Z t

0
q0ðt

0Þ dt0 þM0ð0Þ:

Notice also that

M0ðtÞ ¼ Gðt,0Þ: ð5Þ

This is the reason why Eq. (4) has a non-local term. This fact was
not taken into account in [1] in the process of finding an admitted
Lie group. The lack of this condition can lead to uncorrected
admitted Lie groups. In the present paper this omission is
corrected.

3. Admitted Lie algebra of the generating function equation

Eq. (4) is conveniently rewritten in the form

ðxutÞx�u2þuð0ÞðxuÞx ¼ g, ð6Þ

where uð0Þ ¼ uðt,0Þ. Here o¼ x, G¼u and ðoSÞo ¼ g.
As mentioned, because of the presence of the term uð0Þ, Eq. (6)

differs from a partial differential equation. Hence, the classical
group analysis method cannot be applied to this equation. One
needs to use the method developed for equations with non-local
terms [2–4]. In this section the latter method is applied for finding
an admitted Lie group of Eq. (6).

The admitted generator is sought in the form

X ¼ tðt,x,uÞ@tþxðt,x,uÞ@xþzðt,x,uÞ@u:

According to the algorithm [2–4], the determining equation for
Eq. (6) is

xctxþctþuð0ÞðxcxþcÞ�2cuþcð0ÞðxuÞx ¼ 0, ð7Þ

where

cðt,xÞ ¼ zðt,x,uðt,xÞÞ�utðt,xÞtðt,x,uðt,xÞÞ�uxðt,xÞxðt,x,uðt,xÞÞ,

cð0Þ ¼cðt,0Þ:

After substituting the derivatives utx, utxx and uttx found from Eq.
(6) and its derivatives with respect to x and t into (7), one obtains
the determining equation

ztxx2þztxþzugxþzuu2xþgxþu2x�2uxzþuxzð0Þ
�xðgttþgxxþgðttþxxÞÞ

�ttu
2x�xxu2xþuð0Þðzxx2�zuux�uxþxzþxxxuþxttuÞ

�xuxð0ÞðuxxþuÞxð0Þ
�txuttx

2�x2uxutttu�utuxxxux2�uxxxtx
2

þutuxxðzuux�ttuxþtuuð0Þx�xxuxþxuÞ

þutðxxxþzxux2�x�ttxx2�2tuxðgþu2Þ

þuð0Þxð2tuu�xtxÞÞ

þu2
t xðtu�xtxuÞþxutð0Þðt�tð0ÞÞðuxxþuÞþu2

x x2ðxuuð0Þ�xtuÞ

�u2
t uxtuux2

�utu
2
xxuux2þxuxðxðttuð0Þþzð0ÞþztuÞ�xtxx�xt

�2xug�2xuu2þ2xuuuð0ÞÞ ¼ 0: ð8Þ

Here

tð0Þ ¼ tðt,0,uðt,0ÞÞ, xð0Þ ¼ xðt,0,uðt,0ÞÞ, zð0Þ ¼ zðt,0,uðt,0ÞÞ,

utð0Þ ¼ utðt,0Þ, uxð0Þ ¼ uxðt,0Þ:

Differentiating the determining Eq. (8) with respect to utt, uxx, and
then with respect to ut and ux, one gets

tu ¼ 0, tx ¼ 0, xu ¼ 0, xt ¼ 0:

Hence,

t¼ tðtÞ, x¼ xðxÞ,

and

tð0Þ ¼ t:

Differentiating the determining equation with respect to ut, and
then ux, one finds

zuu ¼ 0,

or

zðt,x,uÞ ¼ uz1ðt,xÞþz0ðt,xÞ:

The coefficient with uxuxð0Þ in the determining Eq. (8) gives
xð0Þ ¼ 0. Continuing splitting the determining Eq. (8) with respect
to ut, and then ux, one finds

z1ðt,xÞ ¼ �x�1xðxÞþz10ðtÞ:
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Hence,

zð0Þ ¼ zðt,0Þ ¼ uð0Þðz10ðtÞ�x
0
ð0ÞÞþz0ðt,0Þ:

The coefficient with uxuð0Þ leads to the condition

z10 ¼�ttþx
0
ð0Þ:

Differentiating the determining equation with respect to u twice,
one has

xx ¼ 2
x
x
�x0ð0Þ:

The general solution of this equation is

x¼ xðc1xþc0Þ:

Equating the coefficient with ux to zero, one derives

tttðtÞ ¼ z0ðt,0Þ:

The coefficient with uð0Þ in the determining Eq. (8) gives

xz0xþz0 ¼ 0:

This equation only has one solution which is non-singular at x¼0

z0ðt,xÞ ¼ 0:

Hence, z0ðt,0Þ ¼ 0, and

t¼ c2tþc3:

The remaining part of the determining Eq. (8) becomes

gtðc2tþc3Þþxgxðc1xþc0Þ ¼�2gðc1xþc2Þ: ð9Þ

Thus, the admitted generator has the form

X ¼ c0X0þc1X1þc2X2þc3X3,

where

X0 ¼ x@x, X1 ¼ xðx@x�u@uÞ, X2 ¼ t@t�u@u, X3 ¼ @t : ð10Þ

The values of the constants c0, c1, c2, c3 and relations between
them depend on the function gðt,xÞ.

The trivial case of the function

g ¼ 0,

satisfies Eq. (9), and corresponds to the case of the spatially
homogeneous and isotropic Boltzmann equation without a source
term. In this case, using its Fourier image (1) with q̂ðy,tÞ ¼ 0, the
complete group classification of the Boltzmann equation was
carried out in [2,14]. The four-dimensional Lie algebra
L4
¼ fY1, Y2, Y3, Y4g spanned by the generators

Y0 ¼ y@y, Y1 ¼ yj@j, Y2 ¼ t@t�j@j, Y3 ¼ @t , ð11Þ

defines the complete admitted Lie group G4 of (1). There are direct
relations between the generators (10) and (11).

Indeed, since the functions jðy,tÞ and uðx,tÞ are related through
the moments Mn(t) ðn¼ 0;1,2, . . .Þ, it is sufficient to check that the
transformations of moments defined through these functions
coincide.

Let us consider the transformations corresponding to the
generators Y0 and X0

Y0 ¼ y@y : t ¼ t, y ¼ yea, j ¼j,

X0 ¼ x@x : t ¼ t, x ¼ xea, u ¼ u:

The transformed functions are jðy,tÞ ¼jðye�a,tÞ and
uðx,tÞ ¼ uðxe�a,tÞ. The transformations of moments are, respec-
tively,

MnðtÞ ¼ ð�1Þn
@njðy,tÞ

@yn
9y ¼ 0

¼ ð�1Þn
@njðye�a,tÞ

@yn
9y ¼ 0

¼ ð�1Þne�na @
nj
@yn
ð0,tÞ ¼ e�naMnðtÞ,

MnðtÞ ¼ n!
@nuðxe�a,tÞ

@xn
9x ¼ 0

¼ e�nan!
@nu

@xn
ð0,tÞ ¼ e�naMnðtÞ:

Hence, one can see that the transformations of moments defined
through the functions jðy,tÞ and uðx,tÞ coincide.

The Lie groups of transformations corresponding to the gen-
erators Y1 and X1 are

Y1 ¼ yj@j : t ¼ t, y ¼ y, j ¼jeya,

X1 ¼ xðx@x�u@uÞ : t ¼ t, x ¼
x

1�ax
, u ¼ ð1�axÞu:

These transformations map the functions jðy,tÞ and uðx,tÞ to
jðy,tÞ ¼ eyajðy,tÞ and uðx,tÞ ¼ ð1=ð1þaxÞÞuðt ,x=ð1þaxÞÞ. The
transformations of moments are, respectively,

MnðtÞ ¼ ð�1Þn
@njðy,tÞ

@yn
9y ¼ 0

¼ ð�1Þn
@nðeyajðy,tÞÞ

@yn
9y ¼ 0

¼ ð�1Þn
@

@y
þa

� �n

j
� �

ð0,tÞ,

MnðtÞ ¼ n!
@nuðx,tÞ

@xn
9x ¼ 0

¼ n!
@n

@xn

1

1þax
uðt ,

x

1þax
Þ

� �
9x ¼ 0

:

Using computer symbolic calculations on Reduce [17] one can
check that these transformations of moments also coincide.

The Lie groups of transformations corresponding to the gen-
erators Y2 and X2 are

Y2 ¼ t@t�j@j : t ¼ tea, y ¼ y, j ¼je�a,

X2 ¼ t@t�u@u : t ¼ tea, x ¼ x, u ¼ ue�a:

These transformations map the functions jðy,tÞ and uðx,tÞ to
jðy,tÞ ¼ e�ajðy,te�aÞ and uðx,tÞ ¼ e�auðx,te�aÞ. The transforma-
tions of moments are, respectively,

MnðtÞ ¼ ð�1Þn
@njðy,tÞ

@yn
9y ¼ 0

¼ ð�1Þne�a@
njðy,te�aÞ

@yn
9y ¼ 0

¼ ð�1Þne�a @
nj
@yn
ð0,te�aÞ ¼Mnðte�aÞe�a,

MnðtÞ ¼ n!
@nuðx,tÞ

@xn
9x ¼ 0

¼ n!e�a@
nuðx,te�aÞ

@xn
9x ¼ 0

¼ n!e�a @
nu

@xn
ð0,te�aÞ ¼Mnðte�aÞe�a:

The case where the transformations of moments correspond-
ing to the generators Y3 ¼ @t and X3 ¼ @t coincide is trivial. These
direct relations between the Lie algebras confirm correctness of
our calculations.

4. Comparison with algebra [1]

Using the variables of the present paper, let us formulate the
results of [1]. The admitted generator obtained in [1] has the form

Zg ¼ tðtÞð@t�M0ðtÞu@uÞþau@uþðg�dÞxðx@x�u@uÞ�gx@x, ð12Þ

where

m0ðtÞ ¼

Z t

0
M0ðt

0Þ dt0, tðtÞ ¼ b�a
Z t

0
e�m0ðt

0 Þ dt0
� �

em0ðtÞ,

a, b, g and d are constant. The function gðt,xÞ has to satisfy the
equation

tðtÞ @g

@t
þxðxðg�dÞ�gÞ @g

@x
¼�2ðxðg�dÞþM0ðtÞtðtÞ�aÞg: ð13Þ

Since M0ðtÞ is unknown, comparison of our results is only possible
for g ¼ 0. Moreover, in contrast to Eq. (9), the source function gðt,xÞ in
(13) as a solution of Eq. (13) depends on the function M0ðtÞ, whereas
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the function M0ðtÞ also depends on the source function. This makes
Eq. (13) non-local and very complicated.

Comparing the operator Zg for g¼0 with (10), one obtains that
the part related with the constants g and d coincides with the
result of the present paper, whereas the part related with the
constants a and b is completely different. Indeed, in this case Eq.
(13) is satisfied identically, M0ðtÞ ¼M0ð0Þ, and for

M0ð0Þa0 : m0ðtÞ ¼ tM0ð0Þ, tðtÞ ¼ betM0ð0Þ þ
a

M0ð0Þ
ð1�etM0ð0ÞÞ,

M0ð0Þ ¼ 0 : m0ðtÞ ¼ 0, tðtÞ ¼ b�at:

The admitted generator (13) becomes

M0ð0Þa0 : Z0 ¼ b�
a

M0ð0Þ

� �
etM0ð0Þð@t�M0ð0Þu@uÞ

þ
a

M0ð0Þ
@tþðg�dÞxðx@x�u@uÞ�gx@x,

M0ð0Þ ¼ 0 : Z0 ¼ b@t�aðt@t�u@uÞþðg�dÞxðx@x�u@uÞ�gx@x:

One can see that our results only coincide with [1] for M0ð0Þ ¼ 0.
The case M0ð0Þ ¼ 0 corresponds to a gas with zero density which
is not realistic. For M0ð0Þa0, the coefficient with the exponent
etM0ð0Þ plays a crucial role. This coefficient only vanishes for

a¼M0ð0Þb: ð14Þ

In this case the admitted Lie algebra found in [1] is a proper
subalgebra of the Lie algebra defined by the generators (10). Thus,
all invariant solutions with ða,b,g,dÞ ¼ ðM0ð0Þb,b,g,dÞ considered
in [1] are particular cases of invariant solutions obtained in [2,4].
In particular, the well-known BKW-solution is an invariant solu-
tion with respect to the generator YBKW ¼ cðY1�Y0ÞþY3. In the Lie
algebra (10) this solution is related with the generator
XBKW ¼ cðX1�X0ÞþX3. Other classes of invariant solutions studied
in [1] correspond to (14) with the particular choice b¼ 0.

5. On equivalence transformations of the generating function
equation

For the group classification one needs to know equivalence
transformations. Let us find some of them using the generators
(10) and considering their transformations of the left hand side of
Eq. (6)

Lu¼ xutxþut�u2þuð0ÞðxuxþuÞ:

The transformations corresponding to the generator X0 ¼ x@x

map a function uðt,xÞ into the function

uðt ,xÞ ¼ uðt ,xe�aÞ,

where a is the group parameter. Hence,

Lu ¼ x
@2u

@x@t
ðt ,xÞþ

@u

@t
ðt ,xÞ�u2

ðt ,xÞþuðt ,0Þ x
@u

@x
ðt ,xÞþuðt ,xÞ

� �

¼ x
@2u

@x@t
ðt,xÞþ

@u

@t
ðt,xÞ�u2ðt,xÞþuðt,0Þ x

@u

@x
ðt,xÞþuðt,xÞ

� �
:

One can check that the Lie group of transformations

t ¼ t, x ¼ xea, u ¼ u, g ¼ g,

is an equivalence Lie group of Eq. (6).
Similarly, one derives that the transformations corresponding

to the generator X3 ¼ @t define the equivalence Lie group

t ¼ tþa, x ¼ x, u ¼ u, g ¼ g:

The transformations corresponding to the generator X2 ¼ t@t�

u@u map a function uðt,xÞ into the function

uðt ,xÞ ¼ e�auðte�a,xÞ:

Hence,

Lu ¼ x
@2u

@x@t
ðt ,xÞþ

@u

@t
ðt ,xÞ�u2

ðt ,xÞþuðt ,0Þ x
@u

@x
ðt ,xÞþuðt ,xÞ

� �

¼ e�2a x
@2u

@x@t
ðt,xÞþ

@u

@t
ðt,xÞ�u2ðt,xÞ

�

þuðt,0Þ x
@u

@x
ðt,xÞþuðt,xÞ

� ��
:

One can conclude that the transformations

t ¼ t, x ¼ xea, u ¼ u, g ¼ ge�2a,

compose an equivalence Lie group of Eq. (6).
The transformations corresponding to the generator

X1 ¼ xðx@x�u@uÞ map a function uðt,xÞ into the function

uðt ,xÞ ¼
1

1þax
u t ,

x

1þax

� �
:

Hence,

Lu ¼ x
@2u

@x@t
ðt ,xÞþ

@u

@t
ðt ,xÞ�u2

ðt ,xÞ

þuðt ,0Þ x
@u

@x
ðt ,xÞþuðt ,xÞ

� �

¼ ð1�axÞ2 x
@2u

@x@t
ðt,xÞþ

@u

@t
ðt,xÞ�u2ðt,xÞ

�

þuðt,0Þ x
@u

@x
ðt,xÞþuðt,xÞ

� ��
,

and the transformations

t ¼ t, x ¼
x

1�ax
, u ¼ ð1�axÞu, g ¼ ð1�axÞ2g,

compose an equivalence Lie group of transformations.
Thus, it has been shown that the Lie group corresponding to

the generators

Xe
0 ¼ x@x, Xe

1 ¼ xðx@x�u@u�2g@gÞ, Xe
2 ¼ t@t�u@u�2g@g , Xe

3 ¼ @t ,

is an equivalence Lie group of Eq. (6).

6. Group classification

Group classification of Eq. (6) is performed with respect to the
equivalence transformations considered above.

Eq. (9) can be rewritten in the form

c0h0þc1h1þc2h2þc3h3 ¼ 0, ð15Þ

where

h0 ¼ xgx, h1 ¼ xðxgxþ2gÞ, h2 ¼ tgtþ2g, h3 ¼ gt : ð16Þ

For the classification of all possibilities, it is convenient to
consider the functions hi, (i¼0,1,2,3) as coordinates of the four-
dimensional vector

v¼ ðh0,h1,h2,h3Þ:

The analysis of the relations between the constants c0, c1, c2 and c3

follows the algorithm developed for the gas dynamics equations
[18]: one analyzes the vector space Span(V), where the set V

consists of the vectors v with t and x are changed. This algorithm
allows one to study all possible admitted Lie algebras of Eq. (6)
without omission.

First of all, if the function gðt,xÞ is such that changing t and x,
one can find four linear independent vectors v, then Eq. (15) can
only be satisfied in the case

c0 ¼ 0, c1 ¼ 0, c2 ¼ 0, c3 ¼ 0:
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In this case Eq. (6) does not admit a Lie group. Hence, for the
existence of an admitted Lie group one needs to study
dimðSpanðVÞÞr3.

Another trivial case is dimðSpanðVÞÞ ¼ 0. One can derive that
dimðSpanðVÞÞ ¼ 0 if and only if g¼0. Indeed, if g¼0, then v¼0.
Conversely, if dimðSpanðVÞÞ ¼ 0, then the vector v¼ ðh0,h1,h2,h3Þ is
constant with t and x are changed. This leads to the function

g ¼ 0:

Further study deals with 1rdimðSpanðVÞÞr3.

6.1. Case dimðSpanðVÞÞ ¼ 1

In this case there is a constant vector

ða,b,g,yÞa0,

such that

h0 ¼ ap, h1 ¼ bp, h2 ¼ gp, h3 ¼ yp, ð17Þ

where pðt,xÞa0 is some function which is not constant. Sub-
stituting (16) into (17), one obtains that

g ¼ pðg�tyÞ=2,

and

b�ðaþgÞxþtxy¼ 0, ptðg�tyÞ ¼ 3py, xpxðg�tyÞ ¼ 2pa:

Hence,

b¼ 0, y¼ 0, g¼�aa0, pt ¼ 0, xpx ¼�2p:

In this case one derives that gðt,xÞ ¼ qx�2, where qa0 is constant.
Eq. (9) becomes

c2 ¼ c0:

Thus, for the function g ¼ qx�2 the admitted generators are

X0þX2, X1, X3:

For constructing all invariant solutions related with the Lie
algebra fX0þX2,X1,X3g one needs to have an optimal system of
subalgebras. Using the commutator table

one obtains the inner automorphisms [18]

Ay : ~x1 ¼ x1ea1 , ~x3 ¼ x3e�a1 ,

X1 : ~x1 ¼ x1�a2y,

X3 : ~x3 ¼ x3þa3y,

where only the transformed coordinates are presented, and y is
used for the coordinate corresponding to the generator X0þX2.
Hence, an optimal system of subalgebras consists of the subalge-
bras

fX0þX2g, fX1þX3g, fX1g, fX3g:

Here the involution

E : ~x1 ¼�x1,

corresponding to the change x-�x was also applied.
The representations of the invariant solutions are

X0þX2 : u¼
1

t
jðzÞ, z¼

x

t
,

X1þX3 : u¼ ðxtþ1ÞjðzÞ, z¼
x

xtþ1
,

X1 : u¼
1

x
jðzÞ, z¼ t,

X3 : u¼jðzÞ, z¼ x:

Substituting these representations into Eq. (6), one obtains the
reduced equations

X0þX2 : z4j00�z3ðjð0Þ�3Þj0 þz2jðj�jð0Þþ1Þ ¼�q,

X1þX3 : z5j00 þz3ð4z�jð0ÞÞj0 þz2jð2zþj�jð0ÞÞ ¼�q,

X3 : z3jð0Þj0�z2jðj�jð0ÞÞ ¼ q:

Notice that since uð0Þ is not defined for the representation of an
invariant solution corresponding to the subalgebra fX1g, there is
no reduced equation for this subalgebra.

6.2. Case dimðSpanðVÞÞ ¼ 2

In this case there are two constant vectors ðai,bi,gi,yiÞ ði¼ 1;2Þ
and functions piðt,xÞ such that p1p2a0,

rank
a1 b1 g1 y1

a2 b2 g2 y2

 !
¼ 2, ð18Þ

and

v¼ p1ða1,b1,g1,y1Þþp2ða2,b2,g2,y2Þ:

The last equation leads to the conditions

g ¼ 1
2ðp1ðg1�ty1Þþp2ðg2�ty2ÞÞ,

p1ðb1�ða1þg1Þxþy1txÞþp2ðb2�ða2þg2Þxþy2txÞ ¼ 0,

p1tðty1�g1Þþp2tðty2�g2Þþ3p1y1þ3p2y2 ¼ 0,

p1xxðty1�g1Þþp2xxðty2�g2Þþ2p1a1þ2p2a2 ¼ 0: ð19Þ

Notice that b1�ða1þg1Þxþy1txa0, because otherwise condition
(18) is violated. Hence,

p1 ¼�p2
b2�ða2þg2Þxþy2tx

b1�ða1þg1Þxþy1tx
,

and the remaining equations in (19) compose an overdetermined
system of equations for the function p2ðt,xÞ. Since the analysis of
compatibility of this system is cumbersome (although is not
complicated), we omit it here. After finding the function gðt,xÞ,
and substituting this function into Eq. (9), one finds relations
between the constants c0, c1, c2 and c3 as it demonstrated for the
dimðSpanðVÞÞ ¼ 1.

6.3. Case dimðSpanðVÞÞ ¼ 3

Analysis of this case differs from the previous case using a
single constant vector

ða,b,g,yÞa0,

which is orthogonal to the set V

h0aþh1bþh2gþh3y¼ 0: ð20Þ

Substituting (16) into (20), one obtains a first-order partial
differential equation which has the characteristic system of
equations

dt

btþg ¼
dx

xðaxþyÞ
¼

dg

�2gðaxþbÞ
:

As in the previous case, a solution of Eq. (20) depends on the
values of a,b,g and y, and after finding the function gðt,xÞ, and
substituting it into Eq. (9), one finds relations between the
constants c0, c1, c2 and c3.
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7. Conclusion

The present paper deals with the group classification of Eq. (6)
which, by the presence of the term uð0Þ, differs from a partial
differential equation. The method developed for equations with
non-local terms [2–4] was applied in the present paper. The result
obtained matches with [2,14], and is essentially different in
comparison with [1]. It is also worth to notice that after obtaining
the function gðt,xÞ, one has to coordinate it with the source term
of the original Boltzmann equation. Only then the invariant
solutions of the spatially homogeneous and isotropic Boltzmann
equation with isotropic scattering model can be considered.
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Lie symmetries of the spatially homogeneous and isotropic Boltzmann equation
with sources were first studied by Nonnenmacher (1984). In fact, he consid-
ered the associated equations for the generating function of the power moments
of the unknown distribution function. However, it was not taken into account
that this equation is still a nonlocal partial differential equation. In the present
paper their Lie symmetries are studied using the original approach developed
by Grigoriev and Meleshko (1986) for group analysis of equations with nonlo-
cal operators, which allows us to correct Nonnenmacher’s results. The group
classification with respect to sources is carried out for the equations under
consideration using the algebraic method.

1 Introduction

The Boltzmann kinetic equation is the basis of the classical kinetic theory of
rarefied gases. Considerable interest in the study of the Boltzmann equation
was always the search for exact (invariant) solutions directly associated with the
fundamental properties of the equation. After the studies of the class of the local
Maxwellians [3, 4, 11] new classes of invariant solutions were constructed in the
1960s in [13–15]. A decade later the BKW-solution was almost simultaneously
derived in [1] and in [10]. Contrary to the Maxwellians, the Boltzmann collision
integral does not vanish for this solution. The discovery of the BKW-solution
stimulated a great splash of studies of exact solutions of various kinetic equations.
However, the progress at that time was really limited to the construction of BKW-
type solutions for different simplified models of the Boltzmann equation1.

1See [5] for the review.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Group classification of the Boltzmann equation with sources 99

The Boltzmann equation is an integro-differential equation. Whereas the clas-
sical group analysis method has been developed for studying partial differential
equations, the main obstacle for applying group analysis to integro-differential
equations comes from presence of nonlocal integral operators. The direct group
analysis for equations with nonlocal operators was worked out and successfully
used in [6, 7, 12]. In particular, a complete group classification of the spatially
homogeneous and isotropic Boltzmann equation without sources was obtained
in [7, 8].

One of the alternative approaches for studying solutions of the Boltzmann
equation, by transition to an equation for a moment generating function, was
first considered in [10]. The BKW-solution was obtained there. In [16], such
an approach was applied to the spatially homogeneous and isotropic Boltzmann
equation with sources. The author of [16] used the group analysis method for
studying solutions of the equation for the generating function. However, it was
not taken into account that this equation is still a nonlocal one. In the present
paper we use our method [7,8] to amend the results of [16]. A group classification
of the equation for a moment generating function with respect to a source function
is obtained.

2 General equations

The Fourier image of the spatially homogeneous and isotropic Boltzmann equation
with sources has the form [1]

ϕt(y, t) + ϕ(y, t)ϕ(0, t) =

∫ 1

0
ϕ(ys, t)ϕ(y(1− s), t) ds+ q̂(y, t). (1)

Here the function ϕ(y, t) is related with the Fourier transform ϕ̃(k, t) of the
isotropic distribution function f(v, t) by the formulae

ϕ(k2/2, t) = ϕ̃(k, t) =
4π

k

∫ ∞
0

v sin(kv)f(v, t) dv.

The function q̂(y, t) is defined by the Fourier transform of the source function
q(v, t) in a similar way:

q̂(k2/2, t) = ˜̂q(k, t) =
4π

k

∫ ∞
0

v sin(kv)q(v, t) dv.

The inverse Fourier transform of ϕ̃(k, t) gives the distribution function

f(v, t) =
4π

v

∫ ∞
0

k sin(kv)ϕ̃(k, t) dk.

Normalized moments of the distribution function are introduced by the formulae

Mn(t) =
4π

(2n+ 1)!!

∫ ∞
0

f(v, t)v2n+2dv, n = 0, 1, 2 . . . . (2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 Yu.N. Grigoriev, S.V. Meleshko and A. Suriyawichitseranee

Following [2], one can obtain a system of equations for the moments (2) from (1).
It is sufficient to substitute the expansions in power series

ϕ(y, t) =
∞∑
n=0

(−1)nMn(t)
yn

n!
, q̂(y, t) =

∞∑
n=0

(−1)nqn(t)
yn

n!
,

into (1), where

qn(t) =
1

(2n+ 1)!!
4π

∫ ∞
0

q(v, t)v2n+2dv, n = 0, 1, 2, . . . ,

are the normalized moments of the source function. As a result, one derives the
moment system considered in [16]:

dMn(t)

dt
+Mn(t)M0(t) =

1

n+ 1

n∑
k=0

Mk(t)Mn−k(t) + qn(t). (3)

For q(v, t) = 0 this system was derived in [10] in a very complicated way.
Let us define moment generation functions for the distribution function f(v, t)

and for the source function q(v, t):

G(ω, t) =

∞∑
n=0

ωnMn(t), S(ω, t) =

∞∑
n=0

ωnqn(t).

Multiplying equations (3) by ωn, and summing over all n, one obtains for G(ω, t)
the equation

∂2(ωG)

∂t∂ω
+M0(t)

∂(ωG)

∂ω
= G2 +

∂(ωS)

∂ω
. (4)

Here the obvious relations are used
∞∑
n=0

(n+ 1)ωnMn(t) =
∂(ωG)

∂ω
,

∞∑
n=0

(n+ 1)ωnqn(t) =
∂(ωS)

∂ω
,

∞∑
n=0

ωn
n∑
k=0

Mk(t)Mn−k(t) = G2.

In contrast to the case of homogeneous relaxation with q(v, t) = 0, the gas density
M0(t) ≡ ϕ(0, t) is not constant. From equation (3) for n = 0 one can obtain

M0(t) =

∫ t

0
q0(t′)dt′ +M0(0).

Notice also that

M0(t) = G(t, 0). (5)

This is the reason why equation (4) has a nonlocal term. This fact was not taken
into account in [16] in the process of finding an admitted Lie group. The lack of
this condition can lead to incorrect admitted Lie groups. In the present paper
this omission is corrected.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Group classification of the Boltzmann equation with sources 101

3 Admitted Lie algebra of the equation
for the generating function

Equation (4) is conveniently rewritten in the form

(xut)x − u2 + u(0)(xu)x = g, (6)

where u(0) = u(t, 0). Here ω = x, G = u and (ωS)ω = g.

As mentioned, because of the presence of the term u(0), equation (6) is not
a partial differential equation. Therefore, the classical group analysis method
cannot be applied to this equation. A method that can be used for such equations
with nonlocal terms was developed in [6, 7, 12]. In this section the latter method
is applied for finding an admitted Lie group of equation (6).

Admitted generators are sought in the form

X = τ(t, x, u)∂t + ξ(t, x, u)∂x + ζ(t, x, u)∂u.

According to the algorithm [6,7,12], the determining equation for equation (6) is

xψtx + ψt + u(0)(xψx + ψ)− 2ψu+ ψ(0)(xu)x = 0, (7)

where

ψ(t, x) = ζ(t, x, u(t, x))− ut(t, x)τ(t, x, u(t, x))− ux(t, x)ξ(t, x, u(t, x)),

ψ(0) = ψ(t, 0).

After substituting the derivatives utx, utxx and uttx found from equation (6) and its
derivatives with respect to x and t into (7), one obtains the determining equation

ζtxx
2 + ζtx+ ζugx+ ζuu

2x+ gξ + u2ξ − 2uxζ + uxζ(0)

− x (gtτ + gxξ + g(τt + ξx))− τtu2x− ξxu2x− xux(0)(uxx+ u)ξ(0)

+ u(0)(ζxx
2 − ζuux− uξ + xζ + xξxu+ xτtu)− τxuttx2 − x2uxuttτu

− utuxxξux2 − uxxξtx2 + utuxx
(
ζuux− τtux+ τuu(0)x− ξxux+ ξu

)
+ ut

(
ξxx+ ζxux

2 − ξ − τtxx2 − 2τux(g + u2) + u(0)x(2τuu− xτx)
)

+ u2
tx(τu − xτxu) + xut(0)(τ − τ(0))(uxx+ u) + u2

xx
2(ξuu(0)− ξtu)

+ xux
(
x(τtu(0) + ζ(0) + ζtu)− ξtxx− ξt − 2ξug − 2ξuu

2 + 2ξuuu(0)
)

− u2
tuxτuux

2 − utu2
xξuux

2 = 0.

(8)

Here

τ(0) = τ(t, 0, u(t, 0)), ξ(0) = ξ(t, 0, u(t, 0)), ζ(0) = ζ(t, 0, u(t, 0)),

ut(0) = ut(t, 0), ux(0) = ux(t, 0).
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Differentiating the determining equation (8) with respect to utt, uxx, and then
with respect to ut and ux, one gets τu = 0, τx = 0, ξu = 0, ξt = 0. Therefore,

τ = τ(t), ξ = ξ(x),

and hence τ(0) = τ. Differentiating the determining equation with respect to ut,
and then ux, one finds ζuu = 0, i.e.,

ζ(t, x, u) = uζ1(t, x) + ζ0(t, x).

The coefficient with uxux(0) in the determining equation (8) gives ξ(0) = 0.
Continuing splitting the determining equation (8) with respect to ut and then
with respect to ux, one finds

ζ1(t, x) = −x−1ξ(x) + ζ10(t).

Hence ζ(0) = ζ(t, 0) = u(0)(ζ10(t) − ξ′(0)) + ζ0(t, 0). The coefficient with uxu(0)
leads to the condition

ζ10 = −τt + ξ′(0).

Differentiating the determining equation with respect to u twice, one has

ξx = 2
ξ

x
− ξ′(0).

The general solution of this equation is

ξ = x(c1x+ c0).

Equating the coefficient with ux to zero, one derives τtt(t) = ζ0(t, 0). The coeffi-
cient with u(0) in the determining equation (8) gives xζ0x+ ζ0 = 0. This equation
has a unique solution which is nonsingular at x = 0,

ζ0(t, x) = 0.

Therefore, ζ0(t, 0) = 0 and

τ = c2t+ c3.

The remaining part of the determining equation (8) becomes

gt(c2t+ c3) + xgx(c1x+ c0) = −2g(c1x+ c2). (9)

Thus, each admitted generator has the form

X = c0X0 + c1X1 + c2X2 + c3X3,

where

X0 = x∂x, X1 = x(x∂x − u∂u), X2 = t∂t − u∂u, X3 = ∂t. (10)
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The values of the constants c0, c1, c2 and c3 and relations between them depend
on the function g(t, x).

The trivial case of the function

g = 0

satisfies equation (9), and corresponds to the case of the spatially homogeneous
and isotropic Boltzmann equation without a source term. In this case, the com-
plete group classification of the Boltzmann equation was carried out in [7, 8] us-
ing its Fourier image (1) with q̂(y, t) = 0. The four-dimensional Lie algebra
L4 = {Y1, Y2, Y3, Y4} spanned by the generators

Y0 = y∂y, Y1 = yϕ∂ϕ, Y2 = t∂t − ϕ∂ϕ, Y3 = ∂t (11)

defines the complete admitted Lie group G4 of (1). There are direct relations
between the generators (10) and (11).

Indeed, since the functions ϕ(y, t) and u(x, t) are related through the moments
Mn(t), n = 0, 1, 2, . . . , it is sufficient to check that the transformations of moments
defined through these functions coincide.

Consider the transformations corresponding to the generators Y0 and X0,

Y0 = y∂y : t̄ = t, ȳ = yea, ϕ̄ = ϕ;

X0 = x∂x : t̄ = t, x̄ = xea, ū = u.

The transformed functions are

ϕ̄(ȳ, t̄) = ϕ(ȳe−a, t̄), ū(x̄, t̄) = u(x̄e−a, t̄).

The transformations of moments are, respectively:

M̄n(t̄) = (−1)n
∂nϕ̄(ȳ, t̄)

∂ȳn |ȳ=0

= (−1)n
∂nϕ(ȳe−a, t̄)

∂ȳn |ȳ=0

= (−1)ne−na
∂nϕ

∂yn
(0, t̄) = e−naMn(t̄);

M̄n(t̄) = n!
∂nu(x̄e−a, t̄)

∂x̄n |x̄=0
= e−nan!

∂nu

∂xn
(0, t̄) = e−naMn(t̄).

Hence, one can see that the transformations of moments defined through the
functions ϕ(y, t) and u(x, t) coincide.

The transformations corresponding to the generators Y1 and X1,

Y1 = yϕ∂ϕ : t̄ = t, ȳ = y, ϕ̄ = ϕeya;

X1 = x(x∂x − u∂u) : t̄ = t, x̄ =
x

1− ax
, ū = (1− ax)u,
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act on the functions ϕ(y, t) and u(x, t) and their moments in the following way:

ϕ̄(ȳ, t̄) = eȳaϕ(ȳ, t̄), ū(x̄, t̄) =
1

1 + ax̄
u

(
t̄,

x̄

1 + ax̄

)
,

M̄n(t̄) = (−1)n
∂nϕ̄(ȳ, t̄)

∂ȳn |ȳ=0

= (−1)n
∂n(eȳaϕ(ȳ, t̄))

∂ȳn |ȳ=0

= (−1)n
((

∂

∂y
+ a

)n
ϕ

)
(0, t̄);

M̄n(t̄) = n!
∂nū(x̄, t̄)

∂x̄n |x̄=0
= n!

∂n

∂x̄n

(
1

1 + ax̄
u

(
t̄,

x̄

1 + ax̄

))
|x̄=0

,

respectively. Using computer symbolic calculations with REDUCE [9] one can check
that these transformations of moments also coincide.

The vector fields Y2 and X2 generate the following transformations:

Y2 = t∂t − ϕ∂ϕ : t̄ = tea, ȳ = y, ϕ̄ = ϕe−a;

X2 = t∂t − u∂u : t̄ = tea, x̄ = x, ū = ue−a,

which map the functions ϕ(y, t) and u(x, t) to the functions ϕ̄(ȳ, t̄) = e−aϕ(ȳ, t̄e−a)
and ū(x̄, t̄) = e−au(x̄, t̄e−a), respectively. The transformations of moments are

M̄n(t̄) = (−1)n
∂nϕ̄(ȳ, t̄)

∂ȳn |ȳ=0

= (−1)ne−a
∂nϕ(ȳ, t̄e−a)

∂ȳn |ȳ=0

= (−1)ne−a
∂nϕ

∂yn
(0, t̄e−a) = Mn( t̄e−a)e−a;

M̄n(t̄) = n!
∂nu(x̄, t̄)

∂x̄n |x̄=0
= n!e−a

∂nu(x̄, t̄e−a)

∂x̄n |x̄=0

= n!e−a
∂nu

∂xn
(0, t̄e−a) = Mn(t̄e−a)e−a.

The case where the transformations of moments corresponding to the genera-
tors Y3 = ∂t and X3 = ∂t coincide is trivial. These direct relations between the
Lie algebras confirm correctness of our calculations.

4 Comparison with results of [16]

Let us formulate the results of [16] using the variables of the present paper. The
admitted generator obtained in [16] has the form

Zg = τ(t) (∂t −M0(t)u∂u) + αu∂u + (γ − δ)x(x∂x − u∂u)− γx∂x, (12)

where

m0(t) =

∫ t

0
M0(t′) dt′, τ(t) =

(
β − α

∫ t

0
e−m0(t′) dt′

)
em0(t),
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α, β, γ and δ are constants. The function g(t, x) has to satisfy the equation

τ(t)
∂g

∂t
+ x(x(γ − δ)− γ)

∂g

∂x
= −2 (x(γ − δ) +M0(t)τ(t)− α) g. (13)

Since M0(t) is unknown, comparison of our results is only possible for g = 0.
Moreover, in contrast to equation (9), the source function g(t, x) in (13) as a solu-
tion of equation (13) depends on the function M0(t), whereas the function M0(t)
also depends on the source function. This makes equation (13) nonlocal and very
complicated.

Comparing the operator Zg for g = 0 with (10), one obtains that the part
related with the constants γ and δ coincides with the result of the present pa-
per, whereas the part related with the constants α and β is completely different.
Indeed, in this case equation (13) is satisfied identically, M0(t) = M0(0), and for

M0(0) 6= 0: m0(t) = tM0(0), τ(t) = βetM0(0) +
α

M0(0)

(
1− etM0(0)

)
;

M0(0) = 0: m0(t) = 0, τ(t) = β − αt.

The admitted generator (13) becomes

M0(0) 6= 0: Z0 =

(
β − α

M0(0)

)
etM0(0) (∂t −M0(0)u∂u) +

α

M0(0)
∂t

+ (γ − δ)x(x∂x − u∂u)− γx∂x;

M0(0) = 0: Z0 = β∂t − α(t∂t − u∂u) + (γ − δ)x(x∂x − u∂u)− γx∂x.

One can see that the above results coincide with [16] only for M0(0) = 0. The
case M0(0) = 0 corresponds to a gas with zero density which is not realistic. For
M0(0) 6= 0, the coefficient with the exponent etM0(0) plays a crucial role. This
coefficient only vanishes for

α = M0(0)β. (14)

In this case the admitted Lie algebra found in [16] is a proper subalgebra of the
Lie algebra defined by the generators (10). Thus, all invariant solutions with
(α, β, γ, δ) = (M0(0)β, β, γ, δ) considered in [16] are particular cases of invariant
solutions obtained in [6, 7]. In particular, the well-known BKW-solution is an
invariant solution with respect to the generator YBKW = c(Y1−Y0)+Y3. In the Lie
algebra (10), this solution is related with the generator XBKW = c(X1−X0)+X3.
Other classes of invariant solutions studied in [16] correspond to (14) with the
particular choice of β = 0.

5 On equivalence transformations of the equation
for the generating function

For the group classification, one needs to know equivalence transformations. Let
us find some of them using the generators (10) and considering their transforma-
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tions of the left hand side of equation (6)

Lu = xutx + ut − u2 + u(0)(xux + u).

The transformations corresponding to the generator X0 = x∂x map a function
u(t, x) into the function

ū(t̄, x̄) = u(t̄, x̄e−a),

where a is the group parameter. Hence L̄ū = Lu. One can check that the Lie
group of transformations

t̄ = t, x̄ = xea, ū = u, ḡ = g

is an equivalence Lie group of equation (6).
Similarly, one derives that the transformations corresponding to the generator

X3 = ∂t define the equivalence Lie group:

t̄ = t+ a, x̄ = x, ū = u, ḡ = g.

The transformations corresponding to the generator X2 = t∂t−u∂u map a func-
tion u(t, x) into the function

ū(t̄, x̄) = e−au(t̄e−a, x).

Hence L̄ū = e−2aLu. One can conclude that the transformations

t̄ = t, x̄ = xea, ū = u, ḡ = ge−2a

compose an equivalence Lie group of equation (6).
The transformations corresponding to the generator X1 = x(x∂x − u∂u) map

a function u(t, x) into the function

ū(t̄, x̄) =
1

1 + ax̄
u

(
t̄,

x̄

1 + ax̄

)
.

Hence L̄ū = (1− ax)2Lu and the transformations

t̄ = t, x̄ =
x

1− ax
, ū = (1− ax)u, ḡ = (1− ax)2g

compose an equivalence Lie group of transformations.
Thus, it has been shown that the Lie group corresponding to the generators

Xe
0 = x∂x, Xe

1 = x(x∂x− u∂u− 2g∂g), Xe
2 = t∂t− u∂u− 2g∂g, Xe

3 = ∂t

is an equivalence Lie group of equation (6).
There are also two involutions corresponding to the changes

E1 : x̄ = −x; E2 : t̄ = −t, ū = −u.
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6 Group classification

Group classification of equation (6) is carried out up to the equivalence transfor-
mations considered above.

Equation (9) can be rewritten in the form

c0h0 + c1h1 + c2h2 + c3h3 = 0, (15)

where

h0 = xgx, h1 = x(xgx + 2g), h2 = tgt + 2g, h3 = gt. (16)

One of the methods for analyzing relations between the constants c0, c1, c2

and c3 is employing the algorithm developed for the gas dynamics equations [17]:
one analyzes the vector space Span(V ), where the set V consists of the vectors

v = (h0, h1, h2, h3)

with t and x are varied. This algorithm allows one to study all possible admitted
Lie algebras of equation (6) without omission. Unfortunately, it is difficult to
implement.

In [20]2 an algebraic algorithm for group classification was applied, which es-
sentially reduces this study to a simpler problem. Here we follow this algorithm3.
Observe here that because of the nonlinearity of the equivalence transformations
corresponding to the generator X1, it is difficult to select out equivalent cases
with respect to these transformations, whereas the algebraic algorithm does not
have such complication.

First we study the Lie algebra L4 composed by the generators X0, X1, X2 and
X3. The commutator table is

X0 X1 X2 X3

X0 0 X1 0 0
X1 −X1 0 0 0
X2 0 0 0 −X3

X3 0 0 X3 0

The inner automorphisms are

A0 : x̂1 = x1e
a,

A1 : x̂1 = x1 + ax0,

A2 : x̂3 = x3e
a,

A3 : x̂3 = x3 + ax2,

where only the changed coordinates are presented.

2See also references therein.
3The authors thank the anonymous referee for pointing to the possibility of applying to the

analysis of equation (15) the algorithm considered in [20].
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Second, one can notice that the results of using the equivalence transforma-
tions corresponding to the generators Xe

0 , X
e
1 , X

e
2 , X

e
3 are similar to changing co-

ordinates of a generator X with regarding to the basis change. These changes are
similar to the inner automorphisms. Indeed, the coefficients of the generator X
are changed according to the relation [17]:

X = (Xt̄)∂t̄ + (Xx̄)∂x̄ + (Xū)∂ū.

Any generator X can be expressed as a linear combination of the basis generators:

x̂0X̂0 + x̂1X̂1 + x̂2X̂2 + x̂3X̂3 = x0X0 + x1X1 + x2X2 + x3X3, (17)

where

X̂0 = x̄∂x̄, X̂1 = x̄(x̄∂x̄ − ū∂ū), X̂2 = t̄∂t̄ − ū∂ū, X̂3 = ∂t̄.

Using the invariance of a generator with respect to a change of the variables,
the basis generators Xi (i = 0, 1, 2, 3) and X̂j (j = 0, 1, 2, 3) in corresponding
equivalence transformations are related as follows

Xe
0 : X0 = X̂0, X1 = e−aX̂1, X2 = X̂2, X3 = X̂3;

Xe
1 : X0 = X̂0 + aX̂1, X1 = X̂1, X2 = X̂2, X3 = X̂3;

Xe
2 : X0 = X̂0, X1 = X̂1, X2 = X̂2, X3 = eaX̂3;

Xe
3 : X0 = X̂0, X1 = X̂1, X2 = X̂2 − aX̂3, X3 = X̂3.

Substituting these relations into the identity (17), one obtains that the coordinates
of the generator X in the basis X0, X1, X2, X3 and in the basis X̂0, X̂1, X̂2, X̂3 are
related similar to the changes defined by the inner automorphisms.

This observation allows us to use an optimal system of subalgebras of the Lie
algebra L4 for studying equation (15). Construction of such optimal system is
not difficult. Moreover, it may be simplified if one notices that L4 = F1

⊕
F2,

where F1 = {X0, X1} and F2 = {X2, X3} are ideals of the Lie algebra L4. This
decomposition gives possibility to apply a two-step algorithm [18,19]. The result
of construction of an optimal system of subalgebras is presented in Table 1.

Notice also that in constructing the optimal system of subalgebras we also used
transformations corresponding to the involutions E1 and E2:

E1 : x̂1 = −x1; E2 : x̂3 = −x3.

To obtain functions g(t, x) using the optimal system of subalgebras one needs
to substitute the constants ci corresponding to the basis generators of a subalgebra
into equation (15), and solve the system of equations thus obtained. The result
of group classification is presented in Table 2, where α, β 6= 1,γ 6= −2 and k are
constant, and the function Φ is an arbitrary function of its argument.
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Table 1. Optimal system of subalgebras

Basis Basis

1 X0, X1, X2, X3 11 X2 + αX0, X1

2 X2 + αX0, X1, X3 12 X0 +X3, X1

3 X0, X1, X3 13 X3, X1

4 X0, X1, X2 14 X0, X1

5 X0, X2, X3 15 X2 + αX0

6 X2, X3 16 X2 +X1

7 X2 −X0, X1 + X3 17 X3 +X0

8 αX2 − 2X0, X3 18 X3 +X1

9 X1 +X2, X3 19 X0

10 X0, X2 20 X1

21 X3

Table 2. Group classification

g(t, x) Generators g(t, x) Generators

1 0 X0, X1, X2, X3 9 kx−2 X1, X3

2 kx−2 X2 +X0, X3, X1 10 t−2Φ(xt−α) X2 + αX0

3 kx2(xt+ 1)−4 X2 −X0, X1 +X3 11 x−2e2x−1
Φ(tex

−1
) X2 +X1

4 kxγ γX2 − 2X0, X3 12 Φ(xe−t) X3 +X0

5 kx−2e2x−1
X2 +X1, X3 13 x−2Φ(t+ x−1) X3 +X1

6 kt−2 X0, X2 14 Φ(t) X0

7 kx−2t2(β−1) X2 + βX0, X1 15 x−2Φ(t) X1

8 kx−2e2t X3 +X0, X1 16 Φ(x) X3
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der Wissenschaften, Mathematische-Naturwissenschaftliche Klasse 66 (1872), 275–370.

[4] Carleman T., Problemes mathematiques dans la theorie cinetique des gas, Vol. 2, Publica-
tions Scientifiques de l’Institut Mittag-Leffler, Uppsala, 1957.

[5] Ernst M.H., Nonlinear model-Boltzmann equations and exact solutions, Phys. Rep. 78
(1981), 1–171.

[6] Grigoriev Yu.N., Ibragimov N.H., Kovalev V.F. and Meleshko S.V., Symmetries of integro-
differential equations and their applications in mechanics and plasma physics, Lecture Notes
in Physics, Vol. 806, Springer, Berlin/Heidelberg, 2010.

[7] Grigoriev Yu.N. and Meleshko S.V., Investigation of invariant solutions of the Boltzmann
kinetic equation and its models, preprint, Institute of Theoretical and Applied Mechanics,
1986.

[8] Grigoriev Yu.N. and Meleshko S.V., Group analysis of the integro-differential Boltzman
equation, Dokl. Akad. Nauk SSSR 297 (1987), 323–327 (in Russian); translation in Soviet
Phys. Dokl. 32 (1987), 874–876.

[9] Hearn A.C., REDUCE Users Manual, ver. 3.3, The Rand Corporation CP 78, Santa Mo-
nica, 1987.

[10] Krook M. and Wu T.T., Formation of Maxwellian tails, Phys. Rev. Lett. 36 (1976), 1107–
1109.

[11] Maxwell J.C., On the dynamical theory of gases, Philos. Trans. Roy. Soc. London 157
(1867), 49–88.

[12] Meleshko S.V., Methods for constructing exact solutions of partial differential equations.
mathematical and analytical techniques with applications to engineering, Springer, New
York, 2005.

[13] Nikolskii A.A., The simplest exact solutions of the Boltzmann equation of a rarefied gas
motion, Dokl. Akad. Nauk SSSR 151 (1963), 299–301 (in Russian); translation in Soviet
Phys. Dokl. 8 (1964), 633–635.

[14] Nikolskii A.A., Three dimensional homogeneous expansion–contraction of a rarefied gas
with power interaction functions, Dokl. Akad. Nauk SSSR 151 (1963), 522–524 (in Russian);
translation in Soviet Phys. Dokl. 8 (1964), 639–641.

[15] Nikolskii A.A., Homogeneous motion of displacement of monatomic rarefied gas, Inzhenerny
Zhurn. 5 (1965), 752–755.

[16] Nonnenmacher T.F., Application of the similarity method to the nonlinear Boltzmann
equation, Z. Angew. Math. Phys. 35 (1984), 680–691.

[17] Ovsiannikov L.V., Group analysis of differential equations, Nauka, Moscow, 1978; English
translation: Academic Press, New York, 1982.

[18] Ovsiannikov L.V., On optimal system of subalgebras, Dokl. Akad. Nauk 333 (1993), 702–
704 (in Russian); translation in Russian Acad. Sci. Dokl. Math. 48 (1994), 645–649.

[19] Ovsiannikov L.V., The program “Submodels”. Gas dynamics, Prikl. Mat. Mekh. 58 (1994),
no. 4, 30–55 (in Russian); translation in J. Appl. Math. Mech. 58 (1994), 601–627.

[20] Popovych R.O., Kunzinger M. and Eshraghi H., Admissible transformations and normalized
classes of nonlinear Schrödinger equations, Acta Appl. Math. 109 (2010), 315–359.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 23

Continuum Mechanics and
Thermodynamics
 
ISSN 0935-1175
Volume 24
Number 2
 
Continuum Mech. Thermodyn. (2012)
24:115-148
DOI 10.1007/s00161-011-0209-6

Group classification of one-dimensional
nonisentropic equations of fluids with
internal inertia

P. Siriwat & S. V. Meleshko

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Continuum Mech. Thermodyn. (2012) 24:115–148
DOI 10.1007/s00161-011-0209-6

ORIGINAL ARTICLE

P. Siriwat · S. V. Meleshko

Group classification of one-dimensional nonisentropic
equations of fluids with internal inertia

Received: 13 July 2011 / Accepted: 17 October 2011 / Published online: 9 November 2011
© Springer-Verlag 2011

Abstract A systematic application of the group analysis method for modeling fluids with internal inertia is
presented. The equations studied include models such as the nonlinear one-velocity model of a bubbly fluid
(with incompressible liquid phase) at small volume concentration of gas bubbles (Iordanski Zhurnal Prikladnoj
Mekhaniki i Tekhnitheskoj Fiziki 3, 102–111, 1960; Kogarko Dokl. AS USSR 137, 1331–1333, 1961; Wijnga-
arden J. Fluid Mech. 33, 465–474, 1968), and the dispersive shallow water model (Green and Naghdi J. Fluid
Mech. 78, 237–246, 1976; Salmon 1988). These models are obtained for special types of the potential function
W (ρ, ρ̇, S) (Gavrilyuk and Teshukov Continuum Mech. Thermodyn. 13, 365–382, 2001). The main feature
of the present paper is the study of the potential functions with WS �= 0. The group classification separates
these models into 73 different classes.

Keywords Group classification · Equivalence Lie group · Admitted Lie group · Fluids with internal inertia

Mathematics Subject Classification (2000) 58D19 · 58Z05

1 Introduction

Symmetry is a fundamental topic in many areas of physics and mathematics [1–4]. Whereas group-theoretical
methods play a prominent role in modern theoretical physics, a systematic use of them in constructing models
of continuum mechanics has not been widely applied yet [5]. The present paper tries to help fill this niche.

This manuscript is focused on group classification of a class of dispersive models [6, see also references
therein]

ρ̇ + ρ div(u) = 0, ρu̇ + ∇ p = 0, Ṡ = 0,

p = ρ
δW

δρ
− W = ρ

(
∂W

∂ρ
− ∂

∂t

(
∂W

∂ρ̇

)
− div

(
∂W

∂ρ̇
u

))
− W,

(1)

where t is time, ∇ is the gradient operator with respect to space variables, ρ is the fluid density, u is the velocity
field, W (ρ, ρ̇, S) is a given potential, ”dot” denotes the material time derivative: ḟ = d f

dt = ft + u∇ f and
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δW
δρ

denotes the variational derivative of W with respect to ρ at a fixed value of u. These models include the
nonlinear one-velocity model of a bubbly fluid (with incompressible liquid phase) at small volume concentra-
tion of gas bubbles [7–9], and the dispersive shallow water model [10,11]. Equation (1) were obtained in [6]
using the Lagrangian of the form

L = 1

2
|u|2 − W (ρ, ρ̇, S).

This is an example of a medium behavior dependent not only on thermodynamical variables but also on their
derivatives with respect to space and time. In this particular case, the potential function depends on the total
derivative of the density which reflects the dependence of the medium on its inertia. Another example of models
where the medium behavior depends on the derivatives is constructed in [12] by assuming that the Lagrangian
is of the form:

L = 1

2
|u|2 − ε(ρ, |∇ρ|, S).

One of the methods for studying properties of differential equations is group analysis [1,2,13]. This method
is a basic method for constructing exact solutions of partial differential equations. A wide range of applications
of group analysis to partial differential equations are collected in [14–16]. Group analysis, besides facilitating
the construction of exact solutions, provides a regular procedure for mathematical modeling by classifying
differential equations with respect to arbitrary elements. This feature of group analysis is the fundamental
basis for mathematical modeling in the present paper.

An application of group analysis employs several steps. The first step is a group classification with respect
to arbitrary elements. An algorithm of the group classification is applied in case where a system of differential
equations has arbitrary elements in the form of undefined parameters and functions. This algorithm is necessary
since a specialization of the arbitrary elements can lead to an extension of admitted Lie groups. Group classifi-
cation selects the functions W (ρ, ρ̇, S) such that the fluid dynamics equations (1) possess additional symmetry
properties extending the kernel of admitted Lie groups. Algorithms of finding equivalence and admitted Lie
groups are particular parts of the algorithm of the group classification.

A complete group classification of Eq. (1), where W = W (ρ, ρ̇) is performed in [17] (one-dimensional
case) and [18] (three-dimensional case). Invariant solutions of some particular cases which are separated out
by the group classification are considered in [17–19]. Group classification of the class of models describing
the behavior of a dispersive continuum with ε = ε(ρ, |∇ρ|) was studied in [20]. It is also worth to notice
that the classical gas dynamics model corresponds to W = W (ρ, S) (or ε = ε(ρ, S)). A complete group
classification of the gas dynamics equations was presented in [1]. Later, an exhausted program of studying the
models appeared in the group classification of the gas dynamics equations was announced in [5]. Some results
of this program were summarized in [21].

The present paper is focused on the group classification of the one-dimensional equations of fluids (1),
where the function W = W (ρ, ρ̇, S) satisfies the conditions WSρ̇ρ̇ = 0 and WS �= 0.

The paper is organized as follows. The following section studies the equivalence Lie group of transforma-
tions. The equivalence transformations are applied for simplifying the function W (ρ, ρ̇, S) in the process of
the classification. In Sect. 3, the defining equations of the admitted Lie group are presented. Analysis of these
equations separates Eq. (1) into equivalent classes. It should be noted that these classes are defined by the
function W (ρ, ρ̇, S). For convenience of the reader, this analysis is split into two parts. A complete study of
one particular case is given in Sect. 4. Analysis of the other cases is similar but cumbersome. A complete study
of the other cases is provided in Appendix. The result of the group classification of Eq. (1) where WSρ̇ρ̇ = 0
and WS �= 0 is summarized in Table 1. The admitted Lie algebras are also presented in this table.

2 Equivalence Lie group

For finding an equivalence Lie group, the algorithm described in [22,23] is applied. This algorithm differs
from the classical one [1] by assuming dependence of all coefficients from all variables including the arbitrary
elements. Since the function W depends on the derivatives of the dependent variables and in order to simplify
the process of finding an equivalence Lie group, new dependent variables are introduced:

u3 = ρ̇, u4 = S.
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Here, u1 = ρ, u2 = u, u3 = ρ̇ and u4 = S, x1 = x, x2 = t. An infinitesimal operator Xe of the
equivalence Lie group is sought in the form [23]

Xe = ξ i∂xi + ζ u j ∂u j + ζW ∂W ,

where all the coefficients ξ i , ζ u j , (i = 1, 2; j = 1, 2, 3, 4) and ζW are functions of the variables x, t, ρ,
u, ρ̇, S,W . Hereafter, a sum over repeated indices is implied. The coefficients of the prolonged operator are
obtained by using the prolongation formulae:

ζ uβ,i = De
i ζ

uβ − uβ,1 De
i ξ

x − uβ,2 De
i ξ

t , (i = 1, 2),
De

1 = ∂x + uβ,1∂uβ + (ρx Wα,1 + ρ̇x Wα,2 + Sx Wα,3)∂Wα ,

De
2 = ∂t + uβ,2∂uβ + (ρt Wα,1 + ρ̇t Wα,2 + St Wα,3)∂Wα ,

where α = (α1, α2, α3) and β = (β1, β2) are multi-indexes (αi ≥ 0), (βi ≥ 0)

(α1, α2, α3), 1 = (α1 + 1, α2, α3), (α1, α2, α3), 2 = (α1, α2 + 1, α3), (α1, α2, α3), 3 = (α1, α2, α3 + 1)
(β1, β2), 1 = (β1 + 1, β2), (β1, β2), 2 = (β1, β2 + 1)

u(β1,β2) = ∂β1+β2 u

∂xβ1∂tβ2
, W(α1,α2,α3) = ∂α1+α2+α3 W

∂ρα1∂ρ̇α2∂Sα3
.

The conditions that W does not depend on t, x and u give

ζ u1
xi

= 0, ζ u1
u = 0, ζ u3

xi
= 0, ζ u3

u = 0, ζ u4
xi

= 0, ζ u4
u = 0, ζW

xi
= 0, ζW

u j
= 0, (i = 1, 2).

Using these relations, the prolongation formulae for the coefficients ζWα become:

ζWα,i = D̃e
i ζ

Wα − Wα,1 D̃e
i ζ

u1 − Wα,2 D̃e
i ζ

u3 − Wα,3 D̃e
i ζ

u4, (i = 1, 2),
D̃e

1 = ∂ρ + Wα,1∂Wα , D̃e
2 = ∂ρ̇ + Wα,2∂Wα , D̃e

3 = ∂S + Wα,3∂Wα .

For constructing the determining equations and for their solution, the symbolic computer Reduce [24] program
was applied. Calculations give the following basis of generators of the equivalence Lie group

Xe
1 = ∂x , Xe

2 = ∂t , Xe
3 = t∂x + ∂u, Xe

4 = t∂t + x∂x ,
Xe

5 = t∂t + 2ρ∂ρ − u∂u, Xe
6 = ∂W , Xe

7 = −u∂u + ρ∂ρ − W∂W + t∂t ,
Xe

8 = ρϕ(S)∂W , Xe
9 = ρ̇g(ρ, S)∂W , Xe

10 = h(S)∂S,

where the functions g(ρ, S), ϕ(S) and h(S) are arbitrary. Here, only the essential part of the operators Xe
i , (i =

5, 6, . . . , 10) is written.
Since the equivalence transformations corresponding to the operators Xe

5, Xe
6, Xe

7, Xe
8, Xe

9 and Xe
10 are

applied for simplifying the function W in the process of the group classification, let us present these trans-
formations. Because the function W depends on ρ, ρ̇ and S only, the transformations of these variables are
presented:

Xe
5 : ρ′ = ρe2a, ρ̇′ = ρ̇, S′ = S W ′ = W ;

Xe
6 : ρ′ = ρ, ρ̇′ = ρ̇, S′ = S W ′ = W e−2a;

Xe
7 : ρ′ = ρea, ρ̇′ = ρ̇, S′ = S W ′ = W + a;

Xe
8 : ρ′ = ρ, ρ̇′ = ρ̇, S′ = S W ′ = ρϕ(S)a + W ;

Xe
9 : ρ′ = ρ, ρ̇′ = ρ̇, S′ = S W ′ = ρ̇g(ρ, S)a + W

Xe
10 : ρ′ = ρ, ρ̇′ = ρ̇, S′ = q(S, a) W ′ = W ;

Here, a is the group parameter.
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3 Defining equations of the admitted Lie group

An admitted generator X is sought in the form

X = ξ x∂x + ξ t∂t + ζ ρ∂ρ + ζ u∂u + ζ S∂S,

where the coefficients ξ x , ξ t , ζ ρ, ζ u, ζ S are functions of (x, t, ρ, u, S). Calculations showed that

ξ x = (k2t + k3)x + k4t + k5, ξ t = k2t2 + (k1 + 2k3)t + k7.
ζ ρ = ρ(k8 − k2t), ζ u = k2(−ut + x)− u(k1 + k3)+ k4,

ζ S = ζ S(S),

k2(3Wρ̇ρ̇ρ̇ ρ̇ + Wρ̇ρ̇ρρ + 3Wρ̇ρ̇ ) = 0, (2)

−3Wρ̇ρ̇S ρ̇ζ
S + 3Wρ̇ρ̇ρ̇ ρ̇

2(k1 + 2k3 − k8)− 3Wρ̇ρ̇ρ ρ̇ρk8
+3Wρ̇ρ̇ ρ̇(2k3 − k8)− ρk2(3Wρ̇ρ̇ + Wρ̇ρ̇ρρ) = 0,

(3)

k2(Wρρρρ̇ ρ̇ρ − Wρρρ̇ ρ̇ + 3Wρρρ̇ρ̇ ρ̇
2 − Wρρρρ + Wρρ) = 0, (4)

ζ Sρ(WρρS − Wρρρ̇S ρ̇)− Wρρρρ̇ ρ̇ρ
2k8 − Wρρρ̇ ρ̇ρ(2k1 + 2k3 + k8)

+Wρρρ̇ρ̇ ρ̇
2ρ(k1 + 2k3 − k8)+ Wρρρρ

2k8 + Wρρρ(2k1 + 2k3 + k8)

+k2ρ̇(Wρρρ̇ρ̇ρ
2 + 5Wρ̇ρ̇ρρ + 3Wρ̇ρ̇ ) = 0,

(5)

k2(Wρρρ̇S ρ̇ρ
2 − 3Wρρ̇S ρ̇ρ + 3Wρρ̇ρ̇S ρ̇

2ρ − 3Wρ̇ρ̇S ρ̇
2 + 3Wρ̇S ρ̇ − WρρSρ

2 + 3WρSρ − 3WS) = 0, (6)

−Wρρρ̇S ρ̇ρ
2k8 − 2Wρρ̇S ρ̇ρk1 − 2Wρρ̇S ρ̇ρk3 + Wρρ̇S ρ̇ρk8 + Wρρ̇ρ̇S ρ̇

2ρ(2k3 + k1 − k8)

+Wρ̇ρ̇S ρ̇
2(k8 − k1 − 2k3)+ Wρ̇S ρ̇(2k1 + 2k3 − k8)+ WρρSρ

2k8 + WρSρ(2k1 + 2k3 − k8)

+WS(k8 − 2k1 − 2k3)+ ρ̇ρk2(Wρρ̇ρ̇Sρ + 3Wρ̇ρ̇S)+ ζ S
S (−Wρρ̇S ρ̇ρ + Wρ̇S ρ̇ + WρSρ − WS)

+ζ S(−Wρρ̇SS ρ̇ρ + Wρ̇SS ρ̇ + WρSSρ − WSS) = 0,

(7)

where ki , (i = 1, 2, . . . , 8) are constant. The determining Eqs. (2)–(7) define the kernel of admitted Lie
algebras and its extensions. The kernel of admitted Lie algebras is determined for all functions W (ρ, ρ̇, S)
and it consists of the generators

Y4 = ∂x , Y5 = ∂t , Y6 = t∂x + ∂u .

Extensions of the kernel depend on the value of the function W (ρ, ρ̇, S). They can only be operators of the
form

k1 X1 + k2 X2 + k3 X3 + k8 X8 + ζ S∂S,

where

X1 = t∂t − u∂u − ρ̇∂ρ̇ ,

X2 = t2∂t + t x∂x + (x − ut)∂u − tρ∂ρ − (ρ + 3t ρ̇)∂ρ̇ ,
X3 = 2t∂t + x∂x − u∂u − 3ρ̇∂ρ̇ − ρ∂ρ,
X8 = ρ∂ρ + ρ̇∂ρ̇ .

Since the function W (ρ, ρ̇, S) depends on ρ̇, the term with ∂ρ̇ is also presented in the generators.
Relations between the constants k1, k2, k3, k8 and ζ S(S) depend on the function W (ρ, ρ̇, S).

4 Case k2 �= 0

If k2 �= 0, then Eq. (2) gives

3Wρ̇ρ̇ρ̇ ρ̇ + Wρρ̇ρ̇ρ + 3Wρ̇ρ̇ = 0.

The general solution of this equation is

W (ρ, ρ̇, S̃) = ρ3g(z, S)+ ϕ0(ρ, S), (8)
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where z = ρ̇ρ−3. Substituting (8) into (4), one obtains

ρϕ0ρρρ − ϕ0ρρ = 0.

The general solution of this equation is

ϕ0 = ρ3μ(S)+ ρ I (S)+ J (S), (9)

where without loss of the generality by virtue of the equivalence transformation corresponding to the operator
Xe

8, it can be assumed that I (S) = 0. Equation (6) gives that J ′ = 0. By virtue of the equivalence transforma-
tion corresponding to Xe

7, it can also be assumed that J = 0. Substituting the obtained W into (3) and splitting
it with respect to ρ, one obtains gzzz = 0 or g = ϕ2(S)z2,where ϕ2 �= 0. It should be noted that the linear part
of the function ϕ2 is also omitted because of the equivalence transformations corresponding to the generator
Xe

9. The remaining part of Eq. (3) becomes

ϕ′
2ζ

S − 2ϕ2(k3 + k8) = 0. (10)

If ϕ′
2 = 0 or ϕ2 = q �= 0, then k3 = −k8 and Eq. (5) becomes

μ′ζ S + 2k1μ = 0. (11)

Forμ′ = 0, the function W does not depend on S. Since this case has been studied in [17], it is excluded from
further study in the present paper. Thus, one has to assume that μ′ �= 0. From (11), one gets ζ S = −2k1μ/μ

′.
Changing the entropy S̃ = μ(S), one has

W (ρ, ρ̇, S̃) = q
ρ̇2

ρ3 + ρ3 S̃,

and the extension of the kernel is given by the generators

X1 − 2S̃∂S̃, X2, X3 − X8.

In the final Table 1, this is model M1, where the tilde sign is omitted.
If ϕ′

2 �= 0, then from (3) and (10), one obtains

ζ S = 2
ϕ2

ϕ′
2
(k3 + k8),

μ′ϕ2(k3 + k8)+ ϕ′
2μ(k1 + k3 + k8) = 0. (12)

If μ �= 0 then, the last equation defines

k1 = −(k3 + k8)

(
1 + μ′ϕ2

μϕ′
2

)
. (13)

Differentiation (13) with respect to S gives

(k3 + k8)

(
μ′ϕ2

μϕ′
2

)′
= 0. (14)

If (
μ′ϕ2

μϕ′
2
)′ = 0 or μ = q1ϕ

k
2 , then the general solution of Eqs. (2)–(7) is

W (ρ, ρ̇, S̃) = ρ̇2

ρ3 S̃ + q1ρ
3 S̃k,

where S̃ = ϕ2(S). The extension of the kernel is given by the generators

X2, X3 − X8, X8 − (k + 1)X1 + 2S̃∂S̃ .

In the final Table 1, this is model M2.

Author's personal copy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 P. Siriwat, S. V. Meleshko

If (
μ′ϕ2

μϕ′
2
)′ �= 0, then the general solution of Eqs. (2)–(7) is

W (ρ, ρ̇, S̃) = ρ̇2

ρ3 S̃ + ρ3μ(S̃), (μ �= q1 S̃k),

and the extension of the kernel is given by the generators

X2, X3 − X8.

In the final Table 1, this is model M3.
If μ = 0, then

W (ρ, ρ̇, S̃) = ρ̇2

ρ3 S̃,

and the extension of the kernel is given by the generators

X1, X2, X3 − X8, X8 + 2S̃∂S̃ .

In the final Table 1, this is model M4.

Remark The last two cases do not satisfy the restriction Wρ̇ρ̇S �= 0 announced in the title. For the case where
k2 �= 0, it is not necessary to separate the study into the cases Wρ̇ρ̇S �= 0 and Wρ̇ρ̇S = 0. Whereas for the
analysis of the case where k2 = 0, one needs to make this separation.

5 Results of the group classification

The result of the group classification of Eq. (1) is summarized in Table 1. The linear part with respect to ρ̇ of
the function W (ρ, ρ̇, S) is omitted. The equivalence transformation corresponding to the operator Xe

10 is also
used. This transformation allows one to simplify the dependence on entropy of the function W (ρ, ρ̇, S).

The first column in Table 1 presents the number of the extension, forms of the function W (ρ, ρ̇, S) are
presented in the second column, extensions of the kernel of admitted Lie algebras are given in the third column,
restrictions for functions and constants are in the fourth column.

Table 1 Group classification

W (ρ, ρ̇, S) Extensions Remarks

M1 q0ρ
−3ρ̇2 + ρ3S X1 − 2S∂S, X2, X3 − X8

M2 ρ−3ρ̇2 S + q1ρ
3Sk X2, X3 − X8, X8 − (k + 1)X1 + 2S∂S

M3 ρ−3ρ̇2 S + ρ3μ(S) X2, X3 − X8 μ′ �= q1Sk

M4 ρ−3ρ̇2 S X1, X2, X3 − X8, X8 + 2S∂S
M5 φ(ρ, ρ̇)+ S ∂S
M6 ϕ(ρ)ρ̇2 + S ∂S, X1 − 2S∂S
M7 ϕ(ρ)ρ̇2 + η(ρ)+ S ∂S η′′ �= 0
M8 ϕ(ρ)ρ̇2 + η(ρ)S X1 − 2S∂S η′′ �= 0
M9 ϕ(ρ)ρ̇ ln |ρ̇| + S X3 − 2S∂S, ∂S
M10 ϕ(ρ)ρ̇ ln |ρ̇| + η(ρ)+ S ∂S η′′ �= 0
M11 ϕ(ρ)ρ̇ ln |ρ̇| + η(ρ)S X3 − 2S∂S η′′ �= 0
M12 (q1ρ + q0) ln |ρ̇| + η(ρ)+ S X3 − X1, ∂S q2

0 + q2
1 �= 0

M13 ϕ(ρ) ln |ρ̇| + η(ρ)+ S ∂S ϕ′′ �= 0
M14 (q1ρ + q0) ln |ρ̇| + h(ρ, S) X3 − X1 (q2

0 + q2
1 )hρρS �= 0

M15 ϕ(ρ)(ln |ρ̇| + S)+ η(ρ)+ q2 S X3 − X1 + ∂S ϕ′′ �= 0
M16 ϕ(ρ)ρ̇k+2 + S k X3 − 2(k + 1)X1 + 2(k + 2)S∂S, ∂S k(k + 1)(k + 2) �= 0
M17 ϕ(ρ)ρ̇k+2 + η(ρ)+ S ∂S η′′ �= 0
M18 ϕ(ρ)ρ̇k+2 + η(ρ)S k X3 − 2(k + 1)X1 + 2(k + 2)S∂S η′′ �= 0
M19 ρλg(ρ̇ρk)+ η(ρ)+ S ∂S
M20 g(ρ̇ρk)+ q1ρ

2 + S −2k X1 + (2k + 1)X3 + 2X8, ∂S
M21 ρg(ρ̇ρk)+ q1ρ ln ρ + S (k + 1)(X3 − X1)+ X8 + S∂S, ∂S
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Table 1 continued

W (ρ, ρ̇, S) Extensions Remarks

M22 ρλg(ρ̇ρk)+ S −2(k + λ)X1 + (2k + λ+ 1)X3+2X8 + 2λS∂S, ∂S λ(λ− 1) �= 0
M23 g(ρ̇ρk)+ S ln ρ −2k X1 + (2k + 1)X3 + 2X8
M24 ρg(ρ̇ρk)+ Sρ ln ρ (k + 1)(X3 − X1)+ X8
M25 ρλ(g(ρ̇ρk)+ S) −2(k + λ)X1 + (2k + λ+ 1)X3 + 2X8 λ(λ− 1) �= 0
M26 g(ρ̇ρk)+ Q(ρS)+ q1 ln S −2k X1 + (2k + 1)X3 + 2X8 − 2S∂S
M27 ρλg(ρ̇ρk)+ Q(ρS) −2(k + λ)X1 + (2k + λ+ 1)X3 + 2X8 − 2S∂S λ �= 0
M28 q0ρ̇ρ

λ ln |ρ̇| + S X3 − 2S∂S, X8 − λX1 + (2λ+ 1)S∂S, ∂S
M29 q0ρ̇ρ

λ ln |ρ̇| + η(ρ)+ S 2X8 − 2λX1 + (2λ− ν − 1)X3 + 2(ν + 2)S∂S, ∂S η′′ = q1ρ
ν �= 0

M30 q0ρ̇ρ
λ ln |ρ̇| + η(ρ)+ S ∂S η′′ �= q1ρ

ν , η′′ �= 0
M31 q0ρ̇ρ

λ ln |ρ̇| + η(ρ)S X3 − 2S∂S η′′ �= 0
M32 q0ρ̇ρ

λ ln |ρ̇| + Sρ ln ρ X3 − 2S∂S, −λX1 + X8 + 2λS∂S
M33 q0ρ̇ρ

λ ln |ρ̇| + S(ρ ln ρ + q1) X3 − 2S∂S q1 �= 0
M34 q0ρ̇ρ

λ ln |ρ̇| + Sρ ln ρ + q2 ln S 2(X8 − λX1 + λX3)+ X3 − 2S∂S q2 �= 0
M35 q0ρ̇ρ

λ ln |ρ̇| + Sρ ln ρ + q2 Sα 2(1 − α)(X8 − λX1 + λX3)+ X3 − 2S∂S q2α(α − 1) �= 0
M36 q0ρ̇ρ

λ ln |ρ̇| + S(ln ρ + q1) X3 − 2S∂S
M37 q0ρ̇ρ

λ ln |ρ̇| + S(ln ρ + q1)+ αS ln S −2λαX1 + (2αλ+ 1)X3 + 2αX8 + 2(α − 1)S∂S α �= 0
M38 q0ρ̇ρ

λ ln |ρ̇| + Sρν+2 X3 − 2S∂S, −λX1 + X8 + (2λ− ν − 1)S∂S (ν + 2)(ν + 1) �= 0
M39 q0ρ̇ρ

λ ln |ρ̇| + S(ρν+2 + q1) X3 − 2S∂S q1(ν + 2)(ν + 1) �= 0
M40 q0ρ̇ρ

λ ln |ρ̇| + Sρν+2 + q1 ln S −2λX1 + (2λ+ 1)X3 + 2X8 − 2(ν + 2)S∂S q1(ν + 2)(ν + 1) �= 0
M41 q0ρ̇ρ

λ ln |ρ̇| + Sρν+2 + q2 Sα 2λ(α − 1)X1 + (α(ν + 1 − 2λ)+ 2λ+ 1)X3 (ν + 2)(ν + 1) �= 0,
+2(1 − α)X8 − 2(ν + 2)S∂S q2α(α − 1) �= 0

M42 q0ρ̇ρ
λ ln |ρ̇| + g(ρS)+ q2 ln S −2λX1 + (2λ+ 1)X3 + 2X8 − 2S∂S

M43 q0ρ̇ρ
λ ln |ρ̇| + ρνg(ρS)+ q2 S−ν −2λX1 + (2λ− ν + 1)X3 + 2X8 − 2S∂S ν �= 0

M44 ρλ(q1 + q0 ln(ρν |ρ̇|))+ S −2(λ+ ν)X1 + (λ+ 2ν + 1)X3+2X8 + 2λS∂S, ∂S
M45 q0ρ

λ ln |ρ̇| + η(ρ)+ S ∂S η �= ρλ(q1 + q2 ln ρ)
M46 q0ρ

λ ln |ρ̇| + η(ρ)+ S X3 − X1, ∂S η′′ �= q1ρ
(λ−2),

λ(λ− 1) = 0
M47 q0ρ

λ ln(|ρ̇|ρν)+ S X3 − X1, (1 − λ)X1 + 2X8 + 2λS∂S, ∂S λ(λ− 1) = 0
M48 q0 ln |ρ̇| + S ln ρ + f (S) X3 − X1
M49 ρ(q0 ln |ρ̇| + S ln ρ)+ f (S) X3 − X1 f ′ �= 0
M50 ρ(q0 ln |ρ̇| + S ln ρ) X3 − X1, X8
M51 q0 ln |ρ̇| + φ(ρS)+ q1 ln S X3 − X1, X1 + 2X8 − 2S∂S (zφ(z)′)′′ �= 0
M52 ρ(q0 ln |ρ̇| + φ(ρS))+ q1S−1 X3 − X1, X8 − S∂S (zφ(z)′)′′ �= 0
M53 ρλ(q0 ln |ρ̇| + φ(ρS))+ f (S) X3 − X1 λ(λ− 1) = 0,

(S f ′ + λ f )′ �= 0,
(zφ(z)′)′′ �= 0

M54 q0ρ
λ(ln |ρ̇| + S)+ η(ρ)+ q1S X3 − X1 + ∂S λ(λ− 1) �= 0,

η′′ �= ρλ−2(ν ln ρ + q2)

M55 q0ρ
λ(ln(|ρ̇|ρν)+ S)+ q1ρ

λ X3 − X1 + ∂S , λ(λ− 1) �= 0
2(λ− 1)X1 + 2X8 − (λ+ 2ν + 1)∂S

M56 q0ρ
λ(ln(|ρ̇|ρν)+ S)+ q1ρ

λ + q2 S X3 − X1 + ∂S q2λ(λ− 1) �= 0
M57 q0ρ

λ(ln(|ρ̇|ρν)+ S)+ q1ρ
λ + q2eκS −2(κ(λ+ ν)+ λ)X1 + 2κX8 + 2λ∂S q2λ(λ− 1) �= 0

+(2λ+ κ(λ+ 2ν + 1))X3
M58 q0ρ

λ(ln(|ρ̇|ρν)+ g(ρS))+ q2 S−λ −2(λ+ ν)X1 + (λ+ 2ν + 1)X3 + 2X8 − 2S∂S λ(λ− 1) �= 0,
(zλ+1g′(z))′′ �= 0

M59 q0ρ
λρ̇k+2 + η(ρ)+ S −2(2k + λ+ 2 + (k + 1)ν)X1 (k + 1)(k + 2) �= 0,

+(kν + 3k + 2λ+ 2)X3 η′′ = q1ρ
ν �= 0

+2(k + 2)(X8 + (ν + 2)S∂S, ∂S
M60 q0ρ

λρ̇k+2 + η(ρ)+ S ∂S (k + 1)(k + 2) �= 0,
η′′ �= q1ρ

ν, η′′ �= 0
M61 q0ρ

λρ̇k+2 + S 2(k + 1)X1 − k X3 − 2(k + 2)S∂S , (k + 1)(k + 2) �= 0
(k + λ+ 1)X3 + 2(k + 1)X8 − 2λS∂S, ∂S

M62 q0ρ
λρ̇k+2 + g(ρS)+ q2 ln S −2λX1 + (k + 2λ+ 2)X3 + 2(k + 2)(X8 − S∂S) (k + 1)(k + 2) �= 0

(zg′(z))′′ �= 0
M63 q0ρ

λρ̇k+2 + ρνg(ρS)+ q2 S−ν −2(ν(k + 1)+ λ)X1 + (k(ν + 1)+ 2λ+ 2)X3 ν(k + 1)(k + 2) �= 0
+2(k + 2)(X8 − S∂S) (zν+1g′(z))′′ �= 0

M64 q0ρ
λρ̇k+2 + Sη(ρ) 2(k + 1)X1 − k X3 − 2(k + 2)S∂S (k + 1)(k + 2) �= 0,

η′′ �= q1ρ
ν, η′′ �= 0
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Table 1 continued

W (ρ, ρ̇, S) Extensions Remarks

M65 q0ρ
λρ̇k+2 + S(ln(ρSβ)+ q2) 2(k + 1 − βλ)X1 + (β(k + 2λ+ 2)− k)X3 (k + 1)(k + 2) �= 0

+2(k + 2)(βX8 − S∂S)

M66 q0ρ
λρ̇k+2 + ρ ln(ρ)S 2(k + 1)X1 − k X3 − 2(k + 2)S∂S , (k + 1)(k + 2) �= 0

2λ(X3 − X1)+ (k + 2)(X3 + 2X8 − 2S∂S)

M67 q0ρ
λρ̇k+2 + S(ρ ln(ρ)+ q2) 2(k + 1)X1 − k X3 − 2(k + 2)S∂S q2 �= 0,

(k + 1)(k + 2) �= 0
M68 q0ρ

λρ̇k+2 + Sρ ln ρ + q2 ln S 2λ(X3 − X1)+ (k + 2)(X3 + 2X8 − 2S∂S) q2 �= 0,
(k + 1)(k + 2) �= 0

M69 q0ρ
λρ̇k+2 + S(ρ ln ρ + q2 Sβ) 2(β(k + λ+ 1)+ k + 1)(X3 − X1) βq2 �= 0,

−(k + 2)X3 + 2(k + 2)(βX8 + S∂S) (k + 1)(k + 2) �= 0
M70 q0ρ

λρ̇k+2 + Sρν 2(k + 1)X1 − k X3 − 2(k + 2)S∂S , ν �= 0,
(k + λ+ 1)X3 + 2(k + 1)X8 (k + 1)(k + 2) �= 0
−2(λ+ ν(k + 1))S∂S)

M71 q0ρ
λρ̇k+2 + S(ρν + q2) 2(k + 1)X1 − k X3 − 2(k + 2)S∂S q2 �= 0,

(k + 1)(k + 2) �= 0
M72 q0ρ

λρ̇k+2 + Sρν + q2 ln S 2λ(X3 − X1)+ (k + 2)(X3 + 2X8 − 2νS∂S) q2 �= 0,
(k + 1)(k + 2) �= 0

M73 q0ρ
λρ̇k+2 + S(ρν + q2 Sβ) 2β(λ+ ν(k + 1))+ ν(k + 1)(X3 − X1) q2β �= 0,

−(k + 2)(βν − β + ν)X3 (k + 1)(k + 2) �= 0
+2(k + 2)(βX8 + νS∂S)

Acknowledgments The research of PS was financially supported by Mae Fah Luang University. The work of SVM was supported
by Suranaree University of Technology and by the Office of the Higher Education Commission under the NRU project.

Appendix: Case k2 = 0

For further study, the knowledge of ζ S(S) plays a key role. For example, for k2 = 0, Eq. (3) becomes

Wρ̇ρ̇Sζ
S = Wρ̇ρ̇ρ̇ ρ̇k1 + 2k3(Wρ̇ρ̇ρ̇ ρ̇ + Wρ̇ρ̇ )− k8(Wρ̇ρ̇ρ̇ ρ̇ + Wρ̇ρ̇ρρ + Wρ̇ρ̇ ). (15)

In the present paper, we study the case where

Wρ̇ρ̇S = 0.

By virtue of the equivalence transformation corresponding to the generator Xe
9, the general solution of the

equation Wρ̇ρ̇S = 0 is

W (ρ, ρ̇, S̃) = φ(ρ, ρ̇)+ h(ρ, S),

where φρ̇hS �= 0. Since for φρ̇ρ̇ = 0, Eq. (1) are equivalent to the gas dynamics equations, it is assumed that
φρ̇ρ̇ �= 0. Equation (15) reduces to

k1a + k3b − k8c = 0, (16)

where

a = ρ̇φρ̇ρ̇ρ̇ , b = 2(ρ̇φρ̇ρ̇ρ̇ + φρ̇ρ̇), c = −(ρ̇φρ̇ρ̇ρ̇ + ρφρ̇ρ̇ρ + φρ̇ρ̇).

In the further study, the following strategy is used. Notice that Eq. (5) is linear with respect to ζ S with the
coefficient hρρS , i.e.,

hρρSζ
S = A

with some function A = A(ρ, ρ̇, S) which is independent of ζ S . If hρρS = 0, then due to equivalence
transformations one can also assume that

h(ρ, S) = η(ρ)+ μ(S),
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where μ′ �= 0. In this case, Eq. (7) leads to

ζ S = (−2k1μ− 2k3μ+ k8μ+ c0)/μ
′,

where c0 is an arbitrary constant. The admitted generator takes the form

X = k1(X1 − 2S̃∂S̃)+ k3(X3 − 2S̃∂S̃)+ k8(X8 + S̃∂S̃)+ c0∂S̃, (17)

where S̃ = μ(S). Remaining equations are (3) and (5). The relations between constants k1, k3 and k8 depend
on the functions η(ρ) and φ(ρ, ρ̇). If hρρS �= 0, then the function ζ S is defined by Eq. (5). In this case, one
needs to satisfy the system of Eqs. (3), (7) and the condition that ζ S = ζ S(S).

The analysis of the relations between the constants k1, k3 and k8, follows to the algorithm developed for
the gas dynamics equations [1]: the vector space Span(V ), where the set V consists of the vectors (a, b, c)
with ρ, ρ̇ and S are changed, is analyzed. This algorithm allows one to study all possible subalgebras without
omission.

dim(Span(V )) = 3

If the function W (ρ, ρ̇, S) is such that dim(Span(V )) = 3, then Eq. (16) is only satisfied for

k1 = 0, k3 = 0, k8 = 0.

In this case, Eqs. (5) and (7) become

ζ ShρρS = 0, ζ S
S (ρhρS − hS)+ ζ S(ρhρSS − hSS) = 0.

Since for ζ S = 0, there are no extensions of the kernel of admitted Lie algebras, one has to consider ζ S �= 0.
The general solution of the first equation, after using the equivalence transformation corresponding to the
generator Xe

8, is

h = μ(S),

where μ′ �= 0. The general solution of the second equation is ζ S = c/μ′. Hence,

W (ρ, ρ̇, S̃) = φ(ρ, ρ̇)+ S̃,

and the extension of the kernel is given by the generator

∂S̃,

where S̃ = μ(S). In the final Table 1, this is model M5.

dim(Span(V )) = 2

There exists a constant vector (α, β, γ ) �= 0, which is orthogonal to the set V :

αa + βb + γ c = 0. (18)

This means that the function φ(ρ, ρ̇) satisfies the equation

(α + 2β + γ )ρ̇φρ̇ρ̇ρ̇ + γρφρ̇ρ̇ρ = −(2β + γ )φρ̇ρ̇ . (19)

The characteristic system of this equation is

dρ̇

(α + 2β + γ )ρ̇
= dρ

γρ
= dφρ̇ρ̇

−(2β + γ )φρ̇ρ̇
. (20)
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Case γ = 0

Because φρ̇ρ̇ �= 0 and (α, β, γ ) �= 0, one has that α + 2β �= 0. The general solution of Eq. (19) is

φρ̇ρ̇ = ϕ̃(ρ)ρ̇k, (21)

where ϕ̃(ρ) �= 0 is an arbitrary function and k = 2β/(α + 2β). Since dim(Span(V )) = 0 for (ρϕ̃′/ϕ̃)′ = 0,
one has to assume that (ρϕ̃′/ϕ̃)′ �= 0.

Substitution of (21) into (16) gives

k8ϕ̃
′ρ − ϕ̃(k(k1 + 2k3 − k8)+ 2k3 − k8) = 0. (22)

The case k8 �= 0 leads to (ρϕ̃′/ϕ̃)′ = 0. Hence, k8 = 0 and Eq. (22) becomes

k(k1 + 2k3)+ 2k3 = 0. (23)

Let k = 0. Due to Eq. (22), one gets k3 = 0. Integrating (21), one finds φ = ϕ(ρ)ρ̇2. Equation (5) becomes

hρρSζ
S + 2hρρk1 = 0. (24)

Assume that hρρ = 0, this means that after using the equivalence transformation corresponding to the
generator Xe

8, one has that h = μ(S), where μ′ �= 0. Equation (7) after integration gives

ζ S = −2k1μ/μ
′ + c0/μ

′,

where c0 is a constant of the integration. Thus,

W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇2 + S̃.

and the extension of the kernel is given by the generators

∂S̃, X1 − 2S̃∂S̃,

where S̃ = μ(S). In the final Table 1, this is model M6.
Assume that hρρ �= 0. For the existence of an extension of the kernel, Eq. (24) implies that h(ρ, S) =

η(ρ)μ(S)+ μ2(S), where μη′′ �= 0. In this case, Eq. (5) becomes

μ′ζ S + 2k1μ = 0.

If μ′ = 0, then μ′
2 �= 0, k1 = 0 and Eq. (7) gives ζ S = c0/μ

′
2. Thus,

W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇2 + η(ρ)+ S̃,

and the extension of the kernel is given by the generator

∂S̃,

where S̃ = μ2(S). In the final Table 1, this is model M7.
If μ′ �= 0, then ζ S = −2k1μ/μ

′, and Eq. (7) gives

(μ′
2/μ

′)′ = 0.

Hence, without loss of generality one can assume that μ2 = 0. Therefore,

W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇2 + η(ρ)S̃.

and the extension of the kernel is given by the generator

X1 − 2S̃∂S̃,

where S̃ = μ(S). In the final Table 1, this is model M8.

Author's personal copy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Group classification of one-dimensional nonisentropic equations of fluids 125

Remark In the cases where μ′ �= 0, one can assume that μ2(S) = f (μ(S)). This simplifies calculations.

Let k �= 0. Equation (23) gives

k1 = −2k3
1 + k

k
.

The function φ(ρ, ρ̇) is obtained by integrating Eq. (21). The integration depends on the value of k.
Let k = −1, then

φ = ϕ(ρ)ρ̇ ln |ρ̇|. (25)

Substituting (25) into (5), one obtains

ζ ShρρS + 2k3hρρ = 0. (26)

If hρρ = 0, then h = μ(S) with μ′ �= 0, and Eq. (7) leads to

ζ S = −2k3μ/μ
′ + c0/μ

′.

Therefore,

W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇ ln |ρ̇| + S̃,

and the extension of the kernel is given by the generators

X3 − 2S̃∂S̃, ∂S̃,

where S̃ = μ(S). In the final Table 1, this is model M9.
If hρρ �= 0, then

h(ρ, S) = μ(S)η(ρ)+ μ2(S), (μη
′′ �= 0).

Equation (5) becomes μ′ζ S + 2k3μ = 0.
If μ′ = 0, then μ′

2 �= 0, k3 = 0 and Eq. (7) gives ζ S = c0/μ
′
2. Thus,

W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇ ln |ρ̇| + η(ρ)+ S̃,

and the extension of the kernel is defined by the generator

∂S̃,

where S̃ = μ2(S). In the final Table 1, this is model M10.
If μ′ �= 0, then

ζ S = −2k3μ(S)/μ
′.

Similar to the case k = 0, Eq. (7) gives μ2 = 0. Therefore,

W (ρ, ρ̇, S̃) = ϕ(ρ)ρ̇ ln |ρ̇| + η(ρ)S̃, (η′′ �= 0),

and the extension of the kernel is given by the generator

X3 − 2S̃∂S̃,

where S̃ = μ(S). In the final Table 1, this is model M11.
Let k = −2, then

φ = ϕ(ρ) ln |ρ̇|. (27)

Equation (5) becomes

ζ ShρρS − k3ϕ
′′ = 0 (28)
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Assuming that hρρS = 0, one has

h(ρ, S) = η(ρ)+ μ(S),

where μ′ �= 0. Equation (7) leads to

ζ S = c0/μ
′. (29)

Therefore,

W (ρ, ρ̇, S̃) = ϕ(ρ) ln |ρ̇| + η(ρ)+ S̃,

and (a) for ϕ′′ = 0, one has two admitted generators

X3 − X1, ∂S̃,

(b) for ϕ′′ �= 0, there is the only admitted generator

∂S̃ .

Here, S̃ = μ(S). In the final Table, 1 case (a) is model M12 and case (b) is model M13.
Assuming that hρρS �= 0, one has

ζ S = k3
ϕ′′

hρρS
.

It should be noted that here k3 �= 0, otherwise there is no an extension of the kernel of admitted Lie algebras.
Hence,

(
ϕ′′

hρρS

)

ρ

= 0. (30)

If ϕ′′ = 0, then Eq. (7) is also satisfied. Therefore, there is the only extension

X3 − X1,

and

W (ρ, ρ̇, S̃) = (q1ρ + q0) ln |ρ̇| + h(ρ, S),

where (q2
0 + q2

1 )hρρS �= 0. In the final Table 1, this is model M14.
If ϕ′′ �= 0, then Eqs. (30) and (7) give

h(ρ, S) = ϕ(ρ)μ(S)+ η(ρ)+ q2μ(S),

where μ′ �= 0. Therefore,

W (ρ, ρ̇, S̃) = ϕ(ρ)(ln |ρ̇| + S̃)+ η(ρ)+ q2 S̃, (ϕ′′ �= 0),

and the extension of the kernel is

X3 − X1 + ∂S̃,

where S̃ = μ(S). In the final Table 1, this is model M15.
Let k(k + 1)(k + 2) �= 0 in (21), then

φ = ϕ(ρ)ρ̇(k+2) (31)

Substituting (31) into (5), one obtains

ζ ShSρρk − 2k3(k + 2)hρρ = 0. (32)
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If hρρ = 0, then one can consider that h = μ(S), where μ′ �= 0. Equation (7) is

ζ S = 2k3
(k + 2)

k
μ/μ′ + c0/μ

′.

In this case,

W (ρ, ρ̇, S̃) = ρ̇k+2ϕ(ρ)+ S̃,

and the extension of the kernel is given by the generators

k X3 − 2(k + 1)X1 + 2(k + 2)S̃∂S̃, ∂S̃,

where S̃ = μ(S). In the final Table 1, this is model M16.
If hρρ �= 0, then for an existence of an extension of the kernel, Eq. (32) requires that

h(ρ, S) = η(ρ)μ(S)+ μ2(S),

where μη′′ �= 0. Equation (32) becomes

ζ Sμ′k − 2k3(k + 2)μ = 0.

If μ′ = 0, then μ′
2 �= 0, k3 = 0 and Eq. (7) gives ζ S = c0/μ

′
2. Thus,

W (ρ, ρ̇, S̃) = ρ̇k+2ϕ(ρ)+ η(ρ)+ S̃, (η′′ �= 0).

and the extension of the kernel is given by the generator

∂S̃,

where S̃ = μ2(S). In the final Table 1, this is model M17.
If μ′ �= 0, then

ζ S = 2k3
(k + 2)

k
μ/μ′,

Similar to the case k = 0, Eq. (7) gives μ2 = 0. Therefore,

W (ρ, ρ̇, S̃) = ρ̇k+2ϕ(ρ)+ η(ρ)S̃, (η′′ �= 0),

and the extension of the kernel is given by the generator

k X3 − 2(k + 1)X1 + 2(k + 2)S̃∂S̃,

where S̃ = μ(S). In the final Table 1, this is model M18.

Case γ �= 0.

In this case, the general solution of (20) is

φ = ρλg(z), (g′′ �= 0), (33)

where z = ρ̇ρk, k = −(α + 2β)/γ − 1, λ = 2(β + α)/γ + 1. Substituting φ into (15), one obtains

zg′′′k0 + g′′k̃0 = 0, (34)

where k0 = k1 + 2k3 − k8(k + 1) and k̃0 = 2k3 − k8(2k + λ+ 1). If k0 �= 0, then dim(Span(V )) ≤ 1, hence,
k0 = 0 and k̃0 = 0 , which mean that

k1 = −k8(k + λ), k3 = k8(2k + λ+ 1)/2.
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Equation (5) becomes

ζ ShSρρ + k8(ρhρρρ − (λ− 2)hρρ) = 0. (35)

Assume that hρρS = 0 or

h(ρ, S) = η(ρ)+ μ(S),

where μ′ �= 0. Equation (5) and (7) become, respectively,

k8(ρη
′′′ − (λ− 2)η′′) = 0, ζ S = k8λμ/μ

′ + c0/μ
′.

If ρη′′′ − (λ− 2)η′′ �= 0, then k8 = 0. Thus,

W (ρ, ρ̇, S̃) = ρλg(ρ̇ρk)+ η(ρ)+ S̃,

and there is the only extension of the kernel of admitted Lie algebras corresponding to the generator

∂S̃,

where S̃ = μ(S). In the final Table 1, this is model M19.
If ρη′′′ − (λ− 2)η′′ = 0 or

η =
⎧⎨
⎩

q1ρ
2, λ = 0,

q1ρ ln(ρ), λ = 1,
q1ρ

λ, λ(λ− 1) �= 0.

Then,

W (ρ, ρ̇, S̃) = ρλg(ρ̇ρk)+ η(ρ)+ S̃,

and the extension of the kernel of admitted Lie algebras corresponding to the generators is

−(k + λ)X1 + (2k + λ+ 1)

2
X3 + X8 + λS̃∂S̃, ∂S̃,

where S̃ = μ(S). In the final Table 1, these models correspond to M20–M22.
Assume that hSρρ �= 0 in (35), then

ζ S = −k8(ρhρρρ − (λ− 2)hρρ)/hSρρ.

Since ζ S = ζ S(S), one has

−ρhρρρ + (λ− 2)hρρ
hSρρ

= H(S), (36)

and ζ S = k8 H(S).
If H = 0, then the general solution of (36) is

hρρ(ρ, S) = μ(S)ρλ−2. (37)

Hence,

h(ρ, S) = μ(S)η(ρ)+ μ2(S),

where μ′(S) �= 0 and

η =
⎧⎨
⎩

ln ρ, λ = 0,
ρ ln(ρ), λ = 1,
ρλ, λ(λ− 1) �= 0.
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Equation (7) gives

k8
(
λμ′

2 + μ′ (ρ2η′′ − λ(ρη′ − η)
)) = 0.

This equation leads to: (a) if λ = 0, then k8 = 0, (b) if λ �= 0, thenμ′
2k8 = 0. Hence, an extension of the kernel

of admitted Lie algebras occurs for λ �= 0. In this case, μ′
2 = 0, which allows one to assume that μ2 = 0.

Thus,

W (ρ, ρ̇, S̃) = ρλg(ρ̇ρk)+ S̃η(ρ),

and the extension is given by the generator

−(k + λ)X1 + (2k + λ+ 1)

2
X3 + X8.

In the final Table 1, these models correspond to M23–M25.
If H �= 0, then Eq. (36) leads to

h = ρλQ + μ2,

where μ = μ(S), μ2 = f (μ(S)), Q = Q(z), z = ρμ and μ′ �= 0. Here, H(S) = μ/μ′ �= 0. Substitution of

W (ρ, ρ̇, S̃) = ρλg(ρ̇ρk)+ ρ−λQ(ρμ(S))+ f (μ(S))

into (7) gives

μ f ′′ + (λ+ 1) f ′ = 0.

Hence,

f ′ = cμ−(λ+1).

Integration of this equation depends on λ:

μ2 =
{

q1 lnμ, λ = 0,
q1μ

−λ, λ �= 0.

Thus,

λ = 0 : W (ρ, ρ̇, S̃) = g(ρ̇ρk)+ Q(ρ S̃)+ q1 ln S̃,
λ �= 0 : W (ρ, ρ̇, S) = ρλ(g(ρ̇ρk)+ Q(ρ S̃)).

The extension of the kernel is given by the generator

−(k + λ)X1 + (2k + λ+ 1)

2
X3 + X8 − S̃∂S̃,

where S̃ = μ(S). In the final Table 1, these models correspond to M26–M27.

dim(Span(V )) = 1

Let dim(Span(V )) = 1. There exists a constant vector (α, β, γ ) �= 0 such that

(a, b, c) = (α, β, γ )B

with some function B(ρ, ρ̇, S) �= 0. Since φρ̇ρ̇ �= 0, one has β − 2α �= 0, and

ρφρρ̇ρ̇ = λφρ̇ρ̇ , ρ̇φρ̇ρ̇ρ̇ = kφρ̇ρ̇ ,

where

λ = 3α − β − γ

β − 2α
, k = α

β − 2α
.

These relations give

φρ̇ρ̇ = c1ρ
λρ̇k, (38)

where c1 �= 0 is constant. Equation (3) becomes

k1k + 2k3(k + 1)− k8(k + λ+ 1) = 0. (39)

Integration of (38) depends on the value of k. It should be noted that k2+λ2 �= 0, otherwise dim(Span(V )) = 0.

Author's personal copy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



130 P. Siriwat, S. V. Meleshko

Case k = −1.

Integrating (38), one obtains

φ = q0ρ
λρ̇ ln |ρ̇|. (40)

Equation (39) gives

k1 = −λk8,

and Eq. (5) becomes

hSρρζ
S = −2k3hρρ − k8(ρhρρρ − hρρ(2λ− 1)). (41)

Assuming that hSρρ = 0 or

h(ρ, S) = η(ρ)+ μ(S), (μ′ �= 0),

Equation (41) is reduced to the equation

ρη′′′k8 − (k8(2λ− 1)− 2k3)η
′′ = 0. (42)

The general solution of Eq. (7) is

ζ S = (k8(2λ+ 1)− 2k3)
μ

μ′ + c0

μ′ ,

where c0 is an arbitrary constant.
If η′′ = 0, then without loss of the generality one can assume that η = 0. Equation (42) is satisfied. Thus,

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + S̃,

and the extension of the kernel of admitted Lie algebras is defined by the generators

X3 − 2S̃∂S̃, X8 − λX1 + (2λ+ 1)S̃∂S̃, ∂S̃,

where S̃ = μ(S). In the final Table 1, this model corresponds to M28.
If η′′ �= 0, then

k3 = k8

(
λ− 1

2
− ρη′′′

2η′′

)
. (43)

Because k3 is constant, one has

k8

(
ρη′′′

η′′

)′
= 0.

Assume that
(
ρη′′′

η′′

)′
= 0

or η′′ = q1ρ
ν , where ν is constant. Substituting η′′ into (43), one gets

k3 = k8

(
λ− ν + 1

2

)
.

Thus,

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + η(ρ)+ S̃, (η′′ = q1ρ

ν, q1 �= 0),
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and the extension of the kernel of admitted Lie algebras is defined by the generators

2X8 − 2λX1 + (2λ− ν − 1)X3 + 2(ν + 2)S̃∂S̃, ∂S̃,

where S̃ = μ(S) and q1 �= 0. In the final Table 1, this model corresponds to M29.
If

(
ρη′′′

η′′

)′
�= 0,

then k8 = 0,

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + η(ρ)+ S̃,

and the extension of the kernel of admitted Lie algebras is defined by the only generator

∂S̃ .

In the final Table 1, this model corresponds to M30.
Assuming that hSρρ �= 0, Eq. (41) gives

ζ S = −2k3
hρρ
hSρρ

− k8
ρhρρρ − hρρ(2λ− 1)

hSρρ
. (44)

Differentiating equation (44) with respect to ρ, one obtains

2k3

(
hρρ
hSρρ

)

ρ

+ k8

(
ρhρρρ − hρρ(2λ− 1)

hSρρ

)

ρ

= 0. (45)

If
(

hρρ
hSρρ

)
ρ

= 0, then h = η(ρ)μ(S)+ f (μ(S)), and Eq. (45) becomes

k8

(
ρη′′′

η′′

)′
= 0. (46)

Here, μ′η′′ �= 0.

If
(
ρη′′′
η′′

)′ �= 0, then k8 = 0. Equation (7) gives

f (μ) = c0μ. (47)

Changing the function η such that η + c0 → η, one obtains

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + η(ρ)S̃, (η′′ �= 0),

and the extension of the kernel is given by the only generator

X3 − 2S̃∂S̃,

where S̃ = μ(S). In the final Table 1, this model corresponds to M31.

If

(
ρη′′′

η′′

)′
= 0, then η′′ = ρν , where ν is constant. Further study depends on ν.

If ν = −1, then

η = ρ ln ρ. (48)

Substitution of (48) into (7) gives

2(k3 − λk8)( f ′μ− f ) = (c1 − k8 f ), (49)

where c1 is a constant of the integration.
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Assume that f ′μ− f = 0, then f = q1μ, and Eq. (49) becomes

q1k8μ = c1.

Because μ′ �= 0, one obtains q1k8 = 0 and c1 = 0. If q1 = 0, then

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + S̃ρ ln ρ,

and the extension of the kernel is given by the generators

X3 − 2S̃∂S̃, −λX1 + X8 + 2λS̃∂S̃,

where S̃ = μ(S). In the final Table 1, this model corresponds to M32. If q1 �= 0, then k8 = 0. Thus,

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + S̃(ρ ln ρ + q1), (q1 �= 0),

and the extension is given by the only generator

X3 − 2S̃∂S̃ .

In the final Table 1, this model corresponds to M33.
If f ′μ− f �= 0, then

k3 = λk8 + c1 − k8 f

2( f ′μ− f )
. (50)

Differentiating the last equation with respect to μ, one gets
(

c1 − k8 f

f ′μ− f

)′
= 0

or

c0( f ′μ− f ) = c1 − k8 f,

where c0 is constant. It should be noted that if c0 = 0, then an extension of the kernel only occurs for k8 �= 0.
This means that f = const which is without loss of generality can be assumed f = 0, and then f ′μ− f = 0.
Hence, one has to assume that c0 �= 0. This implies that

f ′μ− α f = q3,

where k8 = c0(1 − α) and c1 = c0q3. It should be noted that by virtue of the equivalence transformation
corresponding to the generator Xe

7, one can assume that αq3 = 0. We also note that for α = 1, one obtains
k8 = q3 = 0, which prohibits an extension of the kernel. Hence, α �= 1. The extension of the kernel of
admitted Lie algebras is given by the only generator

2(1 − α)(X8 − λX1 + λX3)+ X3 − 2S̃∂S̃,

where

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + S̃ρ ln ρ + f (S̃),

S̃ = μ(S) and

f (S̃) =
{

q2 ln(S̃), α = 0;
q2 S̃α, α(α − 1) �= 0.

In the final Table 1, these models correspond to M34 and M35.
If ν = −2 , then h = μ(S) ln ρ + f (μ(S)). Integrating Eq. (7), one has

(2k3 − (2λ+ 1)k8)(μ f ′ − f )− μk8 = c1, (51)
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where c1 is a constant of the integration. If f ′μ− f = 0 or f = q1μ, then k8 = 0, and c1 = 0, and

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + S̃(ln ρ + q1). (52)

The extension of the kernel in this case is given by the only generator

X3 − 2S̃∂S̃ .

In the final Table 1, this model corresponds to M36. If f ′μ− f �= 0, then

2k3 = (2λ+ 1)k8 + c1 + μk8

μ f ′ − f
,

and, hence,
(

c1 + k8μ

μ f ′ − f

)′
= 0

or

c0(μ f ′ − f ) = c1 + k8μ,

where c0 is constant. It should be noted that if c0 = 0, then k8 = 0, and there is not an extension of the kernel
of admitted Lie algebras. Hence, c0 �= 0, and

f ′μ− f = q3 + αμ,

where k8 = c0α and c1 = c0q3. The general solution of the last equation is

f = αμ ln(μ)+ q1μ− q3.

Thus, the extension of the kernel of admitted Lie algebras is given by the generator

−2λαX1 + (2αλ+ 1)X3 + 2αX8 + 2(α − 1)S̃∂S̃,

where

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + S̃(ln ρ + q1)+ α S̃ ln(S̃),

and S̃ = μ(S). Notice also that the previous case (52) is included in the present case by setting α = 0. In the
final Table 1, this model corresponds to M37.

Let (ν + 1)(ν + 2) �= 0, then h = ρν+2μ(S)+ f (μ(S)), and Eq. (7) gives

(2k3 − (2λ− ν − 1)k8)(μ f ′ − f )+ (ν + 2) f k8 = c1. (53)

If f ′μ− f = 0 or μ2 = q1μ, then

(ν + 2)μq1k8 = c1.

Because (ν + 2)μ′ �= 0, one obtains that q1k8 = 0 and c1 = 0. If q1 = 0, then

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + S̃ρν+2,

and the extension of the kernel is given by the generators

X3 − 2S̃∂S̃, −λX1 + X8 + (2λ− ν − 1)S̃∂S̃,

where S̃ = μ(S). In the final Table 1, this model corresponds to M38.
If q1 �= 0, then k8 = 0. Thus,

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + S̃(ρν+2 + q1), (q1 �= 0),
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and the extension of the kernel is given by the only generator

X3 − 2S̃∂S̃ .

In the final Table 1, this model corresponds to M39.
If μ f ′ − f �= 0, then

2k3 = (2λ− ν − 1)k8 + c1 − (ν + 2) f k8

μ f ′ − f
,

and, hence,

c1 − (ν + 2) f k8

μ f ′ − f
= c0,

where c0 is constant. It should be noted that if c0 = 0, then an extension of the kernel only occurs for f = const ,
whereas by virtue of the equivalence transformation corresponding to the generator Xe

7 one can assume that
f = 0, and then f ′μ− f = 0. Hence, c0 �= 0, and

f ′μ− α f = q2,

where

c1 = c0q2, k8 = c0
1 − α

ν + 2
.

Here, as in the previous case, one has to require that α �= 1. Hence,

W (ρ, ρ̇, S̃) = q0ρ̇ρ
λ ln |ρ̇| + S̃ρν+2 + f (S̃),

and the admitted generator is

2λ(α − 1)X1 + (α(ν + 1 − 2λ)+ 2λ+ 1)X3 + 2(1 − α)X8 − 2(ν + 2)S̃∂S̃,

where

f =
{

q2 ln(S̃), α = 0;
q2 S̃α, α(α − 1) �= 0.

In the final Table 1, these models correspond to M40 and M41.

Returning to (45), if

(
hρρ
hSρρ

)

ρ

�= 0, then Eq. (45) gives

2k3 = −k8

(
ρhρρρ − hρρ(2λ− 1)

hSρρ

)

ρ

/

(
hρρ
hSρρ

)

ρ

. (54)

Thus,
(
ρhρρρ − hρρ(2λ− 1)

hSρρ

)

ρ

/

(
hρρ
hSρρ

)

ρ

= const

or

ρhρρρ − HhSρρ = k0hρρ

where k0 is constant and H = H(S) is some function. It should be noted that for H = 0, one has the con-

tradiction

(
hρρ
hSρρ

)

ρ

= 0. Hence, H(S) �= 0. The general solution of the last equation (up to an equivalence

transformation) is

h(ρ, S) = ρνg(ρμ(S))+ f (μ(S)), (55)
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where μ′ �= 0. Equation (7) becomes

μ f ′′ + (ν + 1) f ′ = 0. (56)

Thus,

W (ρ, ρ̇, S̃) = q0ρ
λρ̇ ln |ρ̇| + ρνg(ρ S̃)+ f (S̃),

and the extension is given by the only generator

−2λX1 + (2λ− ν + 1)X3 + 2X8 − 2S̃∂S̃ .

Here, S̃ = μ(S), and

f (S̃) =
{

q2 ln(S̃), ν = 0;
q2 S̃−ν, ν �= 0.

In the final Table 1, these models correspond to M42 and M43.

Case k = −2.

Integrating (38), one obtains

φ = q0ρ
λ ln |ρ̇|, (q0 �= 0). (57)

Substituting (57) into (3), one gets

k1 = −k3 + k8
1 − λ

2
.

Equation (5) becomes

2hSρρζ
S = 2q0k3ρ

λ−2λ(λ− 1)− k8(2ρhρρρ − 2(λ− 2)hρρ + q0ρ
λ−2λ(λ2 − 1)). (58)

Assuming that hSρρ = 0 or

h(ρ, S) = η(ρ)+ μ(S), (μ′ �= 0),

Equations (7) and (5) are reduced to the equations, respectively,

ζ S = k8λμ+ c0

μ′ , (59)

q0λ(λ− 1)(2k3 − k8(λ+ 1)) = 2k8ρ
2−λ(η′′′ρ − η′′(λ− 2)), (60)

where c0 is the constant of integration.
Let λ(λ− 1) �= 0. Equation (60) gives

k3 = k8

(
λ+ 1

2
+ (η′′′ρ − η′′(λ− 2))

q0λ(λ− 1)ρλ−2

)
,

Differentiating this equation with respect to ρ, one has

k8
(
ρ2−λ(η′′′ρ − η′′(λ− 2))

)
ρ

= 0.

If
(
ρ2−λ(η′′′ρ − η′′(λ− 2))

)
ρ

= 0, then η′′ = ρλ−2(q̃1 + q0λ(λ − 1)ν ln(ρ)) or, by virtue of equivalence
transformations,

η = ρλ(q1 + q0ν ln(ρ)).
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Here, ν and q1 are constant. Thus,

W (ρ, ρ̇, S̃) = ρλ(q1 + q0 ln(ρν |ρ̇|))+ S̃,

and the extension of the kernel is given by the generators

−2(λ+ ν)X1 + (λ+ 2ν + 1)X3 + 2X8 + 2λS̃∂S̃, ∂S̃ .

In the final Table 1, this model corresponds to M44. If
(
ρ2−λ(η′′′ρ − η′′(λ− 2))

)
ρ

�= 0, then k8 = 0. Thus,

W (ρ, ρ̇, S̃) = q0ρ
λ ln |ρ̇| + η(ρ)+ S̃,

and the extension of the kernel is given by the only generator

∂S̃ .

In the final Table 1, this model corresponds to M45.
Let λ(λ− 1) = 0. Equation (60) becomes

k8(η
′′′ρ − η′′(λ− 2)) = 0.

If η′′ �= q1ρ
(λ−2), then k8 = 0. Thus,

W (ρ, ρ̇, S̃) = q0ρ
λ ln |ρ̇| + η(ρ)+ S̃,

and the extension of the kernel is given by the generators

−X1 + X3, ∂S̃ .

In the final Table 1, this model corresponds to M46. If η′′ = q1ρ
(λ−2) or

W (ρ, ρ̇, S̃) = q0ρ
λ ln(|ρ̇|ρν)+ S̃, (λ(λ− 1) = 0),

then the extension of the kernel is given by the generators

−X1 + X3, (1 − λ)X1 + 2X8 + 2λS̃∂S̃, ∂S̃ .

In the final Table 1, this model corresponds to M47.
Assuming that hSρρ �= 0 in Eq. (58), one obtains

2ζ S = q0λ(λ− 1)(2k3 − k8(λ+ 1))
ρλ−2

hSρρ
− 2k8

ρhρρρ − (λ− 2)hρρ
hSρρ

. (61)

Differentiating the last equation with respect to ρ, one gets

q0λ(λ− 1)(2k3 − k8(λ+ 1))

(
ρλ−2

hSρρ

)

ρ

= 2k8

(
ρhρρρ
hSρρ

− (λ− 2)hρρ
hSρρ

)

ρ

. (62)

If λ(λ− 1) = 0, then Eq. (62) becomes

k8

(
ρhρρρ
hSρρ

− (λ− 2)hρρ
hSρρ

)

ρ

= 0.

Let
(
ρhρρρ
hSρρ

− (λ− 2)hρρ
hSρρ

)

ρ

= 0,

then

ρhρρρ + H(S)hSρρ = (λ− 2)hρρ, (63)
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where H = H(S) is a function of the integration. A solution of the last equation depends on the function
H(S).

Assuming that H = 0, one has ζ S = 0,

h(ρ, S) = μ(S)ρλ ln ρ + f (μ(S)),

where μ′ �= 0. Equation (7) becomes

k8(λ f ′ + q0(λ− 1)ρλ) = 0. (64)

If λ = 0, then Eq. (64) gives k8 = 0. Thus,

W (ρ, ρ̇, S̃) = q0 ln |ρ̇| + S̃ ln ρ + f (S̃),

and the extension of the kernel is given by the only generator

X1 − X3.

If λ = 1, then Eq. (64) becomes k8 f ′ = 0. For f ′ �= 0, one has k8 = 0,

W (ρ, ρ̇, S̃) = ρ(q0 ln |ρ̇| + S̃ ln ρ)+ f (S̃), ( f ′ �= 0),

and the extension of the kernel is given by the only generator

X1 − X3.

In the final Table 1, these models correspond to M48 and M49. For f ′ = 0, one has

W (ρ, ρ̇, S̃) = ρ(q0 ln |ρ̇| + S̃ ln ρ),

and the extension of the kernel is given by the generators

X1 − X3, X8.

In the final Table 1, this model corresponds to M50.
Assuming that H �= 0 in (63), one obtains

h(ρ, S) = ρλφ(ρμ(S))+ f (μ(S)), (65)

where μ′ �= 0. Substitution of h(ρ, S) into (7 ) gives

k8(μ f ′ + λ f )′ = 0. (66)

If (μ f ′ + λ f )′ = 0 or

f =
{

q1 ln(μ), λ = 0,
q1μ

−1, λ = 1,

then

W (ρ, ρ̇, S̃) = ρλ(q0 ln |ρ̇| + φ(ρ S̃))+ f (S̃),

and the extension of the kernel is given by the generators

X1 − X3, (1 − λ)X1 + 2X8 − 2S̃∂S̃ .

In the final Table 1, these models correspond to M51 and M52. If (μ f ′ + λ f )′ �= 0, then k8 = 0,

W (ρ, ρ̇, S̃) = ρλ(q0 ln |ρ̇| + φ(ρ S̃))+ f (S̃),

and the extension of the kernel is given by the only generator

X1 − X3.

In the final Table 1, this model corresponds to M53.
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Returning to (62), let λ(λ− 1) �= 0. Assume also that
(
ρλ−2

hSρρ

)

ρ

= 0,

which means that

h(ρ, S) = q0μ(S)ρ
λ + η(ρ)+ f (μ(S)),

where μ′ �= 0. Then Eq. (62) becomes

k8
(
ρ2−λ(ρη′′′ − (λ− 2)η′′)

ρ
= 0.

If
(
ρ2−λ(ρη′′′ − (λ− 2)η′′)

ρ
�= 0, then k8 = 0. Substituting into (7), one obtains

k3 f ′′ = 0. (67)

Since for k3 = 0, there is no extension of the kernel, one has f ′′ = 0. Thus,

W (ρ, ρ̇, S̃) = q0ρ
λ(ln |ρ̇| + S̃)+ η(ρ)+ q1 S̃,

and the extension of the kernel is given by the only generator

X1 − X3 − ∂S̃ .

In the final Table 1, this model corresponds to M54.
If

(
ρ2−λ(ρη′′′ − (λ− 2)η′′)

ρ
= 0, then η′′ = ρλ−2(̃ν ln ρ + q̃1), where ν̃ and q̃1 are constant. Using

equivalence transformations, one finds that η = ρλ(q0ν ln ρ + q1) , where ν̃ = q0νλ(λ − 1) and q̃1 =
q1λ(λ− 1)+ q0ν(2λ− 1). In this case,

k1 = −
(

k3 − k8
λ− 1

2

)
, ζ S = (2k3 − k8(λ+ 2ν + 1))/(2μ′),

and Eq. (7) becomes

(2k3 − k8(λ+ 2ν + 1)) f ′ − 2k8λ f = q̃2,

where q̃2 is constant. The last equation can be rewritten in the form

α f ′ − l f = q̃2,

where

k8 = l

2λ
, k3 = α

2
+ l

2λ

λ+ 2ν + 1

2
.

Further analysis depends on the constants α and l. It should be noted that for the existence of an extension of
the kernel of admitted Lie algebras, one needs to require that α2 + l2 �= 0. Hence, for α = 0, one has l �= 0,
which means that without loss of generality one can assume that f = 0. In the case f = 0, one obtains

W (ρ, ρ̇, S̃) = q0ρ
λ(ln(|ρ̇|ρν)+ S̃)+ q1ρ

λ,

and the extension of the kernel is given by the generators

X1 − X3 − ∂S̃, 2(λ− 1)X1 + 2X8 − (λ+ 2ν + 1)∂S̃ .

In the final Table 1, this model corresponds to M55. For α �= 0, one has

f =
{

q2μ, l = 0;
q2e−κμ l �= 0,

and

k1 = −κ(λ+ ν)+ λ

2λ
, k8 = κ

2λ
, k3 = 1

2
+ κ

4λ
(λ+ 2ν + 1),

Author's personal copy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Group classification of one-dimensional nonisentropic equations of fluids 139

where l = κα and q2 �= 0 is constant. Thus, one obtains:

(a) for the function f (S̃) = q2 S̃:

W (ρ, ρ̇, S̃) = q0ρ
λ(ln(|ρ̇|ρν)+ S̃)+ q1ρ

λ + q2 S̃, (q2 �= 0),

and the extension of the kernel is given by the only generator

−X1 + X3 + ∂S̃;
(b) for the function f (S̃) = q2eκ S̃:

W (ρ, ρ̇, S̃) = q0ρ
λ(ln(|ρ̇|ρν)+ S̃)+ q1ρ

λ + q2eκ S̃, (q2 �= 0),

and the extension of the kernel is given by the only generator

−2(κ(λ+ ν)+ λ)X1 + 2κX8 + (2λ+ κ(λ+ 2ν + 1))X3 + 2λ∂S̃ .

In the final Table 1 these models correspond to M56 and M57.

Assume that

(
ρλ−2

hSρρ

)

ρ

�= 0, then from (62) one finds

k3 = k8

⎛
⎝ (

ρhρρρ−(λ−2)hρρ
hSρρ

)ρ

q0λ(λ− 1)(ρ
λ−2

hSρρ
)ρ

+ λ+ 1

2

⎞
⎠ . (68)

Since for k8 = 0, there is not an extension, then
(
ρhρρρ
hSρρ

− (λ−2)hρρ
hSρρ

)
ρ(

ρλ−2

hSρρ

)
ρ

= const

or

ρhρρρ + H(S)hSρρ = (λ− 2)hρρ + νρλ−2, (69)

where ν is constant and H(S) is some function. It should be noted that for H(S) = 0, one obtains

hρρ = (ν ln ρ + μ(S))ρλ−2,

which leads to the contradiction
(
ρλ−2

hSρρ

)

ρ

= 0.

Hence, one has to assume that H(S) �= 0, which gives

hρρ(ρ, S) = ρλ−2(̃ν ln ρ + g̃(ρμ(S)))

or

h(ρ, S) = ρλ(ν ln ρ + g(ρμ(S)))+ f (μ(S)),

where μ′ �= 0. Equation (7) gives f = q2μ
−λ. Thus,

W (ρ, ρ̇, S̃) = q0ρ
λ
(
ln(|ρ̇|ρν)+ g(ρ S̃)

) + q2 S̃−λ,

and the extension of the kernel is given by the only generator

−2(λ+ ν)X1 + 2X8 + (λ+ 2ν + 1)X3 − 2S̃∂S̃ .

In the final Table 1, this model corresponds to M58.
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Case (k + 1)(k + 2) �= 0

Returning to integration of (38), if (k + 2)(k + 1) �= 0, then one obtains

φ = q0ρ
λρ̇k+2 (70)

Substituting (70) into (3), one has

k3 = −k1
k

2(k + 1)
+ k8

k + λ+ 1

2(k + 1)
,

and Eq. (5) becomes

ζ ShSρρ + hρρ

(
k1

k + 2

k + 1
+ k8

2k + λ+ 2

k + 1

)
+ k8ρhρρρ = 0. (71)

Assuming that hSρρ = 0, one finds

h(ρ, S) = η(ρ)+ μ(S),

where μ′ �= 0. Equation (71) becomes

η′′
(

k1
k + 2

k + 1
+ k8

2k + λ+ 2

k + 1

)
+ k8ρη

′′′ = 0. (72)

Let η′′ �= 0, then

k1 = −k8
k + 1

k + 2

(
2k + λ+ 2

k + 1
+ ρη′′′

η′′

)
.

Differentiating the last equation with respect to ρ, one gets

k8

(
ρη′′′

η′′

)′
= 0. (73)

If
ρη′′′

η′′ = k0 = const , then η′′ = q1ρ
ν , where ν = k0. This gives that

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + η(ρ)+ S̃, (η′′ = q1ρ

ν �= 0),

and the extension of the kernel is given by the generators

−k + 1

k + 2

(
2k + λ+ 2

k + 1
+ ν

)
X1 + kν + 3k + 2λ+ 2

2(k + 2)
X3 + X8 + (ν + 2)S̃∂S̃, ∂S̃,

where η′′ = q1ρ
ν, S̃ = μ(S) and q1 �= 0. In the final Table 1, this model corresponds to M59, (k2 + λ2 �= 0).

If

(
ρη′′′

η′′

)′
�= 0, then k8 = 0,

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + η(ρ)+ S̃,

and the extension of the kernel is given by the only generator

∂S̃ .

In the final Table 1, this model corresponds to M60, (k2 + λ2 �= 0).
Considering (72), let η′′ = 0. Without loss of the generality, one can assume that η = 0. Equation (7) gives

ζ S = − μ

μ′

(
k1

k + 2

k + 1
+ k8

λ

k + 1

)
+ c0

μ′ .
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Thus,

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + S̃,

and the extension of the kernel of admitted Lie algebras is defined by the generators

X1 − k

2(k + 1)
X3 − k + 2

k + 1
S̃∂S̃,

k + λ+ 1

2(k + 1)
X3 + X8 − λ

k + 1
S̃∂S̃, ∂S̃ .

In the final Table 1, this model corresponds to M61, (k2 + λ2 �= 0). Returning to (71), assume that hSρρ �= 0.
Then

ζ S = − hρρ
hSρρ

(
k1

k + 2

k + 1
+ k8

2k + λ+ 2

k + 1

)
− k8

ρhρρρ
hSρρ

.

Differentiating this equation with respect to ρ, one finds
(

hρρ
hSρρ

)

ρ

(
k1

k + 2

k + 1
+ k8

2k + λ+ 2

k + 1

)
+ k8

(
ρhρρρ
hSρρ

)

ρ

= 0. (74)

If

(
hρρ
hSρρ

)

ρ

�= 0, then

k1 = −k8
k + 1

k + 2

⎛
⎜⎝2k + λ+ 2

k + 1
+

(
ρhρρρ
hSρρ

)
ρ(

hρρ
hSρρ

)
ρ

⎞
⎟⎠ .

Extension of the kernel occurs only for
(
ρhρρρ
hSρρ

)
ρ(

hρρ
hSρρ

)
ρ

= const,

which means that

ρhρρρ − H(S)hSρρ = ν̃hρρ,

where H(S) is some function and ν is constant. It should be noted that for H(S) = 0 one has

hρρ(ρ, S) = ρν̃μ(S)

which leads to the contradiction

(
hρρ
hSρρ

)

ρ

= 0. Hence, H(S) �= 0, and then

hρρ(ρ, S) = ρν̃ g̃(ρμ(S)),

or

h(ρ, S) = ρνg(ρμ(S))+ f (μ(S)),

where μ′ �= 0 and (zν+1g′(z))′′ �= 0. Equation (7) leads to the condition

μ f ′ + ν f = q̃2,

where q̃2 is constant. The general solution of the last equation depends on ν:

f (μ) =
{

q2 ln(μ), ν = 0,
q2μ

−ν, ν �= 0.
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Thus, setting S̃ = μ(S), one gets

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + ρνg(ρ S̃)+ f (S̃),

and the extension of the kernel of admitted Lie algebras is defined by the generator

−ν(k + 1)+ λ

k + 2
X1 + k(ν + 1)+ 2λ+ 2

2(k + 2)
X3 + X8 − S̃∂S̃ .

In the final Table 1, these models correspond to M62 and M63, (k2 + λ2 �= 0).

If

(
hρρ
hSρρ

)

ρ

= 0, then h(ρ, S) = μ(S)(η(ρ)+ f (μ(S))), where η′′μ′ �= 0. Equation (74) becomes

k8

(
ρη′′′

η′′

)′
= 0.

If

(
ρη′′′

η′′

)′
�= 0, then k8 = 0, Eq. (7) leads to the equation

μ f ′′ + 2 f ′ = 0.

A solution of the last equation is f (μ) = c1/μ+ c0, where c0 and c1 are constant. Without loss of generality,
one can assume that c1 = c0 = 0. Thus,

k3 = −k1
k

2(k + 1)
, ζ S = −k1

k + 2

k + 1

μ

μ′ ,

and

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + S̃η(ρ).

The extension of the kernel consists of the generator

2(k + 1)X1 − k X3 − 2(k + 2)S̃∂S̃ .

In the final Table 1, this model corresponds to M64, (k2 + λ2 �= 0).

If
ρη′′′

η′′ = k0 = const , then η′′ = q̃1ρ
ν−2, where ν = 2(k0 + 1). One can choose the function η(ρ) as

follows

η =
⎧
⎨
⎩

ln(ρ), ν = 0,
ρ ln(ρ), ν = 1,
ρν, ν(ν − 1) �= 0.

This reduces Eq. (7) to the equations

ν = 0 : aμ f ′ = b + q̃2μ
−1,

ν = 1 : aμ f ′ + b f = q̃2μ
−1,

ν(ν − 1) �= 0 : aμ f ′ + νb f = q̃2μ
−1.

(75)

where a = k1(k +2)+k8(λ+ν(k +1)), b = k8(k +1) and q̃2 is constant. It should be noted that the condition
a2 + b2 = 0 leads to the relations k1 = 0 and k8 = 0. These conditions do not allow an extension of the kernel
of admitted Lie algebras. Hence, one has to assume that a2 + b2 �= 0.

Let us consider the case ν = 0, where η = ln(ρ). In this case a �= 0, because otherwise b = 0. Using
equivalence transformations, the general solution of Eq. (75)ν=0 has the representation:

f = β ln(μ)+ q2,
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where β and q2 are constant. Substituting the representation of the function f (μ) into Eq. (75)ν=0, one finds
that βa = b and q̃2 = 0. Therefore,

k1 = a
k + 1 − λβ

(k + 1)(k + 2)
, k3 = a

β(k + 2λ+ 2)− k

2(k + 1)(k + 2)
, k8 = a

β

k + 1
,

and

W = q0ρ
λρ̇k+2 + S̃

(
ln

(
ρ S̃β

)
+ q2

)
,

where S̃ = μ(S). The extension of the kernel of admitted Lie algebras is defined by the only generator

k + 1 − βλ

k + 2
X1 + β(k + 2λ+ 2)− k

2(k + 2)
X3 + βX8 − S̃∂S̃ .

In the final Table 1, this model corresponds to M65, (k2 +λ2 �= 0). In other two cases, ν = 1 and ν(ν−1) �= 0
one has to solve the equation

aμ f ′ + νb f = q̃2μ
−1, (ν �= 0). (76)

By virtue of equivalence transformations, the function f is equivalent to the function f̃ = f − rμ−1, where
r is constant. The change f = f̃ + rμ−1 reduces Eq. (76) to the equation

aμ f̃ ′ + νb f̃ = (̃q2 + (a − νb)r)μ−1.

This means that for a − νb �= 0, one can assume in (76) that q̃2 = 0. Therefore, the analysis of solutions of
Eq. (76) is reduced to the study of solutions of either the homogeneous equation

aμ f ′ + νb f = 0, (77)

or the nonhomogeneous equation

μ f ′ + f = q2μ
−1, (q2 �= 0). (78)

The function f = 0 is the trivial solution of Eq. (77). In this case, k1 and k3 are arbitrary. Thus,

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + S̃η(ρ),

and the extension of the kernel consists of the generators

2(k + 1)X1 − k X3 − 2(k + 2)S̃∂S̃, (k + λ+ 1)X3 + 2(k + 1)X8 − 2(λ+ ν(k + 1))S̃∂S̃).

Here, S̃ = μ(S). In the final Table 1, these models correspond to M66 and M70, (k2 + λ2 �= 0).
The only nontrivial solution of Eq. (77) has the representation

f (μ) = q2μ
β, (q2 �= 0, β �= −1).

Substituting the representation into Eq. (77), it becomes

β(k1(k + 2)+ k8(λ+ ν(k + 1)))+ k8ν(k + 1) = 0. (79)

If β = 0, then k8 = 0, and

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + S̃(η(ρ)+ q2),

with the extension

2(k + 1)X1 − k X3 − 2(k + 2)S̃∂S̃ .

In the final Table 1, these models correspond to M67 and M71, (k2 + λ2 �= 0). If β �= 0, then Eq. (79) gives

k1 = −k8
β(λ+ ν(k + 1))+ ν(k + 1)

β(k + 2)
.
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Thus,

k3 = k8
β(kν + k + 2λ+ 2)+ kν

2(k + 2)β
, ζ S = k8

ν

β

μ

μ′ ,

and the potential function is

W (ρ, ρ̇, S) = q0ρ
λρ̇k+2 + S̃(η(ρ)+ q2 S̃β), (q2β(β + 1) �= 0).

The extension of the kernel of admitted Lie algebras is defined by the only generator

2
β(λ+ ν(k + 1))+ ν(k + 1)

(k + 2)
(X3 − X1)− (βν − β + ν)X3 + 2βX8 + 2ν S̃∂S̃ .

In the final Table 1, these models correspond to M69 and M73, (k2 + λ2 �= 0).
The representation of the general solution of Eq. (78) is f = q2μ

−1 ln(μ). Substituting the representation
into Eq. (76), it gives

q̃2 = aq2, a − νb = 0.

Hence,

k1 = −k8
λ

k + 2
.

Thus,

W (ρ, ρ̇, S̃) = q0ρ
λρ̇k+2 + S̃η(ρ)+ q2 ln(S̃), (q2 �= 0),

and the extension of the kernel is defined by the generator

2λ(X3 − X1)+ (k + 2)(X3 + 2X8 − 2ν S̃∂S̃).

In the final Table 1, these models correspond to M68 and M72, (k2 + λ2 �= 0).

dim(Span(V )) = 0

In this case, the vector

(ρ̇φρ̇ρ̇ρ̇ , 2(ρ̇φρ̇ρ̇ρ̇ + φρ̇ρ̇), −(ρ̇φρ̇ρ̇ρ̇ + ρφρ̇ρ̇ρ + φρ̇ρ̇))

is constant. This condition implies that

φ = q0ρ̇
2.

Substituting φ into (3) and (5), one gets, respectively,

k3 = 1

2
k8,

ζ ShSρρ + 2k1hρρ + k8(ρhρρρ + 2hρρ) = 0. (80)

Assume that hSρρ �= 0, then

ζ S = −2ak1 − k8b, (81)

where a = hρρ
hSρρ

, b = ρhρρρ + 2hρρ
hSρρ

. Differentiating (81) with respect to ρ, one obtains

2k1aρ + k8bρ = 0. (82)
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If aρ = 0 then, h(ρ, S) = η(ρ)μ(S)+ f (μ(S)), where η′′μ′ �= 0. Equation (82) becomes

k8

(
ρη′′′

η′′

)′
= 0.

If

(
ρη′′′

η′′

)′
�= 0, then k8 = 0, and Eq. (7) becomes

k1 f ′′ = 0.

Since for k1 = 0 there is no extension of the kernel, without loss of generality one can assume that f = 0.
Thus,

W = ρ̇2q0 + η(ρ)S̃,

and the extension of the kernel is given by the generator

X1 − 2S̃∂S̃,

where S̃ = μ(S). In the final Table 1, this model corresponds to M64, (k = λ = 0).

If

(
ρη′′′

η′′

)′
= 0 or η′′ = ρν−2. Finding the function η(ρ) depends on the value of ν.

Let ν(ν − 1) �= 0, then η = ρν and Eq. (7) becomes

2k1μ f ′′ + νk8
(
μ f ′′ + f ′) = 0. (83)

If f ′′ = 0, then f = q1μ and Eq. (83) is reduced to the equation

k8q1 = 0.

Hence, if q1 �= 0, then k8 = 0 and

W = ρ̇2q0 + (ρν + q1)S̃, (q1 �= 0),

the extension of the kernel is given by the generator

X1 − 2S̃∂S̃,

In the final Table 1, this model corresponds to M71, (k = λ = 0).
If q1 = 0, then k8 is arbitrary, and

W = ρ̇2q0 + ρν S̃.

The extension of the kernel is given by the generators

X1 − 2S̃∂S̃, X3 + 2X8 − 2ν S̃∂S̃ .

In the final Table 1, this model corresponds to M70, (k = λ = 0).
If f ′′ �= 0, then Eq. (83) gives that

μ f ′′ − β f ′ = 0, (μ �= 0),

where β is constant and

k1 = −νk8
(β + 1)

2β
. (84)

Thus,

W = ρ̇2q0 + ρν S̃ + f (S̃),

Author's personal copy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



146 P. Siriwat, S. V. Meleshko

and the extension of the kernel is given by the generator

−ν(β + 1)X1 + βX3 + 2βX8 + 2ν S̃∂S̃, (β �= 0).

Here

f =
{

q1 ln(S̃), β = −1,
q1 S̃β+1, β �= −1.

In the final Table 1, these models correspond to M72 and M73, (k = λ = 0).
For ν = 1, one has η = ρ ln(ρ). Further analysis of this equation is similar to the previous case:

W = q0ρ̇
2 + S̃(ρ ln ρ + q1), (q1 �= 0) : X1 − 2S̃∂S̃,

W = q0ρ̇
2 + S̃ρ ln ρ : X1 − 2S̃∂S̃, X3 + 2X8 − 2λS̃∂S̃,

W = q0ρ̇
2 + S̃ρ ln ρ + f (S̃) : −(k + 1)X1 + k X3 + 2k X8 + 2S̃∂S̃, (k �= 0),

where

f =
{

q1 ln(S̃), β = −1,
q1 S̃β+1, β �= −1,

and q1 �= 0. In the final Table 1, these models correspond to M67, M66, M68 and M69, (k = λ = 0), respectively.
Let ν = 0, then η = ln(ρ), and Eq. (7) becomes

k8 = 2k1μ f ′′.

This equation gives

k1(μ f ′′)′ = 0.

Since for k1 = 0 there is no extension, one has that μ f ′′ is constant or after using equivalence transformation,
one finds

f = μ(β ln(μ)+ q2).

Thus,

W = q0ρ̇
2 + S̃(ln(ρ S̃β)+ q2) : X1 + β(X3 + 2X8)− 2S̃∂S̃ .

In the final Table 1, this model corresponds to M65, (k = λ = 0).
If in Eq. (82) aρ �= 0, then there exists a constant ν and a function H(S) such that

b − νa + H(S) = 0

or

ρhρρρ + H(S)hSρρ = (ν − 2)hρρ.

Hence,

k1 = νk8/2.

It should be noted that if H = 0 then aρ = 0, hence H �= 0. In this case,

h = ρνg(ρμ(S))+ f (μ(S)), (85)

where μ′ �= 0. Equation (7) becomes

μ f ′′ + (ν + 1) f ′ = 0. (86)
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Thus,

W = q0ρ̇
2 + ρνg(ρ S̃)+ f (S̃) : −νX1 + X3 + 2X8 − 2S̃∂S̃ .

In the final Table 1, these models correspond to M62 and M63, (k = λ = 0).
If hSρρ = 0, then

h = η(ρ)+ μ(S),

where μ′ �= 0, and Eqs. (5) (or 80) and (7) become, respectively,

2k1η
′′ + k8(ρη

′′′ + 2η′′) = 0. (87)

(ζ Sμ′)′ = −2k1μ
′ (88)

Equation (88) gives

ζ S = (−2k1μ+ c0)/μ
′ (89)

Hence, if η′′ = 0, then one can assume that η = 0. In this case,

W = q0ρ̇
2 + S̃,

and the extension of the kernel is given by the generators

X1 − 2S̃∂S̃, X3 + 2X8, ∂S̃ .

In the final Table 1, this model corresponds to M61, (k = λ = 0).
If η′′ �= 0, then Eq. (87) leads to

k1 = −k8

(
ρη′′′

2η′′ + 1

)
.

This gives that

k8

(
ρη′′′

η′′

)′
= 0.

For ρη′′′ = νη′′, one has

2k1 + k8(ν + 2) = 0.

In this case,

W = q0ρ̇
2 + η(ρ)+ S̃, (η′′ = q1ρ

ν),

and the extension of the kernel is given by the generators

−(ν + 2)X1 + X3 + 2X8 + 2(ν + 2)S̃∂S̃, ∂S̃ .

In the final Table 1, this model corresponds to M59, (k = λ = 0).

For
(
ρη′′′
η′′

)′ �= 0, one has the only generator ∂S̃ . In the final Table 1, this model corresponds to

M60, (k=λ=0).

Author's personal copy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



148 P. Siriwat, S. V. Meleshko

References

1. Ovsiannikov, L.V.: Group Analysis of Differential Equations. Nauka, Moscow (1978) (English translation, Ames, W.F., Ed.
Academic Press, New York, 1982)

2. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)
3. Marsden, J., Ratiu, T.: Introduction to Mechanics and Symmetry. Spriger, New York (1994)
4. Golubitsky, M., Stewart, I.: The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space. Bir-

khauser, Basel (2002)
5. Ovsiannikov, L.V.: Program SUBMODELS. Gas dynamics. J. Appl. Maths Mech. 58(4), 30–55 (1994)
6. Gavrilyuk, S.L., Teshukov, V.M.: Generalized vorticity for bubbly liquid and dispersive shallow water equations. Continuum

Mech. Thermodyn. 13, 365–382 (2001)
7. Iordanski, S.V.: On the equations of motion of the liquid containing gas bubbles. Zhurnal Prikladnoj Mekhaniki i Tekhni-

theskoj Fiziki 3, 102–111 (1960)
8. Kogarko, B.S.: On the model of cavitating liquid. Dokl. AS USSR 137, 1331–1333 (1961)
9. van Wijngaarden, L.: On the equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33, 465–474 (1968)

10. Green, A.E., Naghdi, P.M.: A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78, 237–
246 (1976)

11. Salmon, R.: Lectures on Geophysical Fluid Dynamics. Oxford University Press, New York (1998)
12. Gavrilyuk, S.L., Shugrin, S.M.: Media with equations of state that depend on derivatives. J. Appl. Mech. Tech.

Phys. 37(2), 177–189 (1996)
13. Ibragimov, N.H.: Elementary Lie Group Analysis and Ordinary Differential Equations. Wiley, Chichester (1999)
14. Ibragimov, N.H. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vol. 1. CRC Press, Boca

Raton (1994)
15. Ibragimov, N.H. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2. CRC Press, Boca

Raton (1995)
16. Ibragimov, N.H. (ed.): CRC Handbook of Lie Group Analysis of Differential Equations, vol. 3. CRC Press, Boca

Raton (1996)
17. Hematulin, A., Meleshko, S.V., Gavrilyuk, S.G.: Group classification of one-dimensional equations of fluids with internal

inertia. Math. Methods Appl. Sci. 30, 2101–2120 (2007)
18. Siriwat, P., Meleshko, S.V.: Applications of group analysis to the three-dimensional equations of fluids with internal iner-

tia. Symmetry Integrabil. Geometr. Methods Appl. (SIGMA) 4(027), 1–19 (2008)
19. Hematulin, A., Siriwat, P.: Invariant solutions of the special model of fluids with internal inertia. Commun. Nonlinear Sci.

Numer. Simulat. 14, 2111–2119 (2009)
20. Voraka, P., Meleshko, S.V.: Group classification of one-dimensional equations of fluids with internal energy depending on

the density and the gradient of the density. Continuum Mech. Thermodyn. 20, 397–410 (2009)
21. Ovsiannikov, L.V.: Some results of the implementation of the PODMODELI program for the gas dynamics equations.

J. Appl. Maths Mech. 63(3), 349–358 (1999)
22. Meleshko, S.V.: Generalization of the equivalence transformations. J. Nonlinear Math. Phys. 3(1–2), 170–174 (1996)
23. Meleshko, S.V.: Methods for Constructing Exact Solutions of Partial Differential Equations. Mathematical and Analytical

Techniques with Applications to Engineering. Springer, New York (2005)
24. Hearn, A.C.: REDUCE Users Manual, ver. 3.3. The Rand Corporation CP 78, Santa Monica (1987)

Author's personal copy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


	Comment on “Symmetry breaking of systems of linear second-order  ordinary differential equations with constant coefficients”
	Introduction
	Equivalence Lie group
	Canonical forms
	Case J=J1
	Case J=J2
	Case J=J3

	Acknowledgements
	References

	On first integrals of second-order ordinary differential  equations
	Abstract
	1 Introduction
	1.1 Introduction to the problem
	1.2 Invariants of a class of second-order equations
	1.3 General difficulties of the equivalence problem

	2 Existence of first integral
	2.1 Case a3=0

	3 Case G=0
	3.1 Case a3=0
	3.2 Case a3=0

	4 Examples
	4.1 Claim
	4.2 Time-independent case
	4.3 Reduction
	4.4 Conditions for Lagrangians
	4.5 Claim
	4.6 Claim

	5 Conclusion
	Acknowledgments
	Appendix
	References

	1. Introduction
	2. Physical statement and main physical parameters
	3. Admitted Lie group
	3.1. One-dimensional case
	3.2. Classification of subalgebras
	3.3. Invariant solutions
	3.4. Case

	4. Two-dimensional equation
	5. Three-dimensional case
	6. Exponential kernel
	7. Delay equation
	8. Conclusion
	On group classification of the spatially homogeneous and isotropic Boltzmann equation with sources
	Introduction
	General equations
	Admitted Lie algebra of the generating function equation
	Comparison with algebra [1]
	On equivalence transformations of the generating function equation
	Group classification
	Case dim(Span(V))equal1
	Case dim(Span(V))equal2
	Case dim(Span(V))equal3

	Conclusion
	Acknowledgments
	References

	Group classification of one-dimensional nonisentropic equations of fluids with internal inertia
	Abstract
	1 Introduction
	2 Equivalence Lie group
	3 Defining equations of the admitted Lie group
	4 Case k2=0
	5 Results of the group classification
	Acknowledgments
	Appendix: Case k2=0
	dim(Span(V))=3
	dim(Span(V))=2
	Case γ=0
	Case γ=0.
	dim(Span(V))=1
	Case k=-1.
	Case k=-2.
	Case (k+1)(k+2)=0
	dim(Span(V))=0

	References


