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The mean reversion process of pairs trading is a market neutral strategy,
which is independent of market movements and carries the assumption that each
price of the pair will eventually revert to its mean. This study proposes a novel
algorithm, called ‘multiclass pairs trading’, which is a development of the cointe-
gration method towards pairs trading. The proposed model uses mean reversion
and coefficient of variance (CV) to segregate and group a paired dataset, respec-
tively. Additionally, it provides a buffer-trading zone when the paired stocks
are changing their directions. In portfolio trading, it extends the opportunity
for a highly correlated and paired stock to cross-trade with any lowly correlated
and paired stock. The data were collected from 134 stocks listed in the Global
Dow, incorporating daily prices over ten years from 2002 to 2013. The simula-
tion results show that the cointegrated pairs trading using the proposed method
outperforms the conventional cointegrated pairs trading outstandingly. Thus,
benefits of the proposed model are to build a new series of risk mitigation and
maximise returns of cointegrated stocks.

As for using mean reversion and coefficient of variance (CV) in the pairs
trading algorithm to mitigate the risk in trading, if the movement or the future

price of the next time step to trade can be predicted, the risk shall be inevitably
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reduced. Thus, the study proposes a combined models of the pairs trading model
and the prediction model. The second objective is to predict the stock prices
of the paired stocks by the Autoregressive Integrated Moving Average (ARIMA)
Model, the Markov Chain Monte Carlo (MCMC) model, and Support Vector

~ Regression (SVR) model were used in this research.
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CHAPTER 1

INTRODUCTION

Pairs trading is a trading strategy that attempts to be market neutral and
capture the spread between two correlated stocks as they return to the mean
price. It is also known as statistical arbitrage.

The first practical statistical pair trading was caused by Nunzio Tartaglia,
a quantitative analyst at Morgan Stanley in the mid 1980s. He and a group of
scientists formed a team with the goal to develop quantitative arbitrage strategies
using state-of-art statistical techniques. One of the techniques was trading secu-
rities in pairs. This technique was concerned with identifying pairs of securities
whose prices tended to move together. In 1987, Tartaglia and his group used pairs
trading with great success. The group disbanded in 1989, after that they worked
in various other trading companies and the idea of pairs trading spread. The
technique called pairs trading has since increased in popularity and has become
a common trading strategy used by hedge funds and institutional investors.

If movement or future paired stocks prices of the next time step to trade
can be predicted, the risk would be reduced. Thus the prediction is part of this
study.

A main goal of this research is to mitigate the risk in trading. Therefore
this study proposes the combined models of the pairs trading model and prediction

model.



1.1 Motivation

From a valuation point of view the general idea for investing in the mar-
ketplace is to sell overvalued securities and buy the undervalued ones. However,
it is possible to determine that a security is overvalued or undervalued only if we
also know the true value of the security in absolute terms. But this is very hard to
do. Pairs trading attempts to resolve this using the idea of relative pricing; that
is, if two securities have similar characteristics, then the prices of both securities
must be more or less the same. Note that the specific price of the security is not
of importance. The price may be wrong. It is only important that the prices of
the two securities be the same. If the prices happen to be different, it could be
that one of the securities is overpriced, the other security is underpriced, or the
mispricing is a combination of both.

Pairs trading involves selling the higher-priced security and buying the
lower-priced security with the idea that the mispricing will correct itself in the
future. The mutual mispricing between the two securities is captured by the
notion of spread. The greater the spread, the higher the magnitude of mispricing
and greater the profit potential. A long—short position in the two securities is
constructed such that it has a negligible beta and therefore minimal exposure to
the market. Hence, the returns from the trade are uncorrelated to market returns,
a feature typical of market neutral strategies.

Therefore the key to success in pairs trading lies in the identification of
security pairs.

After using pairs trading, the risk will be reduced. Moreover, if the paired
stocks can be predicted, the risk shall be reduced even more. Therefore this
study combined the pairs trading with the prediction model to mitigate the risk

in trading.



1.1.1 Literature Review

An early attempt at pairs trading is credited to Nunzio Tartaglia, a quan-
titative analyst at Morgan Stanley in the 1980s. Tartaglia gathered a group
of professionals with the aim of forming a quantitative arbitrage strategy using
statistical techniques. One technique that they implemented was trading pairs
of securities. The procedure distinguishes between pairs of security prices that
move together. The abnormality in the relationship indicates that the pair will be
traded with anticipation that the abnormality will be neutralised in the future.
Different schools of thought offer an alternative that is mean reversion. In nor-
mal circumstances, positive and negative returns on financial assets are temporary
because return reverses to the mean in the long run; the speed of the reversing
process can vary from one day to one year (Hillebrand, 2004). Lo and Mackinlay
(1998), Fama and French (1988), and Poterba and Summers (1988) demonstrated
using empirical evidence that positive market return persists over the short term.
However, in the long term, profit opportunity is reverted. Campbell and Viceira
(1999), Wachter (2002) and Campbell, Chan, and Viceira (2003) confirmed the
findings by illustrating that mean reversion possesses the characteristics of eq-
uity index return over the long term. Additionally, Bessembinder, Coughenour,
Seguin, and Smoller (1995) determined that mean reversion that exists in the fi-
nancial markets uses empirical evidence from the term structure of future prices.
The data sample of the authors’ study was based on 11 different future markets
including financial, metals, and agriculture markets. The daily settlement price
from January 1982 to December 1991 was used. The disadvantage of the study
methodology is that it can only spot mean reversion in the equilibrium condition
of the market, and it cannot be applied when the market is in disequilibrium.

Gatev, Goetzmann, and Rouwenhorst (2006) conducted an investigation into the



risk and return characteristics of pairs trading using data from 1962 to 2002. The
authors showed that simple mean reversion for a single stock index could not pro-
duce clear values. However, the values can be generated when trading suitably
formulated pairs of stocks. Perlin (2007) proposed a multivariate version of pairs
trading, which developed an artificial pair for a stock based on the information of
m assets. This method assessed the performance of three versions of the multi-
variate approach for the Brazilian stock market using data for 57 assets from 2000
to 2006. The examination of performance was conducted using the calculation
of raw returns, excessive returns, beta, and alpha. Do, Faff, and Hamza (2006)
investigated a uniform and an analytical framework to implement pairs trading
on arbitrary pairs and suggested an asset pricing-based model to parameterise
pairs trading that included theoretical considerations rather than statistical his-
tory. Huck (2010) proposed a general and flexible framework for the selection of
random pairs. Multiple return forecasts based on bivariate information sets and
multi-criteria decision techniques were implemented.

As an overview on techniques in finance by Kovalerchuk et al. (2000),
the prediction methods can be classified into three categories: numerical mod-
els (ARIMA models, Instance-based learning, neural networks, etc.), rule-based
models (decision tree and DNF learning, naive Bayesian classifier, hidden Markov
model, etc.), and relational data mining (inductive logic programming). One of
the most popular and frequently used stochastic time series models is the Autore-
gressive Integrated Moving Average (ARIMA) model. The Markov Chain Monte
Carlo (MCMC) methods are particularly attractive for practical finance applica-
tions. It was realized that most Bayesian inference could be done by MCMC,
whereas very little be done without MCMC. Recently, Artificial Neural Networks

(ANNs) have been attracting increasing attention in the time series forecasting.



Nowadays, the Support Vector Machine (SVM), a new statistic learning theory,
has been receiving increasing attention for classification and forecasting. The

Support Vector Regression (SVR) is used in forecasting problem.

1.2 Objectives

There are two objectives in this research. The first objective of this re-
search is to introduce an advanced model of the current cointegration, called,
Multiclass Pairs Trading. The other objective is concerned with forecasting of
paired stocks data. As an Autoregressive Integrated Moving Average (ARIMA)
model, a Markov Chain Monte Carlo (MCMC) method, and a Support Vector
Regression (SVR) approach have been successfully used for modelling and pre-
dicting financial time series and they are used in many researches, so these three
models are used in this research. The stock data is predicted by using these
three prediction models as follows: Autoregressive Integrated Moving Average
(ARIMA) model, Markov Chain Monte Carlo (MCMC) method, and support

vector regression (SVR) approach.

1.2.1 Forecasting Methods

Normally, there are five fundamental steps in quantitative forecasting: 1)
problem definition; ii) grouping information; iii) preparatory analysis; iv) choos-

ing and fitting models and v) performance measurements.

1.2.2 A New Novel Multiclass Pairs Trading

This newly invented technique provides a new set of risk mitigation by

providing a buffer-trading zone when the paired stocks are changing their direc-



tions. In portfolio trading, it extends an opportunity for a highly correlated and
paired stocks to cross-trade with any lowly correlated and paired stocks. Thus,
the proposed model maximises returns and minimises risk of cointegrated pairs
trading stocks. The proposed model employs mean reversion and coefficient of
variance (CV) algorithm (Premanode, Vonprasert, and Toumazou, 2013), and is
now called ‘mean reversion and CV’, to segregate and group any paired stock
indices under the cointegration method. The model consists of the following
concepts: i) the application of mean reversion to segregate nonlinear and non-
stationary time series datasets to different local datasets, ii) the grouping of the
local datasets segregated with the coefficient of variance, iii) the calculation of
the highest returns of the paired stocks employing the multiclass pairs trading
algorithm, and then comparing with the results of a conventional cointegration
method, and iv) computing the expected return of the top ten pairs in the multi-
class pairs trading that were cross-traded. The data of this study is the daily price
for 134 stocks in the Global Dow, which included blue chips from leading com-
panies of national reputation. The simulation results show that the cointegrated
pairs trading using the proposed method outperforms those of the conventional
cointegrated pairs trading outstandingly. Thus, benefits of the proposed model
are to build a new series of risk mitigation and maximise returns of cointegrated

stocks.

1.2.3 Prediction Models

There are three prediction models, ARIMA, MCMC, and SVR, in this
research. The performance of these three models when predicting paired stocks

prices movements are shown.



1.3 Organization

This thesis is organized into seven chapters as follows. Chapter I, the mo-
tivation behind this research has already been described, as well as its objectives
and organization. Chapter II describes the theoretical background related to the
pairs trading, while Chapter III discusses the development of various forecasting
methods. Chapter IV shows and discusses the time series data that are used in
this research. Chapter V describes the proposed model, multiclass pairs trading,
and the cointegration pairs trading. The performance of this newly proposed
model for pairs trading was compared with the performance of the cointegration
pairs trading, as well as robustness test. Chapter VI discusses all three prediction
models used in this research, i.e., the ARIMA, MCMC, and SVR models. The
comparison of these three forecasting models is also discussed, as well as robust-
ness test. Chapter VII provides a highlight and benefit of the proposed model, a
combined models of pairs trading and a prediction model. It also concludes with
a comparison of the three prediction models, the ARIMA, MCMC, and SVR
models.

Additionally, in the Appendix, programme files and all Figures and Tables

that not shown in the previous chapters are present.



CHAPTER I1

PRELIMINARIES AND LITERATURE

REVIEW

Definitions and facts of the concepts on pairs trading strategy, mainly
covering topics related to pairs trading are documented in this chapter.

The main idea behind the pairs trading strategy is the following. The
general algorithm for investing in the marketplace is to sell overvalued securities
and buy the undervalued ones. However, it is possible to determine that a security
is overvalued or undervalued only if we also know the true value of the security
in absolute terms. But, this is very difficult to do. Pairs trading attempts to
resolve this using the idea of relative pricing; that is, if two securities have similar

characteristics, then the prices of both securities must be more or less the same.

2.1 Preliminary Concepts

Time Series Data

A time series is a sequence of observations in chronological order. In Chap-
ter VI, there are three statistical models for time series. These models are exten-
sively used in econometric, business forecasting, and many scientific applications.

A stochastic process is a sequence of random variables and can be viewed
as the theoretical or population analog of a time series—on the other hand, a time
series can be studied as a sample from the stochastic process. Stochastic is a

synonym for random.



Stationary Processes

When a time series process is observed, the oscillations seem random,
but often with the same type of stochastic behavior from one time period to
the next. For instance, returns on stocks or changes in interest rates can be
very different from the previous year, but the mean, standard deviation, and
other statistical properties often are similar from one year to the next. Similarly,
the demand for many customer products, such as sunscreen, winter coats, and
electricity, has random as well as seasonal variation, but each summer is similar
to past summers, each winter to past winters, at least over shorter time periods.
Stationary stochastic processes are probability models for time series with time-
invariant behavior.

A process is said to be strictly stationary if all aspects of its behavior are
unchanged by shifts in time (Ruey, 2002). Mathematically, stationary is defined
as the requirement that for every m and n, the distributions of Yi,....,Y,, and
Yiim, .-, Ynim are the same; that is, the probability distribution of a sequence of
n observations does not depend on their time origin. Strict stationarity is a very
strong assumption, because it requires that all aspects of behavior be constant in
time. A process is weakly stationary if only its mean, variance, and covariance
are unchanged by time shifts. More accurately, Y;, Y5, ... is a weakly stationary

process if
o E(Y;) = p (a constant) for all i;
e Var(Y;) = o? (a constant) for all 7; and
o Corr(Y;,Y;) = p(]i — j]) for all i and j for some function p(h).

Thus, the mean and the variance do not change with time and the correla-

tion between two observations depends only on the lag, the time distance between
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them.

The function p is called the autocorrelation function of the process. The
covariance between Y; and Y, is denoted by (k) and ~(+) is called autocovari-
ance function.

As mentioned, many financial time series are not stationary, but often the
changes in them, perhaps after they have been log transformed, are stationary.

Correlation and Autocorrelation Function

The correlation coefficient (Ruey, 2002) between two random variables X
and Y is defined as

Cov(X,Y) EIX = pa) (Y — )]

P = arXVar(Y) VEX il B

where f1, and g, are the means of Xand Y, respectively, and it is assumed that the
variances exist. The strength of linear dependence between X and Y is measured
by this coefficient, and it can be shown that —1 < p,, <1 and p,, = py.. The

two random variables are uncorrelated if p,, = 0.

2.1.1 Cointegration

Cointegration analysis is a technique that is regularly applied in economet-
rics (Carmona, 2014, Ruppert, 2011). In finance it can be used to find trading
strategies based on mean-reversion.

Suppose one could find a stock whose price series was stationary and there-
fore mean-reverting. This would be a wonderful investment opportunity. When-
soever the price was below the mean, one could buy the stock and realize a profit
when the price returned to the mean. In addition, one could realize profits by

selling short whenever the price was above the mean. Sometimes one can find two
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or more assets with prices so closely connected that a linear combination of their
prices is stationary. Then, a portfolio using as portfolio weights the cointegrating
vector, which is the vector of coefficients of this linear combination, will have
a stationary price. Cointegration analysis is a means for finding cointegration
vectors. In 1987, Engle and Granger first mentioned cointegration in their work
that won the Nobel Prize 2003 for economics. Conintegration has found many
applications in macroeconomic analysis since then. Recently, it has performed a
more and more noticeable role in funds management and portfolio construction.
As the statistical properties of cointegration, it is attractive in application for
academics and practitioners.

Two time series, Y7, and Y54, are cointegrated if each is non-stationary
but if there exists a A such that Y;; — AY5, is stationary.

Consider a set of economic variables y; 4,7 = 1,...,p, in long-run equilib-

rium when

Biyre + BaYor + ..+ Bplps = 1t + €, (2.2)

where p is the number of variables in the cointegration equation, p is the long-run
equilibrium and ¢; is the cointegration error.

For simplicity, eq. 2.2 can be represented in matrix form as

By =p+e (2.3)

where /6 = (/817 /827 cee 76}7)/ and Yy = (yl,tu Yoty )yp,t>/'
The cointegration error is the deviation from the long-run equilibrium and

can be represented by

e = By — p. (2.4)

The equilibrium is only significant if the residual series or cointegration error



12

is stationary.

As previously, price series that are cointegrated can be used in statistical
arbitrage. Unlike pure arbitrage, statistical arbitrage means an opportunity where
a profit is only likely, not guaranteed. Pairs trading uses pairs of cointegrated
asset prices and has been a popular statistical arbitrage technique. Pairs trading
requires the trader to find cointegrated pairs of assets, to select from these the
pairs that can be traded profitably after accounting for transaction costs, and

finally to design the trading strategy which includes the buy and sell signals.

2.1.2 Mean Reversion

There are many definitions of mean reversion. Generally, mean reversion
is an asset model, which presents that the asset price tends to fall (rise) after
hitting a maximum (minimum) (Premanode, 2013). The mean reversion process
is a spread, but the variance does not grow in proportion to the time interval. The
basic mean reversion model is the (arithmetic) Ornstein and Uhlenbeck (1930),
a stochastic process that expresses the speed of a massive Brownian particle
under the influence of friction. However, this process is stationary, Gaussian and
Markovian.

A time series that tends to oscillate about the mean of the series exhibits
mean reversion.

Theoretical Considerations Related to Data Classification Using
Mean Reversion and CV

In 2013, Premanode, B., Vonprasert, J., and Toumazou, C. proposed a
novel multiclass algorithm for using the SVM family, known as a multiclass kernel.
The typical curve of stock prices tends to oscillate about the mean of the series, so

the point of reversal can be used to determine changes in its direction, i.e., from up
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to down, and vice versa. Then the datasets are partitioned at the reversal point.

As the standard deviations of a non-stationary dataset are not the same, the

datasets between each reversal point are measured. The procedure for using mean

reversion and CV are the following (Premanode, Vonprasert, and Toumazou,

2013):

i)
ii)
iii)

iv)

vi)

Compute the mean p,(t) of random variables X, (¢).

Compute the variance V,,(t) of X,,(t).

Va(t)
? pn(t)

Normalize each V,,(t) using u,(t)

In an upward scenario where Vi(t) < Va(¢),...,n, or a downward scenario

where

. Va(t) Vi(t) Va(t) Vi(t) . . _ .
a) if 2@ <m0 °C mE > mark the intercept point on the z-axis

and denote it as M, i.e., the value is X,.,(t) where r = 1,2,...,c and

c is the last class generated by CV or

[

— W@
ZIOK

b) if 2

ot ignore and do not mark any intercept point on the

=

T-axis.

Vi (1)
Hn (t)

Repeat iv) and stop when becomes the last data point (n). Next, plot

My, ..., M,.

Compute CV for the data X,,(t) between the blocks of My, My, ..., M,

where n — 1 is the number of partitions/blocks.

The coefficient of variance (CV) that is used in the procedure above is

represented by

where o; represents standard deviation and p; represents mean.
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The original datasets X,,(t) were classified into different CV classes.

2.2 Pairs Trading

Pairs trading involves selling the higher-priced security and buying the
other one with the idea that the mispricing will correct itself in the future. Our
theoretical explanation for the co-movement of security prices stems from arbi-
trage pricing theory (APT). According to APT, if two securities have exactly the
same risk factor exposures, then the expected return of the two securities for a
given time frame is the same.

The traders wait for weakness in the correlation, and then go long on
the lower-value while simultaneously going short on the over-valued one, closing
the position as the relationship returns to its mean. The strategy’s profit is to
calculate from the difference in price change between the two instruments, rather
than from the direction in which each moves. It is possible for the traders to
profit during a variety of market conditions, including periods when the market

goes up, down or sideways, and during periods of either low or high volatility.

2.2.1 The Benefits of Pairs Trading Strategy

Pairs trading (Vidyamurthy, 2004) is a market neutral strategy in its most
fundamental form. The market neutral portfolios are constructed using just a pair
of highly correlated instruments such as two stock, exchange-traded funds (ETFs),
currencies, commodities or options, which consist of a long position in one security
and a short position in the other in a predetermined ratio. At any given time,
the portfolio is associated with a quantity called the spread. The quoted prices of
the two securities form a time series and are used to calculate this quantity. Pairs

trading involves putting on position when the spread is substantially away from its
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mean value, with the expectation that the spread will revert back. The positions
are then reversed upon convergence. There are two versions of pairs trading in
the equity markets; namely, statistical arbitrage pairs and risk arbitrage pairs.

Statistical arbitrage pairs trading is based on the idea of relative pricing.
The underlying premise in relative pricing is that stocks with similar character-
istics must be priced more or less the same. The spread in this case may be
thought of as the degree of mutual mispricing. The greater the spread, the higher
the magnitude of mispricing and greater the profit potential.

Risk arbitrage pairs trading occur in the context of a merger between
two companies. The terms of the merger agreement establish a strict parity
relationship between the values of the stocks of the two firms involved. The spread
in this case is the magnitude of the deviation from the defined parity relationship.
If the merger between the two companies is deemed a certainty, the stock prices
of the two firms must satisfy the parity relationship, and the spread between
them will be zero. However, there is usually a certain level of uncertainty on
the successful completion of merger after the announcement, because of various
reasons like antitrust regulatory issues, proxy battles, and competing bidders,
etc. This uncertainty is reflected in the nonzero value for the spread. Risk
arbitrage involves taking on this uncertainty as risk and capturing the spread
value as profits. Thus, unlike the case of statistical arbitrage pairs, which is
based on valuation consideration, risk arbitrage trade is based strictly on a parity

relationship between the prices of the two stocks.

2.2.2 History of Pairs Trading

An early attempt at pairs trading is attributed to Wall Street quant Nun-

zio Tartaglia, who was at Morgan Stanley in the mid 1980s (Vidyamurthy, 2004).



16

At the time, he gathered a group of mathematicians, physicist, and computer sci-
entists. The group automated the process to the point where they could generate
trades in a mechanical fashion and, if needed, execute them seamlessly through
automated trading systems. At that time, trading systems of this kind were
considered the cutting edge of technology.

One of the techniques they used for trading involved trading securities in
pairs. The process involved identifying pairs of securities whose prices tended to
move together. Whenever an abnormality in the relationship was noticed, the
pair would be traded with the idea that the abnormality would correct itself.
This came to be known on the street as pairs trading. Tartaglia and his group
employed pairs trading with great success in 1987. The group, however, disbanded
in 1989. Members of the group found themselves in various other trading firms,
and knowledge of the idea of pairs trading gradually spread. Pairs trading has
since increased in popularity and has become a common trading strategy used by
hedge funds and institutional investors.

The strategy involves assuming a long-short position when the spread is
substantially away from the mean. This is done with the expectation that the
mispricing is likely to collect itself. The position is then reversed and profits made

when the spread reverts back.

Layout for Pairs Trading Strategy Design
The steps related are as follows:
1. Identify stock pairs that could potentially be cointegrated.

2. Once the potential pairs are identified, the proposed hypothesis is that the
stock pairs are indeed cointegrated based on statistical evidence from his-

torical data is verified. Determine the cointegration coefficient and examine
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the spread time series to ensure that it is stationary and mean reverting are

involved.

3. Then examine the cointegrated pairs to determine the delta.

2.2.3 Trading Strategy

The strategy starts with considering stocks that have historically the same
tradings pattern. If there is a deviation from the historical mean, this creates
a trading opportunity that can be exploited. Profit is made when the price
relationship is restored.

For executing the strategy, a trader needs a couple of trading rules to
follow, i.e., to clarify when to open or close a portfolio. The general rule will be
to open a position when the standard deviation of each price become significantly

different and close it when the ratio returns to the mean.

2.3 Pairs Trading Approaches

There are four main methods to implement pairs trading: the distance
method (Gatev et al., 2006), the stochastic spread method (Elliot, Van Der Hoek,
and Malcolm, 2004), the combined forecasts and multi-criteria decision methods
(MCDM) (Huck, 2010) and the cointegration method (Vidyamurthy, 2004).

The Distance method

In the distance method, the co-movement in a pair is measured by the
distance, or the sum of squared differences between the two normalized price
series. The distance approach purely uses a statistical relationship between a
pair of securities.

The Stochastic Spread method
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The stochastic spread approach explicitly models the mean reversion of the
spread in a continuous time setting. Pairs trading based on this approach relies on
an assumption that the spread can follow an Ornstein-Uhlenbeck process which
actually is an AR(1) process in a continuous term.

The Combined Forecasts and Multi-criteria method

The combined forecasts approach was proposed by Huck (2009, 2010).
This method is based on three phases: forecasting, ranking, and trading. This
approach differs from the others essentially in that it is developed without ref-
erence to any equilibrium model. Huck (2009, 2010) explained that the method
provides much more trading possibilities and could detect the birth of the diver-
gence which the other approaches cannot consider.

The Cointegration method

The cointegration method (Vidyamurthy, 2004) is an attempt to parame-
terize pairs trading, by exploring the possibility of cointegration. Cointegration
is the phenomenon that two time series that are both integrated of order d, can
be linearly combined to produce a single time series that is integrated of order
d—b,b > 0, the most simple case of which is when d =b = 1.

Generally speaking, the framework is as follows: first, choose two cointe-
grated stock price series, then open a long/short position when stocks deviate
from their long term equilibrium and finally, close the position after convergence
or at the end of the trading period.

Consider two shares whose prices are integrated of order 1. P! refers to
the price of the ith asset called A; at time ¢. If the share prices P} and Pj

are cointegrated, cointegration coefficients 1 and 3 exist so that a cointegration
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relationship can be constructed as follows:

Pl — 8Py =&, (2.6)

where €, is a stationary process. When a divergence (based on the standard
deviation of ¢;) from the equilibrium state is observed, the trading involves buying
one share 1 and selling 3 shares 2.

With the concepts on data classification using mean reversion and CV,
the author envisions to introduce the mean reversion and CV as part of a new
algorithm of pairs trading. Before presenting the new algorithm for pairs trading,
the next chapter will explain forecasting methods and test statistic, which will be

using for predicting the paired stocks datasets.



CHAPTER 111

THE FORECASTING METHODS

One of the descriptions of the word forecasting is the estimation of a future
trend by inspecting and analysis of known information. Forecasting informs the
decisions made by an organisation, i.e., market trends; economic and social analy-
sis; capital and financial market; scheduling of product, transport, personnel and
cash; acquiring resources; and determining resource requirements (Makridakis,
Wheelwright, and Hyndman, 1998).

This chapter classifies the methods of forecasting in Section 3.1 and it
describes the basic steps during forecasting tasks in Section 3.2.

The classical forecasting problem may be stated as follows: The historical
time series data with the values up to the present value are given. Then, the

value of the next time step has to be predicted as close as possible.

3.1 Classification of Forecasting Methods

The general classifications of forecasting methods are as follows; i) qualita-
tive vs quantitative; ii) naive; iii) reference class forecasting, which was developed
by Flyvbjerg (2008) to eliminate or decrease bias when forecasting by concentrat-
ing on distribution of information about the past; iv) time series based on many
models, i.e., Kalman filtering, moving average (MA), exponential smoothing, au-
toregressive moving average (ARMA), autoregressive integrated moving average
(ARIMA), extrapolation, linear and nonlinear prediction, trend estimation, etc.;

v) casual/econometric; vi) artificial intelligence, e.g., artificial neural networks,
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group methods of data handling, support vector machines (SVMs), data mining,
machine learning, and pattern recognition.
The most common categories of forecasting methods described by Makri-

dakis, Wheelwright, and Hyndman (1998) are the following.

3.1.1 Qualitative

This procedure use expert view and combined experience to unlock the
unknown future where a curious issue is considered. This category may not need

a historical series of data.

3.1.2 Quantitative

The actual numbers, sufficient information and previous experience are
used for the future trend estimation in this procedure. There are two major
types: time series that predict discrete or continuous historical patterns based
on periods of time, and explanatory approaches that attempt to correlate two or

more variables that need to be predicted.

3.2 Basics Steps During Forecasting Tasks

The forecasting methods (Premanode, 2013) in this research are based on

quantitative methods and the basic steps as follows.

Step 1: Problem definition
The goal is to address how we can improve the accuracy of forecasting
nonlinear non-stationary time series data using the prediction models which

are shown in Chapter VI.



Step 2:

Step 3:

Step 4:

step b:
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Information collection
Nonlinear, nonstationary time series data was used in this study. These
datasets were daily trading data recorded in the Global Dow. They contain

daily stock prices over a 10-year period from 1 August 2002.

Preliminary analysis
This step contains general methods for parametric and nonparametric test-

ing and multicolinearity tests.

Choosing and fitting models

The comparison of selected models can be achieved using Akaike’s infor-
mation criterion (AIC), which was introduced by Hirotugu (1974). AIC is
not a test of the model in the sense of hypothesis testing; it is a tool for
model selection. The ranking from the poorest to the best model is given
by the lowest AIC. AIC attempts to estimate the best model that explains
data fitted with a minimum of free parameters, otherwise there may be over

fitting.

Performance measurement

After the completion of step 4, the correct models are selected and finally
they measure the performance using the standard statistical measures and
comparative methods, i.e., u, o, MPE, MAPE, MSE, RMSE, AIC, BIC and

accuracy count.

Here the accuracy count is the upward and downward movements rela-

tive to the mean reversion points in the graphs of outcomes of the simulations

compared with the graph of the original datasets.

Given a dataset, several competing models may be ranked according to
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Table 3.1 Performance measurements.

Standard test statistic Comparative method

Mean () Akaike information criterion (AIC)
Standard deviation (o) Bayesian Information criterion (BIC)
Variance (o) Accuracy count

Mean percentage error (MPE)

Mean absolute percentage error (MAPE)
Mean square error (MSE)

Root Mean square error (RMSE)
Coefficient of determination (R?)

their information criterion. The AIC equation is expressed as follows:
AIC = 2K—2In(L), (3.1)

where K is the number of parameters in the statistical model and L is the maxi-
mized value of the likelihood function for the estimated model. Unless the sample
size (n) is large with respect to the number of estimated parameters (K'), use of

AICc is recommended.

AIC, = —2In(L(O|y)) + 2K (#) . (3.2)

Generally, the AICc is used when the ratio of n/K is small (less than 40), based

on K from the global (most complicated) model.

3.3 Cross Validation Methods

As Schneider and Moore studied in 1997, cross-validation is a model eval-
uation method that splits training and test data, in which the test data is used
to test the performance after the statistic models train or computed the training

data. The three main methods to approach cross-validation are the following:
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i) Holdout
The holdout method is the simplest type of cross-validation. The dataset
is separated into two sets: the training set and the test set. The estimation

model fits the training set only and leaves the test data blind.

i) K-fold
K-fold was proposed to improve the holdout method. The k-fold method
divides the whole dataset into k subsets and uses the holdout method k
times. In each subset, the training data are computed using the model and

tested with the test data.

iii) Leave-one-out
This method applies bootstrap sampling by taking one particle (data unit)
out of the overall training and test datasets whereas the remaining data
are used for reference. The advantage is the accuracy of the outcome but
this is traded-off by the massive computational power requirements when
handling large input datasets. Moreover, this method was designed only for
model evaluation or in-sample forecasting so it is rather difficult to apply

this method to test forecasting.

With the 5-steps of the forecasting tasks, the data are usable to enter to
any process. The next chapter details the data that will be used in Chapters V

and VI.



CHAPTER IV

THE DATA

Before fitting any model, data testing should be completed. This chapter
introduces the datasets that were composed of 150 daily stocks recorded in the
Global Dow.

The Global Dow is an equal-weighted stock index consisting of the stocks of
150 top companies from around the world as selected by Dow Jones editors based
on the companies’ long history of success and popularity among investors. The
Global Dow is designed to reflect the global stock market and gives preferences

to companies with a global reach.

4.1 Data Preparation

The datasets used in this study are daily stock prices that were composed
of 150 daily stocks recorded in the Global Dow. The datasets contain daily stock
prices over a 10-year period from 1 August 2002 (total of 3961 datasets). Saturday
and Sunday price observations were removed prior to the analysis to avoid any
bias in the results from weekend market closures.

In practice, financial data are time series which are discrete time continuous

state processes (Ullrich, 2009).

4.2 Normality Test for a Nonlinear Distribution

Since the stock prices and other financial information are normally nonlin-

ear, the following tests are used to ensure that the variables specified in Section
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4.1 are not linear, which affects the good model selection that can be used for

prediction in the Chapter VI.

4.2.1 Anderson Darling Test

The Anderson Darling test (Ruey, 2002) is a statistical test of whether
a given sample of data is drawn from a specific distribution, e.g., the normal
distribution. This test makes use of the specific distribution to calculate critical
values. The Anderson-Darling statistic can be used to compare how well a data
set fits different distributions.

The two hypotheses for the Anderson-Darling test for the normal distri-

bution are given below:

e HO: The data follows the normal distribution

e H1: The data does not follow the normal distribution

The null hypothesis is that the data are normally distributed; the alterna-
tive hypothesis is that the data are non-normal.

The Anderson-Darling statistic is given by the following formula:

n

AD = —n — %Z(zi CDIRF(X) + (1 = F(X o)), (41)

i=1

where n is sample size, F'(X) is the cumulative distribution function for the
specified distribution and i is the ¥ sample when the data is sorted in rising

order.

4.2.2 Kolmogorov-Smirnov Test

In 1974, Stephens stated that the Kolmogorov—Smirnov test (K-S test)

(Ruey, 2002) is a nonparametric test of the equality of continuous, one-
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dimensional probability distributions, which can be used to compare a sample
with a reference probability distribution (one-sample K-S test), or to compare
two samples (two-sample K—S test). The K-S statistic quantifies the distance
between the empirical distribution function of the sample and the cumulative
distribution function of the reference distribution, or between the empirical distri-
bution functions of two samples. This test can be modified to serve as a goodness
of fit test.

The two hypotheses for the Kolmogorov—Smirnov test for the normal dis-

tribution are given below:

e« HO: The data follows the normal distribution

e H1: The data does not follow the normal distribution

The null hypothesis is that the samples are normally distributed or that
the samples are drawn from the same distribution (in the two-sample case).

In this case, samples are standardized and compared with a standard nor-
mal distribution by setting the mean and variance of the reference distribution
equal to the sample estimates. The empirical distribution F;, for n independently

and identically distributed (i.i.d.) observations X;, is defined as

1 n
For) = — > Iy, <, (4.2)
=1

where [y, is the indicator function, which is equal to 1 if X; < x and equal to 0

otherwise. The K-S static for a given c.d.f. F(x) is
D, =sup |F,(x) — F(z)], (4.3)

where sup, is the supremum of the set of distances. By Glivenko-Cantelli the-
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orem, if the sample comes from the distribution F(z), then D, converges to 0
almost certainly (Wellner, 1981). However, as pointed out by many researches,
the K-S test is less powerful for testing normality than the Anderson-Darling test
(Stephen, 1974) and it requires a relatively large number of data points to reject

the null hypothesis appropriately.

4.2.3 Pearson’s chi-squared Test

Two random variables x and y are independent if the probability distribu-
tion of one variable is not affected by the presence of another. Assume f;; is the
observed frequency count of events belonging to both the ** category of z and the
jt category of y. Moreover, assume e;; to be the corresponding expected count
if x and y are independent. The null hypothesis of the independence assumption
is rejected if the p-value of the following Chi-squared test statistic is less than a

given significance level (Moor, 1986).

2:Z(fij_eij) ‘ (44)

4.3 Unit Root Test for a Nonlinear Distribution

Financial time series such as stock prices can sometimes be described as a
random walk process which is a non-stationary process with a unit root. There
are several ways to test whether the series is stationary or non-stationary with a
unit root. The well-know one is Dickey-Fuller (DF) test (Dickey and Fuller, 1979,
Fuller, 1976). It tests the null hypothesis that a series does contain a unit root, i.e.,
it is non-stationary, against the alternative of stationary. There are other tests,
such as CRDW test (Sargan and Bhargava, 1983) based on the usual Durbin-

Watson statistic; and the non-parametric tests developed by Phillips and Perron
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based on the Z-test (Phillips and Perron, 1988), which involves transforming
the test statistic to eliminate autocorrelation in the model. Due to DF test’s

simplicity and its more general nature, it is more popular than others.

4.3.1 Augmented Dickey-Fuller Test

The Augmented Dickey-Fuller test (ADF)(Ruey, 2002) is an expanded ver-
sion of the Dickey—Fuller test for a larger and more complicated set of time series
models. It is a test for a unit root in a time series sample. The ADF is a negative
number and when it is more negative, there is a good reason to reject the hypoth-
esis that there is a unit root at some level of confidence. The testing procedure
for the ADF test is the same as that for the Dickey—Fuller test when it is applied

to the model (Dickey and Fuller, 1981); given by

Ay =a+ B +vyp—1 + 1Ay + ...+ 01 AY—p1 + €4, (4.5)

where « is a constant, [ is the coefficient on a time trend and p is the lag
order of the autoregressive process. Specifying the constraints « = 0 and g =0
corresponds to modelling a random walk whereas using only the constraint 5 = 0
corresponds to modelling a random walk with drift. The ADF conception with
lags of order p allows for higher-order autoregressive processes. When the test is
applied, the lag length p has to be defined and this can be fitted using AIC. In
short, AIC is a tool for model selection and also for selecting the lagged length
of eq. (4.5). Given a dataset, several competing models are ranked by their

information criterion. The AIC equation is defined as follows:

AIC = 2k — 2in(L), (4.6)



30

where £ is the number of parameters in the statistical model and L is the max-
imized value of the likelihood function for the estimated model. The unit root
test is then fulfilled under the null hypothesis v = 0 against the alternative hy-

pothesis of v < 0. A value for the test static can be calculated using the equation

as follows:
,3/
DF, = —, 4.7
SEG) 4D
where SFE is the standard error, equaling STS' Accepting the null hypothesis

implies the presence of a unit root where the test statistic is less than (a larger
negative) the critical value.

Table 4.1 presents the blue chip stocks of companies with a national rep-
utation for reliability, quality, and the capability to operate profitably under
extreme market conditions. The stocks are among the most widely and actively
traded ones. The datasets contain daily stock prices over a 10-year period from
1 August 2002, i.e., 3,961 days. Saturday and Sunday price observations were re-
moved prior to the analysis to avoid any bias in the results from weekend market

closures.

Table 4.1 The 150 listed companies in Global Dow index in the year 2013.

Company Countries BB Ticker
1 3M Co. U.S. MMM US Equity
2 ABB Ltd. Switzerland ABB SS Equity
3 Abbott Laboratories U.S. ABT US Equity
4 Alcoa Inc. U.S. AA US Equity
5 Allianz SE Germany ALV GR Equity
6 Amazon.com Inc. U.S. AMZN US Equity
7 America Movil S.A.B. de C.V. Series L Mexico AMXL MM Equity
8 American Express Co. U.S. AXP US Equity
9 Amgen Inc. U.S. AMGN US Equity
10  Anglo American PLC U.K. AAL LN Equity
11 Anheuser-Busch InBev N.V. Belgium ABI BB Equity

12 Apple Inc. U.S. AAPL US Equity




Table 4.1 The 150 listed companies in Global Dow index in the year 2013
(Continued).

Company Countries BB Ticker
13 ArcelorMittal France ARCELOR LX Equity
14  Assicurazioni Generali S.p.A. Italy G IM Equity
15  Astrazeneca PLC U.K. U.K. AZN LN Equity
16  AT&T Inc. U.S. T US Equity
17 BAE Systems PLC UK. BA/ LN Equity
18  Banco Bilbao Vizcaya Argentaria S.A. Spain BBVA SM Equity
19 Banco Santander S.A. Spain SAN SM Equity
20  Bank of America Corp. U.s. BAC US Equity
21 Bank of New York Mellon Corp. U.S. BK US Equity
22  BASF SE Germany BAS GR Equity
23  Baxter International Inc. U.S. BAX US Equity
24 Bharti Airtel Ltd. India BHARTI IN Equity
25 ~ BHP Billiton Ltd. Australia BHP AU Equity
26  BNP Paribas S.A. France BNP FP Equity
27  Boeing Co. U.S. BA US Equity
28 BP PLC U.K. BP/ LN Equity
29 Bridgestone Corp. Japan 5108 JP Equity
30 Canon Inc. Japan 7751 JT Equity
31 Carnival Corp. U.S. CCL US Equity
32 Carrefour S.A. France CA FP Equity
33  Caterpillar Inc. U.S. CAT US Equity
34 Chevron Corp. U.S. CVX US Equity
35 China Construction Bank Corp. China 601939 CH Equity
36 China Mobile Ltd. Hong Kong 941 HK Equity
37 China Petroleum & Chemical Corp. China 600028 CH Equity
38  China Unicom (Hong Kong) Ltd. Hong Kong 762 HK Equity
39 Cisco Systems Inc. U.S. CSCO US Equity
40 CLP Holdings Ltd. Hong Kong 2 HK Equity
41 Coca-Cola Co. U.S. KO US Equity
42 Colgate-Palmolive Co. U.S. CL US Equity
43 Compagnie de Saint-Gobain S.A. France SGO FP Equity
44 Companhia Energetica de Minas Gerais-CEMIG Pr  Brazil CMIG4 BZ Equity
45 ConocoPhillips U.S. COP US Equity
46  Credit Suisse Group Switzerland CSGN VX Equity
47  Daimler AG Germany DAI GR Equity

48  Deere & Co. U.S. DE US Equity




Table 4.1 The 150 listed companies in Global Dow index in the year 2013

(Continued).
Company Countries BB Ticker

49  Deutsche Bank AG Germany DBK GR Equity
50  E.I. DuPont de Nemours & Co. U.S. DD US Equity
51 E.ON AG Germany EOAN GR Equity
52  eBay Inc. U.S. EBAY US Equity
53  EDP-Energias de Portugal S.A. Portugal EDP PL Equity
54 Esprit Holdings Ltd. Hong Kong 330 HK Equity
55 Express Scripts Inc. U.S. ESRX US Equity
56 Exxon Mobil Corp. U.S. XOM US Equity
57  FedEx Corp. U.S. FDX US Equity
58  First Solar Inc. U.S. FSLR US Equity
59 Freeport-McMoRan Copper & Gold Inc. U.S. FCX US Equity
60  Gazprom OAO ADS Russia GAZPROM RU Equity
61 GDF Suez S.A. France GSZ FP Equity
62  General Electric Co. U.s. GE US Equity
63  Gilead Sciences Inc. U.S. GILD US Equity
64  GlaxoSmithKline PLC U.K. GSK US Equity
65 Goldman Sachs Group Inc. U.S. GS US Equity
66  Google Inc. Cl A U.S. GOOG US Equity
67  Hewlett-Packard Co. U.S. HPQ US Equity
68  Home Depot Inc. U.S. HD US Equity
69 Honda Motor Co. Ltd. Japan 7267 JP Equity
70 Honeywell International Inc. U.S. HON US Equity
71  HSBC Holdings PLC (UK Reg) U.K. HSBA LN Equity
72 Hutchison Whampoa Ltd. Hong Kong 13 HK Equity
73 Industrial & Commercial Bank of China Ltd. China 601398 CH Equity
74 Infosys Technologies Ltd. India INFO IN Equity
75 Intel Corp. U.S. INTC US Equity
76 International Business Machines Corp. U.S. IBM US Equity
77  Johnson & Johnson U.S. JNJ US Equity
78 JPMorgan Chase & Co. U.S. JPM US Equity
79 Komatsu Ltd. Japan 6301 JP Equity
80 Kraft Foods Inc. Cl A U.S. KRFT US Equity
81 L.M. Ericsson Telephone Co. Series B Sweden ERICB SS Equity
82 LG Electronics Inc. South Korea 066570 KS Equity
83 LVMH Moet Hennessy Louis Vuitton France MC FP Equity
84 McDonald’s Corp. U.S. MCD US Equity
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Table 4.1 The 150 listed companies in Global Dow index in the year 2013

(Continued).
Company Countries BB Ticker

85  Medtronic Inc. U.S. MDT US Equity
86  Merck & Co. Inc. U.S. MRK US Equity
87  Microsoft Corp. U.S. MSFT US Equity
88 Mitsubishi Corp. Japan 8058 JP Equity
89 Mitsubishi UFJ Financial Group Inc. Japan 8306 JP Equity
90 Mitsui & Co. Ltd. Japan 8031 JP Equity
91 Mizuho Financial Group Inc. Japan 8411 JP Equity
92  Monsanto Co. U.S. MON US Equity
93 NASDAQ OMX Group Inc. U.S. NDAQ US Equity
94  National Australia Bank Ltd. Australia NAB AU Equity
95  National Grid PLC U.K. NG/ LN Equity
96  Nestle S.A. Switzerland NESN VX Equity
97  News Corp. Cl A U.S. NWSA US Equity
98  Nike Inc. C1 B U.S. NKE US Equity
99 Nintendo Co. Ltd. Japan 7974 JP Equity
100 Nippon Steel Corp. Japan 5401 JP Equity
101  Nokia Corp. Finland NOK1V FH Equity
102  Novartis AG Switzerland 4856075Z MC Equity
103  Panasonic Corp. Japan 6752 JP Equity
104  PetroChina Co. Ltd. China 601857 CH Equity
105  Petroleo Brasileiro S/A Pref Brazil PETR4 BZ Equity
106  Pfizer Inc. U.S. PFE US Equity
107  Philip Morris International Inc. U.S. PM US Equity
108 Potash Corp. of Saskatchewan Inc. Canada POT CN Equity
109  Procter & Gamble Co. U.S. PG US Equity
110  Reliance Industries Ltd. India RIL IN Equity
111 Renewable Energy Corp. ASA Norway REC NO Equity
112  Research in Motion Ltd. Canada BB CN Equity
113  Rio Tinto PLC U.K. RIO LN Equity
114  Roche Holding AG Part. Cert. Switzerland RO SW Equity
115 Royal Bank of Canada Canada RY CN Equity
116  Royal Dutch Shell PLC A U.K. RDSA LN Equity
117  Samsung Electronics Co. Ltd. South Korea 005930 KS Equity
118 SAP AG Germany SAP GR Equity
119  Schlumberger Ltd. U.S. SLB US Equity
120  Seven & I Holdings Co. Ltd. Japan 3382 JP Equity
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Table 4.1 The 150 listed companies in Global Dow index in the year 2013

(Continued).
Company Countries BB Ticker

121  Siemens AG Germany SIE GR Equity
122 Societe Generale S.A. France GLE FP Equity
123  Sony Corp. Japan 6758 JP Equity
124 Southwest Airlines Co. U.S. LUV US Equity
125  SunPower Corp. Cl A U.S. SPWR US Equity
126  Suntech Power Holdings Co. Ltd. ADS China SUPOHZ CH Equity
127  Taiwan Semiconductor Manufacturing Co. Ltd. Taiwan 2330 TT Equity
128 Takeda Pharmaceutical Co. Ltd. Japan 4502 JP Equity
129  Tata Steel Ltd. India TATA IN Equity
130  Telefonica S.A. Spain TEF SM Equity
131  Tesco PLC U.K. TSCO LN Equity
132  Time Warner Inc. U.S. TWX US Equity
133  Toshiba Corp. Japan 6502 JP Equity
134  Total S.A. France FP FP Equity
135  Toyota Motor Corp. Japan 7203 JP Equity
136  Travelers Cos. Inc. U.S. TRV US Equity
137  UBS AG Switzerland UBSN VX Equity
138  UniCredit S.p.A. Italy UCG IM Equity
139  United Parcel Service Inc. C1 B U.S. UPS US Equity
140  United Technologies Corp. U.S. UTX US Equity
141  Vale S.A. Pref A Brazil VALE5 BZ Equity
142 Veolia Environnement S.A. France VIE FP Equity
143  Verizon Communications Inc. U.S. VZ US Equity
144  Vestas Wind Systems A/S Denmark VWS DC Equity
145  Vinci S.A. France DG FP Equity
146  VISA Inc. Cl A U.S. V US Equity
147  Vodafone Group PLC U.K. VOD LN Equity
148  Wal-Mart Stores Inc. U.S. WMT US Equity
149  Walt Disney Co. U.S. DIS US Equity
150  Wells Fargo & Co. U.S. WEFC US Equity
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In conclusion, 134 datasets of 150 datasets collected from Global Dow

were used in this study. The new novel pairs trading will be presented in the next

Chapter. The datasets will be used in the next two Chapters, Chapter V and VI.



CHAPTER V

THE PAIRS TRADING MODEL

Pairs trading has already been described in Chapter II. It involves selling
the higher-priced security and buying the lower-priced security with the idea that
the mispricing will correct itself in the future. This newly invented pairs trading
technique provides a new set of risk mitigation by providing a buffer-trading
zone when the paired stocks are changing their directions. In portfolio trading,
it extends an opportunity for a highly correlated and paired stock to cross-trade
with any lowly correlated and paired stock. In this Chapter a new novel algorithm
for pairs trading is proposed. The model maximises returns and minimises risk
of cointegrated pairs trading stocks. It employs mean reversion and coefficient of

variance (CV) algorithm (Premanode, Vonprasert, and Toumazou, 2013).

5.1 The proposed Multiclass Pairs Trading Model

The methodology of this research is based on pairs trading using mean
reversion and coefficient of variance (CV). The mean reversion technique anal-
yses any dataset whose distributions move from upward to downward direction
and vice versa. In the following, we introduce a classification technique using
coefficient of variance (CV) to grouping the stock indexes (variable datasets, and
now called datasets), followed by the mean reversion Technique, which is the
fundamental framework for creating multiclass in the algorithm.

In theory, the conventional cointegrated pairs trading method identifies two

stocks that move in time series together and calculate a correlation between them.
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The model begins by normalising the datasets using the mean (u) and standard
deviation (o) followed by cointegration with Pearson’s correlation coefficient(p),
represented by

cov(wi,yi) _ El(i — pa,) (Y — p1y,)]

Piy; = - ’ (5-1)

Oy Oy, O, 0y,

where cov(x;,y;) represents the covariance of x;, and y;, when i = 1,2,...,n.
Following, we select the paired stocks in order from high to low.

Next, this research introduces the mean reversion and coefficient of vari-
ance (CV) (Premanode, Vonprasert, and Toumazou, 2013) to analyse and group
the datasets. The mean reversion algorithm is expressed as follows:

i) Compute the mean p;(t) of z(t), where i = 1,2, ..., n.
ii) Compute the variance V;(t) of z;(t).
Vi(t)

iii) By normalising each V;(t) using pu;(t), we obtain oL

iv) Using the datasets @;(¢) from the upward scenario,we calculate and plot

Vi(t) > Vo(t) > ... > Viy(t) > Vi(t).

v) The same process is applied to the downward scenario where Vi (t) < Va(t) <

o< Vil () < V().

Vi (t) Vi—1(t)
oo = o

vi) ignore the calculation, but move the plot one step forward.
vii) Repeat the steps in items iv) to vi) and stop when i = n.

viii) We obtain a curve of x;(t) that marks points of local maxima and minima.

In the next process, we introduce the coefficient of variance (CV) to com-

pute the datasets, at which is represented by
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CV; = 27
125

(5.2)
where o; represents standard deviation and p; represents mean. Consequent to
applying the mean reversion and CV, we derive a number of groups of datasets
and termed them to CV. Each CV may then have different normal distribution,
reflecting different values for the paired stock indices. Following plotting stan-
dard deviation, we divide the datasets into six classes in time series; namely,
CVy,CV,, CV3, CVy, CVs and C'Vg. We then plot the means of C'V; to C'Vg be-
tween the means of C'V3 and C'V,. Hence, in the normal distribution, standard
deviation of the C'V; should be significantly deviated greater than the C'V;. Ap-
plying the same rationale, standard deviation of the C'Vj is significantly deviated
greater than C'V5. In each CV, we calculate the return pairs trading (Perline,

2007) using Eq.(5.3). The cointegrated pairs trading formula is expressed as

follows:

T n

Reo =Y > Ri(t) - IMS(t) - Wi + (iim(t) - [ln (;—gﬂ) , (5.3)

t=1 i=1 t=1 i=1

where R;(t) represents the real return of asset ¢ at time ¢, calculated by

In < Pi"t(f)l)>; IF%S(t) represents the dummy variable with a value of 1 if a Long

position is created for the asset i, a value of -1 if a short position is created,
and 0 otherwise; T'c;(t) represents the dummy variable that takes a value of 1
if a transaction is made for the asset i at time ¢t and 0 otherwise; C' represents

the transaction cost per operation (by percentage); T" represents the number of
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observations on the whole trading period, and

- 1 ; 1 if trade exist; (5.4)
it) = S s or '
Zi:l‘[f&s(t)’ 0 if no trade,

where W;(t) is the weighting variable that controls for portfolio construction at

time ¢, assuming that the same weight is applied to each transaction.

5.2 Benefits of the Multiclass Pairs Trading

The cointegrated pairs trading is used for buying a stock, commodity or
currency under the expectation that the asset will rise or fall in value from time
to time. As a result, the long position is exercised when the curve of a paired
stock is at high peak (maxima), whereas the short position is exercised when the
paired stock is moving at the low peak (minima). With the proposed multiclass

pairs trading, there are two extra benefits, which are as follows:

i) By applying the proposed model to the historical trading datasets, it was
found that a number of paired stocks could distribute to any CV, depending
on their values of mean reversion and CV. An example is given that the
highest correlated paired stock may locate in C'V;. Once the trade begins
within any CV, we can exercise either long or short positions in time series
until the existing CV starts to change to the new CV. In the situation
where the stock starts to diverge, we then analyse the new CV and compile
it with the historical CV datasets. Hence, the trading can resume. Since
the stocks are traded within the same CV from time to time, the returns are
maximised. Without using the proposed model, we will never know when

the correlation of any paired indices is about to diverge.
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ii) With respect to portfolio trading, there is a possibility that stock indices in
the different correlation can be cross-paired and cross-traded among them,
provided that they share the same CV. Thus, it creates additional trading

opportunities inasmuch as risk is minimised.

5.3 Results and Discussion for Pairs Trading Part

5.3.1 Generating the Mean Regression and CV

Referring to the Bloomberg terminal, Table 4.1 summarises the 150
datasets of the Global Dow index in the year 2013. After removing the NA
data in the 150 datasets with 3961 days, the 134 datasets with 3213 days each
can be used in this study. The following Figure 5.1 presents a simulation pro-
cedure of the proposed multiclass pairs trading model using mean reversion and

CV, and it is expressed in order as follows:

i) Assign a matrix zy;(t) where k represents the number of columns, k = 134

and ¢ represents the number of rows, 1 = 3213
ii) By normalising the matrix of zy;(t), we obtain Ay;(t)
iii) Calculate A;(t) for k = 134 and ¢ = 3213

iv) By selecting the highest return of Ay;(t) using the Person’s correlation co-
efficient, we obtain z,;(t) and x,2(f) in time series, see results in Table

5.1

v) Use the mean reversion algorithm in 5.1 to compute each point of reverse
of z,1(t) and x,5(¢) in time series. Then mark the reversed local maxima

and minima of x, () and x,,(t) in time series
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vi) Compute each local x,(t) and x,5(t) in time series with the coefficient of

variance (CV)

vii) Thus, the local z,;(t) and x,2(t) in time series are grouped into different

CV1,CVa, ..., CV,, and termed to x, (tov) and xpa(tov)
viii) Calculate expected returns of the local (%), z2(t), 1 (tev), and zpe(tey)

ix) Next, we compare the expected returns of z,;(t) and z,2(t) (the original
datasets) with the returns of z,i(tcv) and z,(teyv) (the datasets, which
are applied the mean reversion and CV). The probabilities for calculating
the expected returns of z,;(t), xpa(t), zp(tov) and zp(teyv) using Markov

chain are listed in Table 5.4 and 5.5.

x) For robustness test, use the same procedures listed in item v) and item vi)
calculating the expected returns of another ten cross-pairing that listed in
Table 5.8 and 5.9. Then compare the expected returns of ten cross-pairing
stocks of x,(t) and x,0(t) (the original datasets) with the x, (tcv) and
zp2(tev), the datasets which have applied the mean reversion and CV, are

also shown in Table 5.8.

The workflow of the multiclass pairs trading demonstrated in Figure 5.1
is started by normalising all the datasets xy;(t), pairing xy;(¢t) with Pearson’s
coefficient. Then, we select the pair that has the highest value of CV and term
to Ayi(t), and de-normalising the paired of Ag;(¢). Finally, we obtain xz,(t) and
Zpa(t). The next step is to calculate the multiclass pairs trading using Scenario II.
The results of Scenario IT are then subject to compare with Scenario I which is the
conventional cointegration of the paired trading. In Scenario I, we calculate the
expected returns of cointegrated x,;(t) and xp2(t), see Table 5.8, using probability

in Table 5.4 and 5.5 whereas we process Scenario II with the following:
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Scenario I: Conven-
tional pairs trading

Input dataset

Normalise
all datasets

Pair all with cor-
relation coefficient

Select the
highest pair

De-normalise
the selected pair

|

Compute mean
and variance of
the selected pair

l

Construct and plot
points of reversal

i

Calculate the expected
returns of the selected
pair when they
are cointegrated

Scenario II: Multi-
class using mean
reversion and CV

Go to scinario I and II

l

Compare the
results of sce-
nario I and II

I

Perform Ro-
bustness test

I

!

Compute mean
and variance of
the selected pair

l

Construct and plot
points of reversal

Group the dataset
using CV
1

Calculate the expected
returns of the selected
pair when they
are cointegrated

Figure 5.1 Procedure of the multiclass pairs trading model.
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i) compute mean and variance of z,;(t) and z,2(¢)
ii) construct point of reversal using items i) to viii) under Section 5.1

iii) group x,(t) and z,2(t) and use Equation 5.2 to compute mean reversion and
CV, then termed to zp(tcy) and xpa(tey). Next, we calculate probabilities
and the expected returns of z,;(tcyv) and x(tcv), resulted in Table 5.5

and Table 5.8, respectively.

5.3.2 Results in Pairing the Normalised Datasets

Consequent to the procedural workflow presented in Figure 5.1, all of the
datasets are normalised. We introduce the Pearson’s correlation coefficient to
measure the degree of correlation among the paired stock indices. Because there
are 134 datasets, we cross-map each stock price and neglect redundant pairings.

Because of pairing, there are 8911 pairs. We have found that Mitsubishi
UFJ Financial Group Inc. (the X8306JP) and Mizuho Financial Group Inc. (the
X8411JP) stock share the highest correlation coefficient of 0.990423021. Figure
5.2 presents two graphs, the X8306JP and the X8411JP. For ease of presentation,
the x-axis represents datasets in time series, whereas the y-axis represents the
normalised values ranging from —1.00 to 3.00. This implies that the pairs of
the X8306JP and the X8411JP performed close to the mean comparing to the
standard deviation at the scale of 3. We present the ranking of top ten pairs

out of 8911 pairs and their correlation coefficients in Table 5.1.

5.3.3 Results in using Mean Reversion and CV

Referring to Table 5.1, we select the highest correlation coefficient pair,

the X8306JP and the X8411JP and simulate those datasets separately with mean



Table 5.1 Top ten pairs from the Global Dow Index that share a high

correlation coefficient value.

Rank Stock #1  Stock #2

Correlation
Coeflicient

= O 00 ~J O Ui W N =

X8306JP  X8411JP
GLEFP UCGIM
BBVASM UCGIM
DBKGR  GLEFP
GLEFP UBSNVX
BBVASM GLEFP
IBMUS NKEUS
DBKGR  UCGIM
AMZNUS IBMUS
BBVASM DBKGR

0.990423021
0.979811683
0.979511643
0.977928533
0.971305147
0.971011881
0.970135778
0.969867105
0.968048722
0.965423526
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reversion and CV. They are outlined in the items i) to viii) in section 5.1. At this

stage, the datasets have been partitioned into different CV values in time series.

normal.X8306JP

Normalized data

—— X8306JP
--  X8411JP

0 500 1000 1500 2000

Index

2500 3000

Figure 5.2 Performance of the highest correlation coefficient, the X8306JP and

the X8411JP.
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Figure 5.3 The X8306JP showing the different CVs comparing the original
datasets.
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Figure 5.4 The X8411JP showing the different CVs comparing the original
datasets.
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Figure 5.3 and 5.4 show the performance of mean reversion and CV by
plotting six different CV classes, and two original datasets, the X8306JP and the
X8411JP. Of those six CV classes, the z-axis represents the entire datasets in
time series; whereas, the y;-axis represents the stock values of the X8306JP and

the X8411JP, and the CV values use the scale of the y,-axis.

5.3.4 Risk mitigation using Mean Reversion and CV

There are six CV classes showing the minimum to maximum values of
datasets in each class. Apparently, it is illustrated in Table 5.2 and 5.3. With
the remark, the current the X8306JP and the X8411JP datasets have no longer
formatted in time series.

For risk mitigation of any stock trading, we utilise contents in Table 5.2

and 5.3 starting from the following:

i) Collect historical minimum and maximum records/units of pairs trading for
a particular period, e.g., 500 daily records/units of the X8306JP and the

X8411JP

ii) Match the present observed prices of the X8306JP and the X8411JP with

one of the CV classes

a) In case of non-volatility, the future price will behave and situate in
the same CV class, use Long and Short positions for trading. It is
because we assume that the future stock prices of the X8306JP and

the X8411JP will probability fit into the existing CV class

b) If the new observed prices are highly volatile and run out of the situated

CV class, stop trading
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c¢) If the new observed prices are equal to the previous prices, continue to

trade by using the last position
iii) Update Table 5.2 and 5.3 and going item i)
iv) Check the new volatility with variance changes

v) To continue trading, loop the procedures in item ii) to item iv)

Table 5.2 Detailed classification of the stock X8306JP, prices in US dollars.

X8306JP
Class CV Range Units Mean Variance
1 0.028041352 320-355.9368 208  337.774 89.712
2 0.122561653  355.9369-550.3055 1244 434.7178 2838.7
3 0.104160587  550.3056-813.2123 264 630.7197 4316
4 0.036502849  813.2124-939.0795 246 900.6911 1080.9
5 0.17382795 939.0796-1512.9 942 1176 41789
6 0.059390989 1512.9001-1930 309 1637.3 9455.6

In the Table 5.2, the CV class 2 of the X8306JP shows the highest number
of points. The highest variance of the X8306JP is in the CV class 5.

Table 5.3 Detailed classification of the stock X8411JP, prices in US dollars.

X8411JP
Class (GAY4 Range Units Mean Variance
0.038475671 98-112.2439 129 106.6977  16.8532

0.203966775 112.2440-224.8609 1376 156.4949 1018.9
0.216937345 224.8610-404.7557 233 274.0043 3533.3
0.053668296 404.7558-488.5782 285 448.2702 578.7824
0.212921968 488.5783-877.5724 831 654.9639 19448
0.034902598 877.5724-1020 359  934.5515 1064

OOl W N

In the Table 5.3, the CV class 2 of the X8411JP shows the highest number
of points. The highest variance of the X8411JP is in the CV class 5. It is similar

to the results of the X8306JP.
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5.3.5 Proof Concept of the Mean Reversion and CV

This section contains a demonstration that the cointegrated pairs trading
using the proposed mean reversion and CV model can outperform the conven-
tional cointegrated pairs trading (without using the mean reversion and CV).

Initially, we calculate probabilities of the X8306JP and the X8411JP as-
suming that the chance of the future stock prices moving either upward or down-
ward is equal, at which both probabilities are 0.5. On contrary, the probabilities
of the X8306JP and X8411JP using the mean reversion and CV are better than
those of the conventional cointegrated pairs trading as displayed in Table 5.5.

In terms of comparison, the expected returns of the model using mean re-
version and CV shown in Table 5.6 are better than the conventional pairs trading,
at which listed in Table 5.4 and 5.5.

Additionally, we conduct robustness test by using other pairs of prices
from the Global Dow indices which have shared a high correlation coefficient
values listed in Table 5.8. The author found that the expected returns using the
conventional pairs trading, are less than those of mean reversion and CV. Thus,

we conclude that the proposed model is robust.

Calculation of Probabilities of the paired stocks, the X8306JP and the

X8411JP

Using Equation (5.2) and Equation (5.4) to calculate of the expected re-
turns of the cointegrated conventional pairs trading, and the cointegrated pairs
trading using mean reversion and CV, then subtituting the value of some elements

as follows

o IF¥S(t) is 1 if a long position is created for individual return, a value of -1

if a short position is created, and 0 otherwise;
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o t represents the dummy variable that takes the value of 1 if a transaction

is made for individuals at time ¢ and 0 otherwise;
o ( represents the transaction cost per operation and set to 0.25%;
o T represents the number of observations with 3213 data points;
o W;(t) is weight at position 1.

Each expected returns of the cointegrated x,,(¢) and x,»(t) are calculated
by using the value of the present observed variables multiplies with the probability
of the lag and repeats infinitely in time series. The expected returns of any

cointegrated pairs trading can be expressed by

ERco =Y Ruo(Hpbol(t), (5.5)

i=1
where R%,(t) is the return of cointegrated x,;(¢) and z,(t) in scenario i, pb(t)
is the probability for the return Ri () in scenario i, and i counts the number
of scenarios. However, we omit to calculate the first two observations after the
stocks reverted. It is because we have taken into consideration that some stock
can be highly volatile and immediately reverted. Additionally, the returns of
cointegrated ., (tcyv) and zp0(tcy) can be termed to Rhp(toy); and the results
are listed in Table 5.6. The expected returns of R, (tcy) are inevitably similar
to those of the expected returns of R5,(t). We calculate probability for expected
returns of the conventional cointegrated by assuming that each stock in the same
pair can revert to the cointegrated line and vice versa with a probability of 0.5.
The total probability reversion of cointegrated pair is calculated to 0.5 multiplies
with 0.5, equalling to 0.25. Hence, the total probability of non-reverted pairs
moving along time series is 1.00 minus 0.25, equalling 0.75 as illustrated in Table

0.4.
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Table 5.4 Calculations of the probabilities of conventional cointegrated pairs
trading (without mean reversion and CV).

Index Probabilities of conventional
cointegrated pairs trading

(without mean reversion and CV)

X8306JP 0.75
X8411JP 0.75

Table 5.5 Calculations of the probabilities of cointegrated pairs trading using
mean reversion and CV.

Index Probabilities of cointegrated pairs trading
with mean reversion and CV
Class cV; C'V, CVs CcV, CVs CVs

X8306JP 0.9663 0.9863 0.9316 0.8659 0.9565 0.9482
X8411JP 0.9457 0.9855 0.9013 0.9193 0.9700 0.9666

The difference is that the calculation of the expected returns of R%, () used
the probability listed in Table 5.5 rather than the fixed of probability employed in
the calculation of R:, (1), in which is given to 0.75. It is because we assume that
any stock prices during the trade can equally move up and down. We introduce
Markov chain to calculate probabilities of the conventional cointegrated pairs
trading the used mean reversion and CV. In the Markov chain’s process, the
value of the present observation is multiplied with the probability of the lag, and
it repeats an infinite number of times. Table 5.5 indicates, the X8306JP and the
X8411JP are ranging from 0.865853659 to 0.986334405. Whereas the probability
of the conventional cointegrated pairs trading (without mean reversion and CV)
remains to 0.75 as illustrated in Table 5.4.

The Table 5.4 shows that the total probability of non-reverted pairs moving
along time series is 0.75 for both the X8306JP and the X8411JP.

The Table 5.5 shows that the probability of non-reverted pairs moving
along time series of the conventional cointegrated pairs trading the used mean

reversion and CV are ranging from 0.8659 to 0.9863 and from 0.9013 to 0.9855,
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for the X8306JP and the X8411JP, respectively.

Calculation of expected returns

This section consists of two parts, of which the first part represents a
calculation for expected returns of cointegrated a,;(t) and zy5(t), Rip(t), and

the second part represents calculation of expected returns of cointegrated x,; (tcv )

and Tp2 (tcv), cho (tcv).



Table 5.6 represents the expected returns in US dollars of the cointegrated pairs trading using mean reversion and CV.

Block no.  Ranking DataPoints  Class-X83  Prob.-X83 Class-X84 Prob.-X84  Returns of X83 and X84  Expected Returns of X83 and X84
1 ond _ 34th 33 5 0.9565 5 0.9193 33.7055 33.7043
2 37th — 46t 10 4 0.8659 4 0.9193 10.2160 10.2160
3 49th — 6ot 12 5 0.9565 5 0.9193 12.2602 12.2602
4 78th _ ggth 11 4 0.8659 4 0.9193 11.2383 11.2383
5 915t — 127" 37 5 0.9565 5 0.9193 37.8006 37.8005
6 130" — 147tk 18 5 0.9565 5 0.9700 18.3897 18.3897
7 155th — 158th 4 5 0.9565 5 0.9193 4.0865 4.0865
8 1615t — 22274 62 5 0.9565 5 0.9700 63.3417 63.3417
9 23374 — 238th 6 5 0.9565 5 0.9700 6.1299 6.1299
10 2427 _ 245th 4 4 0.8659 4 0.9193 4.0866 4.0866
11 249th — 2515t 3 4 0.8659 4 0.9193 3.0650 3.0650
12 254th — 2715t 18 4 0.8659 4 0.9700 18.3896 18.3896
13 276t — 30274 27 4 0.8659 4 0.9700 27.5845 27.5845
14 312th — 315tk 4 4 0.8659 4 0.9700 4.0866 4.0866
15 318th — 3215t 4 5 0.9565 5 0.9700 4.0866 4.0866
16 325th — 328th 4 5 0.9565 5 0.9700 4.0866 4.0866
17 338th — 342nd 5 4 0.8659 4 0.9193 5.1082 5.1082
18 347th — 439th 93 5 0.9565 5 0.9700 95.0136 95.0136
19 44279 _ 445th 4 6 0.9482 6 0.9700 4.0867 4.0867
20 450th — 45374 4 6 0.9482 6 0.9700 4.0866 4.0866
21 457" — 460th 4 6 0.9482 6 0.9700 4.0867 4.0867
22 466th — 468th 3 6 0.9482 6 0.9700 3.0650 3.0649

14



Table 5.6 represents the expected returns in US dollars of the cointegrated pairs trading using mean reversion and CV

(Continued).
Block no.  Ranking DataPoints  Class-X83  Prob.-X83 Class-X84 Prob.-X84  Returns of X83 and X84  Expected Returns of X83 and X84
23 476th — 517th 42 6 0.9482 6 0.9666 42.9093 42.9093
24 528th — 550th 23 6 0.9482 6 0.9666 23.4980 23.4980
25 554th — 644th 91 6 0.9482 6 0.9666 92.9702 92.9702
26 6515t — 656" 6 6 0.9482 6 0.9666 6.1299 6.1299
27 6615t — 666" 6 5 0.9565 5 0.9700 6.1298 6.1298
28 679t" — 699th 21 6 0.9482 6 0.9666 21.4547 21.4547
29 7037 — 755th 53 6 0.9482 6 0.9666 54.1476 54.1476
30 758th — 768t 11 5 0.9565 5 0.9666 11.2382 11.2382
31 780" — 785t 6 6 0.9482 6 0.9666 6.1299 6.1299
32 79274 — 798th 7 5 0.9565 5 0.9666 7.1515 7.1515
33 80274 — 811th 10 5 0.9565 5 0.9666 10.2165 10.2165
34 814th — 87374 60 5 0.9565 5 0.9700 61.2991 61.2991
35 89374 — gg5th 3 5 0.9565 5 0.9666 3.0649 3.0649
36 898th — 916th 19 5 0.9565 5 0.9700 19.4114 19.4114
37 924th — 102274 99 5 0.9565 5 0.9700 101.1434 101.1434
38 1025t — 10377 13 5 0.9565 5 0.9666 13.2815 13.2815
39 1040t — 11770 138 5 0.9565 5 0.9700 140.9879 140.9879
40 1180t — 118274 3 4 0.8659 4 0.9700 3.0650 3.0650
41 11915¢ — 1194t 4 4 0.8659 4 0.9700 4.0866 4.0866
42 1197t — 1245tk 49 5 0.9565 5 0.9700 50.0610 50.0610
43 1248t — 12507 3 5 0.9565 5 0.9193 3.0649 3.0649

¢S



Table 5.6 represents the expected returns in US dollars of the cointegrated pairs trading using mean reversion and CV

(Continued).
Block no.  Ranking DataPoints  Class-X83  Prob.-X83 Class-X84 Prob.-X84  Returns of X83 and X84  Expected Returns of X83 and X84
44 1257th — 126151 5 5 0.9565 5 0.9700 5.1083 5.1083
45 1288th — 1292nd 5 5 0.9565 5 0.9193 5.1082 5.1082
46 1299t — 13015¢ 3 4 0.8659 4 0.9013 3.0649 3.0649
47 1311th — 1313tk 3 4 0.8659 4 0.9013 3.0650 3.0650
48 1318t — 132274 5 4 0.8659 4 0.9013 5.1083 5.1083
49 1326t — 1328t" 3 5 0.9565 5 0.9193 3.0649 3.0649
50 13387 — 13487 11 5 0.9565 5 0.9193 11.2382 11.2381
51 13515t — 14120 62 5 0.9565 5 0.9699 63.3422 63.3422
52 142379 — 14267 4 5 0.9565 5 0.9699 4.0866 4.0866
53 14315 — 144374 13 5 0.9565 5 0.9699 13.2815 13.2815
54 145274 — 14637¢ 12 4 0.8659 4 0.9192 12.2598 12.2598
55 1484t — 1489th 6 4 0.8659 4 0.9193 6.1299 6.1299
56 1495t — 15097 15 4 0.8659 4 0.9193 15.3248 15.3248
57 1512tF — 1518th 7 3 0.9316 3 0.9013 7.1516 7.1516
58 152274 — 1524t 3 3 0.9316 3 0.9013 3.0650 3.0650
59 1528t — 15315 4 3 0.9316 3 0.9013 4.0867 4.0867
60 1536t — 155274 17 3 0.9316 3 0.9013 17.3680 17.3680
61 1558t — 15697 12 2 0.9863 2 0.9013 12.2598 12.2598
62 157274 — 1574th 3 2 0.9863 2 0.9855 3.0649 3.0649
63 1577t — 158374 7 2 0.9863 2 0.9013 7.1516 7.1516
64 15867 — 1588th 3 3 0.9316 3 0.9013 3.0650 3.0649

€¢



Table 5.6 represents the expected returns in US dollars of the cointegrated pairs trading using mean reversion and CV

(Continued).
Block no.  Ranking DataPoints  Class-X83  Prob.-X83 Class-X84 Prob.-X84  Returns of X83 and X84  Expected Returns of X83 and X84
65 1597th — 1600t" 4 2 0.9863 2 0.9013 4.0866 4.0866
66 16037¢ — 1608t" 6 3 0.9316 3 0.9013 6.1299 6.1299
67 1611th — 1616t" 6 2 0.9863 2 0.9013 6.1299 6.1299
68 1619th — 162274 4 2 0.9863 2 0.9855 4.0866 4.0866
69 1625t — 16287 4 2 0.9863 2 0.9013 4.0866 4.0866
70 16387 — 1678t" 41 2 0.9863 2 0.9855 41.8877 41.8877
71 1684t" — 1722m4 39 2 0.9863 2 0.9855 39.8444 39.8444
72 1725t — 178374 59 3 0.9316 3 0.9013 60.2774 60.2774
73 17887 — 17907 3 2 0.9863 2 0.9855 3.0650 3.0650
74 17947 — 1797t 4 2 0.9863 2 0.9855 4.0866 4.0866
75 18137 — 1826" 14 3 0.93156 3 0.9013 14.3031 14.3031
76 1838t — 1840%" 3 3 0.93156 3 0.9013 3.0650 3.0650
7 184377 — 1846%" 4 3 0.93156 3 0.9855 4.0866 4.0866
78 1849t" — 2237t 389 2 0.9863 2 0.9855 397.4224 397.4224
79 22415 — 2556th 316 2 0.9863 2 0.9855 322.8418 322.8418
80 256274 — 2566th 5 1 0.9663 1 0.9457 5.1082 5.1082
81 2569t — 257374 5 1 0.9663 1 0.9855 5.1083 5.1083
82 25867 — 25907 5 1 0.9663 1 0.9855 5.1083 5.1083
83 259374 — 2595tk 3 1 0.9663 1 0.9457 3.0650 3.0650
84 25987 — 260274 5 1 0.9663 1 0.9855 5.1083 5.1083
85 2605t — 27107 106 1 0.9663 1 0.9457 108.2950 108.2950
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Table 5.6 represents the expected returns in US dollars of the cointegrated pairs trading using mean reversion and CV

(Continued).
Block no.  Ranking DataPoints  Class-X83  Prob.-X83 Class-X84 Prob.-X84  Returns of X83 and X84  Expected Returns of X83 and X84
86 2720th — 272274 3 1 0.9663 1 0.9855 3.0650 3.0650
87 2725th — 282274 98 2 0.9863 2 0.9855 100.1218 100.1218
88 28257 — 28467 22 1 0.9663 1 0.9855 22.4763 22.4763
89 2850t" — 2857t" 8 1 0.9663 1 0.9855 8.1732 8.1732
90 2860h — 2897th 38 2 0.9863 2 0.9855 38.8228 38.8228
91 29015 — 2939th 39 2 0.9863 2 0.9855 39.8444 39.8444
92 2944th — 2975th 32 2 0.9863 2 0.9855 32.6929 32.6929
93 2979t — 30047 26 2 0.9863 2 0.9855 26.5629 26.5629
94 3007t — 3010%" 4 1 0.9663 1 0.9855 4.0866 4.0866
95 3013th — 3126%" 114 2 0.9863 2 0.9855 116.4682 116.4682
96 31290 — 3147th 19 3 0.9316 3 0.9855 19.4114 19.4114
97 315374 — 3189th 37 3 0.9316 3 0.9855 37.8011 37.8011
98 3195th — 3212th 18 3 0.9316 3 0.9855 18.3897 18.3897

q¢
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The Table 5.6 shows that the block number 78 has the highest data points,
389 points, i.e., the trader can trade for 389 days.

The different expected returns in each block of the X8306JP and the
X8411JP are calculated by using the returns of the X8306JP and the X8411JP
multiply by the same probability value of 0.75. As a result, the total expected
return of both cointegrated the X8306JP and the X8411JP to US$ 2461.915799.

The expected returns of cointegrated z,(tcy) and xp(tov), Reo(tov)
using mean reversion and CV consist of 98 blocks. In each block the number of
data points is ranging from 3 to 389, depending on the distribution of CV classes,
e.g., in block 1 there are 11 data points at the ranking of 78 to 88*. We omit
to calculate the blocks that have the number of data less than 3. It is because
the stocks may be highly volatile from the first two observations when the stocks
have been reverted. The probabilities of both the X8306JP and the X8411JP
are based on Markov chain, in which represent the smallest value of 0.865853659
and the highest value of 0.986334405. Apparently, the returns of cointegrated the
X8306JP and the X8411JP, and the expected returns of cointegrated the X8306JP
and the X8411JP using mean reversion and CV are demonstrated, given the total
expected returns of both equals US$ 2781.944909. However, the allocation of each
CV class undertakes values of observations. Thus, during the calculation process;
each R.(tcyv) has never been mixed up.

Comparison of the performance of the conventional cointegration (without
mean reversion and CV) with the cointegration using mean reversion and CV can
be demonstrated by looking at values of the expected returns of both cases. The
expected returns of the conventional cointegration and the proposed model using
mean reversion and CV are US$ 2461.92 and US$ 2781.94, respectively. As a

result, the returns of cointegration using mean reversion and CV are higher than
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Table 5.7 Normality and Unit root test for the X8306JP and the X8411JP.

X8306JP (actual)

Normality test Statistics p-value
Anderson-Darling 146.1787 < 2.2e-16
Lilliefors (Kolmogorov-Smirnov) 0.1783 < 2.2e-16
Pearson chi-square 4190.571 < 2.2e-16
Unit root test

Augmented Dickey-Fuller -0.9075 < 2.2e-16
X8411JP (actual)

Normality test Statistics p-value
Anderson-Darling 186.466 < 2.2e-16
Lilliefors (Kolmogorov-Smirnov) 0.2138 < 2.2e-16
Pearson chi-square 7188.54 < 2.2e-16
Unit root test

Augmented Dickey-Fuller -0.7736 0.00015

the conventional cointegration (without mean reversion and CV). Therefore, we
conclude that the proposed cointegrated pairs trading using mean reversion and
CV outperforms the conventional cointegrated pairs trading model. Therefore,
the net premium in 10-year trading with the cointegrated pairs trading using
mean reversion and CV, which calculated the difference of both cases, yields to

US$ 320.0291104, equalling to 12.9991899%.

5.3.6 Results of nonlinear and non-stationary test

The testing results shows that distributions of the X8306JP and the
X8411JP were neither normal nor stationary since the p-value is less than 0.05%,
see Table 5.7.

The Table shows that the X8306JP and the X8411JP were non-stationary.

Robustness test

To compute the expected returns of the cross-paired trading, we assign the

contents in Table 5.1, which are the top ten pairs that have been characterised for
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the highest correlation as input. Then, we use the same techniques that have been
used to calculate the expected returns of X8306JP and X8411JP for computing
the expected returns of the top ten pairs. The results are listed in Table 5.8 and
Table 5.9. Whereas Table 5.8 represents the expected returns of the conventional
cointegrated pairs trading (without mean reversion and CV), Table 5.9 represents

the expected returns of the cointegrated pairs trading using mean reversion and

CV.



Table 5.8 The expected returns in US dollars of the conventional cointegrated pairs trading.

X8411JP UCGIM UCGIM GLEFP UBSNVX GLEFP NKEUS UCGIM IBMUS DBKGR
X8306JP 2461.92  2461.92 2461.92 2461.92 2461.92  2461.92 2461.92 2461.92 2461.93  2461.92
GLEFP 2461.93 2461.93 2461.93 0 2461.92 0 2231.28 2461.92 2229.75  1806.79
BBVASM 2461.93 2367.68 2367.68 2461.93 2461.93 2461.93 2461.93 2367.68 2461.92  2461.93
DBKGR 2461.93 2461.93 2461.93 1806.79 2461.93 1806.79  2215.96 2461.93 2040.49 0
GLEFP 2461.93 2461.92 2461.92 0 2461.92 0 2231.28 2461.92 2229.75  1806.79
BBVASM 2461.93 2367.68 2367.68 2461.93 2461.93 2461.93 2461.93 2367.68 2461.92  2461.93
IBMUS 2232.83 2461.92 2461.92 2229.75 2461.92  2229.75 2461.92 2461.92 0  2040.49
DBKGR 2461.93 2461.93 2461.93 1806.79 2461.93 1806.79  2215.96 2461.93 2040.49 0
AMZNUS 2396.04 2300.24 2300.24 2363.09 2229.83  2363.09 2461.91 2300.24 2061.95 2327.08
BBVASM 2461.93 2367.68 2367.68 2461.93 2461.93 2461.93  2461.93 2367.68 2461.92  2461.93

6¢



Table 5.9 The expected returns in US dollars of the cointegrated pairs trading using mean reversion and CV.

X8411JP UCGIM UCGIM GLEFP UBSNVX GLEFP NKEUS UCGIM IBMUS DBKGR
X8306JP 2781.94 2863.69 2863.69 2798.31 2844.28 2798.31 2780.93  2863.69 2749.27  2773.78
GLEFP 2832.03 2928.05 2928.05 0 2934.18 0 2557.18 2928.05 2572.51  2091.32
BBVASM 277789 2748.25  2748.25 2802.40 2862.68 2802.40 2776.87 2748.25 2768.67  2802.40
DBKGR 2814.66  2897.40 2897.40 2091.32 2903.53 2091.32 2504.06 2897.40 2292.57 0
GLEFP 2832.03  2928.05 2928.05 0 2934.18 0 2557.18 2928.05 2572.51  2091.32
BBVASM 277789  2748.25  2748.25  2802.40 2862.68 2802.40 2776.87 2748.25 2768.67  2802.40
IBMUS 2528.61  2908.63 2908.63 2572.51 2884.11 257251 2835.06 2908.63 0 2292.57
DBKGR 2814.66  2897.40 2897.40 2091.32 2903.53 2091.32 2504.06 2897.40 2292.57 0
AMZNUS 2814.68 2752.31 2752.31 2779.93 2654.25 2779.93 2881.03 2752.31 2382.50  2716.59
BBVASM 277789  2748.25  2748.25 2802.40 2862.68 2802.40 - 2776.87  2748.25 2768.67  2802.40

09
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Tables 5.8 and 5.9 show the expected return of the conventional cointe-
grated pairs trading (without mean reversion and CV), and those of the cointe-
grated pairs trading using mean reversion and CV, respectively. Comparing all
of the results in the Table 5.8 with those in the Table 5.9 show that those of
the cointegrated pairs trading using mean reversion and CV were greater than
those of the conventional cointegrated pairs trading (without mean reversion and
CV). It means that the cointegrated pairs trading using the proposed method
outperforms those of the conventional cointegrated pairs trading outstandingly.

The results of computing the expected returns of the cointegrated pairs
trading using mean reversion and CV are shown in Table 5.9. Apparently, the av-
erage expected returns of the cointegrated pairs trading using mean reversion and
CV are US$ 253631.306 and US$ 2536.31306, respectively. The expected returns
of the cointegrated pairs trading using mean reversion and CV outperforms those
of the conventional cointegrated pairs trading (without mean reversion and CV),
see Table 5.8. It is proven that the benefit of cointegrated pairs trading using
mean reversion and CV, for those top ten cross-paired stocks with the 10-year
investment, is US$ 27838.05873, equaling to 13.54%.

As the simulation results in this chapter, the cointegrated pairs trading
using the proposed method outperforms those of the conventional cointegrated
pairs trading outstandingly. To reduce the risk, the Pair Trading will be combined
with the prediction models, i.e., the ARIMA, MCMC, and SVR models, in the

next chapter.



CHAPTER VI

THE PREDICTION MODELS

Pairs trading and its theoretical considerations were introduced in Chapter
IT. The risk in trading stock can be reduced by using the pairs trading method. In
the previous chapter, Chapter V, a new novel pairs trading model was proposed.
Moreover, the simulation results show that the cointegrated pairs trading using
the proposed method outperforms those of the conventional cointegrated pairs
trading outstandingly. Thus, benefits of the proposed model are to build a new
series of risk mitigation and maximise returns of cointegrated stocks. If the move-
ment or the future price of the next time step to trade can be predicted, the risk
shall be inevitably reduced. Therefore, this study is to combine the Prediction
model with pairs trading.

This chapter describes the prediction models used in this research, i.e., Au-
toregressive Integrated Moving Average (ARIMA) model, Markov Chain Monte
Carlo (MCMC) methods, and Support Vector Machine (SVM). There are also the
frameworks of each forecasting model, including theoretical considerations of the
prediction models and including the simulation results and discussions further in

the Chapter.

6.1 Introduction to Prediction Models

Kovalerchuk et al. described an overview on techniques in finance; the pre-
diction methods can be classified into three categories: numerical models (ARIMA

models, Instance-based learning, neural networks, etc.), rule-based models (de-
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cision tree and DNF learning, naive Bayesian classifier, hidden Markov model,
etc.), and relational data mining (inductive logic programming).

One of the most popular and frequently used stochastic time series models
is the Autoregressive Integrated Moving Average (ARIMA) model. The Markov
Chain Monte Carlo (MCMC) methods are particularly attractive for practical
finance applications. It was realized that most Bayesian inference could be done
by MCMC, whereas very little be done without MCMC.

Recently, Artificial Neural Networks (ANNs) have been attracting increas-
ing attention in the time series forecasting. Nowadays, the Support Vector Ma-
chine (SVM), a new statistic learning theory, has been receiving increasing at-
tention for classification and forecasting. The Support Vector Regression (SVR)
is used in forecasting problem.

Hence, there are three models used in this study as follows: Autoregres-
sive Integrated Moving Average (ARIMA) model, Markov Chain Monte Carlo
(MCMC) method, and Support Vector Regression (SVR) approach. This section

describes the prediction methods mentioned above.

6.2 Autoregressive Integrated Moving Average (ARIMA)

Model

Autoregressive Integrated Moving Average (ARIMA) models intend to de-
scribe the current behaviour of variables in terms of linear relationships with their
past values. An ARIMA model can be decomposed into two parts. First, it has
an Integrated (I) component (d), which represents the amount of differencing to
be performed on the series to make it stationary. The second component of an
ARIMA consists of an ARMA model for the series rendered stationary through

differentiation. The ARMA component is further decomposed into AR and MA
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components.

6.2.1 Autoregressive (AR) Model

In economics and signal processing, an autoregressive (AR) model
(Borchers, 2002, Ayodele, Aderemi, and Charles, 2014) is a random process that is
usually used for modelling and prediction in various types of natural phenomena.
AR models are a group of linear prediction formulas that attempt to predict the
outputs of a system based on previous outputs. The autoregressive (AR) com-
ponent captures the correlation between the current value of the time series and
some of its past values. For example, AR(1) means that the current observation
is correlated with its immediate past value at time ¢ — 1. The main assumption
of the AR model is that g, is a linear combination of the previous observed values

up to a defined maximum lag (p) and an error term, which is expressed as

Yt = O1Yr—1 + Qalp—a + ...+ Oplr—p + &4, (6.1)

where ¥, is the dependent variable value at the moment ¢, ¢, is a constant and &;

is the error term which is i.i.d. N(0,c?).

6.2.2 Moving Average (MA) Model

The Moving Average (MA) component represents the duration of the influ-
ence of a random (unexplained) shock. For example, MA(1) means that a shock
on the value of the series at time ¢ is correlated with the shock at ¢ —1. The main
assumption of the MA component is that y; is a random error term plus some
linear combination of the previous random error terms up to a defined maximum

lag (q), which is expressed as



65

Y = ¢+ g1 + 00+ ...+ 045, (6.2)

where 6, are constants.

6.2.3 Autoregressive Moving Average (ARMA) Model

When combining AR and MA, the lags of the different series appearing in
the forecast equation are AR(p) and MA(q), where p and ¢ are independent. To
analyse a time series and fit the ARMA(p, ¢) model, we require all of observations
to be i.i.d. N(0,0?) that is with a zero mean normal distribution. The expression

is given by (Brockwell and Davis, 2002)

Y = leyt_l +m . 4 gzﬁpyt_p 1 E + 01815_1 4+ ...+ 0q£t—q~ (63)

Rearrange (6.3) to yield

Yt — Q1Yp—1 — <o = Pplp—p = ¢ +Oie1 + ... Oper_g, (6.4)

and assign the back-shift operator B (where By, = y;_1, B*y; = y;_2) to (6.4),

before rearranging it to obtain

(1—¢B—...—¢,B")yy=(1+ 6B+ ...+ 0,8z, (6.5)

which can be re-written as

¢p(B)A%Y; = 0,(B)e or ¢p(B)y; = 0,(B) - &, (6.6)

where ¢,(B) and 6,(B) are AR and MA operators, respectively.
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6.2.4 Autoregressive Integrated Moving Average

(ARIMA) Model

In the event that the process being observed is non-stationary, the dif-
ferences of the series are computed using linear combinations until a stationary
time series is found so the ARMA is superseded and referred to as ARIMA(p, d, q)
where the I of the differences of the series to be transformed is stationary, and
d is the order of difference required to produce a stationary process, a stochas-
tic process whose joint probability distribution does not change when shifted in
time, which is normally 0,1, or 2 depending on its lagged correlation. Finally,

ARIMA(p, d, q) is written as

¢p(B)A%y; = 0,(B)ey, (6.7)

where A? is a difference operator.

Automatic Selection of an ARIMA Model

An automatic method for selecting an ARIMA model is very useful. An
automatically selected model should not be accepted blindly as usual, but it has
a reason to first select model with something chosen quickly and by objective
criterion.

The R function auto.arima (Robert, and David, 2010) can select all three
parameters, p,d, and ¢, for an ARIMA model. The differencing parameter d is
selected using the KPSS test. If the null hypothesis of stationarity is accepted
when the KPSS is applied to the original time series, then d = 0. Otherwise, the
series is differenced until the KPSS accepts the null hypothesis. After that, p and

q are selected using either AIC or BIC.
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Table 6.1 Simulation results using the ARIMA model to forecast the original

X8306JP datasets.

Error estimation Ratio

70-30 80-20 90-10
MAE 0.53057 0.214543 0.132489
MAPE 53.05702 21.45433 13.24885
MSE 53551.47 9418.297 8083.087
RMSE 62.94142 69.70751 39.13242
R2 NA NA NA
AIC 19793.32 22309.71  24784.1
BIC NA NA NA
Up-Down (%) 68.88658  69.0625 70.21944

Table 6.2 Simulation results using the ARIMA model to forecast the original

X8411JP datasets.

Error estimation Ratio

70-30 80-20 90-10
MAE 0.6602224 0.2924394 0.122757
MAPE 06.02224  29.24394  12.2757
MSE 9559.542  1879.355 680.8471
RMSE 29.94024  37.89151 22.14481
R2 NA NA NA
AIC 16980.82  19078.74 21129.47
BIC NA NA NA
Up-Down (%) 72.63267 73.75 73.66771

6.2.5 Simulation and Results of the ARIMA model

The datasets from Chapter IV were used to simulate the ARIMA model.

The highest correlation paired stocks, the X8306JP and the X8411JP, were used

to simulate the results in this section and also in the next two sections. These

two datasets were then simulated by R programming scripts for ARIMA model.

For out-of-sample forecasting, we selected the last 30% of the 3213 sets to be

used as a reference. Next, we tested outcomes of the simulations with ARIMA

model using the original datasets as input data. We then plotted them against

the original test datasets (used as a reference), as shown in the graphs in Figure

6.1 and 6.4.
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The graphs are shown in Figure 6.1 and 6.4 where the x-axis represents
963 test data points in the time series and the y-axis represents stock prices
in US dollars. They show the deviations between the simulated graph of the
ARIMA model compared with the original datasets. The two graphs are shown
in a line where the x-axis represents the data points in the time series and the
y-axis represents the US dollars stock prices. The next step was to measure
the performance of the ARIMA model using a variety of loss estimators, i.e.,
MAE, MAPE, MSE, RMSE, R2, AIC, BIC, and Accuracy count (up-down (%)).
Table 6.1 and 6.2 show that the MAPE of the X8306JP and the X8411JP are
53.05702 and 66.02224, respectively. It is noticeable that the measurement results
of MAPE was too high. That is the simulation results of the AR model which
is a part of ARIMA and found that it persisted to the lags, diverting from the
original datasets. Having counted the up and down movements along the x-axis,
the percentage success of the model reached 72.63267%. This is because the MA
model adjusted the trends of the local datasets from time to time. Once the
trends of the average either increased or decreased, the movements of the curves
agreed with the changes. After comprehensively analysing the results shown in
Figure 6.1 and 6.4 and Table 6.1 and 6.2, we conclude that the ARIMA model was
not suitable to be used with highly volatile and strictly non-stationary datasets.
This was because the ARIMA model required the AR term to be stationary;
and it cannot equip with any independent variables; thus, there are no extra
independent variables other than the lag of its own to adjusting the model while
predicting the 2"¢AR, the 3"?AR, and so on. Thus, the error from the previous
prediction carried over and become an input for the next prediction round, giving
the accumulation of the error in the long term prediction.

The measurement of the performance of the ARIMA model for these two
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datasets with 80-20 and 90-10 ratio is shown in Table 6.1 and 6.2. The plots of
80-20 and 90-10 ratio are shown in the graphs in Figure 6.2, 6.5, 6.3 and 6.6,
respectively.

The Tables 6.1 and 6.2 show that the MAE, MAPE, MSE and RMSE
decrease with the 80-20 and 90-10 ratio. It means that if the number of training
data increases then the predicted values are more close to the actual values.

In Tables 6.1 and 6.2, the results with 90-10 ratio is better than those of

the 70-30 and 80-20 ratios.

6.3 Markov Chain Monte Carlo (MCMC) Model

Markov Chain Monte Carlo (MCMC) methods are particularly attractive
for practical finance applications for many reasons. Firstly, MCMC is a unified
estimation procedure which simultaneously estimates both, parameters and state
variables. Secondly, MCMC methods account for estimation and model risk.
Finally, MCMC is just a conditional simulation methodology, and therefore avoids

any maximization and long unconditional state simulation.

6.3.1 Background Related to the MCMC Model

In the 1950s, Monte Carlo simulations were first used in the physics lit-
erature. In 1970, Hasting studied the optimality of these algorithms and the
Metropolis-Hastings algorithm was introduced (Landauskas, 2011).

MCMC (Andrew, Kevin, and Park, 2011) is essentially Monte Carlo in-
tegration using Markov chains. In brief, Monte Carlo integration draws samples
from a required distribution and then provides sample averages for approximate
expectations. MCMC draws these samples by running a smartly constructed

Markov chain. There are many ways to construct these chains, including the
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Gibbs sampler, which are special cases of the general framework of Metropolis et
al. and Hastings.

Let’s begin with the concept of a Markov process. Consider a stochastic
process {X;}, where each X, assumes a value in the space ©. The process {X;}
is a Markov process if it has the property that, given the value of X;, the values
of Xp,h > t, do not depend on the values X, s < t. In other words, {X;} is a

Markov process if its conditional distribution function satisfies

P(X3|X,,s < 1) = P(Xp|X,), h > t. (6.8)

If {X;} is a discrete-time stochastic process, then the prior property becomes

P(Xp| X0, Xio1,..) = P(X3| X)), h > t. (6.9)

Let A be a subset of ©. The function

P(0,h A) = P(Xy € AlX, = 0),h > t, (6.10)

is called the transition probability function of Markov process.

Consider an inference problem with parameter vector 6 and data X, where
6 € ©. To make inference, we need to know the distribution P(#|X). The idea of
Markov chain simulation is to simulate a Markov process on ©, which converges
to a stationary distribution that is P(6]X).

The solution to Markov chain simulation is to create a Markov process
whose stationary transition distribution is a specified P(f|X) and run the simu-
lation sufficiently long so that the distribution of the current values of the process

is close enough to the stationary transition distribution. So, for a given P(0|X),
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many Markov chains with desired property can be constructed. The methods
that use Markov chain simulation to obtain the distribution P(#|X) is referred

as Markov Chain Monte Carlo (MCMC') methods.

6.3.2 Monte Carlo Modelling of Stock Prices

The process of a stock price is considered as a Brownian motion. Thus its

value satisfies the equation:
dS = pSdt + oSdz. (6.11)

Consider a mean with log normally distributed returns. The random walk of price

of such a mean is modeled according this formula (Wilmott, 2007):
1
S(t+ At) = S(t)exp((d — 502)At +oVALZ). (6.12)

Here random value Z ~ N (0, 1) follows standard normal distribution, A is annual
risk free return and o is annual standard deviation of the logarithm of a stock

price.

6.3.3 Markov chain Monte Carlo (MCMCQ)

Suppose it is needed to generate x; ~ 7w(x). When x; ~ 7(x) is difficult to
sample from, MCMC sampling technique could be performed. In fact MCMC is
a set of techniques used for this purpose. The main idea of it is to construct a

Markov chain {X;}22,, such that

lim P(X; = z) = (). (6.13)

1—00
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A Markov chain is predefined by an initial state P(X, = z9) = g(x¢) and
the transition kernel P(y|z) = P(X;41 = y|X; = z). Stationary distribution

m(x) = lim; . f(z;) is unique if the chain is ergodic. Then:
m(y) = w(x)P(ylz), vy € Q. (6.14)
e
The latter equality could be written as a set of (n — 1) linear equations:

(

m(x2) = w(x1) P(x2|x1) + m(x2) P(22|2e) + ... + 7(2y) P(22|20)

(6.15)

k7T(:Un) = m(x1)P(x,|xy) + w(zo) Play,|z2) + . .+ 7(xn) Pay|z,),

here n := |Q|. There are a total number of (n—1) equations and n(n—1) transition
probabilities P(xj|zy), k =1,...,n, 7 =1,...,n— 1. Thus there exist an infinite
number of transition kernels P(y|z), such that the stationary distribution of the
Markov chain is 7(x).

The Metropolis-Hastings algorithm (Daqgpunar, 2007) is one of the tech-
niques used for constructing such a transition kernel. Its idea is to choose any
other transition kernel Q(y|z). Then there exists a probability that Q(y|x) is

equal to P(y|x),

Pylz) = Qy|r)a(y|x),y # z, a(y|z) € [0,1]. (6.16)

Considering the detailed balance condition of a time-homogeneous Markov chain
yields:

m(2)Qy|r)a(ylz) = 7(y)Q(z|y)a(zly), Va #y. (6.17)

The general solution for eq. (6.17) is a(y|z) = r(z,y)7(y)Q(x|y). It is necessary
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to have a higher acceptance ratio when sampling random numbers, therefor by
adjusting r(z,y) and considering higher acceptance ration while sampling random

numbers (Prokaj, 2009) it is shown that:

a(y|r) = min (1, w) . (6.18)

6.3.4 Nonparametric Probability Density Estimation

Consider a sample consisting of random independent and identically dis-
tributed values X;. Kernel density estimate is chosen to evaluate the probability

density of X;,

; 1 1 /x
flx) = o ileh(x - Xi), Ki(z) = EK (E) , (6.19)
here K (-) is the kernel function, h is its width.

99 = T () dy =
[T K(x)de =1, . f;OOAf( )d 1, (6.20)
K(z) > 0. f(z) > 0.

Below are some kernel functions that are frequently used. The triangular
kernel function is useful if the data has sharp edged distribution. Gaussian kernel
makes the estimate’s PDF plot very smooth.

1 —|zf, [z <1,
K(z) = (tringular), (6.21)

0, x| > 1.

F(1—a?), 2] <1, o
K(x) = (Yapanichnikov), (6.22)

0, |z| > 1.
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K(x) = \/12_71_6122(GCLUSS). (6.23)

Basically, such probability density estimation is about assigning kernel

density to each X; and including weighted sum of all other assignations. The
contribution of any other X; to the probability value at X; is smaller if X; — X
is bigger.

Note that the notation 7(6) is used for the target distribution of interest.
In most cases the target will be the posterior distribution for the mode unknowns,
m(0) = p(fly) by given the observations y.

In MCMC simulation a sequence of values which are not independent but
instead follow a stochastic process called a Markov chain is produced. The simu-
lation use the algorithm to ensure that the chain will take values in the domain
of the unknown 6 and that its limiting distribution will be the target distribution
m(0). This means that there is a method of sampling values from the posterior
distribution and therefore of making Monte Carlo inferences about # in the form
of sample averages and by means of histograms and kernel density estimates.

The MCMC algorithm produces a chain of values in which each value can

depend on the previous value in the sequence.

6.3.5 Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm (Hastings, 1970; Metropolis et
al., 1953) is currently the most general algorithm for MCMC simulation. Its basic
form is easy to explain and implement and it has several useful generalizations
and special cases for different purposes.

The basis of MCMC with the MH algorithm is to reject the original samples

if they are outside the unit circle of the target and replace them by another
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computed sample.
With the MCMC algorithm, a chain of values 6°,6%,...,0Y is generated
in such a way that it can be used as a sample of the target density m(0).

A general Metropolis-Hastings algorithm is in the following:

1. Start from an initial value 6°, and select a proposal distribution g.

2. At each step where the current value is #°~!, propose a candidate for the

new parameter * from the distribution ¢(0°~!, ).

3. If the proposed value 6* is better than the previous value #°~! in the sense
that

T(0%)q(67,0) > m(6'")q(6,0%),
it is accepted unconditionally.

4. If it is not better in the above sense, * is accepted as the new value with a

probability a given by

m(07)q(6",6)

a(f,0%) = min{1, 200,07

}.

5. If 0* is not accepted, then the chain stays at the current value, that is, we

set 0 = §—1.

6. Repeat the simulation from step (2) until enough values have been gener-

ated.

As the MH algorithm is currently the most general algorithm for MCMC
method, the research will simply use this algorithm.
There are many advantages for MCMC. Firstly, it is flexible. Models can

be adjusted as much as desired and it still work well. Secondly, it is reliable: that
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is it will never hang on a local optimum. It is great for pulling out uncertainties
of all kinds. Although the MCMC algorithm is complicated, the inference based

on the posterior distributions is very easy and intuitive.

6.3.6 Simulation and Results of the MCMC Model

Similar to Section 6.2, the same datasets, the X8306JP and the X8411JP,
were simulated by R programming scripts. Next, the author tested the outcomes
of the simulations, which were nonlinear and nonstationary, and plotted them
against the original test datasets (used as a reference), as shown in Figures 6.1
and 6.4.

The graphs are shown in Figures 6.1 and 6.4 where the x-axis represents
963 test data points in the time series and the y-axis represents stock prices
in US dollars. They show the deviations between the simulated graph of the
MCMC model compared with the original datasets. The two graphs are shown
in a line where the x-axis represents the data points in the time series and the
y-axis represents the US dollars stock prices. The next step was to measure the
performance of the MCMC model using a variety of loss estimators, i.e., MAE,
MAPE, MSE, RMSE, R2, AIC, BIC, and Accuracy count (up-down (%)). Table
6.3 and 6.4 show that the MAPE of the X8306JP and the X8411JP with 70-
30 ratio are 9.048187 and 12.72942, respectively. Furthermore, accuracy counts
of the MCMC model for the X8306JP and the X8411JP were better than the
ARIMA model, i.e., 88.44953% and 88.59375%, respectively.

The measurement of the performance of the MCMC model for these two
datasets with 80-20 and 90-10 ratio is shown in Tables 6.3 and 6.4. The plots
of 80-20 and 90-10 ratio shown in the graphs in Figures 6.2, 6.5, 6.3 and 6.6,

respectively.



Table 6.3 Simulation results using the MCMC model to forecast the original

X&8306JP datasets.

Error estimation Ratio

70-30 80-20 90-10
MAE 0.09048187 0.09137966 0.09172327
MAPE 9.048187 9.137966 9.172327
MSE 2056.663 2469.144 3919.649
RMSE 45.35045 49.69048 62.6071
R2 0.9741764  0.9789096  0.9815841
AIC 25292.8 28606.79 31923.19
BIC 25309.96 28624.35 31941.1
Up-Down (%) 88.44953 88.59375 88.71473

Table 6.4 Simulation results using the MCMC model to forecast the original

X8411JP datasets.

Error estimation Ratio

70-30 80-20 90-10
MAE 0.1272942 0.1514191 0.1677348
MAPE 12.72942  15.14191  16.77348
MSE 716.5013  1004.316  1787.101
RMSE 26.76754  31.69095  42.27412
R2 0.9741764 0.9789096 0.9815841
AIC 23504.61  26531.87 29551.3
BIC 23521.77  26549.43  29569.21
Up-Down (%) 88.44953  88.59375  88.71473

7
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Tables 6.3 and 6.4 show that the MAPE of X8306JP and X8411JP are
9.048187 and 12.72942, respectively. Furthermore, accuracy counts of the MCMC
model for X8306JP and X8411JP were better than the ARIMA model, i.e., 8%
for the MCMC and 68.88658% for the ARIMA.

In the Tables 6.3 and 6.4, the results of the 70-30 ratio is better than those
of the 80-20, and 90-10 ratios. That is, for the MCMC model, using more training
datasets does not mean better performance.

By Tables 6.3 and 6.4, the simulation results of the MCMC model are

better than those of the ARIMA model.

6.4 Support Vector Regression (SVR) Model

Support Vector Machine (SVM) (Premanode, 2013, Premanode, Von-
prasert, and Toumazou, 2013) is a well-known approach in the machine learning
community. It is usually implemented for a classification problem in a supervised
learning framework. In case of regression problem, SVM can also be used to

predict or explain the values taken by a continuous dependent variable.

6.4.1 Machine Learning

Machine learning is a field in computer science related with the study of
pattern recognition and computational learning theory. It handles the issue of
programming systems to learn automatically and improve with experience. In
constructing a learning algorithm, a complex pattern is recognized and intelligent
decisions based on the data are made. The possible decisions are too complex to
compute by hand. To solve this problem, machine learning such as artificial neural
networks (ANN) and support vector machines (SVM) were developed. Machine

learning algorithms commonly use probability theory, logic, optimization, search,
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statistics, linear algebra and control theory.

i)

ii)

iii)

iv)

Machine learning algorithm can be organized as follows.

Supervised learning creates a function that maps input to desired outputs.
A training set of examples with the actual targets is provided and based on
this training set; the algorithm generates correct responses for all possible

inputs. Supervised learning is the most well-known method.

Unsupervised learning does not give correct responses, then this algorithm

attempts to recognize similarities between the inputs.

Reinforcement learning lies between supervised and unsupervised learning.
The algorithm is informed when the answer is wrong and there is no ex-
panding pattern to improve performance; so that the algorithm carries on

repeating the loop until it can find the correct answer.

Evolutionary learning learns from biological evolution and adapts to im-

prove the survival rate when the circumstances change.

In 1963, Fisher devised the first algorithm for pattern recognition. Later in

1963, the generalized portrait algorithm, the template for support vector machines

(SVMs), was introduced by Vapnik and Lerner. Currently, the performance of

SVMs is better than other machine learning methods.

Overall, SVMs consists of a set of related supervised learning methods.

The algorithm indicates a hyperplane that characterizes a functional margin,

which holds all possible data points in a finite dimensional nonlinear space. A

kernel function k(z,z’), defines the cross-products separated by the hyperplane.

Each data point shows its vector potential depending on its distance from the

hyperplane.
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6.4.2 Theoretical Consideration Related to the Support

Vector Regression (SVR) Model

SVM can also be used as a regression method, maintaining all the main
features that characterize the algorithm (maximal margin). The Support Vector
Regression (SVR) uses the same principles as the SVM for classification, with only
a few minor differences. First of all, because output is a real number it becomes
very difficult to predict the information at hand, which has infinite possibilities.
In the case of regression, a margin of tolerance (epsilon) is set in approximation to
the SVM which would have already requested from the problem. But besides this
fact, there is another reason: the algorithm is more complicated. However, the
main idea is always the same: to minimize error, individualizing the hyperplane
which maximizes the margin, keeping in mind that part of the error is tolerated.
The support vector algorithm is a nonlinear generalization developed by Vapnik
and Lerner in the sixties.

Suppose we have a training data set (x1,41),. .., (2, ) C X X R, for each
7; € X (where X denotes the space of the input patterns, e.g. X = R?) and
corresponding value y; € R for i = 1,...,¢. In e-SV regression [Vapnik, 1995],
our goal is to find a function f(z) that has at most e deviation from the actually
obtained targets y; for all the training data, and at the same time is as flat as
possible.

The estimating function f is taken in the form:

f(z) = (w-®(x)) + b, (6.24)

where w € R™, b € R is the bias, and ® is a non-linear function from R"” to a high

dimensional space R™ (m > n). The objective is to find the values w and b such
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that the values of f(z) can be determined by minimizing the risk:

Rreo() = €3 L S0)) + 51wl (6:25

where L. is the extension of e-insensitive loss function originally proposed by

Vapnik and defined as:

ly—zl—¢ |y—z|>c¢
L(y,z) = (6.26)

0, otherwise.

By introducing the slack variables ¢; and ¢/, the above problem may be reformu-

lated as
L : x 1 2
Mmimlze C [;(Q +¢) |+ 5”“’”
subject to
Yi—w- (i) —b< e+ (6.27)
w-P(x;) +b—y; < e+
G =0
G =0,
for e =1,2,...,¢ and where C above is a user specified constant.

Solution of the above problem (6.27) using primal dual method leads to
the following dual problem:
Determine the Lagrange multipliers {o;}!_; and {«a}}!_, that maximize

the objective function.
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¢

Qaiaf) = Y wilas—af) €Y (ai—ai) = 5 30 Y (e —ai) ey - ) K i),

i=1 i=1 j=1

subjected to the following conditions:

for i = 1,2,...,¢, where C is a user specified constant and K : X x X — R is

the Mercer Kernel defined by:

K(z,z) = ®(x) - D(2). (6.29)
This solution of the Primal yields

w = Z(ai — ") D(x;). (6.30)

Then b is calculated using Karush-Kuhn-Tucker (KKT) conditions
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a;(e + G —yw - P(x;) +b) =0,
a; (e + G +yw - ®(x;) — b) =0,
(C — az)g = O,

(C—af)F =0, (6.31)

fori=1,2,....,¢.
Since ay,af = 0 and ¢ = 0 for af € (0,C), then b can be computed as

follows:

b=y, —w-P(x;)—¢ for O<a; <C (6.32)

b=y —w-d(x;) +¢ for 0<af <C. (6.33)

For those o; and o in which the z;’s corresponding to 0 < ay; < C'and 0 < o < C
are called support vectors. Using expression for w and b in condition (6.31), f(x)

is computed as:

)4
f(x) = (s = a})(@(w;) - (x)) + b (6.34)

= Dai — oK (i, ) + b. (6.35)

6.4.3 Simulation and Results of the SVR Model

Similar to Section 6.2, the same datasets, the X8306JP and the X8411JP,
were simulated by R programming scripts. Next, we tested the outcomes of the
simulations, which were nonlinear and nonstationary, and plotted them against

the original test datasets (used as a reference), as shown in Figures 6.1 and 6.4.



Table 6.5 Simulation results using the SVR model to forecast the original
X8306JP datasets.

Error estimation Ratio

70-30 80-20 90-10
MAE 0.119858 0.0901522 0.06917873
MAPE 11.9858 9.01522 6.917873
MSE 3961.622  2197.663 1531.346
RMSE 62.94142  46.87924 39.13242
R2 0.9974257 0.9977784  0.9979817
AIC 20368.92  23084.57 25793.04
BIC 21140.94  23874.59 26598.95
Up-Down (%) 71.0718  74.21875 74.60815

Table 6.6 Simulation results using the SVR model to forecast the original
X8411JP datasets.

Error estimation Ratio

70-30 80-20 90-10
MAE 0.1277924 0.09545473 0.08043003
MAPE 12.77924 9.545473 8.043003
MSE 896.418 385.1804 490.3925
RMSE 29.94024 19.62601 22.14481
R2 0.9982478  0.9984209  0.9985441
AIC 17715.23 20131.97 22476.5
BIC 18487.26 20921.99 23282.41

Up-Down(%) 71.38398  T1.5625  73.04075
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The graphs are shown in Figures 6.1 and 6.4 where the x-axis represents
963 test data points in the time series and the y-axis represents stock prices in US
dollars. They show the deviations between the simulated graph of the SVR model
compared with the original datasets. The graphs are shown in a line where the x-
axis represents the data points in the time series and the y-axis represents the US
dollars stock prices. The next step was to measure the performance of the SVR
model using a variety of loss estimators, i.e., MAE, MAPE, MSE, RMSE, R2,
AIC, BIC, and Accuracy count (up-down (%)). Tables 6.5 and 6.6 show that the
MAPE of the X8306JP and the X8411JP are 11.9858 and 12.72942, respectively.
Furthermore, accuracy count of the SVR model for the X8306JP and the X8411JP
were better than the ARIMA model, i.e., 71.0718% and 71.38398%, respectively.

The measurement of the performance of the SVR model for these two
datasets with 80-20 and 90-10 ratio shown in Tables 6.5 and 6.6. The plots
of 80-20 and 90-10 ratio shown in the graphs in Figures 6.2, 6.5, 6.3 and 6.6,
respectively, with the blue lines. As the results in Tables 6.5 and 6.6, show the
MAPE of the results of the X8306JP and the X8411JP datasets decreased to
6.917873 and 8.043003, respectively.

As in Tables 6.5 and 6.6, the results of the 90-10 ratio is better than those
of the 70-30, and 80-20 ratios. That is, for the SVR model, the more training

datasets, the better performance.

6.5 Simulation Results for ARIMA, MCMC, and SVR

This section shows the graphs of the simulation results for the X8306JP
and the X8411JP with the three models as mentioned before.
The graphs are shown in Figures 6.1 and 6.4 where the x-axis represents

963 test data points in the time series and the y-axis represents stock prices in US
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dollars. They show the deviations between the simulated graph of the ARIMA,
MCMC, and SVR models compared with the original datasets. The four graphs
are shown in a line where the x-axis represents the data points in the time series
and the y-axis represents the US dollars stock prices.

In the Figures 6.1 and 6.4, the results of the MCMC and the SVR models
show the better perfomance than those of the ARIMA model. The ARIMA model
can capture just the trend in a short term not a long-run. Comparing the results
for the MCMC and SVR models, some time period those of the MCMC model
perform better than those of the SVR model. And for some period, those of the
SVR model perform better than those of the MCMC model.

The Figures 6.1, 6.4, 6.2, 6.5, 6.3, and 6.6 show that the MCMC and the

SVR models fit the test datatsets better than the ARIMA model.

Simulation results : ARIMA, MCMC, and SVR with 70-30 ratio
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Figure 6.1 The graphs are the simulation using the ARIMA, MCMC, and SVR
models with ratio 70-30 for the X8306JP.
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Simulation results : ARIMA, MCMC, and SVR with 80-20 ratio
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Figure 6.2 The graphs are the simulation using the ARIMA, MCMC, and SVR
models with ratio 80-20 for the X8306JP.

Table 6.7 Simulation results using the ARIMA, MCMC, and SVR models to
forecast the DBKGR datasets.

Error estimation ARIMA MCMC SVR
MAE 0.233773 0.08146731 0.08291266
MAPE 23.3773 8.146731 8.291266
MSE 72.2152 13.05435 12.47678
RMSE 3.532249 3.61308 3.532249
R2 NA  0.9409209 0.9976014
AIC 6359.17 13794.09 6849.144
BIC NA 13811.24 7621.166

Up-Down (%) 56.71176 83.35068 77.93965
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Simulation results : ARIMA, MCMC, and SVR with 90-10 ratio
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Figure 6.3 The graphs are the simulation using the ARIMA, MCMC, and SVR
models with ratio 90-10 for the X8306JP.

Table 6.8 Simulation results using the ARIMA, MCMC, and SVR models to
forecast the GLEFP datasets.

Error estimation ARIMA MCMC SVR
MAE 0.6504123 0.2567641  0.123659
MAPE 65.04123  25.67641 12.3659
MSE 263.7531  49.14653  21.16357
RMSE 4.600389  7.010458  4.600389
R2 NA 0.9409209 0.9978771
AIC 7599.399  15299.97  8080.249
BIC NA  15317.12 8852.272

Up-Down (%) 61.6025  83.35068  81.06139
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The simulation results for the other highly correlated coefficient paired
stocks, the DBKGR and the GLEFP, with 70-30 ratio are shown in Figures 6.7
and 6.8. The measurement of the performance of the ARIMA, MCMC and SVR
models for these two datasets, the DBKGR and the GLEFP, with 70-30 ratio
are shown in Table 6.7 and 6.8 as well. For the DBKGR, Table 6.7 shows that
the MAPE of the MCMC is like that of the SVR model, 8.146731 and 8.291266,
respectively. For the GLEFP, Table 6.8 shows that the MAPE of the MCMC is
greater than that of the SVR model, 25.67641 and 12.3659, respectively. Figures
6.7 and 6.8 show that the SVR model shows the best results for the paired stocks,

the DBGKR and the GLEFP, compared to the ARIMA and the MCMC models.

Simulation results : ARIMA, MCMC, and SVR with 70-30 ratio
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Figure 6.4 The graphs are the simulation using the ARIMA, MCMC, and SVR
models with ratio 70-30 for the X8411JP.
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Simulation results : ARIMA, MCMC, and SVR with 80-20 ratio
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Figure 6.5 The graphs are the simulation using the ARIMA, MCMC, and SVR
models with ratio 80-20 for the X8411JP.
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Simulation results : ARIMA, MCMC, and SVR with 90-10 ratio
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Figure 6.6 The graphs are the simulation using the ARIMA, MCMC, and SVR
models with ratio 90-10 for the X8411JP.
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Figure 6.7 The graphs are the simulations using the ARIMA, MCMC, and
SVR models with ratio 70-30 for the DBKGR.
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Figure 6.8 The graphs are the simulations using the ARIMA, MCMC, and

SVR models with ratio 70-30 for the GLEFP.
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6.6 Conclusion and discussion

At the beginning of this chapter we summarised Chapters I - V| i.e., the
introduction to pairs trading, the data, forecasting methods and a new algorithm
for pairs trading, respectively. The ARIMA model is used in econometrics, while
MCMC and SVR models were introduced from the area of statistical learning
theory. The prediction models can handle nonlinear, non-stationary time series
data, i.e., data retrieve from Global Dow from the year 2002 to 2013. The R
programming scripts and the Matlab script for all simulations in the Chapter V
were written by the author. For hardware, the author used a computer with In-
tel(R) Core(TM) i5-5200U, with 2 x2.4 GHz, 4 GB RAM, and a 64-bit Microsoft

Windows Operating System.



CHAPTER VII
CONCLUSION, DISCUSSION AND FUTURE

WORK

The concept of pairs trading is a market neutral strategy that uses a portfo-
lio of only two securities. A long position is adopted with respect to one safety and
a short position with respect to the other. The strategy of pairs trading requires
adopting a position when the spread is distant from the mean in anticipation of
spread reversion. This thesis introduces a multiclass pairs trading model using
mean reversion and CV that enhances the original approach of mean reversion
pairs trading. The simulation results show that the cointegrated pairs trading
using the proposed method outperforms those of the conventional cointegrated
pairs trading. Thus, benefits of the proposed model are to build a new set of risk
mitigation and maximise returns of cointegrated stocks. After choosing the paired
stocks, if the movement or the future price of the next time step to trade can be
predicted, the risk shall be reduced. Hence, this study combined the pairs trad-
ing model with the prediction model. The simulation results show that the SVR
model and the MCMC model outperform those of the ARIMA model. Future
research could examine the formation of frequency domain datasets rather than
times series as an alternative to correlation coefficient pairing. In SVR model,
it could use a filter for the better results. There are many interesting prediction
models that use in financial time series forecasting, so the author will learn more

about the forecasting research area.
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APPENDIX

PROGRAMME FILES : MATLAB AND R

SCRIPTS

In this appendix, there are Matlab and R scripts programe in this research.

scriptl : Pairs Trading

clear all
%run for first paired stocks
Y%read data of 10 pair of stocks
pairl0_gl = xlsread(’all.X8306JP7030.xlsx’,1);
pairl0_g2 = xlsread(’all.X8411JP7030.xlsx’,1);
[~,num_gl] = size(pairl0O_gl);

[time ,num g2] = size (pairl0_g2);
return_diff = zeros(num gl ,num g2 );
return_cv = zeros (num_gl ,num g2 );
return_cvl = zeros (num_gl ,num g2);
area_diff = zeros(num gl ,num g2 );
for il = 1: 1

for j1 = 1: 1

xpl = pairl0_gl(:,il);

xp2 = pairl0_g2(:,jl);

%calculate mean

mean _xpl = mean(xpl );

mean_xp2 = mean(xp2);

%calculate sd
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sd_xpl = std(xpl);
sd_xp2 = std (xp2);

Y%nomalize data

n_xpl = zeros(time,1);
n_xp2 = zeros (time,1);
for i = 1l:time

n_xpl(i) = (xpl(i)—mean xpl)/sd_xpl;
n_xp2(i) = (xp2(i)—mean xp2)/sd_xp2;
end
%calculate mean of normalized data
mean nxpl = mean(n xpl);
mean nxp2 = mean(n_xp2);
mean _nx1x2 = 0.5%*(mean nxpl+mean nxp2);
%calculate sd of normalized data
sd_nxpl = std(n_xpl);
sd_nxp2 = std (n_xp2);
sd_nx1x2 = 0.5*(sd_nxpl+sd _nxp2);

%calculate return for xpl and xp2

return_xpl = zeros (time,1);
return_xp2 = zeros (time,1);
preturn_xpl = zeros(time,1);
preturn_xp2 = zeros (time,1);

%calculate log return for xpl and xp2

Ireturn_xpl = zeros(time,1);
Ireturn_xp2 = zeros (time,1);
vreturn_xpl = zeros(time,1);
vreturn_xp2 = zeros (time,1);

for t = 2:time



return_xpl(t) = (xpl(t)—xpl(t—1))/xpl(t—

preturn_xpl(t) = xpl(t)*return_xpl(t);

return_xp2(t) = (xp2(t)—xp2(t—1))/xp2(t—

preturn_xp2(t) =

[l

(

(

(
p2(t)*return_xp2(t);
lreturn_xpl(t) = log(xpl(t)/xpl(t—1));
vreturn_xpl(t) = xpl(t)*lreturn_xpl(t);
Ireturn_xp2(t) = log(xp2(t)/xp2(t—1));
vreturn_xp2(t) = xp2(t)*lreturn_xp2(t);

end

%calculate average return

avr_return_xpl = mean(return_xpl);
avr_return_xp2 = mean(return_xp2);
Yset

avr_return_cv = zeros (6,2);

%—————— 1st stock
%for xpl

%set class for xpl

group_xpl_temp = zeros(time,1);
group_xpl = zeros(time,1);
group_xp2 = zeros (time,1);

%find the 1st mean reverse
for k1 = 1:time
if xpl(kl) <= mean xpl
group_xpl_temp(kl) = 1;
elseif xpl(kl) > mean xpl
group_xpl_temp(kl) = 2;
end

end

1);

1);
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%consider group 1
%set c_xpl
xpl_1 = find (group_xpl_temp ==1);
cl_xpl = zeros(size(xpl_1,1),1);
for i = 1:size(xpl_1,1)

cl_xpl(i) = xpl(xpl_1(i));
end
% find 2nd mean reverse
%calculate mean for class 1
m cl_xpl = mean(cl_xpl);

sd_cl_xpl = std(cl_xpl);

% lower mean—————
%set class for xpl
class_xpl = zeros(size(xpl_1,1),1);
for i = 1:size(xpl_1,1)
if cl_xpl(i)<= (m cl_xpl — sd_cl_xpl)
class_xpl(i) = 1;
group_xpl(xpl_1(i)) = class_xpl(i);
elseif cl_xpl(i) > (m_cl_xpl — sd_cl_xpl) &
cl_xpl(i) < (m_cl_xpl + sd_cl_xpl)
class_xpl(i) = 2;
group_xpl(xpl_1(i)) = class_xpl(i);
elseif cl_xpl(i)>=m cl_xpl + sd_cl_xpl
class_xpl(i) = 3;
group_xpl(xpl_1(i)) = class_xpl(i);
end
end

new_cl_xpl = [cl_xpl class_xpl];



%

%set CV
cvl = zeros (6,1);
num _CV = zeros (6,2);

% class 1

%calculate mean, var, cv for class 1
cll_xpl _temp = find(class_xpl = 1);
cll_xpl = zeros(size(cll_xpl_temp,1),1);
num CV(1,1) = size(cll _xpl temp,1);
for i = 1:size(cll_xpl_temp,l)
cll_xpl(i) = c¢l_xpl(cll_xpl temp(i));
end
m cll_xpl = mean(cll_xpl);
var_cll_xpl = std(cll_xpl) 2;
cvl(1l) = std(cll_xpl)/m cll_xpl;
%calculate return
return_cvll = zeros(size(cll_xpl_temp,1),1);
for i = 2:size(cll_xpl temp,1)
return_cvl1(i) = log(cll_xpl(i)/cll_xpl(i—1));
end
avr_return_cv(1,1) = mean(return_cvll);

class 2

%calculate mean, var, cv for class 1
cl2_xpl_temp = find(class_xpl = 2);
cl2_xpl = zeros(size(cl2_xpl_temp,1),1);
num CV(2,1) = size(cl2_xpl_temp,1);
for i = 1l:size(cl2_xpl temp,1)

cl2_xpl(i) = c¢l_xpl(cl2_xpl_temp(i));

end
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m cl2 xpl = mean(cl2_xpl);
var_cl2_xpl = std(cl2_xpl)~2;
cvl(2) = std(cl2_xpl)/m cl2_xpl;
%calculate return
return_cvl2 = zeros(size(cl2_xpl _temp,1),1);
for i = 2:size(cl2_xpl_temp,1)
return_cvl12(i) = log(cl2_xpl(i)/cl2_xpl(i—1));
end

avr_return_cv(2,1) = mean(return_cv12);

%o

class 3
%calculate mean, var, cv for class 1
c13_xpl_temp = find (class_xpl = 3);
cl3_xpl = zeros(size(cl3_xpl_temp,1),1);
num CV(3,1) = size(cl3_xpl_temp,1);
for i = 1:size(cl3_xpl temp,1)
cl3_xpl(i) = ¢l_xpl(cl3_xpl temp(i));
end
m cl3_xpl = mean(cl13_xpl);
var_cl13_xpl = std(cl3_xpl)~2;
cvl(3) = std(cl3_xpl)/m cl13_xpl;
%calculate return
return_cvl3 = zeros(size(cl3_xpl _temp,1),1);
for i = 2:size(cl3_xpl temp,1)
return_cv13(i) =
log(c13_xpl(i)/cl3 _xpl(i—1));
end

avr_return_cv(3,1) = mean(return_cv13);



%o

%consider group 2
%set c_xp2
xpl_2 = find (group_xpl_temp — 2);
c2_xpl = zeros(size(xpl_2,1),1);
for i = 1:size(xpl_2,1)

c2_xpl(i) = xpl(xpl_2(i));
end
% find 2nd mean reverse
%calculate mean for class 1
m c2_xpl = mean(c2_xpl);

sd_c2_xpl = std(c2_xpl);

upper mean—

%set class for xpl

class_xpl2 = zeros(size(xpl_2,1),1);

for i = 1:size(xpl_2,1)

if c2_xpl(i)<= (m_c2 _xpl — sd_c2_xpl)

class_xpl2(i) = 4;

group_xpl(xpl_2(i)) = class_xpl2(i);
elseif ¢2_xpl(i) > (m_c2_xpl — sd_c2 xpl) &

c2_xpl(i) < (m_c2_xpl + sd_c2_xpl)

class_xpl2(i) = 5;

group_xpl(xpl_2(i)) = class_xpl2(i);

elseif ¢2_xpl(i)>=m c2_xpl + sd_c2_xpl

class_xpl2(i) = 6;

group_xpl(xpl_2(i)) = class_xpl2(i);

end
end

new_c2 xpl = [c2_xpl class_xpl2];
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class 4

%calculate mean, var, cv for class 4
cl4_xpl_temp = find(class_xpl2 = 4);
cl4_xpl = zeros(size(cl4d_xpl_temp,1),1);
num CV(4,1) = size(cl4d_xpl_temp,1);
for i = 1:size(cl4d_xpl_temp,1)
cld _xpl(i) = ¢2_xpl(cld _xpl_temp(i));
end
m cl4 _xpl = mean(cl4d_xpl);
var_cl4_xpl = std(cld xpl)~2;
cvl(4) = std(cld_xpl)/m cld_xpl;
%calculate return
return_cvl4 = zeros(size(cl4d_xpl_temp,1),1);
for i = 2:size(cld_xpl _temp,1)
return_cvl4(i) = log(cld_xpl(i)/cld_xpl(i—1));
end

avr_return_cv(4,1) = mean(return_cvl4);

class 5

%calculate mean, var, cv for class 5
cl5_xpl_temp = find(class_xpl2 = 5);
cl5_xpl = zeros(size(cl5_xpl_temp,1),1);
num CV(5,1) = size (cl5_xpl_temp,1);
for i = 1l:size(cl5_xpl temp,1)

cl5_xpl(i) = ¢2_xpl(clb_xpl_temp(i));
end
m cl5_xpl = mean(cl5_xpl);
var_cl5_xpl = std(cl5_xpl)~2;

cvl(5) = std(cl5_xpl)/m cl5_xpl;
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%calculate return
return_cvl5 = zeros(size(clb_xpl_temp,1),1);
for i = 2:size(cl5_xpl temp,1)
return_cv15(i) = log(cl5_xpl(i)/clb_xpl(i—1));
end

avr_return_cv(5,1) = mean(return_cvl5);

% class 6
%calculate mean, var, cv for class 6
cl6_xpl_temp = find(class_xpl2 =— 6);
cl6_xpl = zeros(size(cl6_xpl_temp,1),1);

num CV(6,1) = size (cl6_xpl_temp,1);

for i = 1l:size(cl6_xpl temp,1)
cl6_xpl(i) = ¢2_xpl(cl6_xpl temp(i));

end

m cl6_xpl = mean(cl6_xpl);

var_cl6_xpl = std(cl6_xpl)~ 2;

cvl(6) = std(el6_xpl)/m cl6_xpl;

%calculate return

return_cvl6 = zeros(size (cl6_xpl_temp,1),1);

for i = 2:size(cl6_xpl_temp,1)
return_cv16(i) = log(cl6_xpl(i)/cl6_xpl(i—1));

end

avr_return_cv (6,1) = mean(return_cv16);

%———— 2nd stock

%o

%for xp2
%set class for xp2

group_xp2_temp = zeros (time,1);
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%find the 1st mean reverse
for i = 1:time
if xp2(i) <= mean xp2
group_xp2_temp(i) = 1;
elseif xp2(i) > mean xp2
group_xp2_temp (i) = 2;
end
end
%consider group 1
%set c_xpl
xp2_ 1 = find (group_xp2 temp ==1);
cl_xp2 = zeros(size(xp2_1,1),1);
for i = 1l:size(xp2_1,1)
cl_xp2(i) = xp2(xp2_1(i));
end
% find 2nd mean reverse
%calculate mean for class 1
m _cl_xp2 = mean(cl_xp2);
sd_cl_xp2 = std(cl_xp2);

% lower mean————

%set class for xp2
class_xp2 = zeros(size(xp2_1,1),1);
for i = 1l:size(xp2_1,1)
if cl_xp2(i)<= (m_cl_xp2 — sd_cl_xp2)
class_xp2(i) = 1;
group_xp2(xp2_1(i)) = class_xp2(i);

elseif cl_xp2(i) > (m_cl_xp2 — sd_cl_xp2)&&



%

cl_xp2(i) < (m_cl_xp2 + sd_cl_xp2)
class_xp2(i) = 2;
group_xp2(xp2_1(i)) = class_xp2(i);

elseif cl_xp2(i)>=m cl_xp2 + sd_cl_xp2
class_xp2(i) = 3;

group_xp2(xp2_1(i)) = class_xp2(i);

end

end

new_cl_xp2 = [cl_xp2 class_xp2];
%set CV

cv2 = zeros (6,1);

class 1

%calculate mean, var, cv for class 1
cll_xp2 temp = find(class_xp2 =— 1);
cll_xp2 = zeros(size(cll_xp2 temp,1l),1);
num CV(1,2) = size(cll_xp2 temp,1);
for i = 1l:size(cll_xp2 temp,1)

cll_xp2(i) = cl_xp2(cll_xp2_ temp(i));
end
m cll_xp2 = mean(cll_xp2);
var_cll_xp2 = std(cll_xp2)~2;
cv2(1l) = std(cll_xp2)/m cll_xp2;
%calculate return
return_cv2l = zeros(size(cll_xp2 temp,1),1);
for i = 2:size(cll_xp2 temp,1)

return_cv21(i) = log(cll_xp2(i)/cll_xp2(i—1));

end

avr_return_cv(1,2) = mean(return_cv2l);
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%o

class 2

%o

%calculate mean, var, cv for class 2
cl2_xp2 temp = find(class_xp2 =— 2);
cl2_xp2 = zeros(size(cl2_xp2 temp,1),1);
num CV(2,2) = size(cl2_xp2 temp,1);
for i = 1:size(cl2_xp2 temp,1)
cl2_xp2(i) = cl_xp2(cl2_xp2 temp(i));
end
m cl2_xp2 = mean(cl2_xp2);
var_cl2_xp2 = std(cl2 xp2)” 2;
cv2(2) = std(cl2_xp2)/m cl2_xp2;
%calculate return
return_cv22 = zeros(size(cl2_xp2 temp,1l),1);
for i = 2:size(cl2_xp2 temp,1)
return_cv22(i) = log(cl2_xp2(i)/cl2_xp2(i—1));
end
avr_return_cv(2,2) = mean(return_cv22);

class 3————

%calculate mean, var, cv for class 3
cl13_xp2 temp = find(class_xp2 = 3);
cl3_xp2 = zeros(size(cl3_xp2 temp,1),1);
num CV(3,2) = size(cl3_xp2 temp,1);
for i = 1:size(cl3_xp2 temp,1)

cl3 _xp2(i) = cl_xp2(cl3_xp2_temp(i));
end
m cl3_xp2 = mean(cl3_xp2);
var_cl13_xp2 = std(cl3_xp2)~2;

cv2(3) = std(cl3_xp2)/m cl3_xp2;

113



114

%calculate return
return_cv23 = zeros(size(cl3_xp2 temp,1),1);
for i = 2:size(cl3_xp2 temp,1)
return_cv23(i) = log(cl3_xp2(i)/cl3_xp2(i—1));
end
avr_return_cv(3,2) = mean(return_cv23);
%consider group 2
%set c_xpl
xp2_2 = find (group_xp2 temp =— 2);
c2_xp2 = zeros(size(xp2_2,1),1);
for i = 1l:size(xp2_2,1)
c2_xp2(i) = xp2(xp2_2(1));
end
% find 2nd mean reverse
%calculate mean for class 1
m c2_xp2 = mean(c2 xp2);

sd_c2_ xp2 = std(c2_xp2);

% upper mean——
%set class for xpl
class_xp22 = zeros(size(xp2_2,1),1);
for i = 1l:size(xp2_2,1)
if c2_xp2(i)<= (m_c2 xp2 — sd_c2 xp2)
class_xp22(i) = 4;
group_xp2(xp2_2(i)) = class_xp22(i);
elseif ¢2 xp2(i) > (m_c2 xp2 — sd_c2_xp2) &
c2 xp2(i) < (m_c2_xp2 + sd_c2 xp2)
class_xp22(i) = b5;

group_xp2(xp2_2(i)) = class_xp22(i);
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elseif ¢2 xp2(i)>=m c2_xp2 + sd_c2_xp2
class_xp22(i) = 6;

group_xp2(xp2_2(i)) = class_xp22(i);

end

end

new_c2_xp2 = [c2_xp2 class_xp22];
% class 4

%calculate mean, var, cv for class 4
cl4_xp2 temp = find (class_xp22 — 4);
cl4d _xp2 = zeros(size(cl4d_xp2_temp,l),1);
num CV(4,2) = size(cld xp2 temp,1);
for i = 1:size(cld_xp2 temp,l)

cld _xp2(i) = ¢2_xp2(cld_xp2_temp(i));
end
m cl4 xp2 = mean(cl4d xp2);
var_cl4_xp2 = std(cld _xp2)” 2;
cv2(4) = std(ecld _xp2)/m cl4 xp2;
%calculate return
return_cv24 = zeros(size(cld_xp2 temp,1),1);
for i = 2:size(cl4_xp2 temp,1)

return_cv24 (i) = log(cl4_xp2(i)/cld _xp2(i—1));

end
avr_return_cv(4,2) = mean(return_cv24);
% class ——————

%calculate mean, var, cv for class 5
cl5_xp2 temp = find(class_xp22 — 5);
cl5_xp2 = zeros(size(cl5_xp2 temp,1),1);

num CV(5,2) = size(clb_xp2 temp,1l);
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for i = 1:size(cl5_xp2_ temp,1)
cl5_xp2(i) = c2_xp2(clb_xp2 temp(i));
end
m cl5_xp2 = mean(cl5_xp2);
var_cl5_xp2 = std(clb5_xp2)~ 2;
cv2(5) = std(clb5_xp2)/m cl5_xp2;
%calculate return
return_cv25 = zeros (size (cl5_xp2 temp,1),1);
for i = 2:size(cl5_xp2_temp,1l)
return_cv25(i) =

log(cl5 _xp2(i)/clb _xp2(i—1));

end
avr_return_cv(5,2) = mean(return_cv25);
% class 6—————

%calculate mean, var, cv for class 6
cl6_xp2 temp = find (class_xp22 = 6);
cl6_xp2 = zeros(size(cl6_xp2 temp,1),1);
num _CV(6,2) = size (cl6_xp2_temp,1);
for i = 1l:size(cl6_xp2 temp,1)

cl6_xp2(i) = c2_xp2(cl6_xp2_temp(i));
end
m cl6_xp2 = mean(cl6_xp2);
var_cl6_xp2 = std(cl6_xp2)~ 2;
cv2(6) = std(cl6_xp2)/m cl6_xp2;
%calculate return
return_cv26 = zeros(size(cl6_xp2 temp,1),1);
for i = 2:size(cl6_xp2 temp,1)

return_cv26(i) = log(cl6_xp2(i)/cl6_xp2(i—1));
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end

avr_return_cv(6,2) = mean(return_cv26);

TCV
CV = [cvl cv2];

avr_return_cv;

% calculate prob. using MG———
%for x1 and x2

no_pl = zeros (6,6);
no_p2 = zeros (6,6);
for pp =1 : time-—1
formim =1 : 6
if group_xpl(pp) = mm
for cc = 1: 6
if group_xpl(pp+1) = cc
no_pl (mm, cc) = no_pl (mm, cc)+1;
end
end
end
end
end
for pp =1 : time-—1
forrm =1 : 6
if group_xp2(pp) = mm

for cc = 1: 6

if group_xp2(pp+1) = cc
no_p2(mm, cc) = no_p2(mm, cc)+1;

end

end
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end
end
end
%calculate transition matrix
p_nol = [no _pl(1,:)/sum(no_pl(1,:)) ;

no_pl(2,:)/sum(no_pl(2,:));

no_pl(3,:)/sum(no_pl(3,:)) ;
no_pl(4,:)/sum(no_pl(4,:)) ;
no_pl(5,:)/sum(no_pl(5,:)) ;
no_pl (6,:) /sum(no_pl (6,:)) |;
p_no2 = [no_p2(1,:)/sum(no_p2(1,:)) ;

no_p2(3,:)/sum(no_p2(3,:)) ;
no_p2(4,:)/sum(no_p2(4,:)) ;
no_p2(5,:)/sum(no_p2(5,:)) ;
no_p2(6,:)/sum(no_p2(6,:)) |;
%case : trad every day
%for x1
suml _all = 0;
tradel__all = zeros(time,1);
wl_all = zeros (time,1);
for tt = 1: time

tradel_all (tt) = 1;
suml_all = suml all+tradel all(tt);
wl all(tt) = 1/suml_all;

end

%for x2

sum2_ all = 0;
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trade2_all = zeros(time,1);
w2_all = zeros(time,1);
for tt = 1: time

trade2_all (tt) = 1;
sum2_all = sum2_all+trade2_all (tt);
w2_all(tt) = 1/sum2_all;
end
%calculate return
casel_RE = zeros (time,1);
c = 0.25;
tc = 2*log((1—c)/(1+¢c));
%calculate return : case trade every day
case0_RE = zeros (time,1);
for i = 1:time
if xpl(i) < xp2(1i)
%long x1, short x2
case0_RE(i) =
Ireturn_xpl(i)*wl_all(i) —
Ireturn_xp2(i)*w2_all(i) + tc;
elseif xpl(i) > xp2(1i)
%long x2, short xI1
case0_RE(i) =
—lreturn_xpl(i)*wl_all(i) +
Ireturn_xp2(i)*w2_all(i) + tc;
else case(0_RE(i) = 0;
end

end

return_case0) = sum(case(0_RE);
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% case : CV
%for x1
suml = 0;
tradel = zeros (time,1);
wl = zeros (time,1);
pp_no_1 = zeros(time,1);

for tt = 1: time—2
if group_xpl(tt+1) = group_xpl(tt)
if group_xpl(tt+2) = group_xpl(tt+1)
tradel (tt+1) = 1;
%prob. of cv of time tt+1 given cv of time tt+1
pp_no_1(tt+1) =
p_nol (group_xpl(tt),
group_xpl(tt+1));
suml = suml+tradel (tt—+1);
wl(tt+1) = 1/suml;
else tradel (tt+1) = 0;
suml = suml+tradel (tt+1);
wl(tt+1) = 1/suml;
end
else tradel (tt+1) = 0;
suml = suml+tradel (tt+1);
wl(tt+1) = 1/suml;
end
end
% weight for x1
Ymum_tradel = sum(tradel);

nwl = 1/sum(tradel);
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%for x2

sum2 = 0;

trade2 = zeros (time,1);
w2 = zeros (time,1);
pp_no_2 = zeros(time,1);

for tt = 1: time—2
if group_xp2(tt+1) = group_xp2(tt)
if group_xp2(tt+2) = group_xp2(tt+1)
trade2 (tt+1) = 1;
%prob. of cv of time tt+1 given cv of time tt+1
pp_no_2(tt+1) = p_no2(group_xp2(tt),
group_xp2(tt+1));
sum2 = sum2+trade2 (tt+1);
w2(tt+1) = 1/sum2;
else trade2(tt+1) = 0;
sum2 = sum2+trade2 (tt+1);
w2(tt+1) = 1/sum?2;
end
else trade2(tt+1) = 0;
sum2 = sum2+trade2 (tt+1);
w2(tt+1) = 1/sum2;
end
end
% weight for x2
nw2 = 1/sum(trade2);
profit_xpl = sum(preturn_xpl);

%calculate diff
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diff = zeros(time,1);
for i =1 :time
diff (i) = abs(xpl(i)—xp2(i));
end
area_diff (il ,jl) = sum(diff);

%calculate return using diff

t1 = zeros (time,1);
t2 = zeros (time,1);
swl=0;

sw2=0;

wtl = zeros (time,1);
wt2 = zeros (time,1);
for i = 1:time

if diff(i) >= 0.1*min(xpl(i),xp2(i))

t1(i) = 1;

t2(i) = 1;

swl = swl +t1(i);

sw2 = sw2 +t2(i);

wtl(i) = 1/swl;

wt2(i) = 1/sw2;

if xpl(i) < xp2(1i)

%long x1, short x2
casel_RE(i) =
Ireturn_xpl(i)*wtl(i) —
Ireturn_xp2(i)*wt2(i) + tc;

elseif xpl(i) > xp2(i)

%long x2, short x1

casel_RE(i) =
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—lreturn_xpl(i)*wtl(i) +
Ireturn_xp2(i)*wt2(i) + tc;
else casel_RE(i) = 0;
end
else casel_RE(i) =0;
end
end
sum_casel RE = sum(casel RE);
prob_return = sum casel_RE;
%calculate ratio between x1 and x2
xpl_xp2 = zeros(time,1);
for i =1 : time
xpl_xp2(i) = xpl(i)/xp2(i);
end
%calculate return with CV
case2_RE = zeros (time,1);

case21l_RE = zeros(time,1);

num_tradel = sum(tradel );
num_trade2 = sum(trade2);
for i = 1:time

if tradel(i) =1
if trade2(i) = 1
%long x1, short x2
if diff(i) >= 0.1*min(xpl(i),xp2(i))
if xpl(i) < xp2(i)
%long x1, short x2
case2 RE(i) =

Ireturn_xpl(i)*wl(i)*pp_no_1(i)—



case21_RE(i

Ireturn_xp2(i)*w2(i)*pp_no_2(i) + tc;
) =
Ireturn_xpl (i)*wl(i)—
Ireturn_xp2(i)*w2(i) + tc;
elseif xpl(i) > xp2(1i)
%long x2, short xI1
case2_RE(i) =
—lreturn_xpl(i)*wl(i)*pp_no_1(i)+
Ireturn_xp2(i)*w2(i)*pp_no_2(i) + tc;
case21_RE(i) =
—lreturn_xpl(i)*wl(i)+
Ireturn_xp2(i)*w2(i) + tc;
end
end
end

end

end

dif_case_2 21 = abs(case2]l_RFE-case2_RE);
sum_case2_RE 1 =sum(case2_RE);
return_diff (il ,jl) = 0.75*sum_casel_RE;
return_cv (il ,jl1) = sum case2 RE 1;

%consider for each range of time to trade without CV

for kkk = 1: 3

d_pair = [t1 t2];
kd_pair = zeros (time+1,1);
d_pairl = zeros (time,1);

for i = 1:time

if t1(i) =1
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if t2(i) = 1
if diff(i) >= 0.1*min(xpl(i),xp2(i))
kd pair(i) = i;
d_pairl (i) = 1;
end
end
end
end
pd_t0 = zeros(time,1);

pd_tl = zeros (time,1);

temp_td = zeros (time,1);
ptd = 1;
for i= 1 : time

if kd_pair(i)>0
temp_td (i) = kd_pair(i);
if kd_pair(i4+l) = 0
pd _t1(ptd) = max(temp_ td);
temp_td (~temp_td) = nan;
pd_t0(ptd) = min(temp td);
temp_td = zeros (time,1);
ptd = ptd+1;
end
end
end
pd_t0 = pd_tO0(isfinite (pd_t0));
pd _t0 = pd_t0(pd _t0~= 0);
pd_t1 = pd _tl(isfinite (pd_t1));

pd_t1 = pd_tl(pd_tl~= 0);



end

%price
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no_pd t = zeros(time,1);
[stdl rr] = size(pd_t0);
for i =1 : stdl
no pd t(i) = pd_t1(i)—pd _t0(i)+1;
end
no_pd t = no_pd t(no_pd t~= 0);
% cutting trading time < 3
for i =1 : stdl
if no pd t(i) < 3
no_pd_t(i) = 0;
cut0 = pd_t0(1i);

cutl = pd_t1(1i);

for ic = cut0 : cutl
Tl 1OV=2] 04
t2(ic) = 0;
end
end
end
block

xpl_0d_block = zeros(stdl ,1

)
xp2_0d_block = zeros(stdl , 1);
xpl_1d_block = zeros(stdl , 1)
xp2_1d_block = zeros(stdl , 1)
for i =1 : stdl
xpl_0d_block (i) = xpl(pd _t0(i));
xpl_1d _block (i) = xpl(pd_t1(i));

xp2_0d_block (i) = xp2(pd_t0(i));
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xp2_1d_block (i) = xp2(pd_t1(i));
end
xd_block = [xpl_0d_block xpl_1d block
xp2_0d_block xp2_1d_block |;

%calculate return using diff

t1 = zeros(time,1);
t2 = zeros (time,1);
swl=0;

sw2=0;

wtl = zeros (time,1);
wt2 = zeros (time,1);
for i = 1:time

if diff(i) >= 0.1*min(xpl(i),xp2(i))

t1(i) = 1;

£2(i) = 1;

swl = swl +t1(i);

sw2 = sw2 +t2(1i);

wtl(i) = 1/swl;

wt2(i) = 1/sw2;

if xpl(i) < xp2(i)

%long x1, short x2
casel_RE(i) =
Ireturn_xpl(i)*wtl(i) —
Ireturn_xp2(i)*wt2(i) + tc;

elseif xpl(i) > xp2(1i)

%long x2, short xI1
casel_RE(i) =

—lreturn_xpl(i)*wtl(i) +



Y%return

%conside

for kk =

Ireturn_xp2(i)*wt2(i) 4+ tc;
else casel_RE(i) = 0;
end
else casel_RE(i) =0;
end
end
sum casel_RE = sum(casel_RE);
prob_return = 0.75*sum_casel_RE;
return_diff (il ,jl) = sum_casel_RE;
block
red_block = zeros(stdl ,1);
for i =1 : stdl
tt0 = pd_t0(i);
ttl = pd _t1(i);
for ib = tt0 : ttl
red_block (i) =
red_block (i)+ casel RE(ib);
end
end
returnd__block = abs(red_block);
r for each range of time to trade
1 : 3
trade_pair = [tradel trade2];
k _pair = zeros (time+1,1);
trade_pairl = zeros(time,1);
for i = 1:time
if tradel(i) = 1

if trade2(i) = 1
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if diff(i) >=
0.1*min(xpl(i),xp2(i))
k_pair(i) = i;
trade_pairl (i) = 1;
end
end
end
end

case4_RE = zeros (time,1);

sum_case4 zeros (time,1);
p_t0 = zeros (time,1);

p_tl = zeros(time,1);

temp _t = zeros(time,1);
pt = 1;
for i=1 : time

if k pair(i)>0
temp_t (i) = k_pair(i);
if k pair(i+l) = 0
p_tl(pt) = max(temp_t);
temp_t (~temp_t) = nan;
p_t0(pt) = min(temp_t);
temp_t = zeros(time,1);
pt = pt+1;
end
end
end
p_ t0 = p t0(isfinite (p_t0));

p_t0 = p _t0(p_t0~= 0);
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p tl =p tl(isfinite (p_t1));
ptl =p tl(p_tl~= 0);
no_p t = zeros(time,1);
for i =1 :size(p_t0)
no p t(i) = p_t1(i)—p_t0(i)+1;
end
nop t =no p t(no p t~= 0);
[st rrl] = size(p_t0);
% cutting trading time < 3
for i =1 : st
if nop t(i) < 3
no_p t(i) = 0;
cut0 = p _t0(i);
cutl = p_t1(i);
for ic = cut0 : cutl
tradel (ic) = 0;
trade2(ic) = 0;
end
end
end
end

%price block

xpl_0_block = zeros(st,1);
xp2_0_block = zeros(st,1);
xpl_1_block = zeros(st,1);
xp2 1 _block = zeros(st,1);

for i =1 : st

xpl_0_block (i) = xpl(p_t0(i));



end

xpl_1_block (i)

xp2_0_block (i)

xp2_1_block (1)

xpl_cv_block

xp2_cv_block
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xpl(p_t1(i));
xp2(p_t0(i));
xp2(p_t1(i));
group_xpl (p_t0(i));

group_xpl(p_t0(i));

x_block = [xpl_0_block xpl_1_block

xp2_0_block xp2 1 block |;

%CV block

xpl_0_cv_block
xp2_0_cv_block
xpl_1_cv_block

xp2_1_cv_block

for

i=1 st

xpl_0_cv_block (i)

xp2 0_cv_block (i)

end

group_xpl(p_t0(i));

group_xpl(p_t0(i));

cv_block = [xpl_0_cv_block xp2 0_cv_block ];

%prob block

ppl_block

pp2_block

for

end

i= 1 st
ppl_block (i)

pp2_block (i)

zeros (st ,1);

zeros (st ,1);

pp_no_1(p_t0(i));

pp_no_2(p_t0(i));

pp_block = [ppl_block pp2 block];

%calculate

ratio between x1 and x2

xpl_xp2 = zeros(time,1);
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for i =1 : time

xpl xp2(i) = xpl(i)/xp2(i);
end
%calculate return with CV
case2_RE = zeros (time,1);

case21_RE = zeros (time,1);

num_tradel = sum(tradel );
num_trade2 = sum(trade2 );
for i = 1l:time

if tradel(i) =1
if trade2(i) = 1
%long x1, short x2
if diff(i) >= 0.1*min(xpl(i),xp2(i))
if xpl(i) < xp2(1)
%long x1, short x2
case2_RE(i) =
Ireturn_xpl(i)*wl(i)*pp_no 1(i)—
Ireturn_xp2(i)*w2(i)*pp_no_2(i) +
tc;
case2l_RE(i) =
Ireturn_xpl(i)*wl(i)—
Ireturn_xp2(i)*w2(i) + tc;
elseif xpl(i) > xp2(i)
%long x2, short x1
case2_RE(i) =
—lreturn_xpl(i)*wl(i)*pp_no 1(i)+
Ireturn_xp2(i)*w2(i)*pp_no_2(i) +

tc;



133

case21_RE(i) =
—lreturn_xpl(i)*wl(i)+
Ireturn_xp2(i)*w2(i) + tc;
end
end
end
end
end
dif_case_2 21 = abs(case2l_RFE-case2_RE);
sum case2_RE 1 =sum(case2_RE);
return_cv (il ,jl) = sum case2 RE 1;
%return block
re_block = zeros(st,1);
for i =1 : st
tt0 = p_t0(i);
ttl = p t1(i);
for ib = tt0 : ttl
re_block (i) = re_block(i)+
case2_RE(ib);
end
end
return_block = abs(re_block);
%calculate return using CV and xpl,xp2 %no prob.

case3_RE = zeros(time,1);

for i = 1:time
if tradel(i) =1
if trade2(i) =1

%long x1, short x2
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if diff(i) >= 0.1*min(xpl(i),xp2(i))
if xpl(i) < xp2(1i)
%long x1, short x2
case3_RE(i) =
Ireturn_xpl(i)*wl(i) —
Ireturn_xp2(i)*w2(i) 4+ tc;
elseif xpl(i) > xp2(i)
%long x2, short x1
case3_RE(i) =
—lreturn_xpl(i)*wl(i) +
Ireturn_xp2(i)*w2(i) +
te;
else case3_RE(i) = 0;
end
else case3 RE(i) = 0;
end
else case3 RE(i) = 0;
end
else case3_RE(i) =0;
end
end
sum case3_RE 1 =sum(case3_RE);
return_cvl1 (il ,jl) = sum_case3_RE 1;
Y%return block
rel_block = zeros(st,1);
for i =1 : st
tt0 = p t0(i);

ttl = p_t1(i);



for ib = tt0 : tt1l

rel_block (i) = rel_block(i)+

case21_RE(ib);
end

end

returnl_block = abs(rel_block);

end
end
%take absolute
abs_r_diff = abs(return_diff);
abs r cv = abs(return_cv);

abs r cvl = abs(return_cvl);
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scriptl : correlation coefficient of stocks, plot the actual, the normalized, and

the ration of the highest correlation coefficient paired stocks prices.

#Correlation Code
rm(list=1s())

library (kernlab)

#Read data

shl <— as.data.frame(read.table(”shl

sh2 <— as.data.frame(read.table(”sh2.
sh3 <— as.data.frame(read.table(”sh3.

sh4 <— as.data.frame(read.table(”sh4.

txt?”

txt”,
txt”,

txt”

header=TRUE) )
header=TRUE))
header=TRUE))

header=TRUE))

data <— cbind.data.frame(shl, sh2, sh3, sh4)

#Remove data that have NA more tha 2/3 of data

limit <— 2*nrow(data)/3



data <— data[, which(as.numeric(colSums(!is.na(data)))>

limit )]

#Remove all row of NA data

data <— na.omit(data)

# set date of data
Date <— data$Date

#remove Date column

data$Date <— NULL

cor.out <— cor(normal.data)

write.table(cor.out,”cor.out.txt”)

#function for finding the highest correlation

mosthighlycorrelated <— function(mydataframe, numtoreport)

{

# find the correlations

cormatrix <— cor(mydataframe)

# set the correlations on the diagonal or
# lower triangle

# to zero,

# so they will not be reported as the
#highest ones:

diag(cormatrix) <— 0
cormatrix [lower. tri(cormatrix )] <— 0

# flatten the matriz into a dataframe for

#easy sorting
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fm <— as.data.frame(as.table(cormatrix))
# assign human—friendly names
names(fm) <— c(”First. Variable”,
”Second . Variable”,” Correlation”)
# sort and print the top n correlations
head (fm |[order (abs(fm$Correlation ),
decreasing=T) ,],
n=numtoreport)
}
#code for finding
topl00.out <— mosthighlycorrelated (normal.data, 100)
#write file
write.table(topl100.out,”topl00.out.txt”)
#plot actual data
#save plot
pdf (’C:/Users /N. WowoW Ekkarntrong/Dropbox/Apps/
Texpad/draft_thesisBook/d_TB 1 PT 2014/
X83X84plotActual.pdf’)
plot (data$X8306JP, type = ’1’, col = 'blue’, ylim = ¢(80,2000))
lines (data$X8411JP, type = '1’, col = ’red’)
dev. off ()
# calculate return
n <— length(data)
#lrest <— log(prices[—1]/prices[—n])
require (quantmod)
#Delt (a)
Irets.X8306JP <— Delt (data$X8306JP)

Irets .X8411JP <— Delt (data$X8411JP)



#plot return

#save plot

pdf(’C:/Users/N. WowoW  Ekkarntrong/Dropbox/Apps/

Texpad/draft_thesisBook/d TB 1_PT 2014/

X83X84plotReturns. pdf”)

plot (lrets .X8306JP, type = ’1’, col = ’blue’)

lines (lrets.X8411JP, type = '"1’, col = ’'red”’)

legend ("topleft”, legend=c(”X8306JP”, "X8411JP”),
col= c(”blue”, "red”), lty=1:2, cex=0.8)

# add a title and subtitle

title ("Returns”)

dev. off ()

#write actual Paired stock data
pair.actual <— cbind(data$X8306JP ,data$X8411JP)
colnames(pair.actual) <— ¢(7X8306JP”, "X8411JP”)

write.table(pair.actual ,”X8384.actual.txt”)

# Norlmalized data

library (clusterSim)

normal . X8306JP <— data.Normalization (data$X8306JP ,

type="nl” jnormalization="column”)

normal . X8411JP <— data.Normalization (data$X8411JP,

type="nl” jnormalization="column”)

#Plot normalized
#save plot

pdf(’C:/Users/N. WowoW  Ekkarntrong/Dropbox/Apps/
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Texpad/draft_thesisBook/d TB 1_PT 2014/

X83X84normal. pdf’)

plot (normal.X8306JP, type = 71”7, col = "blue”)

lines (normal.X8411JP, col="red”)

legend ("topleft”, legend=c(”X8306JP”, ”"X8411JP"),
col= c(”blue”, "red”), lty=1:2, cex=0.8)

title (”"Normalized data”)

dev. off ()

#Plot Ratio

#save plot

pdf(’C:/Users/N. WowoW  Ekkarntrong/Dropbox/Apps/

Texpad/draft__thesisBook/d TB 1 _PT 2014/

X83X84ratio. pdf’)

plot (data$X8306JP/data$X8411JP, type = "17)

legend (”"topleft”, legend=c(”X8306JP/X8411JP"),
col= c(”black”), lty=1:2, cex=0.8)

title (”ratio ,0fX8306JP and X8411JP”)

dev. off ()

script2: simulation of ARIMA, MCMC, and SVR models for X8306JP
and X8411JP with 70-30 ratio

rm(list=1s())

#Data Section

Y R N -]
LA A AN A A A A A A B A A B A A AR A B AR B A A B A AR A B A A R A A B AR R B A A B A A B A B B AR A A B A |

#Read data



140

shl <— read.table(”shl.txt”, header=TRUE)
sh2 <— read.table(”sh2.txt”, header=ITRUE)
sh3 <— read.table(”sh3.txt”, header=ITRUE)
sh4 <— read.table(”sh4.txt”, header=TRUE)
data <— cbind(shl, sh2, sh3, sh4)

data <— data|—1]

#Remove data that have NA more tha 2/3 of data
limit <— 2*nrow(data)/3
data <— data[, which(as.numeric(colSums (

!is.na(data))) > limit )]

#Remove all row of NA data

data <— na.omit(data)

data <— as.matrix(sapply(data, as.numeric))
data <— as.data.frame(data)

index <— 1 : ceiling(length(data[,1])*.7)
data.train <— data|index, ]

data.test <— data[—index, ]

#Variables Selection
A~
#X8306JP

X8306JP .model <— lm(X8306JP~., data.train)
summary ( X8306JP . model )

X8306JP . variable <— c(# MMMUS”, "ABBSS”,
"ABTUS” , 7AAUS” , "AXPUS”, "AMGN”, #7AALLN”,

" ABIBB” ,



#7GIM”,

"TUS”, "BA.LN”, "BBVASM”, "BACUS”, "BKUS”,
"BASGR” , "BAXUS”,

"BHARTIIN” , "BHPAU”, "BP.LN”, ”X5108JP”, "CVXUS”,
"X941HK” , ”"SGOFP” |

"CMIG4” , ”COPUS”, "CSGNVX”, "DEUS”, "DBKGR”,
"DDUS” , "HOANGR”, "EBAYUS”,

"EDPPL” | 7”X330HK” , "FDXUS”, ”"FCXUS”, ”GEUS”,
"GILDUS” , "GOOGUS”, "HPQUS” ,

"HSBALN” , ”X13HK”, "INTCUS”, "IBMUS”, "JNJUS”,
"JPMUS” , #7X6301JP 7,

"X066570KS”, "MCFP”, "X8411JP”  ”"NDAQUS”, "NABAU”,
"NG.LN”, "NWSAUS" ,

"NKEUS” , ”X5401JP”, "PFEUS”, "POTCN”, "PGUS”,
"RILIN”, ”BBCN”, "ROSW”,

"RYCN” , ”X005930KS”, "SLBUS”, ”SIECR”, "GLEFP”,
"X6758JP”, "LUVUS”,

7X4502JP”, "TEFSM”, ”X6502JP”, ”X7203JP”, "UCGIM” ,
"UPSUS” , "UTXUS”,

"VALESBZ” , "VIEFP”, "VWSDC”, "VODLN”, ”X8306JP")
X8306JP.data <— data.train|[ , (names(data.train)

%in% X8306JP .variable )]

#X8411JP

X8411JP .model <— Ilm(X8411JP~., data.train)
summary ( X8411JP . model)

X8411JP.variable <— c("MMMUS”, ”"ABBSS”, ”ABTUS”,

"AAUS” , #5"ALVGR”,
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"AALLN” #97”ABIBB”,

"TUS”, "BACUS”, "BKUS”, #”BASGR”,

"BHARTIIN” ,

"BHPAU” , "BNPFP”, "BAUS”, "BP.LN”, "X5108JP”,
"X7751JT” ,"CVXUS” , #"X9/1HK ",

"CSCOUS” , "CLUS”, "SGOFP”, "COPUS”

"CSGNVX” , "DAIGR” , "DEUS”, "DDUS”, "EBAYUS”
"X330HK” , "FDXUS” , "GSKUS”, "GOOGUS”, "HPQUS”,
"INTCUS” , "IBMUS”, "JNJUS”, #"JPMUS”,
"X6301JP”, "X066570KS”, "X8306JP", #"MONUS”,

"NABAU” , "NG.LN”, "NWSAUS”, ”"X7974JP”, ”"X5401JP”

"X6752JP” , "PETRABZ” , "PFEUS” , #7”BBCN”,

"ROSW” ; "RYCN” , ”SLBUS”, ”SIEGR”, "GLEFP”,
"X6758JP” ) "LUVUS” , "TEESM” , "TSCOLN”, "TWXUS” ,
"X6502JP” , "FPFP” , #7X7203JP”

"UBSNVX” |, "UIXUS”, "VALE5BZ” , ”"VIEFP” 6 7"VZUS”,
"VWSDC” , "VODLN” , "WMIUS”, "WFCUS”, ”"X8411JP")
X8411JP.data <— data.train|[ , (names(data.train)

%in% X8411JP.variable)]

#SVR Section

#Ill/I/lIII/IllIlI/II/IlI/II/I/I/II/I/I/II/I/I/III

library (kernlab)

#X8306JP
svr.X8306JP.rbfdot <— ksvm(X8306JP~. 6 X8306JP .data,

kernel = ”rbfdot”)
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svr.X8306JP.rbfdot.error <— svr.X8306JP.rbfdot@error
svr.X8306JP . polydot <— ksvm (X8306JP~.  X8306JP .data,

kernel = ”polydot”)

svr.X8306JP . polydot.error <— svr.X8306JP.polydot@error
svr.X8306JP.vanilladot <— ksvm (X8306JP~., X8306JP.data,
kernel = ”vanilladot”)

svr.X8306JP . vanilladot .error <— svr.X8306JP.vanilladot@error
svr.X8306JP . tanhdot <— ksvm (X8306JP~., X8306JP.data,
kernel = ”tanhdot”)

svr.X8306JP.tanhdot.error <— svr.X8306JP.tanhdot@error
svr.X8306JP . laplacedot <— ksvm(X8306JP~., X8306JP.data,
kernel = ”laplacedot”)

svr.X8306JP.laplacedot .error <— svr.X8306JP.laplacedot@error
svr.X8306JP . besseldot <— ksvm (X8306JP~., X8306JP.data,
kernel = ”besseldot”)

svr.X8306JP . besseldot .error <— svr.X8306JP.besseldot@error
svr.train.error <— cbind(svr.X8306JP.rbfdot.error,
svr.X8306JP . polydot.error

svr.X8306JP . polydot.error, svr.X8306JP.vanilladot.error
svr.X8306JP.tanhdot.error , svr.X8306JP.laplacedot.error
svr.X8306JP . besseldot . error)

svr.train.error .min <— min(svr.train.error)

if(svr.train.error.min = svr.X8306JP.rbfdot.error)

{
svr.X8306JP . predict <— predict (svr.X8306JP.rbfdot ,
data. test)

}else if (svr.train.error.min = svr.X8306JP.polydot.error)

{



svr . X8306JP .

data. test)

telse if (svr.

{

svr . X8306JP .

data. test)

telse if (svr.

{

svr . X8306JP .

data. test)

}else if (svr.

{

svr . X8306JP .

data. test)

}else if (svr.

{

svr . X8306JP .

data. test)

}

predict <—

train.error

predict <—

train.error

predict <—

train.error

predict <—

train.error

predict <—
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predict (svr.X8306JP. polydot ,

.min = svr.X8306JP. vanilladot.error)

predict (svr.X8306JP. vanilladot ,

.min = svr.X8306JP.tanhdot.error)

predict (svr.X8306JP.tanhdot ,

.min =— svr.X8306JP.laplacedot.error)

predict (svr.X8306JP.laplacedot ,

.min = svr.X8306JP. besseldot.error)

predict (svr.X8306JP. besseldot ,

ntest <— length(data.test$X8306JP)

mae. svr . X8306JP <— sum(abs((data.test$X8306JP —

svr.X8306JP.predict)/data. test $X8306JP)) /ntest

mape . svr . X8306JP <— mae.svr.X8306JP*100

mse. svr.X8306JP <— sum((svr.X8306JP.predict —

data. test $X8306JP)"2) /ntest

rmse . svr . X8306JP <— sqrt(mse.svr.X8306JP)

error .svr.X8306JP <— cbind (mae.svr.X8306JP, mape.svr.X8306JP,

mse. svr.X8306JP, rmse.svr.X8306JP)
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error .svr.X8306JP

#X8411JP

svr.X8411JP.rbfdot <— ksvm(X8411JP~., X8411JP.data,

kernel = "rbfdot”)

svr.X8411JP.rbfdot.error <— svr.X8411JP.rbfdot@error
svr.X8411JP . polydot <— ksvm (X8411JP~., X8411JP.data,
kernel = 7polydot”)

svr.X8411JP . polydot.error <— svr.X8411JP.polydot@error
svr.X8411JP.vanilladot <— ksvm (X8411JP~., X8411JP.data,
kernel = ”vanilladot”)

svr.X8411JP . vanilladot .error <— svr.X8411JP.vanilladot@error
svr.X8411JP . tanhdot <— ksvm(X8411JP~., X8411JP.data,
kernel = ”tanhdot”)

svr.X8411JP.tanhdot.error <— svr.X8411JP.tanhdot@error
svr.X8411JP.laplacedot <— ksvm(X8411JP~., X8411JP.data,
kernel = ”laplacedot”)

svr.X8411JP.laplacedot .error <— svr.X8411JP.laplacedot@error
svr.X8411JP . besseldot <— ksvm (X8411JP~., X8411JP.data,
kernel = ”besseldot”)

svr.X8411JP . besseldot .error <— svr.X8411JP.besseldot@error
svr.train.error <— cbind(svr.X8411JP.rbfdot.error ,
svr.X8411JP . polydot.error, svr.X8411JP.polydot.error
svr.X8411JP.vanilladot .error ,svr.X8411JP.tanhdot.error ,
svr.X8411JP.laplacedot .error, svr.X8411JP.besseldot.error)
svr.train.error.min <— min(svr.train.error)

if(svr.train.error.min = svr.X8411JP.rbfdot.error)

{



svr.X8411JP.

data. test)

telse if (svr.

{

svr.X8411JP.

data. test)

telse if (svr.

{

svr.X8411JP.

data. test)

}else if (svr.

{

svr.X8411JP.

data. test)

}else if (svr.

{

svr.X8411JP.

data. test)

lelse if (svr.

{

svr.X8411JP.

data. test)

predict <—

train.error

predict <—

train.error

predict <—

train.error

predict <—

train.error

predict <—

train.error

predict <—
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predict (svr.X8411JP.rbfdot ,

.min = svr.X8411JP.polydot.error)

predict (svr.X8411JP. polydot ,

.min = svr.X8411JP.vanilladot.error)

predict (svr.X8411JP. vanilladot ,

.min =— svr.X8411JP.tanhdot.error)

predict (svr.X8411JP . tanhdot ,

.min = svr.X8411JP.laplacedot.error)

predict (svr.X8411JP.laplacedot ,

.min = svr.X8411JP. besseldot.error)

predict (svr.X8411JP. besseldot ,

ntest <— length(data.test$X8411JP)

mae. svr.X8411JP <— sum(abs((data.test$X8411JP —

svr.X8411JP.predict)/data. test$X8411JP)) /ntest

mape . svr . X8411JP <— mae.svr.X8411JP*100
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mse.svr.X8411JP <— sum((svr.X8411JP.predict —

data. test $X8411JP)"2)/ntest

rmse.svr.X8411JP <— sqrt(mse.svr.X8411JP)

error.svr.X8411JP <— cbind (mae.svr.X8411JP ,mape.svr.X8411JP,
mse.svr.X8411JP, rmse.svr.X8411JP)

error .svr.X8411JP

H#ARIMA section

/
#IIIIII!I/IIII!III/II/I/I/II/I!IIIIIIIIIIIIIII

#X8306JP

arima . X8306JP .data <— ts(data.train$X8306JP)
arima . X8306JP .model <— arima (arima.X8306JP .data,
order = ¢ (1,0,0))

arima . X8306JP . predict <— (predict(arima.X8306JP .model,
n.ahead = ntest))$pred

mae. arima . X8306JP <— sum(abs((data. test$X8306JP —
arima . X8306JP . predict ) /data. test $X8306JP)) /ntest
mape . arima . X8306JP <— mae. arima . X8306JP*100

mse. arima . X8306JP <— sum((arima.X8306JP.predict —
data. test $X8306JP)"2) /ntest

rmse. arima . X8306JP <— sqrt (mse.svr.X8306JP)

error .arima.X8306JP <— cbind(mae. arima .X8306JP ,
mape. arima . X8306JP, mse.arima .X8306JP ,

rmse. arima . X8306JP)error .arima.X8306JP

#X8411JP

arima .X8411JP.data <— ts(data.train$X8411JP)

arima . X8411JP .model <— arima (arima.X8411JP .data,
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order = ¢(1,0,0))

arima .X8411JP . predict <— (predict(

arima . X8411JP .model, n.ahead = ntest))$pred

mae . arima . X8411JP <— sum(abs((data. test$X8411JP —
arima .X8411JP . predict)/data. test $X8411JP)) /ntest
mape . arima . X8411JP <— mae. arima .X8411JP*100

mse . arima . X8411JP <— sum((arima.X8411JP .predict —
data. test$X8411JP)"2) /ntest

rmse. arima . X8411JP <— sqrt(mse.svr.X8411JP)

error .arima.X8411JP <— cbind (mae.arima .X8411JP
mape.arima .X8411JP, mse.arima.X8411JP,
rmse.arima.X8411JP)error.arima.X8411JP

HAMCMC' section

#IlI/I/IIlIlI/I/IIlI/I//IIIlIlI/I/II/I/I/IIII/

library (MCMCpack)

AX8306.JP

memc . X8306JP . model <— MCMCregress( X8306JP~X8411JP
data = data.train)

memc . X8306JP .summary <— summary (mcme. X8306JP . model)
memc. X8306JP . intercept <— mcmc.X8306JP .summary$statistics [1]
memc . X8306JP . coef <— memc. X8306JP .summary$statistics [2]
meme. X8306JP . predict <— (data.test$X8411JP *
meme . X8306JP . coef)+ meme. X8306JP . intercept

mae . mcmc . X8306JP <— sum(abs((data. test $X8306JP —

mcme . X8306JP . predict ) /data. test $X8306JP)) /ntest

mape . memce. X8306JP <— mae.mcme. X8306JP*100

mse . memc . X8306JP <— sum ( (memce. X8306JP . predict —

data.test$X8306JP ) 2) /ntest
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rmse .memc . X8306JP <— sqrt (mse.memc. X8306JP )

error .mcmc. X8306JP <— cbind (mae.mcmc. X8306JP ,
mape . mcmc. X8306JP , mse.mcmc. X8306JP ,

rmse . mcmc. X8306JP ) error .memc. X8306JP

#X8411JP

mcme. X8411JP . model <—

MCMCregress( X8411JP~X8306JP, data = data.train)

meme. X8411JP .summary <— summary (mcmc. X8411JP . model)
meme. X8411JP . intercept <— memc. X8411JP .summary$statistics [1]
memc. X8411JP . coef <— memce. X8411JP .summary$statistics [2]
meme. X8411JP . predict <— (data.test$X8306JP * mcmc.X8411JP . coef)
+ mecme. X8411JP . intercept

mae . mcmc. X8411JP <— sum(abs((data. test $X8411JP —

meme. X8411JP . predict ) /data. test $X8411JP)) /ntest

mape . memc. X8411JP <— mae.mecme. X8411JP*100

mse . memc. X8411JP <— sum( (meme. X8411JP . predict —

data. test $X8411JP)"2) /ntest

rmse . mcmc. X8411JP <— sqrt (mse.memc. X8411JP)

error .memc. X8411JP <— cbind (mae.mcme. X8411JP |

mape . mcmc. X8411JP, mse.mcmc. X8411JP |

rmse . memc. X8411JP)

error .mecmc. X8411JP

#Summary

X8306JP .summary . data <— as.data.frame(cbind (
data. test $X8306JP ,

svr.X8306JP . predict, arima.X8306JP.predict,

meme . X8306JP . predict))
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colnames (X8306JP .summary.data) <— c¢(”Original”,
"SVR”, 7ARIMA” | "MCMC”)

X8411JP .summary.data <— as.data.frame(cbind(

data. test $X8411JP,

svr.X8411JP.predict, arima.X8411JP.predict,

meme. X8411JP . predict))

colnames (X8411JP .summary.data) <— c(”Original”,
"SVR”, 7ARIMA” | "MCMC”)

#Plot X8306JP#save plot

pdf(’C:/Users/N. WowoW  Ekkarntrong/Dropbox/Apps/Texpad/
draft_thesisBook/d TB 1 PT 2014/X8306JPplot7030.pdf’")
plot (X8306JP .summary.data$Original , type = 717,
ylim = ¢(300,800),

xlab = 7time(Date)”, ylab = ”"Stock, price”)

lines (X8306JP .summary. data$ARIMA, col="red”)

lines (X8306JP .summary. data$MCMC, col="green”)
lines (X8306JP .summary . data$SVR, col="blue”)
legend (" topleft”, legend=c(”actual X8306JP",
"ARIMA” , "MCMC” , "SVR”),

col= c(”black”, "red”, 7green”, "blue”), lty=1:2,
cex=0.8)

# add a title and subtitle

title (”Simulation results  : ARIMA, MCMC, and, SVR”,
"for ,X8306JP”)

dev. off ()

#Plot X8411JP

#save plot

pdf(’C:/Users/N. WowoW Ekkarntrong/Dropbox/Apps/Texpad/



draft_thesisBook/d TB 1 _PT 2014/X8411JPplot7030.pdf")

plot (X8411JP .summary.data$Original , type = 717,
ylim = ¢(80,300),

xlab = "time(Date)”, ylab = ”"Stock,price”)

lines (X8411JP .summary. data$ARIMA, col="red”)
lines (X8411JP .summary. data$MCMC, col="green”)
lines (X8411JP .summary . data$SVR, col="blue”)
legend (" topleft”, legend=c(”actual X8411JP",
"ARIMA” | "MCMC” , "SVR”) ,

col= c(”black”, "red”, 7green”, "blue”), lty=1:2,
cex=0.8)

# add a title and subtitle

title (”Simulation results  : ARIMA, MCMC, and, SVR”,
"for, X8411JP")

dev. off ()

#considering trend section

N R N N N N -
T r i

# set number of data
n <— nrow(data.test)—1

X8306JP . actual <— data. test$X8306JP

# X8306JP

# lag for svr actual && predicted

lag . X8306JP . actual <— diff(X8306JP.actual)
lag.svr.X8306JP <— diff(svr.X8306JP.predict)
#set count wvector for count a right direction ;
#initial value

svr.count. direction <— matrix(0,n—1,1)
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#for loop
for (i in 1 : n)
{
if (lag.X8306JP.actual[i] >= 0 &&
lag.svr.X8306JP[i] >= 0){
svr.count. direction[i] <— 1
} else if (lag.X8306JP.actual|[i] < 0 &&
lag.svr.X8306JP[i] < 0){
svr.count.direction [i] <~ 1
} else

svr.count. direction[i] <— 0

# lag for memc predicted
lag .meme. X8306JP <— diff (memc. X8306JP . predict)
#set count wvector for count a right direction ;
#initial value
meme. count . direction <— matrix(0,n—1,1)
#for loop
for (i in 1 : n)
{
if (lag.X8306JP.actuall[i] >= 0 &
lag .mecmc. X8306JP [i] >= 0){
meme. count . direction [i] <— 1
} else if (lag.X8306JP.actual[i] < 0 &&
lag .meme. X8306JP[i] < 0){
meme. count . direction [1] <— 1

} else



meme. count . direction[i] <— 0
}
# lag for arima predicted
lag .arima.X8306JP <— diff(arima.X8306JP.predict)
#set count wvector for count a right direction ;
#initial value
arima.count. direction <— matrix(0,n—1,1)
#for loop
for (i in 1 : n)
{
if (lag.X8306JP.actual[i] >= 0 &&
lag .arima.X8306JP[i] >= 0){
arima.count. direction[i]| <— 1
} else if (lag.X8306JP.actual[i] < 0 &&
lag .arima.X8306JP[i] < 0){
arima.count. direction[i] < 1
} else
arima.count. direction[i] <— 0
}
right . direction .X8306JP <— cbind (sum(arima.count. direction),
sum (mecmc. count . direction ), sum(svr.count. direction))
percent . direction .X8306JP <—

right . direction .X8306JP/(n—1)*100

# X8411JP
X8411JP.actual <— data.test$X8411JP
# lag for svr actual && predicted

lag . X8411JP.actual <— diff(X8411JP.actual)
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lag.svr.X8411JP <— diff(svr.X8411JP.predict)
#set count wvector for count a right direction ;
#initial value
svr.count. direction <— matrix(0,n—1,1)
#for loop
for (i in 1 : n)
{
if (lag.X8411JP.actual[i] >= 0 &&
lag .svr.X8411JP[i] >= 0){
svr.count. direction [i] <— 1
} else if (lag.X8411JP.actual|[i] < 0 &&
lag.svr.X8411JP[i] < 0){
svr.count.direction [i] <— 1
} else
svr.count. direction[i] <- 0
}
# lag for memc predicted
lag .meme. X8411JP <— diff (meme. X8411JP . predict)
#set count wvector for count a right direction ;
#initial value
mcme. count . direction <— matrix(0,n—1,1)
#for loop
for (i in 1 : n)
{
if (lag.X8411JP.actual[i] >= 0 &&
lag .meme. X8411JP[i] >= 0){
meme. count . direction [1] <— 1

} else if (lag.X8411JP.actual|[i] < 0 &&
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lag .meme. X8411JP[i] < 0){
meme. count . direction [i] <— 1
} else
meme. count . direction [i] <— 0
}
# lag for arima predicted
lag .arima.X8411JP <— diff(arima.X8411JP.predict)
#set count wvector for count a right direction ;
#initial value
arima.count. direction <— matrix(0,n—1,1)
#for loop
for (i in 1 : n)
{
if (lag.X8411JP.actual[i] >= 0 &&
lag.arima.X8411JP[i] >= 0){
arima.count. direction[i] < 1
} else if (lag.X8411JP.actual|[i] < 0 &&
lag.arima.X8411JP[i] < 0){
arima.count. direction[i] <— 1
} else

arima.count. direction[i] <— 0

right . direction .X8411JP <— cbind (sum(arima.count. direction),
sum (mecmc. count . direction ), sum(svr.count. direction))
percent . direction . X8411JP <—

right . direction .X8411JP/(n—1)*100

|/
#IIIIII!IIIIII!IIIIII!IIIIII!IIIIII!I!IIII!I!III
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library (AICcmodavg)

library (MuMIn)
#IIIII/IIII/flllll/llll/flllll/llll/flllll/llll/flllllllllll/flllllllllll/flllllll/ll/
#SVR

4X8306.JP

a.svr.X8306JP <— AIC(lm(X8306JP~., data.train))
b.svr.X8306JP <— BIC(lm(X8306JP~., data.train))
r.svr.X8306JP <—

summary (lm(X8306JP~., data.train))$r.squared
info.svr.X8306JP <— cbind(a.svr.X8306JP,

b.svr.X8306JP, r.svr.X8306JP)

4X8/11JP

a.svr.X8411JP <— AIC(Im(X8411JP~., data.train))
b.svr.X8411JP <— BIC(lm(X8411JP~., data.train))
r.svr.X8411JP <—

summary (lm(X8411JP~. | data.train))$r.squared
info.svr.X8411JP <— cbind(a.svr.X8411JP,
b.svr.X8411JP, r.svr.X8411JP)

HARIMA

#X8306JP

a.arima .X8306JP <— AIC(arima.X8306JP .model)
#ac.arima . X8306JP <— AICc(arima.X8306JP.model)
b.arima.X8306JP <— BIC(arima.X8306JP .model)
r.arima.X8306JP <— 0

info.arima.X8306JP <— cbind(a.arima.X8306JP
b.arima.X8306JP, r.arima.X8306JP)

#X8/11JP



a.arima.X8411JP <— AIC(arima.X8411JP .model)
#ac.arima.X8411JP <— AlCc(arima.X8411JP.model)
b.arima.X8411JP <— BIC(arima.X8411JP .model)
r.arima.X8411JP <— 0

info.arima.X8411JP <— cbind(a.arima.X8411JP
b.arima.X8411JP, r.arima.X8411JP)

#ACMC

#X8306JP

a.mecmc. X8306JP <— AIC(Im(X8306JP~X8411JP ,
data.train))

ac .mcmc. X8306JP <— AICc(lm(X8306JP~X8411JP,
data.train))

b.mcme. X8306JP <— BIC (Im(X8306JP~X8411JP ,
data.train))

r .mecmc. X8306JP <—

summary (lm(X8306JP~X8411JP, data.train))8$r.squared

info .memc. X8306JP <— cbind (a.mcmc. X8306JP ,
ac.mcmc. X8306JP ,

b.mcme. X8306JP , r.mcmc.X8306JP)

#X8411JP

a.meme. X8411JP <— AIC(lm(X8411JP~X8306JP ,
data.train))

ac.mecmc. X8411JP <— AICc(lm(X8411JP~X8306JP ,
data.train))

b.meme. X8411JP <— BIC (Im(X8411JP~X8306JP
data.train))

r .mcmc.X8411JP <—

summary (lm(X8411JP~X8306JP , data.train))$r.squared
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info.mecme. X8411JP <— cbind (a.mcmc. X8411JP
ac.mcmc.X8411JP ,

b.mecme. X8411JP, r.mcmc.X8411JP)

#IlI/I/I/lIlI/I/IIlIlI/I/I/lIlIII/I/lIlIII/I/

## Normality tests

# The statement performing Shapiro—Wilk test
# is shapiro.test()and

# it supplies W statistic and the pvalue:
shapiro. test (data$X8306JP)
shapiro. test (data$X8411JP)

library (tseries) ## package tseries loading
jarque .bera. test (data$X8306JP)

library (nortest) ## package loading

# performs Shapiro—Francia test

sf.test (data$X8306JP )

# performs Anderson—Darling test

ad.test (data$X8306JP)

adf. test (data$X8306JP)

# performs Lilliefors test

lillie .test (data$X8306JP)

# performs Pearson’s chi—square test
pearson . test (data$X8306JP)

library (fUnitRoots)
jarque.bera. test (data$X8411JP)

# performs Shapiro—Francia test

sf.test (data$X8411JP)

# performs Anderson—Darling test

ad.test (data$X8411JP)
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adf.test (data$X8411JP)

# performs Lilliefors test

lillie .test (data$X8411JP)

# performs Pearson’s chi—square test

pearson. test (data$X8411JP)
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