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There are three principal objectives for this thesis work: (1) to identify optimal
method for the formulation of landslide susceptibility map of the preferred study area,
Khao Phanom Bencha in Krabi Province, from list of proposed candidates, (2) to develop
the associated landslide hazard and risk maps for the study area through application of
the optimal approach found earlier, (3) to assess landslide-induced runout hazard for
the area through application of the preferred Flow-R runout model. To achieve the first
objective, seven prominent methods were evaluated and compared for accuracy of the
eventual output. These are, the conventional weighted linear combination (WLC),
analytical hierarchy process (AHP), frequency ratio (FR), integrated FR-fuzzy, multiple
logistic regression (MLR), artificial neural network (ANN), and integrated ANN-fuzzy
models. In all cases, ten important contributing factors to landslide occurrence in the
tropical region were utilized as input data for the generation of the susceptibility maps,
i.e., elevation, slope gradient, slope aspect, slope curvature, topographic wetness index,
distance from drainage, lithology, distance from lineament, soil texture and land use/land
cover (LULC). The accuracy assessment were done using two different methods; the

Area-Under-Curve (AUC) and the Receiver Operating Characteristic (ROC) curve analysis.
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It was found that, in terms of average accuracy of the yielded maps, the four
most successful methods are FR (93.98%), MLR (92.98%), FR-Fuzzy (92.84%), ANN-
Fuzzy (92.47%) and while the least productive one is AHP (83.37%). Through, these
top four methods are highly comparable in terms of achieved accuracy, however, FR
was finally considered to be an optimal candidate regarding to its simplest and most
comprehensible concept. Effects of rainfall incorporation in the construction of the
preferred susceptibility map in two cases (long-term annual average and short-term
3-days accumulated) were also examined with relatively low impact evidenced (<0.5%
change in average accuracy).

Landslide hazard maps were then derived based on integration of the obtained
FR-based susceptibility map and rainfall probability of occurrence maps in two cases;
100 mm/day and 300 mm/3-days (assumed critical conditions for landslide initiation in
the area). The classified maps of both cases indicated that only small proportion of land
(< 10%) located in the high to very high hazard zone while about 80% situated in the
very low to low hazard one. The landslide risk maps for five groups of the element at
risk (i.e. building, para rubber, horticulture, field crop, paddy field) were then made
through the integration of the produced hazard and vulnerability maps. Results in both
cases indicated that just about 0.005% of the total area stayed in the high to very high
risk zone while nearly 100% had very low to low risk level. In addition, the associated
runout hazard map was also produced through the empirical Flow-R model to identify
area at high risk from landslide-induced runout. The output map seemed to agree well

with evidences seen on the reference high-resolution satellite imagery.

School of Remote Sensing Student’s Signature

Academic Year 2015 Advisor’s Signature
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CHAPTER |

INTRODUCTION

1.1 Problem background and significance of the study

Landslide is a well-known natural phenomenon involving a mass movement of
soil (in forms of earth or debris) or rock downward along the slope under gravitational
influence (Varnes, 1984; Cruden, 1991). At present, it has been regarded as being one
of the most destructive hazards which causes substantial loss of life and great damage
to property and natural environment worldwide (Dilley, Chen and Deichmann, 2005;
Petley, 2012). Therefore, prior knowledge of the areas prone to substantial landslide is
highly essential to most countries, especially those situated in tropical region, to help
preparing proper strategies for effective prevention or mitigation of potential landslide
occurrences or their associated risk. Conventionally, a detailed map illustrating spatial
distribution of these landslide-prone areas is called a landslide susceptibility map.

Attention on the identification of landslide prone areas (or susceptibility
analysis) and the assessment of its potential impacts on human and environment (risk
analysis) has been risen dramatically in recent decades due to mounting public concern
on these issues. And, as validity of a derived landslide susceptibility map depends
principally on the used methods and their input data, comparative study to evaluate
efficiency of several recommended methods in the preparation of landslide

susceptibility maps for an area of interest was reported more often in recent years, such



as, in Yilmaz (2009); Choi, Oh, Lee, Lee, and Lee (2012); Xu, Xu, Dai, and Saraf
(2012); and Park, Choi, Kim, and Kim (2013). Main objectives of these studies are to
identify capability and of the evaluated methods in generating a satisfied landslide
susceptibility map for the preferred area from which most effective procedure can then
be identified for further use in the subsequent hazard and risk analysis afterwards.

In Thailand, landslide has also become constant threat to large number of people
residing in mountainous region, especially those located in the northern and southern
parts. Prominent landslide events normally occur during monsoon months of May to
early October for most parts of the country due to high influence of the heavy rainfall
over a susceptible area. However, an exception was evidenced for major landslides on
eastern side of southern Thailand which usually took place during local rainy months
of October to January. For examples, in August 2001, strong flashflood and disastrous
landslide (in the form of debris flow) struck a remote village in Phetchabun Province at
night which led to at least 136 deaths and more than 5 million US dollars in damage of
property (Figure 1.1) (Yumuang, 2006). In May 2006, similar incidences occurred in
Uttaradit, Phrae and Sukhothai Province resulted in 87 deaths and damages of more
than 10 million US dollars (Asian Disaster Preparedness Center, 2006). List of some
past notable landslide incidences is summarized in Table 1.1.

Through, imminent impact of landslide phenomenon to people and environment
situating within the landslide-prone area is well acknowledged in Thailand at present,
however, publications of research work on this issue are still relatively infrequent and
mostly attributed to the preparation of landslide susceptibility maps by a single chosen

method in which a validation process of the derived map was often ignored. However,



development of the associated landslide risk map was rarely found (e.g. in Tanavud,
Yongchalermchai, Bennui and Navanugraha, 2000; Soralump and Kulsuwan, 2006).

Therefore, to broaden traditional scope of the research on landslide
susceptibility mapping and landslide risk analysis in Thailand, this thesis shall conduct
comparative efficiency assessment for several widely-acknowledged methods in the
formulation of landslide susceptibility maps for a concerned area from which the
optimum algorithm shall be identified by the attained accuracy of their output maps
along with associated benefits from their applications. This preferred methodology
shall be then applied to build the landslide susceptibility maps for the entire area which
are used as a basis for generating the associated landslide hazard and risk maps
afterwards.

The area of interest in this study is the Khao Phanom Bencha Watershed in Krabi
Province which experienced several devastated landslide incidences in recent decades
(Figures 1.2 and 1.3). As mentioned earlier, this area was selected as case study based
on previous reports of the expansive landslide activity found therein due to its rather
rough mountainous landscape and fairly high amount of annual rainfall (DMR, 2011).
Rapid changes in land use of the area due to continuous conversion of the forest lands
into several kinds of economic agricultural plantations (e.g. para rubber and oil palm)
and communities into the known landslide-prone locations have also become a cause
for high public concern in recent years. This is because forest clearance for expansive
plantations of the shallow-rooted crops, orchards, or trees, might enable more frequent
appearances of massive landslide incidence with greater losses of human lives or high
amount of the gross damages to the important infrastructures and natural environment

(Tanavud et al., 2000; Soralump, 2010a).



Figure 1.1 Massive landslide runout at Nam Ko Yai village in Phetchabun Province

due to the prolonged heavy rainfall in August 2001 (Yumuang, 2006).

Table 1.1 List of some past prominent landslide incidences in Thailand (data acquired

from Soralump, 2007 and DMR, 2012).

Date

Place

L osses

November 22, 1988

September 11, 2000

May4, 2001
August 11, 2001
October 18, 2004
May 22, 2006

November 6, 2009

March 30, 2011
August 3, 2011

September 9, 2011

Phipun/LanSaka District,
Nakhon Si Thammarat

Lomsak/Muang District,
Petchaboon

Wang Chin District,Phrae
Lomsak District, Petchaboon
Mueang District, Krabi

Tha Pla/Lablae/Mueang District,
Uttaradit

Si Sakhon District, Narathiwat
Khao Phanom District, Krabi
Sop Moei District, Mae Hong Son

Nam Pat District, Uttaradit

242 deaths; 1,612 houses destroyed

10 deaths

43 deaths; 18 houses destroyed
136 deaths, 188 houses destroyed

3 deaths; 25 houses destroyed
75 deaths; 483 houses destroyed

10 deaths; 3 houses destroyed

10 deaths; many houses destroyed

9 deaths; many houses destroyed

6 deaths; > 50 houses destroyed




01/04/2011

Source: DMR, http://www.krobkruakao.com, http://www.oknation.net

Figure 1.2 Photographs of landslide evidences seen within the study area.



Source: DMR, http://www.oknation.net

Figure 1.3 Photos of landslide runout over flat downstream zone in the study area.



In this research, seven different methods are primarily chosen for conducting
the landslide susceptibility assessment and susceptibility map formation for the study
area based on their widely-acknowledged merit and apparently distinct working
concepts. These are the conventional weighted linear combination (WLC), analytical
hierarchy process (AHP), frequency ratio (FR), integrated FR-fuzzy, multiple logistic
regression (MLR), artificial neural network (ANN), and integrated ANN-fuzzy models.
Among these, the first two methods (WLC and AHP) are of the qualitative type,
conceptually, while the rest are of quantitative type. Here, concept of fuzzy logic is to
be integrated to the FR and ANN models to evaluate its capability to improve mapping
accuracy of these referred methods. In risk analysis part, the associated hazard maps
(developed from susceptibility map of the identified optimal method) and
corresponding landslide risk maps are prepared from which main interest of the analysis
is on apparent impact of mapped landslide incidences to economic activities (crop
plantation) and buildings or infrastructure within the area, in particular.

It is hoped that results gained from this study can provide better understanding
on efficiency of the evaluated methods for landslide susceptibility mapping of the
studied area. The preferred optimal candidate can then be implemented to formulate
credible susceptibility maps along with the associated hazard and risk maps that can be
used to support formulation of fruitful strategic planning on the prevention and
mitigation of landslide occurrence and risk in the area by responsible agencies and local
authorities. Knowledge on relationship of land use pattern and landslide activity within

the area is also essential for issuing proper land use control in the near future.



1.2 Research objectives

Principal objectives of the thesis are as follows:

121 To identify optimal method for the formulation of landslide
susceptibility map for the study area from a list of proposed candidates,

1.2.2 To develop the associated landslide hazard and risk maps for the study
area through application of the optimal approach found earlier,

1.2.3 To assess landslide-induced runout hazard for the area through

application of the preferred Flow-R runout model.

1.3 Scope and limitations of the study

Scope and limitations of this study can be summarized as follows:

1.3.1 Susceptibility, hazard, and risk maps are prepared for the landslide
activity in general, not for a particular type of the landslide phenomenon existing in the
area. In addition, all observed landslide traces were included in the analysis regardless
of their original dates of formation (old or new scares).

1.3.2 The location-based nature of landslide occurrence, difficulty in
identifying proper causative factors for mapped landslide activities, and lack of known
data about past landslide occurrences over the area.

1.3.3 Lack of measured rainfall data due to limited amount of rain-
measurement stations existing within the study area and its vicinity might lead to the
less realistic of the interpolated rainfall maps. Similarly, lack of fine detailed land
characteristics within the defined slope complex areas might also make this study less

fruitful.



1.3.4 Differences in original scale of the input data maps might make the

analysis less credible and appropriate rescaling might be required as appropriate.

1.4  Study area

1.4.1 Location
The preferred area is the Khao Phanom Bencha Watershed, Krabi
Province, on the Andaman Coast of southern Thailand covering area of about 987.53
km?. This is the mountainous region with highest elevation of 1,400 meter above mean
sea level. The watershed territory is surrounding the central mountain network that
aligns along the north-south direction, approximately, comprising parts of five nearby
districts and several sub-districts, i.e., (1) Plai Phraya District (Plai Phraya, Khao Khen
and Khiri Wong Sub-district), (2) Ao Luk District (Na Nuea, Khlong Hin, Ao Luk
Nuea, Khao Yai, Khlong Ya and Ban Klang Sub-district), (3) Khao Phanom District
(Khao Phanom, Khao Din and Na Khao Sub-district ), (4) Mueang District (Krabi Noi,
Khao Khram, Khao Thong, Thap Prik, Sai Thai Sub-district), (5) Mueang municipality,
and (6) Nuea Khlong District (Nuea Khlong and Huai Yung Sub-district) (Figure 1.4).
1.4.2 Climate
Due to strong influence of tropical monsoons on both sides (i.e.,
northeast monsoon on the Gulf-of-Thailand side and southwest monsoon on the
Andaman side), only two dominant seasons exist in this area; dry season (from January
to April) and wet season (from May to December). Temperatures range is between 17-

37°C.
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1.4.3 Land use patterns
Land use (LU) in 2009 was dominated by just two LU categories:
economic agricultural plantations (para rubber and oil palm, in particular) and dense
forest area whose land proportions are as follows; oil palms (44.36%), para rubber
(25.94%), and dense evergreen forest (23.83%) (Figure 3.2j)
1.4.4 Landslide incidence
Main focus is on the case of tragic landslide incidence taken place in
Khao Phanom Bencha Watershed due to unusual heavy rainfall during 27-31"" March
2011 which led to several deaths and expansive damage to the properties and

infrastructures within the area (Figure 1.3).

1.5 Benefits of the study

1.5.1 Knowledge on the comparative efficiency of all incorporated methods
and the optimal candidate for producing landslide susceptibility map of the study area.
1.5.2 Credential landslide susceptibility, hazard and risk maps of the area that
can provide better understanding on landslide activity along with its potential impact
over the area to aid effective warning, prevention and mitigating of future landslide

hazard.



11

470000
1

490000
1

500000
1

510000
1

950000

940000

930000

920000

910000

900000

Ban'Klang

890000

950000

940000

930000

920000

910000

900000

Figure 1.4 Location map of the study area (Khao Phanom Bencha Watershed).



CHAPTER 11

BASIC CONCEPTS AND LITERATURE REVIEW

Basic concepts and relevant literatures are here reviewed in this chapter
including (1) definition of landslide, (2) type of landslides, (3) landslide initiation
mechanism, (4) principal causative factors, (5) concept of landslide risk analysis, (6)
relevant landslide susceptibility mapping methods, (7) validation of the model
application results, (8) the runout concepts, and (9) roles of GIS and remote sensing in

landslide risk analysis.

2.1 Definition of landslide

Landslide is conventionally defined as a mass movement of soil (in forms of
earth or debris) or rock downward along surface slope under gravitational influence
(Varnes, 1984; Cruden, 1991). At present, it has become vital hazard in most
mountainous and hilly areas around the world especially those in the tropics and
earthquake-influenced zones, as well as areas along the considerably steep river bank
or coastline. Landslide impacts depend fundamentally on their size and speed (or
momentum), elements at risk within their paths and vulnerability condition of those
elements. Every year, landslide incidences have generated large number of deaths and

injuries to the at-risk people and substantial damages to the infrastructures (e.g. road,
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railway, pipeline) and properties (e.g. building, agricultural land) (European Soil Portal,
2013).

Landslide phenomenon is conceptually a direct product of slope instability due
to the gravitation as when the gravitational stresses exceed the strength of rock or soil
that holds the surface soil layer together, slope failure shall often occur as a
consequence. Most landslides are initiated by some triggering factors that shall increase
stress and weaken strength of slope materials which include: (1) heavy rainfall, rapid
snowmelt, or irrigation that load slopes with water, (2) shaking by earthquake, (3)
natural erosion or human activities that increase slope angles or undercut the toes of
surface slopes, e.g. road construction, (4) removal of the vegetation cover on land
surface by, e.g. wildfire, logging, agriculture, or overgrazing, and (5) loading of slopes
with huge piles of rock, ore, or mining waste (Idaho Geological Survey, 2013). Among
these factors, the most predominant ones around the world are two natural processes;
heavy rainfall and strong earthquake (Corominas and Moya, 2008).

Tension Cracks

Soil Mantle
x (Regolith)

Hillslope <7

Groundwater

Seepage

(a) General landslide (b) Debris flow
Figure 2.1 Principal components of (a) general landslide and (b) typical debris flow

(Witt, 2005; NCGS, 2012).
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Figure 2.1(a) illustrates principal components of the general landslide structure
which include tension cracks that appear when land is gradually pulling apart from the
hillside. With time, the ground surface on one side of these cracks may slide downhill
forming a scarp and if the ground moves far enough, it shall leave an apparent mark
called a scar. Typically, a fresh scar often has lighter color without vegetation cover if
compared to the surrounding slopes. Landslide volume can vary greatly from less than
a cubic kilometer (km?®) for the small and medium-size landslides to more than tens of
cubic kilometers for the gigantic ones while speed might vary from a few centimeters
per year for the slow-moving slides to several tens of kilometers per hour for the fast
and destructive ones (Highland and Bobrowsky, 2008; European Soil Portal, 2013).
Typically, the most destructive landslide incidences are often in form of the debris or
mud flows as seen in Figure 2.1(b). These flows usually have rather rapid movement
with combination volume of loose soil, rock, organic matter, air, and water mixed in

the intense surface-water flow due to heavy precipitation or snow-melt.

2.2  Types of landslides

Landslides can be broadly classified into two fundamental categories: shallow
type and deep-seated type. Shallow landslides normally involve sudden fail of top soil
layer and upper regolith zone while deep-seated ones additionally include bedrock at
higher depth and gradually develop over a relatively longer time period. Most natural
shallow landslides are triggered by prolonged heavy rainfall that critically increase soil
water pressure or accelerated ground due to earthquakes at tectonic fault nearby. Most
deep-seated landslides tend to fail incrementally, rather than in the catastrophic manner

of the shallow landslide. Their major causes are accumulated rainfall over a long period
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(e.g. weeks to years) and also massive ground acceleration experienced during large
magnitude earthquakes. The latter is commonly found in the seismically active regions
around the world (NMFS, 2012).

Standard classification scheme of the existing landslide types has been
developed based principally on work of Varnes (1978). In this system, landslides are
categorized based on basis of their predominant composed material type (i.e., rock,
debris, earth, or mud) in the first term and their movement type (i.e., fall, topple,
avalanche, slide, flow, or spread) in the second term. Thus, the landslides can be
identified using these terms that refer respectively to their major material and
movement mode, e.g. rock fall, debris flow, earth slide, and so forth. In general, the
material in landslide mass is either rock or soil (or both); the latter is described as
“earth” if mainly composed of the sand-sized or finer particles (with > 80% of the
particles are <2 mm) and “debris” if composed of coarser fragments (with 20% to 80%
of known particles are > 2 mm and the remainder are < 2 mm). Figure 2.2 and Table
2.1 provide information on dominant landslide types according to Varnes (1978)
mentioned earlier (USGS, 2004; AGS, 2007b).

From Figure 2.2, slides consist of blocks of material moving on well-defined
shear planes and there is a distinct zone of weakness that separates slide material from
more stable underlying material. These are divided into the rotational slides that move
along concave surface and translational slides that often move parallel to the referred
ground surface. Falls are the sudden release of rocks or soils dropping freely through
the air with little contact with other surfaces until impact. Topples are similar to falls
except that initial movement involves forward rotation of the associated mass. Lateral

spreads occur when liquefaction in underlying materials causes surface rocks or soils



16

to move down gentle slopes. Flows move entirely by shearing within the transported
mass and act like viscous fluids. They consist of five kinds:

(1) Debris flow-a fast moving landslide in form of liquefied material of mixed
and unconsolidated water and debris [as illustrated in Figure 2.1(b)].

(2) Debris avalanche-a variety of very rapid to extremely rapid debris flow.

(3) Earth flow-movement of slope material that liquefies and runs out forming
a bowl or depression at the head and have a characteristic of “hourglass” shape.

(4) Mudflow-an earth flow consisting of the material wet enough to flow rapidly
and contains at least 50% sand, silt, and clay-sized particles. In some cases, mudflows
and debris flows are commonly referred to as “mudslides”.

(5) Creep-a slow, steady downward movement of slope-forming soil or rock.

The movement is called complex landslide if it involves combination of two or
more types of the integrated movement. Debris flow and mudflow are among the most
dangerous landslide-related incidences to life and property of the affected community,
especially those in the tropical countries, due to the high speeds and sheer destructive

force of their flow (USGS, 2004; AGS, 2007b).
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Block slide

Translational landslide

Debris avalanche

Lateral spread

Figure 2.2 Major types of landslide according to Varnes (1978) (AGS, 2007b).
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Table 2.1 Major types of landslides according to Varnes (1978) (USGS, 2004).

Type of Material

Type of Movement Engineering Soils

Bedrock
Predominantly coarse Predominantly fine

FALLS Rock fall Debris fall Earth fall

TOPPLES Rock topple Debris topple Earth topple
ROTATIONAL

SLIDES Rock slide Debris slide Earth slide

TRANSLATIONAL

LATERAL SPREADS Rock spread Debris spread Earth spread
Rock flow Debris flow Earth flow
FLOWS
(deep creep) (soil creep)
COMPLEX Combination of two or more principal types of movement

2.3 Landslide initiation mechanism

As stated earlier, landslide incidence is a direct product of the slope instability
due to gravitation. Theoretically, this phenomenon shall occur when the driving force
(from gravity) overcomes the resisting force within the slope (from strength, or
cohesion, of vegetation roots/slope materials and surface friction) which results in slope
failure and landslide initiation. To quantify stability level of a particular slope, a widely-
used index called the “factor of safety” (FS), or “safety factor” (SF), was introduced to

support engineering purpose based on the following definition:

_ Resisting force (shear strength)  cohesion (soil/root) + friction

FS = :
Driving force (shear stress)  gravity force on tangent direction

(2.1)

In principle, areas with FS > 1 are considered safe for landslide activity as the

slope is in a stable state while those with FS < 1 are believed to be prone to landslide
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initiation as the slope is now considered as unstable (De Blasio, 2011). Normally, the
FS values of 1.2-1.5 might be needed to support safe engineering construction on a
natural slope (Hong Kong Geotechnical Engineering Office, 2000).

To determine slope instability level in terms of the FS parameter, the infinite-
slope stability analysis is normally applied. In this situation, the studied landslides are
assumed to be infinitely long, with depth of the failure surfaces is small compared to
their length and width, and are destabilized by expansive areas of positive pore-water
pressure (Gorsevski, Gessler, Boll, Elliot and Foltz, 2006; Godt et al., 2008). Several
models were developed based on this assumption from which the widely-used one is
called “SINMAP” (Stability INdex MAPping). SINMAP used infinite-slope stability
model to balance destabilizing components of the gravitation against stabilizing parts
of friction and cohesion on a failure plane parallel to ground surface. The safety factor
(SF) is defined by ratio of the stabilizing forces (shear strength) to destabilizing forces

(shear stress) on a failure plane parallel to the surface (Deb and Kadi, 2009):

2 11 —
SE = Cr +Cs + COS Q[psg(D .DW)+(psg pwg)Dw]tan¢ ’ (22)
Dp.gsinfcosd

where C; is root cohesion (N/m?), Cs is soil cohesion (N/m?), @is slope angle (°), ps is
wet soil density (kg/m®), pw is density of water (kg/m?®), g is gravitational acceleration
(9.81 m/s?), D is vertical soil depth (m), Dy is vertical height of the water table within
soil layer (m), and ¢ is the internal friction angle of the soil (°). € is arc tangent of the

slope S, expressed as a decimal drop per unit horizontal distance.
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Figure 2.3 illustrates geometry assumed in Eq. (2.2). Relationship of soil
thickness, h(m), and soil depth D is 2 = Dcos6, which produces dimensionless form of

the infinite-slope stability model:

_ C+cosfl—wr]tang
- siné

SF

, (2.3)

where w = Dw/D = hw/h is the relative wetness, C = (Cr+Cs)/(hpsg) is the combined
cohesion (root/soil) made dimensionless relative to the perpendicular soil thickness,
and r =pw/ps is the water-to-soil density ratio.

The yielded SF values are typically classified into 3 classes of the slope stability
status as follows: (SF < 1) = unstable slope conditions, (SF = 1) = slope is at the critical

point of failure, and (SF > 1) = stable slope conditions.

0= arctan S

Figure 2.3 Diagrams showing geometry of the assumed infinite-slope stability model

(SINMAP) and parameters seen in Eq. (2.2) (Deb and Kadi, 2009).
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2.4  Principal causative factors

As stated earlier, formulation of landslide susceptibility map is often
accomplished based on prior knowledge of past landslide activities over an area and
their association to environmental characteristics of the evaluated area. As a result,
recognition of actual contributing factors that control the occurrence of a landslide over
a specific location is of primary importance. In general, prominent factors that
determine the probability of landslide occurrence might be grouped into two categories:

(1) The contributing variables, or the environmental factors, which make slope
susceptible to failure without actually initiating it. These are factors that control slope
stability and landslide potential such as geology, slope gradient and aspect, elevation,
soil geotechnical properties, vegetation cover, and drainage pattern.

(2) The triggering variables which shift slope condition from a marginally stable
to an unstable state and thereby initiating slope failure over a susceptible area. The most
important ones are prolonged heavy rainfall and strong earthquake.

As landslide initiation is complex mechanism involving interaction among
several influencing factors to yield critical slope instability and landslide of a certain
type as an outcome, therefore, knowledge on the landslide mechanism along with its
contributing factors are essential for the effective preparation of a susceptibility map.
In general, selection of proper factors for the landslide susceptibility assessment
depends on types of the concerned landslide and availability of the existing data and
resources. The most prominent input factors for this stated task are as follows (Van
Westen, Castellanos and Kuriakose 2008; Kanungo, Arora, Sarkar and Gupta, 2009):

(1) Slope gradient. Naturally, steeper slopes tend to be more susceptible to slope

failure due to their higher gravity-induced shear stress in the colluviums or residual soil
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[as described in Eq. (2.1)]. However, at high slope angles, the terrain usually comprises
of stable weathered rock unit which make them less prone to the landslide occurrence.
As a consequence, landslide frequency [as defined in terms of the frequency ratio: FR
described in Eq. (2.14)] is often found to gradually increase with the slope gradient until
a maximum value is achieved followed by a notably decrease at higher- slope category
(e.g. in Dai and Lee, 2002; Vijith and Madhu, 2008; Yilmaz, 2009; Regmi, Giardino
and Vitek, 2010; Kannan, Saranathan and Anabalagan, 2012),

(2) Slope aspect. An aspect is conventionally defined as a compass direction
that a geographic slope faces, usually measured in degrees from north. Or, in other
words, the direction of maximum slope of a surface. In general, aspect defines exposure
level of an area to the sunlight, local wind and wind-driven rainfall, which are important
for activities like vegetation growth, weathering process and soil erosion process. These
in turn can have implicit influence on landslide occurrence, especially in arid or semi-
arid environment (Sidle and Ochiai, 2006).The importance of slope aspect to landslide
frequency were clearly evidenced in several previous works; e.g. Dai, Lee and Ngai
(2002); Vijith and Madhu (2008); Pradhan and Lee (2010). However, no distinct
influence of aspect on landslide frequency was also reported in Oh, Lee,
Chotikasathien, Kim, and Kwon (2009); Hasekiogullar and Ercanoglu (2012); Choi et
al. (2012), for examples.

(3) Elevation. Elevation is usually associated indirectly to landslides by virtue
of other factors like slope gradient, precipitation, erosion, weathering, soil thickness,
and land use. Typically, at high elevations, e.g. near mountain top, terrain usually
consist of rather solid and stable rocks with low potential to generate immediate

landslide while at the intermediate elevations, sloped surfaces tend to be covered by
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thin colluvium that make them more prone to landslide. Human activity on the gentle
slopes at these levels, like crop plantation, could enhance chances of having landslide
occurrence also. On the contrary, at low elevations, landslide frequency is often low
because terrain is relatively flat and often covered with thick colluvium or residual soils.
These facts are emphasized in works of, for examples, Yilmaz (2009); Yalcin, Reis,
Aydinoglu and Yomralioglu (2011); Solaimani, Mousavi and Kavian (2012). In
addition, elevation is also used as primary proxy for average rainfall that increases with
height due to orographic effects. In this regard, high elevations are preferentially
susceptible to the landslides because they receive greater amounts of rainfall than those
at lower elevations.

(4) Lithology. This factor indicates properties of the slope-forming materials
such as strength, permeability and weathering potential which, therefore, should affect
the likelihood of slope failure (and landslide activity). According to Soralump (2007),
observed landslides in Thailand were identified most frequently in the Jurassic granite
and sandstone, shale, mudstone, conglomerate, and chert rock groups. Similar result
was also found in Intarawichian and Dasananda (2011). As illustrated in work of
Tanavud, Yongchalermchai and Navanugraha (2000), mountainous terrain with granite
bedrock is more prone to the slope failure as the weathered rock shall be dominantly
converted to a thin layer of sandy soil which has little or no cohesion.

(5) Distance from fault (or lineament). This factor is a crucial characteristic one
of ground surface which normally indicates highly fractured terrain over which unstable
slopes could be developed and encourage landslide formation. As a consequence, areas

situating close to prominent fault or lineament (e.g. at < 1000 m) should be potentially
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prone to landslide occurrence as reported in, for examples, Lee and Talib (2005); Lee
and Sambath (2006); Oh et al. (2009).

(6) Distance from drainage (stream). Stream has become well-known landslide
contributing factor as it initiates gully erosion and undercutting of a slope base along
the stream bank which can undermine slope stability of the adjacent area. In addition,
increasing level of ground water close to the stream body can saturate lower soil layer
which makes the affected area more susceptible to slope failure. Furthermore, debris
and soil material close to drainage channel are prone to collapse during heavy rainfall.
Therefore, landslide occurrence is supposed to be more frequent within an area close to
the stream body (e.g. at < 500 m) as shown in, e.g. Lee and Talib (2005); Oh et al.
(2009); Jadda, Shafri, Mansor, Sharifikia and Pirasteh (2009). However, some reports
have found no conclusive relation on this issue like Lee and Sambath (2006); Pradhan
and Lee (2010); Yalcin et al. (2011); Park, Choi, Kim and Kim (2013).

In addition, some works also included stream density, usually defined as ratio
of the total length of the stream to the area of stream basin in the analysis, e.g. Yalcin
and Bulut (2007); Yalcin (2008). Typically, the higher in stream density indicates the

lower in infiltration and the faster in the movement of surface flow.
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Figure 2.4 Landslide mechanisms due to road construction (van Westen, 2013).
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(7) Distance from road or settlement. These factors involve human activities that
can influence slope instability and landslide formation. Landslides may occur on slopes
adjacent to the roads due to extensive slope excavation for the construction of the roads
that greatly reduces load both on the topography and on the slope heel. This change can
induce soil instability in the slope layer because of some negative effects such as water
ingress (as illustrated in Figure 2.4). The frequent vibrations by vehicle movement can
also affect slope stability that eventually leads to landslide incidence. This effect makes
areas located fairly close to road network (e.g. at < 100 m distance) more susceptible
to landslide occurrence than usual as evidenced in several works, e.g. Mancini, Ceppi,
and Ritrovato (2010); Sujartha, Rakamanickam, Kumaravel and Saramathan (2011);
Regmi et al. (2010); Solaimani et al. (2012). However, some reports had found different
conclusions on this issue like Yalcin et al. (2011); Akgun (2012). For the settlement,
proximity to the settlement is typically believed to influence landslide probability also
as human activities on vulnerable areas, like fragile hillslopes, might increase chances
for slope instability and slope failure. However, this factor was not used much so far,
e.g. in Bai, Lu, Wang, Zhou and Ding (2011); Hasekiogullar and Ercanoglu (2012).

(8) Land use and land cover (LULC). In principle, LULC patterns have
significant role in determining slope stability as they can influence both the shear stress
and shear strength conditions of the natural slope through relevant mechanical and
hydrological mechanisms. Focus of the analysis is often on role of the vegetation cover,
e.g. forest, in controlling landslide formation over a vulnerable region. Generally,
vegetation can increase slope stability through three different processes; (1) the
enforcement of soil internal strength by its complex and strong root system, (2) the

interception of rainfall which reduces infiltration into the ground, and (3) by removing
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soil moisture through evapotranspiration (ET). In this regard, capability of particular
vegetation to improve slope stability varies greatly with its type. For examples, trees
should be more capable than shrubs, which should be better than grass. Therefore,
vegetation clearance for land development or agricultural activities which results in
rather exposed soil shall have greater chances for soil erosion and slope instability.
However, increasing load on the slope by weight of existing plants or trees can make
them less stable than usual at the same time. Commonly, it was often reported that thick
forest with strong and large root systems is having less susceptibility from landslide
activity than average, for examples, in Kanungo, Arora, Sarkar and Gupta (2006);
Dahal et al. (2007); Ercanoglu and Temiz (2011); Sujartha et al. (2011); Yalcin et al.
(2011).

In some cases, vegetation abundance might be represented by index called
NDVI (normalized difference vegetation index) with original scale of -1 to 1 where
positive values closer to 1 indicate more vegetation abundance, for examples, in works
of Lee and Talib (2005); Lee and Pradhan (2007); Pradhan and Lee (2010);
Intarawichian and Dasanada (2011); Pradhan (2011); Hasekiogullar and Ercanoglu
(2012); Choi et al., 2012. However, general conclusion on relationship of NDVI to
landslide frequency is still inconclusive based on reviewed literature so far. In some
research, characteristics of trees or forest density were integrated explicitly in the
preparing process of landslide susceptibility maps, i.e., Young, Jin and Choi (2003).

(9) Soil properties. Soil can influence landslide activity in a particular area
through the cohesion strength and some geotechnical properties like porosity, and
permeability and grain-size distribution (McKenna, Santi, Amblard and Negri, 2011).

In general, each soil type often has different internal strength to hold soil material
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together (called soil cohesion) to resist landsliding. This property for the wet soil is
called soil plasticity. The relatively loose soil texture, or ones with low plasticity,
should be more susceptible to landsliding, e.g. the loose and unconsolidated alluvial or
colluvial soil layer deposited on hillslope. Through, soil properties are necessary for the
analysis process of landslide susceptibility by deterministic approach [like SINMAP
model described in Eq. (2.2)], but not many reports were appeared to include them for
the analysis through different approaches (in terms of soil group, soil texture, soil depth,
or soil plasticity); e.g. Wang and Sassa (2005); Lee and Lee (2006); Lee (2007); Lee
and Pradhan (2007); Regmi et al. (2010); Oh and Pradhan (2011); Bai et al. (2010). It
should be noted that, majority of landslides usually happen within the hilly or remote
mountainous areas which often have limited surveyed soil data for the use in the
landslide susceptibility analysis. This deficiency can make the analysis procedure less
fruitful, e.g. in Pradhan and Lee (2010); Intarawichian and Dasananda (2011).

(10) Landform. Landform is an another variable often used in the quantification
of landslide susceptibility at a specific area due to its crucial role in controlling
dynamics of the evaluated surface flow (e.g. deceleration, acceleration, convergence,
divergence) and, therefore, shall also influence the subsequent gully erosion,
deposition, and slope instability resulted from the flow interaction. Inclusion of
landform data in the landslide susceptibility analysis in most published reports can be
categorized into three different processes as detailed below.

The first one is to apply geomorphology characteristics of the examined area
into the analysis process directly as reported in, e.g., Vijith and Madhu (2008); Jadda
et al. (2009); Kannan et al. (2012). The second one is processed through the use of

defined slope curvature characteristics in which two well-known types are normally
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considered: plan curvature and profile curvature (as illustrated in Figure 2.5). Plan
curvature might be called contour curvature as it described rate of change in direction
of a hypothetical contour line while passing through a specific location, e.g. an image
pixel. The profile curvature is defined by rate of change of the slope along direction of
a maximum slope. In addition, their combination to provide total curvature for a given
pixel is also useful (Schmidt, Evans and Brinkmann, 2003; ESRI, 2010).

The curvature values describe morphology of the terrain which can be divided
into three categories: convex, concave, or flat (as illustrated in Figure 2.6). Typically,
the plan curvature influences convergence and divergence of flow across a surface
while the profile curvature affects acceleration and deceleration of the surface flow as
well as associated erosion and deposition of the landslide material and water along
direction of landslide motion. In principle, erosion (and slope instability) should prevail
in areas with convex profile curvature and deposition should be favorable over those
locations with concave curvature (ESRI, 2010; Regmi et al., 2010). In most studies, the
convex curvature areas were found most susceptible to landsliding followed by the
concave curvature ones, while flat areas often found much less susceptible if compared
to both aforementioned zones, e.g. in Lee and Talib (2005); Lee and Lee (2006); Lee
and Pradhan (2006); Lee (2007); Lee and Pradhan (2007); Vijith and Madhu (2008);

Pradhan and Lee (2010); Lepore, Kamal, Shanahan and Bras (2012).
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Profile curvature

Source: Transport Scotland (2008)

Figure 2.5 Visual representation of plan curvature and profile curvature.
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Figure 2.6 Three fundamental types of (a) profile and (b) plan, or contour, curvature

which are convex, concave and flat (or uniform) (+/- signs are as used in ArcGIS10).

The third approach involves the use of some water-relatated factors, such as
flow accumualtion, flow/slope length, runoff, topographic wetness index (TWI) and

stream power index (SPI) as predictors for lanslide susceptibility. Among these, TWI
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and SPI were found most popular in the reviewed literature. These indices are used to
describe the wetness and stream power over an area, respectively, and conceptually
defined as a function of the slope gredient and upstream contributing area of the flow
(throug a given pixel) as follows (Yilmaz, 2009);

SPI = A-tanf, (2.4)

TWI =In(A/ tan B), (2.5)
where A is the upslope water contributing area per unit contour length for a particular
pixel and tan g is the local slope of that pixel.

By definition, the stream power index (SPI) is a measure for the erosive power
of overland flow at a given location of the topographic surface. As a contributing area
and slope gradient increase, amount of surface water contributed by the upslope areas
and its flow velocity increase, hence the SPI and erosion risk increase (Moore, Grayson
and Ladson, 1991). For the topographic wetness index (TWI), it is a measure of the
water accumulation potential at a site which correlates to the amount of soil moisture
content. Therefore, higher TWI values indicate greater water content (and pore water
pressure) in slope material from which soil strength and soil stability shall be
diminished, e.g. in Yilmaz (2009); Regmi et al. (2010); Oh and Pradhan (2011). The
slope length or flow length; a distance of surface flow from origin till the end, is also
attracted more interest, e.g. Vijith and Madhu, 2008; Regmi et al., 2010. Typically,
larger slope length indicates more water accumulates at the ending part of the
considered flow which probably leads to more erosion and landslide activity.

Systematic combination of these aforementioned contributing factors through
an appropriate methodology can lead to production of the landslide susceptibility map

as needed. Among these, lithology and slope gradient were usually found to attain top
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priority in most works, on the contrary, aspect, distance to stream and distance to road
were among the least favourable ones in the analysis. It should be noted here that, as
rainfall is categorized as being a triggering factor therefore, in principle, it should not
be included in the formulation of the susceptibility map in the first step which should
be involved the landslide contributing factor only. However, integration or the annual-
mean rainfall data into the analysis shall generate the general hazard map for an area as
the resulted map is not only detailed spatial likelihood of slope failure over the area but
also the temporal probability as well (from nature of the rainfall data) as evidenced in,
for examples, Lee and Pradhan (2006); Pradhan and Lee (2007); Bagherzadeh and

Daneshvar (2012); Thanh and Smedt (2012).

2.5 Concept of landslide risk analysis

By definition described in Varnes (1984), landslide risk analysis is a systematic
process to determine expected loss in terms of human death or injury, property damage,
and disruption of economic activity due to landslide over a particular area and reference
period (e.g. a year). These losses can be expressed both in qualitative or quantitative
manner. In the qualitative assessment, losses are evaluated and expressed in qualitative
terms (e.g. high, medium, low) based on a set of some pre-determined criteria while in
quantitative assessment, relevant losses shall be presented in quantitative or numerical
terms (e.g. amount of death or injury, or monetary loss from property). Between these,
the qualitative method is normally easier to perform but it is rather subjective in nature
as the used criteria are traditionally drawn from expert judgment (AGS, 2000).

Conceptually, when dealing with physical losses, risk can be quantified as a

direct product of three main factors: probability of occurrence of the concerned
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phenomenon (at a given magnitude or intensity), cost or amount of the defined elements
at risk, and vulnerability of those elements to impact of the examined phenomenon.
According to this definition, total landslide risk (LR) can be determined using following

formula,

Total landslide risk (LR) = E x (H x V). (2.6)

Here, E (Element at risk) often includes population, properties, economic
activities and public services at risk within the area, H (Hazard) represents probability
of occurrence within a specific period of time (e.g. a year) and within an expected
influencing area of landslide phenomenon, and V (Vulnerability) is degree of loss to a
specific element at risk resulting from a referred landslide having scale from 0 (no
damage) to 1 (total loss). Term H x V is called specific risk for each individual at-risk
element (Varnes, 1984).

Definition of the landslide risk given by Varnes (1984) seems straightforward
in essence; however, to implement it fruitfully in reality is still proved rather difficult
so far, especially at medium mapping scales between 1:10,000 and 1:50,000 (van
Westen, van Asch and Soeters, 2006). The difficulty is arisen mainly from the frequent
lack of essential data or information to complete the key tasks required at each step of
the risk analysis process, which generally comprises of five main successive works as
follows.

The first step is to establish a landslide inventory map to portray locations and
areal extent of past landslide occurrences. These acquired inventory data are preferred

in the development of landslide susceptibility and its associate hazard maps for the
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interested area afterwards. The second step is to establish a landslide susceptibility map
to inform spatial probability (or likelihood) of potential future landslide activity in the
area based on knowledge of past landslide events and a set of preferred terrain and
environmental parameters, e.g. slope, elevation, soil data, lithology or land use pattern.

The third step is to formulate the hazard map that describes probability of
landslide occurrence at a specific location within the area during a reference period of
time from the referred susceptibility map yielded in the second step. The fourth step is
to construct a comprehensive map of an at-risk element along with its associated
vulnerability maps for the area. These maps usually include information of population,
economic activities, properties (e.g. houses or buildings), and public infrastructure (e.g.
roads or bridges) prone to having tangible effect from landslide activity in the area.

And the final step of the process is to develop a preferred landslide risk map
which is a direct product of the hazard map and the vulnerability map [as detailed in
Eqg. (2.6)] to present expected amount, or level, of life loss and damage cost throughout
the area during the considered time period (AGS, 2000; Dai, Lee and Ngai, 2002; van
Westen et al., 2006, Abella, 2008; van Westen et al., 2008).

Figure 2.7 exhibits general conceptual framework for landslide risk analysis and
management expressed in Dai et al. (2002) and Figure 2.8 illustrates main aspects of
risk analysis process described earlier. Typically, after having landslide risk map for an
area, the found risk value must be taken into process of risk assessment to judge whether
it is acceptable or not (based on the reference risk tolerance criteria). And if not, some
strategies to control or reduce the known risk should be implemented which is a crucial

part of the risk management process (AGS, 2007b).
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Figure 2.7 General conceptual framework for landslide risk analysis and management

(Dai et al., 2002).
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Figure 2.8 Main aspects of risk analysis process (van Westen et al., 2006).

As preparing process of a landslide risk map is still a considerably laborious
task, most works seen on landslide zonation analysis are normally focused on the

derivation of preferred landslide susceptibility map for a specific area of interest only
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(or step 2 of the full process). However, risk mapping at regional scale is still
conceptually appealed to attain broad information of the potential at-risk area from
landslide activity which is essential for the planning of appropriate land use managing
policy as well as effective emergency response strategy (Michael-Leiba, Baynes, Scott
and Granger, 2003). In this aspect, according to van Westen et al. (2006), main purpose
of the analysis should be to acquire primary data to support site-selection process for
the new development over the area (to minimize potential landslide risk), or to identify
concerned at-risk locations to aid the proper implementation of risk management
policy. Definitions for common terms used in the landslide zoning are given in
Appendix A.

The qualitative risk analysis is commonly recommended for work at regional
scale due to its less demand in detailed input data and less complex computing
procedure in which the eventual risk classification are reported in the form of qualitative
terms (e.g. high, moderate and low) based on the pre-determined criteria. In addition,
the medium-scale risk map should include a description of its practical implications and
it should be prepared for a single type of landslide only each time. It is also further
recommended that mapping process should be directed toward the investigation on
geomorphological evidences related to aspects that influence the considered risk such
as runout distance, size and depth of the landslide, progressive movement of the
concerned landslide within a considered environmental setting (van Westen et al.,
2006). Information about typical landslide zoning mapping scales and their applications

is presented in Table 2.
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Table 2.2 Typical landslide zoning mapping scales and the applications (AGS, 2007a).

Scale Scale . . Zoning Area
Category Range Examples of Zoning Application (km?)
Small Landslide inventory and susceptibility to inform
(National) < 1:100,000 policy makers and the general public >10,000

Landslide inventory and susceptibility zoning for

) 1:100,000 ]
Medium regional and local development or very large scale
. to L . . 1,000-10,000
(Regional) 1:25 000 engineering projects. Preliminary level hazard
o mapping for local areas.
Landslide inventory, susceptibility and hazard
1:25,000 ) o ) )
Large . zoning for local areas. Preliminary level risk zoning
0 -
(Local) 15,000 for local areas and the advanced stages of planning for 10-1,000
- large engineering structures, roads and railways.

Intermediate and advanced level hazard and risk
Detailed zoning for local and site specific areas and for Several
(Site-specific) >1:5,000 hectares to

the design phase of large engineering structures, tens of km?

roads and railways.

2.5.1 Preparation of landslide inventory maps

The first step in processing landslide risk analysis is to develop an
appropriate inventory map of past landslides in the study area. Landslide inventories
are commonly regarded as the simplest form of landslide mapping in which locations,
occurrence dates and types of past landslides that took place and still left discernable
traces over an area are assembled (Hansen, 1984; Guzzetti, 2002). These maps could
be prepared either by collecting available historical information on individual landslide
incidences (making landslide archives), or from rigorous analysis of the aerial
photographs or appropriate satellite images, coupled with data acquired from the

coverage field surveys of the area (making landslide distribution map). These maps can
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be separated into two broad types (Malamud, Donald, Guzzetti and Reichenbach,
2004):

(1) Landslide-event inventory. This consists of all landslide events associated
with a single trigger, such as an earthquake, rainstorm or snowmelt.

(2) Historical landslide inventory. This includes all observed landslide events
over a period of many years, e.g. tens or hundreds years.

If time period of the acquired landslide data is known, e.g. from information of
temporal aerial photos or satellite images, “multi-temporal inventory” maps can then
be prepared. Similarly, if type of slope failure can be identified, the required map can
be prepared separately according to the identified types of landslide (Figure 2.9).

Recent landslide data can be readily acquired from the visual interpretation of
apparent landslide-induced scarps on aerial photos or high/very-high resolution satellite
images (e.g. those with spatial resolution <5 m). Among these, the disrupted or absent
vegetation cover anomalous with the surrounding terrain is usually an obvious sign of
the landslide traces (like those in Figure 1.2). Recently, several automatic classification
technique for landslide traces were developed based on knowledge of distinct landslide
spectral or spatial characteristics, e.g., change vector analysis, the maximum likelihood
classifier, normalized differential vegetation index (NDVI), the principal component
analysis, and object-based image analysis (Mondini, Chang and Yin, 2011). However,
evidences of old landslides, especially the relatively small ones, might still be difficult
to identify straightforwardly as they might be obscured by surface erosion, vegetation,
urbanization, or human activities, as time passes (Guzzetti, Cardinali, Reichenbach and
Carrara, 2000; Malamud et al., 2004). Knowledge of past landslide data are crucial for

the associated susceptibility analysis in three aspects: (1) for calibration of the applied
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model, (2) as reference for the operating of used model (quantitative type in particular),
and (3) as reference for the validation of the yielded susceptibility map.

For detailed landslide inventory maps, common information should include, for
examples, state of the activity, type of slope movement, certainty of identification,
primary direction of the movement, estimated volume, size, predominant material, and
occurrence date for each individual registered landslide (Wieczorek, 1983). In addition
information of the geological structure or relevant environmental characteristics of each
mapped landslide location should also be included for further analysis on the potential
landslide prone locations over an area through both qualitative approach (expert-based)

and quantitative approach (data-based).

meters

500.00

Source: http://serc.carleton.edu/details/images/14949.html

Figure 2.9 Example of the landslide inventory map.
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2.5.2 Preparation of landslide susceptibility maps
Landslide susceptibility mapping is the most popular activity of

landslide zoning known so far as it can be carried out straightforwardly using plenty of
existing methods. Main purpose of the task is to systematically locate areas that are
susceptible to having concerned landslide activities based on knowledge of past
landslide events over the area and their mutual relations to a set of reference
environmental factors (causative factors). The landslide susceptibility maps normally
display spatial probability, or probabilistic likelihood, of the studied area to having
slope failures under the assumed relationship of the input predisposing factors and the
formation of landslide activity (see for reviews in Aleotti and Chowdhury, 1999;
Guzzetti, Carrara, Cardinali and Reichenbach, 1999; Dai, Lee and Ngai, 2002; Kanungo
et al., 2009).

Construction of a landslide susceptibility map is fundamentally based on three
common assumptions (Varnes, 1984; Kanungo et al., 2009; Guzzetti, 2012):

(1) landslides are likely to take place over the same areas as seen in the past;

(2) landslides are likely to originate in places with similar contributing factors;
e.g. topographical, geological or hydrological conditions, to past landslide locations;

(3) landslides activity can be explained through the slope-stability theory which
involves complex interaction of several land internal factors known as the causative or
contributing factors, e.g. lithology, geography, soil property, and the external factors
called triggering factors, such as rainfall or earthquake.

From these assumptions, plenty of techniques were invented and productively
implemented to prepare landslide susceptibility maps around the world. Nevertheless,

success of the landslide susceptibility zoning might be still limited by some problems
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like the location-based nature of landslide occurrence, difficulty in identifying proper
causative factors for found landslide activities, and still lack of data about past landslide
occurrences over the interested area (Aleotti and Chowdhury, 1999).

Traditionally, landslide susceptibility evaluating methods can be divided into
two broad groups: qualitative and quantitative (as detailed in Table 2.3). In qualitative
or heuristic methods, final decision on landslide potential over an area is determined
based principally on the collective expert opinion (on nature of landslide characteristics
experienced within an area). The most common procedure is called geomorphological
mapping method in which landslide prone areas are identified by the researchers from
sites that have similar properties of contributing factors to those used to have landslide
activity before, like topography, geology, or hydrology under some reference criteria
(Kanungo et al., 2009). This method is called a direct approach which has been widely-
used as a basic methodology to the construction of initial landslide susceptibility zoning
by landslide researchers for long time. However, in recent decades, more complicated
methods of the qualitative type were introduced to build more sophisticated and realistic
susceptibility maps for an interested area like the weighted linear combination (WLC)
or analytical hierarchy process (AHP) methods.

These stated methods have improved the decision rule on landslide probability
by introducing different numerical influencing weights to each concerned contributing
factors and their respective attributes. These weight values are judged by the assessed
importance of these factors, or their attributes, on landslide formation within the area.
Linear combination of the weight product for each contributing factor and its relevant
attribute shall be used as a basis to calculate landslide susceptibility score for each land

unit which implicitly indicates susceptible level of the area to landslide initiation. Main
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advantage of the qualitative methods is no explicit need for past landslide data but their
concept could lead to an uncertainty in the attained outcome due to subjective nature of
the expert judgments. This makes the interpretation on actual importance of each factor
in use sometimes difficult to achieved (Yalcin, 2008; Kanungo et al., 2009).

For the quantitative methods, their approaches for the formulation of landslide
susceptibility maps rely principally on numerical expressions of apparent relationship
appeared between a group of contributing factors and data of past landslide occurrences.
Generally, there are two broad categories of the quantitative methods: deterministic and
statistical (Aleotti and Chowdhury, 1999). Typically, the deterministic methods depend
on engineering principles of slope instability expressed in terms of the predefined index
called “factor of safety” (FS). This factor is often quantified using some simple models
of the groundwater flow in combination with infinite slope stability analysis to estimate
potential or instability condition of surface slopes within the region (like the SINMAP
model mentioned earlier in Section 2.3). Significant advantage of these methods is their
realistic and theoretically-sound working concept which can be directly implemented
to perform physically-based landslide susceptibility analysis (for engineering purpose).
However, they are normally most effective if applied to small area due to the exhaustive
need in physical and hydrological information as input data (Fall, Azam and Noubactep,

2006; Ho, Lee, Chang, Wang and Liao, 2012).
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Table 2.3 Classification of well-known landslide susceptibility determination methods

(Aleotti and Chowdhury, 1999; Guzzetti et al., 1999; Kanungo et al., 2009).

Category Sub-category Prominent methods

o Geomorphological analysis . .
0Qrualltatlve (direct approach) Geomorphological mapping
|(_||<?1lf)“v5|t;fjge- Qualitative map combination Weighted linear combination (WLC)
based) (or semi-quantitative) Analytical hierarchy process (AHP)

Quantitative
(data-based)

Deterministic Slope-stability analysis (FS assessment)

Information Value (InfoVal)

Bivariate Probabilistic frequency ratio (FR)

Probabilistic weight of evidence (WOE)
Statistical

Discriminant Function Analysis

Multivariate Multiple logistic regression

Acrtificial neural network (ANN)

Others

Fuzzy logic, neuro-fuzzy, SVM, decision tree

Comparatively, the statistical methods are more popular than the deterministic

ones at present, in which spatial relationship between past landslide activities and their

contributing factors is determined through some preferred statistical analysis methods

which can be structured into two major groups: bivariate and multivariate. In bivariate

statistical analysis, existing relationship of the contributing factors to the formation of

past landslides are assessed independently one by one based primarily on distribution

pattern in amount of past landslides with respect to the listed attributes of each factor.

The most notable methods are frequency ratio (FR) and weight-of-evidences (WOE)

methods (Regmi et al., 2010; Yalcin et al., 2011; Lee et al., 2012).

In multivariate statistical analysis, the inherent relationship of past landslides

and a set of the contributing factors is assessed through the found optimal interrelation



43

pattern among all used factors that can satisfactorily predict the occurrence chances of
the past landslides. This task can be accomplished through the use of several standard
statistical procedures such as discriminant function analysis, multiple linear regression
method, multiple logistic regression method, and the artificial neural network analysis
(Guzzetti et al., 1999). Among these, the multiple logistic regression analysis is most
favored at present due to its ability to include both numerical data and categorical data
(as independent variables) in the assessment of landslide occurrence likelihood over an
area which is not able in the discriminant analysis or multiple linear regression analysis
(Nandi and Shakoor, 2009; Pradhan, 2010). For artificial neural network (ANN), it has
gained more interest in recent years due to its distinct ability to identify relationship of
past landslide occurrences and a set of the chosen contributing factors automatically in
a nonlinear fashion using predefined logic without prior assumption on the distributing
pattern of the used input data. This capability makes it theoretically able to analyze
complicated relationship between past landslide events and their predisposing factors
better than the conventional approaches of this type like discriminant function analysis
or multiple logistic regression. Also, ANN can process data at varied measuring scales
frequently encountered in practical landslide susceptibility mapping, e.g., continuous,
ordinal and categorical data (Kanungo, Arora, Sarkar and Gupta, 2006).

Main superiority of the statistical methods is the straightforward approach to
identify appropriate relationships between past landslides and the applied contributing
factors which can be applied to develop landslide susceptibility map over large areas,
e.g. at regional scale. Their noted inferiority is the critical need for sufficient knowledge
of past landslide incidences to produce highly credible susceptibility map. In general,

quantitative methods can be used to reduce subjectiveness in weight assessment process
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used in the qualitative methods and provide more accountable interpretation on defined
importance scale of the used factors (or attributes). In addition, in terms of risk analysis,
statistical methods are effective in assessing spatial probability of the hazard occurrence
for risk analysis, but might have problems in the evaluation of its temporal probability
of the occurrence (van Westen et al., 2006).

Apart from the aforementioned methods, fuzzy logic has been implemented in
the production of landslide susceptibility maps also as seen in, for examples, Saboya,
Alves and Pinto (2006); Gorsevski and Jankowski (2010); Pourghasemi, Pradhan and
Gokceoglu (2012). Fuzzy logic is attractive due to its ability to justify the likelihood of
slope failure based on the imprecise determination criteria defined by experts or from
knowledge inherited from other relevant methods. Apart from these standard methods,
several new landslide susceptibility assessment methods have been introduced in recent
years for being an alternative or a comparative approach to the conventional ones, e.g.
neuro-fuzzy (Oh and Pradhan, 2011; Pradhan, 2011; Sezer, Pradhan and Gokceoglu,
2011), support vector machine (SVM) (Yao, Tham and Dai, 2008; Yilmaz, 2010;
Ballabio and Sterlacchini, 2012); and the decision tree approach (Yeon, Han and Ryu,
2010; Bui et al., 2012). Details of the methods implemented in this study (WLC, AHP,
FR, LR, ANN, fuzzy logic) are given in later section. They were chosen due principally
to their wide use, well-approved capability, and the rather distinct working concepts to
reach the preferred solution (credible landslide susceptibility mapping).

2.5.3 Preparation of landslide hazard maps

Landslide hazard mapping is a successive process from landslide
susceptibility mapping towards the construction of the corresponding landslide risk

map for an area (as illustrated in Figure 2.7) According to Varnes (1984), ‘‘hazard” is
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the probability of occurrence of a potentially damaging phenomenon (such as landslide,
flood) within a specified period of time and within a given area of interest. This means
the temporal probability of having landslide over an area must be included in the
susceptibility map for the formulation of the needed hazard map for the area (AGS,
2007a).

Normally, landslide hazard is usually defined as probability of
occurrence for a particular type of the landslide at a certain magnitude, or of a particular
type, within a specific period of time (Guzzetti et al., 1999). In this respect, all landslide
activities that can affect an area should be considered including those originally initiate
outside but might eventually travel into the area during its development. In principle,
landslide hazard mapping takes an output from the landslide susceptibility analysis, and
assigns an estimated frequency (e.g. annual probability) to the considered landslides.
Temporal probability of the landslide occurrence over an area can be evaluated through
the use of slope stability analysis to identify probability of slope failure based on
knowledge about the recurrent period of the triggering factor (mostly rainfall and
earthquake). The other well-known method for this task is the frequency analysis of
past landslide incidences (of certain type or magnitude). This analysis may be processed
directly through records of the identified landslide seen within the area, or, indirectly
through knowledge about the recurrence of triggering events (Corominas and Moya,
2008). However, in reality, determining temporal probability is considerably difficult
due to lack of landslide records or information of triggering events (van Westen et al.,
2006).

Commonly, the small landslides should happen more often than the large

ones which make them have higher occurring frequency. The magnitude-frequency
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relation of the landslide incidences is well examined as depicted in Figure 2.10 for
example. In case of rainfall-induced landslide, amount of the accumulated rainfall over
an area that can trigger typical landslide (of certain type or magnitude) usually varies
with locations (Guzzetti, Peruccacci, Rossi and Stark, 2007; 2008; Corominas and
Moya, 2008). However, a minimum rainfall threshold that can activate this process can
be estimated either by using the process-based methods or the empirical methods
(Guzzetti et al., 2007). In the first approach, this value is determined through the slope
stability analysis theory using knowledge of the hydrological system and the relevant
slope structure of an area while in the second approach, the answer is extracted from
the analysis of past landslide records in relation to characteristics of the rainfall events

that cause them.
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Figure 2.10 Typical found relationship of the magnitude-frequency relation observed
in landslide inventories. Magnitude often displays in terms of landslide size (e.g. km?)
while frequency (non-cumulative) usually reports based on number of events per year.
Note that, the solid line represents theoretical prediction but there is a large deviation
from theory at small landslide magnitude (often under 10,000 m?) called a rollover, or
inflection, effect. This situation implies that observed number of the relatively small
landslides is crucially lower than expected from the adopted theory but actual causes of

this phenomenon are still under active investigation (Corominas and Moya, 2008).

Results from these investigations have established the rainfall intensity-duration
(ID) threshold for explaining critical situation of the rainfall event that might be able to
activate landslide phenomenon over an area of interest which can be written in general

form as follows (Guzzetti et al., 2007):
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| = c+aD’ 2.7

where | is the average rainfall intensity, D is the rainfall duration, and ¢ > 0, o and 3
are proper parameters of the analysis (in most cases, ¢ = 0 is applied). Typical ranges
of these variables are about 1 to 200 mm (for intensity) and 1 to 100 hours (for duration).

As described in Guzzetti et al. (2007, 2008) and Corominas and Moya (2008);
the rainfall threshold depends significantly on landslide mechanism. High-intensity and
short-duration rainfall normally trigger shallow landslides and their associated debris
flow for slope covered with permeable materials in which the build-up and dissipation
of positive pore pressures is very rapid. Also, the low to moderate intensity rain storms
lasting for several days or weeks might trigger landslide and its subsequent debris flow
in low permeability soil. In this case, the antecedent rainfall shall have important role
in reducing soil cohesion and increasing the positive pore-water pressure that leads to
the eventual slope failure. Therefore, thresholds based on the antecedent rainfall were
also established in several works, often examined in conjunction with the rainfall data
at failure day (see Figure 2.11 for an example). However, the preferred period of rainfall
accumulation is still inconclusive.

In theory, hazard map must include areas affected by the landslide runout in its
detail also. This requirement needs accurate prediction of the runout behavior of a
landslide, e.g. how far and how fast a landslide travels once mobilized. Typically,
several parameters related to landslide runout are of interest in the study of risk analysis,
e.g. runout distance (a distance from landslide source area to distal toe of the deposition
area), damage corridor width (width of an area subjected to landslide damage in the
distal part of the landslide path where impact on buildings and other facilities occurs;

velocity (within the damage corridor which determines the potential damage to facilities
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and the design parameters of any required protective measures), depths of the moving

mass and of the deposit (which influence the impact of landslide runout within the

damage corridor) (see more details in Dai et al., 2002).
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Figure 2.11 Relationship of daily rainfall at the failure and antecedent rainfall in Korea

(Kim, Hong and Kim, 1992). Note that, landslides in the central area are influenced by

the antecedent rainfall the most while for those southern side is daily rainfall.

2.5.4 Preparation of landslide risk maps

In essence, landslide risk zoning shall take outcomes from the hazard

mapping and assess potential damage to each concerned element at risk resided within

the area (comprising mainly of people, properties, and services) from a considered

hazard, with temporal and spatial probability of the hazard occurrence and vulnerability

to the hazard of the at-risk element taken into account (as shown in Figure 2.12). In

case of landslide hazard, it might be necessary to formulate susceptibility, hazard and
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risk zoning maps separately for different types of the landslides affecting the area; e.g.,

rock falls, small shallow landslides and deep-seated larger landslides (AGS, 2007a).
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Figure 2.12 Conceptual relationship between hazard, elements at risk, vulnerability and

risk (Alexander, 2002).

To prepare the landslide risk map, information of all the elements at risk must
be systematically identified and mapped first. These data normally include population,
buildings, economic activities, public services, utilities, infrastructure, etc., which are
at risk from landslide activities in a considered area. The emphasis is mostly given to
population, buildings, and infrastructure. Rapid inventory of the database for elements
at risk generally uses high-resolution images. Each of the listed elements has its own
characteristics, which can be spatial (the location in relation to the hazard), temporal
(such as population amount that might differ in time at a certain location) and thematic
characteristics (such as the material type of the buildings/houses, or the age distribution
of the population) (van Westen et al., 2006).

The next step of the risk analysis process is quantification of the vulnerability

for the elements at risk. The concept is to perform an assessment on degree of damage
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that may result from the occurrence of a particular landslide of a given type/volume.
Vulnerability is a crucial component in the evaluation of landslide risk often defined as
the level of potential damage, or degree of loss, of a particular element (expressed on a
scale of 0 to 1) subjected to a landslide event of a given intensity (Varnes, 1984; Crozier
and Glade, 2005). The assessment involves understanding of the interaction between
the considered landslide and affected elements. Generally, the vulnerability to landslide
influence depends mainly on (a) runout distance; (b) volume and velocity of the sliding;
(c) elements at risk (buildings and other structures), nature and proximity to the slide;
and (d) elements at risk (persons), proximity to the slide, nature of the building/road
that they are in, and where they are in. With this method, the vulnerability of an element
at risk depends principally on characteristics of the landslide and technical resistance
of that element to landslide impact, such as the type, nature, age, etc. (Dai et al., 2002).

Ultimately, combination of hazard and vulnerability information shall define
values of a specific risk as preferred (Eg. (2.6)). Combination of the data for one specific
type of landslide and one specific type of the elements at risk results in a specific risk.
Integration of all specific risks for all landslide types and volumes and all the elements

at risk results theoretically in the total risk (Varnes, 1984; van Westen et al., 2006).

2.6 Relevant landslide susceptibility mapping methods

As several landslide susceptibility assessment methods are of interest to be
applied in this thesis, therefore, knowledge on general concept and working procedure
of these methods are necessary for the appropriate preparation of the subsequent work

and this shall be described in this section as follows.
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2.6.1 Conventional weighted linear combination (WLC)

Conventional weighted linear combination (WLC) is one of the widely-
used qualitative methods for landslide susceptibility analysis, especially at a regional
scale (Glade and Crozier, 2005). In this approach, contributing factors and their
attributes are directly assessed for their relative importance in the initiation of landslide
activity found within the examined area based on assembled expert opinions or from
literature review. The comparative importance is normally represented by the assigned
numerical values for the relevant factors and their corresponding attributes [e.g. using
ordinal scale from 0 (not important) to 9 (most important)]. These values are typically
called factor weight (for the factors) and class weight, or rating, (for the attributes).
Higher values of weight (or rating) indicate greater influence of the concerned factors
(or attributes) on landslide occurrence over the area (Lee, Ryu, Won and Park, 2004).
Product of factor weight and corresponding class weight (of a specific attribute) is
represented the net contributing weight of that attribute to landslide occurrence therein
(see Table 2.4 for example).

To construct the required landslide susceptibility map, the net
contributing weight from each input factor (i.e. that of the apparent attribute) are
accumulated on a pixel-based basis and the result is called landslide susceptibility index
(LSI) which is different for each considered pixel, the higher LSI indicates the greater

probability of landsliding. This process can be written as follows:

LSI = > FW,-Cw,, (2.8)
i=1
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where LSI is a landslide susceptibility score for a considered pixel, FW; and CW; are
corresponding factor weight and class weight for a contributing factor i of that pixel
and n is number of the causative factors in use.

Figure 2.13 shows example of the flow diagram presented in work of Kanungo
et al. (2006) which used the WLC method for landslide susceptibility classification in
Darjeeling Himalayas hill region. There were six main input factors considered in this
case with different preferred factor and attribute weights as detailed in Table 2.3 from
which the drainage buffer was given the highest priority (with factor weight of 9) and

aspect was considered having lowest priority in the analysis (with factor weight of 1).
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Figure 2.13 Flow diagram for the landslide susceptibility assessment procedure using

the conventional weighted linear combination method (Kanungo et al., 2006).
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Table 2.4 Examples of factor weights and class weights (or rating) for input thematic

layers and their attributes for the WLC method as reported in Kanungo et al. (2006).

Factor weight

Class weights

Net contributing

Thematic layers  Attributes weights
’ (FW) (W) (FW-CW)
Drainage buffer  First order 9 9 81
Second order 5 45
Lineament buffer 0-125 m 9 72
125-250 m 7 56
250-375 m 8 5 40
375-500 m 3 24
>500 m 1 8
Slope 0-15° 1 7
15-25° 3 21
25-35° 7 5 35
35-45° 7 49
>45° 9 63
Lithology Darjeeling gneiss 7 42
Feldspathic greywacke 3 18
Paro gneiss 6 5 30
Lingse granite gneiss 9 54
Paro quartzite 1 6
Reyang quartzite 1 6
LULC Agriculture land 5 20
Tea plantation 3 12
Thick forest 4 1 4
Sparse forest 7 28
Barren land 9 36
Habitation 2 8

2.6.2 Analytic hierarchy process (AHP)

Another popular qualitative method in landslide susceptibility

evaluation is the analytic hierarchy process (AHP). This method was first developed by

Saaty (1977, 1980) as supporting tool for solving of the encountered multi-criteria

decision situation. The method has gained broad application so far especially in the

research fields of site selection, suitability analysis, regional planning, and landslide
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susceptibility analysis (Vaidya and Kumar, 2006; Ho, 2008; Long and De Smedt,

2012).

Hierarchy Hierarchy Hierarchy Alternatives
Level 1 Level 2 Level 3
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Figure 2.14 A hierarchical structure of the analytic hierarchy process method (AHP)

(Cortes, Serna and Martinez, 2012).

According to Malczewski (1999); fundamental concept of the AHP
method is based on the three principles: decomposition, comparative judgment, and
synthesis of priorities. In the first task, a target problem must be broken down into a
conceptual hierarchical order (or successive level) of its decision-making components,
beginning with the ultimate objective, or goal, of the decision strategy given at Level
1, followed by details of the applied decision-making components in the subsequent
levels, starting with the broadest categories first (at Level 2) followed by the
subcategories (or criteria) at higher levels. The final layer comprises a list of the

alternative options, or solutions, under consideration (as illustrated in Figure 2.14).
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In the second task, the priority score (or weight) for each listed
component at a specific level must be determined using a pairwise comparison method
in which all considered elements at each hierarchical order are judged for their initial
preferences in pair describing by the scale from 1 to 9 (see Table 2.5 for detail). These
results are then further processed to identify priority score for each applied element
later using the gain pairwise comparison matrix, or the preference matrix. The final task
is to rank priority of each potential option based on the total priority score associated to
the considered option, i.e., the multiplication of all original scores at each defined level

of the hierarchical order (Saaty and Vargas, 2001; Saaty, 2008).

Table 2.5 Scale of preference between pair of factors in pairwise comparison process

of the AHP method (Saaty and Vargas, 2001).

Scale Degree of preference  Explanation
1 Equally Two activities contribute equally o the objective

Experience and judgment slightly to moderately favor one
3 Moderately |

activity over another

Experience and judgment strongly or essentially favor one
5 Strongly o

activity over another

An activity is strongly favored over another and its dominance
7 Very strongly ) . .

is showed in practice

The evidence of favoring one activity over another is of the
9 Extremely . . . .

highest degree possible of an affirmation

) Used to represent compromises between the preference in

2,4,6,8 Intermediate )

weight 1,3,5,7 and 9
Reciprocals Opposites Used for inverse comparison

AHP has been often applied to landslide susceptibility analysis in which it was

used principally to determine appropriate factor weights and class weights for all
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included contributing factors, such as, Yoshimatsu and Abe (2006); Yalcin etal. (2011);
Intarawichian and Dasananda (2011); Long and De Smedt, (2012); Bagherzadeh and
Daneshvar (2012). Clear advantage of the AHP in landslide susceptibility analysis is its
capability to include all kinds of contributing factor into the analysis process and the
preference order of the factors (and their attributes) can be established automatically
through application of used pairwise comparison method. In addition, the consistency
of judgment in comparison process can be directly verified to determine credibility of
the applied methodology. However, main disadvantage of AHP is its lack of generality
in the applied preference judgment rules for each pair of the listed contributing factors
due to subjective nature of decision in the standard pairwise comparison method which
is usually depended on the collective expert opinion or on the group consensus (Long
and De Smedt, 2012). After final weights of all factors and their attributes are known,
susceptibility map can be constructed as a consequence from the pixel-based landslide
susceptibility index (LSI) computation using Eq. (2.8).

The formal procedure of the AHP method to landslide susceptibility
analysis can be summarized in conclusive details as follows (Triantaphyllou and Mann,
1995; Bachri and Shresta, 2010; Long and De Smedt, 2012):

(1) Construction of the pairwise comparison matrix used for the
determination of the preferred factor weights and class weights. In this process, all
relevant elements are compared in pair and a preference scale is given to each pair of
data ranging from 1 to 9 (as detailed in Table 2.5). These results are then put in order
to create a pairwise comparison matrix of size n (n is number of used elements) (like

ones in Table 2.6).
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(2) Determination for the appropriate factor and class weights. At this
step, priority score for each factor (and their listed attributes) are quantified. This can
be done through several methods as stated in Gao, Zhang and Cao (2009) but the most
popular ones are the eigenvector method, sum method and geometric mean method.

(2.1) Eigenvector method. This one is from the basis of the AHP
theory originally described in Satty (1980) where preference vector o is introduced to

fulfill the following relation:

Aw = /1max , (29)

here, A is pairwise comparison matrix of order n denoted by A = (aj;) where i and j are
the row and column indices, respectively, and n is the number of total contributing
factors (or attributes) in use. The matrix member a;j is a preference scale for compared
factors (or attributes) i and j with constrains: aij = 1/aj;, for i =#]j, and a;j = 1, for all i,
which make A being a reciprocal matrix. In this case, w is an eigenvector and Amax IS a
maximum eigenvalue of matrix A corresponding to w. By solving Eq. (2.9), members
of vector w could be identified and their normalized values (by dividing the original
ones with their sum) shall become respective weight values for the considered factors
(or attributes) by matching one by one for each row of A and w.

(2.2) Sum method. This might be called the normalized-sum-
average method as the first task is to normalize all members of the original preference
matrix by dividing each matrix element by net sum of all elements found in its column.

Then, the priority score for each listed factor (or attribute) is derived from the average
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of all elements in a row that the studied factor (or attribute) is belonged. This

aforementioned procedure can be written as:

Ty a,
k=1

I % (i=12,..n) (2.10)

(2.3) Geometric mean method. In this case, the priority scores are
first determined by multiplying all elements in each row of the preference matrix and
take the n-th root of the product result. These yielded data are then normalized by
dividing them with their sum to attain respective weights for each listed element as an

outcome (matching row by row). This stated procedure can be written as:
)
o= —= 2 _ (i=12,..n) (2.11)

(3) Assessment for consistency of the judgment. Before the resulted
weights in previous step are put in use, satisfied consistency of the comparison must be
ensured. For the ideal performance with a perfect consistency in the comparison, i.e.
aij-ajk = aik, Amax = N, but for the general cases with some inconsistency in the judgment,
Amax > n. Degree of the inconsistency in the used judgment can be quantified by using

an index called the consistent ratio index (CR) defined as:
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_ClI

CR=—,
RI

(2.12)

where Cl is the defined consistency index and RI is called the random index; which is
the consistency index of a randomly-generated pairwise comparison matrix. And, as
discussed in Saaty (1980), if the CR is significantly low (i.e. CR < 0.1), this means the
overall judgment is rather reliable and the achieved factor (or attribute) weights can be
accepted for further use. However, if CR > 0.1 (or 10%), it indicates that subjective
judgment in use is still too inconsistent and needed to be revised accordingly.

The consistency index (Cl) was introduced to be a measure of the
consistency of the pairwise comparison preferences in use which is defined as:

R

Cl = ,
(n-1)

(2.13)

value of Zmax can be identify directly from Eq. (2.9) provided that matrices A and w are
already known form earlier works [as explained in Coyle (2004)] and standard values

of random index are listed in Table 2.6 as a function of matrix size.

Table 2.6 Random index (RI) given by Saaty (1980) as a function of matrix size (n).

n 1 2 3 4 5 6 7 8 9 10 11 12

Rl 000 0.00 058 09 112 124 132 141 145 149 151 154

n 13 14 15

RI 156 157 159

To illustrate applied procedure of the AHP method to landslide susceptibility
analysis in more details, resulted preference matrix reported in work of Thanh and De

Smedt (2012) for their study area in central Vietnam is presented here as an example in
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Table 2.7. It was found that, among nine factors included in the study; slope angle and
precipitation were having top priority at weights of 0.303 and 0.236, respectively. And
elevation and drainage distance are the two factors with lowest priority with weights of
0.021 and 0.025 respectively. For the slope category, the highest rank was evidenced at
slope > 35° with weight of 0.347 and for land use group, shrubs/bare hills and afforest
land were found most important with the total weights of 0.615 and 0.255, respectively.
Table 2.8 describes information of essential variables used in the consistency analysis
of this work. Note that, half of the preference matrix was left empty but actual members

are just a respective reciprocal of the shown preference scale for the same pair of data.
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Table 2.7 Example of the pair-wise comparison matrix, or preference matrix, reported
in Thanh and De Smedt (2012) along with the corresponding normalized eigenvector

(representing factor, or attribute, weights of the analysis).

Causative factors and Pair-wise comparison matrixes Eigen-
classes within vectors
each factor [ 2 B [ 51 [6 (7 B8 [© [0 (1] (121 (13
Factors
[1] Slope angle 1 0.303
[2] Weathering 173 1 0.151
[3] Land use 1/4 172 1 0.108
[4] Geomorphology 75 13 172 1 0.078
[5] Fault density /7 15 U3 13 1 0.045
[6] Geology /6 14 14 12 122 1 0.033
[7] Drainage distance /8 16 U6 15 173 2 1 0.025
[8] Elevation 9 17 V7 U7 14 153 2 1 0.021
[9] Precipitation 12 2 3 5 7 6 8 9 1 0.236
Slope angle
[1] <5° 1 0.032
[2] 5°-15° 2 1 0.046
[3] 15°-25° 4 2 1 0.089
[4] 25°-35° 6 4 2 1 0.139
[5] 35°-45° 7 7 4 4 1 0.347
[6] >45° 7 7 4 4 1 1 0.347
Weathering
[1] Quaternary deposit 1 0.046
[2] Ferrosiallite 3 1 0.093
[3] Silixite mixtures 5 3 1 0.269
[4] Sialferrite 7 5 2 I 0.469
[5] Siallite 3 2 V3 s 1 0.123
Land use
[1] Cultivated areas 1 0.065
[2] Afforest land 5 1 0.255
[3] Shrubs and bare hills 7 4 1 0.615
[4] Village and built-up area 1 /5 17 1 0.065

Table 2.8 Information of essential variables used in the consistency analysis reported

in Thanh and De Smedt (2012).

Causative factors n Amax Cl RI CR (%)
All 9 9.75 0.093 1.45 6.4
Slope angle 6 6.23 0.045 1.24 3.6
Weathering 5 5.14 0.035 1.12 3.1
Land use 4 4.14 0.047 0.90 5.2
Geomorphology 8 8.19 0.027 1.41 1.9
Fault density 4 4.11 0.036 0.90 4.0
Geology 13 14.28 0.107 1.56 6.8
Drainage distance 3 3.07 0.033 0.58 5.6
Precipitation 3 3.07 0.033 0.58 5.6
Elevation 4 4.12 0.039 0.90 4.3

Values of CR smaller than 10% indicate consistency of the preference matrix
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2.6.3 Frequency ratio (FR)

Frequency ratio (FR) is a popular quantitative approach (of bivariate
type) in landslide susceptibility evaluation, e.g. in Lee and Sambath (2006); Vijith and
Madhu (2007); Oh et al. (2009); Pradhan and Lee (2010); Intarawichian and Dasananda
(2011); Yalcin et al. (2011); Park, Choi, Kim and Kim (2013). This method is famous
for its simple concept and straightforward calculation of landslide susceptibility index
which can be performed by most widely-used GIS softwares. In principle, it works by
finding relative importance of each incorporated factor’s attribute (defined as a class
weight) in producing past landslides independently and describes it in terms of the FR
index. The index is simply defined by a ratio of the landslide occurrence percentage

and area occupation percentage for that attribute compared to the whole area, or,

_ (CLP/TLP) _(CLP/CA)
~ (CAITA)  (TLP/ITA)’

(2.14)

where CLP is number of landslide pixels seen in a specific class (of a certain factor),
TLP is number of total number of the observed landslide pixels, CA is the associated
total class area and TA is total study area.

By definition seen in Eq. (2.14), FR shall represent the landslide
frequency over a unit area of a considered attribute compared to that of the entire area.
In this case, FR can be any number from 0 onwards. For FR < 1, it means landslide
occurrence per unit area of that factor’s attribute (or class) is lower than the determined
average value (for the entire area), which implies that it is less important in producing

landslide over the area. For FR > 1, it means this attribute has higher landslide
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frequency than average (indicating greater influence in producing landslide) and FR =
1 means the result is comparable to average (Lee, 2005).

After the FR values for all attributes of used factors are determined, they
can be applied to quantify landslide susceptibility index (LSI) on a pixel-based basis

using the following formula:

LSI= Y FR, , (2.15)
i=1

where FR; is the FR value for the corresponding attribute of factor i of the considered
pixel and n is the total number of used factors. The accumulated LSI values in a study
area can be applied for the formulation of the landslide susceptibility map for the area
afterwards using the chosen mapping method of interest.

Though FR model is widely adopted at present for the creation of
landslide susceptibility map worldwide, this method still contains some distinct
shortcomings in itself. For examples, it evaluates the importance of each causative
factor individually and ignores any spatial autocorrelation between them. As a result,
some areas might be overemphasized of their proneness to having landslide activity
(with higher LSI values) if two or more dominant factors (with relatively high FR score)
are highly correlated to each other. In addition, it needs sufficient and well-distributed
reference landslide data in order to determine the FR index more realistically (with less
bias) (Intarawichian and Dasananda, 2011).

Table 2.9 shows examples of the frequency ratio (FR) value given in
work of Vijith and Madhu (2008) for a study area in Western Ghats of Kerala, southern

India. The result indicates strong correlation of landslide activity with slope angle of
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30-35° (FR = 2.86), slope aspect along the N and W directions (FR = 2.01, 2.22), slope

range of > 750 m (FR = 2.06), lithology in the quartzite class (FR = 2.84), and land use

in natural vegetation class (FR = 2.51).

Table 2.9 Frequency ratio (FR) index found in work of Vijith and Madhu (2008).

Thematic layer Class Number of pixels  Class (%)  Number of landslide Slide (%)  Frequency
in the class pixels within the class ratio
Slope angle (Degree) 0-5 114610 29.58 ] 11.76 0.39
0-10 23809 6.15 3 5.88 0.95
0-15 39062 10.08 1 1.96 0.19
15-20 47724 12.32 g 15.68 1.27
20-25 44228 11.41 7 13.73 1.20
25-30 36101 9.3 7 13.73 1.47
30-35 26498 6.84 10 19.61 2.86
3540 18965 4.89 4 7.85 1.60
=40 36521 9.43 5 9.80 1.03
Slope aspect Flat 83366 21.41 1 1.96 0.09
N 18913 4.98 5 9.81 2.01
NE 45792 11.83 4 7.84 0.66
E 40173 10.36 6 11.76 1.13
SE 35719 9.21 4 7.85 0.85
S 39130 10.09 10 19.60 1.94
SW 48068 12.42 g 15.68 1.26
w 40976 10.57 12 2352 222
NWwW 35381 9.13 1 1.96 0.21
Slope curvature Concave 56511 14.58 10 19.61 1.34
Flat 170875 44.10 10 19.61 0.44
Convex 160132 41.32 31 60.78 1.45
Slope length (m) <1 122283 31.55 6 11.77 0.37
1-250 195827 50.53 31 60.78 1.20
250-750 36253 9.36 5 9.80 1.04
=750 33155 8.56 9 17.65 2.06
Distance from drainage (m) 0-100 192896 49.78 23 45.10 0.90
100-200 126235 32.57 22 43.14 1.32
200-300 50787 13.11 5 9.80 0.74
300400 13414 346 1 1.96 0.56
=400 4186 1.08 0 0.00 0.00
Distance from lineament (m)  0-100 73891 19.07 8 15.69 0.82
100-200 70961 18.31 12 2352 1.28
200-300 60329 15.56 10 19.61 1.26
300-400 47235 1218 10 19.61 1.61
=400 135102 34.86 11 21.57 0.61
Lithology Charnockite 362651 93.59 49 96.08 1.03
Quartzite 2680 0.69 1 1.96 2.84
Dolerite 4772 1.24 1 1.96 1.59
Biotite gneiss 13911 3.58 0 0.00 0.00
Granite 3504 0.9 0 0.00 0.00
Landuse Natural vegetation 30177 7.79 10 19.61 251
Grass land 21469 5.64 2 392 0.69
Barren land 23932 6.18 4 7.85 1.27
Crop land 1790 0.46 0 0.00 0.00
Rubber 268784 69.36 30 58.82 0.84
Tea 18817 4.87 0 0.00 0.00
Cleared area 22080 5.70 5 9.80 1.71
Built up land 70 0.00 0 0.00 0.00
Water body 399 0.00 0 0.00 0.00
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2.6.4 Logistic regression (LR)

Logistic regression is one of the well-known multivariate analysis
methods for making landslide susceptibility maps in recent years, e.g. Nefeslioglu,
Gokceoglu and Sonmez (2008); Akgun, Kincal and Pradhan (2011); Ercanoglu and
Temiz (2011); Yalzin et al. (2011); Akgun (2012). In essence, the logistic regression is
an extension of the ordinary linear regression in which the considered dependent
variable is not of a continuous type as usual but becomes a categorical type with some
certain number of its possible states (or values). If only two states are possible, e.g.,
presence/absence, men/women, success/failure, 0/1, this case shall be called a binomial
(or binary) logistic regression, but if more states are also an option for being an eventual
outcome, this shall be called multinomial logistic regression (Czepiel, 2013).

Logistic regression is superior to the ordinary regression in terms of the
able input data (as independent variables) that include both numerical and categorical
type. Main objective of the analysis is to identify a suitable regression function (of the
used independent variables) that can satisfactorily describe probability of having a
certain outcome of the dependent variable. These properties of the logistic regression
method suit the landslide susceptibility analysis well, as in this work, the dependent
variable is the presence or absence of landslide incidence at a specific pixel over the
study area which is assumed to be resulted from the complex interaction of several
contributing factors of both numerical and categorical types. Hence, it might be possible
to assess landslide occurrence likelihood for each pixel assumed that the relation of
independent factors, one that actually determines the absence or presence of the
landslide activity in the area, can be evaluated through the binary logistic regression

method (Ayalew and Yamagishi, 2005; Lee, 2005; Pradhan, 2010).



67

Common concept of the method is based on assumption that the
probability of having a landslide incidence at a particular pixel (p) can be quantified

through the use of a specific function called log-odds or Logit(p) defined as (Lee, 2005):

L = Logit(p) = In(%). (2.16)

This function is conceptually assumed to have linear regression relation

with the used dependent variables, or,
L = ¢, +CX +C,X, +...4+CX, . (2.17)

The crucial task here is to find the proper values of the coefficients co,
C1, ... Cn from the reference landslide data and their associated contributing factors x,
X2, ..., Xn. This process is usually achieved by using maximum likelihood estimation
technique to solve for appropriate values of parameters that best fit the landslide data
as detailed in Dayton (1992) and Czepiel (2013). The known value of L for each pixel

can be used to calculate the probability p as follows:

et
1+et 1+et’

p (2.18)

These pixel-based probability values (of 0-1) can be used as landslide

susceptibility index (LSI) for making susceptibility map of the area afterwards.
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Note that, it is commonly desired that all continuous variables have the
same scale in the multivariate statistical analyses. From this reason, all continuous
variables (like slope, elevation, and proximity) should be normalized to have values in
the range of [0, 1]. And for the categorical data (like land use or soil type), they are
expressed in binary format (presence/absence) with respect to each attribute of the
referred factor, similar to that of the dependent variable. One of the main requests of
the multivariable statistical applications is equal sampling of the training data set (of
reference landslide data). This means that the ratio of presence (1) to absence (0) should
be equal to 1 in the training data sets (Nefeslioglu et al., 2008).

Table 2.10 presents final results (FR values and logistic regression
coefficients) of the landslide hazard analysis using FR and logistic regression methods
reported in Lee and Pradhan (2007) for an area in Selangor, Malaysia. From this study,
the proper relationship of Logit function L with the used influencing factors was found

to be:

L =0.0780-Slope + Aspect—0.0032 - Curvature — 0.0048 - Drainage
+ Lithology +0.0001- Lineament —1.3633- NDVI + Landcover  (2.19)
+0.0043- Precipitation —16.4726.
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Table 2.10 Example landslide susceptibility analysis using FR and logistic regression

models by Lee and Pradhan (2007) in Selangor, Malaysia.

Number of Percentage of Pixek in Coefficients of
pixels showing pixels showing domain logistic
landslide Landslide regression
OCCUrTEnce OCCUITence
Slope 0~15 degree 67,777,334 8286 115 3517 042 0.0780
16~25 degree 8426979 10.30 a7 26,61 258
26~35 degree 4,648,328 568 68 20.80 3566
35~85 degree 940,212 115 57 1743 1516
Aspect Flat 32,746,440 40.04 0 0.00 000 —9.1703
North 5,541,254 6.77 55 1682 248 —1.9392
Northeast 6,678,670 817 45 1376 169 —1.3081
East 6,077,711 743 27 826 111 —1.2635
Southeast 6,181,783 756 28 8.56 113 —1.9959
South 5,564,596 6.80 29 8.87 130 —1.1984
Southwest 6,721,149 822 i5 10,0 130 —2.0135
West 6,105,258 746 46 14.07 188 —2.0177
Northwest 6,175,992 7.55 62 18.96 251 0.0000
Curvature Con@ve 13,288,765 1625 66 2008 124 —0.0032
Flat 55,283,859 67.59 15 459 007
Convex 13,220,229 16.16 246 75.23 4465
Distance from drain- 0-20 m 8,269,740 10.11 34 10.40 103 —0.0048
age 21-50 m 10,004,084 1223 88 2691 220
51-80 m 8,281,601 1013 64 1957 193
81-120 m 8,714,376 10.65 54 16.51 155
121-183 m 7,870,547 962 52 15.90 165
184357 m 7,731,050 945 i2 979 1M
358804 m 7,737,710 946 3 0.92 010
805-1,546 m 7,730,045 945 0 0.00 000
1,547—2,765 m 7,730,365 945 0 0.00 000
2,766-9,912 m 7,723,339 944 0 0.00 000
Geology Acid intrusives 18,064,989 2227 197 60.24 27 —4.5355
(undifferentiated)
Add intermediate vol@nis 6352018 783 30 917 147 —65.1%41
Basic intrusives, mainly 20,480,378 2525 0 0.00 000 —9.2067
gabbro
Clay and silt (marine) 6,947 667 857 19 581 068 —12.8382
Clay and silt, sand and gravel 11,351,353 13.99 1 031 0m 6.6926

2.6.5 Artificial neural network (ANN)

An artificial neural network (ANN) is generally defined as a

computational mechanism able to acquire, represent, and compute a mapping from one

multivariate space of information to another, given a set of data representing that

mapping (Garrett 1994). ANN works by finding optimal paths to connect several input

data to a trained correct output and uses them as a reference to predict correct output

for a given set of input afterwards. Therefore, there are two stages involved in using

ANN for multi-source classification: the training stage and the classifying stage (Figure

2.16).
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The structure of ANN is comprised of a multi-layered neural network, which
consists of an input layer, hidden layers, and an output layer (Figure 2.15). Input data
are fed through the complex hidden layer that will process them to gain most correct
output during the training session of the system. In the process, the hidden and output
layer neurons shall process their inputs by multiplying each input by a corresponding
weight, summing up the product, then processing the sum using a nonlinear transfer
function to produce a definite result. This network gradually learn to know the proper
weighs (for each input factor) that lead to the correct results by adjusting the internal
weights between neurons to reduce errors between actual output values and the target
output values. At the end of this training phase (after a large number of tries), the neural
network provides an appropriate model that is able to predict a target value correctly
from a given input value. Typically, the back-propagation algorithm is appliied to train
the network where the training session continues until some targeted minimal error is
achieved between the desired and actual output values of the network. Once the training
is complete, the network is used as a feed-forward structure to produce a classification
for the entire data (Paola and Schwengerdt, 1995).

The ANN approach for landslide susceptibility mapping has attracted more
attention in recent years, e.g. in Kanungo et al. (2006); Lee and Evangelista (2006),
Yilmaz (2009); Pradhan, Lee and Buchroithner (2010); Paval, Nelson and Fannin
(2011), due to its distinct ability to identify a nonlinear relationship of the past landslide
data and a set of the chosen contributing factors automatically which cannot be achieved
by the conventional methods like the FR or logistic regression. And, due to the ability
of the ANN method to incorporate the imprecise and fuzzy data, hence, they can work

with numerical, categorical and binary data without violating any prior assumptions.
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Generally, a three-layer feed-forward network consisting of an input layer, one hidden
layer and one output layer was found appropriate as an ANN structure for the analysis

of landslide susceptibility for an interested area (Yilmaz, 2009).

Input Hidden Output
Layer layer layer

Slope angle
Slope aspect
Elevation
Faults Susceptibility
Drainage
TWI

SPI

Geology

Figure 2.15 Typical ANN architecture for landslide classification (Yilmaz, 2009).
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Training Dataset

ANN
Testing

ANN
Training

Identification of
best neural network
architecture

e

Simulation of
whole dataset

LSZ Map II

Comparison with
Landslide Distribution

Figure 2.16 Typical ANN work flowchart for landslide susceptibility classification

comprising of two steps; training and classifying (Kanungo et al., 2006).

2.6.6 Fuzzy logic approach
The fuzzy set theory proposed by Zadeh (1965) is one of the standard
tools for solving complex problem containing vague information. The most notable
aspect of this methodology is its possibility of capturing, in a mathematical model, the
intuitive concepts which are the base of consistent judgment (Saboya, Alves and Pinto,
2006). The method has been widely applied for many scientific studies in different

disciplines including landslide susceptibility analysis, such as, Saboya et al. (2006); Lee
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(2007); Gorsevski and Jankowski (2010); Guettouche (2012); Pourghasemi et al.
(2012). Fuzzy logic is attractive due to its capability to justify likelihood of the slope
failure based on the imprecise determination criteria defined by experts or from the
knowledge inherited from other relevant methods.

Main concept of this theory is based on a mathematical theory of fuzzy
sets, which is an extension of the classical sets to sets defined imprecisely. A fuzzy set
can be described as a set containing elements that have varying degrees of membership
in the set whose corresponding mathematical expression can be written as follows

(Ross, 1995; Ercanoglu and Temiz, 2011):

A={(xua()}ixeX, (2.20)

where A is a given fuzzy set, p is a membership function, and x is the element of X
universe. The fuzzy set theory is different from the classical set theory as in the latter
case, membership values of an element for a specific set are either 1 (being a member)
or 0 (not being a member), but in the first case (fuzzy set), possible membership values
of an element regarding to that set have a continuous scale from 1 (for full membership)
to O (for full non-membership), reflecting degree of certainty of being membership (see
the illustration in Figure 2.17 for example).

For the landslide susceptibility analysis, an attribute of a specific
contributing factor shall be considered as being a member of the landslide producer set
with a certain fuzzy-membership value. These values can be assessed by some data-

driven methods, such as the frequency ratio (FR) model mentioned earlier (e.g. Lee,
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2007; Regmi et al., 2010; Aksoy and Ercanoglu, 2012) or the cosine amplitude method
(e.g. Ercanoglu and Gokceoglu, 2004; Kanungo et al., 2006; Ercanoglu and Temiz,
2011), or by the expert-based judgments through the application of the defined if-then
rules (e.g. Saboya, Alves and Pinto, 2006; Pourghasemi et al., 2012). Table 2.11 gives
examples of the FR-based fuzzy membership values of attributes presented in works of

Lee (2007); Bui, Pradhan, Lofman, Revhaug and Dick (2012), respectively.
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Figure 2.17 Example of the fuzzy set and its complement with the membership values

of 0 to 100% (for “cool” and “not cool” conditions) (Fano, 2011).
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To produce a susceptibility map, the fuzzy membership values from each used
factor (i.e., that of a corresponding attribute for a considered pixel) are then integrated
to yield a landslide susceptibility index (LSI) outcome for each unit area (or a pixel).
This task can be accomplished by using five fuzzy operators: fuzzy-OR, fuzzy-AND,
fuzzy algebraic sum, fuzzy algebraic product, and fuzzy-gamma, which can be written
mathematically as follows (Regmi et al., 2010):

FuzzyOR : iog = MAX(p 0,5 1 1--)
FuzzyAND: o = MIN(u s 205 10 5 --2)

Fuzzyaegebraic sum: s, =1-[ J(1- ;) ,

i=1

n
Fuzzyaegebraic product: z,.q.«= [ | &

i=1
Fuzzygamma : s, = [Fuzzyalgebraic sum|"x[Fuzzyalgebraic product]™
where i is the fuzzy-membership function for the i-th factor map, andi =1, 2, 3,..., n
and A =0, 1].

From these standard definitions, it is obvious that, for the fuzzy-OR
operator, the yielded result at any particular location is controlled by the maximum
input fuzzy membership function. On the contrary, for the fuzzy-AND operator, this
output result is controlled by the smallest value of the input data. These operators are
appropriate if the landslide activity at a particular location is controlled mostly by a
single dominant contributor, otherwise, the other three operators (sum, product, and
gamma) should be more suitable for the application. Note that, operation gamma is a
compromise between the increase tendency of the fuzzy algebraic sum and the decrease
tendency of the fuzzy algebraic product in which A = 0 is giving pure fuzzy product

and A = 1 is giving actual fuzzy sum operator (Figure 2.18) (Lee, 2007; Regmi et al.,
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2010). In literature review, the gamma and product operators often found most effective
in formulating the credible landslide susceptibility map compared to the other operators

(Table 2.12); e.g. in Lee (2007); Regmi et al. (2010); Ercanoglu and Temiz (2011).

Table 2.11a Examples of the FR-based fuzzy membership values for the respective

attributes of a specific contributing factor presented in Lee (2007).

Factor Class No. of pixels Percentage No. of Percentage Frequency ratio Fuzzy
in domain of domain landslide of landslide membership
values
Slope 0-5 336,945 17.57 0 0.00 0.00 0.00
6-10 204,758 10.68 2 0.59 0.06 0.01
11-15 311,658 16.25 13 3.86 0.24 0.04
16-20 362,062 18.88 46 13.65 0.72 0.13
21-25 322,133 16.80 78 23.15 1.38 024
26-30 217.740 11.36 97 28.78 2.53 0.44
31-35 108.568 5.66 67 19.88 351 0.61
3640 39,827 2.08 20 5.93 2.86 049
41-90 13,783 0.72 14 4.15 5.78 1.00
Aspect Flat 82,385 4.30 0 0.00 0.00 0.00
North 226.606 11.82 18 5.34 0.45 025
Northeast 292,155 15.24 39 11.57 0.76 042
East 299,541 15.62 56 16.62 1.06 0.58
Southeast 247,143 12.89 33 9.79 0.76 0.42
South 165.431 8.63 53 15.73 1.82 1.00
Southwest 169,659 8.85 35 10.39 1.17 0.64
West 209,333 10.92 57 16.91 1.55 0.85
Northwest 225,221 11.75 46 13.65 1.16 0.64
Curvature Concave 557,948 29.10 99 29.38 1.01 0.44
Flat 785,003 40.94 91 27.00 0.66 0.00
Convex 574,523 29.96 147 43.62 1.46 1.00
Distance from drainage  Buffer (100 m) 1,421,849 74.15 243 72.11 0.97 0.85
Buffer (200 m) 374,666 19.54 74 21.96 1.12 0.98
Buffer (300 m) 86,849 4.53 14 4.15 0.92 0.80
Buffer (400 m) 29,718 1.55 6 1.78 115 1.00

Buffer (>400 m) 4,392 0.23 0 0.00 0.00 0.00
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Table 2.11b Examples of the FR-based fuzzy membership values for the respective

attributes of a specific contributing factor presented in Bui et al. (2012).

Data Class Number of Landslide Frequency Fuzzy
layers class pixels pixels ratio value
Slope (%) 0-10 4,919,804 2 0.007 0.102
10-20 3,346,950 222 1.114 0435
20-30 2,326,636 368 2657 0.900
30-40 785451 92 1.968 0.692
40-50 106,715 0 0.000 0.100
=50 4750 0 0.000 0.100
Aspect (%) Flat (—1) 6556 0 0.000 0.100
North (0-22.5; 337.5-360) 1,380,854 27 0328 0.251
Northeast (22.5-67.5) 1,672,941 82 0.823 0478
East (67.5-112.5) 1,385,498 < 0533 0.345
Southeast (112.5-157.5) 1,383,072 106 1.287 0.691
South (157.5-202.5) 1,482,483 138 1.564 0.818
Southwest (202.5-247.5) 1,677,042 174 1.743 0.900
West (247.5-292.5) 1,299,469 65 0.840 0.486
Northwest (292.5-337.5) 1,202,391 48 0.671 0.408
Relief 0-50 3,101,843 6 0.032 0.100
Amplitude (m) 50-100 2,753,898 228 1391 0.843
100-150 2,640,812 235 1.495 0.900
150-200 1,694,502 126 1.249 0.766
200-250 811634 53 1.097 0.682
250-532 487617 36 1.240 0.761
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Figure 2.18 Graph showing example of the combination of three fuzzy factors

(a= 0.8, ug = 0.6, pc = 0.4) by fuzzy-gamma operation (Regmi et al., 2010).
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Table 2.12 Report of accuracy scales for used fuzzy logic operators in Lee (2007).

Fuzzy operator Prediction accuracy (%)
Fuzzy and 66.79
Fuzzy or 66.50
Fuzzy algebraic sum 78.92
Fuzzy algebraic product 84.58
Gamma (1) = 0.025 84.57
Gamma (4) = 0.05 84.58
Gamma (1) = 0.1 84.55
Gamma (1) = 0.2 84.55
Gamma (4) = 0.3 84.55
Gamma (4) = 0.4 84.55
Gamma (1) = 0.5 84.55
Gamma (4) = 0.6 84.56
Gamma (4) = 0.7 84.57
Gamma (4) = 0.8 84.58
Gamma (4) = 0.9 84.61
Gamma (4) = 0.95 84.63
Gamma (1) = 0.975 84.68

2.7 Accuracy assessment of yielded susceptibility maps

All attained susceptibility maps from each preferred method were eventually
assessed for their accuracy with two popular methods: The Area-Under-Curve (AUC)
and Receiver Operating Characteristic (ROC) curves analysis. The acquired degree of
accuracy shall be taken as primary indicator of efficiency for each evaluated model in
the construction of the credential susceptibility map for the study area.

2.7.1 The Area-Under-Curve (AUC) method

The AUC works by creating a specific rate curve illustrating percentage
of known landslides that falls into each defined level of the susceptibility rank (LSI
values) and displays it as cumulative frequency diagram. To build the rate curve, the
LSI values of all pixels on the assessed map are sorted in descending order (from high
to low) and divided into 100 classes with equal number of member for each defined

class. The rate curve can be produced as a plot between the defined LSI rank
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(i.e., 1-100) on the x-axis (higher rank means lower LSI values) and the accumulated
percentage of the reference landslide pixels at each LSI rank on the y-axis (see Figure
2.19 for example). Total area under a rate curve (AUC) is used to determine prediction
accuracy of the susceptibility map qualitatively in which larger area means higher
accuracy achieved. And, in order to compare results quantitatively, the AUC data are
typically re-scaled to have total area of 1 (means perfect prediction, or 100% accuracy).
There were two reference datasets of observed landslides being used in this assessment
process: (1) data that were used to formulate the examined susceptibility map before,
(2) other dataset prepared for the use in the accuracy assessment process only.
Accuracies acquired from the first and second dataset are called “success rate” and
“prediction rate” of the verification, respectively (Vijith and Madhu, 2008;

Intarawichian and Dasananda, 2010, 2011).
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Figure 2.19 Examples of the cumulative freauency diagram in AUC method showing
landslide susceptibility index rank (x-axis) in relation to the cummulative percent of

landslide occurance (y-axis) (Intarawichian and Dasananda, 2011)

2.7.2 Receiver Operating Characteristic (ROC) curves

Basically, the ROC curve is introduced and used as a measure of
performance of a predictive rule. The graphs provide a diagnostic that might be used to
distinguish between two classes of events, and to visualize classifier performance
(Swets, 1988). In essence, the ROC curve is a plot of the probability of having a true
positive versus the probability of having a false positive. For example, on the landslide
prediction issue, a true positive is a prediction of having a slide for a location whereupon
a slide actually occurred, while a false positive is a prediction of a slide for location
where no slide did occur. An ideal model would have an area equal to 1 (100%
accuracy), because in this case the probability of the true-positive case is 1 and of the

false-positive is 0 regardless of the cutoff point (Williams et al., 1999).
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Each point on the ROC curve may be related to a specific decision
criterion for how much risk that a user is willing to take regarding the accuracy of the
prediction. This referred point might vary among observers because their decision

criteria can vary even when their concerned ROC curves are the same (Swets, 1988).

Table 2.13 Contingency table for ROC curve analysis method.

Reference data

In class of interest  Not in class of interest

1) (©)

In class of interest
Simulated  (within threshold)
data Not in class of interest

(not with threshold)

A (true positive) B (false positive)

C (false negative) D (true negative)

ROC is a summary statistic extracted from a comparison of simulated
data with the reference data (as described in Table 2.13). Practically, ROC curve can
be derived by computing the True Positive (TP) and False Positive (FP) rates from the
contingency tables (for both dataset) associated to different proposed cut off values

using following formulas (SafeLand- FP7, 2011):

TP TP

True positive rate (TP) = sensitivity = ——— =—, 2.21
P (TP) y TP+FN P ( )

FP FP
False positive rate (FP) = 1- specificity =——— =—, 2.22
p (FP) p Y TN - N (2.22)

where specific meaning of all relevant parameters are as detailed in Table 2.14.
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The primary goal of using ROC curve analysis is to find a cutoff value

that will, in some way, minimize number of false predictions (positive/negative), or,

maximizing the sensitivity and specificity of the prediction.

Table 2.14 Symbol description of ROC curves on landslide prediction issue.

Symbol  Measuring

Description

TP True Positive rate
TN True Negative rate
FP False Positive rate
FN False Negative rate
= Positive

Negative

Proportion of pixels correctly predicted as landslide occurrences

Proportion of pixels correctly predicted as non-landslide
occurrences
Proportion of pixels incorrectly predicted as landslide
occurrences
Proportion of pixels incorrectly predicted as non-landslide
occurrences
Proportion of pixels correctly predicted as landslide occurrences

Proportion of pixels correctly predicted as non-landslide
0CCUrrences

On landslide prediction issue, “sensitivity” is the probability that a

landslide cell is correctly identified, and is plotted on the y-axis, while “specificity” is

the probability that a non-slide cell is correctly classified, and is displayed along the x-

axis of the curve. Hence, 1-specificity then defines the false positive rate. The area

under the ROC curve in this case represents the probability that the gained susceptibility

value for a randomly chosen landslide cell would exceed result for a randomly chosen

non-landslide cell.

Similar to the AUC, The area under ROC curve can be approximated by

adding areas of polygons between thresholds. Eg. (2.23) use integral calculus’

trapezoidal rule to compute the area (Pontius and Schneider, 2001).

n
AUC = (X411~ Xj )(yi + yi+l-yi/2), (2.23)

i=1
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where x; is the rate of false positives for the threshold i, yi is the rate of true positive for
threshold i, and n is number of thresholds. By changing the cut off values, it is possible
to obtain different contingency tables which correspond to different points in the ROC

curve (Figure 2.20).
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Figure 2.20 Example of contingency tables for different values (cut off) of membership
probability of a landslide susceptibility assessing model and the associated ROC curve

(of the true/false positive rates) (SafeLand - FP7, 2011).

2.8  Concept of the landslide-induced runout analysis

Landslide-induced runout has often become fundamental source of destruction
for people’s lives and properties of the affected community, therefore, knowledge of its
development and resulted debris flow is crucial for preventing or reducing such losses.
Runout is typically defined by means of the debris flow source which makes up of soil,
rock, and water. As such, the reduction of potential losses can be pursued by prediction
of their velocities and the runout distances. Indeed, runout prediction provides a mean

of defining the realistic susceptible areas through the estimation of debris flow intensity
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and its expansion over gentle terrain (which are necessary for conduction risk analysis).
This knowledge is important for working design of the appropriate protective measures
and, at the same time, the reliable predictions of runout characteristics can help avoiding
exceedingly conservative or sensitive decisions regarding the pro-urban development
of the potentially at-risk areas (Cascini et al., 2005).

Generally, the debris flow characteristics depend on the water content, sediment
size and/or sorting, and on the dynamic interaction between the solid and fluid phases
where modelling of such interaction still becomes a quite difficult task which relies on
the use of some advanced empirical or numerical models (Pirullil and Sorbino, 2008).
In this study, the runout hazard analysis was carried out through the application of high
popularity Flow-R (Flow path assessment of gravitational hazards at a Regional scale)
model. Flow-R is a distributed empirical model for regional susceptibility assessments
of debris flows, developed at the University of Lausanne and was successfully applied
worldwide so far. Flow-R is a free software with no limitation in scope of use that was
built to process G1S-based regional susceptibility assessments of debris flows in which
the identification of potential source areas and corresponding propagation extent are
allowed. Marked characteristics of the software are (1) limited requirement of datasets
(Figure 2.21) and (2) customization of inputs, algorithms, and the parameters, through
a graphical user interface (Horton et al., 2013).

To fulfil its main objectives, two distinctive steps are needed for the application
of the model (Iverson and Denlinger, 2001):

(1) Identification of source area (based on topography and user-

defined criteria),
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(2) Analysis on the propagation mechanism of the induced debris
flows from their sources on basis of frictional laws and flow direction algorithms.
Generally, two types of algorithms are necessary in the propagation assessment
(Huggel et al., 2003):
(1) Spreading algorithms for the identification of path/spreading of
debris flows,

(2) Friction laws for the determination of the runout distance.
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Figure 2.21 Conceptual diagram of the Flow-R model (Park et al., 2013).
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s

Figure 2.22 lllustration of the spreading of susceptibility value to the neighboring cells

(Horton et al., 2013).

2.8.1 Algorithms for the spreading assessment
Typically, path and spreading of the debris flow are under control of the
flow direction algorithms and persistence functions as detailed below.
(1) Flow direction algorithms
Flow direction algorithms determine the direction of the flow from
one cell to its eight neighboring cells. Concerning the angle of spreading, Holmgren
(1994) adds a parameter to multiple flow direction algorithms as an exponent which

controls the convergence of the flow that can be expressed as follows:

tan B )"
pifd __A) for all tan 5> 0, (2.23)

8
2 (tan B; )
j=1
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where i, j are the defined flow directions (1-8), pifd IS susceptibility proportion (0-1)

in direction i, tan i is slope gradient between the central cell and cell in direction i, and
X is the variable exponent. Higher exponent indicates more convergent of the flow.
When x = 1, it turns into basic multiple flow direction, and when x — o, it becomes a
single flow direction.
(2) Persistence function

Based on Gamma (2000), the persistence function aims at
reproducing behavior of inertia, and weights the flow direction based on the change in
direction with respect to the previous direction (see Figure 2.22) using the following

formula:

Pi = Wagp, (2.24)

where i is flow direction (1-8), pip is flow proportion (0-1) in direction i and a(i) is the
angle between the former direction and the direction from the central cell to other cell
i. Three implementations of the persistence were chosen (Table 2.15): the first is called
proportional, the second one uses a cosine, and the third one is based on Gamma (2000).
In every persistence distribution, the cell opposed to the given flow direction is nulled

(w180 = 0) to avoid eventual backward propagation, and thus to save computing time.
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Table2.15 Implemented weightings of the persistence function in the assessment of the

flow spreading.

wO w45 w90 w135 w180
Proportional 1 0.8 0.4 0 0
Cosines 1 0.707 0 0 0
Gamma (2000) 1.5 1 1 1 0

(3) Overall susceptibility
The values given by the flow direction algorithm and the

weighting of the persistence are combined according as follows:

pp=—" Py, (2.25)

where i, j are flow directions (1-8), p, is the susceptibility value (0-1) in direction i,

pifd is flow proportion from flow direction algorithm, p is flow proportion according

to the persistence, and p, is previously determined flow proportion value of the central
cell.
2.8.2 Runout distance assessment
Runout distance algorithm is based on simple frictional laws; as the
source mass is unknown, the energy balance is unitary (Eq. (2.26)). The processing
takes place at cell level and controls which other cells the flow would be able to reach.

Thus, these algorithms control runout distance and, in addition, may reduce lateral
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spreading (when a cell on the border of the spreading cannot be reached because of
insufficient energy).
Structure of the relevant energy balance scenario can be expressed as

follows:
Eiin = Efin+ 4Ebot— E¥, (2.26)

where El;, is the Kinetic energy of the cell in direction i, gJ, is the kinetic energy of
the central cell, 4E},, is the change in potential energy to cell in direction i, and E' is

the energy lost in friction to the cell in direction i.

Two main algorithms are available for the friction loss: the two
parameters friction model by Perla et al. (1980) and a simplified friction-limited model
(SFLM). Both can result in similar propagation areas, depending on the parameters
choice.

(1)  Perla’s two parameters friction model

The friction model from Perla et al. (1980) was developed for

avalanches, but has also been used for debris flows.

1
Vi =(aio(l—exp b ) +viexp b2 (2.27)

with a; =g(sinf, —ucosp)and b, = 25
w




90

where p is the friction parameter,  is mass-to-drag ratio, originally expressed as M/D,
Si is the slope angle of the segment, Vo is the velocity at the beginning of the segment,
Li is the length of the segment, and g the acceleration due to gravity.
(2)  Simplified friction-limited model
The simplified friction-limited model is based on the maximum
possible runout distance, which is characterized by a minimum travel angle, also called
angle of reach. It is the angle of the line connecting the source area to the outmost

distant point reached by the debris flow, along its path:

El =gAxtang, (2.28)

where E/is the energy lost in friction from the central cell to other cell in direction i,
Ax is the increment of horizontal displacement, tang is the gradient of the energy line,

and g is the acceleration due to gravity.

This approach may result in improbable runout distances in steep
catchments due to unrealistic energy amounts reached during the propagation. To keep
the energy within reasonable values, a maximum limit can be introduced to ensure not

to exceed realistic velocities (Figure 2.23), which can be expressed as follows:

V= min{\/V§+ZgAh—2gAxtan @,V max }, (2.29)

where Ah is the difference in elevation between the central cell and the cell in direction

I, V max is the given velocity limit.
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Figure 2.23 Illustration of the travel angle and the velocity limitation of the simplified

friction-limited model (SFLM) (Horton et al., 2013).

The probable maximum runout is characterized by an average
slope angle or shadow angle which is the average slope between the starting and end
points, following the debris flow path. A constant friction loss has been considered,
corresponding to this angle, which would result in a runout distance equal to the

probable maximum runout.

2.9 Roles of GIS and remote sensing in landslide risk analysis

In recent decades, remote sensing (RS) and Geographic Information Systems
(GIS) technologies have played an important role in rapid advance of landslide research
field which mainly involves three following aspects (van Westen et al., 2006):

(1) Detection, classification, and mapping of past landslides,

(2) Monitoring occurrences of new landslides and activity of the existing ones,

(3) Analysis and prediction of the prone areas to landslide activity in terms of

both spatial distribution (space) and temporal distribution (time).
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These three broad groups of activities are of great interest to landslide
researchers where both RS and GIS tools were frequently applied to fulfill these tasks.
Brief details of their roles are summarized here for an example.

2.9.1 Applications of GIS technology

In the past three decades, the rapid advance in landslide mapping
methodology (i.e. inventory mapping, susceptibility mapping, hazard mapping and risk
mapping) is contributed tremendously to the advent of the Geographic Information
Systems (GIS) (van Westen et al., 2006; Chacon, Irigaray, Fernandez, and Hamdouni,
2006). GIS was defined by Burrough (1986) as “powerful set of tools for collecting,
storing, retrieving at will, transforming, and displaying spatial data from the real world
for particular set of purposes”, by Star and Estes (1990) as “an information system
designed to work with data referenced by spatial or geographic co-ordinates”, and by
Bonham-Carter (1996) as “a computer system for managing spatial data”. This means
GIS is a specifically-built geographic-data processing system with an intention to
extract useful information from its processed data which can be separated into two
general types: vector (for those existed in point, line, and polygon format) and raster
(for those of the contiguous data) (as illustrated for examples in Figures 2.24).
Traditionally, a GIS structure shall consist of five processing components, i.e., (1) data
collection; (2) data input and verification; (3) data storage, database manipulation and
data management; (4) data transformation and analysis; and (5) data output and

presentation (Sgzen, 2002).
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Figure 2.24 Examples of the geographic input data (vector/raster types) for the GIS
operation (Schuurman 2004; NOAA, 2013). Vector structure is preferable for data with
definite location (point) like house position, direction (line) like street/water channels,
or boundary (polygon), like land parcel while raster structure is appropriate for spatial

data with continuous values in space such as elevation or land use information.

GIS powerful capability in processing spatial data of most kinds and also in
simulating specific interaction among them was found crucially benefit for the landslide
risk analysis as initiation of slope failure often depends on complex interactions among
several contributing factors themselves as well as with the associated triggering factors,
in which the GIS can have cruciall role in extracting that relationship information using

its powerful data processing technology. This makes GIS become an essential tool for
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facilitating landslide susceptibility or hazard mapping regardless of the methods in use.
In addition, landslide runout data can also be extracted from the GIS-based simulation
models (Chacon et al., 2006; van Westen et al., 2006).

According to Guzzetti et al. (2012), GIS has become an excellent platform for
constructing of detailed landslide inventory maps in which landslide locations along
with their descriptions (or attributes) crucial for the landslide susceptibility mapping;
e.g. size, volume, age, type, environmental condition, can be conveniently recorded,
modified, and displayed as an individual G1S-based data layer by the able GIS software.
This ability has solved several persistent problems related to the production, update and
visualization of landslide maps often encountered in the traditional approach. Similarly,
GIS efficiency can be effectively implemented to produce detailed map of the elements
at risk from landslide activities over an area, which is very necessary for the preparation
of the vulnerability and risk maps afterwards (through the integration with hazard map).
General reviews about GIS applications to the research field of landslide mapping are
seen in, e.g., Carrara and Guzzeti (1995); Carrara, Guzzetti, Cardinali and Reichenbach

(1999); van Westen (2000); Huabin, Gangiun, Weiya and Gonghui (2005).

2.9.2 Applications of remote sensing technology
In general, RS data have been widely utilized at all steps of landslide
risk analysis stated earlier (i.e., inventory mapping, susceptibility/hazard/risk
assessment). In the landslide inventory preparation, high resolution aerial photos
(usually in the form of orthophoto) or satellite images (like those from the IKONOS,
QuickBird, or GeoEye satellites) are normally employed to identify location and spatial
distribution of existing landslide evidences in a particular area (see Figure 2.25 as

example) based on the direct visual interpretation or the developed automatic
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classifying method (Malamud, Donald, Guzzetti and Reichenbach, 2004; Duman et al.,

2005; Mondini et al., 2011; Rau, Chang, Shao and Lau, 2012).

<

Source: http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=49976

vy

Figure 2.25 Satellite image of the 2011 landslide evidences in Krabi Province, southern

Thailand from the NASA-Advanced Land Imager (ALI) sensor aboard EO-1 satellite.

In recent years, the advanced technologies of radar observing system
called “InSAR” (Interferometric Synthetic Aperture Radar) system (Richard, 2007;
Ferretti, Monti-Guarnieri, Prati and Rocca, 2007) and the “LiDAR” system (LIDAR-
UK, 2013) operating onboard surveying airplane or earth-observing satellies were also
applied to identify small-scale landslides in several works, e.g. Colesanti and Wasowski
(2006); Strozzi, Ambrosi and Raetzo (2013); Ghuffar, Szekely, Roncat and Pfeifer

(2013).


http://eoimages.gsfc.nasa.gov/images/imagerecords/49000/49976/khaophanom_ali_2011094_lrg.jpg
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Remote sensing data have also become a primary source for the
extraction of several landslide contributing factors, for examples:

(1) Topography and landform properties. These data can be acquired
from the original DEM (digital elevation model) data generated from the INSAR or
LiDAR systems (both airborne and space-borne types). For examples, the INSAR radar
system in SRTM project (NASA-Shuttle Radar Topographic Mission) can be used to
generate DEM data around the world at good spatial resolution of 90 meters (CGIAR-
CSI, 2013) which is noticeably useful for landslide susceptibility mapping at the
regional to global scales (Hong, Adler and Huffman, 2007; Kirschbaum et al., 2011).

(2) LULC data, especially those related to vegetation like forest or
plantation. These data can be found through visual interpretation of aerial photos or
high-resolution satellite images, or from automatic classification of medium-resolution
satellite images (like those from Landsat or SPOT satellites). Similarly, vegetation
indices (like NDVI) can be derived from suitable satellite images (both high and
medium resolution types). The importance of LULC as a prominent landslide
contributing factor and influence of LULC changes over a particular area on landslide
activity were highlighted in several works, e.g. Glade (2003); van Beek and van Asch
(2004); Fell et al. (2008); Karsli et al. (2009); Chen and Huang (2013).

(3) Precipitation data. At present rainfall characteristics (in both
spatial and temporal aspects) can be estimated from the ground-based or satellite-based
weather radar, like those in the Tropical Rainfall Measuring Mission (TRMM) satellite
(NASA-TRMM, 2013). Knowledge of the immediate rainfall information provided by

advanced radar systems can support rapid evaluation of potential landslide danger area
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introduced by that rainfall event (in corporation with the known landslide susceptibility
locations of the area) (Kirschbaum et al., 2012).

Reviews on roles of remote sensing on landslide analysis are provided
in, e.g. Zhang, Gong, Zhao and Zhang (2005); Metternicht, Hurni and Goru (2005);
Joyce, Bellis, Samsonov, McNeill and Glassey (2009); Zhong, Li, Xiang, Su and Huang
(2012); Tofani, Gegoni, Agostini, Catani and Casagli (2013).

2.9.3 Landslide activity in Thailand

Landslide is a recurrent and devastated incidence commonly
encountered in Thailand especially within the mountainous regions in the northern and
southern parts of the country (GERD, 2006; Soralump, 2010b). Generally, the
predominant types of landslides over high areas with thick residual soil layer are mostly
the debris avalanche and rotational slide but for areas having relatively shallow residual
soil, the translational slide is prevalent (DMR, 2010). And as massive landslides
evidenced in Thailand were induced mostly by the prolonged heavy rainfall in rainy
season, this can result in rapid movement of soil cover downbhill to the surrounded
lowland area in forms of earth flow or debris flow. During this period, the landslide
might transform itself into a destructive debris avalanche, with increasing velocity and
volume. If the debris flows move down to a gully at the hill’s base, then the runout of
their material could move over fairly long distance (up to several kilometers)
(Revellino, Hungr, Guadagno and Evans, 2004).

According to DMR (2010, 2011), landslide activity in Thailand is
controlled by four important factors: geology (lithology and lineament in particular),
topography (slope, elevation, and aspect in particular), rainfall intensity (amount and

duration) and environment (vegetation, land-use type/activity, and agricultural practice



98

in particular). For lithology, it was found that the most susceptible rock type to landslide
occurrence (in average) is the Jurassic granite. This is followed by a group of the
sedimentary rock (e.g. sandstone, mudstone, shale) while the least susceptible one is
the Carboniferous-Permian granite (Soralump, 2007). For rainfall intensity, the general
triggering rates (for warning purpose) were set to be 100 mm/day, or 300 mm/3-day. In
conclusion, the most susceptible areas for landsliding were found to be steep slope in
hilly regions with relatively thick and loose residual soil layer and without vegetation
cover.

Due to the catastrophic nature of the recurrent massive landslide in
Thailand especially for people who live in the vulnerable area, the preparation of a
strategic plan for the prevention and mitigation of landslide risk and impacts has
become a declared priority of the recent Thai governments (NESDB, 2011). Some of
the notable activities are the derivation and implementation of the landslide
susceptibility maps nationwide, especially for the mountain-dominated provinces in the
northern and the southern parts of the country DMR (2010, 2011), and the application
of an effective landslide warning system to numerous areas with high landslide
potential (DWR, 2013). These maps were synthesized qualitatively based on crucial
knowledge of susceptible geologic structure, slope gradient, and vegetation cover in
combination over an area from which the highly-concerned ones are those areas with
comprising of the thick residual soil, lack of root cohesion, and steep slope (i.e. > 30°).
In general, researches on landslide activity in Thailand were usually focused on the
production of the susceptibility and hazard maps (with inclusion of the annual rainfall
data). However, the applied methods are still considerably limited among which the

most widely-used ones are the simple weighted linear combination (WLC), e.g. in
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Tanavud et al. (2000); Soralump (2007); Soralump, Pungsuwan, Chantasorn, Inmala
and Alambepola (2010), the systematic factor overlay method, e.g. in Akkrawintawong,
Chotikasathien, Daorerk and Charusiri (2008); DMR (2011); and the slope stability
analysis (or the deterministic approach), e.g. in Mairiang and Thaiyuenwong (2010);
Soralump et al. (2010); Tanang, Sarapirome and Plaiklang (2010), Ono, Kazama, and
Ekkawatpanit (2014). Some other methods previously reported are the frequency ratio
(FR), logistic regression, and the analytical hierarchy process (AHP) as illustrated in
works of Oh et al. (2009); Intarawichian and Dasananda (2010, 2011), for examples.
Figure 2.26 presents two distributed susceptibility maps developed by
DMR and GERD based at Kasetsart University (KU). The DMR map was originally
derived based on presumed conditions of potential slope instability within the area
derived from knowledge of four main causative components: lithology, topography,
rainfall amount, and predominant LULC aspect, while the GERD map was built from
the engineering principles of slope instability which expressed in terms of the “factor

of safety” (FS), or the deterministic method, as explained in Section 2.3.
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(a) DRM susceptibility map (b) GERD susceptibility map
Figure 2.26 Classified landslide susceptibility maps prepared by the DMR and GERD

using equal-interval classification technique.

The case study of March 2011 event

The most recent occurrence of deadly landslide incidence at Khao Phanom
Bencha Watershed was taken place in late March 2011 due to the unseasonably heavy
rainfall happening over a week earlier which led to several tragic deaths and expansive
damage to the properties and infrastructures in the area. This unusual phenomenon was
initiated by the powerful storm from an active low pressure cell over southern Thailand,
bringing up to 1,200 mm of rain in just over a week over some places (Figure 2.27) and
introducing widespread torrential floods, massive landslide, and powerful debris flow,

within an area of the eight southern provinces of Thailand, including, Chumphon, Surat
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Thani, Nakhon Si Thammarat, Songkhla, Patthalung, Narathiwat, Yala, Trang, Phang

Nga, Krabi, and Satun.
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Source: http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=49929

Figure 2.27 TRMM map of accumulated rainfall data over southern Thailand during

period of 23"-30™ March 2011.

As a consequence, more than 20 people were reported dead and nearly a million

people were in need of immediate help (reliefwep, 2014). In Krabi Province, especially

in the vicinity of Khao Phanom Bencha mountain range, the large landslide patches and

devastated outcome from strong floods and debris flows were obviously evidenced over

the area from which several villages were partly destroyed and at least 10 people were

reported dead. Therein, expansive deposition area of flow material were experienced

with flow length of about 2.5-3.0 km were encountered with maximum width of up to

500 meters (as illustrated in Figures 1.2 and 1.3).



CHAPTER 111

RESEARCH METHODOLOGY

The entire thesis work has been divided into 4 principal parts in accordance with
the two objectives described in Chapter | involving the systematically construction and
evaluation of the landslide inventory map, susceptibility map, hazard map and risk map
consecutively as illustrated by the work flowchart shown in Figure 3.1. Comprehensive

description of the work process can be summarized as follows.

3.1 Data preparation

3.1.1 The necessary data were acquired from the responsible agencies and
from other relevant resources (as detailed in Table 3.1) and then restructured to have a
proper format for further use (in form of a GIS-based dataset). Ten notable contributing
factors for landslide occurrence in tropical zone were included in the construction of
the needed susceptibility map: elevation, slope gradient, slope aspect, slope curvature,
topographic wetness index (TWI), distance from drainage, distance from lineament,
lithology, soil texture, and land use/land cover (LULC) (Figures 3.2a-j). These factors
can be separated into three broad categories: geological, topographical, and
environmental groups. Here, elevation and all slope-related maps (Figures 3.2a-e) were

created from digital elevation model (DEM) data of the area. This map was built using
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triangular irregular network (TIN) system based on the 20-m interval contours extracted

from the official 1:50,000-scale topographic map acquired from the RTSD.

LSZ Analysis Runout Analysis
Contributing Landslide Flow R Model
Factors data
Runout map

Applied methods

LHZ Analysis
LSZ Maps
Annual
Static LSZ probability
map of rainfall
Accuracy assessment data
Optimal method Data combination
_ g / LHZ maps
Static LSZ maps / (Annual probability)
Data combination ey .
LRZ Analysis
Dynamic LSZ map Element at risk

Vulnerability score
Accuracy assessment

: Data combination
Rainfall data

- Long-term annual mean
- Event-based LRZ map

(Annual probability)

Note: LSZ = Landslide susceptibility zoning; LHZ = Landslide hazard zoning;
LRZ = Landslide risk zoning.

Figure 3.1 Conclusive work flowchart.
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Table 3.1 List of necessary data and their respective sources.

Classification GIS Scale  or Original
Data category Details Data Type  Resolution  sources Note
Past landslide data  Field survey Point - GPS Fig.3.8
THEOS Grid 2m x 2m GISTDA Fig.3.4a
EO-1 Grid 10m x 10m NASA Fig.3.4b
Google Earth Grid - Google Fig.3.4c
Earth
Bing Map Grid - Bing Map Fig.3.4d
Land use / Land LULC-2009 Polygon 1:25,000 LDD Fig.3.2
cover
Topography Elevation ~ Point/Line  1:50,000 RTSD Fig.3.2a
Slope gradient Fig.3.2b
Slope aspect > Fig.3.2c
Slope curvature Fig.3.2d
Landform TWI Fig.3.2e
Stream Stream network ~ Fig.3.2f
Geology Lithology Polygon 1:250,000 DMR Fig.3.2h
Lineament Line 1:250,000 DMR Fig.3.2¢g
Soil Soil texture Polygon 1:100,000 LDD Fig.3.2i
Triggering factor Rainfall Point - TMD, RID, Fig.3.10
DMR Fig.3.11
Socio-economics Building Point - Google Fig.3.12a
Subsidy - - Earth Fig.3.14
MOAC
Administrative Administrative Polygon 1:50,000 RTSD Fig.1.4
data boundary

Note: DMR = Department of Mineral Resources; GISTDA = Geo-informatics and Space Technology
Development Agency; LDD = Land Development Department; MOAC = Ministry of Agriculture and
Cooperatives; RID = Royal Irrigation Department; RTSD = Royal Thai Survey Department; TMD = Thai

Meteorological Department.
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Figure 3.2a Elevation map of the study area based on DEM data from topographic map

of 1:50,000 scale.
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Figure 3.2b Slope gradient map of the study area based on DEM data from topographic

map of 1:50,000 scale.
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Figure 3.2c Slope aspect map of the study area based on DEM data from topographic

map of 1:50,000 scale.
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Figure 3.2d Slope curvature map of the study area based on slope data of topographic

map of 1:50,000 scale.
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Figure 3.2e Topographic wetness index (TWI) map of the study area based on the slope

and water accumulation data from the topographic map of 1:50,000 scale.
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Figure 3.2f Distance-from-drainage map of the study area based on DEM data from

the topographic map of 1:50,000 scale.
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Figure 3.2g Distance from lineament map of the study area (at 1:250,000 scale).
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Figure 3.2h Lithology map of the study area at 1:250,000 scale. Detailed explanation

of each listed lithological type is given in Table 3.2.
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1:100,000 scale.
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Figure 3.2j LULC map of the study area in 2009 modified from the original LDD data
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All maps displayed in Figure 3.2 were prepared mainly through the
appropriate functions of the ArcGIS software in which slope gradient was determined
from steepest downhill slope for a location on surface calculated for each triangle unit
in TIN and for each referred rater cell. For TIN, this is the maximum rate of change in
elevation across each triangle unit. For raster cell, this is the maximum rate of change
in elevation found towards its eight surrounding neighbors. Typically, slope gradient
can be presented in degrees from horizontal (0-90), or in percent slope [defined by ratio
of the terrain rise (or vertical distance) to the run (or horizontal distance), multiplied by
100]. In this case, a slope of 45 degrees equals 100 percent slope (vertical distance =
horizontal distance). Lower slope gradient means flatter terrain; the higher one indicates
steeper terrain.

Slope aspect was referred to the steepest downslope direction for each
rater cell towards its neighbor cells (one with maximum rate of change in slope value).
The aspect output was defined based on the known closest compass direction measured
clockwise in degrees, which are, 0 (north), 45 (northeast), 90 (east), 135 (southeast),
180 ( south), 225 (southwest), 270 (west), 315 (northwest), and 360 (north). However,
for flat areas with no exact downslope direction, they are usually given a specific aspect
value of -1. Slope curvature was defined from the 2" derivative of a surface, or the rate
of change of slope values over a unit area of interest. It represents the combination of
two main types of the curvature: the profile curvature (along the direction of the
maximum slope), and the plan curvature (along direction perpendicular to direction of
maximum slope). The curvature values describe terrain morphology in three forms:

convex, concave, flat. The positive value indicates the surface is upwardly convex at
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that cell while a negative one indicates an upwardly concave, and 0 indicates flat surface
(Figures 2.5-2.6).

Topographic Wetness Index (TW1) for a raster cell was calculated from
Eq. (2.5). It is normally used to define influence of the water accumulation on ground
stability at a specific location. Higher TWI values indicate greater amount of existing
water content (and pore water pressure) in slope material from which soil strength and
soil stability shall be diminished which potentially support the occurrence of landslide
over the area. Drainage lines were extracted from the topographical sheet used for DEM
generation. The ordering of the drainage has been performed on the basis of Strahler's
classification scheme Drainages up to 5" order have been observed in the study area
and buffered at 50-meter interval while distance from lineament was buffered at 500-
meter interval.

The lithology map was made from original data prepared by the
Department of Mineral Resources (DMR) for Krabi Province. Eventually, seven
principal lithological types were identified and shown on the output map (Figure 3.2h):
Igneous rocks, Kaeng Krachan, Krabi, Ratburi, Saibon Formation, Quaternary
Sediments, Thung Yai (more information is given in Table 3.2).

The soil textural classes from lower soil classification category is not
bring to use but the soil-texture identification process began with the quantification of
soil plasticity and depth from the LDD soil series based on the relevant in each soil
description profile data provided in the LDD Soil Information Reference and in
website:  http://www.mcc.cmu.ac.th/dinthai/layers.asp. Knowledge of plasticity
property and soil profile led to the estimation of sand, silt, clay combination and soil

texture, eventually (as described in the USDA'’s soil texture pyramid below).
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Figure 3.2k Soil texture pyramid chart.

The soil texture map (Figure 3.2i) was prepared from the LDD’s
1:100,000 scale soil data map of the from which 11 types of soil texture were found:
Clay, Clay loam, Loam, Loamy sand, Sand, Sandy loam, Sandy clay loam, Silty clay,
Silty clay loam, Silty loam, and Slope complex area (i.e., one with slope gradient >
35%).

The LULC map was derived based on the original 1:25,000 LULC map
in 2009 of the province prepared by the LDD (before the referred landslide incidence
in March 2011 taking place). Five LULC classes were identified and mapped as an
output: dense evergreen forest, disturbed evergreen forest, oil palm, para rubber, and
miscellaneous (paddy field, water body, and built-up area).

3.1.2 The mapped data were converted to have a raster-grid format with pixel
size of 30m x 30m for further use in the landslide susceptibility evaluating process

based on several chosen susceptibility mapping methods of interest.
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According to data reported in Table 3.3, predominant topography of the
study area is flat terrain which occupies about 36.47% of the total area whereas about
73.38% of land has slope gradient of < 10°. In addition, most areas situate at low land
of altitude < 200 meters above mean sea level (about 83.64%) with only 5.34% of land
that locates at altitude greater > 400 meters, mostly in area of Khao Phanom Bencha
mountain range (as illustrated in Figure 3.2a). About half of the total area (52.94%) is
classified as being “Quaternary Sediments” lithological type and three types of soil
textures; clay, sandy loam, slope complex, were commonly found over an area with
proportion of 20.99%, 19.58%, and 28.11%, respectively. Major types of the identified
LULC data in 2009 are oil palms (44.36%), para rubber (25.94%), and dense evergreen

forest (23.83%).

Table 3.2 Lithological description of Krabi Province (DMR).

Formation/ . . Age
Group Symbol Explanation Period (my.)
Sediment, Sedimentary and metamorphic rocks
- Qa Alluvial and flood plain deposits: sand, silt, gravel and Quaternary ~ 0.01 -

clay 1.6
- Qb Beach deposits: loose sand, fine-grained, well sorted,
abundant plant remains and shell fragments
- Qme Mangrove clay deposits; Peaty clay, silt clay, grey or
greenish-grey, cover with mangrove
- Qt Terrace deposits: coarse sand and fine gravel intercalated
with clay, silt and fine sand
- Qc Colluvial deposits: silt, sand, clay, laterite and rock
fragment
Krabi Gp. Tio Mudstone, peaty mudstone, thin-bedded, calcareous; Paleocene 1.6 -
fossilliferous mudstone; marlstone; lignite; and semi- 66.4
consolidated sandstone
Phum Phin Kp Sandstone, brick-red, fine to medium grained, arkosic Cretaceous  66.4 -
Fm., Thung and micaceous, medium bedded, through cross bedding 140
Yai Gp. and intercalation
Sam Chom Kse Conglomerate and sandstone, coarse grained, thick
Fm., Thung bedded, cross dedding, mudstone, reddish-brown, plant
Yai Gp. remains
Lam Thap Kit Sandstone, light brown, reddish-brown, fine/medium-
Fm., Thung grained, arkosic, thin to medium bedded, cross bedding,

Yai Gp. mudstone, reddish-brown




120

Table 3.2 (Continued).
Formation/ Symbol  Explanation Period Age
Group (my.)
Khlong Min Jkm Sandstone, siltstone, shale, and limestone, greenish gray, Jurassic 140 -
Fm., Thung pale green, reddish purple to dark gray, thin to medium 210
Yai Gp. bedded, ripple mark, burrows, fossils of bivalve,
Pavamusium
Saibon TRsb Siltstone, brick-red, thin bedded, dolomitic limestone Triassic 210 -
Formation lenses, with fossil of pelecypods and plants remains; 245
Fm. sandstone, light brown, fine-to- medium grained,
quartzitic, thin to medium bedded
Um Luk Fm., Pul Limestone, dolomitic limestone, gray and dark grey, Permian 245 -
Ratburi Gp. massive, with chert lenses 286
Phap pha Fm,,  Ppp Limestone, dolomitic limestone, gray and dark gray, thin
Ratburi Gp. to medium bedded with fossils of bryozoas, fusulinids,
corals and crinoids, partly chert lenses intercarate
Ratburi Gp. P Shale, gray; sandstone, yellowish-brown and limestone. Permian 245 -
Gray lense or bedded; with fossils of fusulinids, to Carboni- 360
brachiopods and corals and plant remains ferous
Khao Chao CPxe Arkosic sandstone, white to light gray, good sorted,
Fm., Kaeng medium-grained, thin bedded, with Posidnomya sp.
Krachan Gp.
Khao Phra CPkp Sandstone, siltstone, greenish gray, massive to laminated
Fm., Kaeng bedded, bioturbated, silt to fine-sized, angular to
Krachan Gp. subrounded, poor to moderate sorting; mudstone,
greenish-gray, thin bedded to massive, imestone lenses,
fossil of bryozoa
Ko He Fm., CPxn Pebbly sandstone, pebbly mudstone, greenish gray to
Kaeng gray, with clasts of quartz, sandstone, siltstone, granite,
Krachan Gp. shale, schist and limestone, subangular to round, matrixes
of clay mineral, chlorite, sericite, feldspar, biotite, quartz,
calcite and iron oxide
Laem Mai CPyp Mudstone, dense, black, thin bedded, well bedded, with
Phai Fm., silt lamination, intercalated with lithic sandstone;
Kaeng quartzitic sandstone, siltstone and pebbly mudstone,
Krachan Gp. black, reddish brown and gray, thin bedded to massive
Kaeng CP« Shale, light brown, thin-bedded; sandstone, arkosic, light
Krachan Gp. brown, fine to coarse grained, thick-bedded; siltstone and
chert with bryozoas, foraminiferous, crinoid and
gastropods, limestone
were found in the upper part
Igneous rocks
- ay Geyserite, milky white, cryptocrystalline quartz and Quaternary  0.01-
feldspar, brecciated 1.6
- sy Syenite, dark gray, porphyritic, mainly feldspar, quartz  Tertiary 16 -
and hornblende, crystalline feldspars, maximum 2 cm., )
. 2 66.4
with shallow extrusive rock
- Kgr Khao Phanom granite: granite, porphyry, consisting of Cretaceous
g 66.4 -
quart, feldspar, and biotite, feldspar phenocryst, 140

subhedral, 2-5 cm, some foliation




Table 3.3 Proportion of land for each type of the input factor.
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Area Area
Factors Class Factors Class
m? % m? %
Elevation <200m 825,963.3 83.64 Slope 0° - 10° 724,701.6 73.38
200 m-400 m 108,863.1 11.02 gradient 100 - 20° 121,362.3 12.29
400 m - 600 m 33,5286  3.40 200 - 30° 91,9746 9.31
600 m-800 m 11,8404 1.20 30° - 40° 36,180.0 3.67
800 m- 1,000 m 4,388.4 0.44 400 - 50° 10,846.8 1.10
> 1,000 m 2,946.6  0.30 > 50° 2,465.1 0.25
Slope Flat 360,195.3 36.47 Slope Concave (-) 646,574.4 65.47
aspect North 59,090.4 5.98 curvature Flat (0) 0.0 0.00
Northeast 78,685.2  7.97 Convex (+) 340,956.0 34.53
East 92,162.7 9.33
Southeast 94,161.6 9.54
South 65,843.1  6.67
Southwest 78,5025  7.94
West 86,49.9 881
Northwest 71,939.7 7.29
Topographic 0-2.5 6.3 0.00 Drainage <50m 380,292.3 38.51
wetness 25-5.0 86,101.2 8.72 (Distance 50m-100m 309,3435 31.33
index 50-75 288,927.9 29.26 from 100m-150m  203,735.7 20.63
(TWI) 7.5-10.0 184,322.7 18.66 drainage) 150m-200m 69,272.1 7.01
10.0-125 146,898.0 14.88 200m-250m 21,922.2 2.22
>125 281,274.3 28.48 >250m 29646 0.30
Lineament Lithology Thung Yai 136,994.4 13.87
(Distance Ratburi 70,2675  7.12
from <500 m 246,398.4  24.95 Quaternay 522,804.6 52.94
lineament) 500 m-1000m  186,186.6 18.85 Sediments
1500 m-2000 m 83,3004 8.43 Krachan 57576.6 5.83
2000 m - 2500 m 67,5135 6.84 |gneou5 rocks 21213 0.22
2500 m-3000m  46,690.2  4.73 Krabi 290538 2.94
> 3000 m 243,815.4 24.69 Saibon
Formation
Soil texture  Clay 207,291.6 20.99 LULC Para rubber 256,185.9 25.94
Silty clay 64,061.1 6.49 Oil palm 438,069.6 44.36
Loamy sand 27,146.7  2.75 Dense 235,363.5 23.83
Sandy loam 193,401.0 19.58 evergreen
Silty clay loam 40,2399  4.07 forest 640.8 0.07
Sand 17,9244  1.82 Disturbed
Sandy clay loam  113,548.5 11.50 evergreen 57,270.6  5.80
Clay loam 23,2614  2.36 forest
Silty loam 15,8004  1.60 Miscellaneous
Loam 7,281.0 0.74
Slope complex 2775744 28.11

Note: Total amount of the study area is 987.53 km?.
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3.2 Construction of landslide inventory map

3.2.1 The landslide inventory map was made based on accumulated data of
past landslide occurrences within the area, mainly from the devastated incidences
reported in March 2011 (see Figure 3.3 for a work flowchart). These data were visually
extracted from distinctive landslide scars found in the high-resolution satellite imagery
like those of the THEOS (or Thaichote) satellite recorded on 15" April 2011 (at spatial
resolution of 2.0 meters) or NASA’s EO-1 satellite taken on 4" April 2011 (at spatial
resolution of 10 meters). Also, the distributed satellite imagery recorded over the area
around that time (with landslide traces evidenced) from the Google Earth and Bing Map
websites were also incorporated in the analysis. Figure 3.4 demonstrates compared
examples of several distinctive landslide scares on the used satellite imagery assembled

from those four aforementioned sources. Only cloud-free satellite images were used for

this task.
Input
Imagery data
THEQOS EO-1 Google Earth Bing Map
Process

Visual Interpretation

Contrast | Adjacency feature | Shape | Morphological expression

Output Mapped lahdslide data

Figure 3.3 Work flowchart of the landslide inventory mapping process.
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The identification of potential landslide trace on the applied satellite
images was achieved principally through rigorous examination of the distinct terrain
properties like contrast, adjacency feature, shape, and the morphological expression
that might signify the existing landslide trace. The contrast means the difference in
spectral characteristics between the landslides and the surrounding areas. Normally,
fresh landslide is usually well recognized based on its sharp outer edge and bright
appearance (compared to its background environment) due critically to explicit
exposure of its soil or rock content. Older slope failures may have degraded features
such as rounded head scarps and worn edges along with evidences of ongoing
weathering and erosional processes (Figure 3.5). The landslide axis is normally parallel
to general flow direction. Type of the movement was assigned using shape criteria, such
as length/width ratio and asymmetry. Upstream landslide can be transformed into debris
flow that is often resulted in large runout over flat downstream area (Figure 1.3). In
addition, landslide traces can also be located by their distinctive fan shape or sharp lines
of break in topography, and sometimes a local drainage anomaly. For morphological
features, appearance such as clear breaks on steep scarps, disrupted/disordered forest
cover and bare soil can be used to identify landslide.

3.2.2 The located landslide evidences over the area gained from all four
sources of high-resolution satellite imagery mentioned earlier (THEQOS, EO-1, Google
Earth, and Bing Map) were eventually merged to formulate an integrated landslide
inventory map of the area which contains information of all notes landslide locations
(uppermost part of each individual landslide scare) along with their approximated
extent boundary (like in Figure 3.6). The underlined assumption was that each

individual landslide scare was originated from large land subsidence at the uppermost



124

part and descended as flow downward by gravity towards, or along, the adjacent
drainage routes. This inventory map (in raster format) was built to accommodate

evaluation of landslide susceptibility zone afterwards.

(@) THEOS (b) EO-1

(c) Google Earth (d) Bing Map
Figure 3.4 Examples of the high-resolution satellite images from four different sources;

(a) THEOS satellite, (b) EO-1 satellite, (c) Google Earth website, (d) Bing Map website,

showing landslide traces within the study area (from the incidence in late March 2011).
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(a) THEOS (b) EO-1

(c) Google Earth (d) Bing Map
Figure 3.4 Examples of the high-resolution satellite images from four different sources;

(a) THEOS satellite, (b) EO-1 satellite, (c) Google Earth website, (d) Bing Map website,
showing landslide traces within the study area (from the incidence in late March 2011)

(Continued).
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(@) THEOS (b) EO-1

(c) Google Earth (d) Bing Map

Figure 3.4 Examples of the high-resolution satellite images from four different sources;

(a) THEOS satellite, (b) EO-1 satellite, (c) Google Earth website, (d) Bing Map website,
showing landslide traces within the study area (from the incidence in late March 2011)

(Continued).
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(@) Fresh landslide

(b) Old landslide

Figure 3.5 Different characteristics between fresh and old landslide scars as shown on

the THEQOS satellite imagery.
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Figure 3.6 Examples of the evidenced landslide inventory map of the area.
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Finally, a total of 700 landslide incidences (location and extent) were identified
and mapped. Most of them were found concentrated in Khao Phanom Bencha mountain
range, especially in the middle portion close to the summit (as depicted in Figure 3.7)
due to the highly susceptible land characteristics for slope failures of the area. Records
of this landslide inventory data were then split into 70% (or 490 locations) for modeling
of the desired susceptibility maps and 30% (or 210 locations) for the validation of those
derived maps. This 70:30 proportion was recommended in Huberty (1994).

Note that, field surveys of landslide prone area in the vicinity of Khao Phanom
Bencha mountain network were also managed but exact positions of the seen landslide
scars were difficult to justify then due to their frequently inaccessible locations (situated
mostly at high elevation and on the steep terrain) (Figure 3.8). Also, mapped locations
of landslide incidences in the area compiled by the Department of Disaster Prevention
and Mitigation (DDPR) and the Department of Mineral Resources (DMR) were

considered but were not directly put in use due to the still uncertainty in their validity.
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Figure 3.7 Location map of the 700 identified landslide spots within the study area.
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Figure 3.8 Examples of photos taken during the field survey of the study area in which

evidences of landslide occurrences over the mountain’s terrain are clearly visible.
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Landslide Data |

Contributing Factors

Topography —= Training 70%
Elevation | Slope | Aspect Curvature TWI
Validation 30%
Geologic structure
Lithology Distance from lineament
LULC Distance from drainage Soil Texture
Process — Applied methods —
WLC AHP
FR MLR
<€
ANN FR-Fuzzy Y
Accuracy assessment
ANN-Fuzzy AUC ROC
Landslide susceptibility score A4
¢ Comparison
Normalized susceptibility index
OlLipli LSZ maps
Optimal method map k

Figure 3.9 Work flowchart for the construction and verification of the susceptibility maps

to find an optimal method for further application in subsequent work.
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3.3 Construction and verification of the landslide susceptibility
maps

This part consists of two principal tasks. The first one is to formulate the
landslide susceptibility maps for the area using several chosen methods (both of the
qualitative and quantitative types). The second task is to assess for accuracy of resulted
maps gained from each applied method and determine the optimal one for further use
in the subsequent work (hazard and risk mapping). Flowchart of main work in this part
is shown in Figure 3.9.

All output susceptibility maps were established based on knowledge of the
normalized susceptibility score (NSS), ranging from O to 1, in which five main classes
(for five different susceptibility zones) were established. These include (1) very low
susceptibility (VLS) for NSS = 0.0-0.2, (2) low susceptibility (LS) for NSS = 0.2-0.4,
(3) moderate susceptibility (MS) for NSS = 0.4-0.6, (4) high susceptibility (HS) for
NSS = 0.6-0.8, and (5) very high susceptibility (HS) for NSS = 0.8-1.0. Note that, the
equal-interval classification technique (of NSI data) was applied as a standard for the
making of all output maps regardless of the method involved. NSS data for each
corresponding pixel on the map was quantified based on its original landslide
susceptibility score (LSS), or probability, obtained for each pixel by each preferred
method. The analysis process carried out in this part was mostly achieved through the
use of the ArcGIS and Weka softwares (Hall et al., 2009).

3.3.1 Necessary input data for each preferred susceptibility mapping method
were prepared in form of the appropriate GIS dataset in raster format as described
earlier. These stated methods can be separated into 2 groups, which are,

(1) the qualitative type, including,
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(1.1) Conventional weighted linear combination (WLC),
(1.2) Analytical hierarchy process (AHP),
(2) the quantitative type, including,
(2.1) Frequency ratio (FR) model,
(2.2) Integrated FR-fuzzy model,
(2.3) Multiple logistic regression (MLR),
(2.4) Artificial neural network (ANN),
(2.5) Integrated ANN-fuzzy model.

3.3.2 Suitable factor and class (or attribute) weights for the two qualitative
methods, WLC and AHP, were determined from the independent judgment of 8 experts
in this field collected through the reply of distributed questionnaires for each stated
method (as detailed in Appendices B-D). Net contributing weight [= factor weight (FW)
x class weight (CW)], or NCW, for each attribute of a considered factor was then
assessed (for each method) and used as a basis for the generation of landslide
susceptibility score (LSS) and the normalized susceptibility score (NSS) for a specific

pixel as follows (for 10 contributing factors):

10

LSS, =D NCW,; , (3.1a)
j=1

NSS, = LSS, = LSSw, (3.1b)

LSS, —LSS, .,
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where LSS; is the LSS value for pixel i on the map, LSSmax and LSSmin are the maximum
and minimum values of LSS found on the map, respectively.

3.3.3 For the frequency ratio (FR) method, the corresponding FR values (for
each attribute of each identified factor) were computed (through Eq. (2.14)) and used
to determine the landslide susceptibility score (LSS) for each pixel on the final map
(through Eg. (2.15)). The LSS dataset was then changed to be the equivalent NSS
dataset for classifying purpose using similar conversion formula illustrated in Eq.
(3.1b).

3.3.4 Anattribute of a specific contributing factor shall be considered as being
a member of the landslide producer set with a certain fuzzy-membership value. These
values can be assessed by some data-driven methods, such as the frequency ratio (FR)
model (e.g. Lee, 2007; Regmi et al., 2010; Aksoy and Ercanoglu, 2012) or the cosine
amplitude method (e.g. Ercanoglu and Gokceoglu, 2004; Kanungo et al., 2006;
Ercanoglu and Temiz, 2011), or by the expert-based judgments through the application
of the defined if-then rules (e.g. Saboya, Alves and Pinto, 2006; Pourghasemi et al.,
2012). Here, the fuzzy-membership values were found based on the FR method instead
of the traditional expert-based if-then rules as it is more convenient and might be more
suitable in this case as most reference landslides were originated from unusually heavy
rainfall over an area which is not often experienced by the experts in the field, therefore,
the evidence-based like FR might be more effective in evaluating the incidence.

The FR dataset obtained in the earlier analysis (in Step 3.3.3) were then
used as proxy for the determination of the membership value through the linearly

transformation function expressed below (for the use in the FR-Fuzzy mapping model):
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FR; — Min(FR;)

~ Max(FR,) - Min(FR, ) [Max(Mv(c, )) - Min(v(e, )+ MinMv(C, ). (32)

MV(C;)

where MV(C;) is the fuzzy membership value, Max(MV(C;;)) and Min(MV(C;)) are the
upper and lower normalization bounds, respectively.

This transformation shall result in membership values in the range of
0.1-0.9 similar to methodology used in Bui et al. (2012). Susceptibility maps in this
case were synthesized through the utilization of five main fuzzy operators detailed in
Section 2.6.6: OR, AND, algebraic sum, algebraic product, and gamma with varying
values of A function (0-1). The corresponding NSS dataset was gained through
conversion of output from each operation (pixel-based) using the formula likes that of
Eqg. (3.1b). Final map with the highest obtained accuracy was then used as a
representative of the output resulted from this method.

3.3.5 For the MLR method, input data to the model were separated into 2
groups: (1) the continuous data (e.g., slope, elevation, or proximity), which were
normalized to have new values in the range of [0, 1], and (2) the categorical data (e.qg.,
land use or soil type), which were administrated in basic binary format (i.e., presence =
1/absence = 0) for each respected attribute of the referred factor (like input landslide
incidence data). All 490 locations of the known landslide incidences were used as
training samples along with another 490 locations of the landslide-free pixels found by
random sampling. After initial processing, proper relationship of the Logit function L,
as expressed in Eq. (2.17), for all input factors was established along with knowledge

of probability (p) of landslide occurrence for a pixel (through Eq. (2.18)). This
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parameter “p” was then used as a proxy of the NSS for the preparation of the
susceptibility map afterwards.

3.3.6 For the ANN mapping method, the input data were prepared like those
done for the MLR method explained earlier (30 layers in total of independent data and
1 layer of the dependent data). These data were then systematically processed to gain
the appropriate weights (or coefficient) for each included input layer. These weights
were then integrated and applied in the form of their equivalent absolute values. These
obtained weights were then normalized (using formula similar to that described in Eq.
(3.2)) to aid the determination of the LSS value for each pixel on the map through this

linear combination format:
LSS = WX, +W,X, + ...+ W, X, . (3.3)

The coefficients wo, wi, ... Wy (n = 1-30) are the normalized weights
(NW) of each used factor (for the numerical type) or attribute (for categorical type)
while x1, Xo, ..., Xn are their associated input values, respectively (real data for the
numerical type and binary-format data for the categorical type). The equivalent NSS

dataset was finally generated through the use of the following formula:

L (3.4)

NSS, = - )
D (LSS;)

i=1

where LSS; is the LSS value for pixel i on the map.
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3.3.7 For the ANN-fuzzy method, the normalize weights obtained for each
layer of input data in the ANN method were applied, along with the known membership
value for each attribute (or each layer of input data) from the FR-fuzzy method, to
determine the final net contributing weight (NCW) like that of the MLR or AHP
methods [NCW = normalized weight (w) x membership value (MV)], similar to that
reported in Kanungo et al. (2006). The susceptibility map could then be made
straightforwardly through the yielded datasets of LSS and NSS (from NCW data)
through the use of formulas detailed in Eq. (3.1a and b), respectively. The susceptibility
maps in this case were prepared like those done for the FR-fuzzy method explained
earlier.

3.3.8 All derived landslide susceptibility maps (from each preferred method)
were then compared and evaluated about the similarity or differences in terms of
featured general characteristics and contents. In this regard, the obtained landslide
susceptibility maps built by the responsible government agencies, or the relevant
research groups, for the study area were also taken into the consideration and
discussion.

3.3.9 To validate for their credential, accuracy assessment of all susceptibility
maps were carried out based on two popular methods: the Area-Under-Curve (AUC)
method and the Receiver Operating Characteristic (ROC) method detailed in Chapter
.

3.3.10 An optimal method for landslide susceptibility mapping for the area was
finally identified based primarily on the obtained accuracy of each generated map (from
each method). However, as levels of the found accuracy for the top methods in average

were rather comparable (i.e. < 3% in the difference), therefore, other criteria were added
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to judge for the preferred choice of optimal method, which are, the ease in their similar
application and the superiority in the interpretability of the output.

3.3.11 Two different datasets of rainfall amount (i.e., the long-term annual
mean record during 1951-2012 period and the event-based record during 27-29 March
2011) seen at 17 rainfall stations operated both in and nearby the provincial area (Figure
3.10) were used to prepare rainfall maps for the area using kriging interpolation method
(as shown in Figure 3.11). Noted that, rainfall map over an area might be established
from the satellite data (like TRMM satellite) or from the radar observations during the
chosen time period, however, due to their relatively coarse solutions (if compared to
actual size of the study area), they were then not included in this analysis. The original
rainfall data of interest were gained from Thai Meteorological Department (TMD),
Royal Irrigation Department (RID) and the Department of Mineral Resources (DMR)
(Table 3.4-3.6). These built rainfall maps were then used as an additional layer of input
data for making a new susceptibility map by the optimal method identified earlier,
followed by accuracy assessment process of the achieved maps regarding to this action
to evaluate influence of the integrated rainfall data on the yielded susceptibility map for

the area in terms of the average accuracy from all assessing methods in use.
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Table 3.4 Statistics of rainfall at the nearby rainfall station (data for 1951-2012).

. . Annual average
ID Station name Province 9

(millimeter)
551006 Phrasaeng Surat thani 1,766.9
551011 Phanom Surat thani 1,706.0
552008 Thung Yai Nakhon si thammarat 1,544.2
561001 Phang nga Phang nga 2,352.4
561002 Thap Put Phang nga 2,126.5
561006 Takua Thung Phang nga 2,886.9
561008 Ko Yao Phang nga 2,174.6

Source: The Thai Meteorological Department, Office of Water Management and Hydrology, Royal

Irrigation Department.

Table 3.5a List of rainfall stations in Krabi Province and their annual mean of rainfall.

Rainfall station Annual mean : millimeter
ID Station District Number  Total Wet Dry
of year rain season  season

15012  Krabi Mueang 48 1,807.3 11,1715 635.8
15022  Khlong Thom Khlong Thom 45 2,092.1 '1,356.7 7354
15032 Ao Luek Ao Luek 33 21841 14392 7449
15042 Ko Lanta Ko Lanta 45 21681 14794  688.6
15052  Todlongyangnaichong Ao Luek 52 2,564.5 11,6385  926.0
15060  Pakasai Dam Mueang 33 1,830.7 '1,189.1  641.6
15070  Sai Kao Dam Khlong Thom 32 2,0164 113381 6783
15080  Nam Daeng Dam Khao Phanom 24 1,556.5 1,009.5  547.0
15093 Ko Lanta Meteorology Ko Lanta 23 2,170.9 14755 6955

15123  Krabi Meteorology Mueang 8 2,119.7 1,4029  716.8
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Table 3.5b Statistics of monthly mean rainfall of Krabi Province at the listed stations.

Station Monthly mean rainfall : millimeter

ID Apr May  Jun Jul Aug Sep Oct Nov Dec Jan Feb  Mar
15012 1128 203.6 2172 217.6 2313 2832 2464 1469 461 240 232 550
15022 1284 253.0 2440 2464 2794 3131 2712 1856 611 238 194 669
15032 1307 2205 2496 2929 2941 3230 2835 1840 617 345 357 739
15042 950 261.7 2548 2963 319.6 3731 306.6 1389 450 128 256 387
15052 189.9 289.1 2789 314.0 337.7 3857 337.7 1944 69.0 363 36.7 950
15060 1139 2356 191.3 206.7 238.1 2541 2427 1728 747 252 160 596
15070 1104 2459 2338 2613 269.8 3146 2682 1635 60.7 298 174 410
15080 92.8 1980 1365 1452 180.1 2038 2155 1915 734 305 256 635
15093 1181 260.8 226.1 2854 306.3 3459 3225 1666 487 134 213 558
15123 1674 180.2 2295 2029 3086 2673 359.2 1839 810 289 545 563

Source: Office of Water Management and Hydrology, Royal Irrigation Department.

Table 3.6 Statistics of rainfall during 2011 landslide event (during 27"-29" March).

Daily rainfall data for 27t-29t" March 2011

ID Station name Province
27t 28t 29t 3 days
551202  gyrat Thani Surat Thani 6.00 148.20 241.50 395.7
551301 surat Thani Agromet 7.80 250.00 247.30 505.1
551401 Phra Sang 2.80 61.40 0.00 64.2
552201 Nakhon Sri Thammarat Nakhon 6.8 249.4 91.4 347.6
552401  Chawang Sri 15 70.8 104.2 176.5
27013  Ban Bangpu Thammarat - 61.8 44.9 106.7
27401 Ban Hua Na 0 234.5 148.7 383.2
27551 Ban Wang Sai 13.3 128.7 146.2 288.2
- Waag Aai Wow 2.8 43.6 55.8 102.2
) Tha Lao Tha lone 1.2 49 100.8 151.0
566001 Krabi Krabi 20.6 130.8 161.4 312.8
566002 Ko Lanta 6 45.6 12 63.6
- Thub Prik - 60.0 200.0 260.0
- Kao Phanom 21.0 131.0 161.0 313.0
- Kao Khram - - 320.0 320.0
567201 Trang Trang 19 121.1 108.4 2314
561004  Takua Pa Phang nga 33.1 74.2 105.2 2125
34052 Khukkhak Sub-district 33.1 74.2 105.2 212.5

Source: Thai Meteorological Department; Department of Mineral Resources; Royal Irrigation
Department (RID).



142

409000 427000 445000 463000 481000 499000 517000 535000 553000 571000 589000 607000

2
F &
2 s Y =
Z- Rainfall Station L
2
J (Event-Based) | &
g 1 -E
2 ® Station ID 5
1 K
s 2
S L
g 551202@ s
% 551301@ H
: ;
g 2
2 H
e L
1 £
§ §
561004 & 5
£ 2/7';29}:6 LN sone | %
H . s
4 ) 552401@ _§
a :
g n
H s
] £
8 =
£ L
L s
g =
. 566001@ H
i £
1 B
z] L
§‘ E =
g 566002 @ 567201@ -é
£ N B
a2 =
i w - L2
£ s g
z =
d 0o 10 20 40 LS
s I — K il o cters -
& =
s e e e T T T e s e e o
(a) 409000 427000 445000 463000 481000 499000 517000 535000 553000 571000 589000 607000 E
445000 454000 463000 472000 481000 490000 499000 508000 S17000 S26000 535000 544000
e Rainfall Station g
2] @ (Long-Term) E
551011
=2 =
i ® L£
g Station ID :
£
2
s H
®
§_ 551006 _§
E e | £
g| @ s61001 H
g | setoos s
g g
°
B 552008 | 2
21 s
H H
g g
= s
H H
®
g 561008 s
H i
i o t
15022 e
£ £
& &
§. L
[ ] z
15042
o =
S« B 15070 F=
Z Z
w—¢ =
g g
= s s
H H
2 0 5 10 20 ° 4
I e -
g_ Kilometers i _g
(b) 445000 454000 463000 472000 481000 490000 499000 508000 517000 S26000 535000 544000

Figure 3.10 Location maps of the applied rainfall stations for (a) during 27"-29"" March

2011 and (b) long-term average for the period 1951-2012.
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Figure 3.11 Representative rainfall maps of the area for (a) during 27\"-29'" March 2011

and (b) long-term average for the period 1951-2012.
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3.4 Construction of the hazard, vulnerability, and risk maps

3.4.1 The landslide hazard maps for the study area were produced by
integrating annual rainfall probability (ARP) data for the critical rainfall values of 100
mm/day and 300 mm/3-days (DMR, 2011) (Table 3.7a and Figure 3.12). These
threshold values are specific for the study area but for the other areas different values
might be more suitable.

These ARP data were extracted from known return-period data of those
rainfall criteria for the area (given by the RID) (Table 3.7b), with the original landslide

susceptibility score (LSS) data (not the normalized data, or NSS):

Hazard index (HI) = ARP x LSS. (3.4)

The hazard maps (for each rainfall criterion) were then established based

on application of the equal-interval method on the known values of the HI on the map.

3.4.2 The concerned elements at risk within the identified hazard areas (in

both cases), which are building and economic LULC components like paddy field, field

crop (maize), horticulture (coffee, rambutan, durain, oil palm, coconut, mangosteen,

mixed orchard, mixed perennial, and orange) and para rubber were mapped (Figure
3.13).

3.4.3 The vulnerability map was then derived based on data of the normalized

vulnerability score (NVS) defined for each group of the defined elements at risk based

on their estimated economic values of loss per unit area by the responsible government

agency (mainly for the compensation purpose).
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3.4.4 The landslide risk maps were then constructed through the combination

of the hazard map (from each considered source) and the vulnerability map yielded

earlier based on the following calculation of the risk index (pixel-based):

Risk index (RKI) = HI x NVS.

(3.5)

The equal-interval technique was applied to classify risk data (RKI)

existing on the map into five different zones: very high; high; moderate; low; and very

low, respectively.

Table 3.7a Statistics of annual rainfall probability at measuring stations in Krabi

Province.
D Rainfall station Number Annual rainfall probability
Station District ofyear 100 mm/day 300 mm/3-days
15012 Krabi Mueang 54 0.33 0.003
15022 Khlong Thom Khlong Thom 47 0.50 0.013
15032 Ao Luek Ao Luek 35 0.33 0.100
15042 Ko Lanta Ko Lanta 49 0.50 0.100
15052 Tod Long Yang Ao Luek 52 0.50 0.020
15060 Pakasai Dam Mueang 33 0.33 0.003
15070 Sai khao Dam Khlong Thom 33 0.33 0.013
15080 Nam Dang Dam Khao Phanom 26 0.20 0.002
15093 Ko Lanta Meteorology Ko Lanta 23 0.50 0.013
15123  Krabi Meteorology Mueang 8 0.50 0.100

Source: Office of Water Management and Hydrology, Royal Irrigation Department.


http://www.booking.com/hotel/th/pakasai-resort.html

Table 3.7b Statistics of return period for maximum rainfall at measuring stations in Krabi Province.

Rainfall station Number  Max.rainfall Return period (year) for rainfall in millimeter /year
ID Station District of year day 2 3 5 10 25 50 75 100 200 300 500 750 1000
1 942 1079 1232 1424 1532 166.6 1846 1950 2024 2259 2437 2541 2614
15012 Krabi Mueang 54 2 118.2 133.0 1494 1701 181.7 196.2 2156 2268 2348 260.1 2793 2904 2984
3 140.3 1573 176.2 200.0 2134 2300 2522 2652 2743 3034 3254 3383 3474
1 100.8 1153 1315 1518 1633 1775 196.6 207.7 2155 2404 259.2 270.2 278.0
15022 Khlong Thom Khlong Thom 47 2 139.7 1606 1839 2131 2296 2501 2775 2934 3047 3406 3676 3834 394.6
3 1685 1933 2209 2556 2752 2994 3320 3509 3642 406.7 4388 457.6 470.9
1 98.2 1136 1309 1525 1647 179.9 2002 2119 2203 2468 2668 2785 286.8
15032 Ao Luek Ao Luek 35 2 1395 166.7 1969 2349 2564 283.0 3186 3394 3540 4006 4358 456.3 470.9
3 171.0 2141 2621 3224 3565 3987 4552 488.1 5114 5853 6411 673.7 696.9
1 1148 1345 1565 1841 199.7 2191 2450 2600 270.7 3046 330.1 3451 3557
15042 Ko Lanta Ko Lanta 49 2 157.0 1872 2209 2632 2871 3167 3564 3794 3958 4476 4868 509.6 525.9
3 1855 2203 259.0 3076 3350 369.1 4146 4411 4599 5195 5645 590.8 609.4
1 1029 1199 1388 1626 1761 1927 2150 2280 2372 2664 2884 3013 3104
15052  Tod Long Yang Ao Luek 52 2 148.0 1695 1935 2235 2405 2615 289.7 306.1 3177 3545 3823 398.6 410.1
3 1826 2093 2389 2762 2972 3233 3582 3785 3929 4386 4730 4932 5075
Pakasai Dam 1 903 1042 1197 1391 1501 163.7 1819 1925 200.0 2238 2418 2523 259.8
15060 Mueang 33 2 1189 1349 1527 1751 187.7 2033 2243 2365 2451 2725 2932 3053 3139
3 1424 1594 1784 2023 2158 2325 2549 2680 2772 3065 3286 3415 350.6
1 974 1147 1340 1581 1718 1887 2113 2245 2338 2635 2858 2989 308.2
15070 Sai khao Dam Khlong Thom 33 2 139.3 160.1 1832 2122 2286 2489 2762 2920 3032 3388 3656 3813 3925
3 1604 1821 206.2 2365 2537 2749 3033 3198 3315 3686 396.7 4131 4247
1 80.4 89.7 100.0 1129 1202 1293 1414 1484 1534 1693 1812 1882 1932
15080 Nam Dang Dam Khao Phanom 26 2 1065 1224 1402 1625 1750 1906 2115 2237 2323 259.6 280.2 2923 3008
3 128.7 1463 166.0 190.8 2048 2221 2453 2588 268.3 298.7 3216 3349 3444
1 1185 1343 1519 1741 1866 202.0 2228 2349 2434 2705 2910 3030 3115
15093 Ko Lanta Meteorology Ko Lanta 23 2 1479 1688 1921 2214 2379 2584 2858 301.7 313.0 3489 3759 3918 403.0
3 1735 1960 221.1 2526 2704 2925 3220 339.2 3514 3900 4192 436.2 4483
1 101.8 119.2 1386 1630 176.7 1937 216.6 229.8 2392 269.1 2916 3048 3141
15123 Krabi Meteorology Mueang 8 2 1430 1711 2023 2416 2637 2911 3279 3493 3645 4126 4489 4701 4852
3 177.0 2228 2738 3378 3740 4188 4788 5137 5384 6169 6762 7108 7354

Source: Office of Water Management and Hydrology, Royal Irrigation Department.

av1


http://www.booking.com/hotel/th/pakasai-resort.html
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3.5 Construction of the runout map

The additional susceptibility map originating from the subsequent runout caused
by the occurrence of massive landslides upstream was also formulated from knowledge
of the runout susceptibility (RS) of debris flow integrated in the Flow-R model (as
detailed in Chapter 11). All input data were in the ASCII format and landslide scare data
were recorded in binary format as 0 (no scare) and 1 (scare). The mapping process
comprised of three main distinct steps (as outlined in the framework shown in Figure
3.14):

(1) The directions of flow were identified on the basic of DEM and user-defined
datasets while the propagation of their masses (as debris flow) over the topography was
determined using a probabilistic and energy approach, respectively.

(2) Spreading area of the flow was determined based on probabilistic spreading
(by means of the flow direction algorithms), and also on a basic energy balance which
defines maximal runout distance.

(3) The yielded runout prediction map was compared to the satellite-based one
for identifying the distinctive similarities or differences.

To calibrate the maximum probable debris flow runout, the March 2011 event
that affected Phanom Bencha Mountain was used as a reference. THEOS satellite
imagery in late March 2011 were used to calibrate the possible maximum runout using
the edge of alluvial fans where previous debris flows were observed and historical
events from DMR in form of GIS shape file. In this research, main input data included
DEM, slope gradient, flow accumulation, and the landslide scare data. The propagation

assessment comprises of two crucial parts: spreading algorithm and energy analysis. In
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the first part, models involved are direction algorithm modified from Holmgren (1999)
and inertial algorithm with weight of the persistence function in the assessment of flow
spreading defined from Gamma (2000) type. In the second part, the simplified friction-
limited model was used for the determination of runout distance based on the maximum
possible runout distance charecterized by a minimum travel angle, also called angle of
reach. In case of energy limitation, maximum limit of the potential energy was defined
to ensure the realistic outcome of the flow velocity (see Figure 3.15 for an example of
the model’s main user interface).

Propagation parameters were taken from the literature in case of well supported
by both physical and empirical backgrounds. For examples, velocity threshold of 15

m/s and the friction loss function: SFLM, with a travel angle of 11°.

Input
Used datasets
DEM Slope Flow accumulation Predefined sources
!
Process l’
Propagation
Spreading algorithm Energy calculation

Directions algorithm Inertial algorithm Friction loss function | Energy limitation

Comparison
Output \ 4 l,
Maximal runout distance Imagery data

Figure 3.14 Flowchart of the runout analysis work.
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Figure 3.15 Example of the main user interface of the Flow-R model.




CHAPTER IV

RESULTS AND DISCUSSION

This chapter reports conclusive results of the overall thesis work in accordance
with the objectives stated in Chapter | and research procedure illustrated in Chapter Il1.
Content of the report is separated into three main consecutive parts which focus on three
main tasks. These are, (1) the construction of landslide susceptibility maps (using seven
proposed methods) and the identification of the optimal method, (2) the formulation of
hazard maps (from the output landslide susceptibility map of the named optimal method
and the annual rainfall probability maps) and risk maps (from the vulnerability map of
the identified elements at risk located in the area and the formulated hazard maps), and
(3) the analysis on potential risk arisen from the landslide-induced runout phenomenon
on the mapped element at risks over the area. The associated discussion on the presented

results of each aforementioned issue of interest is also given accordingly therein.

4.1 Establishment of landslide susceptibility maps

Work in this part was planned in respect to the first stated objective of the thesis
which is to identify optimal method for the construction of landslide susceptibility map
for the study area (the Khao Phanom Bencha Watershed, Krabi Province) from a set of
the preferred methods, which are, (1) weighted linear combination (WLC), (2)

analytical hierarchy process (AHP), (3) frequency ratio (FR), (4) integrated FR-fuzzy,
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(5) multiple logistic regression (MLR), (6) artificial neural network (ANN), and (7)
integrated ANN-fuzzy. The accomplished results are as follows.
4.1.1 Application of the weighted linear combination (WLC) method

The WLC method was chosen as a representative of the widely-used
qualitative approach (along with the AHP method) whose decision is relied mainly on
the surveyed opinion of experts in the field, rather than on objective evidence of the
concerned issue itself. For this method, the appropriate preference score (or weight)
for each input factor and its associated attributes were identified based on independent
judgment of 8 experts in this field collected through the reply of distributed
questionnaires (detailed in Appendix C). The primary scores were prescribed in order
from 1 (not important) to 5 (most important) and the average values were put in use,
which include, factor weight (FW), class weight (CW) and net contributing weights
(NCW = FW-CW) (as detailed in Table 4.1).

According to this definition, possible values of NCW rank from 1 to 25
from which higher value indicates greater contribution towards the landslide occurrence
over the area. From data given in Table 4.1, in terms of priority, slope gradient,
lithology, and soil texture were rated highest by the associated experts with FW of 4.50,
4.29, and 3.88, respectively. Meanwhile, elevation, slope aspect, and slope curvature
were given the lowest priority ones with FW of 2.38, 2.38, and 2.75, respectively. And,
at attribute level, the preferable areas for the landslide incidence (with CW > 4.00) were
those with elevation > 800 m, slope gradient > 40°, TWI > 10.0, distance from drainage
<200 m and from lineament < 1,000 m, and igneous rocks as their foundation. Two top

favorites for the aspects here are the southwest and west directions with equal CW of
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3.63. Also, for the LULC, para-rubber planting was considered most significant cause

of landsliding found in the area (with CW = 4.00). Eventually, in terms of NCW,

igneous rock, slope gradient of > 50°, and slope gradient of 40°-50°, were considered

the most important ones in this respect with the NCW values of 21.45, 19.71, and 18.58,

respectively.

Table 4.1 Expert-based factor and class (attribute) weights for the WLC method.

Net
. . contributing
Thematic layers Attributes FactoFr\vaelght Classcwelghts weights
Elevation <200 m 1.25 2.9750
200 m —400 m 2.13 5.0694
400 m—600 m 238 2.88 6.8544
600 m — 800 m ' 3.88 9.2344
800 m —1,000 m 4.63 11.0194
> 1,000 m 4.50 10.7100
Slope gradient 0°-10° 1.00 4.5000
10° - 20° 2.00 9.0000
20° - 30° 450 3.00 13.5000
30° - 40° ' 3.88 17.4600
40° —50° 4.13 18.5850
> 50° 4.38 19.7100
Slope aspect Flat 1.00 2.3800
North 1.50 3.5700
Northeast 2.50 5.9500
East 2.88 6.8544
Southeast 2.38 2.50 5.9500
South 3.00 7.1400
Southwest 3.63 8.6394
West 3.63 8.6394
Northwest 2.25 5.3550
Slope curvature Concave (-) 2.50 6.8750
Flat (0) 2.75 1.38 3.7950
Convex (+) 3.50 9.6250
Topographic wetness 0-25 1.00 2.8800
index (TWI) 25-5.0 2.00 5.7600
50-75 288 3.00 8.6400
7.5-10.0 ' 3.75 10.8000
10.0-12.5 4.75 13.6800
>125 5.00 14.4000
Drainage <50m 4.88 14.0544
(Distance from drainage) 50 m—100 m 4.13 11.8944
100 m-150 m 588 3.25 9.3600
150 m—200 m ' 2.25 6.4800
200 m—250 m 1.38 3.9744
>250m 1.00 2.8800
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Net contributing

Factor Class -
Thematic layers Attributes weight weights (;V\f\;gg\t,f,)
(FW) (Cw)

Lithology Thung Yai 3.14 13.4706
Ratburi 1.57 6.7353

Quaternary sediments 1.57 6.7353

Kaeng Krachan 4.29 3.71 15.9159

Igneous rocks 5.00 21.4500

Krabi 3.00 12.8700

Saibon Formation 3.00 12.8700

Lineament <500 m 5.00 15.0000
(Distance from lineament) 500 m—1,000 m 4.13 12.3900
1,000 m— 1,500 m 2.88 8.6400

1,500 m —2,000 m 3.00 2.13 6.3900

2,000 m-2,500 m 1.63 4.8900

2,500 m—3,000 m 1.25 3.7500

> 3,000 m 1.13 3.3900

Soil Texture Clay 1.88 7.2944
Silty clay 2.13 8.2644

Loamy sand 3.25 12.6100

Sandy loam 3.13 12.1444

Silty clay loam 3.00 11.6400

Sand 3.88 3.25 12.6100

Sandy clay loam 3.13 12.1444

Clay loam 2.38 9.2344

Silty loam 2.63 10.2044

Loam 2.88 11.1744

Slope complex area 3.63 14.0844

LULC Dense evergreen forest 1.38 4.1400
Disturbed evergreen forest 2.88 8.6400

Oil palm 3.00 3.50 10.5000

Para rubber 4.00 12.0000

Miscellaneous 3.50 10.5000

The factor’s order of priority (in terms of the factor weight) found in this work

was rather similar to that presented in several WLC-based works reported earlier,

especially on the top two candidates (slope gradient and lithology) and the usual bottom

members (slope aspect, slope curvature, distance to drainage), e.g., in Tanavud et al.

(2000), Wachal and Hudak (2000), Sarkar and Kanung (2004), Matori et al. (2011), and

Kayastha et al. (2013). For the attribute’s merit (in terms of the attained class weight)

of each listed factors, it often conforms well to conventional believes or prevalent

theories. For examples, areas with higher slope gradient should be more susceptible to
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the slope failure as well as those located closer to the drainage or lineament. Also, areas
with igneous-rock foundation and those situated in slope complex area are believed to
most prone to landslide occurrence.

Figure 4.1 exhibits the final classified landslide susceptibility map
resulted from the WLC method in which five levels of the susceptible states were
presented from very low (VLS) to very high (VHS). Proportion of land belonged to
each classified category of this susceptibility map is described in Table 4.2 from which
about 43% were situated in the very low to low susceptibility zones and about 17%
were in the high to very high susceptibility zones (mostly at Khao Phanom Bencha

mountain network).

Table 4.2 Landslide susceptibility classification of land based on the WLC method.

Landslide susceptibility LSS values NSS values Area
classes % km?
Very low susceptibility (VLS) 54.59 - 68.50 0.00-0.20 2.11 20.84
Low susceptibility (LS) 68.50 - 82.40 0.20-0.40 40.75 402.39
Moderate susceptibility (MS) 82.40 - 96.30 0.40-0.60 39.66 391.61
High susceptibility (HS) 96.30 - 110.31 0.60-0.80 16.28 160.79

Very high susceptibility (VHS) 110.31-124.12 0.80-1.00 1.21 11.91
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Figure 4.1 Classified landslide susceptibility map yielded from the WLC method.
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4.1.2 Application of the analytical hierarchy process (AHP) method

Similar to the WLC method, the AHP method is also a very popular
qualitative approach in decision-making analysis. However, apart from the expert-
based judgment on value of the possible option, the consistency of this judgment by an
individual expert is also examined. In this method, the pair-wise comparison matrix
was established first from the comparative judgment of each corresponding expert, to
attain preference scale of these factors (and their respective attributes) given in terms
of the normalized weight between 0 and 1. In this case, validity of each given judgment
was determined and those with CR < 0.10 were included in the further analysis (see
more details in Appendix D). Tables 4.3 and 4.4 presents the output normalized weights
for all input factors and their respective set of attributes, while Table 4.5 summarizes
yielded values of the factor and class weights (FW and CW) reported earlier in Tables
4.3and 4.4.

From data shown in Table 4.3, slope gradient, lithology, and soil texture
were still on top in terms of the preference, like in the WLC method, with FW of 0.1733,
0.1756 and 0.1184, respectively, while the three least scores now were aspect, drainage,
and elevation with FW of 0.0517, 0.0545, and 0.0550, respectively. And at attribute
level, the favorite areas for landslide activity were found resemble to those of the WLC
method, e.g., ones with high elevation, steep slope, close distance to lineament and
drainage system, high TWI, or igneous rocks as their foundation. Two most preferred
candidates for the aspect were still the southwest and west, and for LULC, these were
oil palm and para-rubber planting. The eventual output of the AHP approach are

reported in Figure 4.2 (classified susceptibility map) and Table 4.6 (proportion of
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coverage area). And, similar to that of the WLC-based map, about 56% of land on the
AHP-based map were found situating in the very low to low susceptibility zones and
only about 9% were resided in the high to very high susceptibility categories (mostly

in the mountainous regions).

Table 4.3 Factor weights from pair-wise comparison matrix yielded from 8 experts.

Factors Factor weights from individual expert’s judgment M_ean
weights
(Input layer) 1 2 3 4 5 6 7 8 (CR<
0.1)
Elevation 0.0227  0.0735 0.0460 0.0551  0.0206  0.0181  0.0802  0.0200 0.0550

Slope gradient 0.2796  0.2431  0.2652  0.0468 0.2601  0.2807 0.2015  0.1101 0.1733
Slope aspect 0.0600 0.0171 0.0276  0.0776  0.1790  0.0194 0.0692  0.0671 0.0517
Slope curvature  0.0297  0.1179  0.0295 0.0806  0.1292  0.0346  0.0355  0.1127 0.0752

TWI 00415 00332 00718 00692 00271 0.0933 00423 0.1807  0.0794
Drainage 01625 00170 00918 00702 00457 00626 0.0395 0.0540  0.0545
Lithology 01014 02511 0.1646 01663 01327 0.0986 00211 02750  0.1756
Lineaments 00675 01513 01815 00522 00413 00813 0.0478 0.0908  0.1047
Soil texture 01529 00588 01011 01481 01047 01498 02314 0.0526  0.1184
LULC 00820 00370 00211 02339 00595 01617 02314 00370  0.1121
;‘t)i':fi“ency 0.15 0.07 0.09 0.09 0.14 012 -0.03 0.07

Note: Only judgments with CR < 0.1 were used to calculate mean weight.
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Table 4.4 Class weights from pair-wise comparison matrix based on expert opinions.

Class weights (of each factor) from individual expert’s judgment M'_eat?t
Factors \Evé:g <
1 2 3 4 5 6 7 8 0.1)

Elevation (m)
(1) <200 0.0408 0.0260 0.0499 0.0469 0.0372 0.0434 0.0580 0.0268 0.0387
(2) 200 - 400 0.0633 0.0471 0.1656 0.0677 0.0478 0.0655 0.0872 0.0498 0.0724
(3) 400 - 600 0.1344 0.0886 0.1937 0.1132 0.0971 0.1024 0.1226 0.0864 0.1165
(4) 600 - 800 0.4186 0.1660 0.3159 0.1132 0.1684 0.1604 0.1677 0.1824 0.2179
(5) 800 - 1,000 0.1965 0.3362 0.1523 0.2140 0.2532 0.2488 0.2302 0.2077 0.2298
(6) > 1,000 0.1464 03362 0.1225 0.4449 03962 0.3794 0.3344 0.4469 0.3246
Consistency ratio 0.08 0.05 0.03 0.10 0.03 0.02 0.11 0.05
Slope gradient
(1) 0°—10° 0.0484 0.0269 0.0464 0.0458 0.0361 0.0309 0.0379 0.0301 0.0378
(2) 10° - 20° 0.0731 0.0488 0.1658 0.0712 0.0549 0.0428 0.0591 0.0567 0.0733
(3) 20° - 30° 0.1868 0.1137 0.3998 0.1018 0.0767 0.0720 0.1001 0.0707  0.1459
(4) 30° - 40° 0.3730 0.1875 0.2452 0.1636 0.1397 0.1564 0.1562 0.1323 0.1997
(5) 40° - 50° 0.1494 0.3116 0.0956 0.1636 0.2543 0.2759 0.2464 0.2503 0.2144
(6) > 50° 0.1693 0.3116 0.0472 0.4541 0.4384 0.4219 0.4003 0.4599 0.3289
Consistency ratio 0.06 0.02 0.04 0.10 0.06 0.07 0.13 0.05
Slope aspect
(1) Flat 0.0372 0.0208 0.0271 0.0358 0.0230 0.0252 0.0340 0.0141 0.0298
(2) North 0.0432 0.0345 0.0362 0.0358 0.0317 0.0252 0.0404 0.1801 0.0386
(3) Northeast 0.2485 0.0695 0.1945 0.0674 0.0718 0.0566 0.0471 0.2047 0.1399
(4) East 0.1879 0.0336 0.0530 0.1678 0.0742 0.2243 0.0471 0.0996 0.0804
(5) Southeast 0.0849 0.0336 0.1945 0.0843 0.2001 0.1948 0.0814 0.0396 0.0986
(6) South 0.0503 0.2054 0.0530 0.1662 0.2998 0.0793 0.1263 0.1369 0.1087
(7) Southwest 0.1696 0.3730 0.1945 0.0843 0.1486 0.0564 0.2533 0.2293 0.2476
(8) West 0.1181 0.1960 0.0530 0.2523 0.0832 0.2762 0.2533 0.0727 0.1551
(9) Northwest 0.0603 0.0336 0.1945 0.1061 0.0676 0.0621 0.1172 0.0231 0.1014
Consistency ratio 0.07 0.04 0.04 0.20 0.18 0.21 0.05 0.22
Slope curvature
(1) Concave (-) 0.5247 0.1749 0.2521 0.1285 0.1062 0.2605 0.4286 0.2605 0.2691
(2) Flat (0) 0.1416 0.0472 0.0726 0.2766 0.2605 0.1062 0.1429 0.1062 0.1544
(3) Convex (+) 0.3338 0.1113 0.6752 0.5949 0.6333 0.6333 0.4286 0.6333 0.4812
Consistency ratio: 0.05 0.10 0.11 0.00 0.03 0.03 0.00 0.03
Topographic wetness
index
(1)<25 0.3915 0.0248 ~ 0.0563 0.0469  0.0408 0.3451 0.0379 0.0249 0.0387
(2)25-5.0 0.0638 0.0435 0.4276 0.0677 0.0530 0.2093 0.0591 0.0439 0.1271
(3)5.0-75 0.0739 0.0789 0.3305 0.1132 0.0920 0.1474 0.1001 0.0956 0.1420
(4)7.5-10.0 0.1031 0.1385 0.0933 0.1132 0.1522 0.1132 0.1562 0.1574 0.1309
(5)10.0-125 0.1502 0.2330 0.0487 02140 0.2475 0.1044 0.2464 03904  0.2267
(6)>125 0.2176 04814 0.0436 0.4449 04144 0.0805 0.4003 0.2879  0.3344
Consistency ratio 0.14 0.10 0.05 0.10 0.07 0.15 0.13 0.10
Drainage
Distance from drainage (m)
(1) < 100 0.3425 0.4625 0.4996 - 0.3598 0.4467 0.0249 0.3763 0.3408
(2) 100 - 200 0.2067 0.2550 0.2944 - 0.2154 0.1893 0.0439 0.2959 0.2223
(3) 200 - 300 0.1448 0.1403 0.0872 - 0.1514 0.1408 0.0956 0.1542 0.1193
(4) 300 - 400 0.1260 0.0736  0.0409 - 0.1013 0.1033 0.574 0.1011  0.0932
(5) 400 — 500 0.1003 0.0343 0.0389 - 0.0911 0.0728 0.3904 0.0455 0.1273
(6) > 500 0.0798 0.0343 0.0389 - 0.0810 0.0471 0.2879 0.0270 0.0970
Consistency ratio: 0.17 0.05 0.06 - 0.2 0.12 0.10 0.08

Note: Only judgments with CR < 0.1 were used to calculate mean weight.
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Mean
Factors 1 2 3 4 5 6 7 8 ‘E"é'FgT
0.1)

Lithology
(1) Thung Yai 0.1660 0.0672 0.0977 0.1075 0.2016 0.1030 - 0.1980  0.1362
(2) Ratburi 0.0328 0.0626 0.0217 0.0742 0.0685 0.0525 - 0.0540  0.0602
(3) Quaternary sediments 0.0578 0.0626 0.0219 0.0433 0.0319 0.0348 - 0.1170  0.0650
(4) Kaeng Krachan 0.1185 0.1195 0.2323 0.1228 0.0905 0.1773 - 0.0785 0.1262
(5) Igneous rocks 0.3778 0.4019 04135 0.2267 0.3622 0.3383 - 0.3614 0.3088
(6) Krabi 0.1309 0.2241 0.0828 0.2128 0.0959 0.1919 - 0.0217 0.1421
(7) Saibon Formation 0.1162 0.0620 0.1300 0.2128 0.1494 0.1023 - 0.1694 0.1615
Consistency ratio 0.20 0.28 0.17 0.02 0.12 0.02 - 0.08
Lineament
Distance from lineament
(m)
(1) <500 0.3231 0.3176 0.5302 0.1692 0.2952 0.3817 0.4007 0.3515 0.3455
(2) 500 - 1,000 0.2482 0.3176 0.1864 0.2429 0.1897 0.2486 0.1772 0.2367 0.2467
(3) 1,000 - 1,500 0.1644 0.1675 0.1100 0.2376 0.1391 0.1349 0.1371 0.1630 0.1629
(4) 1,500 — 2,000 0.1152 0.0944 0.0450 0.1776 0.1232 0.0860 0.1059 0.0933  0.1019
(5) 2,000 - 2,500 0.0614 0.0515 0.0433 0.0576 0.1012 0.0792 0.0804 0.0893  0.0637
(6) 2,500 — 3,000 0.0495 0.0257 0.0475 0.0576 0.0844 0.0441 0.0587 0.0456  0.0450
(7) > 3,000 0.0382 0.0257 0.0376 0.0576 0.0672 0.0256 0.0399 0.0206  0.0342
Consistency ratio 0.07 0.04 006  -0.02 0.14 0.02 0.12 0.07
Soil Texture
(1) Clay 0.0224 0.0155 0.0314 0.0783 0.2734 0.1318 0.0218 0.0174  0.0494
(2) Silty clay 0.0722 0.0155 0.2020 0.0939 0.3119 0.0701 0.0332 0.0311 0.0743
(3) Loamy sand 0.1155 0.1817 0.0372 0.0511 2.8293 0.0585 0.1367 0.0873 0.0921
(4) Sandy loam 0.1341 0.1817 0.0387 0.0567 2.1233 0.0561 0.1103 0.1438 0.0979
(5) Silty clay loam 0.0514 00532 0.1683 00991 1.7464 0.1038 0.0491 00532  0.0878
(6) Sand 0.2871 0.1817 0.0317 0.0318 1.0172 0.0262 0.2161 0.2175 0.1175
(7) Sandy clay loam 0.1125 0.0946 0.1620 0.0991 0.8624 0.0488 0.0888 0.0356 0.0882
(8) Clay loam 0.0400 0.0155 0.0344 0.1512 0.5413 0.1252 0.0483 0.0995 0.0790
(9) Silty loam 0.0779 0.0256 0.0405 0.1512 0.4499 0.0772 0.0562 0.1624  0.0855
(10) Loam 0.0550 0.0532 0.0403 0.1512 0.4898 0.0731 0.0562 0.0831 0.0762
(11) Slope complex area 0.0317 0.1817 0.2135 0.0365 3.3229 0.2292 0.1833 0.0692 0.1522
Consistency ratio 0.11 0.03 0.04 -0.28 0.14 0.08 008 -0.29
LULC
(1) Dense evergreen forest 0.1106 0.0299 0.3512 0.0661 0.5158 0.0494 0.0912 0.0334 0.1439
(2) Disturbed evergreen
forest 0.2052 0.0855 0.1613 0.2303 0.0858 0.0806 0.1280 0.0679 0.0896
(3) Oil palm 0.2339 0.3600 0.0542 0.2910 0.2133 0.4561 0.3548 0.1748 0.3118
(4) Para rubber 0.4002 0.3600 0.1939 0.2773 0.1422 0.2616 0.3548 0.2508 0.2739
(5) Miscellaneous 0.0501 0.1646 0.2394 0.1352 0.0428 0.1523 0.0713 0.4731 0.1808
Consistency ratio 0.11 0.05 0.14 0.19 0.09 0.04 0.08 0.04
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Table 4.5 Factor and class (attribute) weights of all input factors from the AHP method.

Factor Class I\_Igt :
Thematic layers Attributes weight weights contr_l ;]Jtlng
(FW) (CW) weights
(FW-CW)

Elevation <200m 0.0387 0.0021
200 m —400 m 0.0724 0.0040

400 m—-600 m 0.0550 0.1165 0.0064

600 m — 800 m ’ 0.2179 0.0120

800 m— 1,000 m 0.2298 0.0126

> 1,000 m 0.3246 0.0179

Slope gradient 0°—10° 0.0378 0.0066
100 —20° 0.0733 0.0127

200 —30° 0.1459 0.0253

30° — 40° 0.1734 0.1997 0.0346

40° - 50° 0.2144 0.0372

> 50° 0.3289 0.0570

Slope aspect Flat 0.0298 0.0015
North 0.0386 0.0020

Northeast 0.1399 0.0072

East 0.0804 0.0042

Southeast 0.0517 0.0986 0.0051

South 0.1087 0.0056

Southwest 0.2746 0.0142

West 0.1551 0.0080

Northwest 0.1014 0.0052

Slope curvature Concave (-) 0.2691 0.0203
Flat (0) 0.0753 0.1544 0.0116

Convex (+) 0.4812 0.0362

Topographic 0-25 0.0387 0.0031
wetness index 25-5.0 0.1271 0.0101
(TWI) 50-75 0.1420 0.0113
75-100 0.038 0.1309 0.0104

10.0-125 0.2267 0.0180

>125 0.3344 0.0266

Drainage <50m 0.3408 0.0186
(Distance from 50m-100m 0.2223 0.0121
drainage) 100 m-150 m 0.0545 0.1193 0.0065
150 m-200m ' 0.0932 0.0051

200 m—250 m 0.1273 0.0069

>250m 0.0970 0.0053

Lithology Thung Yai 0.1362 0.0239
Ratburi 0.0602 0.0106

Quaternary sediments 0.0650 0.0114

Kaeng Krachan 0.1756 0.1262 0.0222

Igneous rocks 0.3088 0.0542

Krabi 0.1421 0.0250

Saibon Formation 0.1615 0.0284
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Factor Class I\_Igt :
Thematic layers Attributes weight weights contr_l #tmg
(FW) (CW) weights
(FW-CW)

Lineament <500 m 0.3455 0.0362
(Distance from 500 m-1,000 m 0.2467 0.0258
lineament) 1,000 m—-1,500 m 0.1629 0.0171
1,500 m—2,000 m 0.1047 0.1019 0.0107

2,000 m—2,500 m 0.0637 0.0067

2,500 m— 3,000 m 0.0450 0.0047

> 3,000 m 0.0342 0.0036

Soil Texture Clay 0.0493 0.0058
Silty clay 0.0743 0.0088

Loamy sand 0.0721 0.0085

Sandy loam 0.0979 0.0116

Silty clay loam 0.0878 0.0104

Sand 0.1184 0.1175 0.0139

Sandy clay loam 0.0882 0.0104

Clay loam 0.0790 0.0094

Silty loam 0.0855 0.0101

Loam 0.0762 0.0090

Slope complex area 0.1522 0.0180

LULC Dense evergreen forest 0.1439 0.0161
Disturbed evergreen forest 0.0896 0.0100

Oil palm 0.1121 0.3118 0.0350

Para rubber 0.2739 0.0307

Miscellaneous 0.1808 0.0203

Table 4.6 Landslide susceptibility classification of land based on the AHP method.

Landslidg;sssé:septibility LSS values NSS values Area
% km?
Very low susceptibility (VLS) 0.08 -0.12 0.00-0.20 7.37 72.75
Low susceptibility (LS) 0.12-0.15 0.20-0.40 48.48 478.73
Moderate susceptibility (MS) 0.15-0.18 0.40 - 0.60 35.37 349.29
High susceptibility (HS) 0.18-0.22 0.60-0.80 8.03 79.30
Very high susceptibility (VHS) 0.22-0.26 0.80-1.00 0.76 7.46
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Figure 4.2 Classified landslide susceptibility map yielded from the AHP method.
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4.1.3 Application of the frequency ratio (FR) method

As mentioned in Chapter I, the frequency ratio (FR) method has become
one of the well-known quantitative approaches for building landslide susceptibility
maps worldwide due mainly to its simple concept and straightforward determination of
the susceptibility index through most GIS software. In this work, the appropriate FR
values for a set of associated attributes of each individual input factor were determined
based on Eqg. (2.14) and obtained results are displayed in Table 4.7. Initial analysis of
these results indicated that order of the priority at attribute level of many factors found
in the FR method were rather dissimilar from that encountered in the WLC and AHP
methods due significantly to the difference in fundamental concepts of weight
assessment (expert judgment-based and evidence-based). For examples, for slope
gradient, the two outstanding peak values were evidenced at 20°-40° instead of at
steeper slopes previously suggested in the WLC and AHP methods. Or, for the TWI,
the two most favorites were remarked at the ranges of 2.5-5.0 (FR = 3.7451) and 5.0-
7.5 (FR = 2.0786), while at the higher ranges of TWI, the discovered FR values were
appeared to drop dramatically (to be much less than 1.0). And for the LULC, only one
feature was found to be notably far superior than the others in this group as main
landslide contributor in the area which was dense evergreen forest (FR = 3.9817) while
para rubber and palm oil had much lower scores with FR of 0.1337 and 0.0368,
respectively. Though this finding might seem to contradict the conventional believe
held by most corresponding experts as reported in the WLC and AHP methods,
however, this result should not be interpreted literally to diminish potential contribution

of these tree plantations on landslide proneness over the area as in this case the planting
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places should also be taken into serious consideration (e.g. not on physically vulnerable
areas per se like on the highly-sloped or high elevation area).

Apart from the aforementioned results, many accomplished findings did
support usual believes about the should-be landslide susceptible locations in the
evaluated area (as indicated by the associated FR values), such as ones with the
westward slope-facing, convex-type slope curvature, and igneous rock basis, also those

situate at high altitude, close to the lineament, and in the classified slope complex area.

Table 4.7 Frequency ratio (FR) and associated membership value (MV) in fuzzy logic.

Total number Landslide

Factors Class of pixels occurrence point Frer%l:ieoncy Mer\T/]atL)IEI;zShlp
Number %  Number % (FR) (FR-Fuzzy)

Elevation <200 m 917737  83.6393 53 10.8163 0.1293 0.1000
200 m—-400 m 120959  11.0238 184  37.5510 3.4064 0.2921

400 m—600 m 37254 3.3952 140 28.5714 8.4152 0.5857

600 m— 800 m 13156 1.1990 69 14.0816 11.7446 0.7808

800 m— 1,000 m 4876 0.4444 30 6.1224 13.7775 0.9000

> 1,000 m 3274 0.2984 14 2.8571 9.5755 0.6537

Slope gradient  0°—10° 805224  73.3852 13 2.6531 0.0362 0.1000
10°-20° 134847  12.2895 102  20.8163 1.6938 0.3174

20°—30° 102194 9.3136 280 57.1429 6.1354 0.9000

30°-4Q° 40200  3.6637 90 18.3673 5.0134 0.7528

40° - 50° 12052 1.0984 4 0.8163 0.7432 0.1927

> 50° 2739 0.2496 1 0.2041 0.8176 0.2025

Slope aspect Flat 400217  36.4744 0 0.0000 0.0000 0.1000
North 65656 5.9837 63 12.8571 2.1487 0.7894

Northeast 87428 7.9679 77 15.7143 1.9722 0.7328

East 102403 9.3326 59  12.0408 1.2902 0.5140

Southeast 104624  9.5351 17 3.4694 0.3639 0.2167

South 73159  6.6675 23 4.6939 0.7040 0.3259

Southwest 87225 7.9494 60 12.2449 1.5404 0.5942

West 96611 8.8048 102 20.8163 2.3642 0.8586

Northwest 79933  7.2848 89 18.1633 2.4933 0.9000

Slope Concave (-) 718416  65.4747 181 36.9388 0.5642 0.3471
curvature Flat (0) 0 0.0000 0 0.0000 0.0000 0.1000
Convex (+) 378840 34.5261 309 63.0612 1.8265 0.9000

Topographic 0-25 7 0.0006 0  0.0000 0.0000 0.1000
wetness index  2.5-5.0 95668 8.7188 160 32.6531 3.7451 0.9000
(TWI) 5.0-75 321031  29.2576 298 60.8163 2.0786 0.5440
7.5-10.0 204803 18.6650 25 5.1020 0.2733 0.1584

10.0-12.5 163220 14.8753 6 1.2245 0.0823 0.1176

>125 312527  28.4826 1 0.2041 0.0072 0.1015

Drainage <50m 422547  38.5094 176  35.9184 0.9327 0.5422
(Distance 50 m-100 m 343715  31.3250 152  31.0204 0.9903 0.5695
from 100 m—-150 m 226373  20.6308 87 17.7551 0.8606 0.5080
drainage) 150 m—-200 m 76969 7.0147 58 11.8367 1.6874 0.9000
200 m—-250 m 24358 2.2199 17 3.4694 1.5629 0.8409

> 250 m 3294 0.3002 0 0.0000 0.0000 0.1000
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Table 4.7 (Continued).

Total number Landslide Frequ_ency Membership
Factors Class - occurrence ratio
of pixels int (FR) value
poin (FR-Fuzzy)
Number % Number %
Lithology = Thung Yai 152216 13.8724 80 13.3265 1.1769 0.2470
Ratburi 78075 7.1155 9 1.8367 0.2581 0.1322
Quaternary sediments 580894 52.9406 0  0.0000 0.0000 0.1000
Kaeng Krachan

Igneous rocks 187458 17.0843 218 44.4898 2.6041 0.4252
Krabi 63974  5.8304 183  37.3469 6.4056 0.9000
Saibon Formation 2357  0.2148 0  0.0000 0.0000 0.1000
32282 29421 0  0.0000 0.0000 0.1000
Lineament <500 m 273776  24.9510 242 49.3878 1.9794 0.9000
(Distance 500 m — 1,000 m 206874 18.8538 125 255102 1.3531 0.6238
from 1,000 m — 1,500 m 126251 11.5061 38  7.7551 0.6740 0.3243
lineament) 1,500 m—2,000 m 92556  8.4352 35  7.1429 0.8468 0.4005
2,000 m-2,500 m 75015  6.8366 19  3.8776 0.5672 0.2772
2,500 m — 3,000 m 51878  4.7280 11 2.2449 0.4748 0.2365
> 3,000 m 270906 24.6894 20  4.0816 0.1653 0.1000
Soil Clay 230324  20.9909 0  0.0000 0.0000 0.1000
texture Silty clay 71179  6.4870 0  0.0000 0.0000 0.1000
Loamy sand 30163  2.7489 0  0.0000 0.0000 0.1000
Sandy loam 214890 19.5843 0  0.0000 0.0000 0.1000
Silty clay loam 44711  4.0748 0  0.0000 0.0000 0.1000
Sand 19916  1.8151 0  0.0000 0.0000 0.1000
Sandy clay loam 126165 11.4982 9  1.8367 0.1597 0.1366
Clay loam 25846  2.3555 0  0.0000 0.0000 0.1000
Silty loam 17556  1.6000 0  0.0000 0.0000 0.1000
Loam 8090  0.7373 0  0.0000 0.0000 0.1000
Slope complex area 308416 28.1079 481 98.1633 3.4924 0.9000
LULC Dense evergreen 261515 23.8335 465  94.8980 3.9817 0.9000
forest 0.0000 0.1000
Disturbed evergreen 712 0.0649 0  0.0000 0.0368 0.1074
forest 486744 44.3601 8 1.6327 0.1337 0.1269
Oil palm 284651 25.9421 17 3.4694 0.0000 0.1000

Para rubber 63634 5.79994 0 ~ 0.0000

Miscellaneous

Note: Total number of pixels in study area: 1,097,256. Number of landslide occurrence points: 490.

FR = % Landslide occurrence points / % Number of pixels

Table 4.8 Landslide susceptibility classification of land based on the FR method.

- - Area
Landslld;;gssgseptlblllty LSS values NSS values
% km?
Very low susceptibility (VLS) 0.90-9.77  0.00-0.20 67.31 664.69
Low susceptibility (LS) 9.77-18.63 0.20-0.40 13.09 129.25
Moderate susceptibility (MS) 18.63-27.50 0.40-0.60 12.70 125.40
High susceptibility (HS) 27.50-36.36  0.60-0.80 5.39 53.23

Very high susceptibility (VHS) 36.36 —45.23  0.80-1.00 1.51 14.95
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Figure 4.3 Classified landslide susceptibility map yielded from the FR method.
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The FR-based landslide susceptibility map is displayed in Figure 4.3
along with its data on covering area of each susceptibility degree in Table 4.8. Though
the overall outlook of the derived map seemed resemble to those of the WLC and AHP
methods, especially on areas with high and very high probability to having landslide
formation (6.90% in total, mostly in mountainous regions). However, in this case, areas
belonged to the very low susceptibility category were notably large compared to the
other existing classes (67.31%) that led to a stark contrast in the predominant tones of
the susceptible classes on the presented map (high/very high against low/very low
portions).

4.1.4 Application of the integrated FR and fuzzy logic (FR-Fuzzy method)

As described in Chapter Il, fuzzy logic has been applied in some
previous works to improve capability of the FR model in the formulation of landslide
susceptibility map for an interested area (e.g. Lee, 2007; Regmi et al., 2010; Aksoy and
Ercanoglu, 2012). In this study, its benefit in this regard was also examined by
integrating its membership value (MV) concept to the FR model as detailed in Chapter
I1l. First, the proper MV data for all affiliated attributes of each input factor were
assessed from the original FR values using Eq. (3.2) whereupon the final MV scores
shall be in the range of 0.1-0.9 as outlined in Bui et al. (2012) from which gained results
are presented in Table 4.7,

To build a susceptibility map, the candidate MV data from all factors were then
integrated to yield a landslide susceptibility score (LSS) for each unit area (pixel basis)
on the map through five fuzzy operators: OR, AND, algebraic sum, algebraic product,

and fuzzy-gamma for A values between 0.0-1.0 (see mathematical details in Chapter II).
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The yielded susceptibility maps for each examined case of an operator mentioned above
are shown in Figure 4.4 along with the achieved accuracy detailed in Table 4.9.

As seen in Table 4.9, the gamma operator (A = 0.9) was found most effective in
the preparation of landslide susceptibility map for the study area with average accuracy
of 92.77%, hence, it was chosen to be a candidate operator for the FR-Fuzzy approach.
This finding was similar to what reported earlier in several papers that the most efficient
fuzzy operators for this task is gamma operator with notably high A values (close to 1),
e.g. Lee (2007); Regmi et al. (2010); Ercanoglu and Temiz (2011), and Pradhan (2011).
The optimal susceptibility map yielded in this case is presented in Figure 4.4(n) along
with its relevant details of classified land proportion shown in Table 4.10. Note that,
general map outlook in this case quite resembles that of the FR method (in Figure 4.3)

as well as reported proportion of area for each classified susceptibility class (Table 4.8).

Table 4.9 Achieved map accuracies of the considered fuzzy operators (FR-Fuzzy).

Fuzzy operation Success accuracy Prediction accuracy ROC  Average
(%) (%) (%) (%)
AND 53.88 45.40 61.30 53.53
OR 99.50 99.50 66.10 88.37
Algebraic sum 98.35 98.26 62.50 86.37
Algebraic product 88.11 82.79 55.80 75.57
Gamma (L) = 0.00 89.45 82.66 55.80 75.97
Gamma (L) =0.10 90.15 85.05 56.80 77.33
Gamma (}) = 0.20 91.08 87.28 58.30 78.89
Gamma (}) = 0.30 92.01 89.79 60.30 80.70
Gamma (}) = 0.40 92.40 90.07 62.30 81.59
Gamma (}) = 0.50 91.66 89.07 67.60 82.78
Gamma (}) = 0.60 91.64 89.07 74.40 85.04
Gamma (1) =0.70 91.64 88.08 83.60 87.77
Gamma (L) = 0.80 92.63 91.07 92.00 91.90
Gamma (1) = 0.90 92.64 91.08 94.60 92.77
Gamma (1) =0.99 92.62 91.07 90.60 91.43

Gamma (1) = 1.00 95.72 97.27 62.50 85.16
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Figure 4.4 Classified landslide susceptibility maps yielded from the FR-Fuzzy method.

(c) FR-Fuzzy (algebraic sum)

(d) FR-Fuzzy (algebraic product)
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Table 4.10 Landslide susceptibility classification of land (FR-Fuzzy method: A = 0.90).

. - Area
Landsl|d§|;:ssgsept|blllty LSS values NSS values
% km?
Very low susceptibility (VLS) 0.07-0.23 0.00-0.20 59.13 583.97
Low susceptibility (LS) 0.23-0.40 0.20-0.40 20.62 203.65
Moderate susceptibility (MS) 0.40-0.56 0.40-0.60 12.36 122.02
High susceptibility (HS) 0.56 - 0.73 0.60-0.80 6.84 67.52
Very high susceptibility (VHS) 0.73-0.90 0.80 - 1.00 1.05 10.38

Table 4.11 Coefficients of each input parameter in the MLR and ANN methods.

Factors Attributes (class) MLR ANN
coefficients Normalized
weight
Elevation 8.8295 0.1856
Slope gradient 8.2866 0.1407
Slope aspect 0.9868 0.0130
Slope curvature -18.4705 0.1710
Topographic wetness index -3.9702 0.0106
Distance from drainage -2.0935 0.0479
Distance from lineament 3.2612 0.0241
Lithology Krabi 0.0379 0.0085
Kaengkrachan 4.9638 0.0409
Thungyai 5.4886 0.0218
Igneous rocks 4.9266 0.0171
Quaternary sediments -10.5122 0.0232
Saibon formation -13.1543 0.0543
Ratburi 1.7239 0.0351
Soil texture Clay -2.4604 0.0221
Silty clay -22.3430 0.0210
Loamy sand 1.2647 0.0097
Sandy loam -1.3786 0.0158
Silty clay loam -49.7757 0.0116
Sand -8.1044 0.0090
Sandy clay loam 14.7247 0.0111
Clay loam -117.5437 0.0083
Silty loam 12.5615 0.0080
Loam -197.1351 0.0080
Slope complex area 14.8102 0.0299
LULC Dense evergreen forest 1.3958 0.0016
Disturbed evergreen forest 0.0000 0.0001
Oil palm 0.5037 0.0123
Para rubber 0.7696 0.0074
Miscellaneous -17.2292 0.0128
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4.1.5 Application of multiple logistic regression (MLR) method
Similar to the FR method, the multiple logistic regression (MLR)
method is also highly popular for landslide susceptibility mapping worldwide due
mainly on its ability to include both numerical and categorical types of contributing
factor into its analysis fairly conveniently. The first task on this issue was to establish
the appropriate log-odds or login function L in a linear regression form as detailed in
Eq. (2.17) to further quantify the needed pixel-based landslide occurrence probability
p for the area through Eq. (2.18).
These referred probability values (of 0-1) were then used as representative of landslide
susceptibility score (LSS) for making susceptibility map of the area afterwards.
Regarding to this stated process, the proper relationship of logit function
L with the preferred causative factors (30 layers in total as listed in Table 4.11) was

given as:

L= [-10.8212 + (8.8295-¢levation) + (8.2866-slope gradient) + (0.9868-slope aspect)
- (18.4705-slope curvature) - (3.9702-TWI) - (2.0935-distance from drainage)
+ (3.2612-distance from lineament)] + [(24.8784-krabi) + (4.9638-kaengkrachan)
+ (5.4886-thungyai) + (4.9266-igneous rocks) - (10.5122-quaternary sediments)
- (13.1543-saibon formation) + (1.7239-ratburi)\ + (12.5615-silty loam)
- (49.7757-silty clay loam) - (22.3430-silty clay) - (1.3786-sandy loam)
+ (14.7247-sandy clay loam) - (8.1044-sand) + (14.8102-slope complex area)
+ (1.2647-loamy sand) + (33.3336-sandy clay) - (197.1351-loam)
- (117.5437-clay loam) - (2.4604-clay) + (0.5037-0il palm) + (0.7696-para rubber)

- (17.2292-miscellaneous) + (1.3958-dense evergreen forest)]. (4.1
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Herein the first bracket contains all numerical-type data (7 layers) and
the second one gathers all relevant categorical data (22 layers). In principle, positive
coefficients tend to support more landslide activity (higher probability of occurrence)

while the negative ones signify the opposite outcome (Ayalew and Yamagishi, 2005).

Table 4.12 Landslide susceptibility classification of land based on the MLR method.

. - Area
Landslide susceptibility classes LSS values NSS values % Km?
Very low susceptibility (VLS) 0.00-0.20 0.00-0.20 76.30 753.51
Low susceptibility (LS) 0.20-0.40 0.20-0.40 3.76 37.12
Moderate susceptibility (MS) 0.40 - 0.60 0.40-0.60 3.35 33.07
High susceptibility (HS) 0.60 - 0.80 0.60-0.80 4.34 42.84
Very high susceptibility (VHS) 0.80-1.00 0.80-1.00 12.25 121.00

According to the coefficient data listed in Table 4.11, strong positive
influences of several well-known predisposing factors and attributes stated earlier, e.g.
elevation, slope gradient, distance from lineament, igneous rock, slope complex
property, were still noticeably acknowledged in the derived logit function L (Eq. (4.1))
while the marked negative influencing factors or attributes were slope curvature, TWI,
clay or clay-loam types of soil texture, distance from drainage, quaternary sediments or
saibon formation of bedrock. Note that, in LULC group, relatively weak positive
influence was evidenced for dense evergreen forest, oil palm and para-rubber
plantations. Also, several extreme values might be difficult to explain true meaning

(e.g. Krabi formation or clay loam).
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Figure 4.5 and Table 4.12 shows results of the obtained landslide
susceptibility maps from the MLR method described earlier. In general, though
conclusive outlook of the established map was somewhat similar to those of the FR and
F-Fuzzy methods reported earlier, however, the most distinguish appearance on the
MLR-based map was the expansive coverage of land with very high susceptibility
status (12.25%) compared with only 1.0-1.5% in cases of FR and FR-Fuzzy methods.
This finding implies more work must be utilized to identify the actual should-be
concerned areas (e.g. village or important facilities/services) from landslide hazard if
this map is to be implemented.

4.1.6 Application of the artificial neural network (ANN) method

The artificial neural network (ANN) method has advantage in its distinct
ability to identify existing nonlinear relationship of past landslide data and a set of the
chosen causative factors automatically which is still lack in the conventional methods
like FR or logistic regression (as addressed in Chapter I1). In this work, ANN model
was applied to find appropriate weights of the input data (30 layers in total as listed in
Table 4.11) and then proceed to build the preferred susceptibility map of the entire
study area from knowledge of these output weights based on the linear combination
stated in Eq. (3.3). Here, a three-layer system consisting of input layer (30 neurons),
one hidden layer (17 neurons) and one output layer was used as a network structure of
30-16-1 in which 980 training samples (490 landslide locations and 490 landslide-free
locations) were used as reference dataset in the weight adjustment process.

Tables 4.13 summarizes the input-hidden-output weights at each gradual

stage of the experimented working process. These are (1) Input-Hidden connection
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weights, (2) Hidden-Output connection weights, and (3) Connection weight products
defined as WP = (1) x (2). Absolute value from the combination of these weight
products for each incorporated input layer (called the “absolute weight”: AW) was then
applied as a basis to determine corresponding normalized weights (NW) using the

following procedure:

AW, =|3>"WP| and NW, = L (4.1)

30

i=1

Table 4.13c shows the corresponding NW data for all layers (11-130) of
input data based on its known absolute weight (AW) along with ranking in terms of
weight’s priority.

Regarding to the accomplished NW dataset, elevation and slope
curvature were considered having top priority with given weights of 0.1856 and 0.1710.
For lithology, saibon formation type was most valued with weight of 0.0543 while that
of igneous rocks was just 0.0171 which seems rather contrary to conventional believe
as reflected in the WLC and AHP method (Tables 4.1 and 4.4) and also to what found
in the FR method (Table 4.7). Strong roles of slope gradient and distance from drainage
were also found with relatively high weights of 0.1407 and 0.0479, in their respective
groups.

To produce the preferred landslide susceptibility map, the pixel-based

landslide susceptibility scores (LSS) were determined from this linear function (from

Eq. (3.3)):
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LSS = [(0.1856-elevation) + (0.1407-slope gradient) +
(0.0130-slope aspect) + (0.1710-slope curvature) +
(0.0280-TWI) + (0.0479-distance from drainage) +
(0.0241-distance from lineament)] + [(0.0085-krabi) +
(0.0409-kaengkrachan) + (0.0218-thungyai) +
(0.0171-igneous rocks) + (0.0232-quaternary sediments) +
(0.0543-saibon formation) + (0.0351-ratburi) + (0.0080-silty loam) +
(0.0116-silty clay loam) + (0.0210-silty clay) + (0.0158-sandy loam) +
(0.0111-sandy clay loam) + (0.0090-sand) + (0.0299-slope complex) +
(0.0097-loamy sand) + (0.0080-loam) + (0.0083-clay loam ) +
(0.0221-clay) + (0.0123-0il palm) + (0.0074-para rubber) +

(0.0001-disturb evergreen forest), (4.2)

where the first bracket contains all numerical-type data (7 layers) and the second one
gathers all relevant categorical data (23 layers). The obtained LSS data for the whole
area were then transformed to be equivalent NSS data for the productions of landslide
susceptibility map as depicted in Figure 4.6 whereas amount of classified land for each

defined susceptibility class of land is illustrated in Table 4.14.



Table 4.13a Input-hidden-output connection weights (ANN method).

[1] Input (1)-Hidden (H) connection weights

Factor H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16
11 0.0323 -1.8739 4.3677 0.0803 0.5449 2.2436  -3.8683 5.8515 5.2228 0.0346 0.0564 -3.8490 9.0584  -5.0653 -1.6500 -0.6350
12 0.1190 15979  -3.7399 0.1146  -1.1949  -3.2912 2.9885 -2.0954 1.6510 5.4760 0.3090 10.9592 -8.9873 2.2625 2.3403  2.9341
13 0.0329 73274  -4.0271 0.0517 24779  -0.2931 3.7725 2.9316 -2.2348 4.6067 1.6977 -7.5454  -11.0484  13.7005 3.5283  0.1055
14 -0.1694 45383  -2.6979 0.0178 2.4729 9.1058  -5.7405 -8.5303 5.2137 8.0244  -2.0186 -2.9513 -1.6892 8.2052  -5.0892 -1.5668
15 0.0134 1.7370 2.2134 0.0369 -1.0067  -0.1153 2.8838 1.4845 -1.2230 -2.7571  -3.1611 -2.0702 1.0825  -0.9476 3.2278  -2.5587
16 0.4125 -7.1486 0.7399 0.1368 -2.3372  -9.0484 0.6383 4.1667 -10.5820  -5.9454 6.1185 2.0298 -8.8467  -3.8444 05291  4.8745
17 0.0443 -5.5308  -6.4394 0.0346 0.6776  11.8575 -9.5417 -3.0525 8.8666  -3.5933 3.7371 -2.6576 -1.2823 22225 -9.9219  0.8453
18 0.1148 -0.1316 0.1083 0.1910 -0.0304  -0.8248 0.4354 0.2948 -0.8113  -0.4549 0.4182 0.5436 -0.0617 0.1434 0.3745  0.0692
19 0.1628 -0.3713 0.2809 0.1413 -0.1667  -1.1522 0.6469 0.4020 -1.0336  -0.8081 0.4194 0.9943 -0.4232  -0.2607 0.5465  0.2470
110 0.0884 0.3050  -0.2246 0.0832 0.2128 1.0948 2.2049 -1.2782 0.3109 1.9796 0.0097 2.3369 1.7409 2.5653 1.7511  -0.1015
111 0.0823 -0.0538  -0.0167 0.1088 0.0668  -0.6672 0.2980 0.1310 -0.6956  -0.3934 0.3098 0.4052 0.0928 0.2146 0.3131 -0.0772
112 0.1533 -0.5190 3.6152 0.1142  -0.2678  -2.6315 -2.0981 0.9228 -2.8742 0.4749  -0.2105 -0.4311 -4.1418  -0.6283  -1.4306  1.5082
113 -0.1003 -0.1097  -0.5300  -0.0415 -0.3037  -1.0621 -2.6410 0.3612 -1.4284  -2.8126  -0.3452 -1.5660 -0.3399  -1.2546  -1.2106 -0.3453
114 0.1426 -0.6482 1.5157 0.1659 -0.4066  -1.6578 2.3278 2.1137 -1.8093  -1.2049 0.7923 1.4235 -0.9923  -1.5223 1.1790  0.6079
115 0.0195 -0.0011  -0.0373 0.0464 0.0397 0.0168  -0.0411 0.0318 0.0088  -0.0405 0.0298 0.0469 0.0205 0.0342 0.0480  0.0062
116 0.1066 -0.3136 0.3622 0.0918 -0.1591  -1.0821 0.8319 0.5212 -1.1265  -0.6529 0.4744 0.8944 -0.3397  -0.3050 0.7395  0.1776
117 0.0539 0.3489  -0.7737 0.1217 0.2263 0.5542 0.6096 -0.8654 1.4175 0.2499 0.1038 1.1255 2.7543 1.3560 0.7517  -0.1527
118 0.1304 0.2054 0.0682 0.1166 0.4560 2.9948 0.2886 2.6479 3.4164 0.5870 0.3377 -2.9791 3.7748  -1.7582 0.8769 -1.1594

¢81



Table 4.13a (Continued).

[1] Input (1)- Hidden (H) connection weights (continued)

Factor H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16
119 -0.1748 0.5784 -4.6710 0.0106  0.4893 -0.8946 -0.8143 -4.6197 -1.7236 -0.9263 -0.0197 15609 -0.3715 3.8750 -1.1340 -1.2084
120 0.0548 -0.0941 0.0440 0.1642 0.0479 -0.7425 0.2773 0.2099 -0.6172 -0.3182 0.2989 0.3574 0.0804 0.2010 0.2248 0.0121
121 0.1422 -0.0637 -0.0161 0.1755 0.0554 -0.7017 0.2774 0.1403 -0.6369 -0.3633 0.3101 0.3591 0.0886 0.1992 0.2565 -0.0512
122 0.0821 -0.1917 0.7346  0.1581 0.2300 -0.5519 0.5921  1.0464 05556 0.6299 0.5796 -0.6496 -1.0964 -0.8642 -0.4583 0.3952
123 0.1382 -0.0740 0.0613 0.1253 0.0396 -0.7642 0.3414 0.1764 -0.7096 -0.4123 0.3150 0.3934 0.0873 0.1659 0.3511 -0.0207
124 -0.1136  -0.2895 -1.1802 -0.0670 -0.4444 -0.9031 -0.5416 -1.5058 0.7973 -0.2141 -0.3208 -2.4192 0.7965 1.6299 -1.7170 -0.5085
125 0.0764 -0.0692 -0.0024 0.2023 0.0238 -0.6937 0.3607 0.1624 -0.6912 -0.4042 0.3260 0.3750 0.1117 0.1807 0.3380 -0.0326
126 0.0279  0.8521 0.2918 0.1382 1.1023 2.0916 -0.7379  0.5920 0.2839  1.2287 -0.0109 0.8508 0.6178 -0.1958 0.4057 -0.1570
127 0.0954 -0.1650 0.1665 0.1129 -0.0635 -0.9422 0.5503 0.3852 -0.8914 -0.5078 0.4231 0.6264 -0.1512 0.0463 0.4884 0.0668
128 0.1049 -0.1956 0.3122 0.1071 -0.0651 -1.1132 0.7571 0.5200 -0.9938 -0.5425  0.4901 0.8294 -0.2311 -0.1874 0.7159 0.1610
129 0.1371 -0.1402  0.1248 0.1038 -0.0172 -0.8164 0.4297 0.2021 -0.7188 -0.3985  0.3143 0.5205 0.0481 0.1139 0.3982 -0.0162
130 0.1342 -0.0948 0.0466 0.1766 0.0892 -0.7070 0.2801  0.1331 -0.6185 -0.3423 0.3478 0.3781 0.1086 0.2447 0.2216 -0.0515

[2] Hidden-Output connection weights
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16
output -0.3349 4.3524 -6.6676 -0.1745 1.6852 5.7799 -6.0184 -7.2152 3.0076 4.6310 -3.2303 -4.9782 6.0578 3.4103 -6.1401 -0.9885

€81



Table 4.13b Connection weight products (WP) for each input layer and their associated absolute weight (AW) (ANN method).

[3] Connection weight products (WP): [1]x[2] AW =
Factor H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 ‘ZWP‘

11 -0.0108 -8.1562  -29.1221 -0.0140 0.9183 12.9677 23.2809 -42.2196 15.7082 0.1603 -0.1821 19.1611 548745  -17.2739 10.1309 0.6277 40.8507
12 -0.0399 6.9547 24.9359 -0.0200 -2.0136  -19.0227  -17.9858 15.1190 4.9656 25.3598 -0.9982  -54.5568  -54.4437 7.7156  -14.3696 -2.9003 81.2998
13 -0.0110 31.8919 26.8507 -0.0090 4.1757 -1.6939  -22.7047 -21.1519 -6.7215 21.3336 -5.4842 37.5620  -66.9297 46.7221  -21.6638 -0.1043 22.0623
14 0.0567 19.7525 17.9882 -0.0031 4.1672 52.6303 34.5488 61.5481 15.6808 37.1612 6.5205 14.6921  -10.2327 27.9819 31.2479 1.5487  315.2892
15 -0.0045 7.5601  -14.7580 -0.0064 -1.6965 -0.6662  -17.3558 -10.7108 -3.6783  -12.7685 10.2111 10.3060 6.5574 -3.2314  -19.8192 2.5292 475319
16 -0.1382 -31.1137 -4.9334 -0.0239 -3.9385  -52.2987 -3.8418 -30.0634  -31.8268  -27.5332  -19.7644  -10.1047 -53.5919  -13.1104 -3.2489 -4.8183  290.3501
17 -0.0148 -24.0722 42,9351 -0.0060 1.1419 68.5350 57.4261 22.0244 26.6673  -16.6408  -12.0719 13.2300 -7.7680 7.5793 60.9214 -0.8355  239.0511
18 -0.0384 -0.5729 -0.7224 -0.0333 -0.0513 -4.7673 -2.6201 -2.1272 -2.4399 -2.1065 -1.3508 -2.7061 -0.3736 0.4891 -2.2993 -0.0684 21.7885
19 -0.0545 -1.6159 -1.8729 -0.0247 -0.2808 -6.6593 -3.8935 -2.9003 -3.1087 -3.7423 -1.3548 -4.9500 -2.5640 -0.8890 -3.3553 -0.2442 37.5100
110 -0.0296 1.3276 1.4974 -0.0145 0.3586 6.3278  -13.2701 9.2223 0.9351 9.1677 -0.0312  -11.6333 10.5462 8.7483  -10.7522 0.1003 12.5004
111 -0.0275 -0.2342 0.1116 -0.0190 0.1125 -3.8566 -1.7936 -0.9449 -2.0922 -1.8218 -1.0008 -2.0171 0.5620 0.7319 -1.9224 0.0763 14.1357
112 -0.0513 -2.2590  -24.1048 -0.0199 -0.4513  -15.2097 12.6271 -6.6581 -8.6445 2.1995 0.6799 2.1463  -25.0905 -2.1426 8.7838 -1.4908 59.6860
113 0.0336 -0.4774 3.5338 0.0072 -0.5117 -6.1390 15.8947 -2.6059 -4.2960  -13.0255 1.1152 7.7960 -2.0589 -4.2786 7.4333 0.3413 2.7623
114 -0.0478 -2.8214  -10.1057 -0.0290 -0.6852 -9.5816  -14.0095 -15.2505 -5.4417 -5.5799 -2.5594 -7.0865 -6.0111 -5.1913 -7.2392 -0.6009 92.2408
115 -0.0065 -0.0047 0.2489 -0.0081 0.0669 0.0970 0.2477 -0.2296 0.0264 -0.1878 -0.0964 -0.2333 0.1244 0.1165 -0.2947 -0.0062 0.1394
116 -0.0357 -1.3649 -2.4148 -0.0160 -0.2680 -6.2544 -5.0069 -3.7609 -3.3882 -3.0237 -1.5323 -4.4525 -2.0578 -1.0400 -4.5405 -0.1755 39.3322
117 -0.0180 1.5187 5.1589 -0.0212 0.3814 3.2033 -3.6687 6.2437 4.2632 1.1573 -0.3354 -5.6030 16.6851 4.6244 -4.6158 0.1509 29.1246
118 -0.0437 0.8941 -0.4545 -0.0204 0.7684 17.3094 -1.7368 -19.1051 10.2753 2.7185 -1.0908 14.8302 22.8669 -5.9960 -5.3844 1.1460 36.9773
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Table 4.13b (Continued).

[3] Connection weight products (WP): [1]x[2] AW =

Factor H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 [Zwe
119 0.0586 25175 31.1443 -0.0018  0.8246 -5.1705 4.9010 33.3317 -5.1840 -4.2896 0.0635 -7.7703 -2.2504 13.2147 69626  1.1944 69.5464
120 -0.0184  -0.4097 -0.2932 -0.0287  0.0807 -4.2914 -1.6689 -1.5147 -1.8565 -1.4735 -0.9655 -1.7793 0.4871  0.6853 -1.3806 -0.0120  14.4392
121 -0.0476  -0.2772 01073 -0.0306  0.0933 -4.0557 -1.6693 -1.0126 -1.9156 -1.6825 -1.0016 -1.7878 05364 06792 -1.5747  0.0506 13.5884
122 -0.0275 -0.8345 -4.8982 -0.0276  0.3877 -3.1900 -3.5634  -7.5497  1.6709  2.9173 -1.8723 32336 -6.6415 -2.9472  2.8140 -0.3906  20.9189
123 -0.0463  -0.3222 -0.4085 -0.0219  0.0667 -4.4171 -2.0546 -1.2730 -2.1343 -1.9093 -1.0175 -1.9583 05290 05656 -2.1559  0.0205 16.5371
124 0.0380 -1.2599  7.8689  0.0117 -0.7490 -5.2198 3.2597 10.8648 23981 -0.9916 10361 12.0433 4.8251 55582 10.5424 05027 50.7287
125 -0.0256  -0.3011  0.0163 -0.0353  0.0401 -4.0097 -2.1707 -1.1718 -2.0788 -1.8720 -1.0531 -1.8669 0.6766  0.6161 -2.0753  0.0322 15.2791
126 -0.0094 37088 -1.9458 -0.0241  1.8575 12.0894 4.4412 -42715 08538 5.6901 0.0352 -4.2355 3.7425 -0.6676 -2.4909  0.1552  18.9289
127 -0.0319  -0.7180 -1.1102 -0.0197 -0.1069 -5.4456 -3.3122 -2.7796 -2.6809 -2.3518 -1.3667 -3.1181 -0.9160  0.1580 -2.9987 -0.0660  26.8645
128 -0.0351 -0.8511 -2.0816 -0.0187 -0.1096 -6.4344 -45566 -3.7519 -2.9889 -2.5124 -1.5830 -4.1287 -1.3998 -0.6390 -4.3956  -0.1591  35.6456
129 -0.0459  -0.6101 -0.8324 -0.0181 -0.0289 -4.7184 -2.5863 -1.4581 -2.1620 -1.8456 -1.0152 -25912 0.2911  0.3885 -2.4450  0.0160 19.6614
130 -0.0449  -0.4127 -0.3105 -0.0308  0.1503 -4.0866 -1.6857 -0.9605 -1.8603 -1.5850 -1.1236 -1.8821 0.6578  0.8344 -1.3605  0.0509  13.6500
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Table 4.13c Normalized weight (NW) data for each input attribute layer based on the known absolute weight (AW) (ANN method).

Factor AW NW Rank Factor AW NW Rank Factor AW NW Rank
11 40.8507 0.0241 10 111 14.1357 0.0083 25 121 13.5884 0.0080 26
12 81.2998 0.0479 5 112 59.6860 0.0351 7 122 20.9189 0.0123 19
13 22.0623 0.0130 17 113 2.7623 0.0016 28 123 16.5371 0.0097 22
14 315.2892 0.1856 114 92.2408 0.0543 4 124 50.7287 0.0299 8
15 47.5319 0.0280 115 0.1394 0.0001 29 125 15.2791 0.0090 23
16 290.3501 0.1710 116 39.3322 0.0232 11 126 18.9289 0.0111 21
17 239.0511 0.1407 117 29.1246 0.0171 15 127 26.8645 0.0158 16
18 21.7885 0.0128 18 118 36.9773 0.0218 13 128 35.6456 0.0210 14
19 37.5100 0.0221 12 119 69.5464 0.0409 6 129 19.6614 0.0116 20

110 12.5004 0.0074 27 120 14.4392 0.0085 24 130 13.6500 0.0080 26
Note: 11 =  Distance from lineament 111 =  Clay loam 121 =  Loam
12 =  Distance from drainage 112 = Ratburi 122 =  Oil palm
13 =  Slope aspect 113 =  Dense evergreen forest 123 =  Loamy sand
14 =  Elevation 114 = Saibon formation 124 =  Slope complex area
15 =  Topographic wetness index 115 = Disturb evergreen forest 125 =  Sand
16 =  Slope curvature 116 = Quaternary sediments 126 =  Sandy clay loam
17 =  Slope gradient 117 = Igneous rock 127 =  Sandy loam
18 =  Miscellaneous 118 =  Thungyai 128 =  Siltyclay
19 = Clay 119 = Kaengkragan 129 =  Silty clay loam
110 =  Pararubber 120 = Krabi 130 =  Silty loam

981
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Figure 4.6 Classified landslide susceptibility map yielded from the ANN method.
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Table 4.14 Landslide susceptibility classification of land based on the ANN method.

. A Area
Landslld;;;lss;:septlb|||ty LSS values NSS values
% km?

Very low susceptibility (VLS) 0.11-0.19 0.00-0.20 12.60 124.46
Low susceptibility (LS) 0.19-0.26 0.20-0.40 69.71 688.42
Moderate susceptibility (MS) 0.26 -0.33 0.40-0.60 16.29 160.86
High susceptibility (HS) 0.33-0.41 0.60-0.80 1.32 13.03
Very high susceptibility (VHS) 0.41-0.49 0.80 - 1.00 0.08 0.77

The highly distinguish appearances on this developed map were the
predominant of lands in low susceptibility category (69.71%) and the noticeably small
proportion of area with very high susceptibility condition (0.08%) as well as the very
low one (1.32%). Therefore, unlike the seen MLR-based map (Figure 4.5) which
promoted dominancy of the very low and very high susceptibility portions of the
examined area, the ANN method seemed to be biased towards output map without
notably high or low landslide susceptibility scores.

4.1.7 Application of the integrated ANN and fuzzy logic (ANN-Fuzzy
model)

Integration of fuzzy logic and ANN model to formulate landslide
susceptibility map for an interested area was also reported in some previous works with
encouraging results on the improvement in accuracy of map derived through the ANN
model alone, e.g. in Kanungo et al. (2006) and Gupta, Kanungo, Arora, and Sarkar
(2008). To assess capability of the fuzzy logic on this stated matter, integration of the
achieved FR-Fuzzy MV scores (in Table 4.7) and the ANN-based normalized weights
(in Table 4.11) was implemented to establish a new set of MV data for the ANN-Fuzzy
method as detailed in Table 4.15. These data were then supplied as input to several

types of fuzzy operators as listed in Table 4.16 through which the landslide
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susceptibility maps could be derived as end product (like that of the FR-Fuzzy method
carried out earlier in Section 4.1.4).

All these maps are displayed in Figure 4.7 whereas their average
accuracies are reported in Table 4.16 from which the Gamma operator (with A = 0.90)
was considered the most effective candidate due to its highest average accuracy of
90.03%. Therefore, susceptibility map of this case as seen in Figure 4.7n was used as
representative product from the ANN-Fuzzy method whereas proportion data of the

occupied land by each susceptibility class on this map are provided in Table 4.17.

Table 4.15 Membership values at attribute level in the ANN-Fuzzy method.

Thematic layers Weight Membership value Membership value
(ANN) (FR-Fuzzy) (ANN-Fuzzy)

Elevation 0.1856
(1) <200 m 0.1000 0.0186
(2) 200 m —400 m 0.2921 0.0542
(3) 400 m—600 m 0.5857 0.1087
(4) 600 m—800 m 0.7808 0.1449
(5)800m—1,000m 0.9000 0.1670
(6) > 1,000 m 0.6537 0.1213
Slope gradient 0.1407
(1) 0°—-10° 0.1000 0.0141
(2) 100 - 20° 0.3174 0.0447
(3) 20°—-30° 0.9000 0.1266
(4) 30°—40° 0.7528 0.1059
(5) 40° —50° 0.1927 0.0271
(6) > 50° 0.2025 0.0285
Slope curvature 0.0728
(1) Concave (-) 0.3471 0.0253
(2) Flat (0) 0.1000 0.0073
(3) Convex (+) 0.9000 0.0655
Slope aspect 0.0264
(1) Flat 0.1000 0.0026
(2) North 0.7894 0.0208
(3) Northeast 0.7328 0.0193
(4) East 0.5140 0.0136
(5) Southeast 0.2167 0.0057
(6) South 0.3259 0.0086
(7) Southwest 0.5942 0.0157
(8) West 0.8586 0.0227

(9) Northwest 0.9000 0.0238




Table 4.15 (Continued).
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Thematic layers Weight Membership value Membership value
(ANN) (FR-Fuzzy) (ANN-Fuzzy)

TWI 0.0106
(1)<25 0.1000 0.0011
(2)25-50 0.9000 0.0095
(3)5.0-75 0.5440 0.0058
(4)75-100 0.1584 0.0017
(5) 10.0-125 0.1176 0.0012
(6)>125 0.1015 0.0011
Distance from drainage
(1)<50m 0.0646 0.5422 0.0350
(2) 50m-100m 0.5695 0.0368
(3) 100 m—150 m 0.5080 0.0328
(4) 150 m—200 m 0.9000 0.0581
(5) 200 m—250 m 0.8409 0.0543
(6) >250 m 0.1000 0.0065
Lithology
(1) Krabi 0.0085 0.1000 0.0009
(2) Kaeng Krachan 0.0409 0.4252 0.0174
(3) Thung Yai 0.0218 0.2470 0.0054
(4) Igneous rocks 0.0171 0.9000 0.0154
(5) Quaternary sediments 0.0232 0.1000 0.0023
(6) Saibon Formation 0.0543 0.1000 0.0054
(7) Ratburi 0.0351 0.1322 0.0046
Distance from lineament 0.0241
(1) <500 m 0.9000 0.1364
(2) 500 m-1,000m 0.6238 0.0945
(3) 1,000 m — 1,500 m 0.3243 0.0491
(4) 1,500 m— 2,000 m 0.4005 0.0607
(5) 2,000 m — 2,500 m 0.2772 0.0420
(6) 2,500 m — 3,000 m 0.2365 0.0358
(7) > 3,000 m 0.1000 0.0152
Soil Texture
(1) Silty loam 0.0080 0.1000 0.0008
(2) Silty clay loam 0.0116 0.1000 0.0012
(3) Silty clay 0.0210 0.1000 0.0021
(4) Sandy loam 0.0158 0.1000 0.0016
(5) Sandy clay loam 0.0116 0.1366 0.0016
(6) Sand 0.0090 0.1000 0.0009
(7) Slope complex area 0.0299 0.9000 0.0269
(8) Loamy sand 0.0097 0.1000 0.0010
(9) Loam 0.0080 0.1000 0.0008
(10) Clay 0.0221 0.1000 0.0022
(11) Clay loam 0.0083 0.1000 0.0008
LULC
(1) Dense evergreen forest 0.0016 0.9000 0.0014
(2) Disturbed evergreen forest 0.0001 0.1000 0.0000
(3) Oil palm 0.0123 0.1074 0.0013
(4) Para rubber 0.0074 0.1269 0.0009
(5) Miscellaneous 0.0128 0.1000 0.0013
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Table 4.16 Achieved map accuracies of the considered fuzzy operators (ANN-Fuzzy).

Fuzzy operation

Success accuracy

Prediction accuracy

ROC  Average

(%) (%) (%) (%)
AND 57.56 53.03 85.30 65.30
OR 63.72 60.30 89.10 71.04
Algebraic sum 87.21 83.17 94.70 88.36
Algebraic product 89.43 82.95 56.50 76.29
Gamma ()) = 0.00 79.00 69.41 11.70 55.37
Gamma (1) =0.10 82.78 75.46 57.00 71.75
Gamma ()) = 0.20 85.59 80.04 57.80 74.48
Gamma (1) = 0.30 88.82 83.03 60.00 77.28
Gamma (L) = 0.40 89.70 85.43 63.50 79.54
Gamma (}) = 0.50 89.98 86.64 68.00 81.54
Gamma (1) = 0.60 90.16 87.01 72.70 83.29
Gamma (L) =0.70 90.24 86.94 80.10 85.76
Gamma (L) = 0.80 90.20 86.71 87.50 88.14
Gamma (L) = 0.90 90.05 86.13 94.30 90.16
Gamma (L) = 0.99 88.29 82.99 89.60 86.96
Gamma (1) = 1.00 89.12 83.08 89.20 87.13

Table 4.17 Landslide susceptibility classification for the ANN-Fuzzy method (= 0.90).

Landslide susceptibility ¥ 3vm B NSS values Area
classes % km2
Very low susceptibility (VLS) 0.0000 - 0.0024 0.00-0.20 72.99 720.77
Low susceptibility (LS) 0.0024 - 0.0049 0.20-0.40 15.07 148.77
Moderate susceptibility (MS) 0.0049 - 0.0074 0.40-0.60 8.24 81.42
High susceptibility (HS) 0.0074 - 0.0099 0.60-0.80 3.25 32.10
Very high susceptibility (VHS) 0.0099 - 0.0125 0.80-1.00 0.45 4.47

From Table 4.17 and Figure 4.7n, the ANN-Fuzzy based landslide

susceptibility map was dominated by the very low susceptibility portion of land

(72.99%) while very small proportion was identified as the high and very high

susceptibility zones (3.70%). Therefore, the ANN-Fuzzy method seems to suppress the

proneness to landslide hazard over the area significantly if compared with obtained

maps of other previous methods. Also, an integration of fuzzy logic to the ANN model

did transform general outlook of the yielded map greatly (to be in great favor of the low

to very low susceptibility states).
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Figure 4.7 Classified landslide susceptibility maps from the ANN-Fuzzy method
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4.2 Comparison and verification of the yielded susceptibility maps

In this part, all derived landslide susceptibility maps as the output products from
seven listed methods reported earlier (Figures 4.1-4.7) were compared with each other.
Accuracy assessment of obtained maps was also performed independently according to
the two popular methods, i.e., the AUC and ROC methods to aid the decision on optimal
approach of interest.

4.2.1 Map comparison and discussion

As described in Section 4.1, there were seven proposed methods to be
examined for their capability in building credible landslide susceptibility map for the
whole study area (Khao Phanom Bencha Watershed, Krabi Province), which are, the
WLC, AHP, FR, FR-Fuzzy, MLR, ANN, and ANN-Fuzzy. Due to the conceptual
differences in their working principles, their accomplished outputs in the form of
landslide susceptibility map were intuitively expected to exhibit obvious distinctions in
the predominant characteristics also as can be seen in Figures 4.8a-g, accompanied by
the proportion of classified land data on the referred maps in Table 4.18 and Figure
4.10. The corresponding NSS histograms of these maps are also given in Figures 4.9a-
g in which the equal-interval type of susceptibility classification was applied in all
cases. Here, some methods tended to favor low to very-low susceptibility outcome, i.e.,
AHP, FR, FR-Fuzzy, MLR, ANN, ANN-Fuzzy, but some did bear the more moderate
outcome one, i.e., WLC, AHP and some predicted noticeably high portion of land with
high to very high landslide susceptibility scores over an area (e.g. > 10%), i.e., WLC

(17.49%) and MLR (16.59%).
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Figure 4.8 Classified landslide susceptibility maps based on all examined methods.
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Figure 4.9 NSS histograms of all derived susceptibility maps presented in Figure 4.8.
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Figure 4.9 NSS histograms of all derived susceptibility maps presented in Figure 4.8.
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Figure 4.9 NSS histograms of all derived susceptibility maps presented in Figure 4.8.
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Figure 4.9 NSS histograms of all derived susceptibility maps presented in Figure 4.8.

(Continued).

From Figures 4.9a-g and Table 4.18, it is obvious that the two tested

qualitative methods, WLC and AHP, exhibited an apparent preference towards the low

to moderate level of susceptibility on their resulted maps while most evaluated

quantitative methods (except the ANN) tended to create maps dominated by the very-

low susceptibility land. The explanation for this difference might be about the way these

maps were built as for the qualitative-type methods, the associated weights (both at

factor and attribute levels) were judged from opinions of the surveyed experts, not from

data of the past incidences as did in the quantitative-type methods, which made several

factors (and their attributes) be somewhat overrated, or underrated, regarding to real

situation observed in the area. For example in case of LULC, weights were distributed
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to all classes under examination focusing on oil palm and para rubber (Tables 4.1 and
4.4), however, in reality just only about 5% of the reference landslide pixels were
evidenced therein while another 94% were identified in the dense evergreen forest
area, which was significantly less favored in both the WLC and AHP methods (but

highly ranked by the FR and ANN methods).

Table 4.18 Landslide susceptibility classification of land for all examined methods.

0,
Landslide susceptibility NSS Area (%)

classes WLC AHP FR R MR Ann ANN-

Fuzzy Fuzzy

Very low susceptibility (VLS) 0.0-0.2 211 737 6731 59.13 7630 1260  72.99
Low susceptibility (LS) 02-04 4075 4848 13.09 2062 376 6971 1507
Moderate susceptibility (MS) 04-06 3966 3537 1270 1236  3.35 16.29 8.24
High susceptibility (HS) 06-0.8 1628 803 539 6.84 434 132  3.25

Very high susceptibility (VHS) 0.8-1.0 121 076 151 1.05 1225 0.08 0.45

In addition, the correlation level (r) of the NSS data among tested
methods was also determined as reported in Table 4.19. These data show prominently
high correlation (of 0.93) between the two used qualitative-type methods (WLC and
AHP), and also among the FR-based methods (FR, FR-Fuzzy, and ANN-Fuzzy). This
high conformation among them led to resemble results on the derived maps as seen in
Figures 4.8, 4.9 (map outlook and histogram pattern) and Table 4.18 (land classification

outcome).
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Figure 4.10 Proportion of land on classified susceptibility maps for all used methods.

Table 4.19 Correlation level (r) of the NSS data among all examined methods.

Methods WLC AHP FR FR- MLR ANN  ANN-
Fuzzy Fuzzy
WLC 1.00
AHP 0.93 1.00
FR 0.71 0.68 1.00
FR-Fuzzy 0.73 0.71 0.97 1.00
MLR 0.61 0.54 0.88 0.85 1.00
ANN 0.56 0.55 0.89 0.87 0.78 1.00
ANN-Fuzzy 0.71 0.70 0.95 0.98 0.82 0.87 1.00

In terms of the hazard and risk management, maps with noticeably high

portion of the land affixed with high to very high susceptibility level like those of the

WLC (17.49%) and MLR (16.59%) might have less applicable value in practice as

much effort than usual might be needed on the monitoring or examining of landslide

condition in those areas for the prevention or mitigation purposes. Also, in principle,
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this kind of result might lead to an overestimation of landslide proneness over an area
as a high percentage of the observed landslides shall be more likely to be correctly
identified on these obtained map with the drawback of producing many false alarms (or
high sensitivity but low specificity).

Conversely, if the applied models emphasize too much on the very low
to low outcome of the susceptibility prediction (i.e., FR, MLR, or ANN-Fuzzy), they
might have less false alarm cases but number of landslides correctly predicted tend to
be decreased also (low sensitivity and high specificity) (Segoni, Martelloni, and Catani,
2013).

However, at this stage, the applicable merit of each listed method
mentioned earlier was still not yet conclusive as only the general outlook of the
classified map was evaluated and compared so far. More definite judgment can be
achieved through accuracy assessment of the formulated maps in which two popular
methods, the AUC and ROC, shall be applied as detailed in following section. Noted
that, in case of LULC, associated experts put high weights on para rubber and oil palm
plantations but not on dense forest, however, the FR value for the dense forest was the
highest one among others. This difference might arise from the fact that FR is the
evidence-based analysis while WLC and AHP are knowledge-based ones, therefore in
case of the 2011 incidence which was induced by the unusually high amount of rainfall,
LULC might not be a key factor to determine chances of landslide occurrence compared
to the topographic condition ones. As a consequence, the evidence-based methods, like
FR, might be more effective to explain the real going-on circumstances over an area

than the qualitative-type ones.
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4.2.2 Map validation and optimal method identification

To assess for the applicable credibility of the gained susceptibility maps
displayed in Figure 4.8, their respective accuracy in predicting reference landslide
incidences was determined by two well-known methods: the Area-Under-Curve (AUC)
and the Receiver Operating Characteristic (ROC) methods detailed in Chapter Il. Here,
in case of the AUC, two groups of reference dataset were applied: (1) data that were
used to build the evaluated map before (490 points) and (2) data that were reserved for
accuracy assessment only (210 points), but for the ROC, only the second dataset was
incorporated. And for the AUC case, accuracy scores received from the first and second
reference dataset are called “success rate” and “prediction rate”, respectively. Primary
goal of the AUC method is to quantify the accurate prediction rate of the method in use
while for the ROC curve analysis is to find a cutoff value that shall somehow minimize
number of existing false predictions (positive/negative), or, maximizing sensitivity and
specificity of the prediction. Figures 4.11 and 4.12 presents yielded outcome of

accuracy assessment from all evaluated cases stated earlier (AUC-success/prediction

rates, ROC).
100
90 —
80 —
o .
g 50 .
: i .
g 20 -
5 10 _
< - .
WLC AHP FR FR MLR ANN ANN
Fuzzy Fuzzy
m Success accuracy (%) 87.76 85.28 93.47 92.64 93.00 91.10 91.50
m Prediction accuracy (%) 84.51 80.13 92.17 91.08 89.33 90.88 91.41
ROC 87.10 84.70 96.30 94.80 96.60 88.70 94.50
Average 86.46 83.37 93.98 92.84 92.98 90.23 92.47

Figure 4.11 Comparative illustration of accuracies achieved by all examined methods.
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Figure 4.12 Graphic illustrations of the accuracy quantification by all three considered

cases: (a) AUC-success rate, (b) AUC-predictive rate, and (c) ROC.
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Figure 4.12 Graphic illustrations of the accuracy quantification by all three considered

cases: (a) AUC-success rate, (b) AUC-predictive rate, and (¢) ROC (Continued).

In general, it was found that all utilized methods were well capable of
producing susceptibility maps for the chosen area with remarkably high accuracy
(mostly > 85%) in all cases though their generated map outlook and land classification
results might be still somewhat different (as evidenced in Figures 4.8-4.9 and Table
4.18). However, if consider in terms of average accuracy, the FR method seemed to
perform the best in all cases under consideration which led to average accuracy of
93.98%. This was closely followed by MLR (at 92.98%), FR-Fuzzy (at 92.84%), and
ANN-Fuzzy (at 92.47%). The least successful ones evidenced here were those of both
qualitative-type methods; the WLC (at 86.02%), and the AHP (at 83.94%). However,
these apparent accuracy levels still look quite impressive under normal standard (of

80% up).
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Through, the found top four methods (FR, FR-Fuzzy, MLR, and ANN-
Fuzzy) are highly comparable in terms of attained average accuracy (93.98%, 92.84%,
92.98%, 92.47%), however, the FR was eventually considered to be an optimal
candidate (to aid further construction of the associated landslide hazard and then risk
maps for an area) due to its simplest structure and most comprehensible working
concept if compared to the other two listed choices, as well as on the rather realistic
outlook of its final output susceptibility map (Figure 4.3). These stated distinct abilities
are of notable advantage in building in-depth understanding on complicated mechanism
of landslide formation seen within the area, especially for the prevention, warning, and
mitigation purposes. However, it should be noted that different works at different places
and/or with different mapping, or classifying tools, might find different optimal method
as an outcome, for examples, this was ANN model in work of Park, Choi, Kim, and
Kim (2013), and Yilmaz (2013), or the support vector regression method in that of
Kavzoglu, Sahin, and Colkesen (2015).

In addition, between the two studied qualitative methods, WLC and
AHP, it seems WLC was the better one in terms of the yielded average accuracy
(86.46% to 83.37%). This might be arisen from the weighting methodology at both
factor and attribute levels as for the WLC, all opinions of all experts regarding to used
factors and their associated attributes were included in the weighting analysis while for
the AHP one, only opinions that passed the CR threshold of 0.1 were chosen for weight
quantification at both levels.

However, high correlation between the yielded landslide susceptibility
scores (of 0.93) suggest high similarity of their map products nevertheless. And for the

used FR method, the reference landslide input data should be distributed well over the
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area with sufficient amount needed to increase, or ensure, effectiveness of the mapping
process.
4.2.3 Factor sensitivity analysis

As this study so far did not focus on finding most appropriate factors to
be used in the mapping analysis but concentrated on finding the most effective mapping
method for the study area based on ten chosen conventional causative factors as stated
earlier. However, this kind of factor’s sensitivity analysis shall conduct somehow in
this part of the thesis to evaluate apparent effects of some prominent contributing
factors in the building of landslide susceptibility maps for the area by the preferred FR
model. These included the determination of relative importance of each used
contributing factors and the factor-preferred formulation of the susceptibility map for
the study area. In the first case, the importance of a particular factor of interest was
judged by excluding it from the mapping process and compare the newly-achieved
accuracy result with that of the original one (93.38%) and the finding outcome is as
illustrated in the Table 4.20, in which low impact on original accuracy (< 0.51%) were
found in all cases. This means no factors came up as clear favorites as their perceived
impact was equally negligible.

Through, all ten input factors were found to have rather comparable
importance in the building of landslide susceptibility map by the FR method (as seen
in Table 4.20), however, different combination of these factors in the map formulating
procedure might lead to noticeable changes in map outlook and also accuracy outcome
as demonstrated and reported in Figure 4.13 and Table 4.21 for four interesting cases.
This combination list was guided by the perceived comparative importance of each

individual input factor by the reviewed experts reported in Table 4.1. These results
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indicated that the accuracy of 88.08% could be achieved using slope gradient alone and
integration of more factors tended to gradually increase yielded accuracy to the

reference value of 93.98%.

Table 4.20 Accuracy outcome in case of the sensitivity analysis for each used factor.

Accuracy (%)
FR excluded Success Prediction ROC Average Change Rank
None (reference case) 93.47 92.17 96.30 93.98 0.00 -
Elevation 92.96 91.95 95.50 93.47 -0.51 1
Slope gradient 93.01 91.60 95.90 93.50 -0.48 2
Slope aspect 93.26 91.95 96.30 93.84 -0.14 6
Slope curvature 93.49 92.22 96.20 93.97 -0.01 7
TWI 93.57 92.16 96.20 93.98 0.00 8
Distance from drainage 93.49 92.18 96.30 93.99 +0.01 9
Lithology 93.40 91.94 95.90 93.75 -0.23 4
Distance from lineament 93.41 92.21 96.50 94.04 +0.06 10
Soil texture 93.33 91.83 95.60 93.59 -0.39 3
LULC 93.44 92.17 95.80 93.80 -0.18 5

Table 4.21 Accuracy outcome in case of the factor-preferred map formulation.

Accuracy (%)

Combination pattern —
Success Prediction ROC Average Change

Slope gradient 87.37 84.66 92.20 88.08 -5.90
Slope gradient + Lithology 90.85 89.78 9440  91.68 -2.30
Slope gradient + Lithology + Soil texture 91.74 91.01 95.70 92.82 -1.16
Slope gradient + Lithology + Soil texture 92.70 91.63 95.40 93.24 -0.74

+ LULC + Distance from lineament

All factors included (reference case) 93.47 92.17 96.30  93.98 0.00
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4.3 Effects of rainfall integration on the susceptibility analysis

As mentioned in Chapter Il, some reports on landslide susceptibility mapping
had incorporated rainfall data as an individual input layer in their analysis also, e.g., in
Lee and Pradhan (2006), Intarawichian and Dasananda (2011), and Thanh and de Smedt
(2012). In theory, the inclusion of rainfall distribution data in the susceptibility analysis
can lead to the formation of more dynamic output map (as the relevant rainfall scenarios
can change rapidly with space and time). In this thesis, effects of rainfall integration in
the FR-based formulation of landslide susceptibility map in two cases were examined,
which are, (1) the long-term annual mean rainfall data between A.D. 1951- 2012, and
(2) the event-based data receiving during 27"-29"" March 2011 (as seen in Figure 3.11).

To accomplish this task, first, the appropriated FR values were assessed for each
classified range of rainfall data in both cases and results are as expressed in Table 4.22.
It was found that, in general, no outstanding classes of rainfall data in both cases (with
noticeably high FR values) were evidenced wherein maximum FR stood at 2.12 only
and higher FR values did not indicate higher chances for landslide activity in both cases.
Due to the relatively low FR values of all considered rainfall classes over the entire area
(around 1 in average), their combination to the original pixel-based NSS values existing
on the original FR-based susceptibility map (Figure 4.3) to attain a new set of LSS data
for the formulation of the new associated susceptibility map tended to have rather low
impact on general outlook of the gained susceptibility maps as illustrated in Figure 4.14
and Tables 4.23 and 4.24. These results indicate that combination of the rainfall data in
the FR-based landslide susceptibility mapping here may did not initiate tangible benefit
per se compared to the original map without them included both in terms of map outlook

and average accuracy of these maps (as detailed in Figure 4.15).



Table 4.22 FR values for the listed rainfall attributes in both cases.
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Total number of Landslide
Factors Class pixels occurrence point FR
values
Number % Number %
Rainfall < 1,750 mm 22147  2.0184 0 0.0000 0.0000
(long-term 1,750 mm — 1,942 mm 156684 14.2705 22 4.4898 0.3146
annual mean) 1,941mm - 2,132 mm 697931 63.6069 387 78.9796 1.2417
2,132 mm - 2,323 mm 196246 17.8852 77 15.7143 0.8786
> 2,323 mm 24348  2.2190 4 0.8163 0.3679
Rainfall <269 mm 59686  5.4396 18 3.6735 0.6753
(event-based) 269 mm — 270 mm 243915 22.2295 15 3.0612 0.1377
270 mm —271 mm 575331 52.4336 353 72.0408 1.3739
> 271 mm 218324 19.8973 104 21.2245 1.0667

Note: Total number of pixels in study area: 1,097,256. Number of landslide occurrence points: 490.

FR = % Landslide occurrence points / % number of pixels

Table 4.23a FR-based landslide susceptibility classification with the long-term annual

mean rainfall data during 1951-2012 over the area integrated.

Landslide susceptibility classes LSS values NSS values Area
% km?
Very low susceptibility (VLS) 1.25-10.33  0.00-0.20 66.21 653.80
Low susceptibility (LS) 10.33-19.41  0.20-0.40 13.83 136.62
Moderate susceptibility (MS) 19.41-28.49  0.40-0.60 12.72 125.62
High susceptibility (HS) 28.49-37.56  0.60-0.80 5.68 56.09
Very high susceptibility (VHS) 37.56-46.65 0.80-1.00 1.56 15.40

Table 4.23b FR-based landslide susceptibility classification with event-based rainfall

data during 271-29"" March 2011 over the area integrated.

Landslide susceptibility classes LSS values NSS values Area
% km?
Very low susceptibility (VLS) 1.03-10.18 0.00-0.20 65.70 648.84
Low susceptibility (LS) 10.18-19.33  0.20-0.40 14.27 140.88
Moderate susceptibility (MS) 19.33-28.48 0.40-0.60 13.14 129.76
High susceptibility (HS) 28.48-37.63 0.60-0.80 5.28 52.17
Very high susceptibility (VHS) 37.63-46.78 0.80-1.00 1.61 15.89
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Figure 4.14 FR-based classified landslide susceptibility maps in two cases of rainfall

data integration (long-term annual mean and event-based data).

Table 4.24 Comparison of area allocation on three FR-based susceptibility maps under

consideration (original, with rainfall data integrated-long-term case, event-based case).

[0)
Landslide susceptibility LSS values o of Area
classes FR FR FR
(original) (long-term) (event-based)
Very low susceptibility (VLS) 0.0-0.2 67.31 66.21 65.70
Low susceptibility (LS) 02-04 13.09 13.83 14.27
Moderate susceptibility (MS) 04-0.6 12.70 12.72 13.14
High susceptibility (HS) 0.6-0.8 5.39 5.68 5.28

Very high susceptibility (VHS) 08-10 1.51 1.56 1.61
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Figure 4.15 Comparison of accuracies achieved from the three FR-based susceptibility

maps (original, with rainfall data integrated-long-term case, event-based case).

4.4  Establishment of landslide hazard and risk maps

As the ultimate goal of this present study (as stated in Objective 2 in Chapter 1)
was to build landslide hazard and risk maps for the study area based on the availability
of landslide susceptibility map derived through the identified optimal method (i.e., FR),
therefore this section shall be devoted to full report and discussion on accomplishments
of this aforementioned issue in conclusive details.

4.4.1 Construction and evaluation of the landslide hazard maps

First, the time-dependent hazard maps for the area were constructed
from a direct pixel-based product of the annual rainfall probability (ARP) data for the
critical rainfall threshold of 100 mm/day and 300 mm/3-days (Figure 3.12) and the FR-

based landslide susceptibility score (LSS). This relation can be written as:
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Hazard index (HI) = ARP x LSS. (3.4)

The classified hazard maps (for each used rainfall criterion) were then
established based on application of the equal-interval classifying method on the HI
dataset and important outcomes are presented in Figures 4.16a and b and Table 4.25,
respectively.

It was clear from these stated maps that, chances of having rainfall
intensity of 100 mm/day in the area per year changed greatly from about 0.2 (in the
southeastern part) to about 0.5 (in the southwestern part). Similarly, for a case of the
rainfall intensity of 300 mm/3-days, chances of the success per year were found much
lower than those of the 100 mm/day case, wherein peak values of about 0.054 were
seen at the far south portion of the map and the lowest ones of about 0.022 were attained
in the southeastern part. However, as critical rainfall data tended to happen over the low
susceptibility part, both hazard maps seemed to highly resemble that of their
susceptibility counterparts in terms of both the outlook (Figure 4.16) and distribution
of occupied area (Table 4.25).

And according to very high correlation (of 0.99) between hazard scores
from both cases, this suggests that their map products can be applied interchangeably.
However, as chances of reaching the 100 mm/day threshold are typically much higher,
therefore, attendance should be primarily given to map generated in this case first than
that of the 300 mm/3-days case which should be more concerned about if that threshold
is likely to be achieved during some unusual circumstances (like in the March 2011

incidence investigated in this thesis work).
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Figure 4.16a Landslide hazard map (case of critical rainfall threshold 100 mm/day).
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Table 4.25 Landslide hazard classification for two cases of rainfall critical thresholds.

Landslide hazard 100 mm/day 300 mm/3-days
classes H1 values Area (%) H1 values Area (%)
Very low hazard (VLH) 0.02-0.36 67.86
Low hazard (LH) 0.30 —3.55 66.06 0.36 — 0.69 13.27
Moderate hazard (MH) 3.55 - 6.80 1253  0.69-1.02 12.54
High hazard (HH) 6.80 — 10.05 11.80 1.02-1.34 5.05
Very high hazard (VHH) 10.05 — 13.30 8.29 1.34-1.67 1.28
13.30 — 16.55 1.31

4.4.2 Construction and evaluation of the landslide risk maps

Commonly, landslide hazard might put some valued components within
the area at various degree of risk, depending on their natural vulnerability to the exposed
hazard. In this work, the landslide risk maps for five crucial element-at-risk groups of
the area (i.e., building, paddy field, field crops, horticulture, and para rubber) were
established qualitatively for the two investigated cases of the rainfall thresholds
reported earlier (in Figures 4.16a and b). The vulnerability degree of these elements
was judged from their estimated economic value per given unit by the responsible
government agency (mainly for compensation purpose) in the form of normalized
vulnerability score (NVS) ranging from 0.1 to 0.9 as detailed in Table 4.26 and Figure
4.17. The utilized transformation formula was similar to that described in Eq. (3.2).
Then, the corresponding risk map for each case was constructed from the following

definition of the risk index (pixel-based):

Risk index (RKI) = HI x NVS, (3.5)
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And, as usual, the equal-interval classifying method was used to
categorize the obtained RKI data on the map into five different zones from very low to

very high and results are as illustrated in Figure 4.18 and Table 4.27.

Table 4.26 Normalized vulnerability score (NVS) of each considered element at risk.

Element at risk Subsidy rate NVS
(1) Building 30,000 baht/unit 0.9000
(2) Para rubber 6,007 baht/rai 0.2355
(3) Horticulture 1,690 baht/rai 0.1160
(4) Field crop 1,148 baht/rai 0.1010
(5) Paddy field 1,113 baht/rai 0.1000

Source: Management’s guide to disaster assistance in agriculture.
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Figure 4.17 Normalized vulnerability score map of all examined element at risks.



222

472000 481000 490000 499000 508000
Landslide Risk Zoning
Integrated Frequency Ratio
with Rainfall Intensity
g [ | sub-district Boundary g
& Annual proability (100 mm/day) &
Risk Index
[ Very high
[ High
& |:| Moderate =
=3 (=3
7 I Low s
- Very low
2 2
= =
ES 2
2 2
= =
8 8
g g
£ E
(- N
g g
= =
= S
6 25 5
™ — K i om cters
g 2
= -
a T T T T T a
472000 481000 490000 499000 508000

Figure 4.18a Landslide risk map (case of critical rainfall threshold 100 mm/day).
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Figure 4.18b Landslide risk map (case of critical rainfall threshold 300 mm/3-days).
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Table 4.27 Landslide risk classification for two cases of rainfall critical thresholds.

Landslide risk 100 mm/day 300 mm/3-days

classes Area Area Area Area

RI values (%) (km?) RI values (%) (km?)
Very low risk (VLR) 984.1392 983.3679
Low risk (LR) 0.00-2.29 99.6566 3.2184 0.00-0.20 99.5785 3.9348
Moderate risk (MR) 2.29-4.59 0.3259 0.1269 0.20-0.40 0.3984 0.1800
High risk (HR) 4.59 - 6.89 0.0129 0.0432 0.40-0.61 0.0182 0.0441
Very high risk (VHR) 6.89-9.19 0.0044 0.0027 0.61-0.81 0.0045 0.0036

9.19-11.49 0.0003 0.81-1.02 0.0004

Table 4.28 Distribution of classified element-at-risk land on the derived hazard map.

Area (%): 100 mm/day

Area (%): 300 mm/3-days

Element at
risk VLH LH MH HH VHH VLH LH MH HH VHH
(1) Building 9512 439 047 002 000 9645 327 026 001 000
(2) Pararubber 7853  17.34 389 024 000 8066 1674 257 003 000
(3) Horticulture 8914~ 9.74 109 003 000 9110 825 064 001 000
(4) Field crop 10000 000 000 000 000 10000 000 000 000 0.00
(5)Paddy field 100,00 000 000 000 000 10000 000 0.00 0.00 _ 0.00

In principle, landslide risk map at medium-scale is specifically preferred

to aid the development planning and emergency response planning in respect to the

incidence (Michael-Leiba, Baynes, Scott, and Granger, 2003). However, the eventual

risk maps resulted in this work for both cases of the referred rainfall threshold were

found to have only about 0.005% of the total area with high to very high risk while

about 99.9% were located in the very low risk zone. This outcome of the map derivation

is understandable as the most at-risk element in this case (building) covered only small

portion of the total land (Table 3.8) while other considered at-risk elements (para

rubber, horticulture, field crop, and paddy field) were having relatively low priority and

distributing principally on the low to very low hazard areas (Table 4.28). In this

circumstance, these yielded maps seem to have low practical benefit to accommodate
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the aforementioned tasks as most at-risk elements were found situating in the low to
very low hazard zones which finally led to the very low risk outcome as reported earlier.

Therefore, to make this thesis work more applicable in the effective
preparation of landslide warning and mitigation programs in the area, associated
landslide hazard due to the potential runout originating from landslide incidence
upstream was evaluated using the FLOW-R model and results are to be reported in the

following section.

4.5 Runout hazard analysis

As landslide-induced debris flow runout has frequently become a major source
of huge losses evidenced worldwide, including within the chosen study area, therefore,
prediction of its strength (especially, velocity and runout distance) to reduce such losses
IS very necessary. In this work, the runout hazard resulted from the landslide incidences
upstream over the study area was evaluated and mapped numerically using the popular
Flow-R model as detailed in Chapter Il and 111 wherein the appropriated flow characters
and deposition outcome were determined and presented as a runout hazard map for the
area. This map was classified (using equal interval technique) to represent five groups
of the runout-related hazard level, from the very low to very high as seen in Figure 4.19
(for the entire study area) and Figures 4.20a-f.

From these maps, it is rather clear that the highly-concerned areas with high to
very high hazard level identified were usually located along the main drainage channels
with peak hazrd shown in mid-stream portion. And the hazard seemed to gradually drop
with distance towards the downstream zone due to the reduced water speed from runout

expansion over gentle terrain and the strong deposition of the carried debris material.
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Eventually, as reported in Table 4.29, about 80% of the area was associated with very
low to low hazard level while about 9% was possessing the high to very high level one.
In terms of risk analysis, the highest priority in runout risk mitigation should be placed
upon the safety of local residences living in the high-risk houses or building in the area.
In this regards, the distribution of houses on the hazard-classfied land was assessed and
result is reported in Table 4.29 from which nine of them were found staying on the high

to very high runout hazard zone.

Table 4.29 Distribution of land on classified runout-induced hazard map.

Area Number of houses
Runout hazard classes Runout index values
% km? Number %

Very low hazard (VLH) 0.00 — 758.80 54.44 5.48 23 37.70
Low hazard (LH) 758.80 — 1517.62 25.08 2.53 16 26.23
Moderate hazard (MH) 1517.62 — 2276.42 11.75 1.18 11 18.03
High hazard (HH) 2276.42 — 3035.22 5.37 0.54 9 14.75
Very high hazard (VHH) 3055.22 — 3794.04 3.36 0.34 2 3.28

To demonstrate applicability of this formulated runout hazard map on the study
of actual runout incidences wihtin the area, the close-up maps over some specific parts
of the area at subdistric level are presented in Figures 4.21a-f, which are, the Nakhao,
Thapprik, Khlonghin, Khaophanom, and Krabinoi subdistricts. These stated places
were reported to experiance serious danger from the runout hazard during the 2011
landslide episode which resutled in 10 deaths and 58 houses destroyed (DMR, 2011).
In this study, the high-resolution satellite images of the 2011 landslide and runout traces
from THEOS and Google map resources are also presented as a background for further

comparison with the derived runout hazard map.
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In general, from the generated runout hazard maps, the top two subdistricts with
the most severe impact from the runout hazard identified were found to be the Nakhao
and Thapprik respectively, while the others did not find such serious hazard prediction
much. And also, the used Flow- R model seemed to be able to produce the runout hazard
map that conform rather well with the actual runout evidences (along the main drainage
channels) and their apparent deposit downstream which were visually identified on the
high-resolution satellite imagery (THEOS and Google map). As such, capability of this

hazard map on runout warning purpose should be explored in more details in the future.
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Figure 4.19 Runout hazard map based on hill-shad showing qualitative information on

the runout spreading probabilities by the Flow-R model.
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Figure 4.20b A case of Nakhao subdistrict.
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Soruce: http://www.bloggang.com

Figure 4.20b Evidences at Ban Ton Han village (Continued).
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Figure 4.20c A case of Nakhao subdistrict.
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Source: https://pongphun.wordpress.com/2011/04/01

Figure 4.20c Evidences at Ban Huay Nam Kaew village (Continued).
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Figure 4.20d A case of Thapprik and Klonghin subdistrict.



Source: http://www.krobkruakao.com

Figure 4.20d Evidences at Ban Chong Mai Dam village (Continued).



Source: http://www.numthang.org

Figure 4.20d Evidences at Ban Huay Toh village (Continued).
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Figure 4.21e A case of Khaophanom subdistrict.
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Source: https://www.gotoknow.org/posts/440202

Figure 4.21e Evidences at Ban Klong Hang village (Continued).
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Figure 4.21f A case of Krabinoi subdistrict.



CHAPTER V

CONCLUSION AND RECOMMENDATION

This chapter summarizes the achievements of all works carried out in this thesis
in accordance with the three objectives outlined in Chapter I, which are, (1) to identify
optimal method to aid the formulation of landslide susceptibility map for the study area
from a list of seven candidates, (2) to construct the associated landslide hazard and risk
maps for the referred area through application of the optimal method identified earlier,
and (3) to generate landslide-induced runout hazard zones for the examined area based
on results obtained from the empirical Flow-R runout model. The overall achievements

of each objective stated above are conclusively detailed as follows.

5.1 Landslide susceptibility maps formulation and evaluation

In this thesis work, the Khao Phanom Bencha Watershed in Krabi Province was
chosen as a study area due to its frequent occurrences of devastated landslides and their
severe debris flow consequences in recent decades. Seven well-acknowledged methods
were included as candidates in the preparation of most accurate landslide susceptibility
maps for the study area, including, (1) weighted linear combination (WLC), (2)
analytical hierarchy process (AHP), (3) frequency ratio (FR), (4) integrated FR-fuzzy,
(5) multiple logistic regression (MLR), (6) artificial neural network (ANN), and (7)

integrated ANN-fuzzy. Ten contributing factors were incorporated as input dataset for
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the determination of probability of landslide occurrences over entire area by each

applied model whereas a total of 700 identified landslide locations were uses as a

reference for map production (490 samples) and validation (210 samples) purposes.
5.1.1 Factor priority analysis

It was found that, in terms of the factor preference, both qualitative-type
methods (WLC and AHP) placed highest weights on the slope gradient, lithology, and
soil texture while elevation and slope aspect were among the least favorite ones. And
at attribute level, both stated methods considered high elevation, steep slope, close
distance to lineament and drainage, high TWI, westward slope facing, and igneous-rock
structure, as most effective landslide indicators in the area. For the LULC case, para
rubber and oil palm plantations were judged as topmost landslide indicators in this
category while dense evergreen forest attained relatively low priority one. In general,
the appeared orders of preference at both factor and attribute levels (with respect to
their affixed weights) did conform rather well to the prevalent believes on this issue
found in most mainstream literature.

However, for the quantitative-type methods, which made a prediction of
landslide occurring probability based on evidences of past landslide events observed
within the area, the weight-based order of priority (both at factor and attribute levels)
did vary from model to model, and sometimes not in a strong agreement with those of
the qualitative-type ones, due crucially to the differences in main working concept of
weight assessment process. For examples, for the FR method, some specific attributes
were outstandingly valued with high FR score, e.g. (with FR > 3.0), elevation > 400
meters, slope gradient at 20°-40° range, TWI of 2.5-5.0, igneous-rock basis, and slope-

complex area condition. However, for the LULC category, on the contrary to what



242

found in the WLC and AHP analysis, highest weight was seen at dense evergreen forest,
with FR of 3.98, while those of the oil palm and para rubber were in much less favor,
with FR of 0.04 and 1.13, respectively. This contradiction seemed to highlight the
importance of method type in use as the FR based its analysis on number of actual
landslide locations in which about 94.90% were found in this forest class.

For the MLR method, associated weights were quantified for 30 layers
of the input data, including 7 layers at factor level for the numerical type and 23 layers
at attribute level for the categorical type (i.e., lithology, soil texture, and LULC), and
expressed in the form of coefficient for each used parameter. In principle, positive
coefficients indicate positive correlation between that parameter and probability of
landslide occurrence over an area while the negative ones signify the opposite outcome.
Accomplished results from work in this case revealed strong positive impact of several
well-known contributing factors and attributes referred to earlier, e.g. elevation, slope
gradient, distance from lineament, igneous-rock basis, slope complex area condition,
while the noble negative influencing ones were slope curvature, TWI, clay/clay-loam
soil type, distance from drainage, quaternary sediments or saibon formation of bedrock.
And for the LULC category, weak positive influences were expressed for dense
evergreen forest, oil palm, and para-rubber plantations, which is rather contrary to that
suggested by the FR model (in case of dense evergreen forest).

Similar to the MLR method, the ANN model in use tried to assess
appropriate weights for all 30 layers of input data based on the found complex
relationship of these parameters that could explain the occurrences of past landslide
event within the area. Here, a three-layer ANN system consisting of one input layer (30

neurons), one hidden layer (16 neurons) and one output layer was adopted to
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accomplish this task. Regarding to the apparent normalized weights (0 to 1) of these
parameters, elevation and slope curvature were found having top priority with weights
of 0.1856 and 0.1710. For lithology, saibon formation type was most valued with
weight of 0.0543 while that of igneous rocks stood at just 0.0171 which was somewhat
different from results discovered in most aforementioned methods. Strong role of slope
gradient and the distance from drainage were also noticed with relatively high weights
of 0.1407 and 0.0479.
5.1.2 Susceptibility map comparison and evaluation

The susceptibility maps were produced as an end product by each listed
method wherein five levels of landslide susceptibility were mapped based on the equal-
interval classifying technique (from very low to very high). In general, all yielded maps
indicated that lands with high susceptibility were located along the Khao Phanom
Bencha mountain network mostly where peak values appeared around the summit
region of the mountain range in the upper southern portion of the area. However,
associated data of the classified land on each map expressed obvious distinctions in the
predominant characteristics of map product from which some methods tended to favor
low to very-low susceptibility outcome, i.e., AHP, FR, FR-Fuzzy, MLR, ANN, ANN-
Fuzzy, but some showed the more moderate outcome one, i.e., WLC, AHP, and some
generated noticeably high portion of land with high to very high susceptibility level,
e.g., WLC (17.49%), and MLR (16.59%). In addition, the correlation level (r) of the
NSS data among all examined methods was also determined from which prominently
high correlation (of 0.93) between the two used qualitative-type methods (WLC and

AHP) were obtained, and also among the FR-based methods (FR, FR-Fuzzy, and ANN-
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Fuzzy). This mutually high conformation among them led to highly resemble map
outlook as well as distribution of classified land data outcome.

In principle, maps with relatively high proportion of high susceptibility
lands might lead to an overestimation of landslide proneness within the area because
high percentage of the reference landslides is likely to be correctly identified on these
maps with drawback of producing many arisen false alarms (or high sensitivity but low
specificity). Conversely, if the model’s output map emphasizes too much on low
susceptibility, they might have less false alarm occurrences but total number of the
correctly-predicted landslides tend to be decreased also (or low sensitivity but high
specificity).

5.1.3 Map accuracy assessment and optimal method identification

All yielded susceptibility maps were assessed for their respective
accuracies in predicting the referred landslide incidences through the use of two well-
known methods: the Area-Under-Curve (AUC) and the Receiver Operating
Characteristic (ROC) analysis, in which, for the AUC case, accuracy product was
differentiated into two distinct types called the “success rate” and “prediction rate” with
respect to the difference in dataset of the reference landslides in use. In general, it was
found that all applied methods were well capable of producing maps with remarkably
high accuracy (mostly > 85%) in all cases regardless of the still differences in map
outlook and land classification outcome. However, if consider in terms of average
accuracy, the FR method seemed to perform the best in all cases under consideration
which led to average accuracy of 93.98%. This was closely followed by the MLR (at
92.98%), FR-Fuzzy (at 92.84%), and ANN-Fuzzy (at 92.47%). The least successful

ones evidenced here were those of both qualitative-type methods; the WLC (at 86.02%)
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and the AHP (at 83.94%). However, these accomplished accuracy levels still look quite
impressive under normal standard (of 80% up).

Through, the four most successful methods (FR, FR-Fuzzy, MLR, and
ANN-Fuzzy) were highly comparable in terms of average accuracy, however, the FR
one was eventually chosen as an optimal candidate due to its simplest structure and
most comprehensible working concept, as well as on its rather realistic appearance of
the achieved susceptibility map, with percentage of land for different level of
susceptibility as follows: 67.31 (very low), 13.09 (low), 12.70 (moderate), 5.39 (high),
and 1.51 (very high). In addition, addition of the rainfall data (long-term annual mean
and short-term event-based) into the normal FR-based production of the susceptibility
map yielded no appreciable merit in terms of accuracy improvement (< 0.5% change in

average accuracy).

5.2 Landslide hazard and risk maps formulation and evaluation

To produce the landslide hazard map for the study area, temporal probability of
landslide occurrence within the area, in terms of the annual rainfall probability (ARP)
for the critical rainfall threshold (for slope failure) of 100 mm/day and 300 mm/3-days,
was integrated with the FR-based susceptibility map formulated beforehand to generate
the associated hazard map for the area based on the equal interval classification method
and data of the computed hazard index. From the ARP maps, chances of having rainfall
intensity of 100 mm/day per year over the entire area changed significantly from about
0.2 (in the southeastern part) to about 0.5 (in the southwestern part). Similarly, in case
of the rainfall intensity of 300 mm/3-days, chances of the success per year were found

much lower than that of the 100 mm/day case, wherein peak values of about 0.054 were
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seen at the far south portion of the map and the lowest ones of about 0.022 were attained
in the southeastern part. However, as most rainfall input layer possessed rather low FR
values (of about 1 or lower) and the most intense ones tended to distribute over the low
susceptibility part of the area, both obtained classified hazard maps were found highly
resemble to that of their susceptibility counterpart in terms of both general map outlook
and distribution of the classified land over the entire area.

The yielded hazard maps in both cases of the ARP mentioned earlier were then
proceeded to establish the preferred landslide risk map for the area by integration with
the vulnerability map derived for five groups of the element at risk (i.e., housing, paddy
field, field crops, horticulture, and para rubber). Vulnerability degree for each element
was judged from estimated economic value contributed by relevant government agency
and expressed as normalized scores ranging from 0.1 to 0.9. Risk maps were produced
from the classified risk index (RKI) over the area using equal interval method.

It was found that, on the contrary to what gained in the associated susceptibility
and hazard maps, risk maps derived for both cases of the ARP contained extremely low
percentage of land with high to very high risk level (about 0.005%), compared to about
6-10% in the susceptibility and hazard maps, while about 99.9% of land area belonged
to the very low risk zone. This outcome stemmed from the fact that most at-risk element
under consideration (housing) occupied very small portion of the total area while other
at-risk elements (i.e. paddy field, field crops, horticulture, and para rubber) were having
relatively low priority and distributing principally on the low to very low hazard areas.
As such, the resulted hazard index tended to have extremely low values over the entire

area except those locations that associated with housing utility.
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5.3 Runout hazard zonation

Landslide-induced runout was also a case of interest in this study and its nhazard
map was produced for the study area through application of the popular Flow-R model.
From this map, it was rather obvious that the highly-concerned areas with high to very
high hazard level identified were usually located along the main drainage channels with
peak hazrd predicted at around mid-stream portion (with highest runout intensity). And
the simulated hazard level (from its peak location) shall gradually decline with distance
towards the downstream region due to the reduced water speed from runout expansion
over gentle terrain and strong deposition of the transported debris material. Eventually,
about 80% of the mapped area were identified with very low to low hazard level while
about 9% were having the high to very high hazard level. In addition, the close-up maps
over some specific parts of the area which experienced serious runout-induced damage
during the refered 2011 landslide incidence showed rather good conformation between
mapped hazard zone and the visible runout traces in the high resolution satellite images.

Figures 5.1-5.6 illustrate crucial maps to help preparing proper strategies for
effective prevention or mitigation of potential landslide occurrences or their associated

risk by responsible agencies and local authorities.
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Figure 5.1 Landslide susceptibility map from the FR method.



249

472000 481000 490000 499000 508000
1 1 1 1 1

Landslide Hazard Zoning

Integrated Frequency Ratio

with Rainfall Intensity
= =3
5] H Vil g
z i -2
& ©  District &

Road

I:l Sub-district Boundary

Annual proability (100 mm/day)

Hazard Index
= =3
= =
=4 - =
=S 3
=3 =3
=3 =3
= - =
g 8

Ao Luk District
<
g g
= 5 - =
& Ban’ _C'hongMai &
Khao Phanom District
. @
g g
27 e
i) ()
N
= f =3
: gl £
= =
s
0; 257 5 10
™ — il ometers
Nuea Klllog}ng District
T T T = T L)
472000 481000 490000 499000 508000

Figure 5.2 Landslide hazard map (case of critical rainfall threshold 100 mm/day).
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Figure 5.3 Landslide hazard map (case of critical rainfall threshold 300 mm/3-days).
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Figure 5.4 Landslide risk map (case of critical rainfall threshold 100 mm/day).
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Figure 5.5 Landslide risk map (case of critical rainfall threshold 300 mm/3-days).
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Figure 5.6 Runout hazard map based on hill-shad.



254

5.4 Reccomendations

Though, the achievement of this study has satisfactorily fulfilled all needs stated
in the prior objectives, however, several related interesting issues still worth exploring
more in the future to support landslide activity assessment and associated risk reduction
in Thailand and elsewhere as follows:

(1) Impact of LULC conversion on the probability of landslide occurrence under
similar topological and environmental conditions (e.g. from fertile forest to crop field)
which has still not been throughly investigated in this study.

(2) Effect of the inclusion or exclusion of initial contributing factors on accuracy
of the yielded maps from other map producing method apart for the FR presented here
(e.9.WLC, AHP, MLR, or ANN) to find potential best combination (if existing).

(3) Effect of classifying schemes (e.g. equal interval, equal area, natural break)
on map outlook and accuracy determination.

(4) Application of the advanced runout zonation modelling to some other
hotspot landslide susceptible areas in different parts of the country.

(5) Systematic and effective process to apply knowledge gained from this study
in the prevention or reduction of landslide hazard and risk for local people in the area.

(6) Size and contained characteristics of the used study area should have direct
effect on outcome of the mapping analysis, e.g. amount of flat terrain over an area,
which needs more investigaion to elucidate on this issue.

(7) Validity of the gained rainfall data should also be verified by a standard
method like double mass curve analysis before putting in use.

(8) Instead of the distance from drainage system, or from the lineament, their

density per unit area might be applied instead as seen in several reports to judge for



255

their effciency in the mapping of landlside susceptibility over an interested area

(compared to the distance-based one applied here).
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