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KLEIN-GORDON EQUATION/TIME DELAY DIFFERENTIAL
EQUATION/LIE GROUP/INVARIANT SOLUTION

The Klein-Gordon equation without delay is used to model many different
nonlinear phenomena. In modern science many mathematical models also include
delay in consideration. The purpose of this thesis is group analysis of the Klein-
Gordon equation with a delay.

The first part of the thesis results is related with constructing determining
equations of delay differential equations, where the delay depends on time. In spite
of the fact that the method of constructing determining equations with constant
delay is known, at present there are no applications of group analysis to time-
varying delay differential equations. In the thesis, this analysis is developed.

The second part of the thesis is devoted to group classification of the one-
and two-dimensional Klein-Gordon equation with a delay. The one-dimensional
Klein-Gordon equation is considered with a constant delay, whereas for the two-
dimensional Klein-Gordon equation delay is time-varying. Corresponding deter-
mining equations and their general solutions are obtained. Classifications of the

admitted Lie groups are given. Analysis of all invariant solutions is presented.
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CHAPTER I

INTRODUCTION

1.1 Delay Differential Equation

In many physical, engineering and biological phenomena the rate of vari-
ation in the system state depends on past states, a characteristic which is called
delay. Time-delay systems (shortly, TDS) are also called systems with aftereffect or
dead-time, hereditary systems, equations with deviating argument or differential-
difference equations. J. P. Richard (Richard, 2003) has given a four point expla-
nation for interest and development of TDS. In particular, this framework is very
general and allows both simple (constant) and complex (variable or distributed)
forms of delays to be modeled. Mathematical modelling of biological and physical
systems with delays is mainly based on delay differential equations (DDEs), which
were first discovered in biological systems and later found in many engineering
systems, such as mechanical transmissions, fluid transmissions, metallurgical pro-
cesses and networked control systems. In modern science, one encounters many
mathematical models described by delay differential equations (Myshkis, 1972;
Bellman and Cooke, 1963; Hale, 1977; Driver, 1977; Kolmanovskii and Myshkis,
1992; Wu, 1996; Smith, 2010), for example in population dynamics, bioscience
problems, control problems, and electrical networks containing lossless transmis-
sion lines. Delay differential equations, which describe the rate of change of the
unknown quantity in a system depend not only on the current state of the system,
but also on its entire previous evolution, that is, on values of the unknown at

certain times in the past. In particular, the complex form of delays systems, that



is, having time-varying delay, which varies in an interval with a nonzero lower
bound is characterized as interval time-varying delay and is encountered in the
wide range of engineering applications spread from chemical reactors and com-
bustion engines to the networked control systems and recurrent neural networks
(Li et al., 2011; Farnam and Esfanjani, 2014). During the recent years, stability
analysis and stabilization of time-invariant systems with time-varying delay has
been an active research field (Phat et al., 2012; Zhang et al., 2010; Peng and Tian,
2008; Kwon et al., 2011; Shao, 2009; Park, 1994; Louisell, 2001; Niculescu et al.,

1998; Sun et al., 1997; Verriest, 1994).

1.2 How DDEs Arise

Interest in using delay differential equations often arises when traditional
pointwise modeling assumptions are replaced by more realistic distributed assump-
tions. As an example, let us demonstrate one of the well-known models describing
the dynamics of a population (see, for example, (Kolmanovskii, 1996)). In 1838

P.F.Verhulst applied the equation
N(t) = AN(t)(1 — N(t))

for describing the dynamics of a population, where N (¢) is the population density.
The general solution of this equation is N(t) = (14 Ce *~*)). This model,
however, has some shortcomings. For example, it implies that the population
growth is monotone, whereas in reality the growth oscillates. Another weakness
is that according to this model, the population reacts immediately to a change
of population, whereas in reality it is not so: the rate of change N (t) of the

population density does not immediately react to the change of population N (t).



Thus, a more realistic model was proposed by G.E.Hutchinson (1948)
N(t) = AN(t)(1 = N(t — 7)),

where 7 is a delay time. This model is more realistic, because it takes into account
inertia of the reaction to a change of population, and the oscillating tendency of
the population approaching a stationary state.

Most equations applied in mathematical modelling include time and space
variables. As a rule, physical phenomena have diffusion with respect to the space
variables. This leads to systems of partial differential equations with delay. For

example, equations of the forms
W = Uy, + F(u,w)

or

uy = Uy, + F(u,u, w)

are generalizations of the models u; = F(u,w) or uy = F(u,u;, w). Here u =
u(t) is the vector of the dependent variables, and w = u(t — 7). There is also
another way for deriving partial differential equations with delay. Let us give a

demonstration starting with the reaction-diffusion equation
Up = Ugy + F(u).

This equation arises in biology, biophysics, biochemistry, chemistry, medicine, con-
trol, climate model theory, ecology, economics and many other areas. Due to a
number of factors depending on the area of applications there is a delay in the
studied processes. From the physical viewpoint the delay is responsible for inertia
in mass/heat transfer processes: the system does not respond to an action immedi-

ately at the time ¢ when the action is applied as in the classical local-equilibrium



case, but at a relaxation time 7 later. This brings us to a partial differential

equation with delay,
U = Uz + Fu,w), w=u(t —7,), (1.1)

where 7 is constant.

1.3 Solving DDEs

Despite of the importance of exact solutions, there is a lack of methods
for constructing exact solutions of delay differential equations. From among the
known approaches for constructing exact solutions of delay differential equations

one mentions the following:
(i) travelling wave type solutions;
(ii) reduction to differential equations;

(iii) use of representation of a solution on the base of a priori simplified assump-

tions.

Travelling waves are applied in many areas of science and engineering. So-
lutions u(t, x) of travelling wave type have the representation u = U(x — Dt),
where x is a space variable, t is time, and D is constant. A wavefront propagates
along x with constant phase velocity D.

Reductions of equations with nonlocal terms are applied in viscoelastic
materials, nonlinear optics and other areas of mathematical physics. For example,
consider one of the most general evolution equations used in nonlinear wave physics

(Rudenko and Soluyan, 1977; Rudenko et al., 1974):

(g — uty — wy), = Uyy + Uss, (1.2)



where w = [ K (s) u(t —s)ds. Special cases of equation (1.2) which take
the form of a partial differential equation are well-known (Rudenko, 2010): the
Khokhlov-Zabolotskaya equation (Zabolotskaya and Khokhlov, 1969; Rudenko,
2010),

(g — uly), = Uyy + Usz,

the Kadomtsev-Petviashvili equation
(U — Uty — Upgy); = Uy + U,
and the delay differential equation (Ibragimov et al., 2011)
(g — vy — wy + wy), = Uyy + Usey, w(t,x) =u(t —1,2),

which is simpler than the original equation (1.2) and other models (Rudenko,
2010).

As an example of the third approach one can consider the approach
(Polyanin and Zhurov, 2014e) applied to nonlinear delay reaction-diffusion equa-
tion (1.1). In (Polyanin and Zhurov, 2014e) solutions of equation (1.1) were sought

in the form
N

w= " ga(@)hn(t),

where the functions ¢, (x) and 1, () are to be determined subsequently, and are
sought in a form so that it is possible to apply the method of invariant subspaces
(Galaktionov and Svirshchevskii, 2007) which for delay differential equations re-
quires additional restrictions. This approach was also applied by the authors of
(Polyanin and Zhurov, 2014e) to the delay reaction-diffusion equation (and pair
of equations) (Polyanin and Zhurov, 2013; Polyanin and Zhurov, 2014a; Polyanin
and Zhurov, 2014b; Polyanin and Zhurov, 2014c; Polyanin and Zhurov, 2014d;
Polyanin and Zhurov, 2014f; Polyanin and Zhurov, 2014g; Polyanin and Zhurov,

2015).



Throughout the years, many methods for obtaining exact solutions of dif-
ferential equations instead of approximating solutions have been developed. One
of them is the group analysis method. Group analysis was initially introduced in
the 1870s by a Norwegian mathematician, Sophus Lie. He found a new method
for integrating differential equations. This method is universal and effective for
solving nonlinear differential equations analytically. It involves the study of sym-
metries of differential equations, with the emphasis on using the symmetries to
find solutions. The theory of group analysis has been applied to both ordinary
and partial differential equations in (Ovsiannikov, 1978; Olver, 1986; Ibragimov,
1999) and more mathematical models (Ibragimov, 1996). One of its applications to
differential equations is the problem of group classification of differential equations.
Group classification means to classify given differential equations with respect to
arbitrary elements. The group classification problem of differential equations was
first formulated by Lie (Lie, 1883). He has given a classification of ordinary dif-
ferential equations in terms of their symmetry groups, thereby identifying the full
set of equations which could be solved or reduced to lower-order equations by this
method.

In this thesis, the group analysis method is used, which is used not only for
solving differential equations, but also for developing new models. The approach
for applying group analysis to partial differential equations with simple (constant)
forms of delays was introduced in (Tanthanuch and Meleshko, 2004; Meleshko,
2005; Grigoriev et al., 2010), and the method for constructing and solving deter-
mining equations was presented in (Tanthanuch and Meleshko, 2004). They show
that the presence of a symmetry in a delay differential equation allows finding an
invariant solution and reducing the number of independent variables of the equa-

tion, which is similar to the theory for partial differential equations. However,



at present, there are no results related with applications of group analysis to the
time-varying delay differential equations. It should be mentioned here that the
study of time-varying delay differential equations is a new area in the theory of

the group analysis method.

1.4 Klein-Gordon Equation With Delay

In this thesis the nonlinear delay Klein-Gordon equation of the form
uy = Au~+ g(u, u) (1.3)

is studied by the group analysis method, where u(t,z,xo,...,2,) = u(t —
7(t), z1, g, ..., x,), T(t) depends on ¢ and 7(t) > 0.

The Klein-Gordon equation plays an important role in mathematical
physics. This equation was deduced in the 1920s and 1930s independently by
Oskar Klein (Swedish physicist) and Walter Gordon (German physicist). The
Klein-Gordon equation is a fundamental equation in relativistic quantum mechan-
ics and quantum field theory. The nonlinear Klein-Gordon equation without delay
has the form

u(z,t) = Au(z, t) + g(u(zx, t)). (1.4)

It is well known that the Klein-Gordon equation (1.4) is used to model many dif-
ferent nonlinear phenomena, including the propagation of dislocations in crystals
and the behavior of elementary particles and of Josephson junctions (see (Drazin
and Johnson, 1989) Chap. 8.2 for details). It has also been the subject of detailed
investigation in studies of solitons and nonlinear science in general. It is probably

best known as the sine-Gordon equation

Uy — Au + sinu = 0,



although it also appears with F(u) = sinhu, polynomial F'(u), and other non-
linear functions. Details of existence, uniqueness, and other analytic properties
of solutions of equation (1.4) can be found in (Polyanin and Zaitsev, 2012; Bul-
lough and Caudrey, 1980; Novikov, 1984; Grundland and Infeld, 1992; Zhdanov,
1994; Andreev et al., 1998), and a more general discussion, including applications
and numerical approximations, can be found in (Drazin and Johnson, 1989) and
(Dodd et al., 1982). According to the fact that the system does not respond to
an action immediately at the time ¢ when the action is applied, as in the classical
local-equilibrium case, but at a relaxation time 7(t) later, one therefore considers
it necessary to study equation (1.3) with time-varying delay. This leads to the

one-dimensional nonlinear constant delay Klein-Gordon equation of the form

Uy = Ugy + g(uyﬂ)a (15)

and the two-dimensional nonlinear Klein-Gordon equation with time-varying delay
of the form

Ut = Ugy T Uy J= g(u, ﬁ), (16)

where u(t,z) = u(t — 7,2), 7(t) is constant in equation (1.5), in equation (1.6)
u(t,z,y) = u(t — 7(t),x,y), 7(t) depends on t and 7(t) > 0, which denotes the

time-varying delay.



CHAPTER 11

GROUP ANALYSIS

Before discussion of the main research in the Chapter IV, some background
and basic concepts of group analysis are presented here. In 1870, a Norwegian
mathematician, Sophus Lie, introduced the theory of continuous transformation
groups that are now known as Lie groups. The main concept of the group analysis
method for constructing exact solutions of differential equations is the concept of
admitted Lie group. This method is a successful method for integration of linear
and nonlinear differential equations. Many results obtained by this method are
collected in the Handbook of Lie Group Analysis (1994), (1995), (1996). Group
analysis was also applied to integro-differential, stochastic and delay differential
equations in (Grigoriev et al., 2010).

In this chapter, some background of Lie group analysis is reviewed such as
a one-parameter Lie group of transformations, canonical Lie-Béacklund operators,
determining equations, Lie algebra of generators, classification of subalgebras. In

the last section, notions of invariant solutions are presented.

2.1 One-parameter Lie Group of Transformations

Let g : V x A — V be an invertible transformation, where V is the set
of variables z = (z,u). Here z = (z1,...,x,) is the set of independent variables,
and u = (ug,...,u,) is the set of dependent variables. Furthermore, A C R
is a symmetric interval with respect to zero. The variable a is considered as a

parameter of the transformation g, which transforms the variable z = (z,u) into



10

z = (Z,u) of the same space.
Let g(z;a) be denoted by g¢,(z). The set of functions g, forms a one-
parameter Lie group of transformations of the space V' if the following properties

hold:

1. go(z) = z for any z € V;
2. 94(90(2)) = gasp(z) for any a,b,a+b € A and z € V;
3. if go(2) = z for any z € V, then a = 0; and

4. g€ CH(V x Q).

For a Lie group define a set of functions

The operator

X = ('(2)0,, (2.1)

is called an infinitesimal generator of the Lie group.
A Lie group of transformations (2.1) is completely defined by the solution

of the Cauchy problem:

dz _
da ¢(2) (2.2)
Z]a=0 = 2. (2.3)

Here the initial data (2.3) are taken at the point a = 0. Equations (2.2) are called
Lie equations. The Lie Theorem establishes a one-to-one correspondence between
the Lie group of transformations and the infinitesimal generator (2.1).

The space Z = R™x R™ is prolonged by introducing the additional variables

p = (pl). Here, a = (a1,9,...,q,) is a multi-index. For a multi-index the



11

notations |a| = ag + ag + ... + ) and a,i = (g, ag, ooy i1, @ + 1, g, o )

are used. The variable (p’)) plays the role of a derivative

olalyd lalyd
C gz 9r{rOox?...0xen

The space J! of the variables
T = (xZ)v U= (uj)a b= (Pé)
(1=1,2,..,n;5=1,2,...m;|a| <)
is called the | — th prolongation of the space Z.
Definition 2.1. The generator
X :X+an; iy (G=12,...m;]a| <),

7,

with the coefficients:
Moy = Dl = Y ok D€', (la] <1-1) (2.4)

is called the [ — th prolongation of the generator X, where X = £'0,, +170,,, and

D, are the total derivative operators with respect to xy:

Dy, 0 +Y Pl

8$k -
MaLes

0
E=1,2,..
apév ( )<y 7n)7

and 70 = /.

2.2 Canonical Lie-Backlund Operators

Consider operators of the form

fi a + a a
ox; T oue
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where £ and 7 depend on the independent variables z, the dependent variables
u, and finite set of their derivatives. The prolongation to all derivatives is

o Lo .0 . 0

. N a0 a 2.6
Com T g T g g, .
where
X akucx
U . =
1.2 8$zlaxlzax’k ’
¢ =Di(n* — &ug) + &ug, (2.7)

D= Di1Di2 (77a - é“ju})z) + gjua

1112 ji1i27

Definition 2.2. An operator given by formula (2.6) and (2.7) is called a Lie-

Backlund operator.

The Lie-Bécklund operator (2.6) is often written in the abbreviated form

Jrnai + ... (2.8)

.0
X R4 ou®

al’i
Definition 2.3. Two Lie-Backlund operations X; and X5 are said to be equivalent

if X, — X, = &iD;.

Definition 2.4. The operators of the form

9,
+ ¢ + ..

Y —
b oud

T oue
are called canonical Lie-Backlund operators.

Any Lie-Béacklund operator X is equivalent to a canonical Lie-Backlund

operator with the coefficients (Ibragimov, 1999).

¢ = — €I

o — D.(ce
G (<) 29)
& =D; D,

1112
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2.3 Determining Equations

Relations between differential equations and Lie groups are presented in
this section.

Consider a manifold
S ={(z,u,p)| F*,u,p)=0, (k=1,2,...5)},
which is defined by a system of partial differential equations:
F*(z,u,p) = 0, (k=1,2,...,5), (2.10)

where p are partial derivatives of u with respect to x. The manifold S is assumed

- i <56§§LF11)> -

A manifold S is said to be invariant with respect to the group of transformations

to be regular, i.e.,

(2.1), if every point of the manifold S is moved by transformations (2.1) into this
manifold S. Accordingly, if the Lie group of transformations (2.1) is admitted by
system (2.10), then system (2.10) is not changed under the Lie group of transfor-

mations.

Theorem 2.1. (Ovsiannikov, 1978) Differential equations (2.10) admit a Lie

group with generator X if and only if the following equations hold

gF%u%m =0, (k=1,2,..5), (2.11)
(S)

where )l( 1s the prolonged operator of the generator X ; the notation \(5) means that

the relations )Z(Fk are evaluated on the manifold S.

Equations (2.11) are called determining equations.
The algorithm for finding a generator X of a Lie group admitted by differ-

ential equations (2.10) consists of the following steps:
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1. Form the admitted generator
X = &2, )0y, + 7 (2, u) 0y
with unknown coefficients &' (z, u), 7 (z, u).

2. Construct the prolonged operator X. The coefficients of the operator X are
! !

defined by formula (2.4).
3. Apply the prolonged operator X to each equation of the system (2.10).
!
4. Split the determining equations with respect to the parametric derivatives.

5. Solve the over-determined system of equations. The solution of the deter-

mining equations give us the coefficients of an admitted generator.

2.4 Lie Algebra of Generators

Let

Xi = C2(2)0,., (i=1,2) (2.12)

7

be two infinitesimal generators. The generator

with the coefficients
G = X1() — Xa(CY),

is called a commutator of the generators X; and Xs. It is denoted by
X3 = [X1, Xyl

The operation of commutation satisfies the properties:
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(1) bilinearity:
[aX; + X5, X3] = a[X1, X3] + [ X2, X3,
[X1, Xy + BXs] = a[ Xy, Xo] + B[X1, X5],
where o and [ are arbitrary constant,
(2) antisymmetry: [X7, Xo] = —[Xo, Xi],

(3) the Jacobi identity:

[[X1, Xo], Xs] + [ X2, Xs], Xu] + [ X5, Xa], X5] = 0.

Definition 2.5. A vector space L with a commutator operation satisfying these

properties is called a Lie algebra.

Definition 2.6. A vector space of generators L is a Lie algebra if the commutator

[X,,, X,] of any two generators in L belongs to L.

Theorem 2.2. (Ovsiannikov, 1978) A commutator is invariant with respect to

any change of variables.

Theorem 2.3. (Ovsiannikov, 1978) The operator of prolongation commutes with

the operation of taking a commutator.

Theorem 2.4. (Ovsiannikov, 1978) If a system (S) admits generators X and Y,

then it admits their commutator [X,Y].

The latter theorem means that the vector space LS of all admitted gener-
ators is a Lie algebra (admitted by the system (S)). This Lie algebra is called a
principal algebra. To construct exact solutions one uses subalgebras of the admit-
ted algebra.

Let L be a Lie algebra of generators.
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Definition 2.7. A vector subspace L' C L of Lie algebra L is called a subalgebra

if it is a Lie algebra.

In other words, for arbitrary vectors X, and X, from L', their commutator

(X, X,] belongs to L.

Definition 2.8. Let I C L be a subspace of Lie algebra L with the property,

[ X,Y]el, VX elandVY € L. The subspace I is called an ideal.

2.5 Classification of Subalgebras

Since any solution of a system of differential equations is mapped by a trans-
formation from admitted Lie group into a solution of the same system, the problem
of separating solutions into classes of essentially different solutions appears.

A linear one-to-one map f of a Lie algebra L onto a Lie algebra K is called

an isomorphism if
f([XquV]L) - [f(Xu)> f(XV)]K7

where the indices L and K are used to denote the commutator in the corresponding
Lie algebra. An isomorphism of L onto itself is called an automorphism. The set
of all subalgebras can be classified with respect to automorphism.

Let L, be an r-dimensional Lie algebra of generators with a basis
X1, X5, ..., X,, then

(X, X,] = ), X

=c,
for any two generators X, and X,. The constants cfw are called structure con-
stants.

Notice that two Lie algebras are isomorphic if and only if they have the

same structure constants in an appropriately chosen basis.
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For any X € L,, then

X=z,X

p g

Hence, elements of L, are represented by vector x = (11, 29, ..., 7). Let L2 be the

Lie algebra spanned by the following operators:

0
E,= c;\“,xl,a—x)\, =12 ..r

The Lie algebra L2 generates a group G* of linear transformations of z,,. These
transformations determine automorphisms of the Lie algebra L, known as inner
automorphisms. This set is denoted by Int(L,). Accordingly, G is called the
group of inner automorphisms of L,. Two subalgebras L, and L, of L, are called
similar, if one can be transformed to another by an element of Int(L,). Similar

subalgebras of the same dimension compose an equivalence class.

Definition 2.9. The set of all classes (one representative from each class) is called

an optimal system of subalgebras.

Thus, the optimal system of subalgebras of a Lie algebra L with inner

automorphisms A = Int(L) is a set of subalgebras © 4(L) such that:

1. there are no two elements of this set which can be transformed into each

other by an inner automorphism of the Lie algebra L.

2. any subalgebra of the Lie algebra L can be transformed into one of subalge-

bras of the set ©4(L).

It is known (Ovsiannikov, 1978) that the problem of finding all automor-
phisms is reduced to the problem for finding automorphisms A, for the basis

vectors y = ¥, (k=1,2,...,5):

S VS WS WP _
58 =% Timo =17, A=1,2,...,7).
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Here {e*}7_, is the canonical basis in R". The automorphism Aj corresponds to

the Lie group of transformations with the generator
TN Opr.

Calculations of an optimal system of subalgebras is easy enough for low-
dimensional Lie algebras (Patera and Winternitz, 1977). For high-dimensional Lie
algebras one can use a two-step algorithm (Ovsiannikov, 1993). This algorithm
reduces the problem of constructing an optimal system of subalgebras with high
dimensions to a problem with low dimensions.

Assume that the Lie algebra L is decomposed into L = I & F, where [
is a proper ideal of the Lie algebra L and F' is a subalgebra. The set of inner
automorphisms A = Int(L) of the Lie algebra L is also decomposed A = A;Ap,
where A; and Ap are subsets of A which correspond to the elements of I and F',
respectively, as follows.

Let z € L be decomposed as © = x; + g, where x; € I and xp € F. Any
automorphism C € A can be written as C' = C;Cp, where C; € A; and Cr € Ap.

The automorphisms C; and Cr have the following properties:
Crxp = TF, Vrp € F, VC; € A[,

Crx; EI, Craxp EF, Yar E[, Vg EF, VCF € Ap.

At the first step, an optimal system of subalgebras ©4,.(F) =
(F1, Fy, ..., Fy, Fpq) of the algebra F' is formed, here Fj, ; = {0} and the optimal
system of subalgebras © 4, (F') is constructed with respect to the automorphisms
Ap. For each subalgebra F; of F, (j =1,2,...,p+ 1), one has to find its stabiliser
St(F;) C A as

SU(E,) = {C € AIC(F)) = F}).
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Note that St(Fp41) = A.

The second step consists of forming optimal system Og;,, (I F;), (5=
1,2,....,p+1). The optimal system of subalgebras © 4(L) of the Lie algebra L is
a collection of @Stpj (I ® Fj), (j=1,2,...,p+1). If the subalgebra F' can also be

decomposed, the two-step algorithm can be used for constructing ©4,.(F).

2.6 Invariant Solutions

For a system S of partial differential equations (2.10), the coefficients of
an admitted generator are found by solving the determining equations. Then one
may obtain the transformation group G admitted by solving the Lie equations.

Let H be a subgroup of G.

Definition 2.10. A solution u = U(z) of equations (2.10) is called an H —
invariant solution of the system S if the manifold v = U(z) is an invariant

manifold with respect to any transformation by elements of the group H.

Let H be the r — parameter subgroup generated by the generators

.o, 0

X, =g Ll
v o S M

(2.13)

where 1 =1,2,..n, v=1,2,..rand j = 1,2,....m. Let k = rank(¢’, ), then H

v

has n + m — k functionally independent invariants

Ji(z,w), Jo(z,u), oy Jnrm—r(z,10).

0Jg(x,u)
ou™

Suppose that rank( ) = m, where 8, « = 1,2,...m. Then, setting
UB = J@((L’,U), )\l = Jm+l($,u),

where 5 =1,2,..m and [ = 1,2,...n — k, one can write the representation of the

invariant solutions of the system S in the form

v =@ (A, N AR (B =1,2,..m),



where ¢? is some function of its variables.
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CHAPTER III
ADMITTED LIE GROUP OF DELAY

DIFFERENTIAL EQUATIONS

For group classification of delay differential equations, the method of con-
structing and solving determining equations for constant delay was presented
by Tanthanuch and Meleshko (Tanthanuch and Meleshko, 2002). In Meleshko
and Moyo (Meleshko and Moyo, 2008), this method was applied to the reaction-
diffusion delay partial differential equation, where a complete group classification
of the equation was obtained. Further applications of group analysis to delay dif-
ferential equations can be found in Pue-on and Meleshko (2010) and Tanthanuch
(2012). However, at present, there are no results related with the application of

group analysis to time-varying delay differential equations.

3.1 Time-Varying Delay

This section is devoted to studying a change of a delay differential equation
with a time-varying 7 = 7(t) under a Lie group of transformations. For the sake
of simplicity, one considers here that v = wu(t,z). For the more general case
u = (ug,us,...,u,) and u; = u;(t,x1,x9,...,x,), where (i = 1,2,...,r), a similar
approach can be applied.

One starts the study from a Lie group of transformations:
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with the generator

0 0
X = n(tv'rau)a + g(taxvu)% + C(t,l’,U)%

If ug(t, z) is some function, then the transformed function is

ut,z) =9 (Tt &,a), X (1, &,a),u (T(t,2,a), X (,3,a)) ;a),

where
Y a)vX(%:j?a)?uO (T<£%>a)7X(££7a))7&)a (3 1)

and
(3.2)

If 7(t) is some delay function, then
7=t z,ul,z);a) — et z,ult-, v);a),

where t_ =t — 7(t). Thus, the prolongation of the generator of the Lie group for

the delay parameter 7 is
0
(3.3)

a+€£+<’ﬁ+ _
oz " “ou ' Por

where p = p(t, z,u,t_,u_) =n(t,z,u) —n(t_,z,u_).
Here it is assumed that all functions are defined. Later, when the deter-

mining equations are constructed, this requirement will be omitted.

Differentiating identities (3.1) with respect to a and setting a = 0, one has

(,,4));0))j=0

S

Lo

jja (aiaa)vu()(T(aj:aa)?
0
da

S

a)?

(T(;f\, x, a))\a:o + 77(?, z, UO(%: z)) =0,
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Hence,

(3.4)

S

(X(a i” CL)) |a=0 = —5(7?7 5%7 u0<%\7 ‘%))

Since the transformed functions are defined as follows

~p(T(t,#,0) = 7(T(t,&,0)), X(T. 2.0), uo(T(L, &.0) — (T (1, &,0)), X (£, 2,0)); a).

Because of the requirement that a solution of equation (1.3) is mapped
into a solution of the same equation, one has 7(1) = 7(¢). After differentiat-
ing this equation with respect to a, setting a = 0, and using T(;f\, T,a)0=0 = ?f\,

X(t,%,a)|q—0 = T, one obtains

L GD) 1 = (1= O, w00 2)) — (T (D), 2, uo(T— (7). 2)) = 0. (3.5)

Identities (3.1) imply that

~ -~

i—#() =

-~ ~

X (T(?_ ’7\:6\)7 j:7 a’): X(t - ’7\:6\)7 JA}? CL), Uo (T(?_ ?6\)7 ‘%7 a)7 X(t - ?6\)7 ‘%7 a)) ) CL) .
Differentiating these equations with respect to a, setting a = 0, and using the

identity (3.5), one has

da
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and
D XE 7). 2.), = € (7@, 0m (- 70.8)) . (37)
Because of
Ut ) = (T 2,a), X (£ &,a),uo (T &, a), X (£, 4, a)) ; a)
one gets
ut—7(t), &) =

Hence
0 , o~ . ~ . ~ N~ ~ .
% (u(t7 x))\azo = €<t7 iv uO(ti\x)) - Ti(]t(t7 5’3')77(757 z, u0<t7 %)) (38)
_qu(tv :i.)g(t7 3?7 u0<t7 j))
and 5
P (a(t —7(t), )) 00 = ((t=7(t), &, uo(t — (1), ))
—ugy(t = 7(8), 2)(1 — 7/ (0))n(F, &, uo(t, £)) (3.9)
u0x(t —T(t),a:) (tA T(t ) T uo(t — T(t) z)).
Let u(t,2) = u(t — 7(t), &) and @o(t, z) = ug(t — 7(t), x), then
toi(t &) = ugi(t — 7(8),8)(1 — 7'(2))
and
uw(f T) = uog,,(? T(t), )
Therefore,
9 @@ -70), x)) (a@ ), _ = (=), & w00, 2))
da =0 Ga T om0 " (3.10)
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and
a ~ o~ L a a ~ 7 A a a ~/ 7 A
5 600,y = 51 (55 00 O (2 0 20m)
In a similar way, one has
0 .~ O (0 ,_~.
da <Ug(t,$))|a:0 = 9 (% (u( >$))|a:0) )
0 ,~ ~. 0 (0 ,_~.
e @0 2), = 5 (4 (W), )
and

0 A 0 (0 ,_~
9a (T/(t>)\a:o ~ g (% (T(t))mzo) =0.
Therefore, one derives the prolongation of the canonical Lie-Backlund which

is equivalent to the generator X:

X = "0y + (%04 + ("0, + (%0,
(3.11)
O, (O + (0 (0

Uz

+

where the coeflicients are

¢ =ty ult,x) =t @)t @, u(t, x) — e (t, 2)E(E 2, ult, 7)),
C* =t —7(t), w,ult — 7(t),2)) — @(t, 2)n(t, v, u(t, z))
—uy(t, )E(t =7 (1), x, ult — 7(t), ),

(" =Dy (¢"), (" =Dy (¢"), ¢" = Dy (¢"), (" = Dx (¢"),
¢t =Dy (Dy(¢"), (" = Dx (Dr (¢"))

with a(t,z) = u(t — 7(¢),x), Dy and D, are the total derivatives with respect to

variables t and x, respectively.

Notice that the coefficient 7(¢, z, u) has to satisfy the condition (3.5):

(1—7'(t)nt, z,ult,x)) =n(t —7(t), z,u(t — 7(t), x)). (3.12)
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In the particular case where the delay term 7(t) is constant, equation (3.12)

becomes 7(t, z,u(t,x)) = n(t — 7, z,u(t — 7,x)), which implies that

a ~(F = 5 N A T A
% (u(t — T,m))lazo =((t—T1,2,up(t — 7,2))
_UOt(tA— T, @77(?— T, T, uo(tA— T,1)) (3.13)

_UOI(%\_ T, ﬁj)f(?_ T, -%7 uO(%\_ T, jj))
by equation (3.9) and g = 0 in (3.3).
Hence, under this case, one gets the prolongation of the canonical Lie-

Backlund which is equivalent to the generator X:

X = Cuau + Cﬁaﬂ + CUt aut + Cuz a’l.tz
(3.14)

+¢" 0, + ("0, + (" Dy + (" Oy, + e
where the coefficients are
¢" = C(tmut, o)) —w(t, o)t o, ull, o)) — ua(t, ©)E(E @, ult, ©)),
C=((t—T1,x,u(t —1,2)) — w(t,z)n(t — 7, z,u(t — 7,2))
—Uy(t, 2)E(t — 7, 2, u(t — 7, 7)),
¢" =Dy (¢"), ¢" =Dy (¢"), €™ = Dy (¢"), ™ = Dy (¢"),
¢t =Dy (Dy(¢")); ¢+ =Dy (Da (¢"))

with a(t,x) = u(t — 7,2), 7 is constant, D; and D; are the total derivatives with

respect to variables ¢ and z, respectively.

3.2 Equivalence Lie Group of Transformations for Con-

stant Delay

Most differential equations include arbitrary elements: constants and func-

tions of the independent and dependent variables.
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Definition 3.1. A transformation of the independent and dependent variables as
well as the arbitrary elements is called an equivalence transformation of a system
of differential equations if it preserves the differential structure of the equations

themselves.

Definition 3.2. If a set of equivalence transformations of partial differential equa-
tions composes a Lie group of transformations, then the Lie group is called an

equivalence Lie group.

For finding an equivalence Lie group of partial differential equations one
can apply the infinitesimal approach (Ovsiannikov, 1978)*.

For delay differential equations, the notion of an equivalence Lie group was
introduced in (Meleshko and Moyo, 2008; Grigoriev et al., 2010): it is a Lie group
corresponding to an infinitesimal generator which satisfies determining equations.
This Lie group of transformations provides a set of potential equivalence transfor-
mations. Notice that for partial differential equations these transformations are
simply equivalence transformations.

For the sake of simplicity, one considers a one-dimensional dependent vari-
able u € R!.

The class of considered differential equations with time delay is of the form
FF(t,z,u,t,p,0) =0; (k=1,2,...,5), (3.15)

where t and z are both the independent variables, u = u(z,t — 7), T is constant,
p are derivatives of u with respect to x and ¢ = ¢(t, z,u,u) is arbitrary function.

Denoting v(t, z) = u(t, x), one gets a class of differential equations

G*(t,z,u,v,p,¢)=0; (k=1,2,...,5+1), (3.16)

*Generalization of this approach is given in (Meleshko, 1996)
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where G¥ = F¥ for k=1,2,...,5, G**' =4 — 0.

Here (t,z,u,v) € V. C R+l and ¢ : V — R. The problem is to
construct transformations of the space R (¢ o u, v, ¢) which preserve the
equations by changing only the representatives ¢ = ¢(t, x, u,v). For this purpose,
a one-parameter Lie group of transformations of the space R+ (¢ o o v, @)

with the group parameter a is applied
’t\/: ft(t,x,u,'U,(b;a), %/:fl’(t7x7u7v7¢;a’)7

U= fult,z,u,0,¢;a), &= fO(t,x,u,v,¢;a).

The generator of this group has the form

X =70 + €0y + 100 + 1°0, + 1°0s, (3.17)
where the coordinates of the generator X¢ are

v=t7u0,9), & =E,u0,9),

Nt =n't, z,u,v,0), 1" =n"tx u9,0),

n® = n®(t, x,u,v, ),

Notice that earlier (Ovsiannikov, 1978), it was assumed that
o 'y Ty T Dy
(t=1,...,n).

0,

The canonical Lie-Backlund operator equivalent to the generator X¢ is
X€ = 40, + €0, + C20,. (3.18)
Here the coordinates are

Cu = nu - uflizgl — Uy, Cv = 77U - Uxigi — VY,

¢* =1"—€D5,¢ —Di ¢,
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where

Df\ =0\ +u\0, + ((bUU)\ —+ ¢,\)8¢ + ...

The determining equations are
XeGE(t, z,u,0,p,0)i) =0, (k=1,2,...,5+1), (3.19)

where the sign |[S] means that the equations X °G*(z,u,p, ) are considered on any
solution of equations (3.16). Here, X¢is the prolonged generator of the equivalence
Lie group. Because equation (3.16) does not depend on differentiating of ¢ with

respect to variables ¢, x;, v and v, then X°¢ has

X = X4 "0y, + "0y, + ("D,
+C’UI’L 8111L + thautt + Cuzﬂj au%zj + ceny

where
(U = D5, ¢, (M = D ¢, (= DCP, G = DY, (= DiC... (3.20)

Noting that ~, &, n* and n° do not depend on ¢, one derives that the

coefficients of the prolonged generator of the equivalence Lie group become
(" = Dy, ¢, ("% = Dy (", ¢ =Dy, ("= Dty (M= Dyt (3.21)
where D,, and D, are operators of the total derivatives with respect to x; and ¢,
respectively.
3.3 Determining Equation of The Time-Varying Delay
Let the system of delay differential equations be of the form

FF(t,z,u,i,p) =0; (k=1,2,...,5). (3.22)
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Consider a one-parameter Lie group of transformations of the space R (¢, z, u)

with the group parameter a is given by
t = fYt,z,u;a), T = f°(t,z,u;a), u= f(t,z,u;a).

The generator of this group has the form

.90

0
+n C%, (3.23)

where the coordinates are

Sl = gz(t7 I? u)’ 77 i n(t7$7 u)? C = C(t’ x?“)?

The determining equations are defined as follows
XFFt z,u,a,p)|i5 =0, (k=1,2,...,5), (1L =7'(t)n=1. (3.24)

Here, X is the prolongation of the canonical Lie-Biicklund operator equivalent to

the generator X, namely,

X'= 600 + ("0 + (" Oy + (40,
+Cuzt8utt + Cuzﬂj 8uzizj + ot
where the coefficients
¢ =C—up & —um, "= — U, & — g,
Cuzi = leguv Cuzizj = DxiCqua
¢U = DiC", ¢ = D (™,

The sign bar over a function f(z,t,u) means f(x,t) = f(z,t—7(t),u(z,t —

7(t))). In particular, for a function 7(z, ¢, u) it is defined as n(z,t — 7(¢t), u(z, t —

(1) -



CHAPTER IV
GROUP ANALYSIS OF THE
ONE-DIMENSIONAL NONLINEAR
KLEIN-GORDON EQUATION WITH

CONSTANT DELAY

In this chapter, a complete Lie group classification of the one-dimensional

nonlinear delay Klein-Gordon equation

Ut = Ugy + g(u7 ﬂ)./ gﬂ(uv ﬂ) 7& O’ (41)

where @ = u(t — 7, x), 7 is constant, is presented. For group classification it is also
necessary to use the equivalence Lie group of equation (4.1) which is presented in
the next section. In further sections the determining equation is derived and its
general solution is found. Then the complete group classification and representa-

tions of all invariant solutions are obtained.

4.1 Equivalence Lie Group of Equation (4.1)

To simplify the study, introduce the new dependent variable v, which is

related with u by the formula
v(x,t) =u(x,t — 7). (4.2)

Equation (4.1) becomes the partial differential equation with two dependent vari-

ables
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where the arbitrary element is ¢ = g(u,v). The generator of the Lie group of

equivalence transformation takes the form
X = fax + nat + Cau + Cvav + ggaga

where &, n, ¢, (¥ and (7 are functions of the variables ¢, z, u, v and g.

The Lie-Bécklund form of this generator is
X¢ = ("0, + ("0, + (0,
where
"= qup — nuy
(" =¢7 =&Drg —nDig
¢t = 6" — &ug — nuy.

The prolonged operator for the equivalence Lie group is

TT

X€= X (W00, + 00, + Dy + (D

Applying the algorithm described earlier to equation (4.3), one obtains the

determining equation

(X (= (e + 9))) oy =0
or
(¢" = ¢"* — ¢ + €D, g+ nDig),5) = O, (4.4)
where
¢" = DY(C = &uy — nuy), "= = D3(C — Eug — nuy), (4.5)

D, and D, denote the total derivatives with respect to x and ¢ respectively.

The determining equation related with the equation (4.2) is

{C(2(t,2)) = C(2(t = 7,2)) — w(t, ) (§(2(t, ) — E(=(t — 7, 2)))

—vg(t, @) (n(z(t, @) —n(=(t — 7, x)))h(S) =0,

(4.6)
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where
2(tx) = (&, ult, x), 0(t, x), g (ult, ©), v(t, x)))
Substituting the coefficients (4.5) into (4.4) and replacing the derivatives

Ut = Uge TG, UVt = Vzz TG, Utz = VzGo + GulUz + Ugzy,
Uttt = VtGy + Gult + Ugat,

found from (4.3), the determining equation (4.4) becomes

—20ustf — 20 UsVy — Mty — 2Uae — 207G — 2Nu0Ug Vg + 200 Uglip Uz
T2 Uty — Myl + DUy — 3Gt — 20U Ug + 27Utz + 2 UV
— Mool V7 + NowtheVs — 20uG0r — oGl + 21 UiaVe — 20pleaVt + Naglly + 2atiie
=28y lytly — 2E0tUgVy — Eplly — 264tUtn — 2600 UlpVsy + 2600 UaVe + 260 U2
—Eun iUy + Euu) — Eugtiy — 284Uty + 26, Ugplly + 2600UaVp — Epplip V]
FEollaVs — 26,GUs — 2651V — 26411V + 26 Uag Ve + Eaplle
+28 U + 2Curtts + 2V + Cor + 2Cuotte Ve — 2CuplUaVs — 2Cuz Uy
FCuutt] = Cuuty + CGug — 2Coa¥s + Gt} = GuVi + Gof — G — (7 = 0.

Splitting this equation with respect to u,, u;, v, v, Uz, Uy and g, one can obtain

—277t9 + Ctt + Cug — C:wc N Cg = 07 (47)
Ne = ft; Ty = 07 T = 07 = gwu €U = 07 fu = 07 (48)
Cuu = 07 Cum = 07 Cut = 07 CU = 0. (49)

From (4.8), one has

Nax = Nits Exw = Stt- (4.10)

The general solution of (4.9) is { = kju + (y, where k; is constant, and

Co = Co(t, ).

Splitting the determining equation (4.6) with respect to v,, v;, one gets

C’UZC_-J ,r]:ﬁJ §:g7 (4'11)
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where

C=CE—71)),§ = —72),1 =01 —T7,2))
The assumption that the function ¢ does not depend on t and z leads to the
equations (; =0, ¢, =0, ¢} =0, (¢ =0, which implies that {( = kju + k4. From
equation (4.7) one obtains (9 = —2n; + k; g, differentiating it with respect to  and
t respectively, one obtains 1, = 0 and 7, = 0. Equations (4.8) , (4.10) and (4.11)
give 1 = ko, & = k3, which implies that (9 = kyg.

Therefore
E=ks, n=koy, (=kiu+ky (9=Fkg.

Equation (4.6) becomes ("(z(t,x)) = kiv + ky. Hence the generators of the

equivalence Lie group are
X = ki XY + ko X5 + ks X3 + ku X + (0,
where

X{ =90y +udy, X5 =0, X5 =0y, X{ =0,

4.2 Admitted Lie Group of Equation (4.1)

This section is devoted to the study of admitted Lie groups of the one-
dimensional nonlinear Klein-Gordon equation with constant delay. For finding an
admitted Lie group, the algorithm for constructing determining equation of delay
differential equation is used in previous chapter. Let the generator of a Lie group

admitted by equation (4.1) be

where &, n and (¢ are functions of x, ¢ and u.
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The prolongation of the canonical Lie-Backlund operator equivalent to the

generator X is

X = ("4 + " Ouy + "0y + ("0 + (" Oy, + ("0g

T

where the coefficients are
¢ = C = ugf —wyn, (" = — € — Wi, ¢"* = Dy,
(i = DL, ¢ = Dyt ¢ = Dy
Here D, and D, are operators of the total derivatives with respect to x and t,
respectively, the bar over a function f(x,t,u) means f = f(z,t — 7, u(z,t — 7).
According to the algorithm for constructing the determining equations of

an admitted Lie group (Grigoriev et al., 2010), one obtains

(X(utt — (g + 9)))|(4,1) =0

or

(—=¢"* 4+ C" + guC" + gaC")ja1) = 0. (4.12)

It is assumed that equation (4.12) is satisfied for any solution u(x, t) of equation
(4.1).

Substituting the coefficients of the prolonged generator into the determining

equation (4.12), and replacing the derivatives found from equation (4.1) and its

prolongations

Ut = Ugg + G, Utz = UgGa + Guls + Ugpsr, Uttt = UGy T GulUs + Ugat,



36

the determining equation (4.12) becomes

F20uF + Mty + 20Uy + 2009 — 20z sl + Mo U — Ny U2

+3Nugus + 20uUiUar — 20Uzl — Mool — 27)pUte
+28uruity + Sty + 284U, — 2§uxu2¢ - fuuufux - fuuui
FEugUs + 26uUrlts — 28uUselle — Eaolle — 280Uns
—2Gurttr — Gt + 2Guzts — Cuuty + Cunts — Cug + Caw
+9uC + gl — galls + Galia€ — galial + gaC = 0.
Splitting this equation with respect to w,, u;, Uy, U, Uz, Uge, and using the con-

dition that gz # 0, one obtains

219 + guC + 9a€ — Gt — Cug + Caw = 0, (4.13)
n=1, £=¢ (4.14)

N =0, & =0, (4.15)

Nt = 8oy M = &t (4.16)

The general solution of equations (4.15) and (4.16) is

f(x,t,u) = 90(1' + t) + ¢(m - t)v 77(%757?0 = QO(I' + t) - ’17/)(1‘ - t)7

where the functions ¢ and v are arbitrary functions of a single independent vari-
able. Conditions (4.14) give that these functions have to be periodic with the

period T:

Remark. One can derive that if 1, = 0, then n and £ are constant.

From equation (4.17), one gets

C: Clu+<07
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where ¢; is constant and (o = (o(x,t). Equation (4.13) becomes

Cowe — Cout + €1 (ugu + Uga — g) + Cogu + Coga + 2mg = 0. (4.18)

Equation (4.18) is a classifying equation. For the kernel of admitted Lie
groups one has to assume that equation (4.18) is satisfied for any function g(u, u).

This gives that ¢; =0, (, =0 and 17, =0 . Hence
n = cx + c3,§ = ot + cu,

where ¢;, (i = 2,3,4) are constant. Substituting into equation (4.14), one has that

co = 0. Hence, the generators
Xl = ata X2 - asc

compose a basis of the kernel of admitted Lie algebras of equation (4.1).

4.3 Extensions of the Kernel

Extensions of the kernel of admitted Lie algebras are additional symmetries
to the kernel which are admitted by equations for a particular function g(u, ). In
this section the extensions are found.

Differentiating equation (4.18) with respect to u and @ respectively, one

obtains
CO.guu + &)guﬂ = —C (u.guu + agﬂu) - 277tgu (419>
CoGau + Cogan = —c1(Ugau + Ugan) — 2194 (4.20)

Equations (4.19) and (4.20) are linear algebraic equations with respect to {, and

Co. The determinant of the matrix of this linear system of equations is equal to

A= ggu — GuuYua-
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4.3.1 Case A #0

Since A # 0, one can find (, and ¢, from equations (4.19) and (4.20)

Co = —c1u + 2A7'(guGun — GuGau), (4.21)

Co = —c1t + 2A7"0(gaGuu — JuGau)- (4.22)

Differentiating equation (4.21) with respect to w and @ respectively, one

gets

9 A1 - J . 4 B
205 (A7 (ugun — gagun)) = 1, Mm=(A7(9ugan — gagan)) = 0. (4.23)

Notice that by virtue of the Remark and the first equation of (4.23), the extension

of the kernel of admitted Lie algebras only occurs if 1, # 0. Hence, for the existence

of the extension the second equation of (4.23) implies that
ATHgaGuu — GuGua) = D,

where hy = hy(u) is some function. Substituting the last expression into the first

equation in (4.23), one finds that
hi(u) = kiu + ko, 1 = 2mika,

where k; and kpg are constant. By virtue of the periodicity of 7, the last equation
gives that if k1 # 0, then 7, = 0. Thus, for the existence of the extension of the
kernel of admitted Lie algebras it is necessary to require that k; = 0, which leads
toc; =0 and

(9agau — Guguu) = kroA. (4.24)

Applying a similar study to the equation (4.22), one derives that

(gugﬁu - gﬂguu) - k20A7 (425)
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where koo is constant. Equations (4.21) and (4.22) become

Co = 2n4k1o, C_o = 2n,k0.

Because of the periodicity of  and the condition 7, # 0, one gets that kyg = kao.
Notice that for k19 = 0 equations (4.24) and (4.25) lead to contradiction of the
assumption A # 0. For kiy # 0 the general solution of equations (4.24) and (4.25)
1s

g=e™H(u— u),
where a = kj;' and H is an arbitrary function of a single variable. Notice that

A = —05262au(HH// o (H/)Q) 7& 0.

Without loss of generality one can assume that o = 1, which implies ko = 1.

Thus the set of admitted generators is
X = (plz+t)+v(x—1))0: + (p(z +1) —(z =)0 + 2(¢' (z +t) + ' (z — 1)) Ou,

where the functions ¢ and v are arbitrary functions of a single independent variable

and satisfy the condition ¢'(z +t) + ¢'(x —t) # 0.

4.3.2 Case A =0

Case 1: gzz #0

The general solution of the equation A =0 is

Gu = ¢(gﬁ)7 (426)

where ¢ is an arbitrary function of the integration. Equations (4.19) and (4.20)

become

(o9’ +Co+er(ug' +0) ¢ gaa = —2mo,  (Cod'+Cotci(ud’ +1))gaa = —2mga. (4.27)
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Excluding ¢, from the latter equations, one finds that

77t(9a¢/ - ¢) = 0.

Consider the case where gz¢' — ¢ # 0. This assumption leads to the condi-

tion 7, = 0. According to the remark, it implies that

77:6275203

where ¢ and ¢z are constants. Equations (4.27) reduce to

(Co + cru)¢’ = —((o + c1@). (4.28)

Notice that if ¢’ = 0, then the latter equation implies ¢; = 0 and (y = 0, which
means that there is no extension of the kernel of admitted Lie algebra. Hence, one
needs to study the case where ¢’ # 0.

Differentiating equation (4.28) with respect to @, one gets

(Co + 1) gan = —c1. (4.29)

Further differentiation of equation (4.29) with respect to ¢t and x, respectively, give

¢"Gor = 0, ¢"Gou = 0. (4.30)

Assume that ¢” # 0. This assumption leads to the condition that (y is
constant, say (o = k;. By virtue of the inverse function theorem, from equation

(4.28) one has
a+ Bu
a+ Bu

9a = h( ), (4.31)

where o and  are constant. Because of the condition gzz # 0 then g # 0.
Using the equivalence transformation corresponding to the generators Xy, one can
account that o = 0. Integrating equations (4.31) and using condition (4.26), one

derives that

gu,a) =uH(z) + ko, 2 =

NN

?
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where kg is the integrating constant, and H” # 0. Equation (4.18) becomes
kl(H + H/<]. - Z)) == Clko.

Since H” # 0, the latter equation gives that k; = 0, and for existence of an
extension of the kernel of admitted Lie algebras one needs to assume that kg = 0.
Thus

g(u,u) = uH/(

2|

)

and the extension of the kernel of admitted Lie algebras is given by the generator

Assuming that ¢” = 0, one obtains that there exist constants k; and kg

such that
Gu = k19a + ko, ko # 0.

By virtue of the condition ¢’ # 0 one has to assume that k; # 0. The general

solution of the latter equation is
g(u,w) = kou + H(a+ ku), (4.32)

where H is arbitrary function such that H' # 0. Notice that by scaling the
independent variables ¢ and = as well the delay parameter 7 one can assume that
ko = £1.

Equation (4.28) becomes
(Co + cru)ky + (Go + 1) = 0, (4.33)

which implies that ¢; = 0 and {, = —k;{;. Equation (4.18) is reduced to the

Klein-Gordon equation

Cott = Coza + KoCo-
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Thus, for the function (4.32), one obtains that if there exists a nontrivial

solution ¢(t,x) of the linear Klein-Gordon equation

Qtt = Quz + kOQa (434>

satisfying the condition

q(t — 7,7) = —kig(t, v), (4.35)

then the extension of the kernel is given by the generator
X3 =q(t,z)0,.

Notice that the set of functions g(u,u) for which there exists a nontrivial
solution of (4.34) and (4.35) is not empty*. For example, if k; = —eV 7, then
q = e~V® is a nontrivial solution of (4.34) and (4.35).

Let us consider the case where gz¢' — ¢ = 0. This means that
Gu = k194,
where k; is constant. The general solution of the latter equation is
g(u,u) = H(z), z=1u+ ku,

where p is a function of a single variable such that H” # 0. Equation (4.20)

becomes
/

= H
leO + <0 + Ci1z2 = _QUtﬁ (436)

Differentiating equation (4.36) two times with respect to z, one obtains

H "
m (F) = 0. (4.37)

*Some particular solutions of the linear Klein-Gordon equation can be found in Polyanin

A.D, Handbook of Linear partial Differential Equation for Engineers and Scientists, Chapman

and Hall/CRC, 2002
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The assumption (g—,/,)” # 0 leads to the condition that 7, = 0. From
equation (4.36) one gets ¢; = 0 and {; = —k1(p. Equation (4.18) is reduced to the

wave equation (o = (ope- Thus,
Co(t,x) = N(x —t) + G(x + t),

where N(y) and G(y) are arbitrary functions of a single variable satisfying the

conditions
Ny +71)+kEN(y) =co, Gly—1)+kG(y) = —co, (4.38)

with constant cy. The extension of the kernel of admitted Lie algebras is given by
the generator

X3 = Co(t, l)@u
Remark. The functions
N(y)=e %, G(y) =e"

and constants

]{31 = —e"’T, Co — 0

provide an example of such functions.

The assumption ( g,/,)// = 0 implies that

!

where a and 8 are constant. Since H” # 0, then az + § # 0. Equation (4.36)

becomes

k1o + Co + c1z = —2m(az + ). (4.40)

Splitting the latter equation with respect to z, one obtains

c1+2an, =0, ki(y+ C_o +2n:8 = 0.
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If a # 0, solving equation (4.39), one obtains

koln|z — B + ks
ko(z +B) + ks, k(k—1)#0,
where k = o' + 1, ky # 0 and k3 are constant.

By virtue of periodicity of n one has that n, = 0 and ¢; = 0. Equations

(4.18) and (4.40) become
k1Go +¢o =0, Cort = Cowa-
Thus, the extension of the kernel of admitted Lie algebras is given by the generator
Xs=(N(@x—1t)+G(x+1))0,,
where N and G are arbitrary functions of a single variable satisfying the conditions
N(y+71)+kN(y) = co, Gly—71)+kG(y) = —co,

for some constants ¢g.
The assumption a@ = 0 implies that § # 0 and ¢; = 0. The general solution
of equation (4.39) is

g = kae” + ks, (4.41)

where v = 7!, ko and k3 are constant. Here without loss of generality one can
assume that v = 1.
Substituting the function g of (4.41) into equation (4.13), and using the

relation that n(z,t,u) = p(z +t) — ¥(z —t), one gets

The general solution of the latter equation is

20(x,t) = ks ((x —t)p(z+ )+ (x+ O)p(x — 1)) +v(x +t) + plx — 1),



45

where v and p are functions of a single variable. Using the conditions that the

function ¢ and 1 are periodic with period 7, then

2 (Co + k1Go + 28m) = —ks((ky + Dw + 7)o (y) — ks((kr + 1y — 7)p(w) + v(y — 7)

+u(w +7) + ky (v(y) + p(w)) + 48 (¢'(y) + ¢'(w)) =0,

(4.42)
where w =x —t, y =x +t.
Differentiating equation (4.42) twice with respect to w, one gets
Ay (w) — ks((kr + 1)y — 7)¢" (w)
1" (w +7) + k'’ (w) = 0.
Splitting the latter equation with respect to y, one obtains that
ks(k + 1)¢" (w) = 0, (4.43)
489" (w) + k" (w) + 1" (w + 7) + kyp” (w) = 0. (4.44)
Integrating equations (4.43) and (4.44), one has
ks(k1 + 1) (w) = byw + by,
STV i (4.45)

48" (w) + katib(w) + p(w + 7) + kyp(w) = bsw + by
where b;, (i = 0,1,2,3) are arbitrary constants.
In a similar way, one obtains that the functions ¢ and v satisfy the following

conditions

ks(ky + 1 = —byy + bs,
3( 1 )90(9) 1Y 3 (4.46)

4B¢'(y) — ksto(y) +v(y — 7) + kv (y) = boy — ba.

Thus, the set of admitted generators is
X =(o(x+1t)+¢(@—1))0 + (p(x +1t) —Y(x —1))0; + q(x,t)0y,
where 1, 1 and @, v are solutions of equations (4.45) and (4.46), and

alt, ) = 5[~ksl(z — Dp(a + 1) + (o + )l — 1)) + vl(o+1) + plx — 1))
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Notice that for k3 = 0 and k; = —1 the function (4.41) is a particular case of the
function g(u,u) = e“H(u — u), hence, one can assume that k3 + (k; + 1)* # 0.
Case 2: g3z =0, guu # 0
In this case

g(u, @) = ki + h(u), (4.47)

where k1 # 0 is a constant and h” # 0. By virtue of equation (4.20), one finds

that n; = 0. According to the Remark, one has that

T]:CQ7§:C37

where ¢y and c3 are constants.

Equation (4.19) gives that ¢ = 0. Thus, in this case there is no extension
of the kernel of admitted Lie algebras.

Case 3: gz =0, guu =0

This case corresponds to a linear delay differential equation with
g(u, 1) = kiu + kou + k, (4.48)

where k, k1 # 0 and ko are constant.

Notice that the constant k£ can be reduced to zero by the change
~ 12'1 2 7
=u— — ko.
U=1Uu 5 T~ + Ko
Indeed, choosing the constants %1 and 12;2 such that
key(ky 4 ko) = 0, ki — ko(ky 4+ ko) = k
the function u satisfies the equation

ﬂtt - ﬂm + kl/l:L + kga

The determining equations reduce to the equations
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n=cy E=c3, (= +au,

where ¢, c3 are constant, and (y(t, x) satisfies the equation

Cort = Coaa + K10 + kaCo- (4.49)

The extension of the kernel is given by the generators X3 = ud, and X, =

C() (t, x)@u
In particular, if ky = kyeV*T 4 k. then (o = e~ Vhkot ig a particular solution

of equation (4.49).

4.4 Summary of the Group Classification

By the discussions of the previous section one obtains the following complete

group classification of the delay partial differential equation
Ut = Ugy + g(ua a)u

where g; # 0. The results of the group classification are presented in Table
4.1, where the function H is a function of a single argument, ¢ = ¢(x + t) and
1 = ¢(x — t) are arbitrary periodic functions; the functions ¥y = to(x — t) and
wo = wo(x +t) are also periodic, and satisfy conditions (4.45) and (4.46) with the
functions py = po(r — t), and vy = vo(x + t); the functions G = G(z + t) and

N = N(x —t) satisfy the equations

N(y+7)+kN(y) =c, Gly—7)+kG(y) = —co, (4.50)

for some constant cq, while the coefficients ¢;(¢, ), (i = 1,2, 3) satisfy the equations

Qe (t, ) = Quea(t, @) + koqu (t, ), 1(t —7,2) = —k1qa (¢, 2), (4.51)
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@t ) = —ks((z —t)po(z +1) + (x + 1)Yo(x — 1)) + vo(x + 1) + po(x — 1), (4.52)
Gaet(t, ) = aa(t, @) + kags(t, ) + kigs(t — 7, 2). (4.53)
Table 4.1 Group classification of the equation wy = uz, + g(u, @), (gz # 0).
No. g(u,u) Conditions Extensions
1 e"H(u — u) o +Y#0 (o +1)0,
+p =)0
+2(¢" +9")0,
2 uH (%) H"#0 u0y
3 kou + H(u + kyu) kok1H' # 0 q10y
4 H(a+ k) (Z)" +#0 (N +G)o,
5 koln|u + kyu — 8] + k3 (N+G)0o,
6 ko(uthku+B)+k  k(k—1)#0 (N+G) 0,
7T kpettRv 4k k24 (ki1 +1)2#0 (oo + 10)0,
+(0 — o) 0
+¢20,
8 kiu + kou ky #0 UOy, G304

4.5 Invariant Solutions

Invariant solutions are sought for subalgebras of the admitted Lie algebra.
All different invariant solutions can be obtained on the base of an optimal system
of subalgebras. Notice that for the cases 3 to 8 there is a generator of the form
q(t, z)0,. Usually such kind of generators are omitted in construction of invariant
solutions. However the use of these generators also provides invariant solutions.

This will be demonstrated further.
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4.5.1 Invariant Solutions of (4.1) with g(u,u) = e"H(u — u)

Consider the case where the function ¥ = 0. A representation of an invari-
ant solution is

u=In|p(x+1t)|+ h(x —1) (4.54)

where the function h is an arbitrary function. Substituting the representation of

the invariant solution into (4.1), one has
H(h(x —t+71)—h(zx—1t)) =0.

In particular, if the function h is periodic h(y + 7) = h(y), and H(0) = 0, then
(4.54) provides a solution of equation (4.1). Notice that (4.54) is a d’Alambert
solution of the wave equation with the additional property: the functions ¢ and h

are periodic.

4.5.2 Invariant Solutions of (4.1) with g(u, ) = uH (%)

u

1. Optimal System of Subalgebras

As the admitted Lie algebra defined by the generators
X1 =0y, Xo=0,, X3=u0,
is Abelian, an optimal system of one-dimensional admitted subalgebras consists of
{H;}, (i=1,2,3),

where

Hy = X1+ aXo+ X3, Hy= Xy +aX;, Hy= Xs,

with arbitrary constants o and (.

2. Invariant Solutions
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Notice that there are no invariant solutions corresponding to the subalgebra
Hs.

Case 1: Subalgebra H;. Solving the characteristic system related with
the generator Hy, one gets that a representation of an invariant solution is u =
#(0)ePt, where ¢ is a function of a single variable §# =  — at. For 3 = 0 this class
of solutions is called traveling wave. Substituting this representation of a solution
into equation (4.1) with the function g(u,u) = uH (%), it becomes

»(0 + ar)
o(0)

Case 2: Subalgebra H;. A representation of an invariant solution is

(0 = 1)¢"(0) = 2a8¢'(0) + ¢(6) (H ™) = 3%).

u = ¢(t)e*”, where ¢ is a function of a single variable. The reduced equation is

¢t —7)
(1)

In summary, the representations of all invariant solutions and reduced equa-

¢"(t) = o(t)(a” + H(

))-

tions are given in Table 4.2, where 6 = x — at.

Table 4.2 Invariant solutions for g(u, @) = uH(2).

No. Algebra Inv. solutions Reduced equation
1 H, u=a(0)e’ 1 (a® = 1)¢"(0) = 205¢'(0)
T (0) (H(Aen=m) — g2),

2 Hy  u=o(H)er  ¢'(t) = o(t)(a? + H(UED)).

4.5.3 Invariant Solutions of (4.1) with the Function ¢(u,u)

of Forms No0.3-No.6 in Table 4.1

For these functions the admitted Lie algebra L is spanned by X, X5 and
X3, where

X1 = 6’t, X2 = (996, X3 = q(t,x)au (455)
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The commutator table is

[7] Xl X2 X3

X 0 0 q:0y
Xo 0 0 g0,

X3 _Qtau _q:r;au 0

The requirement that L is a Lie algebra implies existence of constants a;

and a9 such that

q(t,r) = a1q(t, x), q.(t,r) = axq(t, x). (4.56)

The general solution of equations (4.56) is q(¢, z) = cel®1¥+22?) where c is constant
and ¢ # 0. Because X1, X5, X3 is a basis of Lie algebra L, one can choose ¢ = 1.
1. For Function g(u,u) = kou + H(u + kyu)

As q(t, x) satisfies relations (4.51), one derives that
k’g = CY% = O(g, k‘l = —(;’70[17, (457)

where a; # £as. For obtaining automorphisms one has to solve the Lie equations.

The automorphisms are:

Ay X3 = r3eM?

Ag i X3 = 1362 (4.58)

Az o3 =x3 —alaxy + aszs).
For obtaining an optional system of subalgebra one uses the two-step algorithm
(Ovsiannikov, 1993). Before constructing an optimal system, one studies the alge-
braic structure of the Lie algebra L. Consider the vector space L' spanned by the
operators {X7, Xo}. One can verify that it is a subalgebra of the Lie algebra L,
and the vector space I spanned by the operator { X3} is an ideal of the Lie algebra

L. Hence, the Lie algebra L is decomposed as I @& L'. Because the subalgebra L!
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is Abelian, an optimal system of one-dimensional subalgebras is
{K;}, (i=1,2),

where

K, =Xy, Ky =X+ pi1Xo,

with an arbitrary constant p.
According to the two-step algorithm for classifying Lie algebra L, it is

sufficient to consider the following forms of one-dimensional subalgebras:
Wl = {XQ + a13X3}, WQ = {X1 —|—p1X2 + Cl13X3}, Wg = {Xg},WO = {0}, (459)

where aq3 is constant. Here W corresponds to the ideal I.

For further study one needs to simplify (4.59) by applying automorphisms
(4.58).

First, consider the case ;.

Case 1: a;3 = 0. One gets the one-dimensional subalgebra {X5}.

Case 2: ay3 # 0. If ap # 0, then, using the automorphism As, a3 can
be changed to 0: one gets the one-dimensional subalgebra {Xs}. If ap = 0, then,
using the automorphism A;, a3 can be changed to e: one gets the one-dimensional
subalgebra { X5 + e X3}.

Consider the case Wj.

Case 1: aj + pias # 0. Using the automorphism As, a3 can be changed
to 0, this gives the one-dimensional subalgebra {X; + p; Xs}.

Case 2: a1 + pras = 0. One needs to consider a;3 = 0 and a;3 # 0. The
first case corresponds to the one-dimensional subalgebra { X; +p; X5}. The second
case, using the automorphism A,, one obtains the one-dimensional subalgebra
{X1 + ;1 Xo + X3}

The obtained above results are summarized as follows.
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Theorem 4.1. An optimal system of one-dimensional subalgebras of the Lie al-
gebra L with the basis generators (4.55) are
Hy = { X1+ p1Xo 4+ €Xs}), 4 anm0 Ho = { X2 +€X5},,
H3 = {X; +p1 Xo}, Hy = {Xo}, Hs = { X3},

where € = +1, py is constant and the symbol | means conditions.

Using the obtained optimal system of subalgebras, all invariant solutions
are analyzed below.

Notice that there are no invariant solutions corresponding to the subalgebra
H.

Case 1: Subalgebra H;. In this case, condition is a; + pyas = 0, and the

characteristic system is

dt  da du

1 - 1 - celanttasz)”

Solving the characteristic system, one gets that a representation of an invariant
solution is u = ee®?? 4+ ¢(0), where ¢ is a function of a single variable § = x — pt.
Substituting this representation of a solution into equation (4.1) with the function

g(u,u) = kou + H(u+ kyu), and using (4.57), one derives the reduced equation

(pi = 1)¢"(0) = (a7 — 03)d(0) + H(d(pi7 + 0) — ™17 ¢(0)).
Case 2: Subalgebra H;. A representation of an invariant solution is

u = exe®’ + ¢(t), where ¢ is a function of a single variable. Using (4.57), the

reduced equation is

¢'(t) = aio(t) + H((t — 1) — "7 o(1)).

Case 3: Subalgebra Hj;. A representation of an invariant solution is
u = ¢(0), where ¢ is a function of a single variable § = x — p;t. Using condition

(4.57), the reduced equation is

(pi — 1)¢"(0) = (o] — 03)6(0) + H($(p17 +0) — e~ 7¢(0)).
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Case 4: Subalgebra H,. A representation of an invariant solution is
u = ¢(t), where ¢ is a function of a single variable. Using condition (4.57) the

reduced equation is

¢'(t) = (o1 — 03)(t) + H(g(t —7) — e ™7 ¢(1)).

In summary, the representations of invariant solutions and reduced equa-
tions are given in Table 4.3, where ¢(f) is a function of the single variable
0 = x — pit.

Table 4.3 Invariant solutions for g(u,u) = kou + H(u + kyu).

No. Algebra Inv. solutions Reduced equation
1 H u=ee®’ +(0) (pf —1)¢"(0) = (of — a3)(0)
+H(o(prm +0) — =7 ¢(0))
2  H, u=exe® +@(t) ¢"(t) = aip(t)
+H(p(t —7) — e 79(t))
3 Hs u=¢(f) (7 = 1)¢"(0) = (of — a3)¢(0)
+H(p(p17 +0) — 77 ¢(0))
4 Hy u=¢(t) ¢"(t) = (o — a3)o(t)

+H(p(t —7) — e "7 9(1))

2. For Functions g(u,u) of Forms No.4-No.6 in Table 4.1
For these cases, because ¢(t,z) = N(z —t) + G(z + t) and the functions
N(z —t) and G(z + t) satisfy the conditions (4.50), one derives that ¢(t,z) =

ai (t+ex)

e , co =0 and

Qg = €Qq, ]{31 = —eialT, (460)

where ¢ = £1. One needs to consider a; = 0 and ay # 0.
Case 2.1: a3 = 0. One derives that ap = 0, k; = —1, ¢(t,2) = 1 and

the admitted Lie algebra is spanned by the generators X; = 0;, Xy = 0,, and
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X3 = 0,. This Lie algebra is Abelian, and an optimal system of one-dimensional

subalgebras is
Hy ={X1 +aXy +7X3}, Hy={Xo+aXz}, H3={X3},

with arbitrary constants o and ~.

Notice that there are no invariant solutions corresponding to the subalgebra
Hs.

Case 2.1.1: Subalgebra H;. A representation of an invariant solution is
u = ¢(0) + ~t, where ¢ is a function of a single variable § = = — at. Substituting
this representation of a solution into equation (4.1) with the functions g(u,u) =
H(u —u), g(u,t) = koln|a —u — B| + ks and g(u, @) = ko(ti — u + B)* + ks,

respectively, using (4.60), one derives the reduced equations
(@® = 1)¢"(0) = H(¢(aT +0) — 6(0) —7),

(o = 1)¢"(0) = k2 In|d(ar +0) = 6(0) — 77 — B| + ks,
and
(o = 1)¢"(0) = ka(o(ar +0) — ¢(0) — y7 + B)* + ks.
Case 2.1.2: Subalgebra H,. A representation of an invariant solution

is u = ¢(t) + ax, where ¢ is a function of a single variable. Substituting this

representation of a solution into equation (4.1) with the functions g(u,u) = H(u—
u), g(u, @) = koln |t —u — B| + ks and g(u,u) = kao(a — u + B)* + ks, respectively,
using (4.60), one derives the reduced equations

¢"(t) = H(o(t — ) — o(t)),

¢"(t) = k2 In|p(t — 7) — o(t) — Bl + ks,
and

¢"(t) = ka(6(t — 7) = $(t) + B)" + ks
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In summary, the representations of all invariant solutions and reduced equa-
tions are given in Tables 4.4-4.6, where 0 = x — adt.

Table 4.4 Invariant solutions for g(u,u) = H(u — u).

No. Algebra Inv. solutions Reduced equation

1 H u=9¢(0) +t (o —1)¢"(6) =
H(p(ar +0) — ¢(0) —7)
2 H u=¢(t)+ar ¢'(t) = H(o(t —7) - (1))

Table 4.5 Invariant solutions for g(u,u) = ko In|u — u — 5| + ks.

No. Algebra Inv. solutions Reduced equation

1 H, u=¢(0) +7t  (a® —1)¢"(0) = ks
+koIn |p(ar + 0) — ¢(0) — 7 — S|
2 H2 u = gb(t) + ax ¢H(t) = ]{33

koln|o(t — 1) — o(t) — B|

Table 4.6 Invariant solutions for g(u, i) = ko(@i — u + B)* + ks.

No. Algebra Inv. solutions Reduced equation

1 u=¢(0) +t (o —1)¢"(6) = ks
+ha(¢(ar +0) — 6(0) — 7 + B)*
2 H, u=¢(t)+ar ¢"(t) =ks

ka((t —7) — 6(t) + B)*

Case 2.2: a; # 0. Because of ay = ey, then q(t,z) = e+ For
obtaining automorphisms one has to solve Lie equations. The automorphisms are:
Al : 1?3 = $3€a1a;

Ag i T3 =x3 — acy(x) + €xsy).
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For obtaining an optional system of subalgebras one uses the two-step algorithm
(Ovsiannikov, 1993). Before constructing an optimal system, one studies the al-
gebraic structure of the Lie algebra L. Consider the vector space L' spanned by
the operators { X7, Xo}. One can verify that it is a subalgebra of the Lie algebra
L, and the vector space I spanned by the operator {X3} is an ideal of the Lie
algebra L. Hence, the Lie algebra L is decomposed as I @ L'. The subalgebra L!

is Abelian, then an optimal system of one-dimensional subalgebras is

K1 = {XQ}, KQ = {Xl —l—ng},

with an arbitrary constant p.
According to the two-step algorithm for classifying the Lie algebra L, it is

sufficient to consider the following forms of one-dimensional subalgebras:

Wi ={Xs + ai3X3}, Wo ={Xq +pXo+a13X3}, Wi = {X3},

where a3 is constant.

For further study one needs to simplify the latter one-dimensional subalge-
bras W; by using automorphisms.

First, consider the case W;. Using the automorphism A,, a3 can be
changed to 0. This gives the one-dimensional subalgebra {X}.

Consider the case Wj.

Case 2.2.1: ag = ay. If p=—1 and § # 0, then, the using automorphism
Ajp, one gets the one-dimensional subalgebra {X; — X5 + eX3}. If p = —1 and
g = 0, then Ws is reduced to the one-dimensional subalgebra {X; — Xo}. If
p # —1, then, using the automorphism As, # can be changed to 0: one gets the
one-dimensional subalgebra {X; + pXs}. From the above discussion, one gets the

subalgebras {X; — X5 4+ X3} and {X; + pXs,}, where p is arbitrary.
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Case 2.2.2: ag = —ay. If p=1 and § # 0, then, using the automorphism
Aj, one has the one-dimensional subalgebra {X; + X5 +€eX3}. If p=1and g =0,
then one obtains the one-dimensional subalgebra {X; + X5}. If p # 1, then,
using the automorphism A,, 8 can be changed to 0: one gets the one-dimensional
subalgebra {X; + pX,}. From the above discussion, one has the subalgebras
{X1 4+ X5+ €X3} and {X; + pX,} with arbitrary constant p.

The results obtained above are summarized as follows.

Theorem 4.2. An optimal system of one-dimensional subalgebras of the Lie al-

gebra L consists of the subalgebras

H, = {X1 - Xy + €X3}\a2:a17 H, = {X1 + Xo + 6X3}\Q2=_a1,
H; ={X1 +pXso}, Hy = {Xs}, Hs = {X3},

where € = +1, p is an constant and and the symbol | means conditions.

Using the obtained optimal system of subalgebras, all invariant solutions
are analyzed below.

Notice that there are no invariant solutions corresponding to the subalgebra
Hs.

Subalgebra H;. A representation of an invariant solution is u = ¢(f) —
exe®? where ¢ is a function of a single variable # = x + ¢. Substituting this
representation of a solution into equation (4.1) with the functions g(u,u) = H(u—
u), g(u, 1) = koln |t —u — B| + ks and g(u,u) = ko( — u + B)* + ks, respectively,

using (4.60), one derives the reduced equations
2ece®? = H(p(0 — 1) — ™7 p(6)),
2ec1®? = kyIn |p(0 — 7) — e p(0) — S| + k3.

and

2ec1™? = ky(p(0 — 1) — ™74 (0) + B)F + ks.
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Subalgebra Hs. A a representation of an invariant solution is u = ¢(d) +
ere®® where ¢ is a function of a single variable § = ¢t — x. Substituting this
representation of a solution into equation (4.1) with the functions g(u, 1) = H(u—

u), g(u, 1) = koln |t — u — B| + ks and g(u,u) = ko( — u + B)* + ks, respectively,

using (4.60), one derives the reduced equations
2ece® = H(4(6 — 1) — e ¢(0)),

2e0r e = kyln |p(6 — 1) — 7 p(0) — B| + ks.

and

2€a1€a16 = k2(¢(5 - T) — €a17¢((5> + ﬁ)k + ]{33.

Subalgebra Hj;. A representation of an invariant solution is u = ¢(7),
where ¢ is a function of a single variable v = x — pt. Substituting this represen-
tation of a solution into equation (4.1) with the functions g(u,u) = H(u — u),
g(u, 1) = koln |t —u— B+ ks and g(u, i) = ko(@ — u+ B)* + k3, respectively, using

(4.60), one derives the reduced equations
(p* = 1)¢"(v) = H(d(pr +7) — e™76(0)),

(r* = 1)¢"(7) = ka2 In|o(pT + ) — €*76(0) — B| + k.
and
(P* = 1)¢"(7) = ka($(p7 +7) — e7(0) + B)* + k.
Subalgebra H,. A representation of an invariant solution is u = ¢(t),
where ¢ is a function of a single variable. Substituting this representation of a
solution into equation (4.1) with the functions g(u,u) = H(u — u), g(u,u) =
koln |t —u — B] + ks and g(u,u) = ko(a — u + B)* + k3, respectively, using (4.60),

one derives the reduced equations

¢"(t) = H(p(t — 7) — e o(1)),
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¢"(t) = ke In|p(t — 7) — e (t) — B| + k3.
and
¢"(t) = ka(p(t — 7) — e TG(t) + B)* + ks.

In summary, the representations of all invariant solutions and reduced equa-
tions are given in Tables 4.7-4.9, where 0 = x +t, 0 =t —x, v = x — pt.

Table 4.7 Invariant solutions for g(u,u) = H(u — ue™®'7).

No. Algebra Inv. solutions Reduced equation
1 H u=¢(0) — exe®?  2eare®? =
H(p(0 — 1) — ™7 ¢(0))
2 H, u = () + exe®®  2eqe® =
H(¢(0 —7) = e*7¢(9))
3 H u=¢(7) (»* = 1)¢"(y) =
H(o(pr +7) — 7 ¢(0))
4 Hy u = ¢(t) ¢"(t) = H(o(t —7) — e 7¢(t))

Table 4.8 Invariant solutions for g(u,u) = ko ln |u — ue=*7 — | + ks.

No. Algebra Inv. solutions Reduced equation
1 H, u=¢(0) —exe®? 2eq;e? = ks

+haIn (0 — 7) — e 7(0) — [
2 Hy u = ¢(6) + ere®® 2eq e’ = ky

+haIn|p(6 —7) — e 7h(d) —
3 Hy u=¢(7) (P* = 1)¢"(7) = k3

+haIn [¢(pT +7) — eM7¢(6) — f
4 Hy u = ¢(t) ¢'(t) = ks

+haIn[p(t —7) — e 7o(t) — B




Table 4.9 Invariant solutions for g(u, @) = kq(u@ — ue=*" + B)% + ks.
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No.

Algebra Inv. solutions

Reduced equation

1

Hy

Hj

H,

u = ¢(0) — exe*r?

u = ¢(8) + exer®

2eq e = kg

+ha(d(0 — 7) — e®79(0) + B)*
Qe = ky

+hao(0(0 — 7) — e 7(d) + B)*
(P? — 1)¢"(7) = ks

+ha(o(pT +7) — e179(0) + B)*
¢"(t) = ks

+ha(o(t — 7) — e"7(t) + B)"

4.5.4 Invariant Solutions of (4.1) with g(u,u) = k1 + kou

1. Optimal System

Consider the Lie algebra L, = { X, X, X3, Xy}, where X; = 9, Xy = 0y,

X3 = ud, and Xy = ¢3(t,2)0,. The commutation relations are

Ll X X Xel X,
X 0 0 0 gs5:04
X5 0 0 0 @304
X3 0 0 0 —-X4
Xy —q30u —@s0y X4 0

The assumption that L, is a Lie algebra gives

Q3t(tax) = 041¢]3(t7 l'), QSx(ta x) = 042@3(75, iL‘),

(4.61)

where «; and «p are constant. The general solution of equations (4.61) is g3(t, z) =

celorttaar) where c is constant. Because {X), X, X3, X4} is a basis of the Lie

algebra Ly, one can choose that X, = e(®+222)9 ie. g3(t,x) = el*1t+2®)  Ag
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q3(t, z) satisfies equation (4.53), one has that
ky = —kie™ ™7 +af — 3. (4.62)

The automorphisms of the Lie algebra L, are

. AN al1a.
Ay Ty = x4eMY

A2 : !f4 = .T4€a2a'

Y

a.
I

As . Xy = 140"
Ay Ty = x4 — a2y + owg — x3).
From the commutator table, one can derive that the Lie algebra L, decomposes as
I ® L3, where L? = {X;, X5, X3} is a subalgebra and I = {X,} is an ideal of the
Lie algebra Ly, respectively. As the subalgebra L? is Abelian, an optimal system

of one-dimensional subalgebras is
Kl = {Xl + OéXQ + BX;J,}, K2 = {XQ + OéXg}, Kg = {X3},

with arbitrary constants o and (.
According to the two-step algorithm (Ovsiannikov, 1993) for classifying the
Lie algebra L, it is sufficient to consider the following forms of one-dimensional

subalgebras:

Wi ={X1 +aXy + X3 + a1a Xy}, Wo = {Xo + aX3 + a14 Xy},
Ws = {X3 + a1 Xy}, Wy = { Xy},

where aq4 1s constant.

For further study one needs to simplify the latter one-dimensional subalge-
bras W; by applying automorphisms.

Consider the subalgebra W.

Case 1: ay+asa—p = 0. If ayy # 0, then, using the automorphism As, a4
can be changed to e: one gets the one-dimensional subalgebra {X; + a X, + X3+

eX4}. If aj4 = 0, then one gets the one-dimensional subalgebra { X; +aXs+ X3}.
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Case 2: a;+asa— [ # 0. Using the automorphism Ay, a4 can be changed
to 0: one gets the one-dimensional subalgebra {X; + aX, + X3}

For the subalgebra Ws.

Case 1: ay = a. If ayy # 0, then, using the automorphism As, a4 can
be changed to e: one gets the one-dimensional subalgebra {Xs + a X3 + eX,}. If
a4 = 0, then one gets the one-dimensional subalgebra { X, + aX3}.

Case 2: ay # «. Using the automorphism Ay, a4 can be changed to 0:
one gets the one-dimensional subalgebra {Xs + aX3}.

For case W3, using the automorphism A4, ay4 can be changed to 0, thus
one gets the one-dimensional subalgebra {X3}.

The results obtained above are summarized as follows.

Theorem 4.3. An optimal system of one-dimensional subalgebras of the Lie al-

gebra Ly 1s defined by the subalgebras
Hy = {X) + aX, + BX3}, Hy = { X2+ aXs},

H3 7 {X1 + (,YXQ TG 6X3 + €X4}‘al+a2a76:07
H4 = {XQ + OéXg + €X4}‘a:a2, H5 = {X3}, H6 = {X4},

where € = +1, the symbol | means conditions.

2. Invariant Solutions

In this subsection, the obtained optimal systems of subalgebras are used
for deriving all invariant solutions.

Notice that X3 = ud, and X, = el®+t22)9 which implies that there are
no solutions invariant with respect to the subalgebras H5 and Hg.

Case 2.1: Subalgebra H;. A representation of an invariant solution is

u = ¢(0)e’', where ¢ is a function of a single variable, § = z — at. Substituting
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this representation of a solution into equation (4.1) with the function g(u,u) =

k1t + kou, using (4.62), the reduced equation is
(02 = 1)¢"(0) — 2088/ (0) + (B° — ka)$(0) — kre " ¢(ar +0) = 0.

Case 2.2: Subalgebra H,. A representation of an invariant solution is u =
o(t)e™*, where ¢ is a function of a single variable. Substituting this representation
of a solution into equation (4.1) with the function g(u, @) = kyu+kou, using (4.62),

the reduced equation is

¢"(t) — p(t)(a® + ko) — k1p(t — 7) = 0.

Case 2.3: Subalgebra Hjz. A representation of an invariant solution is
u = (¢(0) + ete®2?)ef, where ¢ is a function of a single variable, § = x — at.
Substituting this representation of a solution into equation (4.1) with the function

g(u,u) = kyu + kou, using (4.62), the reduced equation is
(0?2 —=1)¢"(0) —2a¢ + (8> = ko) p(0) — kre Td(ar +0) + e(kie P71 +2a1)e*?? = 0.

Case 2.4: Subalgebra H,. A representation of an invariant solution is
u = (exe™’ + ¢(t))e*, where ¢ is a function of a single variable. Substituting
this representation of a solution into equation (4.1) with the function g(u,u) =

ki1t + kou, using (4.62), the reduced equation is
¢ (t) — (Oé2 +ko)o(t) — kro(t — 1) — 2eqe®t = 0.

In summary, the representations of all invariant solutions and reduced equa-

tions are given in Table 4.10, where 6 = x — at.



Table 4.10 Invariant solutions for g(u, u) = kia + kou.

Algebra Inv. solutions

Reduced equation

H, u = ¢(0)e"
H, u = ¢(t)e*”
Hj u = () + ete2?)et
H, u = (exe™’ + ¢(t))e™”

(0? = 1)¢"(0) — 2a5¢'(0)
+(8% = k2)p(9)
—kie " p(ar 4+ 6) =0
¢"(t) = ¢(t) (0 + ko)
—kiop(t—71) =0

(02 = 1)¢"(0) — 2a8¢'
+(8% — k2)9(0)
—kie P p(ar + 0)
+e(k1e™ P71 + 204 )e™? = ()
¢"(t) — (0® + ka2) (1)
—k1p(t — 7) — 2eqe™t =0
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CHAPTER V
GROUP ANALYSIS OF THE
TWO-DIMENSIONAL NONLINEAR
KLEIN-GORDON EQUATION WITH

TIME-VARYING DELAY

The purpose of this chapter is to apply group analysis to the two-

dimensional nonlinear Klein-Gordon equation with a time-varying delay

Ut = Ugg + Uyy + g(u, @), gu(u,a) # 0, (5.1)

where a(t, x,y) = u(t — 7(t),z,y), 7(t) depends on ¢t and 7(¢t) > 0.

5.1 Admitted Lie Group of Equation (5.1)

This section is devoted to the study of admitted Lie groups of the two-
dimensional nonlinear Klein-Gordon equation (5.1). The algorithm of constructing
the determining equation is expressed in Chapter III.

Let the generator of a Lie group admitted by equation (5.1) be
X = far + 7831 + nat + Cau7

where &, n,~ and ( are functions of variables x,y, ¢ and .
The prolongation of the canonical Lie-Backlund operator equivalent to the

generator X is

X = "0y 4 "0y, + "0y, + ("0, + "0y

vy
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where the coefficients are

<u = C - Uxf — Uy — U, Cﬁ = 5_ ﬂaﬁg_ ﬂgﬁ - atn> CUt = Dt<u7 Cuz = Dx<u>

C'Uzy;a: — Dxcuav:7 Cuy — DyCu7 Cuyy — Dy<u97 Cut — DtCu; Cutt — Dté‘ut_

Here D,, D, and D, are operators of the total derivatives with respect to z, y

and t, respectively, and the bar over a function f(¢,z,y,u) means f = f(t —
T(t), z,y,u(t — 7(t), x,y)).

According to the algorithm for constructing the determining equations, one
obtains

(X (g + gy + uyy + g>)\(5.1) =0

or
(_Cutt + Cum: 4 Cuyy +gu<’u + gﬂca)|(5-1) =0. (52)

It is also assumed that the determining equation is satisfied for any solution
u(t, z,y) of equation (5.1).

Substituting the coefficients of the prolonged generator into the determining
equation (5.2), and replacing the derivatives found from equation (5.1) and its

prolongations:

Ut = Ugy + Uygyy + 9, Utttz = UgGa + Gulz + Ugzy + Uzyy,

Ugr = UtGa + Gult + Utzr + Utyy, Utty = UyGa + Guly + Uyzz + Uyyy,
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determining equation (5.2) becomes

207 A Nerths ~+ 2069 A 20t + 204ty — 2Nug Uity
— 20y Uty MU — MUy — MUy + 300 GUs + 20U U
F20 Uty — 27 Uga Uy — 20y Uy Uy — NppUs — 20)g Uz — TyyUs
—20y Uty + guC + GaVly — gaTly + Galle — galia€
+gaC + 2Vt Uiy + Velhy + 2YUty — 2Yug Uz Uy — Q%yuz
F YUy Uy — Vau Uty — Yuuly + YuGUy + 27uUsthyy — 27 UsUay
—2Vulyllyy = Vaally — 2Valay — Vyylly — 2Vylyy + 28ty
+Ely + 28Uy — 28uaU7 — 260y Unlly + Euu U Uy — Euu il
—Eunla Uy, + EuGUy + 28U Uiy — 264U lUer — 26Uy lly
—aalle — 280Uss — SyylUa — 28y Uay — 2Cutty — Gt + 2CuaUs
+2Guyty — Cuuty + Cuutty + Cuntty — Cug + oz + gy = 0.
Splitting this determining equation with respect to g, U, Uy, Uy, Ut, Uy, Uty Ugg,
Uy, Ugy, Uy and using the condition that gz # 0, one obtains

277159 + gu< + gﬂC N Ctt T Cug + Ca:x + <yy = 07 (53)
Yu=0, 1, =0, & =0, (5.4)
e =Yy = Sxa Yz = _€y7 Ny = Yty Nz = Sta (55)

Cuu = 07 2CUZ/ = ’sz“_’)/yy_/ytta 2Cut = _nxm_nyy+ntt7 2Cuar = gxz‘{'fyy—ftt, (56)
E=¢ v=7. (5.7)

From equation (5.5) one obtains
Nzz = Nt = Nyy, gara: = gtt = —fyy, —Vzx = Vit = Vyy- (5.8)

From equation (5.4), setting n, = v, = & = ¢(t, z,y), by equation (5.8) and (5.5),
one gets

Nt = Pt = 0, Egaa = Pax = 0, Yyyy = Pyy = 0,
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that is,
n = agt® + ait + ag, £ = Box® + Br1x + Bo, ¥ = Oay® + 01y + by,

where o; = «;(z,y), B = Bi(t,y), 0; = 0;(t,x), (i = 0,1,2). From equation (5.8),

one derives

2By = 52tt$2 + Biux + Bow = —(/Bny-T2 + /BlyyCE + BOyy)a

which implies that 282 = Bow = —Boyy, Borr = Bayy = 0 and Sy = Biyy = 0.
Solving these equations, one can get f5; = ki1t + kioty + kisy + kia, where k;j (i =
1,2, = 1,2,3,4) is constant. Since & = &, one has 3; = f;, i = 0,1,2, which
implies that By = 0, 51 = ki3y + k1, Bo = kosy + kos, and § = (kizy + kia)x +
kosy + kos, where k;3(7 = 0,1) is constant. In a similar way, one can obtain
v = (b13x + b14)y + bosx + by, where b3 (i = 0, 1) is constant.

From equation (5.5), one derives
big = ki3 =0, bia = k14, bos = —ko3
and
N = biat + ayp,

where qy is an arbitrary constant. By equation (5.6), one gets (ut = Cuw = Cuy = 0,
say ¢ = cgu + (o, where (j is a function of variables ¢, z and y.

Therefore, the obtained above results are summarized as follows:
n=cst+c, § =ty + e, v=0Yy — axr+cs, (= cgu+ o,

where constant ¢; is arbitrary , (i = 1,2,3,4,5,6), (o depends on variables ¢, z and

Y.

Therefore, determining equation (5.3) becomes

guCO + gﬁ{O + CeUGu + Cﬁagﬂ + (265 - CG)Q - C()tt + <Oacx + COyy = 0. (59)
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For finding the kernel of admitted Lie groups one has to assume that equa-
tion (5.3)-(5.7) are satisfied for any function g(u, ). One derives ( = 0 and ¢5 = 0

by equation (5.3). Hence, the generators
X1 = 8t7 Xy = al‘a X3 = ayy Xy = yaac - may

compose a basis of the kernel of admitted Lie algebras of equation (5.1).

5.2 Extension of Kernel

Extensions of the kernel of admitted Lie algebras are additional symmetries
to the kernel which are admitted by equations for a particular function g(u, ). In
this section the extensions are found.

Differentiating equation (5.9) with respect to u and u, one obtains

Guulo + GuaCo = —C6(UGuu + UGua) — 2C59u, (5.10)

GuaCo + gaalo = —C6(Ugun + Ugan) — 2¢59a- (5.11)
Equations (5.10) and (5.11) are linear algebraic equations with respect to (, and

Co. The determinant of the matrix of this linear system of equations is equal to

A= gia — GuuYua-

5.2.1 Case A #0

If A # 0, then, solving this linear system, one can find (, as follow:
Co = —cgu + 2¢c5h(u, w), (5.12)

where h(u, @) = A7 (gugaa — Guguu)- Differentiating equation (5.12) with respect

to u and u, respectively, one has

2¢s5h(u, @), = cg, 2¢5h(u, @)z = 0,
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which implies that

2¢5h(u, W)y, = 0, 2¢5h(u, @) = 0.

If ¢5 = 0, then one derives ¢ = 0, thus there is no extension of the kernel of admitted
Lie algebras. Therefore, for existence of an extension of the kernel one needs c5 # 0,
which implies that h(u, @)y, = 0, h(u,@); = 0. Setting h(u, @) = aju + ap, one
has

Co = 2¢500, 6 = 2¢5011,

where oy and «; are arbitrary constants. Substituting ( = 2csau + 2¢50¢ into

equation (5.9), one gets

(onu + ap)gy + (aqt + ap)ga = (g — 1)g. (5.13)

Solving equation (5.13), one needs to consider two cases: a; = 0 and a; # 0.
If a; = 0, then equation (5.13) becomes g, + apgy = —¢, since g # 0, one

derives ag # 0. Solving this equation, one gets

9(u. @) = e (@ — u).

where o = —ag ! and H is an arbitrary function of a single variable. Notice that
A= —a*e*(HH" — (H')?) # 0.
Without loss of generality one can assume that a = 1, which implies that ag = —1.

Thus, the extension of the kernel of admitted Lie algebras is given by the generator
X5 =ty + x0, + y0, — 20,,.

If ay # 0, then, solving equation (5.13), one can get

- g a+§—f
- Nk
ol @) = (ut T H e

),
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where k£ =1 — ail Without loss of generality one can assume that ay = 0, one

derives

A= —iu%-“((k —1)HH" — k(H")?) # 0.

651

Hence, one gets

where H is an arbitrary function of a single variable with satisfying (k—1)H H" —
k(H'")? # 0, and the extension of the kernel of admitted Lie algebras is given by
the generator

X5 = t0; + 20, + yd, + 20,ud,.

where £k =1 — a% and aq # 0 are both constants.

5.2.2 Case A=0
1. Case ggz # 0.

If gaw # 0, then the general solution of the equation A = 0 is

Gu = gb(gﬂ)v (514)

where ¢ is an arbitrary function of the integration.

Equations (5.10) and (5.11) are reduced to
(&) gaalo + &' ganlo = —co(u(¢')’gan + 0P gua) — 2¢50, (5.15)

¢/gﬂﬁC0 + gﬁaC_O = _06<u¢/gﬂﬁ + ﬂgﬂﬁ) — 2¢59a, (5'16)
respectively, which imply that 2c5(gz¢" — ¢) = 0.
Case 1.1: Assumption that gz¢' — ¢ # 0, which implies that ¢ = 0. One

has

(Co + cou)¢’ = —(Co + cott). (5.17)
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If ¢ =0, then {;, = —cs@, which implies that ¢ = 0, thus there is no any
extension of the kernel of admitted Lie algebras. Hence, for extension of the kernel
one needs to study ¢’ # 0 .

Differentiating equation (5.17) with respect to @, one gets

(Co + o) B gan = —co. (5.18)

Differentiating equation (5.18) with respect to ¢,z and y, respectively, one
gets
¢"Cor = 0, ¢"Cow = 0, ¢"Coy = 0. (5.19)
Assume that ¢” # 0, which implies that ¢, is constant, say (; = k;. By
virtue of the inverse function theorem, from equation (5.17) one has

o+ pu
o+ Bu

9a = h( ), (5.20)

where a and [ are constants. Because of the condition gzz # 0, one has 5 # 0.
The transformation

t=ti=a =y d=u+a (5.21)
is an equivalence transformation of equation (5.1) for any constant a. Integrating

equations (5.20), using the condition (5.14), one derives that

I

g(u,u) = uH(2) + ko, z =

2|

where kg is a integrating constant, H” # 0.

Determining equation (5.9) becomes
k'1<H - ZH/ + H/) = Cﬁk‘o.

Since H” # 0, the latter equation gives that k; = 0. For existence of an extension

of the kernel of admitted Lie algebras one needs to assume that ky = 0. Hence,
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and the extension of the kernel of admitted Lie algebras is given by the generator
X5 = u@u

Assume that ¢” = 0, which implies that there exist constants k; and kg

such that

Gu = k19a + ko, ko # 0.

By virtue of the condition ¢ # 0 one has to assume that k; # 0. The general

solution of the latter equation is

g(u,u) = kou + H(u + kyu), (5.22)
where H is a function such that H' # 0. Equation (5.17) becomes

(Co + cou)ky + (Co + cott) = 0, (5.23)

and one derives ¢g = 0 and {; = —k,(y. Equation (5.9) is reduced to the two-

dimensional Klein-Gordon equation

COtt = g()mc + COyy + k0<ﬂ-

Thus, for the function (5.22) one obtains that if there exists a nontrivial

solution ¢(t,x,y) of the linear Klein-Gordon equation
Gt = Quz + Qyy + kog, (5.24)
satisfying the condition
q(t —7(t), z,y) = —kiq(t, 2, y), (5.25)

then the extension of the kernel is given by the generator

X, =q(t,x,y)0,.
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Notice that the set of functions g(u, ) for which there exists a nontrivial
solution of (5.24) and (5.25) is not empty. For example, when 7 is constant, and
ki = —eVR7 then q = e~V* is a nontrivial solution of (5.24) and (5.25).

Case 1.2: Assume that gz¢' — ¢ = 0. Solving this equation, one can get

that the general solution of the latter equation is
g(u,u) = H(2), z = u+ kou, (5.26)

where kg is an arbitrary constant, H is function of a single variable such that

H" # 0. Substituting equation (5.26) into equation (5.16), one gets

—2C5h(2) = Cg< + koCo —+ &), (527)

where h(z) = g,l,—(é)) Differentiating equation (5.27) with respect to z by once and

twice, one can get

—2¢5h/(2) = ¢, —2c5h" (2) = 0.

Case 1.2.1: Assume that h”(z) # 0, that is, (g,l,((zz)))” # 0, which implies

that ¢ = 0 and ¢g = 0. Substituting these equations into equation (5.27), one has
koCo + Co = 0, one derives Coiz = Cou + Coyy by equation (5.9). Thus, if there exists

a nontrivial solution ¢(¢, z,y) of the linear Klein-Gordon equation
Gt = Gza T Qyy; (5.28)
satisfying the condition
q(t = 7(t), 7,y) + kog(t, v, y) = 0, (5.29)
then the extension of the kernel is given by the generator
X =q(t,2,y)0u,

where kj is an arbitrary constant.
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Case 1.2.2: Assumption that h”(z) = 0, one obtains h(z) = a1z + ap, that

is,
H'(z)
H//(Z)

= a1z + Q, (5.30)

where ay and oy are arbitrary constants. By equation (5.27), one gets
koCo + o = —2¢500, € = —2¢501, (5.31)

which implies that {y depends on cs, say (o(t, z,y) = c5q(t, x,y).

Notice that if c¢5 = 0, then ¢ = 0, which implies that there is no extension
of the kernel of admitted Lie algebras. For existence of an extension of the kernel
of admitted Lie algebras one needs to assume that cs # 0. Here ¢(t,z,y) is an

arbitrary function satisfying
kog 4+ G = —2ay. (5.32)
Thus, the extension of the kernel is given by the generator
X5 =t + 20, +y0, + (¢(t,x,y) — 2a1u)0,.

Because L = {X;, Xy, X3, Xy, X5} is an admitted Lie algebra, by definition of
a Lie algebra, one can get q(t,z,y) = 0, ¢,(¢t,2,y) = 0 and g,(¢t,z,y) = 0, one
derives q(t,z,y) = aq, where ay is an arbitrary constant satisfying as(ko + 1) =
—2ap.

Solving equation (5.30), one derives the following three cases: a; =0, oy =
—1 and oq(oq +1) #0.

If oy = 0, then ¢g = 0, which implies that oy # 0 by H”(z) # 0, thus

ay # 0. Solving equation (5.30), one has

g(u,u) = ke RO 4k (5.33)
Without loss of generality one can assume that ag = 1; then ky = —1 — 2

ag”

Substituting equation (5.33) into equation (5.9), one gets k; = 0. Hence, the



extension of the kernel is given by the generator

X5 = tat + x@x + yﬁy + 0626u.

If ay = —1, then ¢g = 2c¢s, solving equation (5.30), one has

g(u,ﬂ) = ]{32 ln|ﬂ + k?ou - Oé()| + ]{?1, k’g 7£ 0.

7

(5.34)

Substituting equation (5.34) into equation (5.9), one gets ko = 0, which is con-

tradiction with the condition ky # 0. Thus, there is no extension of the kernel of

admitted Lie algebras under this case.

If (g + 1) # 0, solving equation (5.30), one has

g(u, 1) = ko(u + kou + %)”ﬁ + ki, ko # 0.
il

Substituting equation (5.35) into equation (5.9), one gets k; = 0. Thus,
¥ L Qo 1+
g(U,U):kQ(U+kQU+a_) 1, k27é0
1
and the extension of the kernel is given by the generator

X5 =10 + 20, + Y0y + (a2 — 20qu)0,,

where ay (ko + 1) = —2ay.

(5.35)

2. Case gzz = 0, guy # 0. This assumption implies that gz, = 0. Because

of condition gz # 0, one has

g(u, ) = kyu + h(u),

(5.36)

where k; # 0 is a constant and h” # 0. By equations (5.10) and (5.11), one has

C:0765:07

which means that there is no extension of the kernel of the admitted Lie algebra.
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3. Case gz = 0, guu = 0.

This case corresponds to a linear delay differential equation with
g(u,u) = k1u + kou + k, (5.37)

where k, k1 # 0 and ko are constant.

Notice that the constant k can be reduced to zero by the change

k k -
u:u—zlmZ—ZlanLkg.

Indeed, choosing the constants /%1 and 12:2 such that
ki(ky + ko) =0, ky — ko(ky + k) =k
the function u satisfies the equation
g = Ugg + Uy + k10 + kot

Substituting equation (5.37) into equation (5.11), one gets c5 = 0. Deter-

mining equation (5.9) becomes
Cott = Cowe + Soyy + K160 + Kao- (5.38)

Hence, the extension of the kernel is given by the generators X5 = ud, and X, =
Co(t, z,9)0,. In particular, if 7 is constant and kg = k1eV*7 + ky, then (o = e~ VFo!
is a particular solution of equation (5.38).

5.3 Summary of the Group Classification

By the discussions of the previous section one obtains the following complete

group classification of the time-varying delay partial differential equation

Uty = Uz + uyy + g(“’? 77’)7 ﬂ(t,x,y) = U(t - T(t)’ﬂf,y),
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where g; # 0. The results of the group classification are presented in Table 5.1,
where the function H is a function of a single argument, and the coefficients ¢;(¢, ),

(1 =1,2,3) satisfy the equations:

q1tt(t> Z, y) = (1zz (ta Z, y) + Q1yy<t7 xz, y) + /fofh (ta z, y)a

ql(t — T,I,y) = _qul(tuxvy)7 k0q1(tax7y) ;é 0

(5.39)

q2 (t, z, y) - q2$x(t7 z, y) +q2 (t7 z, y)?
" v (5.40)

C]2(15 - Taxay) - _k0q2(tvmay)v qQ(tP%'?y) 7& 0

G, 2,Y) = @aaa(,2,Y) + qayy (8, 2,y) + kogs(t, 2, y) + kigs(t — 7, 2,y).  (5.41)
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5.4 Invariant Solutions

The purpose of the group analysis method is to construct exact solutions
of partial differential equations; here finding invariant solutions is an additional
purpose. This section is devoted to constructing invariant solutions of equation
(5.1) for each of the functions g(u,u) in Table 5.1. Using an optimal system
of two-dimensional subalgebra of the admitted Lie algebra, one derives invariant
solutions. Notice that for the cases 4,5 and 8 in Table 5.1, there is a generator of
the form ¢(¢, z,y)0,. Usually such kind of generators are omitted in construction
of invariant solutions. However the use of these generators also provides invariant

solutions. This will be demonstrated further.

5.4.1 Invariant solutions of (5.1) with g(u,u) = uH (%)

u

For this function the admitted Lie algebra L; is spanned by {X;, X5, X3,
X4,X5}, where X1 = (9t, XQ = ax, X3 = 8y, X4 = yar — l’ay, X5 = u@u The

commutator table is

LI X1 Xo X3 Xy X;

X4 0 X3 —XQ O 0

Xs 0 0 0 0 0

Solving the corresponding to Lie equations, the automorphisms are
Ay X3 = a3+ a1ay;
Ayt Ty = Ty — apuy;

A3 Ty = xgcos(ag) + wssin(as), T3 = —wosin(as) + x3cos(as).
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Before constructing an optimal system, one studies the algebraic structure of
the Lie algebra L;. Consider the vector space L3 spanned by the operators
{X1, X4, X5}, One can verify that it is a subalgebra of the Lie algebra L;, and
the vector space I? spanned by the operators {X,, X3} is an ideal of algebra Lj.
Hence, the Lie algebra L; is decomposed as I? @ L3. Because the subalgebra L? is

Abelian, an optimal system of one-dimensional admitted subalgebras consists of
{H;}, (i=1,2,3),

where

Hy =X, +aX, + X5, Hy= X, +aX;, Hy=X;,

and an optimal system of two-dimensional admitted subalgebras consists of

Dl,DQ,DB, where
Dy = {X4+ X5, X1 + aXs}, Do = {Xs+ aXy, X5}, Dy = {X1, X5}

with arbitrary constants o and .
Let Y; = CLile I CLZ'QXQ t= CLZ'3X3 S CLZ'4X4 + CLZ‘5X5 (Z = 1, 2) which constitutes

a two-dimensional subalgebras of the Lie algebra L, and is denoted by matrix

ail aiz a1z a4 QAis
: (5.42)
A1 Q22 GA23 A24 A25

with the requirement that rank of the matrix (5.42) is equal to 2. According to

the two-step algorithm (Ovsiannikov, 1993) for classifying the Lie algebra Ly, it is
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sufficient to consider the following forms of two-dimensional subalgebras:

a ajp ajz 1 5

0 29 (23 0 0

1 12 Q13 0 « 0 12 Q13 0 1
0 929 A923 0 0 0 929 Q923 0 0
(5.43)
0 12 Q13 0 0 o a1 Q13 10
0 92 Q923 0 0 0 92 Q923 01
1 19 Q13 0 0 0 12 A13 1 «
0 azp a3 0 1 1 ap a3 0 f

where a;;, (1 = 1,2;j = 2,3) and «a are arbitrary constants.
For further study one needs to simplify (5.43) by applying automorphisms

A; (i = 1,2,3) and transformation of matrix; the results are summarized as follows.

Theorem 5.1. An optimal system of two-dimensional subalgebras of the Lie al-

gebra Ly consists of the subalgebras
My = {X5, X3}, My = { Xy, X5 + aXs},
Mz = {Xo, X1 +9X3 + X5}, My = {X;5, Xy + Xy},
Ms = { X5 + aXy, X1 + Xy +7X3}, Mg = { Xy + aXs, X1 + BX5}

with arbitrary constants o, 5 and 7.

Proof : Here we only repsent the processes of calculating for the case

0 12 Q13 1 o
, (5.44)

1 axp axy 0 f
which denotes subalgebra {Y7, Y2}, where Y7 = 0- X7 4+ a12Xs + a13 X3+ Xy + a X5,
Yo = X1+ a9 Xs 4+ a93 X3+ 0- X4+ 5X5. Calculation of other the optimal systems

of two-dimensional subalgebra of the Lie algebra L; are similar.
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First, by the automorphisms A; and As, a12 and a;3 can be changed to 0.

Checking subalgebra conditions, one has
[(Xy+aXs, Xi+aXo+asXs+X5] = a(Xa+0aXs5)+b(X1+ a2 Xo+ a3 Xs+Xs5),

for some constants a and b. By calculating the left hand side and comparing the

coefficients in the left hand with coefficients in the right hand side, one obtains
—a93 Xy + 99 X3 = bX] + bag Xs + bass X5 + aXy + (aa + bB3) X,
which implies that
a=0,b=0, agy = bass, —as3 = basgs,

and one derives as3 = 0 and ags = 0. One obtains the two-dimensional subalgebra
{ X4+ aXs5, Xy + X5}

Thus, the proof is completed.

Using the optimal system of subalgebras obtained, the representations of
all invariant solutions and reduced equations are given in Table 5.2, where w; =
y—t, w=x?+y% (1) is an arbitrary function satisfying 1 (t) > 0.

Remark: Illustrating the representation of invariant solutions by case N =
2 in Table 5.1, others can be obtained using similar way. As the subalgebra is
spanned by {Xs, X5 + a X3}, then operators are Y1 = X, and Yo = X5 + aX3. If
a =0, i.e. Yy = Xj, then one derives that there are no invariant solutions. Hence,
for existence of an invariant solution, one has to assume « # 0. For operator
Y = X, the invariant solution does not depend on variable x. For X5 + aXj,
solving the corresponding characteristic system, one gets that the representation
of an invariant solution is u = ¢(t)ea?, where ¢ is a function of a single variable.
Substituting this representation of a solution into equation (5.1) with the function

g(u,w) = uH (%), the reduced equation is

¢"(t) = o(t)(— + H(————
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In addition, one needs to consider the condition that (1 — 7/(t))n = 7 for 7(t); by
the generators { X3} and {X5 + X3}, one derives that n are both equal to zero,

which implies that it holds for arbitrary 7(¢), by denoting 1 (t).
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5.4.2 Invariant Solutions of (5.1) with g(u,u) = ¢"H(u — u)

For this case, the admitted Lie algebrais Ly = { X1, Xo, X3, X4, X5}, where
X1 =0y, Xy = 0y, X3 = 0y, Xy = y0, — 20y, X5 = t0; + 20, + y0, — 20,. The

commutator table is

X4 0 X3 —X2 0 0

X5 X7 —Xo —Xj3 0 0

The corresponding to automorphisms are

Ay T =11 — a1x5;

Ast Xy = X9 — a5, T3 = T3 + A2%4;

Az Ty = Ty — azry, T3 = Ty — A3Ts;

Ay Xy = xocos(ay) + wssin(ay), T3 = —xgsin(ay) + x3 cos(ay);

As . T1 = 116%™, Ty = 19", I3 = x3€%.
From the commutator table, one can derive that the Lie algebra L, decomposes as
I* @ L?, where I* = {X|, Xy, X3} is an ideal and L? = {X,, X5} is a subalgebra
of the Lie algebra L,, respectively. Since the subalgebra L? is Abelian, an optimal

system of one-dimensional admitted subalgebras consists of

{Hi}a (Z = 172)7

where

Hy = X4, Hy= X5+ aXy,

and an optimal system of two-dimensional admitted subalgebras consists of

Dy ={X,, X5}
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with arbitrary constants a.
Two-dimensional subalgebras of the Lie algebra L, are also denoted by

matrix

ailr aiz a3 Qa4 Ais
, (5.45)

A1 Q22 A23 A24 0«25

with the requirement that the rank of the matrix (5.45) is equal to 2. For obtaining
an optimal system of subalgebras one uses the two-step algorithm (Ovsiannikov,

1993); it is sufficient to consider the following forms of two-dimensional subalge-

bras:

ain a2 a3 1 0 ann ap a3 o 1

) b
a1 @z axz 0 0 ag1 az az 0 0

(5.46)

a;n a2 a3 0 0 ayp a2 aiz 1 0

bl )
az az azz 0 0 azy agp azz 0 1

where a;;, (1 = 1,2;j = 1,2,3) and « are arbitrary constants.
For further study one needs to simplify (5.46) by applying automorphisms
A; (i = 1,2,3,4,5) and transformation of matrix, the results are summarized as

follows.

Theorem 5.2. An optimal system of two-dimensional subalgebras of the Lie al-

gebra Lo 1s:

My = {Xs, X3}, My = {X1, Xy}, M3y = {Xo, X1 + aXs},
My = {X5, Xy}, Ms = {X5, Xo + aX }, Mg = {X1, X5 + aX, + Xy}

with arbitrary constants o and f3.

Proof : As the algorithm of the optimal system of two-dimensional subalge-
bras of the Lie algebra L, are similar, hence, we only give the process of calculating

for the case

ayp a2 a;z o 1

, (5.47)

ag aze azs 0 0O
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which denotes subalgebra {Y;, Y2}, where Y} = a11 X1 +a12Xo + a13 X3+ a Xy + X,
)/2 = CL21X1 + CLQQXQ + (l23X3 + 0- X4 +0- X5.
First, by successfully using the automorphisms A;, A3 and Ay, then aqq,

a1z and as3 can be changed to 0 respectively. Thus the matrix 5.47 reduces to

0 a19 0 o 1
: (5.48)

91 A29 0 0 O

and a3, + a3, # 0. Checking subalgebra conditions, one has
[a12Xs + aXy + X5, a01 X1 + a2 Xo] = a(a19Xs + aXy + X5) + b(ag1 X1 + azXa),

for some constants a and b. By calculating the left hand side and comparing the

coefficients in the left hand with coefficients in the right hand side, one gets
a9 X3 — an X1 — a2 Xo = ban X1 + (aais + bage) Xs + aaXy + a X,
which implies that
a=0, (b+1)agy =0, (b+ 1)ax =0, aasy = 0.

Since a3, + a3, # 0, one derives b = —1.

Case 1: agp = 0. As a3, + a3, # 0, one gets ay # 0. Dividing Y5 by
as1, thus the operators Yo = X;. One gets the two-dimensional subalgebra Mg in
theorem.

Case 2: agy # 0. The assumption implies that o = 0, dividing Y5 by ass,
thus the operators Yy = X + X5. Using transformation of matrix, a;s can be

changed to 0. one gets

v 0 0 0 1
(5.49)

B 1000

By the automorphism A, v can be changed to 0: one gets the two-dimensional

subalgebra Mj5 in theorem.



90

Thus, the proof is completed.

Using the obtained optimal system of subalgebras, the representation of
all invariant solutions and reduced equations are given in Table 5.3, where w =
222w =y —at, wy = tw Y2 wy = t/y, ¥(t) is a function satisfying () > 0,
and a is an arbitrary constant with a > 0.

Remark: For reducing equations and the existence of invariant solutions,
one has to assume that some coefficients are equal to zero for some generator. For

example, one needs to assume a = 0 in the case 5 of Table 5.2
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5.4.3 Invariant Solutions of (5.1) with g(u,u) = u*H (%), (k #

1)
For this function the admitted Lie algebra is Ly = {X;, Xo, X3, X4, X5},
where X; = 0, Xy = 0,, X3 = 0y, Xy = y0, —20,, X5 = t0;+ 20, +y0, +2a1u0,.
Comparing the commutator table in previous subsection, one derives all optimal

systems of two-dimensional subalgebras of the algebra Ls with the basis

My, ={Xo, X5}, My = {X1, Xy}, M3 ={Xo, X1 + aXs},

My = {X5, Xy}, M5 = {X5, Xo+ Xy}, Mg ={X1, X5 +aXy + X4}

with arbitrary constants o and (.

Using the obtained optimal system of subalgebras, the representation of
all invariant solutions and reduced equations are given in Table 5.4, where w =
22 4y? wy =y —at, wo = tw™ 2 ws = t/y, ¥(t) is a function satisfying ¥ (t) > 0,

and a is an arbitrary constant with a > 0.
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5.4.4 Invariant Solutions of (5.1) with g(u,u) = kou+ H(u +
klu)

For this case, the admitted algebra L, is spanned by X;, X5, X3, X4 and
X5, where Xy = 0y, Xy = 0,, X5 = 0y, Xy = y0, — 20y, X5 = q(t,2,y)0,. The

commutator table is

L] Xu X X3 Xy X5

X, 0 0 0 0 0,

X, 0 0 0 — X3 G20y

X; 0 0 0 X 4yOu

Xy 0 X3 -X, 0 (Y4 — 7qy)0y
Xs —@0u 0w —q0u —(Yq — 7q,)0u 0

The requirement that L4 is a Lie algebra gives existence of constants «; (i =

1,2,3,4) such that

qt(tv'ra Z/) - alq(t7 x7y)7 qm(ta x7y) — Oé2Q(t,$, y>7
(5.50)
ay(t, 2, y) = asq(t, z,y), yg.(t. ,y) — xq,(t, 2, y) = auq(t, z, y).
The general solution of equations (5.50) is q(¢,z,y) = ce®!, where c is constant

and ¢ # 0. Therefore, one can choose q(t,x,y) = e*'. Since ¢(t,x,y) satisfies

relations (5.39), one derives
ko=a3, k= —e ™7, (5.51)

Notice that ko # 0, which implies that a; # 0 and 7 must be constant.
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By the commutator table, the automorphisms are:

. R —ajag.
Al. Iy = ITx€ 11,

Aot T3 =23+ asry;

Az T9 = X9 — a3y

Ay: oy = xocos(ay) + w3sin(ay), 3 = —x9sin(ay) + x3 cos(ay);

As . T5 = x5+ asaqry.
The Lie algebra L, decomposes as I*® & L?, where L? = {X;, X4} is a subalgebra
and I? = {X,, X3, X5}, is an ideal of the Lie algebra L4, respectively. Since

the subalgebra L? is Abelian, an optimal system of one-dimensional admitted

subalgebras consists of
{H;}, (i=1,2),

where

Hy =Xy, Hy= X4+ aXy,
and an optimal system of two-dimensional admitted subalgebras
Dl pi {X17 X4}

with arbitrary constants a.
According to the two-step algorithm (Ovsiannikov, 1993) for classifying the

Lie algebra Ly, it is sufficient to consider the following forms of two-dimensional

subalgebras:

1 a2 a3 0 ags a aip a3z 1 ags

) )
0 ax as 0 az 0 az ax 0 ags

(5.52)

0 a2 a3 0 ags 1 a2 aiz 0 ags

) )
0 ax as 0 as 0 agp axs 1 axs

where a;;, (1 = 1,2;j = 2,3,5) and « are constants.
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For further study one needs to simplify (5.52) by applying automorphisms
A; (i = 1,2,3,4,5) and matrix transformations; the results are summarized as

follows.

Theorem 5.3. An optimal system of two-dimensional subalgebras of the Lie al-

gebra Ly 1s:

My ={Xy1, Xy}, My ={Xy, X5}, M5 ={X5, X4 +7X1},
My ={Xs, X5}, M5 = {Xo, X5 + X3}, Mg = {X2, X1 + a X5},

M7 = {X1 + X5, X5 + X35}

with arbitrary constants o, 5 and v # 0.

Proof : we show the processes of calculating for the case

0 ag a3 0 as

, (5.53)
0 ax as 0 axs

which denotes subalgebra {Y7, Y5}, where Y} = 0- X +a12 Xo+a13X3+0- Xy +a15 X5,
Yo =0 X1 + agXy + apXz+ 0 Xy + axsXs.

Case 1: a5 # 0. Dividing Y7 by a5, a5 can be changed to 1. Using a
matrix transformation, ass can be changed to 0. Since the rank of matrix (5.53) is
equal to 2, one has a3, + a3, # 0. Using the automorphism Ay, as3 can be changed

to 0, hence, the matrix 5.53 reduces to

0 19 Q13 0 1
(5.54)

OCLQQ 0 0 0

Since ags # 0, dividing Y5 by ass, one has Yo = X5. Using a matrix transformation,
a1p can be changed to 0: one gets the two-dimensional subalgebra Mj in the

theorem.
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Case 2: a5 = 0. The assumption implies that ass = 0; the matrix 5.53

reduces to

0 a19 Q13 0 0
(5.55)
0 929 Q93 0 0

Since the rank of matrix (5.55) is equal to 2, by a matrix transformation, matrix

(5.55) can be changed to

01000
; (5.56)

00100

one derives the two-dimensional subalgebra M, in the theorem.

Other cases can be computed similarly.

Thus, the proof is completed.

Using the obtained optimal systems of two-dimensional subalgebras of the
Lie algebra L, obtained in the previous theorem, all invariant solutions and reduced

equations are presented in Table 5.5, where w; = y — at, wy = x — ~t.
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5.4.5 Invariant Solutions of (5.1) with g(u,u) = H(u + kou)

For this case the admitted algebra Ls is spanned by X, X5, X3, Xy and
X5, where Xy = 0,, Xo = 0,, X3 = 0y, X4 = y0, — 20y, X5 = q(t,z,y)0,. The

commutator table is

Ll Xy Xo X3 Xy X5

X 0 0 0 0 ey

X, 0 0 0 - X3 ey

X; 0 0 0 X 4yOu

Xy 0 X3 - X5 0 (Yqe — 2qy)0y
X5 —0u —@0u —q0u —(yqe — 24y)0, 0

The requirement that Ls is a Lie algebra implies existence of constants «; (i =

1,2,3,4) such that

Qt(t>$7 y) = alQ(ta x??/)a q:c(ta xay) — 042Q(t7$7 y>7
(5.57)
Qy(t7 I7y) = a3Q<t7 z, y)a yqiﬂ(ta x7y) 4 ny(t>x7 y) = Oé4Q(t, Ihy)

¢t where c is constant

The general solution of equations (5.57) is ¢(t,z,y) = ce™
and ¢ # 0. Therefore, one can choose ¢(t,z,y) = e***. Since q(t,z,y) satisfies

relations (5.40), one derives

o) = O, ko =—1. (558)

The result leads to ¢(t,z,y) = 1; substituting it into the commutator table, which
coincides with the commutator table of Lie algebra L;, one thus derives an optimal

system of two-dimensional subalgebras of the Lie algebra Ls:

M, = {Xs, X5}, My = {Xs, X5 + aX3},
Mz = {X5, X1 +vX5+ X5}, My ={X5, Xu+ aXi},

Ms = {X5 + aXo, X1 + BXo + 7 X3}, Me = { X4+ aX5, X1 + BX5}

with arbitrary constants «, § and 7.
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By the obtained optimal system, all invariant solutions and reduced equa-
tions are presented in Table 5.6, where w; = y—~t, w = x*+%?, ¥(t) is a function

satisfying ¥ (t) > 0.
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5.4.6 Invariant Solutions of (5.1) with g(u, ) = kye® ot

Consider the Lie algebra Lg = { X1, Xs, X3, X4, X5}, where X; = 0;, Xy =
Oy, X3 = 0y, X4 = y0,—20,, X5 = t0;+10,+y0,+x20,. Because the commutator
table coincides with the commutator table of Lie algebra Lo, thus, one has an

optimal system of two-dimensional subalgebras consisting

My, ={Xs, X5}, My ={X1, X4}, M5 ={Xo, X + X3},

My ={Xs5,Xu}, M5 = {X5, Xo + Xy}, Mg = {X1, X5 + aXo + S X4}

with arbitrary constants a and . The representations of all invariant solutions and
reduced equations are given in Table 5.7, where w = 2? + 9%, w; = y — at, wy =
tw™2, wy = t/y, ¥(t) is a function satisfying 1(¢) > 0, and a is an arbitrary

constant with a > 0.
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5.4.7 Invariant Solutions of (5.1) with g(u,u) = ko(u + kou +

%)14-0%1
(€3]

Consider the Lie algebra L; = {X1, Xs, X3, Xy, X5}, where X7 = 0;, Xy =
Oy, X3 = 0y, Xy = y0p — 20y, X5 = t0; + 20, + y0y + (a2 — 20qu)0,. Since the
commutator table coincides with the commutator table of Lie algebra L, thus, an

optimal system of two-dimensional subalgebras consists of

M, = {Xo, X5}, My ={Xy, X4}, M3 ={X2, X; +aXs},
My = {X5, Xu}, M5 = {X;5, Xo + X1}, Mg = {X1, X5 + aXp + BXy}
with arbitrary constants o and 5. By the obtained optimal systems, the repre-
sentations of all invariant solutions and reduced equations are presented in Table
5.8, where w = 22 + y?, w; = y — at, wy = tw™ % w3 = t/y, ¥(t) is a function

satisfying ¥ (t) > 0, and «a is an arbitrary constant with a > 0.
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5.4.8 Invariant Solutions of (5.1) with g(u,u) = kiu + kou

Consider the Lie algebra Lg = {Xi, Xo, X3, X4, X5, X¢}, where X; =
Oy, Xo = 0y, X3 = 0y, Xy = y0, — 20,, X5 = u0, and X¢ = q(t,2,y)0,. The

commutation relations are

] X Xo X3 Xy X5 X

X, 0 0 0 0 0 @O,
X, 0 0 0 —X3 0 0,
X; 0 0 0 Xy 0 g0,
Xy 0 X3 — X5 0 0 Zo,
Xs 0 0 0 0 0 —Xs

where Z = yq, — xq,.

Because Lg is a Lie algebra, by definition of Lie algebra, one derives

Qt(t, z, y) - alq(t7 Z, y)7 qm(ta xz, y) B a2Q(t7 z, y>7
(5.59)
qy(t, 7, y) = asqlt, ,y), yg(t, 2, y) — 2q,(t, 3,y) = auq(t, z,y).
The general solution of equations (5.59) is ¢(¢,z,y) = ce™?!, where ¢ is constant.

Since { X1, Xo, X3, X4, X5, X} is a basis of algebra Lg, one can choose Xg = e*!9,,

i.e, q(t,z,y) = e*'. Since q(t, z,y) satisfies equation (5.41), one derives that
ky = —kie”7 +af. (5.60)

Notice that if ay = 0, then ks = —ky; if ay # 0, then one derives that 7 is

constant.
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By the commutator table, thus the automorphisms A; (i = 1,2,3,4,5,6)

are as follows:

Ay T = xg” MM,

Ay T3 = T3+ apmy;

Az Ty = X9 — aszxy;

Ay Ty = xocos(ay) + w3sin(ay), 3 = —xosin(ay) + x3 cos(ay);

Ay T = x6e™;

Ag: T = x6 + ag(1r1 — T5).

The Lie algebra Lg decomposes as I° & L3, where L? = {X;, X, X,} is a

subalgebra and I3 = {X,, X3, X4} is an ideal of the Lie algebra Lg, respectively.
Since the subalgebra L? is Abelian, an optimal system of one-dimensional admitted

subalgebras consists of
Hy ={X5}, Hy = {Xy+aX;}, Hy = {X1+aXs+ BXs5}
and an optimal system of two-dimensional admitted subalgebras consists of
Dy = {X4, X5}, Dy = {Xi + aXy, X5}, Dy = {X; + X5, Xy + aX5}

with arbitrary constants o and /.
According to the two-step algorithm (Ovsiannikov, 1993) for classifying the

Lie algebra Lg, it is sufficient to consider the following forms of two-dimensional
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subalgebras:
0 a19 Q13 0 0 16
)
0 929 G923 00 26
O 12 Q13 0 1 a1 0 12 Q13 1 « Q16
7 )
0 929 Q923 0 0 926 0 929 A923 0 0 926
(5.61)
I app a3 o B ags 0 a2 a3 1 0 ag
? J
0 92 Q923 0 0 ao6 0 92 Q923 01 26
1 a2 a3z a 0 a I ap a3 0 B ag
Y )
0 as ass 0 1 ao 0 ag asg 1 a ag

where a;;, (1 = 1,2;j = 2,3,6) and « are arbitrary constants, the matrices denote
two-dimensional subalgebras of the Lie algebra Lsg.

For further study one needs to simplify (5.61) by using automorphisms
A; (1 =1,2,3,4,5,6) and matrix transformations, the results are summarized as

follows.

Theorem 5.4. An optimal system of two-dimensional subalgebras of the Lie al-

gebra Lg is defined by the subalgebras

My = { Xy, X3}, My ={Xs, X5+ aX3},
M; ={Xo, X1 +vX3+ X5}, My ={Xs, X¢ + aX3},
My = {X4, X1 + n X5+ X}, Mg = {X5, Xy + aX1},
My = {X¢, Xy + aXs}, Mg = {X¢, Xy + aXi + BX5} 0
My = {X1 + aXy, X5 + BXo +vX3}, Mig = { X3+ €Xg, X1 + aXy + 1 X5},
My = { X2, Xi + aXs + oy X5 + eXg}, Mo = { X4+ X5, X1 + aX5},

M13 = {XQ + EXG,Xl + 5X2 + O./Xg + 051X5}, M14 = {Xﬁ, X1 + O./Xg + OélX5}

with arbitrary constants o, 3, and v, € = +1, the symbol | means conditions.
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Proof : Consider the case

1 a2 a3 o [ a

, (5.62)
0 age axy 0 0 ag

which denotes subalgebra {Y7, Y2}, where V) = Xi +a12Xo +a13X3+a X, + X5+
a16X6, Yo = 0+ X1 + anXo + a3 X3+ 0 X4+ 0 X5 + a26Xs.

Case 1: a = 0. Checking subalgebra conditions, one has

(X1 + a2 Xo + a13X3 + BX5 + a16X6, a22Xo + agz X3 + a6 Xe)
= a(X; + a1 Xo + a13X3 + X5 + a16X6) + b(anXs + a3 X3 + a6 Xe),
for some constants a and b. By calculating the left hand side and comparing the

coefficients in the left hand with coefficients in the right hand side, one gets
agg(al — B)Xg = aX1 + ((1&12 + bagg)XQ + (Cl(l13 + bagg)Xg + CL77X5 + (CL(Z16 + ba26)X6,

one derives

a = O, bCLQQ F— 0, bCL23 == 0, (Oél R 6 - b)a26 = 0.

Case 1.1: b # 0. This assumption implies that ass = a3 = 0. Because
rank of matrix (5.62) is equal to 2, then asg # 0, one can choose ags = 1. Using a
matrix transformation, a4 can be changed to 0. Using the automorphism Ay, a3
can be changed to 0: one gets the two-dimensional subalgebra My, in theorem.

Case 1.2: b= 0. This assumption implies that (a; — f)ags = 0.

Case 1.2.1: agg = 0. The rank of matrix (5.62) is equal to 2, which implies
that a3, +a3; # 0. Using automorphisms Ay, a3 can be changed to 0, and one can
choose ag = 1. Using a matrix transformation, a5 can be changed to 0: one gets
the two-dimensional subalgebra { X, X1 + a13X3+ X5+ a16Xs}. If a;6 = 0, then
one has subalgebra Mj in the theorem. If a4 # 0, then, using the automorphism

As, a6 can be changed to e: one obtains the subalgebra Mj; in the theorem.
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Case 1.2.2: ass # 0. This assumption implies that § = a7 and one can
choose ass = 1. Using a matrix transformation, a4 can be changed to 0. Using
the automorphism Ay, as3 can be changed to 0: one gets the two-dimensional
subalgebra {Xg + a2 X2, X1 + a12Xs + a13X3 + a1 X5}. If age = 0, then, using the
automorphism Ay, a3 can be changed to 0: one has the subalgebra M4 in the
theorem. If ay5 # 0, then, dividing Y7 by ajo, and using the automorphism As,
one gets the subalgebra M3 in the theorem.

Case 2: a # 0. By successfully using the automorphisms A, and As, thus

a1z and ay3 can be changed to 0. Checking subalgebra conditions, one has

(X1 + aXy + BX5 + a16 X6, a2 Xo + ag3 X3 + age X
= a(X1 + aXy + BXs5 + a16Xe) + b(anXs + as Xz + axXs),
for some constants a and b. By calculating the left hand side and comparing the

coefficients in the left hand with coefficients in the right hand side, one gets

asg(ar — )Xo + a2 X5 — vags Xy
= aXy + bage Xy + bays X3 + aaXy + anXs + (aais + bags) X,

which implies that
a =0, bagy = —aags, bags = aagy, (041 - B - b)azﬁ =0,

one derives asy = as3 = 0. Therefore, one has

1 00 « ﬁ ai1e (563)

OOOOOCLQG

Since rank of matrix (5.63) is equal to 2, which implies that ass # 0, one can
choose ass = 1. Using a matrix transformation, a6 can be changed to 0. Since
a # 0, dividing Y] by «, one thus gets the two-dimensional subalgebra Mg in the
theorem.

Other cases can be similarly discussed and computed.
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Thus, the proof is completed.
By the obtained optimal system, representations of all invariant solutions
and reduced equations are given in Table 5.9, where w = 22 +y?, w; = v—aot, wy =

y — at, wy = yr — ayt — Py, and ¥ (t) is a function satisfying ¢ (t) > 0.
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CHAPTER VI

CONCLUSIONS

The goal of this thesis is application of the group analysis method to the

one-dimensional nonlinear Klein-Gordon equation with constant delay

U (T, 1) = U (x,t) + g(u(x, t), u(z,t — 7)), ga #0, (6.1)

and the two-dimensional nonlinear Klein-Gordon equation with time-varying delay

Ut (T, Y, 1) = U (T, Y, 1) + 1y (2,9, 1) + g(u(z, y, 1), u(z,y,t —7(t))), ga # 0. (6.2)

Using the approach developed in (Tanthanuch and Meleshko, 2002), the complete
group classification of equation (6.1) is obtained. Results of the group classification
are presented in Table 4.1. Representations of all invariant solutions are given in
Tables 4.2-4.10.

In addition, group analysis of a differential equation with time-varying delay
is developed. This analysis is applied to equation (6.2). The complete group
classification of this equation with respect to the arbitrary function g is obtained
(Table 5.1). All admitted Lie algebras are classified. These classifications are
used for deriving invariant solutions. Representations of all invariant solutions are

presented in Tables 5.2-5.9.
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