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CHAPTER I

INTRODUCTION

1.1 Delay Differential Equation

In many physical, engineering and biological phenomena the rate of vari-

ation in the system state depends on past states, a characteristic which is called

delay. Time-delay systems (shortly, TDS) are also called systems with aftereffect or

dead-time, hereditary systems, equations with deviating argument or differential-

difference equations. J. P. Richard (Richard, 2003) has given a four point expla-

nation for interest and development of TDS. In particular, this framework is very

general and allows both simple (constant) and complex (variable or distributed)

forms of delays to be modeled. Mathematical modelling of biological and physical

systems with delays is mainly based on delay differential equations (DDEs), which

were first discovered in biological systems and later found in many engineering

systems, such as mechanical transmissions, fluid transmissions, metallurgical pro-

cesses and networked control systems. In modern science, one encounters many

mathematical models described by delay differential equations (Myshkis, 1972;

Bellman and Cooke, 1963; Hale, 1977; Driver, 1977; Kolmanovskii and Myshkis,

1992; Wu, 1996; Smith, 2010), for example in population dynamics, bioscience

problems, control problems, and electrical networks containing lossless transmis-

sion lines. Delay differential equations, which describe the rate of change of the

unknown quantity in a system depend not only on the current state of the system,

but also on its entire previous evolution, that is, on values of the unknown at

certain times in the past. In particular, the complex form of delays systems, that
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is, having time-varying delay, which varies in an interval with a nonzero lower

bound is characterized as interval time-varying delay and is encountered in the

wide range of engineering applications spread from chemical reactors and com-

bustion engines to the networked control systems and recurrent neural networks

(Li et al., 2011; Farnam and Esfanjani, 2014). During the recent years, stability

analysis and stabilization of time-invariant systems with time-varying delay has

been an active research field (Phat et al., 2012; Zhang et al., 2010; Peng and Tian,

2008; Kwon et al., 2011; Shao, 2009; Park, 1994; Louisell, 2001; Niculescu et al.,

1998; Sun et al., 1997; Verriest, 1994).

1.2 How DDEs Arise

Interest in using delay differential equations often arises when traditional

pointwise modeling assumptions are replaced by more realistic distributed assump-

tions. As an example, let us demonstrate one of the well-known models describing

the dynamics of a population (see, for example, (Kolmanovskii, 1996)). In 1838

P.F.Verhulst applied the equation

Ṅ(t) = λN(t)(1−N(t))

for describing the dynamics of a population, where N(t) is the population density.

The general solution of this equation is N(t) =
(
1 + Ce−λ(t−to)

)
. This model,

however, has some shortcomings. For example, it implies that the population

growth is monotone, whereas in reality the growth oscillates. Another weakness

is that according to this model, the population reacts immediately to a change

of population, whereas in reality it is not so: the rate of change Ṅ(t) of the

population density does not immediately react to the change of population N(t).
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Thus, a more realistic model was proposed by G.E.Hutchinson (1948)

Ṅ(t) = λN(t)(1−N(t− τ)),

where τ is a delay time. This model is more realistic, because it takes into account

inertia of the reaction to a change of population, and the oscillating tendency of

the population approaching a stationary state.

Most equations applied in mathematical modelling include time and space

variables. As a rule, physical phenomena have diffusion with respect to the space

variables. This leads to systems of partial differential equations with delay. For

example, equations of the forms

ut = uxx + F(u,w)

or

utt = uxx + F(u,ut,w)

are generalizations of the models ut = F(u,w) or utt = F(u,ut,w). Here u =

u(t) is the vector of the dependent variables, and w = u(t − τ). There is also

another way for deriving partial differential equations with delay. Let us give a

demonstration starting with the reaction-diffusion equation

ut = uxx + F (u).

This equation arises in biology, biophysics, biochemistry, chemistry, medicine, con-

trol, climate model theory, ecology, economics and many other areas. Due to a

number of factors depending on the area of applications there is a delay in the

studied processes. From the physical viewpoint the delay is responsible for inertia

in mass/heat transfer processes: the system does not respond to an action immedi-

ately at the time t when the action is applied as in the classical local-equilibrium
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case, but at a relaxation time τ later. This brings us to a partial differential

equation with delay,

ut = uxx + F (u,w), w = u(t− τ, x), (1.1)

where τ is constant.

1.3 Solving DDEs

Despite of the importance of exact solutions, there is a lack of methods

for constructing exact solutions of delay differential equations. From among the

known approaches for constructing exact solutions of delay differential equations

one mentions the following:

(i) travelling wave type solutions;

(ii) reduction to differential equations;

(iii) use of representation of a solution on the base of a priori simplified assump-

tions.

Travelling waves are applied in many areas of science and engineering. So-

lutions u(t, x) of travelling wave type have the representation u = U(x − Dt),

where x is a space variable, t is time, and D is constant. A wavefront propagates

along x with constant phase velocity D.

Reductions of equations with nonlocal terms are applied in viscoelastic

materials, nonlinear optics and other areas of mathematical physics. For example,

consider one of the most general evolution equations used in nonlinear wave physics

(Rudenko and Soluyan, 1977; Rudenko et al., 1974):

(ux − uut − wtt)t = uyy + uzz, (1.2)
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where w =
∫∞
0
K (s) u (t− s) ds. Special cases of equation (1.2) which take

the form of a partial differential equation are well-known (Rudenko, 2010): the

Khokhlov-Zabolotskaya equation (Zabolotskaya and Khokhlov, 1969; Rudenko,

2010),

(ux − uut)t = uyy + uzz,

the Kadomtsev-Petviashvili equation

(ux − uut − uttt)t = uyy + uzz,

and the delay differential equation (Ibragimov et al., 2011)

(ux − uut − ut + wt)t = uyy + uzz, w(t, x) = u(t− 1, x),

which is simpler than the original equation (1.2) and other models (Rudenko,

2010).

As an example of the third approach one can consider the approach

(Polyanin and Zhurov, 2014e) applied to nonlinear delay reaction-diffusion equa-

tion (1.1). In (Polyanin and Zhurov, 2014e) solutions of equation (1.1) were sought

in the form

u =
N∑
n=1

ϕn(x)ψn(t),

where the functions ϕn(x) and ψn(t) are to be determined subsequently, and are

sought in a form so that it is possible to apply the method of invariant subspaces

(Galaktionov and Svirshchevskii, 2007) which for delay differential equations re-

quires additional restrictions. This approach was also applied by the authors of

(Polyanin and Zhurov, 2014e) to the delay reaction-diffusion equation (and pair

of equations) (Polyanin and Zhurov, 2013; Polyanin and Zhurov, 2014a; Polyanin

and Zhurov, 2014b; Polyanin and Zhurov, 2014c; Polyanin and Zhurov, 2014d;

Polyanin and Zhurov, 2014f; Polyanin and Zhurov, 2014g; Polyanin and Zhurov,

2015).
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Throughout the years, many methods for obtaining exact solutions of dif-

ferential equations instead of approximating solutions have been developed. One

of them is the group analysis method. Group analysis was initially introduced in

the 1870s by a Norwegian mathematician, Sophus Lie. He found a new method

for integrating differential equations. This method is universal and effective for

solving nonlinear differential equations analytically. It involves the study of sym-

metries of differential equations, with the emphasis on using the symmetries to

find solutions. The theory of group analysis has been applied to both ordinary

and partial differential equations in (Ovsiannikov, 1978; Olver, 1986; Ibragimov,

1999) and more mathematical models (Ibragimov, 1996). One of its applications to

differential equations is the problem of group classification of differential equations.

Group classification means to classify given differential equations with respect to

arbitrary elements. The group classification problem of differential equations was

first formulated by Lie (Lie, 1883). He has given a classification of ordinary dif-

ferential equations in terms of their symmetry groups, thereby identifying the full

set of equations which could be solved or reduced to lower-order equations by this

method.

In this thesis, the group analysis method is used, which is used not only for

solving differential equations, but also for developing new models. The approach

for applying group analysis to partial differential equations with simple (constant)

forms of delays was introduced in (Tanthanuch and Meleshko, 2004; Meleshko,

2005; Grigoriev et al., 2010), and the method for constructing and solving deter-

mining equations was presented in (Tanthanuch and Meleshko, 2004). They show

that the presence of a symmetry in a delay differential equation allows finding an

invariant solution and reducing the number of independent variables of the equa-

tion, which is similar to the theory for partial differential equations. However,
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at present, there are no results related with applications of group analysis to the

time-varying delay differential equations. It should be mentioned here that the

study of time-varying delay differential equations is a new area in the theory of

the group analysis method.

1.4 Klein-Gordon Equation With Delay

In this thesis the nonlinear delay Klein-Gordon equation of the form

utt = ∆u+ g(u, ū) (1.3)

is studied by the group analysis method, where ū(t, x1, x2, ..., xn) = u(t −

τ(t), x1, x2, ..., xn), τ(t) depends on t and τ(t) > 0.

The Klein-Gordon equation plays an important role in mathematical

physics. This equation was deduced in the 1920s and 1930s independently by

Oskar Klein (Swedish physicist) and Walter Gordon (German physicist). The

Klein-Gordon equation is a fundamental equation in relativistic quantum mechan-

ics and quantum field theory. The nonlinear Klein-Gordon equation without delay

has the form

utt(x, t) = ∆u(x, t) + g(u(x, t)). (1.4)

It is well known that the Klein-Gordon equation (1.4) is used to model many dif-

ferent nonlinear phenomena, including the propagation of dislocations in crystals

and the behavior of elementary particles and of Josephson junctions (see (Drazin

and Johnson, 1989) Chap. 8.2 for details). It has also been the subject of detailed

investigation in studies of solitons and nonlinear science in general. It is probably

best known as the sine-Gordon equation

utt −∆u+ sinu = 0,
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although it also appears with F (u) = sinhu, polynomial F (u), and other non-

linear functions. Details of existence, uniqueness, and other analytic properties

of solutions of equation (1.4) can be found in (Polyanin and Zaitsev, 2012; Bul-

lough and Caudrey, 1980; Novikov, 1984; Grundland and Infeld, 1992; Zhdanov,

1994; Andreev et al., 1998), and a more general discussion, including applications

and numerical approximations, can be found in (Drazin and Johnson, 1989) and

(Dodd et al., 1982). According to the fact that the system does not respond to

an action immediately at the time t when the action is applied, as in the classical

local-equilibrium case, but at a relaxation time τ(t) later, one therefore considers

it necessary to study equation (1.3) with time-varying delay. This leads to the

one-dimensional nonlinear constant delay Klein-Gordon equation of the form

utt = uxx + g(u, ū), (1.5)

and the two-dimensional nonlinear Klein-Gordon equation with time-varying delay

of the form

utt = uxx + uyy + g(u, ū), (1.6)

where ū(t, x) = u(t − τ, x), τ(t) is constant in equation (1.5), in equation (1.6)

ū(t, x, y) = u(t − τ(t), x, y), τ(t) depends on t and τ(t) > 0, which denotes the

time-varying delay.

 

 

 

 

 

 

 

 



CHAPTER II

GROUP ANALYSIS

Before discussion of the main research in the Chapter IV, some background

and basic concepts of group analysis are presented here. In 1870, a Norwegian

mathematician, Sophus Lie, introduced the theory of continuous transformation

groups that are now known as Lie groups. The main concept of the group analysis

method for constructing exact solutions of differential equations is the concept of

admitted Lie group. This method is a successful method for integration of linear

and nonlinear differential equations. Many results obtained by this method are

collected in the Handbook of Lie Group Analysis (1994), (1995), (1996). Group

analysis was also applied to integro-differential, stochastic and delay differential

equations in (Grigoriev et al., 2010).

In this chapter, some background of Lie group analysis is reviewed such as

a one-parameter Lie group of transformations, canonical Lie-Bäcklund operators,

determining equations, Lie algebra of generators, classification of subalgebras. In

the last section, notions of invariant solutions are presented.

2.1 One-parameter Lie Group of Transformations

Let g : V × △ → V be an invertible transformation, where V is the set

of variables z = (x, u). Here x = (x1, . . . , xn) is the set of independent variables,

and u = (u1, . . . , um) is the set of dependent variables. Furthermore, △ ⊂ R

is a symmetric interval with respect to zero. The variable a is considered as a

parameter of the transformation g, which transforms the variable z = (x, u) into
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z̄ = (x̄, ū) of the same space.

Let g(z; a) be denoted by ga(z). The set of functions ga forms a one-

parameter Lie group of transformations of the space V if the following properties

hold:

1. g0(z) = z for any z ∈ V ;

2. ga(gb(z)) = ga+b(z) for any a, b, a+ b ∈ △ and z ∈ V ;

3. if ga(z) = z for any z ∈ V , then a = 0; and

4. g ∈ Ck(V ×△).

For a Lie group define a set of functions

ζ(z) = (ζ1(z), ζ2(z), . . . , ζN(z)) =
dg

da
(z, 0).

The operator

X = ζ i(z)∂zi (2.1)

is called an infinitesimal generator of the Lie group.

A Lie group of transformations (2.1) is completely defined by the solution

of the Cauchy problem:

dz̄

da
= ζ(z̄) (2.2)

z̄|a=0 = z. (2.3)

Here the initial data (2.3) are taken at the point a = 0. Equations (2.2) are called

Lie equations. The Lie Theorem establishes a one-to-one correspondence between

the Lie group of transformations and the infinitesimal generator (2.1).

The space Z = Rn×Rm is prolonged by introducing the additional variables

p = (pjα). Here, α = (α1, α2, ..., αn) is a multi-index. For a multi-index the
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notations |α| ≡ α1 + α2 + ... + αn) and α, i ≡ (α1, α2, ..., αi−1, αi + 1, αi+1, ..., αn)

are used. The variable (pjα) plays the role of a derivative

pjα =
∂|α|uj

∂xα
=

∂|α|uj

∂xα1
1 ∂x

α2
2 ...∂x

αn
n

.

The space J l of the variables

x = (xi), u = (uj), p = (pjα)

(i = 1, 2, ..., n; j = 1, 2, ...,m; |α| ≤ l)

is called the l − th prolongation of the space Z.

Definition 2.1. The generator

X
l
= X +

∑
j,α

ηjα∂pjα , (j = 1, 2, ...,m; |α| ≤ l),

with the coefficients:

ηjα̃,k = Dkη
j
α̃ −

∑
i

pjα̃,iDkξ
i, (|α̃| ≤ l − 1) (2.4)

is called the l− th prolongation of the generator X, where X = ξi∂xi + ηj∂uj , and

Dk are the total derivative operators with respect to xk:

Dk =
∂

∂xk
+
∑
j,α

pjα,k
∂

∂pjα
, (k = 1, 2, ..., n),

and ηj0 = ηj.

2.2 Canonical Lie-Bäcklund Operators

Consider operators of the form

ξi
∂

∂xi
+ ηα

∂

∂uα
, (2.5)
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where ξi and ηα depend on the independent variables x, the dependent variables

u, and finite set of their derivatives. The prolongation to all derivatives is

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+ ζαi

∂

∂uαi
+ ζαi1i2

∂

∂uαi1i2
+ ..., (2.6)

where

uαi1...ik =
∂kuα

∂xi1∂xi2 ...∂xik
,

ζαi = Di

(
ηα − ξjuαj

)
+ ξjuαij,

ζαi1i2 = Di1Di2

(
ηα − ξjuαj

)
+ ξjuαji1i2 ,

.............................................................

(2.7)

Definition 2.2. An operator given by formula (2.6) and (2.7) is called a Lie-

Bäcklund operator.

The Lie-Bäcklund operator (2.6) is often written in the abbreviated form

X = ξi
∂

∂xi
+ ηα

∂

∂uα
+ .... (2.8)

Definition 2.3. Two Lie-Bäcklund operationsX1 andX2 are said to be equivalent

if X1 −X2 = ξiDi.

Definition 2.4. The operators of the form

Y = ηα
∂

∂uα
+ ζαi

∂

∂uαi
+ ...

are called canonical Lie-Bäcklund operators.

Any Lie-Bäcklund operator X is equivalent to a canonical Lie-Bäcklund

operator with the coefficients (Ibragimov, 1999).

ζα = ηα − ξjuαj

ζαi = Di

(
ζα

)
ζαi1i2 = Di1Di2

(
ζα
)

.............................................................

(2.9)
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2.3 Determining Equations

Relations between differential equations and Lie groups are presented in

this section.

Consider a manifold

S = {(x, u, p)| F k(x, u, p) = 0, (k = 1, 2, ..., s)},

which is defined by a system of partial differential equations:

F k(x, u, p) = 0, (k = 1, 2, ..., s), (2.10)

where p are partial derivatives of u with respect to x. The manifold S is assumed

to be regular, i.e.,

rank

(
∂(F )

∂(u, p)

)
= s.

A manifold S is said to be invariant with respect to the group of transformations

(2.1), if every point of the manifold S is moved by transformations (2.1) into this

manifold S. Accordingly, if the Lie group of transformations (2.1) is admitted by

system (2.10), then system (2.10) is not changed under the Lie group of transfor-

mations.

Theorem 2.1. (Ovsiannikov, 1978) Differential equations (2.10) admit a Lie

group with generator X if and only if the following equations hold

X
l
F k(x, u, p)

∣∣∣
(S)

= 0, (k = 1, 2, ..., s), (2.11)

where X
l
is the prolonged operator of the generator X; the notation |(S) means that

the relations X
l
F k are evaluated on the manifold S.

Equations (2.11) are called determining equations.

The algorithm for finding a generator X of a Lie group admitted by differ-

ential equations (2.10) consists of the following steps:
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1. Form the admitted generator

X = ξi(x, u)∂xi + ηj(x, u)∂uj

with unknown coefficients ξi(x, u), ηj(x, u).

2. Construct the prolonged operator X
l
. The coefficients of the operator X

l
are

defined by formula (2.4).

3. Apply the prolonged operator X
l
to each equation of the system (2.10).

4. Split the determining equations with respect to the parametric derivatives.

5. Solve the over-determined system of equations. The solution of the deter-

mining equations give us the coefficients of an admitted generator.

2.4 Lie Algebra of Generators

Let

Xi = ζαi (z)∂zα , (i = 1, 2) (2.12)

be two infinitesimal generators. The generator

X3 = ζα3 (z)∂zα

with the coefficients

ζα3 = X1(ζ
α
2 )−X2(ζ

α
1 ),

is called a commutator of the generators X1 and X2. It is denoted by

X3 = [X1, X2].

The operation of commutation satisfies the properties:
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(1) bilinearity:

[αX1 + βX2, X3] = α[X1, X3] + β[X2, X3],

[X1, αX2 + βX3] = α[X1, X2] + β[X1, X3],

where α and β are arbitrary constant,

(2) antisymmetry: [X1, X2] = −[X2, X1],

(3) the Jacobi identity:

[[X1, X2], X3] + [[X2, X3], X1] + [[X3, X1], X2] = 0.

Definition 2.5. A vector space L with a commutator operation satisfying these

properties is called a Lie algebra.

Definition 2.6. A vector space of generators L is a Lie algebra if the commutator

[Xµ, Xν ] of any two generators in L belongs to L.

Theorem 2.2. (Ovsiannikov, 1978) A commutator is invariant with respect to

any change of variables.

Theorem 2.3. (Ovsiannikov, 1978) The operator of prolongation commutes with

the operation of taking a commutator.

Theorem 2.4. (Ovsiannikov, 1978) If a system (S) admits generators X and Y ,

then it admits their commutator [X,Y ].

The latter theorem means that the vector space LS of all admitted gener-

ators is a Lie algebra (admitted by the system (S)). This Lie algebra is called a

principal algebra. To construct exact solutions one uses subalgebras of the admit-

ted algebra.

Let L be a Lie algebra of generators.
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Definition 2.7. A vector subspace L′ ⊂ L of Lie algebra L is called a subalgebra

if it is a Lie algebra.

In other words, for arbitrary vectors Xµ and Xν from L′, their commutator

[Xµ, Xν ] belongs to L
′.

Definition 2.8. Let I ⊂ L be a subspace of Lie algebra L with the property,

[X, Y ] ∈ I, ∀X ∈ I and ∀Y ∈ L. The subspace I is called an ideal.

2.5 Classification of Subalgebras

Since any solution of a system of differential equations is mapped by a trans-

formation from admitted Lie group into a solution of the same system, the problem

of separating solutions into classes of essentially different solutions appears.

A linear one-to-one map f of a Lie algebra L onto a Lie algebra K is called

an isomorphism if

f([Xµ, Xν ]L) = [f(Xµ), f(Xν)]K ,

where the indices L andK are used to denote the commutator in the corresponding

Lie algebra. An isomorphism of L onto itself is called an automorphism. The set

of all subalgebras can be classified with respect to automorphism.

Let Lr be an r-dimensional Lie algebra of generators with a basis

X1, X2, ..., Xr, then

[Xµ, Xν ] = cλµνXλ

for any two generators Xµ and Xν . The constants cλµν are called structure con-

stants.

Notice that two Lie algebras are isomorphic if and only if they have the

same structure constants in an appropriately chosen basis.

 

 

 

 

 

 

 

 



17

For any X ∈ Lr, then

X = xµXµ.

Hence, elements of Lr are represented by vector x = (x1, x2, ..., xr). Let L
A
r be the

Lie algebra spanned by the following operators:

Eµ = cλµνxν
∂

∂xλ
, µ = 1, 2, ..., r.

The Lie algebra LAr generates a group GA of linear transformations of xµ. These

transformations determine automorphisms of the Lie algebra Lr known as inner

automorphisms. This set is denoted by Int(Lr). Accordingly, GA is called the

group of inner automorphisms of Lr. Two subalgebras Lp and Lq of Lr are called

similar, if one can be transformed to another by an element of Int(Lr). Similar

subalgebras of the same dimension compose an equivalence class.

Definition 2.9. The set of all classes (one representative from each class) is called

an optimal system of subalgebras.

Thus, the optimal system of subalgebras of a Lie algebra L with inner

automorphisms A = Int(L) is a set of subalgebras ΘA(L) such that:

1. there are no two elements of this set which can be transformed into each

other by an inner automorphism of the Lie algebra L.

2. any subalgebra of the Lie algebra L can be transformed into one of subalge-

bras of the set ΘA(L).

It is known (Ovsiannikov, 1978) that the problem of finding all automor-

phisms is reduced to the problem for finding automorphisms Ak for the basis

vectors y = ek, (k = 1, 2, ..., s):

d

dt
x̂λ = x̂αcλαk, x̂

λ
|t=0 = xλ, (λ = 1, 2, ..., r).
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Here {ek}rk=1 is the canonical basis in Rr. The automorphism Ak corresponds to

the Lie group of transformations with the generator

xαcλαk∂xλ .

Calculations of an optimal system of subalgebras is easy enough for low-

dimensional Lie algebras (Patera and Winternitz, 1977). For high-dimensional Lie

algebras one can use a two-step algorithm (Ovsiannikov, 1993). This algorithm

reduces the problem of constructing an optimal system of subalgebras with high

dimensions to a problem with low dimensions.

Assume that the Lie algebra L is decomposed into L = I ⊕ F , where I

is a proper ideal of the Lie algebra L and F is a subalgebra. The set of inner

automorphisms A = Int(L) of the Lie algebra L is also decomposed A = AIAF ,

where AI and AF are subsets of A which correspond to the elements of I and F ,

respectively, as follows.

Let x ∈ L be decomposed as x = xI + xF , where xI ∈ I and xF ∈ F . Any

automorphism C ∈ A can be written as C = CICF , where CI ∈ AI and CF ∈ AF .

The automorphisms CI and CF have the following properties:

CIxF = xF , ∀xF ∈ F, ∀CI ∈ AI ,

CFxI ∈ I, CFxF ∈ F, ∀xI ∈ I, ∀xF ∈ F, ∀CF ∈ AF .

At the first step, an optimal system of subalgebras ΘAF
(F ) =

(F1, F2, ..., Fp, Fp+1) of the algebra F is formed, here Fp+1 = {0} and the optimal

system of subalgebras ΘAF
(F ) is constructed with respect to the automorphisms

AF . For each subalgebra Fj of F, (j = 1, 2, ..., p+ 1), one has to find its stabiliser

St(Fj) ⊂ A as

St(Fj) = {C ∈ A|C(Fj) = Fj}.
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Note that St(Fp+1) = A.

The second step consists of forming optimal system ΘStFj
(I ⊕ Fj), (j =

1, 2, ..., p + 1). The optimal system of subalgebras ΘA(L) of the Lie algebra L is

a collection of ΘStFj
(I ⊕ Fj), (j = 1, 2, ..., p + 1). If the subalgebra F can also be

decomposed, the two-step algorithm can be used for constructing ΘAF
(F ).

2.6 Invariant Solutions

For a system S of partial differential equations (2.10), the coefficients of

an admitted generator are found by solving the determining equations. Then one

may obtain the transformation group G admitted by solving the Lie equations.

Let H be a subgroup of G.

Definition 2.10. A solution u = U(x) of equations (2.10) is called an H −

invariant solution of the system S if the manifold u = U(x) is an invariant

manifold with respect to any transformation by elements of the group H.

Let H be the r − parameter subgroup generated by the generators

Xν = ξiν
∂

∂xi
+ ηjν

∂

∂uj
, (2.13)

where i = 1, 2, ...n, ν = 1, 2, ...r and j = 1, 2, ...,m. Let k = rank(ξiν , η
j
ν), then H

has n+m− k functionally independent invariants

J1(x, u), J2(x, u), ..., Jn+m−k(x, u).

Suppose that rank(
∂Jβ(x,u)

∂uα
) = m, where β, α = 1, 2, ...m. Then, setting

vβ = Jβ(x, u), λ
l = Jm+l(x, u),

where β = 1, 2, ...m and l = 1, 2, ...n − k, one can write the representation of the

invariant solutions of the system S in the form

vβ = ϕβ(λ1, λ2 ..., λn−k), (β = 1, 2, ...m),

 

 

 

 

 

 

 

 



20

where ϕβ is some function of its variables. 

 

 

 

 

 

 

 



CHAPTER III

ADMITTED LIE GROUP OF DELAY

DIFFERENTIAL EQUATIONS

For group classification of delay differential equations, the method of con-

structing and solving determining equations for constant delay was presented

by Tanthanuch and Meleshko (Tanthanuch and Meleshko, 2002). In Meleshko

and Moyo (Meleshko and Moyo, 2008), this method was applied to the reaction-

diffusion delay partial differential equation, where a complete group classification

of the equation was obtained. Further applications of group analysis to delay dif-

ferential equations can be found in Pue-on and Meleshko (2010) and Tanthanuch

(2012). However, at present, there are no results related with the application of

group analysis to time-varying delay differential equations.

3.1 Time-Varying Delay

This section is devoted to studying a change of a delay differential equation

with a time-varying τ = τ(t) under a Lie group of transformations. For the sake

of simplicity, one considers here that u = u(t, x). For the more general case

u = (u1, u2, ..., ur) and ui = ui(t, x1, x2, ..., xp), where (i = 1, 2, ..., r), a similar

approach can be applied.

One starts the study from a Lie group of transformations:

t̂ = φ(t, x, u; a), x̂ = χ(t, x, u; a), û = ψ(t, x, u; a),
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with the generator

X = η(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ ζ(t, x, u)

∂

∂u
.

If u0(t, x) is some function, then the transformed function is

ũ(t̂, x̂) = ψ
(
T (t̂, x̂, a), X(t̂, x̂, a), u0

(
T (t̂, x̂, a), X(t̂, x̂, a)

)
; a
)
,

t = T (t̂, x̂, a), x = X(t̂, x̂, a),

where

t̂ = φ
(
T (t̂, x̂, a), X(t̂, x̂, a), u0

(
T (t̂, x̂, a), X(t̂, x̂, a)

)
; a
)
,

x̂ = χ
(
T (t̂, x̂, a), X(t̂, x̂, a), u0

(
T (t̂, x̂, a), X(t̂, x̂, a)

)
; a
)
,

(3.1)

and

t = T (φ(t, x, u; a), χ(t, x, u; a), a) , x = X (φ(t, x, u; a), χ(t, x, u; a), a) . (3.2)

If τ(t) is some delay function, then

τ̃ = φ(t, x, u(t, x); a)− φ(t−, x, u(t−, x); a),

where t− = t− τ(t). Thus, the prolongation of the generator of the Lie group for

the delay parameter τ is

X = η
∂

∂t
+ ξ

∂

∂x
+ ζ

∂

∂u
+ µ

∂

∂τ
, (3.3)

where µ = µ(t, x, u, t−, u−) = η(t, x, u)− η(t−, x, u−).

Here it is assumed that all functions are defined. Later, when the deter-

mining equations are constructed, this requirement will be omitted.

Differentiating identities (3.1) with respect to a and setting a = 0, one has

∂

∂a
(φ(T (t̂, x̂, a), X(t̂, x̂, a), u0(T (t̂, x̂, a), X(t̂, x̂, a)); a))|a=0

=
∂

∂a
(T (t̂, x̂, a))|a=0 + η(t̂, x̂, u0(t̂, x̂)) = 0,
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∂

∂a
(χ(T (t̂, x̂, a), X(t̂, x̂, a), u0(T (t̂, x̂, a), X(t̂, x̂, a)); a))|a=0

=
∂

∂a
(X(t̂, x̂, a))|a=0 + ξ(t̂, x̂, u0(t̂, x̂)) = 0.

Hence,
∂

∂a

(
T (t̂, x̂, a)

)
|a=0

= −η(t̂, x̂, u0(t̂, x̂)),
∂

∂a

(
X(t̂, x̂, a)

)
|a=0

= −ξ(t̂, x̂, u0(t̂, x̂)).
(3.4)

Since the transformed functions are defined as follows

ũ(t̂, x̂) = ψ
(
T (t̂, x̂, a), X(t̂, x̂, a), u0

(
T (t̂, x̂, a), X(t̂, x̂, a)

)
; a
)
,

τ̃(t̂) = φ(t, x, u0(t, x); a)− φ(t− τ(t), x, u0(t− τ(t), x); a),

where t = T (t̂, x̂, a) and x = X(t̂, x̂, a) are substituted, one derives

τ̃(t̂) = φ(T (t̂, x̂, a), X(t̂, x̂, a), u0(T (t̂, x̂, a), X(t̂, x̂, a)); a)

−φ(T (t̂, x̂, a)− τ(T (t̂, x̂, a)), X(t̂, x̂, a), u0(T (t̂, x̂, a)− τ(T (t̂, x̂, a)), X(t̂, x̂, a)); a).

Because of the requirement that a solution of equation (1.3) is mapped

into a solution of the same equation, one has τ̃(t̂) = τ(t̂). After differentiat-

ing this equation with respect to a, setting a = 0, and using T (t̂, x̂, a)|a=0 = t̂,

X(t̂, x̂, a)|a=0 = x̂, one obtains

∂

∂a

(
τ̃(t̂)

)
|a=0

= (1− τ ′(t̂))η(t̂, x̂, u0(t̂, x̂))−η(t̂− τ(t̂), x̂, u0(t̂− τ(t̂), x̂)) = 0. (3.5)

Identities (3.1) imply that

t̂− τ̃(t̂) =

φ
(
T (t̂− τ̃(t̂), x̂, a), X(t̂− τ̃(t̂), x̂, a), u0

(
T (t̂− τ̃(t̂), x̂, a), X(t̂− τ̃(t̂), x̂, a)

)
; a
)
,

x̂ =

χ
(
T (t̂− τ̃(t̂), x̂, a), X(t̂− τ̃(t̂), x̂, a), u0

(
T (t̂− τ̃(t̂), x̂, a), X(t̂− τ̃(t̂), x̂, a)

)
; a
)
.

Differentiating these equations with respect to a, setting a = 0, and using the

identity (3.5), one has

∂

∂a

(
T (t̂− τ̃(t̂), x̂, a)

)
|a=0

= −(1− τ ′(t̂))η(t̂, x̂, u0(t̂, x̂)), (3.6)
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and

∂

∂a

(
X(t̂− τ̃(t̂), x̂, a)

)
|a=0

= −ξ
(
t̂− τ(t̂), x̂, u0

(
t̂− τ(t̂), x̂

))
. (3.7)

Because of

ũ(t̂, x̂) = ψ
(
T (t̂, x̂, a), X(t̂, x̂, a), u0

(
T (t̂, x̂, a), X(t̂, x̂, a)

)
; a
)
,

one gets

ũ(t̂− τ̃(t̂), x̂) =

ψ(T (t̂− τ̃(t̂), x̂, a), X(t̂− τ̃(t̂), x̂, a), u0(T (t̂− τ̃(t̂), x̂, a), X(t̂− τ̃(t̂), x̂, a)); a).

Hence
∂

∂a

(
ũ(t̂, x̂)

)
|a=0

= ζ(t̂, x̂, u0(t̂, x̂))− u0t(t̂, x̂)η(t̂, x̂, u0(t̂, x̂))

−u0x(t̂, x̂)ξ(t̂, x̂, u0(t̂, x̂))
(3.8)

and
∂

∂a

(
ũ(t̂− τ̃(t̂), x̂)

)
|a=0

= ζ(t̂− τ(t̂), x̂, u0(t̂− τ(t̂), x̂))

−u0t(t̂− τ(t̂), x̂)(1− τ ′(t̂))η(t̂, x̂, u0(t̂, x̂))

−u0x(t̂− τ(t̂), x̂)ξ(t̂− τ(t̂), x̂, u0(t̂− τ(t̂), x̂)).

(3.9)

Let ˜̄u(t̂, x̂) = ũ(t̂− τ(t̂), x̂) and ū0(t, x) = u0(t− τ(t), x), then

ū0t(t̂, x̂) = u0t(t̂− τ(t̂), x̂)(1− τ ′(t̂))

and

ū0x(t̂, x̂) = u0x(t̂− τ(t̂), x̂).

Therefore,

∂

∂a

(
ũ(t̂− τ̃(t̂), x̂)

)
|a=0

=
∂

∂a

(˜̄u(t̂, x̂))|a=0
= ζ(t̂− τ(t̂), x̂, ū0(t̂, x̂))

−ū0t(t̂, x̂)η(t̂, x̂, ū0(t̂+ τ(t̂), x̂))− ū0x(t̂, x̂)ξ(t̂− τ(t̂), x̂, ū0(t̂, x̂)).

(3.10)

Hence

∂

∂a

(˜̄ut̂(t̂, x̂))|a=0
=

∂

∂a

(
∂

∂t̂

(˜̄u(t̂, x̂)))
|a=0

=
∂

∂t̂

(
∂

∂a

(˜̄u(t̂, x̂))|a=0

)
,
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and

∂

∂a

(˜̄ux̂(t̂, x̂))|a=0
=

∂

∂a

(
∂

∂x̂

(˜̄u(t̂, x̂)))
|a=0

=
∂

∂x̂

(
∂

∂a

(˜̄u(t̂, x̂))|a=0

)
.

In a similar way, one has

∂

∂a

(
ũt̂(t̂, x̂)

)
|a=0

=
∂

∂t̂

(
∂

∂a

(
ũ(t̂, x̂)

)
|a=0

)
,

∂

∂a

(
ũx̂(t̂, x̂)

)
|a=0

=
∂

∂x̂

(
∂

∂a

(
ũ(t̂, x̂)

)
|a=0

)
,

and

∂

∂a

(
τ̃ ′(t̂)

)
|a=0

=
∂

∂t̂

(
∂

∂a

(
τ̃(t̂)

)
|a=0

)
= 0.

Therefore, one derives the prolongation of the canonical Lie-Bäcklund which

is equivalent to the generator X:

X̄ = ζu∂u + ζ ū∂ū + ζut∂ut + ζux∂ux

+ζ ūt∂ūt + ζ ūx∂ūx + ζutt∂utt + ζuxx∂uxx + ....,
(3.11)

where the coefficients are

ζu = ζ(t, x, u(t, x))− ut(t, x)η(t, x, u(t, x))− ux(t, x)ξ(t, x, u(t, x)),

ζ ū = ζ(t− τ(t), x, u(t− τ(t), x))− ūt(t, x)η(t, x, u(t, x))

−ūx(t, x)ξ(t− τ(t), x, u(t− τ(t), x)),

ζut = Dt (ζ
u) , ζux = Dx (ζ

u) , ζ ūt = Dt (ζ
ū) , ζ ūx = Dx (ζ

ū) ,

ζutt = Dt (Dt (ζ
u)) , ζuxx = Dx (Dx (ζ

u))

..............

with ū(t, x) = u(t − τ(t), x), Dt and Dt are the total derivatives with respect to

variables t and x, respectively.

Notice that the coefficient η(t, x, u) has to satisfy the condition (3.5):

(1− τ ′(t))η(t, x, u(t, x)) = η(t− τ(t), x, u(t− τ(t), x)). (3.12)
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In the particular case where the delay term τ(t) is constant, equation (3.12)

becomes η(t, x, u(t, x)) = η(t− τ, x, u(t− τ, x)), which implies that

∂

∂a

(
ũ(t̂− τ̃ , x̂)

)
|a=0

= ζ(t̂− τ, x̂, u0(t̂− τ, x̂))

−u0t(t̂− τ, x̂)η(t̂− τ, x̂, u0(t̂− τ, x̂))

−u0x(t̂− τ, x̂)ξ(t̂− τ, x̂, u0(t̂− τ, x̂))

(3.13)

by equation (3.9) and µ = 0 in (3.3).

Hence, under this case, one gets the prolongation of the canonical Lie-

Bäcklund which is equivalent to the generator X:

X̄ = ζu∂u + ζ ū∂ū + ζut∂ut + ζux∂ux

+ζ ūt∂ūt + ζ ūx∂ūx + ζutt∂utt + ζuxx∂uxx + ....,
(3.14)

where the coefficients are

ζu = ζ(t, x, u(t, x))− ut(t, x)η(t, x, u(t, x))− ux(t, x)ξ(t, x, u(t, x)),

ζ ū = ζ(t− τ, x, u(t− τ, x))− ūt(t, x)η(t− τ, x, u(t− τ, x))

−ūx(t, x)ξ(t− τ, x, u(t− τ, x)),

ζut = Dt (ζ
u) , ζux = Dx (ζ

u) , ζ ūt = Dt (ζ
ū) , ζ ūx = Dx (ζ

ū) ,

ζutt = Dt (Dt (ζ
u)) , ζuxx = Dx (Dx (ζ

u))

..............

with ū(t, x) = u(t − τ, x), τ is constant, Dt and Dt are the total derivatives with

respect to variables t and x, respectively.

3.2 Equivalence Lie Group of Transformations for Con-

stant Delay

Most differential equations include arbitrary elements: constants and func-

tions of the independent and dependent variables.
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Definition 3.1. A transformation of the independent and dependent variables as

well as the arbitrary elements is called an equivalence transformation of a system

of differential equations if it preserves the differential structure of the equations

themselves.

Definition 3.2. If a set of equivalence transformations of partial differential equa-

tions composes a Lie group of transformations, then the Lie group is called an

equivalence Lie group.

For finding an equivalence Lie group of partial differential equations one

can apply the infinitesimal approach (Ovsiannikov, 1978)∗.

For delay differential equations, the notion of an equivalence Lie group was

introduced in (Meleshko and Moyo, 2008; Grigoriev et al., 2010): it is a Lie group

corresponding to an infinitesimal generator which satisfies determining equations.

This Lie group of transformations provides a set of potential equivalence transfor-

mations. Notice that for partial differential equations these transformations are

simply equivalence transformations.

For the sake of simplicity, one considers a one-dimensional dependent vari-

able u ∈ R1.

The class of considered differential equations with time delay is of the form

F k(t, x, u, ū, p, ϕ) = 0; (k = 1, 2, . . . , s), (3.15)

where t and x are both the independent variables, ū = u(x, t − τ), τ is constant,

p are derivatives of u with respect to x and ϕ = ϕ(t, x, u, ū) is arbitrary function.

Denoting v(t, x) = ū(t, x), one gets a class of differential equations

Gk(t, x, u, v, p, ϕ) = 0; (k = 1, 2, . . . , s+ 1), (3.16)

∗Generalization of this approach is given in (Meleshko, 1996)
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where Gk = F k for k = 1, 2, ..., s, Gs+1 = ū− v.

Here (t, x, u, v) ∈ V ⊂ R1+n+1+1, and ϕ : V → R. The problem is to

construct transformations of the space R1+n+1+1+1(t, x, u, v, ϕ) which preserve the

equations by changing only the representatives ϕ = ϕ(t, x, u, v). For this purpose,

a one-parameter Lie group of transformations of the space R1+n+1+1+1(t, x, u, v, ϕ)

with the group parameter a is applied

t̃ = f t(t, x, u, v, ϕ; a), x̃ = fx(t, x, u, v, ϕ; a),

ũ = fu(t, x, u, v, ϕ; a), ϕ̃ = fϕ(t, x, u, v, ϕ; a).

The generator of this group has the form

Xe = γ∂t + ξi∂xi + ηu∂u + ηv∂v + ηϕ∂ϕ, (3.17)

where the coordinates of the generator Xe are

γ = γ(t, x, u, v, ϕ), ξi = ξi(t, x, u, v, ϕ),

ηu = ηu(t, x, u, v, ϕ), ηv = ηv(t, x, u, v, ϕ),

ηϕ = ηϕ(t, x, u, v, ϕ),

(i = 1, . . . , n).

Notice that earlier (Ovsiannikov, 1978), it was assumed that

∂ξi

∂ϕ
= 0,

∂γ

∂ϕ
= 0,

∂ηu

∂ϕ
= 0,

∂ηv

∂ϕ
= 0,

(i = 1, . . . , n).

The canonical Lie-Bäcklund operator equivalent to the generator Xe is

X̂e = ζu∂u + ζv∂v + ζϕ∂ϕ. (3.18)

Here the coordinates are

ζu = ηu − uxiξ
i − utγ, ζv = ηv − vxiξ

i − vtγ,

ζϕ = ηϕ − ξiDe
xi
ϕ− γDe

tϕ,
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where

De
λ = ∂λ + uλ∂u + (ϕuuλ + ϕλ)∂ϕ + ...

(λ = t, xi).

The determining equations are

X̃eGk(t, x, u, v, p, ϕ)|[S] = 0, (k = 1, 2, . . . , s+ 1), (3.19)

where the sign |[S] means that the equations X̃eGk(x, u, p, ϕ) are considered on any

solution of equations (3.16). Here, X̃e is the prolonged generator of the equivalence

Lie group. Because equation (3.16) does not depend on differentiating of ϕ with

respect to variables t, xi, u and v, then X̃e has

X̃e = X̂e + ζut∂ut + ζvt∂vt + ζuxi∂uxi

+ζvxi∂vxi + ζutt∂utt + ζuxixj∂uxixj + ...,

where

ζuxi = De
xi
ζu, ζuxixj = De

xj
ζuxi , ζvt = De

t ζ
v, ζut = De

t ζ
u, ζutt = De

t ζ
ut ... (3.20)

Noting that γ, ξi, ηu and ηv do not depend on ϕ, one derives that the

coefficients of the prolonged generator of the equivalence Lie group become

ζuxi = Dxiζ
u, ζuxixj = Dxjζ

uxi , ζvt = Dtζ
v, ζut = Dtζ

u, ζutt = Dtζ
ut ... (3.21)

where Dxi and Dt are operators of the total derivatives with respect to xi and t,

respectively.

3.3 Determining Equation of The Time-Varying Delay

Let the system of delay differential equations be of the form

F k(t, x, u, ū, p) = 0; (k = 1, 2, . . . , s). (3.22)
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Consider a one-parameter Lie group of transformations of the space R1+n+1(t, x, u)

with the group parameter a is given by

t̃ = f t(t, x, u; a), x̃ = fx(t, x, u; a), ũ = fu(t, x, u; a).

The generator of this group has the form

X = ξi
∂

∂xi
+ η

∂

∂t
+ ζ

∂

∂u
, (3.23)

where the coordinates are

ξi = ξi(t, x, u), η = η(t, x, u), ζ = ζ(t, x, u),

(i = 1, . . . , n).

The determining equations are defined as follows

X̄F k(t, x, u, ū, p)|[S] = 0, (k = 1, 2, . . . , s), (1− τ ′(t))η = η̄. (3.24)

Here, X̄ is the prolongation of the canonical Lie-Bäcklund operator equivalent to

the generator X, namely,

X̄ = ζu∂u + ζ ū∂ū + ζut∂ut + ζuxi∂uxi

+ζutt∂utt + ζuxixj∂uxixj + ...,

where the coefficients

ζu = ζ − uxiξ
i − utη, ζ

ū = ζ̄ − ūxi ξ̄
i − ūtη,

ζuxi = Dxiζ
u, ζuxixj = Dxiζ

uxj ,

ζut = Dtζ
u, ζutt = Dtζ

ut ,

...............................................................

The sign bar over a function f(x, t, u) means f̄(x, t) = f(x, t− τ(t), u(x, t−

τ(t))). In particular, for a function η̄(x, t, u) it is defined as η(x, t− τ(t), u(x, t−

τ(t))) .

 

 

 

 

 

 

 

 



CHAPTER IV

GROUP ANALYSIS OF THE

ONE-DIMENSIONAL NONLINEAR

KLEIN-GORDON EQUATION WITH

CONSTANT DELAY

In this chapter, a complete Lie group classification of the one-dimensional

nonlinear delay Klein-Gordon equation

utt = uxx + g(u, ū), gū(u, ū) ̸= 0, (4.1)

where ū = u(t− τ, x), τ is constant, is presented. For group classification it is also

necessary to use the equivalence Lie group of equation (4.1) which is presented in

the next section. In further sections the determining equation is derived and its

general solution is found. Then the complete group classification and representa-

tions of all invariant solutions are obtained.

4.1 Equivalence Lie Group of Equation (4.1)

To simplify the study, introduce the new dependent variable v, which is

related with u by the formula

v(x, t) = u(x, t− τ). (4.2)

Equation (4.1) becomes the partial differential equation with two dependent vari-

ables

S ≡ utt − (uxx + g) = 0, (4.3)
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where the arbitrary element is g = g(u, v). The generator of the Lie group of

equivalence transformation takes the form

Xe = ξ∂x + η∂t + ζ∂u + ζv∂v + ζg∂g,

where ξ, η, ζ, ζv and ζg are functions of the variables t, x, u, v and g.

The Lie-Bäcklund form of this generator is

X̂e = ζu∂u + ζv1∂v + ζg1∂g

where

ζu = ζ − ξux − ηut

ζg1 = ζg − ξDe
xg − ηDe

t g

ζv1 = ζv − ξvx − ηvt.

The prolonged operator for the equivalence Lie group is

X̃e = X̂e + ζux∂ux + ζut∂ut + ζuxx∂uxx + ζutt∂utt .

Applying the algorithm described earlier to equation (4.3), one obtains the

determining equation (
X̃e(utt − (uxx + g))

)
|(4.3)

= 0

or

(ζutt − ζuxx − ζg + ξDxg + ηDtg)|(S) = 0, (4.4)

where

ζut = D2
t (ζ − ξux − ηut), ζ

uxx = D2
x(ζ − ξux − ηut), (4.5)

Dx and Dt denote the total derivatives with respect to x and t respectively.

The determining equation related with the equation (4.2) is

{ζv(z(t, x))− ζ(z(t− τ, x))− vt(t, x) (ξ(z(t, x))− ξ(z(t− τ, x)))

−vx(t, x) (η(z(t, x))− η(z(t− τ, x)))}|(S) = 0,
(4.6)

 

 

 

 

 

 

 

 



33

where

z(t, x) = (t, x, u(t, x), v(t, x), g (u(t, x), v(t, x))) .

Substituting the coefficients (4.5) into (4.4) and replacing the derivatives

utt = uxx + g, vtt = vxx + ḡ, uttx = vxgv + guux + uxxx,

uttt = vtgv + guut + uxxt,

found from (4.3), the determining equation (4.4) becomes

−2ηutu
2
t − 2ηvtutvt − ηttut − 2ηtuxx − 2ηtg − 2ηuvu

2
tvt + 2ηuvutuxvx

+2ηuxutux − ηuuu
3
t + ηuuutu

2
x − 3ηugut − 2ηuutuxx + 2ηuutxux + 2ηvxutvx

−ηvvutv2t + ηvvutv
2
x − 2ηvgvt − ηvḡut + 2ηvutxvx − 2ηvuxxvt + ηxxut + 2ηxutx

−2ξututux − 2ξvtuxvt − ξttux − 2ξtutx − 2ξuvutuxvx + 2ξuvu
2
xvx + 2ξuxu

2
x

−ξuuu2tux + ξuuu
3
x − ξugux − 2ξuututx + 2ξuuxxux + 2ξvxuxvx − ξvvuxv

2
t

+ξvvuxv
2
x − 2ξvḡux − 2ξvutxvt − 2ξvutxvt + 2ξvuxxvx + ξxxux

+2ξxuxx + 2ζutut + 2ζvtvt + ζtt + 2ζuvutvt − 2ζuvuxvx − 2ζuxux

+ζuuu
2
t − ζuuu

2
x + ζug − 2ζvxvx + ζvvv

2
t − ζvvv

2
x + ζvḡ − ζxx − ζg = 0.

Splitting this equation with respect to ux, ut, vx, vt, utx, uxx and ḡ, one can obtain

−2ηtg + ζtt + ζug − ζxx − ζg = 0, (4.7)

ηx = ξt, ηu = 0, ηv = 0, ηt = ξx, ξv = 0, ξu = 0, (4.8)

ζuu = 0, ζux = 0, ζut = 0, ζv = 0. (4.9)

From (4.8), one has

ηxx = ηtt, ξxx = ξtt. (4.10)

The general solution of (4.9) is ζ = k1u + ζ0, where k1 is constant, and

ζ0 = ζ0(t, x).

Splitting the determining equation (4.6) with respect to vx, vt, one gets

ζv = ζ̄ , η = η̄, ξ = ξ̄, (4.11)
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where

ζ̄ = ζ(z(t− τ, x)), ξ̄ = ξ(z(t− τ, x)), η̄ = η(z(t− τ, x)).

The assumption that the function g does not depend on t and x leads to the

equations ζt = 0, ζx = 0, ζgt = 0, ζgx = 0, which implies that ζ = k1u + k4. From

equation (4.7) one obtains ζg = −2ηt+k1g, differentiating it with respect to x and

t respectively, one obtains ηtt = 0 and ηtx = 0. Equations (4.8) , (4.10) and (4.11)

give η = k2, ξ = k3, which implies that ζg = k1g.

Therefore

ξ = k3, η = k2, ζ = k1u+ k4, ζ
g = k1g.

Equation (4.6) becomes ζv(z(t, x)) = k1v + k4. Hence the generators of the

equivalence Lie group are

Xe = k1X
e
1 + k2X

e
2 + k3X

e
3 + k4X

e
4 + ζv∂v,

where

Xe
1 = g∂g + u∂u, X

e
2 = ∂t, X

e
3 = ∂x, X

e
4 = ∂u.

4.2 Admitted Lie Group of Equation (4.1)

This section is devoted to the study of admitted Lie groups of the one-

dimensional nonlinear Klein-Gordon equation with constant delay. For finding an

admitted Lie group, the algorithm for constructing determining equation of delay

differential equation is used in previous chapter. Let the generator of a Lie group

admitted by equation (4.1) be

X = ξ∂x + η∂t + ζ∂u,

where ξ, η and ζ are functions of x, t and u.
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The prolongation of the canonical Lie-Bäcklund operator equivalent to the

generator X is

X̄ = ζu∂u + ζut∂ut + ζux∂ux + ζutt∂utt + ζuxx∂uxx + ζ ū∂ū

where the coefficients are

ζu = ζ − uxξ − utη, ζ
ū = ζ̄ − ūxξ̄ − ūtη̄, ζ

ux = Dxζ
u,

ζuxx = Dxζ
ux , ζut = Dtζ

u, ζutt = Dtζ
ut .

Here Dx and Dt are operators of the total derivatives with respect to x and t,

respectively, the bar over a function f(x, t, u) means f̄ = f(x, t− τ, u(x, t− τ).

According to the algorithm for constructing the determining equations of

an admitted Lie group (Grigoriev et al., 2010), one obtains

(
X̄(utt − (uxx + g))

)
|(4.1) = 0

or

(−ζutt + ζuxx + guζ
u + gūζ

ū)|(4.1) = 0. (4.12)

It is assumed that equation (4.12) is satisfied for any solution u(x, t) of equation

(4.1).

Substituting the coefficients of the prolonged generator into the determining

equation (4.12), and replacing the derivatives found from equation (4.1) and its

prolongations

utt = uxx + g, uttx = ūxgū + guux + uxxx, uttt = ūtgū + guut + uxxt,
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the determining equation (4.12) becomes

+2ηutu
2
t + ηttut + 2ηtuxx + 2ηtg − 2ηuxutux + ηuuu

3
t − ηuuutu

2
x

+3ηugut + 2ηuutuxx − 2ηuutxux − ηxxut − 2ηxutx

+2ξututux + ξttux + 2ξtutx − 2ξuxu
2
x − ξuuu

2
tux − ξuuu

3
x

+ξugux + 2ξuututx − 2ξuuxxux − ξxxux − 2ξxuxx

−2ζutut − ζtt + 2ζuxux − ζuuu
2
t + ζuuu

2
x − ζug + ζxx

+guζ + gūηūt − gūη̄ūt + gūūxξ − gūūxξ̄ + gūζ̄ = 0.

Splitting this equation with respect to ux, ut, ūx, ūt, utx, uxx, and using the con-

dition that gū ̸= 0, one obtains

2ηtg + guζ + gūζ̄ − ζtt − ζug + ζxx = 0, (4.13)

η = η̄, ξ = ξ̄, (4.14)

ηu = 0, ξu = 0, (4.15)

ηt = ξx, ηx = ξt, (4.16)

ζuu = 0, ζux = 0, ζut = 0. (4.17)

The general solution of equations (4.15) and (4.16) is

ξ(x, t, u) = φ(x+ t) + ψ(x− t), η(x, t, u) = φ(x+ t)− ψ(x− t),

where the functions φ and ψ are arbitrary functions of a single independent vari-

able. Conditions (4.14) give that these functions have to be periodic with the

period τ :

φ(z) = φ(z − τ), ψ(z) = ψ(z − τ).

Remark. One can derive that if ηt = 0, then η and ξ are constant.

From equation (4.17), one gets

ζ = c1u+ ζ0,
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where c1 is constant and ζ0 = ζ0(x, t). Equation (4.13) becomes

ζ0xx − ζ0tt + c1(ugu + ūgū − g) + ζ0gu + ζ̄0gū + 2ηtg = 0. (4.18)

Equation (4.18) is a classifying equation. For the kernel of admitted Lie

groups one has to assume that equation (4.18) is satisfied for any function g(u, ū).

This gives that c1 = 0, ζ0 = 0 and ηt = 0 . Hence

η = c2x+ c3, ξ = c2t+ c4,

where ci, (i = 2, 3, 4) are constant. Substituting into equation (4.14), one has that

c2 = 0. Hence, the generators

X1 = ∂t, X2 = ∂x

compose a basis of the kernel of admitted Lie algebras of equation (4.1).

4.3 Extensions of the Kernel

Extensions of the kernel of admitted Lie algebras are additional symmetries

to the kernel which are admitted by equations for a particular function g(u, ū). In

this section the extensions are found.

Differentiating equation (4.18) with respect to u and ū respectively, one

obtains

ζ0guu + ζ̄0guū = −c1(uguu + ūgūu)− 2ηtgu. (4.19)

ζ0gūu + ζ̄0gūū = −c1(ugūu + ūgūū)− 2ηtgū. (4.20)

Equations (4.19) and (4.20) are linear algebraic equations with respect to ζ0 and

ζ̄0. The determinant of the matrix of this linear system of equations is equal to

∆ = g2ūu − guugūū.
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4.3.1 Case ∆ ̸= 0

Since ∆ ̸= 0, one can find ζ0 and ζ̄0 from equations (4.19) and (4.20)

ζ0 = −c1u+ 2∆−1ηt(gugūū − gūgūu), (4.21)

ζ̄0 = −c1ū+ 2∆−1ηt(gūguu − gugūu). (4.22)

Differentiating equation (4.21) with respect to u and ū respectively, one

gets

2ηt
∂

∂u
(∆−1(gugūū − gūgūu)) = c1, ηt

∂

∂ū
(∆−1(gugūū − gūgūu)) = 0. (4.23)

Notice that by virtue of the Remark and the first equation of (4.23), the extension

of the kernel of admitted Lie algebras only occurs if ηt ̸= 0. Hence, for the existence

of the extension the second equation of (4.23) implies that

∆−1(gūgūu − gugūū) = h1,

where h1 = h1(u) is some function. Substituting the last expression into the first

equation in (4.23), one finds that

h1(u) = k1u+ k10, c1 = 2ηtk1,

where k1 and k10 are constant. By virtue of the periodicity of η, the last equation

gives that if k1 ̸= 0, then ηt = 0. Thus, for the existence of the extension of the

kernel of admitted Lie algebras it is necessary to require that k1 = 0, which leads

to c1 = 0 and

(gūgūu − gugūū) = k10∆. (4.24)

Applying a similar study to the equation (4.22), one derives that

(gugūu − gūguu) = k20∆, (4.25)

 

 

 

 

 

 

 

 



39

where k20 is constant. Equations (4.21) and (4.22) become

ζ0 = 2ηtk10, ζ̄0 = 2ηtk20.

Because of the periodicity of η and the condition ηt ̸= 0, one gets that k10 = k20.

Notice that for k10 = 0 equations (4.24) and (4.25) lead to contradiction of the

assumption ∆ ̸= 0. For k10 ̸= 0 the general solution of equations (4.24) and (4.25)

is

g = eαuH(ū− u),

where α = k−1
10 and H is an arbitrary function of a single variable. Notice that

∆ = −α2e2αu(HH ′′ − (H ′)2) ̸= 0.

Without loss of generality one can assume that α = 1, which implies k10 = 1.

Thus the set of admitted generators is

X = (φ(x+ t) +ψ(x− t))∂x+ (φ(x+ t)−ψ(x− t))∂t+2(φ′(x+ t) +ψ′(x− t))∂u,

where the functions φ and ψ are arbitrary functions of a single independent variable

and satisfy the condition φ′(x+ t) + ψ′(x− t) ̸= 0.

4.3.2 Case ∆ = 0

Case 1: gūū ̸= 0

The general solution of the equation ∆ = 0 is

gu = ϕ(gū), (4.26)

where ϕ is an arbitrary function of the integration. Equations (4.19) and (4.20)

become

(ζ0ϕ
′+ζ̄0+c1(uϕ

′+ū))ϕ′gūū = −2ηtϕ, (ζ0ϕ
′+ζ̄0+c1(uϕ

′+ū))gūū = −2ηtgū. (4.27)
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Excluding ζ̄0 from the latter equations, one finds that

ηt(gūϕ
′ − ϕ) = 0.

Consider the case where gūϕ
′ − ϕ ̸= 0. This assumption leads to the condi-

tion ηt = 0. According to the remark, it implies that

η = c2, ξ = c3

where c2 and c3 are constants. Equations (4.27) reduce to

(ζ0 + c1u)ϕ
′ = −(ζ̄0 + c1ū). (4.28)

Notice that if ϕ′ = 0, then the latter equation implies c1 = 0 and ζ0 = 0, which

means that there is no extension of the kernel of admitted Lie algebra. Hence, one

needs to study the case where ϕ′ ̸= 0.

Differentiating equation (4.28) with respect to ū, one gets

(ζ0 + c1u)ϕ
′′gūū = −c1. (4.29)

Further differentiation of equation (4.29) with respect to t and x, respectively, give

ϕ′′ζ0t = 0, ϕ′′ζ0x = 0. (4.30)

Assume that ϕ′′ ̸= 0. This assumption leads to the condition that ζ0 is

constant, say ζ0 = k1. By virtue of the inverse function theorem, from equation

(4.28) one has

gū = h(
α + βū

α + βu
), (4.31)

where α and β are constant. Because of the condition gūū ̸= 0 then β ̸= 0.

Using the equivalence transformation corresponding to the generators Xe
4 , one can

account that α = 0. Integrating equations (4.31) and using condition (4.26), one

derives that

g(u, ū) = uH(z) + k0, z =
ū

u
,
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where k0 is the integrating constant, and H ′′ ̸= 0. Equation (4.18) becomes

k1(H +H ′(1− z)) = c1k0.

Since H ′′ ̸= 0, the latter equation gives that k1 = 0, and for existence of an

extension of the kernel of admitted Lie algebras one needs to assume that k0 = 0.

Thus

g(u, ū) = uH(
ū

u
)

and the extension of the kernel of admitted Lie algebras is given by the generator

X3 = u∂u.

Assuming that ϕ′′ = 0, one obtains that there exist constants k1 and k0

such that

gu = k1gū + k0, k0 ̸= 0.

By virtue of the condition ϕ′ ̸= 0 one has to assume that k1 ̸= 0. The general

solution of the latter equation is

g(u, ū) = k0u+H(ū+ k1u), (4.32)

where H is arbitrary function such that H ′ ̸= 0. Notice that by scaling the

independent variables t and x as well the delay parameter τ one can assume that

k0 = ±1.

Equation (4.28) becomes

(ζ0 + c1u)k1 + (ζ̄0 + c1ū) = 0, (4.33)

which implies that c1 = 0 and ζ̄0 = −k1ζ0. Equation (4.18) is reduced to the

Klein-Gordon equation

ζ0tt = ζ0xx + k0ζ0.
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Thus, for the function (4.32), one obtains that if there exists a nontrivial

solution q(t, x) of the linear Klein-Gordon equation

qtt = qxx + k0q, (4.34)

satisfying the condition

q(t− τ, x) = −k1q(t, x), (4.35)

then the extension of the kernel is given by the generator

X3 = q(t, x)∂u.

Notice that the set of functions g(u, ū) for which there exists a nontrivial

solution of (4.34) and (4.35) is not empty∗. For example, if k1 = −e
√
k0τ , then

q = e−
√
k0t is a nontrivial solution of (4.34) and (4.35).

Let us consider the case where gūϕ
′ − ϕ = 0. This means that

gu = k1gū,

where k1 is constant. The general solution of the latter equation is

g(u, ū) = H(z), z = ū+ k1u,

where ρ is a function of a single variable such that H ′′ ̸= 0. Equation (4.20)

becomes

k1ζ0 + ζ̄0 + c1z = −2ηt
H ′

H ′′ . (4.36)

Differentiating equation (4.36) two times with respect to z, one obtains

ηt

(
H ′

H ′′

)′′

= 0. (4.37)

∗Some particular solutions of the linear Klein-Gordon equation can be found in Polyanin

A.D, Handbook of Linear partial Differential Equation for Engineers and Scientists, Chapman

and Hall/CRC, 2002
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The assumption
(
H′

H′′

)′′ ̸= 0 leads to the condition that ηt = 0. From

equation (4.36) one gets c1 = 0 and ζ̄0 = −k1ζ0. Equation (4.18) is reduced to the

wave equation ζ0tt = ζ0xx. Thus,

ζ0(t, x) = N(x− t) +G(x+ t),

where N(y) and G(y) are arbitrary functions of a single variable satisfying the

conditions

N(y + τ) + k1N(y) = c0, G(y − τ) + k1G(y) = −c0, (4.38)

with constant c0. The extension of the kernel of admitted Lie algebras is given by

the generator

X3 = ζ0(t, x)∂u.

Remark. The functions

N(y) = e−ay, G(y) = eay

and constants

k1 = −eaτ , c0 = 0

provide an example of such functions.

The assumption
(
H′

H′′

)′′
= 0 implies that

H ′

H ′′ = αz + β, (4.39)

where α and β are constant. Since H ′′ ̸= 0, then αz + β ̸= 0. Equation (4.36)

becomes

k1ζ0 + ζ̄0 + c1z = −2ηt(αz + β). (4.40)

Splitting the latter equation with respect to z, one obtains

c1 + 2αηt = 0, k1ζ0 + ζ̄0 + 2ηtβ = 0.
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If α ̸= 0, solving equation (4.39), one obtains

g(z) =

 k2 ln |z − β|+ k3 ,

k2(z + β)k + k3 , k(k − 1) ̸= 0,

where k = α−1 + 1, k2 ̸= 0 and k3 are constant.

By virtue of periodicity of η one has that ηt = 0 and c1 = 0. Equations

(4.18) and (4.40) become

k1ζ0 + ζ̄0 = 0, ζ0tt = ζ0xx.

Thus, the extension of the kernel of admitted Lie algebras is given by the generator

X3 = (N(x− t) +G(x+ t))∂u,

where N and G are arbitrary functions of a single variable satisfying the conditions

N(y + τ) + k1N(y) = c0, G(y − τ) + k1G(y) = −c0,

for some constants c0.

The assumption α = 0 implies that β ̸= 0 and c1 = 0. The general solution

of equation (4.39) is

g = k2e
γz + k3, (4.41)

where γ = β−1, k2 and k3 are constant. Here without loss of generality one can

assume that γ = 1.

Substituting the function g of (4.41) into equation (4.13), and using the

relation that η(x, t, u) = φ(x+ t)− ψ(x− t), one gets

ζtt = ζxx + 2k3(φ
′(x+ t) + ψ′(x− t)).

The general solution of the latter equation is

2ζ(x, t) = −k3 ((x− t)φ(x+ t) + (x+ t)ψ(x− t)) + ν(x+ t) + µ(x− t),
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where ν and µ are functions of a single variable. Using the conditions that the

function φ and ψ are periodic with period τ , then

2
(
ζ̄0 + k1ζ0 + 2βηt

)
= −k3((k1 + 1)w + τ)φ(y)− k3((k1 + 1)y − τ)ψ(w) + ν(y − τ)

+µ(w + τ) + k1 (ν(y) + µ(w)) + 4β (φ′(y) + ψ′(w)) = 0,

(4.42)

where w = x− t, y = x+ t.

Differentiating equation (4.42) twice with respect to w, one gets

4βψ′′′(w)− k3((k1 + 1)y − τ)ψ′′(w)

+µ′′(w + τ) + k1µ
′′(w) = 0.

Splitting the latter equation with respect to y, one obtains that

k3(k1 + 1)ψ′′(w) = 0, (4.43)

4βψ′′′(w) + k3τψ
′′(w) + µ′′(w + τ) + k1µ

′′(w) = 0. (4.44)

Integrating equations (4.43) and (4.44), one has

k3(k1 + 1)ψ(w) = b1w + b0,

4βψ′(w) + k3τψ(w) + µ(w + τ) + k1µ(w) = b3w + b2

(4.45)

where bi, (i = 0, 1, 2, 3) are arbitrary constants.

In a similar way, one obtains that the functions φ and ν satisfy the following

conditions

k3(k1 + 1)φ(y) = −b1y + b3,

4βφ′(y)− k3τφ(y) + ν(y − τ) + k1ν(y) = b0y − b2.
(4.46)

Thus, the set of admitted generators is

X = (φ(x+ t) + ψ(x− t))∂x + (φ(x+ t)− ψ(x− t))∂t + q(x, t)∂u,

where ψ, µ and φ, ν are solutions of equations (4.45) and (4.46), and

q(t, x) =
1

2
[−k3((x− t)φ(x+ t) + (x+ t)ψ(x− t)) + ν(x+ t) + µ(x− t)].
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Notice that for k3 = 0 and k1 = −1 the function (4.41) is a particular case of the

function g(u, ū) = euH(ū− u), hence, one can assume that k23 + (k1 + 1)2 ̸= 0.

Case 2: gūū = 0, guu ̸= 0

In this case

g(u, ū) = k1ū+ h(u), (4.47)

where k1 ̸= 0 is a constant and h′′ ̸= 0. By virtue of equation (4.20), one finds

that ηt = 0. According to the Remark, one has that

η = c2, ξ = c3,

where c2 and c3 are constants.

Equation (4.19) gives that ζ = 0. Thus, in this case there is no extension

of the kernel of admitted Lie algebras.

Case 3: gūū = 0, guu = 0

This case corresponds to a linear delay differential equation with

g(u, ū) = k1ū+ k2u+ k, (4.48)

where k, k1 ̸= 0 and k2 are constant.

Notice that the constant k can be reduced to zero by the change

u = ũ− k̃1
2
x2 + k̃2.

Indeed, choosing the constants k̃1 and k̃2 such that

k̃1(k1 + k2) = 0, k̃1 − k̃2(k1 + k2) = k

the function ũ satisfies the equation

ũtt = ũxx + k1 ¯̃u+ k2ũ.

The determining equations reduce to the equations
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η = c2, ξ = c3, ζ = ζ0 + c1u,

where c2, c3 are constant, and ζ0(t, x) satisfies the equation

ζ0tt = ζ0xx + k1ζ̄0 + k2ζ0. (4.49)

The extension of the kernel is given by the generators X3 = u∂u and Xζ0 =

ζ0(t, x)∂u.

In particular, if k0 = k1e
√
k0τ + k2, then ζ0 = e−

√
k0t is a particular solution

of equation (4.49).

4.4 Summary of the Group Classification

By the discussions of the previous section one obtains the following complete

group classification of the delay partial differential equation

utt = uxx + g(u, ū),

where gū ̸= 0. The results of the group classification are presented in Table

4.1, where the function H is a function of a single argument, φ = φ(x + t) and

ψ = ψ(x − t) are arbitrary periodic functions; the functions ψ0 = ψ0(x − t) and

φ0 = φ0(x+ t) are also periodic, and satisfy conditions (4.45) and (4.46) with the

functions µ0 = µ0(x − t), and ν0 = ν0(x + t); the functions G = G(x + t) and

N = N(x− t) satisfy the equations

N(y + τ) + k1N(y) = c0, G(y − τ) + k1G(y) = −c0, (4.50)

for some constant c0, while the coefficients qi(t, x), (i = 1, 2, 3) satisfy the equations

q1tt(t, x) = q1xx(t, x) + k0q1(t, x), q1(t− τ, x) = −k1q1(t, x), (4.51)
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q2(t, x) = −k3((x− t)φ0(x+ t) + (x+ t)ψ0(x− t)) + ν0(x+ t) + µ0(x− t), (4.52)

q3tt(t, x) = q3xx(t, x) + k2q3(t, x) + k1q3(t− τ, x). (4.53)

Table 4.1 Group classification of the equation utt = uxx + g(u, ū), (gū ̸= 0).

No. g(u, ū) Conditions Extensions

1 euH(ū− u) φ′ + ψ′ ̸= 0 (φ+ ψ)∂x

+(φ− ψ)∂t

+2(φ′ + ψ′)∂u

2 uH( ū
u
) H ′′ ̸= 0 u∂u

3 k0u+H(ū+ k1u) k0k1H
′ ̸= 0 q1∂u

4 H(ū+ k1u)
(
H′

H′′

)′′ ̸= 0 (N +G) ∂u

5 k2 ln |ū+ k1u− β|+ k3 (N +G) ∂u

6 k2(ū+ k1u+ β)k + k3 k(k − 1) ̸= 0 (N +G) ∂u

7 k2e
ū+k1u + k3 k23 + (k1 + 1)2 ̸= 0 (φ0 + ψ0)∂x

+(φ0 − ψ0)∂t

+q2∂u

8 k1ū+ k2u k1 ̸= 0 u∂u, q3∂u

4.5 Invariant Solutions

Invariant solutions are sought for subalgebras of the admitted Lie algebra.

All different invariant solutions can be obtained on the base of an optimal system

of subalgebras. Notice that for the cases 3 to 8 there is a generator of the form

q(t, x)∂u. Usually such kind of generators are omitted in construction of invariant

solutions. However the use of these generators also provides invariant solutions.

This will be demonstrated further.
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4.5.1 Invariant Solutions of (4.1) with g(u, ū) = euH(ū− u)

Consider the case where the function ψ = 0. A representation of an invari-

ant solution is

u = ln |φ(x+ t)|+ h(x− t) (4.54)

where the function h is an arbitrary function. Substituting the representation of

the invariant solution into (4.1), one has

H(h(x− t+ τ)− h(x− t)) = 0.

In particular, if the function h is periodic h(y + τ) = h(y), and H(0) = 0, then

(4.54) provides a solution of equation (4.1). Notice that (4.54) is a d’Alambert

solution of the wave equation with the additional property: the functions φ and h

are periodic.

4.5.2 Invariant Solutions of (4.1) with g(u, ū) = uH( ūu)

1. Optimal System of Subalgebras

As the admitted Lie algebra defined by the generators

X1 = ∂t, X2 = ∂x, X3 = u∂u

is Abelian, an optimal system of one-dimensional admitted subalgebras consists of

{Hi}, (i = 1, 2, 3),

where

H1 = X1 + αX2 + βX3, H2 = X2 + αX3, H3 = X3,

with arbitrary constants α and β.

2. Invariant Solutions
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Notice that there are no invariant solutions corresponding to the subalgebra

H3.

Case 1: Subalgebra H1. Solving the characteristic system related with

the generator H1, one gets that a representation of an invariant solution is u =

ϕ(θ)eβt, where ϕ is a function of a single variable θ = x− αt. For β = 0 this class

of solutions is called traveling wave. Substituting this representation of a solution

into equation (4.1) with the function g(u, ū) = uH( ū
u
), it becomes

(α2 − 1)ϕ′′(θ) = 2αβϕ′(θ) + ϕ(θ)(H(
ϕ(θ + ατ)

ϕ(θ)
e−βτ )− β2).

Case 2: Subalgebra H2. A representation of an invariant solution is

u = ϕ(t)eαx, where ϕ is a function of a single variable. The reduced equation is

ϕ′′(t) = ϕ(t)(α2 +H(
ϕ(t− τ)

ϕ(t)
)).

In summary, the representations of all invariant solutions and reduced equa-

tions are given in Table 4.2, where θ = x− αt.

Table 4.2 Invariant solutions for g(u, ū) = uH( ū
u
).

No. Algebra Inv. solutions Reduced equation

1 H1 u = ϕ(θ)eβt (α2 − 1)ϕ′′(θ) = 2αβϕ′(θ)

+ϕ(θ)(H(ϕ(θ+ατ)
ϕ(θ)

e−βτ )− β2),

2 H2 u = ϕ(t)eαx ϕ′′(t) = ϕ(t)(α2 +H(ϕ(t−τ)
ϕ(t)

)).

4.5.3 Invariant Solutions of (4.1) with the Function g(u, ū)

of Forms No.3-No.6 in Table 4.1

For these functions the admitted Lie algebra L is spanned by X1, X2 and

X3, where

X1 = ∂t, X2 = ∂x, X3 = q(t, x)∂u. (4.55)
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The commutator table is

[, ] X1 X2 X3

X1 0 0 qt∂u

X2 0 0 qx∂u

X3 −qt∂u −qx∂u 0

The requirement that L is a Lie algebra implies existence of constants α1

and α2 such that

qt(t, x) = α1q(t, x), qx(t, x) = α2q(t, x). (4.56)

The general solution of equations (4.56) is q(t, x) = ce(α1t+α2x), where c is constant

and c ̸= 0. Because X1, X2, X3 is a basis of Lie algebra L, one can choose c = 1.

1. For Function g(u, ū) = k0u+H(ū+ k1u)

As q(t, x) satisfies relations (4.51), one derives that

k0 = α2
1 − α2

2, k1 = −e−α1τ , (4.57)

where α1 ̸= ±α2. For obtaining automorphisms one has to solve the Lie equations.

The automorphisms are:

A1 : x̂3 = x3e
α1a;

A2 : x̂3 = x3e
α2a;

A3 : x̂3 = x3 − a(α1x1 + α2x2).

(4.58)

For obtaining an optional system of subalgebra one uses the two-step algorithm

(Ovsiannikov, 1993). Before constructing an optimal system, one studies the alge-

braic structure of the Lie algebra L. Consider the vector space L1 spanned by the

operators {X1, X2}. One can verify that it is a subalgebra of the Lie algebra L,

and the vector space I spanned by the operator {X3} is an ideal of the Lie algebra

L. Hence, the Lie algebra L is decomposed as I ⊕ L1. Because the subalgebra L1
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is Abelian, an optimal system of one-dimensional subalgebras is

{Ki}, (i = 1, 2),

where

K1 = X2, K2 = X1 + p1X2,

with an arbitrary constant p1.

According to the two-step algorithm for classifying Lie algebra L, it is

sufficient to consider the following forms of one-dimensional subalgebras:

W1 = {X2 + a13X3}, W2 = {X1 + p1X2 + a13X3}, W3 = {X3},W0 = {0}, (4.59)

where a13 is constant. Here W0 corresponds to the ideal I.

For further study one needs to simplify (4.59) by applying automorphisms

(4.58).

First, consider the case W1.

Case 1: a13 = 0. One gets the one-dimensional subalgebra {X2}.

Case 2: a13 ̸= 0. If α2 ̸= 0, then, using the automorphism A3, a13 can

be changed to 0: one gets the one-dimensional subalgebra {X2}. If α2 = 0, then,

using the automorphism A1, a13 can be changed to ϵ: one gets the one-dimensional

subalgebra {X2 + ϵX3}.

Consider the case W2.

Case 1: α1 + p1α2 ̸= 0. Using the automorphism A3, a13 can be changed

to 0, this gives the one-dimensional subalgebra {X1 + p1X2}.

Case 2: α1 + p1α2 = 0. One needs to consider a13 = 0 and a13 ̸= 0. The

first case corresponds to the one-dimensional subalgebra {X1+p1X2}. The second

case, using the automorphism A2, one obtains the one-dimensional subalgebra

{X1 + p1X2 + ϵX3}.

The obtained above results are summarized as follows.
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Theorem 4.1. An optimal system of one-dimensional subalgebras of the Lie al-

gebra L with the basis generators (4.55) are

H1 = {X1 + p1X2 + ϵX3}|α1+p1α2=0 , H2 = {X2 + ϵX3}|α2=0 ,

H3 = {X1 + p1X2}, H4 = {X2}, H5 = {X3},

where ϵ = ±1, p1 is constant and the symbol | means conditions.

Using the obtained optimal system of subalgebras, all invariant solutions

are analyzed below.

Notice that there are no invariant solutions corresponding to the subalgebra

H5.

Case 1: Subalgebra H1. In this case, condition is α1+ p1α2 = 0, and the

characteristic system is

dt

1
=
dx

p1
=

du

ϵe(α1t+α2x)
.

Solving the characteristic system, one gets that a representation of an invariant

solution is u = ϵeα2θ + ϕ(θ), where ϕ is a function of a single variable θ = x− p1t.

Substituting this representation of a solution into equation (4.1) with the function

g(u, ū) = k0u+H(ū+ k1u), and using (4.57), one derives the reduced equation

(p21 − 1)ϕ′′(θ) = (α2
1 − α2

2)ϕ(θ) +H(ϕ(p1τ + θ)− e−α1τϕ(θ)).

Case 2: Subalgebra H2. A representation of an invariant solution is

u = ϵxeα1t + ϕ(t), where ϕ is a function of a single variable. Using (4.57), the

reduced equation is

ϕ′′(t) = α2
1ϕ(t) +H(ϕ(t− τ)− e−α1τϕ(t)).

Case 3: Subalgebra H3. A representation of an invariant solution is

u = ϕ(θ), where ϕ is a function of a single variable θ = x − p1t. Using condition

(4.57), the reduced equation is

(p21 − 1)ϕ′′(θ) = (α2
1 − α2

2)ϕ(θ) +H(ϕ(p1τ + θ)− e−α1τϕ(θ)).
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Case 4: Subalgebra H4. A representation of an invariant solution is

u = ϕ(t), where ϕ is a function of a single variable. Using condition (4.57) the

reduced equation is

ϕ′′(t) = (α2
1 − α2

2)ϕ(t) +H(ϕ(t− τ)− e−α1τϕ(t)).

In summary, the representations of invariant solutions and reduced equa-

tions are given in Table 4.3, where ϕ(θ) is a function of the single variable

θ = x− p1t.

Table 4.3 Invariant solutions for g(u, ū) = k0u+H(ū+ k1u).

No. Algebra Inv. solutions Reduced equation

1 H1 u = ϵeα2θ + ϕ(θ) (p21 − 1)ϕ′′(θ) = (α2
1 − α2

2)ϕ(θ)

+H(ϕ(p1τ + θ)− e−α1τϕ(θ))

2 H2 u = ϵxeα1t + ϕ(t) ϕ′′(t) = α2
1ϕ(t)

+H(ϕ(t− τ)− e−α1τϕ(t))

3 H3 u = ϕ(θ) (p21 − 1)ϕ′′(θ) = (α2
1 − α2

2)ϕ(θ)

+H(ϕ(p1τ + θ)− e−α1τϕ(θ))

4 H4 u = ϕ(t) ϕ′′(t) = (α2
1 − α2

2)ϕ(t)

+H(ϕ(t− τ)− e−α1τϕ(t))

2. For Functions g(u, ū) of Forms No.4-No.6 in Table 4.1

For these cases, because q(t, x) = N(x − t) + G(x + t) and the functions

N(x − t) and G(x + t) satisfy the conditions (4.50), one derives that q(t, x) =

eα1(t+ϵx), c0 = 0 and

α2 = ϵα1, k1 = −e−α1τ , (4.60)

where ϵ = ±1. One needs to consider α1 = 0 and α1 ̸= 0.

Case 2.1: α1 = 0. One derives that α2 = 0, k1 = −1, q(t, x) = 1 and

the admitted Lie algebra is spanned by the generators X1 = ∂t, X2 = ∂x, and
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X3 = ∂u. This Lie algebra is Abelian, and an optimal system of one-dimensional

subalgebras is

H1 = {X1 + αX2 + γX3}, H2 = {X2 + αX3}, H3 = {X3},

with arbitrary constants α and γ.

Notice that there are no invariant solutions corresponding to the subalgebra

H3.

Case 2.1.1: Subalgebra H1. A representation of an invariant solution is

u = ϕ(θ) + γt, where ϕ is a function of a single variable θ = x− αt. Substituting

this representation of a solution into equation (4.1) with the functions g(u, ū) =

H(ū − u), g(u, ū) = k2 ln |ū − u − β| + k3 and g(u, ū) = k2(ū − u + β)k + k3,

respectively, using (4.60), one derives the reduced equations

(α2 − 1)ϕ′′(θ) = H(ϕ(ατ + θ)− ϕ(θ)− γτ),

(α2 − 1)ϕ′′(θ) = k2 ln |ϕ(ατ + θ)− ϕ(θ)− γτ − β|+ k3,

and

(α2 − 1)ϕ′′(θ) = k2(ϕ(ατ + θ)− ϕ(θ)− γτ + β)k + k3.

Case 2.1.2: Subalgebra H2. A representation of an invariant solution

is u = ϕ(t) + αx, where ϕ is a function of a single variable. Substituting this

representation of a solution into equation (4.1) with the functions g(u, ū) = H(ū−

u), g(u, ū) = k2 ln |ū− u− β|+ k3 and g(u, ū) = k2(ū− u+ β)k + k3, respectively,

using (4.60), one derives the reduced equations

ϕ′′(t) = H(ϕ(t− τ)− ϕ(t)),

ϕ′′(t) = k2 ln |ϕ(t− τ)− ϕ(t)− β|+ k3,

and

ϕ′′(t) = k2(ϕ(t− τ)− ϕ(t) + β)k + k3.
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In summary, the representations of all invariant solutions and reduced equa-

tions are given in Tables 4.4-4.6, where θ = x− αt.

Table 4.4 Invariant solutions for g(u, ū) = H(ū− u).

No. Algebra Inv. solutions Reduced equation

1 H1 u = ϕ(θ) + γt (α2 − 1)ϕ′′(θ) =

H(ϕ(ατ + θ)− ϕ(θ)− γτ)

2 H2 u = ϕ(t) + αx ϕ′′(t) = H(ϕ(t− τ)− ϕ(t))

Table 4.5 Invariant solutions for g(u, ū) = k2 ln |ū− u− β|+ k3.

No. Algebra Inv. solutions Reduced equation

1 H1 u = ϕ(θ) + γt (α2 − 1)ϕ′′(θ) = k3

+k2 ln |ϕ(ατ + θ)− ϕ(θ)− γτ − β|

2 H2 u = ϕ(t) + αx ϕ′′(t) = k3

k2 ln |ϕ(t− τ)− ϕ(t)− β|

Table 4.6 Invariant solutions for g(u, ū) = k2(ū− u+ β)k + k3.

No. Algebra Inv. solutions Reduced equation

1 H1 u = ϕ(θ) + γt (α2 − 1)ϕ′′(θ) = k3

+k2(ϕ(ατ + θ)− ϕ(θ)− γτ + β)k

2 H2 u = ϕ(t) + αx ϕ′′(t) = k3

k2(ϕ(t− τ)− ϕ(t) + β)k

Case 2.2: α1 ̸= 0. Because of α2 = ϵα1, then q(t, x) = eα1(t+ϵx). For

obtaining automorphisms one has to solve Lie equations. The automorphisms are:

A1 : x̂3 = x3e
α1a;

A2 : x̂3 = x3 − aα1(x1 + ϵx2).
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For obtaining an optional system of subalgebras one uses the two-step algorithm

(Ovsiannikov, 1993). Before constructing an optimal system, one studies the al-

gebraic structure of the Lie algebra L. Consider the vector space L1 spanned by

the operators {X1, X2}. One can verify that it is a subalgebra of the Lie algebra

L, and the vector space I spanned by the operator {X3} is an ideal of the Lie

algebra L. Hence, the Lie algebra L is decomposed as I ⊕ L1. The subalgebra L1

is Abelian, then an optimal system of one-dimensional subalgebras is

K1 = {X2}, K2 = {X1 + pX2},

with an arbitrary constant p.

According to the two-step algorithm for classifying the Lie algebra L, it is

sufficient to consider the following forms of one-dimensional subalgebras:

W1 = {X2 + a13X3}, W2 = {X1 + pX2 + a13X3}, W3 = {X3},

where a13 is constant.

For further study one needs to simplify the latter one-dimensional subalge-

bras Wi by using automorphisms.

First, consider the case W1. Using the automorphism A2, a13 can be

changed to 0. This gives the one-dimensional subalgebra {X2}.

Consider the case W2.

Case 2.2.1: α2 = α1. If p = −1 and β ̸= 0, then, the using automorphism

A1, one gets the one-dimensional subalgebra {X1 − X2 + ϵX3}. If p = −1 and

β = 0, then W2 is reduced to the one-dimensional subalgebra {X1 − X2}. If

p ̸= −1, then, using the automorphism A2, β can be changed to 0: one gets the

one-dimensional subalgebra {X1 + pX2}. From the above discussion, one gets the

subalgebras {X1 −X2 + ϵX3} and {X1 + pX2}, where p is arbitrary.
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Case 2.2.2: α2 = −α1. If p = 1 and β ̸= 0, then, using the automorphism

A1, one has the one-dimensional subalgebra {X1+X2+ ϵX3}. If p = 1 and β = 0,

then one obtains the one-dimensional subalgebra {X1 + X2}. If p ̸= 1, then,

using the automorphism A2, β can be changed to 0: one gets the one-dimensional

subalgebra {X1 + pX2}. From the above discussion, one has the subalgebras

{X1 +X2 + ϵX3} and {X1 + pX2} with arbitrary constant p.

The results obtained above are summarized as follows.

Theorem 4.2. An optimal system of one-dimensional subalgebras of the Lie al-

gebra L consists of the subalgebras

H1 = {X1 −X2 + ϵX3}|α2=α1
, H2 = {X1 +X2 + ϵX3}|α2=−α1

,

H3 = {X1 + pX2}, H4 = {X2}, H5 = {X3},

where ϵ = ±1, p is an constant and and the symbol | means conditions.

Using the obtained optimal system of subalgebras, all invariant solutions

are analyzed below.

Notice that there are no invariant solutions corresponding to the subalgebra

H5.

Subalgebra H1. A representation of an invariant solution is u = ϕ(θ) −

ϵxeα1θ, where ϕ is a function of a single variable θ = x + t. Substituting this

representation of a solution into equation (4.1) with the functions g(u, ū) = H(ū−

u), g(u, ū) = k2 ln |ū− u− β|+ k3 and g(u, ū) = k2(ū− u+ β)k + k3, respectively,

using (4.60), one derives the reduced equations

2ϵα1e
α1θ = H(ϕ(θ − τ)− eα1τϕ(θ)),

2ϵα1e
α1θ = k2 ln |ϕ(θ − τ)− eα1τϕ(θ)− β|+ k3.

and

2ϵα1e
α1θ = k2(ϕ(θ − τ)− eα1τϕ(θ) + β)k + k3.
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Subalgebra H2. A a representation of an invariant solution is u = ϕ(δ) +

ϵxeα1δ, where ϕ is a function of a single variable δ = t − x. Substituting this

representation of a solution into equation (4.1) with the functions g(u, ū) = H(ū−

u), g(u, ū) = k2 ln |ū− u− β|+ k3 and g(u, ū) = k2(ū− u+ β)k + k3, respectively,

using (4.60), one derives the reduced equations

2ϵα1e
α1δ = H(ϕ(δ − τ)− eα1τϕ(δ)),

2ϵα1e
α1δ = k2 ln |ϕ(δ − τ)− eα1τϕ(δ)− β|+ k3.

and

2ϵα1e
α1δ = k2(ϕ(δ − τ)− eα1τϕ(δ) + β)k + k3.

Subalgebra H3. A representation of an invariant solution is u = ϕ(γ),

where ϕ is a function of a single variable γ = x − pt. Substituting this represen-

tation of a solution into equation (4.1) with the functions g(u, ū) = H(ū − u),

g(u, ū) = k2 ln |ū−u−β|+k3 and g(u, ū) = k2(ū−u+β)k+k3, respectively, using

(4.60), one derives the reduced equations

(p2 − 1)ϕ′′(γ) = H(ϕ(pτ + γ)− eα1τϕ(θ)),

(p2 − 1)ϕ′′(γ) = k2 ln |ϕ(pτ + γ)− eα1τϕ(θ)− β|+ k3.

and

(p2 − 1)ϕ′′(γ) = k2(ϕ(pτ + γ)− eα1τϕ(θ) + β)k + k3.

Subalgebra H4. A representation of an invariant solution is u = ϕ(t),

where ϕ is a function of a single variable. Substituting this representation of a

solution into equation (4.1) with the functions g(u, ū) = H(ū − u), g(u, ū) =

k2 ln |ū− u− β|+ k3 and g(u, ū) = k2(ū− u+ β)k + k3, respectively, using (4.60),

one derives the reduced equations

ϕ′′(t) = H(ϕ(t− τ)− e−α1τϕ(t)),
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ϕ′′(t) = k2 ln |ϕ(t− τ)− e−α1τϕ(t)− β|+ k3.

and

ϕ′′(t) = k2(ϕ(t− τ)− e−α1τϕ(t) + β)k + k3.

In summary, the representations of all invariant solutions and reduced equa-

tions are given in Tables 4.7-4.9, where θ = x+ t, δ = t− x, γ = x− pt.

Table 4.7 Invariant solutions for g(u, ū) = H(ū− ue−α1τ ).

No. Algebra Inv. solutions Reduced equation

1 H1 u = ϕ(θ)− ϵxeα1θ 2ϵα1e
α1θ =

H(ϕ(θ − τ)− eα1τϕ(θ))

2 H2 u = ϕ(δ) + ϵxeα1δ 2ϵα1e
α1δ =

H(ϕ(δ − τ)− eα1τϕ(δ))

3 H3 u = ϕ(γ) (p2 − 1)ϕ′′(γ) =

H(ϕ(pτ + γ)− eα1τϕ(θ))

4 H4 u = ϕ(t) ϕ′′(t) = H(ϕ(t− τ)− e−α1τϕ(t))

Table 4.8 Invariant solutions for g(u, ū) = k2 ln |ū− ue−α1τ − β|+ k3.

No. Algebra Inv. solutions Reduced equation

1 H1 u = ϕ(θ)− ϵxeα1θ 2ϵα1e
α1θ = k3

+k2 ln |ϕ(θ − τ)− eα1τϕ(θ)− β|

2 H2 u = ϕ(δ) + ϵxeα1δ 2ϵα1e
α1δ = k3

+k2 ln |ϕ(δ − τ)− eα1τϕ(δ)− β|

3 H3 u = ϕ(γ) (p2 − 1)ϕ′′(γ) = k3

+k2 ln |ϕ(pτ + γ)− eα1τϕ(θ)− β|

4 H4 u = ϕ(t) ϕ′′(t) = k3

+k2 ln |ϕ(t− τ)− e−α1τϕ(t)− β|
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Table 4.9 Invariant solutions for g(u, ū) = k2(ū− ue−α1τ + β)k + k3.

No. Algebra Inv. solutions Reduced equation

1 H1 u = ϕ(θ)− ϵxeα1θ 2ϵα1e
α1θ = k3

+k2(ϕ(θ − τ)− eα1τϕ(θ) + β)k

2 H2 u = ϕ(δ) + ϵxeα1δ 2ϵα1e
α1δ = k3

+k2(ϕ(δ − τ)− eα1τϕ(δ) + β)k

3 H3 u = ϕ(γ) (p2 − 1)ϕ′′(γ) = k3

+k2(ϕ(pτ + γ)− eα1τϕ(θ) + β)k

4 H4 u = ϕ(t) ϕ′′(t) = k3

+k2(ϕ(t− τ)− e−α1τϕ(t) + β)k

4.5.4 Invariant Solutions of (4.1) with g(u, ū) = k1ū+ k2u

1. Optimal System

Consider the Lie algebra L4 = {X1, X2, X3, X4}, where X1 = ∂t, X2 = ∂x,

X3 = u∂u and X4 = q3(t, x)∂u. The commutation relations are

[, ] X1 X2 X3 X4

X1 0 0 0 q3t∂u

X2 0 0 0 q3x∂u

X3 0 0 0 −X4

X4 −q3t∂u −q3x∂u X4 0

The assumption that L4 is a Lie algebra gives

q3t(t, x) = α1q3(t, x), q3x(t, x) = α2q3(t, x), (4.61)

where α1 and α2 are constant. The general solution of equations (4.61) is q3(t, x) =

ce(α1t+α2x), where c is constant. Because {X1, X2, X3, X4} is a basis of the Lie

algebra L4, one can choose that X4 = e(α1t+α2x)∂u, i.e. q3(t, x) = e(α1t+α2x). As
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q3(t, x) satisfies equation (4.53), one has that

k2 = −k1e−α1τ + α2
1 − α2

2. (4.62)

The automorphisms of the Lie algebra L4 are

A1 : x̂4 = x4e
α1a;

A2 : x̂4 = x4e
α2a;

A3 : x̂4 = x4e
−a;

A4 : x̂4 = x4 − a(α1x1 + α2x2 − x3).

From the commutator table, one can derive that the Lie algebra L4 decomposes as

I ⊕ L3, where L3 = {X1, X2, X3} is a subalgebra and I = {X4} is an ideal of the

Lie algebra L4, respectively. As the subalgebra L3 is Abelian, an optimal system

of one-dimensional subalgebras is

K1 = {X1 + αX2 + βX3}, K2 = {X2 + αX3}, K3 = {X3},

with arbitrary constants α and β.

According to the two-step algorithm (Ovsiannikov, 1993) for classifying the

Lie algebra L, it is sufficient to consider the following forms of one-dimensional

subalgebras:

W1 = {X1 + αX2 + βX3 + a14X4}, W2 = {X2 + αX3 + a14X4},

W3 = {X3 + a14X4}, W4 = {X4},

where a14 is constant.

For further study one needs to simplify the latter one-dimensional subalge-

bras Wi by applying automorphisms.

Consider the subalgebra W1.

Case 1: α1+α2α−β = 0. If a14 ̸= 0, then, using the automorphism A3, a14

can be changed to ϵ: one gets the one-dimensional subalgebra {X1+αX2+βX3+

ϵX4}. If a14 = 0, then one gets the one-dimensional subalgebra {X1+αX2+βX3}.
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Case 2: α1+α2α−β ̸= 0. Using the automorphism A4, a14 can be changed

to 0: one gets the one-dimensional subalgebra {X1 + αX2 + βX3}.

For the subalgebra W2.

Case 1: α2 = α. If a14 ̸= 0, then, using the automorphism A3, a14 can

be changed to ϵ: one gets the one-dimensional subalgebra {X2 + αX3 + ϵX4}. If

a14 = 0, then one gets the one-dimensional subalgebra {X2 + αX3}.

Case 2: α2 ̸= α. Using the automorphism A4, a14 can be changed to 0:

one gets the one-dimensional subalgebra {X2 + αX3}.

For case W3, using the automorphism A4, a14 can be changed to 0, thus

one gets the one-dimensional subalgebra {X3}.

The results obtained above are summarized as follows.

Theorem 4.3. An optimal system of one-dimensional subalgebras of the Lie al-

gebra L4 is defined by the subalgebras

H1 = {X1 + αX2 + βX3}, H2 = {X2 + αX3},

H3 = {X1 + αX2 + βX3 + ϵX4}|α1+α2α−β=0
,

H4 = {X2 + αX3 + ϵX4}|α=α2
, H5 = {X3}, H6 = {X4},

where ϵ = ±1, the symbol | means conditions.

2. Invariant Solutions

In this subsection, the obtained optimal systems of subalgebras are used

for deriving all invariant solutions.

Notice that X3 = u∂u and X4 = e(α1t+α2x)∂u, which implies that there are

no solutions invariant with respect to the subalgebras H5 and H6.

Case 2.1: Subalgebra H1. A representation of an invariant solution is

u = ϕ(θ)eβt, where ϕ is a function of a single variable, θ = x − αt. Substituting
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this representation of a solution into equation (4.1) with the function g(u, ū) =

k1ū+ k2u, using (4.62), the reduced equation is

(α2 − 1)ϕ′′(θ)− 2αβϕ′(θ) + (β2 − k2)ϕ(θ)− k1e
−βτϕ(ατ + θ) = 0.

Case 2.2: Subalgebra H2. A representation of an invariant solution is u =

ϕ(t)eαx, where ϕ is a function of a single variable. Substituting this representation

of a solution into equation (4.1) with the function g(u, ū) = k1ū+k2u, using (4.62),

the reduced equation is

ϕ′′(t)− ϕ(t)(α2 + k2)− k1ϕ(t− τ) = 0.

Case 2.3: Subalgebra H3. A representation of an invariant solution is

u = (ϕ(θ) + ϵteα2θ)eβt, where ϕ is a function of a single variable, θ = x − αt.

Substituting this representation of a solution into equation (4.1) with the function

g(u, ū) = k1ū+ k2u, using (4.62), the reduced equation is

(α2−1)ϕ′′(θ)−2αβϕ′+(β2−k2)ϕ(θ)−k1e−βτϕ(ατ+θ)+ϵ(k1e−βττ+2α1)e
α2θ = 0.

Case 2.4: Subalgebra H4. A representation of an invariant solution is

u = (ϵxeα1t + ϕ(t))eαx, where ϕ is a function of a single variable. Substituting

this representation of a solution into equation (4.1) with the function g(u, ū) =

k1ū+ k2u, using (4.62), the reduced equation is

ϕ′′(t)− (α2 + k2)ϕ(t)− k1ϕ(t− τ)− 2ϵαeα1t = 0.

In summary, the representations of all invariant solutions and reduced equa-

tions are given in Table 4.10, where θ = x− αt.
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Table 4.10 Invariant solutions for g(u, ū) = k1ū+ k2u.

No. Algebra Inv. solutions Reduced equation

1 H1 u = ϕ(θ)eβt (α2 − 1)ϕ′′(θ)− 2αβϕ′(θ)

+(β2 − k2)ϕ(θ)

−k1e−βτϕ(ατ + θ) = 0

2 H2 u = ϕ(t)eαx ϕ′′(t)− ϕ(t)(α2 + k2)

−k1ϕ(t− τ) = 0

3 H3 u = (ϕ(θ) + ϵteα2θ)eβt (α2 − 1)ϕ′′(θ)− 2αβϕ′

+(β2 − k2)ϕ(θ)

−k1e−βτϕ(ατ + θ)

+ϵ(k1e
−βττ + 2α1)e

α2θ = 0

4 H4 u = (ϵxeα1t + ϕ(t))eαx ϕ′′(t)− (α2 + k2)ϕ(t)

−k1ϕ(t− τ)− 2ϵαeα1t = 0

 

 

 

 

 

 

 

 



CHAPTER V

GROUP ANALYSIS OF THE

TWO-DIMENSIONAL NONLINEAR

KLEIN-GORDON EQUATION WITH

TIME-VARYING DELAY

The purpose of this chapter is to apply group analysis to the two-

dimensional nonlinear Klein-Gordon equation with a time-varying delay

utt = uxx + uyy + g(u, ū), gū(u, ū) ̸= 0, (5.1)

where ū(t, x, y) = u(t− τ(t), x, y), τ(t) depends on t and τ(t) > 0.

5.1 Admitted Lie Group of Equation (5.1)

This section is devoted to the study of admitted Lie groups of the two-

dimensional nonlinear Klein-Gordon equation (5.1). The algorithm of constructing

the determining equation is expressed in Chapter III.

Let the generator of a Lie group admitted by equation (5.1) be

X = ξ∂x + γ∂y + η∂t + ζ∂u,

where ξ, η, γ and ζ are functions of variables x, y, t and u.

The prolongation of the canonical Lie-Bäcklund operator equivalent to the

generator X is

X̄ = ζu∂u + ζutt∂utt + ζuxx∂uxx + ζuyy∂uyy + ζ ū∂ū
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where the coefficients are

ζu = ζ − uxξ − uyγ − utη, ζ
ū = ζ̄ − ūxξ̄ − ūyγ̄ − ūtη, ζ

ut = Dtζ
u, ζux = Dxζ

u,

ζuxx = Dxζ
ux , ζuy = Dyζ

u, ζuyy = Dyζ
uy , ζut = Dtζ

u, ζutt = Dtζ
ut .

Here Dx, Dy and Dt are operators of the total derivatives with respect to x, y

and t, respectively, and the bar over a function f(t, x, y, u) means f̄ = f(t −

τ(t), x, y, u(t− τ(t), x, y)).

According to the algorithm for constructing the determining equations, one

obtains (
X̄(−utt + uxx + uyy + g)

)
|(5.1) = 0

or

(−ζutt + ζuxx + ζuyy + guζ
u + gūζ

ū)|(5.1) = 0. (5.2)

It is also assumed that the determining equation is satisfied for any solution

u(t, x, y) of equation (5.1).

Substituting the coefficients of the prolonged generator into the determining

equation (5.2), and replacing the derivatives found from equation (5.1) and its

prolongations:

utt = uxx + uyy + g, uttx = ūxgū + guux + uxxx + uxyy,

uttt = ūtgū + guut + utxx + utyy, utty = ūygū + guuy + uyxx + uyyy,
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determining equation (5.2) becomes

2ηtuu
2
t + ηttut + 2ηtg + 2ηtuxx + 2ηtuyy − 2ηuxutux

−2ηuyutuy + ηuuu
3
t − ηuuutu

2
x − ηuuutu

2
y + 3ηugut + 2ηuutuxx

+2ηuutuyy − 2ηuutxux − 2ηuutyuy − ηxxut − 2ηxutx − ηyyut

−2ηyuty + guζ + gūγūy − gūγ̄ūy + gūūxξ − gūūxξ̄

+gūζ̄ + 2γtuutuy + γttuy + 2γtuty − 2γuxuxuy − 2γuyu
2
y

+γuuu
2
tuy − γuuu

2
xuy − γuuu

3
y + γuguy + 2γuututy − 2γuuxuxy

−2γuuyuyy − γxxuy − 2γxuxy − γyyuy − 2γyuyy + 2ξtuutux

+ξttux + 2ξtutx − 2ξuxu
2
x − 2ξuyuxuy + ξuuu

2
tux − ξuuu

3
x

−ξuuuxu2y + ξugux + 2ξuututx − 2ξuuxuxx − 2ξuuxyuy

−ξxxux − 2ξxuxx − ξyyux − 2ξyuxy − 2ζtuut − ζtt + 2ζuxux

+2ζuyuy − ζuuu
2
t + ζuuu

2
x + ζuuu

2
y − ζug + ζxx + ζyy = 0.

Splitting this determining equation with respect to ux, ut, uy, ūx, ūt, ūy, utx, uxx,

uty, uxy, uyy and using the condition that gū ̸= 0, one obtains

2ηtg + guζ + gūζ̄ − ζtt − ζug + ζxx + ζyy = 0, (5.3)

γu = 0, ηu = 0, ξu = 0, (5.4)

ηt = γy = ξx, γx = −ξy, ηy = γt, ηx = ξt, (5.5)

ζuu = 0, 2ζuy = γxx+γyy−γtt, 2ζut = −ηxx−ηyy+ηtt, 2ζux = ξxx+ξyy−ξtt, (5.6)

ξ = ξ̄, γ = γ̄. (5.7)

From equation (5.5) one obtains

ηxx = ηtt = ηyy, ξxx = ξtt = −ξyy, −γxx = γtt = γyy. (5.8)

From equation (5.4), setting ηt = γy = ξx = φ(t, x, y), by equation (5.8) and (5.5),

one gets

ηttt = φtt = 0, ξxxx = φxx = 0, γyyy = φyy = 0,
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that is,

η = α2t
2 + α1t+ α0, ξ = β2x

2 + β1x+ β0, γ = θ2y
2 + θ1y + θ0,

where αi = αi(x, y), βi = βi(t, y), θi = θi(t, x), (i = 0, 1, 2). From equation (5.8),

one derives

2β2 = β2ttx
2 + β1ttx+ β0tt = −(β2yyx

2 + β1yyx+ β0yy),

which implies that 2β2 = β0tt = −β0yy, β2tt = β2yy = 0 and β1tt = β1yy = 0.

Solving these equations, one can get βi = ki1t + ki2ty + ki3y + ki4, where kij (i =

1, 2, j = 1, 2, 3, 4) is constant. Since ξ = ξ̄, one has βi = β̄i, i = 0, 1, 2, which

implies that β2 = 0, β1 = k13y + k14, β0 = k03y + k04, and ξ = (k13y + k14)x +

k03y + k04, where ki3 (i = 0, 1) is constant. In a similar way, one can obtain

γ = (b13x+ b14)y + b03x+ b04, where bi3 (i = 0, 1) is constant.

From equation (5.5), one derives

b13 = k13 = 0, b14 = k14, b03 = −k03

and

η = b14t+ α0,

where α0 is an arbitrary constant. By equation (5.6), one gets ζut = ζux = ζuy = 0,

say ζ = c6u+ ζ0, where ζ0 is a function of variables t, x and y.

Therefore, the obtained above results are summarized as follows:

η = c5t+ c1, ξ = c5x+ c4y + c2, γ = c5y − c4x+ c3, ζ = c6u+ ζ0,

where constant ci is arbitrary , (i = 1, 2, 3, 4, 5, 6), ζ0 depends on variables t, x and

y.

Therefore, determining equation (5.3) becomes

guζ0 + gūζ̄0 + c6ugu + c6ūgū + (2c5 − c6)g − ζ0tt + ζ0xx + ζ0yy = 0. (5.9)
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For finding the kernel of admitted Lie groups one has to assume that equa-

tion (5.3)-(5.7) are satisfied for any function g(u, ū). One derives ζ = 0 and c5 = 0

by equation (5.3). Hence, the generators

X1 = ∂t, X2 = ∂x, X3 = ∂y, X4 = y∂x − x∂y

compose a basis of the kernel of admitted Lie algebras of equation (5.1).

5.2 Extension of Kernel

Extensions of the kernel of admitted Lie algebras are additional symmetries

to the kernel which are admitted by equations for a particular function g(u, ū). In

this section the extensions are found.

Differentiating equation (5.9) with respect to u and ū, one obtains

guuζ0 + guūζ̄0 = −c6(uguu + ūguū)− 2c5gu, (5.10)

guūζ0 + gūūζ̄0 = −c6(uguū + ūgūū)− 2c5gū. (5.11)

Equations (5.10) and (5.11) are linear algebraic equations with respect to ζ0 and

ζ̄0. The determinant of the matrix of this linear system of equations is equal to

∆ = g2uū − guugūū.

5.2.1 Case ∆ ̸= 0

If ∆ ̸= 0, then, solving this linear system, one can find ζ0 as follow:

ζ0 = −c6u+ 2c5h(u, ū), (5.12)

where h(u, ū) = ∆−1(gugūū − gūguū). Differentiating equation (5.12) with respect

to u and ū, respectively, one has

2c5h(u, ū)u = c6, 2c5h(u, ū)ū = 0,
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which implies that

2c5h(u, ū)uu = 0, 2c5h(u, ū)ū = 0.

If c5 = 0, then one derives ζ = 0, thus there is no extension of the kernel of admitted

Lie algebras. Therefore, for existence of an extension of the kernel one needs c5 ̸= 0,

which implies that h(u, ū)uu = 0, h(u, ū)ū = 0. Setting h(u, ū) = α1u + α0, one

has

ζ0 = 2c5α0, c6 = 2c5α1,

where α0 and α1 are arbitrary constants. Substituting ζ = 2c5α1u + 2c5α0 into

equation (5.9), one gets

(α1u+ α0)gu + (α1ū+ α0)gū = (α1 − 1)g. (5.13)

Solving equation (5.13), one needs to consider two cases: α1 = 0 and α1 ̸= 0.

If α1 = 0, then equation (5.13) becomes α0gu+α0gū = −g, since g ̸= 0, one

derives α0 ̸= 0. Solving this equation, one gets

g(u, ū) = eαuH(ū− u),

where α = −α−1
0 and H is an arbitrary function of a single variable. Notice that

∆ = −α2e2αu(HH ′′ − (H ′)2) ̸= 0.

Without loss of generality one can assume that α = 1, which implies that α0 = −1.

Thus, the extension of the kernel of admitted Lie algebras is given by the generator

X̃5 = t∂t + x∂x + y∂y − 2∂u.

If α1 ̸= 0, then, solving equation (5.13), one can get

g(u, ū) = (u+
α0

α1

)kH(
ū+ α0

α1

u+ α0

α1

),
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where k = 1 − 1
α1
. Without loss of generality one can assume that α0 = 0, one

derives

∆ = − 1

α1

u2k−4((k − 1)HH ′′ − k(H ′)2) ̸= 0.

Hence, one gets

g(u, ū) = ukH(
ū

u
),

where H is an arbitrary function of a single variable with satisfying (k−1)HH ′′−

k(H ′)2 ̸= 0, and the extension of the kernel of admitted Lie algebras is given by

the generator

X̂5 = t∂t + x∂x + y∂y + 2α1u∂u.

where k = 1− 1
α1

and α1 ̸= 0 are both constants.

5.2.2 Case ∆ = 0

1. Case gūū ̸= 0.

If gūū ̸= 0, then the general solution of the equation ∆ = 0 is

gu = ϕ(gū), (5.14)

where ϕ is an arbitrary function of the integration.

Equations (5.10) and (5.11) are reduced to

(ϕ′)2gūūζ0 + ϕ′gūūζ̄0 = −c6(u(ϕ′)2gūū + ūϕ′gūū)− 2c5ϕ, (5.15)

ϕ′gūūζ0 + gūūζ̄0 = −c6(uϕ′gūū + ūgūū)− 2c5gū, (5.16)

respectively, which imply that 2c5(gūϕ
′ − ϕ) = 0.

Case 1.1: Assumption that gūϕ
′ − ϕ ̸= 0, which implies that c5 = 0. One

has

(ζ0 + c6u)ϕ
′ = −(ζ̄0 + c6ū). (5.17)
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If ϕ′ = 0, then ζ̄0 = −c6ū, which implies that ζ = 0, thus there is no any

extension of the kernel of admitted Lie algebras. Hence, for extension of the kernel

one needs to study ϕ′ ̸= 0 .

Differentiating equation (5.17) with respect to ū, one gets

(ζ0 + c6u)ϕ
′′gūū = −c6. (5.18)

Differentiating equation (5.18) with respect to t, x and y, respectively, one

gets

ϕ′′ζ0t = 0, ϕ′′ζ0x = 0, ϕ′′ζ0y = 0. (5.19)

Assume that ϕ′′ ̸= 0, which implies that ζ0 is constant, say ζ0 = k1. By

virtue of the inverse function theorem, from equation (5.17) one has

gū = h(
α + βū

α + βu
), (5.20)

where α and β are constants. Because of the condition gūū ̸= 0, one has β ̸= 0.

The transformation

t̃ = t, x̃ = x, ỹ = y, ũ = u+ a (5.21)

is an equivalence transformation of equation (5.1) for any constant a. Integrating

equations (5.20), using the condition (5.14), one derives that

g(u, ū) = uH(z) + k0, z =
ū

u
,

where k0 is a integrating constant, H ′′ ̸= 0.

Determining equation (5.9) becomes

k1(H − zH ′ +H ′) = c6k0.

Since H ′′ ̸= 0, the latter equation gives that k1 = 0. For existence of an extension

of the kernel of admitted Lie algebras one needs to assume that k0 = 0. Hence,

g(u, ū) = uH(
ū

u
)
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and the extension of the kernel of admitted Lie algebras is given by the generator

X5 = u∂u.

Assume that ϕ′′ = 0, which implies that there exist constants k1 and k0

such that

gu = k1gū + k0, k0 ̸= 0.

By virtue of the condition ϕ′ ̸= 0 one has to assume that k1 ̸= 0. The general

solution of the latter equation is

g(u, ū) = k0u+H(ū+ k1u), (5.22)

where H is a function such that H ′ ̸= 0. Equation (5.17) becomes

(ζ0 + c6u)k1 + (ζ̄0 + c6ū) = 0, (5.23)

and one derives c6 = 0 and ζ̄0 = −k1ζ0. Equation (5.9) is reduced to the two-

dimensional Klein-Gordon equation

ζ0tt = ζ0xx + ζ0yy + k0ζ0.

Thus, for the function (5.22) one obtains that if there exists a nontrivial

solution q(t, x, y) of the linear Klein-Gordon equation

qtt = qxx + qyy + k0q, (5.24)

satisfying the condition

q(t− τ(t), x, y) = −k1q(t, x, y), (5.25)

then the extension of the kernel is given by the generator

Xq = q(t, x, y)∂u.
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Notice that the set of functions g(u, ū) for which there exists a nontrivial

solution of (5.24) and (5.25) is not empty. For example, when τ is constant, and

k1 = −e
√
k0τ , then q = e−

√
k0t is a nontrivial solution of (5.24) and (5.25).

Case 1.2: Assume that gūϕ
′ − ϕ = 0. Solving this equation, one can get

that the general solution of the latter equation is

g(u, ū) = H(z), z = ū+ k0u, (5.26)

where k0 is an arbitrary constant, H is function of a single variable such that

H ′′ ̸= 0. Substituting equation (5.26) into equation (5.16), one gets

−2c5h(z) = c6z + k0ζ0 + ζ̄0, (5.27)

where h(z) = H′(z)
H′′(z)

. Differentiating equation (5.27) with respect to z by once and

twice, one can get

−2c5h
′(z) = c6, −2c5h

′′(z) = 0.

Case 1.2.1: Assume that h′′(z) ̸= 0, that is, ( H
′(z)

H′′(z)
)′′ ̸= 0, which implies

that c5 = 0 and c6 = 0. Substituting these equations into equation (5.27), one has

k0ζ0 + ζ̄0 = 0, one derives ζ0tt = ζ0xx+ ζ0yy by equation (5.9). Thus, if there exists

a nontrivial solution q(t, x, y) of the linear Klein-Gordon equation

qtt = qxx + qyy, (5.28)

satisfying the condition

q(t− τ(t), x, y) + k0q(t, x, y) = 0, (5.29)

then the extension of the kernel is given by the generator

Xq = q(t, x, y)∂u,

where k0 is an arbitrary constant.
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Case 1.2.2: Assumption that h′′(z) = 0, one obtains h(z) = α1z+α0, that

is,

H ′(z)

H ′′(z)
= α1z + α0, (5.30)

where α0 and α1 are arbitrary constants. By equation (5.27), one gets

k0ζ0 + ζ̄0 = −2c5α0, c6 = −2c5α1, (5.31)

which implies that ζ0 depends on c5, say ζ0(t, x, y) = c5q(t, x, y).

Notice that if c5 = 0, then ζ = 0, which implies that there is no extension

of the kernel of admitted Lie algebras. For existence of an extension of the kernel

of admitted Lie algebras one needs to assume that c5 ̸= 0. Here q(t, x, y) is an

arbitrary function satisfying

k0q + q̄ = −2α0. (5.32)

Thus, the extension of the kernel is given by the generator

X5 = t∂t + x∂x + y∂y + (q(t, x, y)− 2α1u)∂u.

Because L = {X1, X2, X3, X4, X5} is an admitted Lie algebra, by definition of

a Lie algebra, one can get qt(t, x, y) = 0, qx(t, x, y) = 0 and qy(t, x, y) = 0, one

derives q(t, x, y) = α2, where α2 is an arbitrary constant satisfying α2(k0 + 1) =

−2α0.

Solving equation (5.30), one derives the following three cases: α1 = 0, α1 =

−1 and α1(α1 + 1) ̸= 0.

If α1 = 0, then c6 = 0, which implies that α0 ̸= 0 by H ′′(z) ̸= 0, thus

α2 ̸= 0. Solving equation (5.30), one has

g(u, ū) = k2e
1
α0

(ū+k0u) + k1. (5.33)

Without loss of generality one can assume that α0 = 1; then k0 = −1 − 2
α2
.

Substituting equation (5.33) into equation (5.9), one gets k1 = 0. Hence, the
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extension of the kernel is given by the generator

X5 = t∂t + x∂x + y∂y + α2∂u.

If α1 = −1, then c6 = 2c5, solving equation (5.30), one has

g(u, ū) = k2 ln |ū+ k0u− α0|+ k1, k2 ̸= 0. (5.34)

Substituting equation (5.34) into equation (5.9), one gets k2 = 0, which is con-

tradiction with the condition k2 ̸= 0. Thus, there is no extension of the kernel of

admitted Lie algebras under this case.

If α1(α1 + 1) ̸= 0, solving equation (5.30), one has

g(u, ū) = k2(ū+ k0u+
α0

α1

)
1+ 1

α1 + k1, k2 ̸= 0. (5.35)

Substituting equation (5.35) into equation (5.9), one gets k1 = 0. Thus,

g(u, ū) = k2(ū+ k0u+
α0

α1

)
1+ 1

α1 , k2 ̸= 0

and the extension of the kernel is given by the generator

X5 = t∂t + x∂x + y∂y + (α2 − 2α1u)∂u,

where α2(k0 + 1) = −2α0.

2. Case gūū = 0, guu ̸= 0. This assumption implies that gūu = 0. Because

of condition gū ̸= 0, one has

g(u, ū) = k1ū+ h(u), (5.36)

where k1 ̸= 0 is a constant and h′′ ̸= 0. By equations (5.10) and (5.11), one has

ζ = 0, c5 = 0,

which means that there is no extension of the kernel of the admitted Lie algebra.
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3. Case gūū = 0, guu = 0.

This case corresponds to a linear delay differential equation with

g(u, ū) = k1ū+ k2u+ k, (5.37)

where k, k1 ̸= 0 and k2 are constant.

Notice that the constant k can be reduced to zero by the change

u = ũ− k̃1
4
x2 − k̃1

4
y2 + k̃2.

Indeed, choosing the constants k̃1 and k̃2 such that

k̃1(k1 + k2) = 0, k̃1 − k̃2(k1 + k2) = k

the function ũ satisfies the equation

ũtt = ũxx + ũyy + k1 ¯̃u+ k2ũ.

Substituting equation (5.37) into equation (5.11), one gets c5 = 0. Deter-

mining equation (5.9) becomes

ζ0tt = ζ0xx + ζ0yy + k1ζ̄0 + k2ζ0. (5.38)

Hence, the extension of the kernel is given by the generators X5 = u∂u and Xζ0 =

ζ0(t, x, y)∂u. In particular, if τ is constant and k0 = k1e
√
k0τ + k2, then ζ0 = e−

√
k0t

is a particular solution of equation (5.38).

5.3 Summary of the Group Classification

By the discussions of the previous section one obtains the following complete

group classification of the time-varying delay partial differential equation

utt = uxx + uyy + g(u, ū), ū(t, x, y) = u(t− τ(t), x, y),
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where gū ̸= 0. The results of the group classification are presented in Table 5.1,

where the functionH is a function of a single argument, and the coefficients qi(t, x),

(i = 1, 2, 3) satisfy the equations:

q1tt(t, x, y) = q1xx(t, x, y) + q1yy(t, x, y) + k0q1(t, x, y),

q1(t− τ, x, y) = −k1q1(t, x, y), k0q1(t, x, y) ̸= 0
(5.39)

q2tt(t, x, y) = q2xx(t, x, y) + q2yy(t, x, y),

q2(t− τ, x, y) = −k0q2(t, x, y), q2(t, x, y) ̸= 0
(5.40)

q3tt(t, x, y) = q3xx(t, x, y) + q3yy(t, x, y) + k2q3(t, x, y) + k1q3(t− τ, x, y). (5.41)
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5.4 Invariant Solutions

The purpose of the group analysis method is to construct exact solutions

of partial differential equations; here finding invariant solutions is an additional

purpose. This section is devoted to constructing invariant solutions of equation

(5.1) for each of the functions g(u, ū) in Table 5.1. Using an optimal system

of two-dimensional subalgebra of the admitted Lie algebra, one derives invariant

solutions. Notice that for the cases 4, 5 and 8 in Table 5.1, there is a generator of

the form q(t, x, y)∂u. Usually such kind of generators are omitted in construction

of invariant solutions. However the use of these generators also provides invariant

solutions. This will be demonstrated further.

5.4.1 Invariant solutions of (5.1) with g(u, ū) = uH( ūu)

For this function the admitted Lie algebra L1 is spanned by {X1, X2, X3,

X4, X5}, where X1 = ∂t, X2 = ∂x, X3 = ∂y, X4 = y∂x − x∂y, X5 = u∂u. The

commutator table is

[, ] X1 X2 X3 X4 X5

X1 0 0 0 0 0

X2 0 0 0 −X3 0

X3 0 0 0 X2 0

X4 0 X3 −X2 0 0

X5 0 0 0 0 0

Solving the corresponding to Lie equations, the automorphisms are

A1 : x̂3 = x3 + a1x4;

A2 : x̂2 = x2 − a2x4;

A3 : x̂2 = x2 cos(a3) + x3 sin(a3), x̂3 = −x2 sin(a3) + x3 cos(a3).
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Before constructing an optimal system, one studies the algebraic structure of

the Lie algebra L1. Consider the vector space L3 spanned by the operators

{X1, X4, X5}, One can verify that it is a subalgebra of the Lie algebra L1, and

the vector space I2 spanned by the operators {X2, X3} is an ideal of algebra L1.

Hence, the Lie algebra L1 is decomposed as I2⊕L3. Because the subalgebra L3 is

Abelian, an optimal system of one-dimensional admitted subalgebras consists of

{Hi}, (i = 1, 2, 3),

where

H1 = X4 + αX1 + βX5, H2 = X1 + αX5, H3 = X5,

and an optimal system of two-dimensional admitted subalgebras consists of

D1, D2, D3, where

D1 = {X4 + βX5, X1 + αX5}, D2 = {X4 + αX1, X5}, D3 = {X1, X5}

with arbitrary constants α and β.

Let Yi = ai1X1 + ai2X2 + ai3X3 + ai4X4 + ai5X5 (i = 1, 2) which constitutes

a two-dimensional subalgebras of the Lie algebra L1 and is denoted by matrix a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

 , (5.42)

with the requirement that rank of the matrix (5.42) is equal to 2. According to

the two-step algorithm (Ovsiannikov, 1993) for classifying the Lie algebra L1, it is
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sufficient to consider the following forms of two-dimensional subalgebras:α a12 a13 1 β

0 a22 a23 0 0

 ,

1 a12 a13 0 α

0 a22 a23 0 0

 ,

0 a12 a13 0 1

0 a22 a23 0 0

 ,

0 a12 a13 0 0

0 a22 a23 0 0

 ,

α a12 a13 1 0

0 a22 a23 0 1

 ,

1 a12 a13 0 0

0 a22 a23 0 1

 ,

0 a12 a13 1 α

1 a22 a23 0 β

 ,

(5.43)

where aij, (i = 1, 2; j = 2, 3) and α are arbitrary constants.

For further study one needs to simplify (5.43) by applying automorphisms

Ai (i = 1, 2, 3) and transformation of matrix; the results are summarized as follows.

Theorem 5.1. An optimal system of two-dimensional subalgebras of the Lie al-

gebra L1 consists of the subalgebras

M1 = {X2, X3}, M2 = {X2, X5 + αX3},

M3 = {X2, X1 + γX3 + βX5}, M4 = {X5, X4 + αX1},

M5 = {X5 + αX2, X1 + βX2 + γX3}, M6 = {X4 + αX5, X1 + βX5}

with arbitrary constants α, β and γ.

Proof : Here we only repsent the processes of calculating for the case 0 a12 a13 1 α

1 a22 a23 0 β

 , (5.44)

which denotes subalgebra {Y1, Y2}, where Y1 = 0 ·X1+a12X2+a13X3+X4+αX5,

Y2 = X1+a22X2+a23X3+0 ·X4+βX5. Calculation of other the optimal systems

of two-dimensional subalgebra of the Lie algebra L1 are similar.
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First, by the automorphisms A1 and A2, a12 and a13 can be changed to 0.

Checking subalgebra conditions, one has

[X4+αX5, X1+a22X2+a23X3+βX5] = a(X4+αX5)+b(X1+a22X2+a23X3+βX5),

for some constants a and b. By calculating the left hand side and comparing the

coefficients in the left hand with coefficients in the right hand side, one obtains

−a23X2 + a22X3 = bX1 + ba22X2 + ba23X3 + aX4 + (aα + bβ)X5,

which implies that

a = 0, b = 0, a22 = ba23, −a23 = ba22,

and one derives a23 = 0 and a22 = 0. One obtains the two-dimensional subalgebra

{X4 + αX5, X1 + βX5}.

Thus, the proof is completed.

Using the optimal system of subalgebras obtained, the representations of

all invariant solutions and reduced equations are given in Table 5.2, where w1 =

y − γt, w = x2 + y2, ψ(t) is an arbitrary function satisfying ψ(t) > 0.

Remark: Illustrating the representation of invariant solutions by case N =

2 in Table 5.1, others can be obtained using similar way. As the subalgebra is

spanned by {X2, X5 + αX3}, then operators are Y1 = X2 and Y2 = X5 + αX3. If

α = 0, i.e. Y2 = X5, then one derives that there are no invariant solutions. Hence,

for existence of an invariant solution, one has to assume α ̸= 0. For operator

Y1 = X2, the invariant solution does not depend on variable x. For X5 + αX3,

solving the corresponding characteristic system, one gets that the representation

of an invariant solution is u = ϕ(t)e
1
α
y, where ϕ is a function of a single variable.

Substituting this representation of a solution into equation (5.1) with the function

g(u, ū) = uH( ū
u
), the reduced equation is

ϕ′′(t) = ϕ(t)(
1

α2
+H(

ϕ(t− ψ(t))

ϕ(t)
)).
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In addition, one needs to consider the condition that (1− τ ′(t))η = η̄ for τ(t); by

the generators {X2} and {X5 + αX3}, one derives that η are both equal to zero,

which implies that it holds for arbitrary τ(t), by denoting ψ(t).
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5.4.2 Invariant Solutions of (5.1) with g(u, ū) = euH(ū− u)

For this case, the admitted Lie algebra is L2 = {X1, X2, X3, X4, X5}, where

X1 = ∂t, X2 = ∂x, X3 = ∂y, X4 = y∂x − x∂y, X5 = t∂t + x∂x + y∂y − 2∂u. The

commutator table is

[, ] X1 X2 X3 X4 X5

X1 0 0 0 0 X1

X2 0 0 0 −X3 X2

X3 0 0 0 X2 X3

X4 0 X3 −X2 0 0

X5 −X1 −X2 −X3 0 0

The corresponding to automorphisms are

A1 : x̂1 = x1 − a1x5;

A2 : x̂2 = x2 − a2x5, x̂3 = x3 + a2x4;

A3 : x̂2 = x2 − a3x4, x̂3 = x3 − a3x5;

A4 : x̂2 = x2 cos(a4) + x3 sin(a4), x̂3 = −x2 sin(a4) + x3 cos(a4);

A5 : x̂1 = x1e
a5 , x̂2 = x2e

a5 , x̂3 = x3e
a5 .

From the commutator table, one can derive that the Lie algebra L2 decomposes as

I3 ⊕ L2, where I3 = {X1, X2, X3} is an ideal and L2 = {X4, X5} is a subalgebra

of the Lie algebra L2, respectively. Since the subalgebra L
2 is Abelian, an optimal

system of one-dimensional admitted subalgebras consists of

{Hi}, (i = 1, 2),

where

H1 = X4, H2 = X5 + αX4,

and an optimal system of two-dimensional admitted subalgebras consists of

D1 = {X4, X5}
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with arbitrary constants α.

Two-dimensional subalgebras of the Lie algebra L2 are also denoted by

matrix  a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

 , (5.45)

with the requirement that the rank of the matrix (5.45) is equal to 2. For obtaining

an optimal system of subalgebras one uses the two-step algorithm (Ovsiannikov,

1993); it is sufficient to consider the following forms of two-dimensional subalge-

bras: a11 a12 a13 1 0

a21 a22 a23 0 0

 ,

a11 a12 a13 α 1

a21 a22 a23 0 0

 ,

a11 a12 a13 0 0

a21 a22 a23 0 0

 ,

a11 a12 a13 1 0

a21 a22 a23 0 1

 ,

(5.46)

where aij, (i = 1, 2; j = 1, 2, 3) and α are arbitrary constants.

For further study one needs to simplify (5.46) by applying automorphisms

Ai (i = 1, 2, 3, 4, 5) and transformation of matrix, the results are summarized as

follows.

Theorem 5.2. An optimal system of two-dimensional subalgebras of the Lie al-

gebra L2 is:

M1 = {X2, X3}, M2 = {X1, X4}, M3 = {X2, X1 + αX3},

M4 = {X5, X4}, M5 = {X5, X2 + αX1}, M6 = {X1, X5 + αX2 + βX4}

with arbitrary constants α and β.

Proof : As the algorithm of the optimal system of two-dimensional subalge-

bras of the Lie algebra L2 are similar, hence, we only give the process of calculating

for the case  a11 a12 a13 α 1

a21 a22 a23 0 0

 , (5.47)
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which denotes subalgebra {Y1, Y2}, where Y1 = a11X1+a12X2+a13X3+αX4+X5,

Y2 = a21X1 + a22X2 + a23X3 + 0 ·X4 + 0 ·X5.

First, by successfully using the automorphisms A1, A3 and A4, then a11,

a13 and a23 can be changed to 0 respectively. Thus the matrix 5.47 reduces to 0 a12 0 α 1

a21 a22 0 0 0

 , (5.48)

and a221 + a222 ̸= 0. Checking subalgebra conditions, one has

[a12X2 + αX4 +X5, a21X1 + a22X2] = a(a12X2 + αX4 +X5) + b(a21X1 + a22X2),

for some constants a and b. By calculating the left hand side and comparing the

coefficients in the left hand with coefficients in the right hand side, one gets

αa22X3 − a21X1 − a22X2 = ba21X1 + (aa12 + ba22)X2 + aαX4 + aX5,

which implies that

a = 0, (b+ 1)a21 = 0, (b+ 1)a22 = 0, αa22 = 0.

Since a221 + a222 ̸= 0, one derives b = −1.

Case 1: a22 = 0. As a221 + a222 ̸= 0, one gets a21 ̸= 0. Dividing Y2 by

a21, thus the operators Y2 = X1. One gets the two-dimensional subalgebra M6 in

theorem.

Case 2: a22 ̸= 0. The assumption implies that α = 0, dividing Y2 by a22,

thus the operators Y2 = βX1 + X2. Using transformation of matrix, a12 can be

changed to 0. one gets  γ 0 0 0 1

β 1 0 0 0

 . (5.49)

By the automorphism A1, γ can be changed to 0: one gets the two-dimensional

subalgebra M5 in theorem.
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Thus, the proof is completed.

Using the obtained optimal system of subalgebras, the representation of

all invariant solutions and reduced equations are given in Table 5.3, where w =

x2+y2, w1 = y−αt, w2 = tw−1/2, w3 = t/y, ψ(t) is a function satisfying ψ(t) > 0,

and a is an arbitrary constant with a > 0.

Remark: For reducing equations and the existence of invariant solutions,

one has to assume that some coefficients are equal to zero for some generator. For

example, one needs to assume α = 0 in the case 5 of Table 5.2
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5.4.3 Invariant Solutions of (5.1) with g(u, ū) = ukH( ūu), (k ̸=

1)

For this function the admitted Lie algebra is L3 = {X1, X2, X3, X4, X5},

where X1 = ∂t, X2 = ∂x, X3 = ∂y, X4 = y∂x−x∂y, X5 = t∂t+x∂x+y∂y+2α1u∂u.

Comparing the commutator table in previous subsection, one derives all optimal

systems of two-dimensional subalgebras of the algebra L3 with the basis

M1 = {X2, X3}, M2 = {X1, X4}, M3 = {X2, X1 + αX3},

M4 = {X5, X4}, M5 = {X5, X2 + αX1}, M6 = {X1, X5 + αX2 + βX4}

with arbitrary constants α and β.

Using the obtained optimal system of subalgebras, the representation of

all invariant solutions and reduced equations are given in Table 5.4, where w =

x2+y2, w1 = y−αt, w2 = tw−1/2, w3 = t/y, ψ(t) is a function satisfying ψ(t) > 0,

and a is an arbitrary constant with a > 0.
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5.4.4 Invariant Solutions of (5.1) with g(u, ū) = k0u+H(ū+

k1u)

For this case, the admitted algebra L4 is spanned by X1, X2, X3, X4 and

X5, where X1 = ∂t, X2 = ∂x, X3 = ∂y, X4 = y∂x − x∂y, X5 = q(t, x, y)∂u. The

commutator table is

[, ] X1 X2 X3 X4 X5

X1 0 0 0 0 qt∂u

X2 0 0 0 −X3 qx∂u

X3 0 0 0 X2 qy∂u

X4 0 X3 −X2 0 (yqx − xqy)∂u

X5 −qt∂u −qx∂u −qy∂u −(yqx − xqy)∂u 0

The requirement that L4 is a Lie algebra gives existence of constants αi (i =

1, 2, 3, 4) such that

qt(t, x, y) = α1q(t, x, y), qx(t, x, y) = α2q(t, x, y),

qy(t, x, y) = α3q(t, x, y), yqx(t, x, y)− xqy(t, x, y) = α4q(t, x, y).
(5.50)

The general solution of equations (5.50) is q(t, x, y) = ceα1t, where c is constant

and c ̸= 0. Therefore, one can choose q(t, x, y) = eα1t. Since q(t, x, y) satisfies

relations (5.39), one derives

k0 = α2
1, k1 = −e−α1τ . (5.51)

Notice that k0 ̸= 0, which implies that α1 ̸= 0 and τ must be constant.
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By the commutator table, the automorphisms are:

A1 : x̂5 = x5e
−a1α1 ;

A2 : x̂3 = x3 + a2x4;

A3 : x̂2 = x2 − a3x4;

A4 : x̂2 = x2 cos(a4) + x3 sin(a4), x̂3 = −x2 sin(a4) + x3 cos(a4);

A5 : x̂5 = x5 + a5α1x1.

The Lie algebra L4 decomposes as I3 ⊕ L2, where L2 = {X1, X4} is a subalgebra

and I3 = {X2, X3, X5}, is an ideal of the Lie algebra L4, respectively. Since

the subalgebra L2 is Abelian, an optimal system of one-dimensional admitted

subalgebras consists of

{Hi}, (i = 1, 2),

where

H1 = X1, H2 = X4 + αX1,

and an optimal system of two-dimensional admitted subalgebras

D1 = {X1, X4}

with arbitrary constants α.

According to the two-step algorithm (Ovsiannikov, 1993) for classifying the

Lie algebra L4, it is sufficient to consider the following forms of two-dimensional

subalgebras: 1 a12 a13 0 a15

0 a22 a23 0 a25

 ,

α a12 a13 1 a15

0 a22 a23 0 a25

 ,

0 a12 a13 0 a15

0 a22 a23 0 a25

 ,

1 a12 a13 0 a15

0 a22 a23 1 a25

 ,

(5.52)

where aij, (i = 1, 2; j = 2, 3, 5) and α are constants.
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For further study one needs to simplify (5.52) by applying automorphisms

Ai (i = 1, 2, 3, 4, 5) and matrix transformations; the results are summarized as

follows.

Theorem 5.3. An optimal system of two-dimensional subalgebras of the Lie al-

gebra L4 is:

M1 = {X1, X4}, M2 = {X4, X5}, M3 = {X5, X4 + γX1},

M4 = {X2, X3}, M5 = {X2, X5 + αX3}, M6 = {X2, X1 + αX3},

M7 = {X1 + γX2, X5 + βX3}

with arbitrary constants α, β and γ ̸= 0.

Proof : we show the processes of calculating for the case 0 a12 a13 0 a15

0 a22 a23 0 a25

 , (5.53)

which denotes subalgebra {Y1, Y2}, where Y1 = 0·X1+a12X2+a13X3+0·X4+a15X5,

Y2 = 0 ·X1 + a22X2 + a23X3 + 0 ·X4 + a25X5.

Case 1: a15 ̸= 0. Dividing Y1 by a15, a15 can be changed to 1. Using a

matrix transformation, a25 can be changed to 0. Since the rank of matrix (5.53) is

equal to 2, one has a222+a
2
23 ̸= 0. Using the automorphism A4, a23 can be changed

to 0, hence, the matrix 5.53 reduces to 0 a12 a13 0 1

0 a22 0 0 0

 . (5.54)

Since a22 ̸= 0, dividing Y2 by a22, one has Y2 = X2. Using a matrix transformation,

a12 can be changed to 0: one gets the two-dimensional subalgebra M5 in the

theorem.
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Case 2: a15 = 0. The assumption implies that a25 = 0; the matrix 5.53

reduces to  0 a12 a13 0 0

0 a22 a23 0 0

 . (5.55)

Since the rank of matrix (5.55) is equal to 2, by a matrix transformation, matrix

(5.55) can be changed to  0 1 0 0 0

0 0 1 0 0

 ; (5.56)

one derives the two-dimensional subalgebra M4 in the theorem.

Other cases can be computed similarly.

Thus, the proof is completed.

Using the obtained optimal systems of two-dimensional subalgebras of the

Lie algebra L4 obtained in the previous theorem, all invariant solutions and reduced

equations are presented in Table 5.5, where w1 = y − αt, w2 = x− γt.
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5.4.5 Invariant Solutions of (5.1) with g(u, ū) = H(ū+ k0u)

For this case the admitted algebra L5 is spanned by X1, X2, X3, X4 and

X5, where X1 = ∂t, X2 = ∂x, X3 = ∂y, X4 = y∂x − x∂y, X5 = q(t, x, y)∂u. The

commutator table is

[, ] X1 X2 X3 X4 X5

X1 0 0 0 0 qt∂u

X2 0 0 0 −X3 qx∂u

X3 0 0 0 X2 qy∂u

X4 0 X3 −X2 0 (yqx − xqy)∂u

X5 −qt∂u −qx∂u −qy∂u −(yqx − xqy)∂u 0

The requirement that L5 is a Lie algebra implies existence of constants αi (i =

1, 2, 3, 4) such that

qt(t, x, y) = α1q(t, x, y), qx(t, x, y) = α2q(t, x, y),

qy(t, x, y) = α3q(t, x, y), yqx(t, x, y)− xqy(t, x, y) = α4q(t, x, y).
(5.57)

The general solution of equations (5.57) is q(t, x, y) = ceα1t, where c is constant

and c ̸= 0. Therefore, one can choose q(t, x, y) = eα1t. Since q(t, x, y) satisfies

relations (5.40), one derives

α1 = 0, k0 = −1. (5.58)

The result leads to q(t, x, y) = 1; substituting it into the commutator table, which

coincides with the commutator table of Lie algebra L1, one thus derives an optimal

system of two-dimensional subalgebras of the Lie algebra L5:

M1 = {X2, X3}, M2 = {X2, X5 + αX3},

M3 = {X2, X1 + γX3 + βX5}, M4 = {X5, X4 + αX1},

M5 = {X5 + αX2, X1 + βX2 + γX3}, M6 = {X4 + αX5, X1 + βX5}

with arbitrary constants α, β and γ.
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By the obtained optimal system, all invariant solutions and reduced equa-

tions are presented in Table 5.6, where w1 = y−γt, w = x2+y2, ψ(t) is a function

satisfying ψ(t) > 0.
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5.4.6 Invariant Solutions of (5.1) with g(u, ū) = k2e
ū+k0u

Consider the Lie algebra L6 = {X1, X2, X3, X4, X5}, where X1 = ∂t, X2 =

∂x, X3 = ∂y, X4 = y∂x−x∂y, X5 = t∂t+x∂x+y∂y+α2∂u. Because the commutator

table coincides with the commutator table of Lie algebra L2, thus, one has an

optimal system of two-dimensional subalgebras consisting

M1 = {X2, X3}, M2 = {X1, X4}, M3 = {X2, X1 + αX3},

M4 = {X5, X4}, M5 = {X5, X2 + αX1}, M6 = {X1, X5 + αX2 + βX4}

with arbitrary constants α and β. The representations of all invariant solutions and

reduced equations are given in Table 5.7, where w = x2 + y2, w1 = y − αt, w2 =

tw−1/2, w3 = t/y, ψ(t) is a function satisfying ψ(t) > 0, and a is an arbitrary

constant with a > 0.
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eū

+
k
0
u
,
k
0
=

−
1
−

2 α
2
.

N
o.

A
lg
.

R
ep
r.

of
in
v
.
so
lu
ti
on

s
R
ep
r.
of
τ

R
ed
u
ce
d
eq
u
at
io
n

1
M

1
u
=
ϕ
(t
)

ψ
(t
)

ϕ
′′ (
t)

=
k
2
eϕ

(t
−
ψ
(t
))
+
k
0
ϕ
(t
)

2
M

2
n
o

3
M

3
u
=
ϕ
(w

1
)

co
n
s.

(1
−
α
2
)ϕ

′′ (
w

1
)
+
k
2
eϕ

(w
1
+
α
τ
)+
k
0
ϕ
(w

1
)
=

0

4
M

4
u
=

α
2 2
ln
w
+
ϕ
(w

2
)

a
t

(w
2 2
−

1)
ϕ
′′ (
w

2
)
+
2w

2
ϕ
′ (
w

2
)
+
k
2
eϕ

((
1
−
a
)w

2
)+
k
0
ϕ
(w

2
)
=

0

5
M

5
u
=
α
2
ln
y
+
ϕ
(w

3
)

a
t

(w
2 3
−

1)
ϕ
′′ (
w

3
)
+
2w

3
ϕ
′ (
w

3
)
+
k
2
eϕ

((
1
−
a
)w

3
)+
k
0
ϕ
(w

3
)
−
α
2
=

0

6
M

6
n
o

 

 

 

 

 

 

 

 



104

5.4.7 Invariant Solutions of (5.1) with g(u, ū) = k2(ū+ k0u+

α0

α1
)1+

1
α1

Consider the Lie algebra L7 = {X1, X2, X3, X4, X5}, where X1 = ∂t, X2 =

∂x, X3 = ∂y, X4 = y∂x − x∂y, X5 = t∂t + x∂x + y∂y + (α2 − 2α1u)∂u. Since the

commutator table coincides with the commutator table of Lie algebra L2, thus, an

optimal system of two-dimensional subalgebras consists of

M1 = {X2, X3}, M2 = {X1, X4}, M3 = {X2, X1 + αX3},

M4 = {X5, X4}, M5 = {X5, X2 + αX1}, M6 = {X1, X5 + αX2 + βX4}

with arbitrary constants α and β. By the obtained optimal systems, the repre-

sentations of all invariant solutions and reduced equations are presented in Table

5.8, where w = x2 + y2, w1 = y − αt, w2 = tw−1/2, w3 = t/y, ψ(t) is a function

satisfying ψ(t) > 0, and a is an arbitrary constant with a > 0.
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5.4.8 Invariant Solutions of (5.1) with g(u, ū) = k1ū+ k2u

Consider the Lie algebra L8 = {X1, X2, X3, X4, X5, X6}, where X1 =

∂t, X2 = ∂x, X3 = ∂y, X4 = y∂x − x∂y, X5 = u∂u and X6 = q(t, x, y)∂u. The

commutation relations are

[, ] X1 X2 X3 X4 X5 X6

X1 0 0 0 0 0 qt∂u

X2 0 0 0 −X3 0 qx∂u

X3 0 0 0 X2 0 qy∂u

X4 0 X3 −X2 0 0 Z∂u

X5 0 0 0 0 0 −X6

X6 −qt∂u −qx∂u −qy∂u −Z∂u X6 0

where Z = yqx − xqy.

Because L8 is a Lie algebra, by definition of Lie algebra, one derives

qt(t, x, y) = α1q(t, x, y), qx(t, x, y) = α2q(t, x, y),

qy(t, x, y) = α3q(t, x, y), yqx(t, x, y)− xqy(t, x, y) = α4q(t, x, y).
(5.59)

The general solution of equations (5.59) is q(t, x, y) = ceα1t, where c is constant.

Since {X1, X2, X3, X4, X5, X6} is a basis of algebra L8, one can chooseX6 = eα1t∂u,

i.e, q(t, x, y) = eα1t. Since q(t, x, y) satisfies equation (5.41), one derives that

k2 = −k1e−α1τ + α2
1. (5.60)

Notice that if α1 = 0, then k2 = −k1; if α1 ̸= 0, then one derives that τ is

constant.
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By the commutator table, thus the automorphisms Ai (i = 1, 2, 3, 4, 5, 6)

are as follows:

A1 : x̂6 = x6e
−a1α1 ;

A2 : x̂3 = x3 + a2x4;

A3 : x̂2 = x2 − a3x4;

A4 : x̂2 = x2 cos(a4) + x3 sin(a4), x̂3 = −x2 sin(a4) + x3 cos(a4);

A5 : x̂6 = x6e
a5 ;

A6 : x̂6 = x6 + a6(α1x1 − x5).

The Lie algebra L8 decomposes as I3 ⊕ L3, where L3 = {X1, X4, X4} is a

subalgebra and I3 = {X2, X3, X6} is an ideal of the Lie algebra L8, respectively.

Since the subalgebra L3 is Abelian, an optimal system of one-dimensional admitted

subalgebras consists of

H1 = {X5}, H2 = {X4 + αX5}, H3 = {X1 + αX4 + βX5}

and an optimal system of two-dimensional admitted subalgebras consists of

D1 = {X4, X5}, D2 = {X1 + αX4, X5}, D3 = {X1 + βX5, X4 + αX5}

with arbitrary constants α and β.

According to the two-step algorithm (Ovsiannikov, 1993) for classifying the

Lie algebra L8, it is sufficient to consider the following forms of two-dimensional
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subalgebras: 0 a12 a13 0 0 a16

0 a22 a23 0 0 a26

 ,

0 a12 a13 0 1 a16

0 a22 a23 0 0 a26

 ,

0 a12 a13 1 α a16

0 a22 a23 0 0 a26

 ,

1 a12 a13 α β a16

0 a22 a23 0 0 a26

 ,

0 a12 a13 1 0 a16

0 a22 a23 0 1 a26

 ,

1 a12 a13 α 0 a16

0 a22 a23 0 1 a26

 ,

1 a12 a13 0 β a16

0 a22 a23 1 α a26

 ,

(5.61)

where aij, (i = 1, 2; j = 2, 3, 6) and α are arbitrary constants, the matrices denote

two-dimensional subalgebras of the Lie algebra L8.

For further study one needs to simplify (5.61) by using automorphisms

Ai (i = 1, 2, 3, 4, 5, 6) and matrix transformations, the results are summarized as

follows.

Theorem 5.4. An optimal system of two-dimensional subalgebras of the Lie al-

gebra L8 is defined by the subalgebras

M1 = {X2, X3}, M2 = {X2, X5 + αX3},

M3 = {X2, X1 + γX3 + βX5}, M4 = {X2, X6 + αX3},

M5 = {X4, X1 + α1X5 + ϵX6}, M6 = {X5, X4 + αX1},

M7 = {X6, X4 + αX5}, M8 = {X6, X4 + αX1 + βX5}|α ̸=0
,

M9 = {X1 + αX2, X5 + βX2 + γX3}, M10 = {X3 + ϵX6, X1 + αX2 + α1X5},

M11 = {X2, X1 + αX3 + α1X5 + ϵX6}, M12 = {X4 + βX5, X1 + αX5},

M13 = {X2 + ϵX6, X1 + βX2 + αX3 + α1X5}, M14 = {X6, X1 + αX3 + α1X5}

with arbitrary constants α, β, and γ, ϵ = ±1, the symbol | means conditions.
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Proof : Consider the case 1 a12 a13 α β a16

0 a22 a23 0 0 a26

 , (5.62)

which denotes subalgebra {Y1, Y2}, where Y1 = X1+a12X2+a13X3+αX4+βX5+

a16X6, Y2 = 0 ·X1 + a22X2 + a23X3 + 0 ·X4 + 0 ·X5 + a26X6.

Case 1: α = 0. Checking subalgebra conditions, one has

[X1 + a12X2 + a13X3 + βX5 + a16X6, a22X2 + a23X3 + a26X6]

= a(X1 + a12X2 + a13X3 + βX5 + a16X6) + b(a22X2 + a23X3 + a26X6),

for some constants a and b. By calculating the left hand side and comparing the

coefficients in the left hand with coefficients in the right hand side, one gets

a26(α1−β)X6 = aX1+(aa12+ ba22)X2+(aa13+ ba23)X3+aηX5+(aa16+ ba26)X6,

one derives

a = 0, ba22 = 0, ba23 = 0, (α1 − β − b)a26 = 0.

Case 1.1: b ̸= 0. This assumption implies that a22 = a23 = 0. Because

rank of matrix (5.62) is equal to 2, then a26 ̸= 0, one can choose a26 = 1. Using a

matrix transformation, a16 can be changed to 0. Using the automorphism A4, a13

can be changed to 0: one gets the two-dimensional subalgebra M14 in theorem.

Case 1.2: b = 0. This assumption implies that (α1 − β)a26 = 0.

Case 1.2.1: a26 = 0. The rank of matrix (5.62) is equal to 2, which implies

that a222+a
2
23 ̸= 0. Using automorphisms A4, a23 can be changed to 0, and one can

choose a22 = 1. Using a matrix transformation, a12 can be changed to 0: one gets

the two-dimensional subalgebra {X2, X1+ a13X3+βX5+ a16X6}. If a16 = 0, then

one has subalgebra M3 in the theorem. If a16 ̸= 0, then, using the automorphism

A5, a16 can be changed to ϵ: one obtains the subalgebra M11 in the theorem.
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Case 1.2.2: a26 ̸= 0. This assumption implies that β = α1 and one can

choose a26 = 1. Using a matrix transformation, a16 can be changed to 0. Using

the automorphism A4, a23 can be changed to 0: one gets the two-dimensional

subalgebra {X6 + a22X2, X1 + a12X2 + a13X3 + α1X5}. If a22 = 0, then, using the

automorphism A4, a13 can be changed to 0: one has the subalgebra M14 in the

theorem. If a12 ̸= 0, then, dividing Y1 by a12, and using the automorphism A5,

one gets the subalgebra M13 in the theorem.

Case 2: α ̸= 0. By successfully using the automorphisms A2 and A3, thus

a12 and a13 can be changed to 0. Checking subalgebra conditions, one has

[X1 + αX4 + βX5 + a16X6, a22X2 + a23X3 + a26X6]

= a(X1 + αX4 + βX5 + a16X6) + b(a22X2 + a23X3 + a26X6),

for some constants a and b. By calculating the left hand side and comparing the

coefficients in the left hand with coefficients in the right hand side, one gets

a26(α1 − β)X6 + αa22X3 − αa23X2

= aX1 + ba22X2 + ba23X3 + aαX4 + aηX5 + (aa16 + ba26)X6,

which implies that

a = 0, ba22 = −αa23, ba23 = αa22, (α1 − β − b)a26 = 0,

one derives a22 = a23 = 0. Therefore, one has 1 0 0 α β a16

0 0 0 0 0 a26

 . (5.63)

Since rank of matrix (5.63) is equal to 2, which implies that a26 ̸= 0, one can

choose a26 = 1. Using a matrix transformation, a16 can be changed to 0. Since

α ̸= 0, dividing Y1 by α, one thus gets the two-dimensional subalgebra M8 in the

theorem.

Other cases can be similarly discussed and computed.
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Thus, the proof is completed.

By the obtained optimal system, representations of all invariant solutions

and reduced equations are given in Table 5.9, where w = x2+y2, w1 = x−αt, w2 =

y − αt, w3 = γx− αγt− βy, and ψ(t) is a function satisfying ψ(t) > 0.
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CHAPTER VI

CONCLUSIONS

The goal of this thesis is application of the group analysis method to the

one-dimensional nonlinear Klein-Gordon equation with constant delay

utt(x, t) = uxx(x, t) + g(u(x, t), u(x, t− τ)), gū ̸= 0, (6.1)

and the two-dimensional nonlinear Klein-Gordon equation with time-varying delay

utt(x, y, t) = uxx(x, y, t)+uyy(x, y, t)+g(u(x, y, t), u(x, y, t− τ(t))), gū ̸= 0. (6.2)

Using the approach developed in (Tanthanuch and Meleshko, 2002), the complete

group classification of equation (6.1) is obtained. Results of the group classification

are presented in Table 4.1. Representations of all invariant solutions are given in

Tables 4.2-4.10.

In addition, group analysis of a differential equation with time-varying delay

is developed. This analysis is applied to equation (6.2). The complete group

classification of this equation with respect to the arbitrary function g is obtained

(Table 5.1). All admitted Lie algebras are classified. These classifications are

used for deriving invariant solutions. Representations of all invariant solutions are

presented in Tables 5.2-5.9.
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