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กาญจนา  ปัญญาไว : การเพิ�มประสิทธิภาพเทคนิคการแช่แข็งแบบ vitrification เพื�อการ

เจือจางในขั�นตอนเดียวหลงัการทาํละลายของตวัอ่อนโคที�ไดจ้ากการปฏิสนธิในหลอด

ทดลองและผา่นการตดัแบ่งตวัอ่อน (IMPROVEMENT OF VITRIFICATION 

TECHNIQUE FOR ONE STEP DILUTION OF VITRIFIED BIOPSIED BOVINE 

IVF-DERIVED EMBRYOS) อาจารยท์ี�ปรึกษา : รองศาสตราจารย ์ดร.รังสรรค ์พาลพา่ย, 

97 หนา้.  

  
การแช่แข็งตัวอ่อนโคระยะบลาสโตซีสที�ได้จากการผลิตในหลอดทดลองด้วยวิธี  

vitrification จาํเป็นตอ้งมีการพฒันาเพื�อป้องกนัการปนเปื� อน และสามารถเจือจางสารแช่แข็งไดใ้น

ขั�นตอนเดียวหลงัการทาํละลาย ซึ� งจะเพิ�มมูลค่าทางเศรษฐกิจของตวัอ่อนโคที�ได้จากการผลิตใน

หลอดทดลอง  การศึกษาแรกเพื�อประเมินประสิทธิภาพของอุปกรณ์แช่แข็ง micro volume air 

cooling (MVAC) ในการแช่แข็งดว้ยวิธี vitrification โดยนาํไข่โคที�ผา่นการเลี�ยงให้สุกในหลอด

ทดลองและตวัอ่อนโคระยะบลาสโตซีสได้จากการผลิตในหลอดทดลอง มาแช่แข็งด้วยอุปกรณ์ 

MVAC  โดยใช้ Cryotop ซึ� งเป็นอุปกรณ์แช่แข็งมาตรฐานที�มีอตัรารอดหลงัการทาํละลายสูงเป็น

กลุ่มเปรียบเทียบ  ส่วนการแช่แข็งดว้ย MVAC นั�นจะทาํการเปรียบเทียบในสองระบบคือ MVAC 

group ซึ� งไข่หรือตวัอ่อนจะไม่สัมผสักบัไนโตรเจนเหลวโดยตรง  ส่วนระบบที�สองคือ MVAC in 

LN2 group ระบบนี�ไข่หรือตวัอ่อนจะสัมผสักบัไนโตรเจนเหลวโดยตรง  และเป็นระบบเดียวกบัการ

แช่แข็งดว้ย Cryotop  เมื�อนาํไข่หลงัการทาํละลายจากทั�งสามกลุ่มการทดลอง คือ MVAC, MVAC 

in LN2 และ Cryotop มาทาํการปฏิสนธิในหลอดทดลอง  ผลการทดลองไม่พบความแตกต่างทาง

สถิติของอตัราการแบ่งตวั และอตัราการเจริญของตวัอ่อนเขา้สู่ระยะบลาสโตซีส (��.�% to ��.�% 

and ��.�% to ��.�%, ตามลาํดบั)   ส่วนตวัอ่อนโคระยะบลาสโตซีสได้จากการผลิตในหลอด

ทดลอง เมื�อนาํมาแช่แข็งดว้ยวิธีการดงักล่าวขา้งตน้ ผลการทดลองไม่พบความแตกต่างทางสถิติของ

อตัราการเจริญสู่ระยะแฮชบลาสโตซิสในตวัอ่อนทุกกลุ่ม  

 การศึกษาที�สองเพื�อเพิ�มอตัรารอดและการเจริญต่อในหลอดทดลองของตวัอ่อนโคระยะ 

บลาสโตซีสที�ไดจ้ากการผลิตในหลอดทดลอง เมื�อนาํมาแช่แข็งโดยใชอุ้ปกรณ์ �.�� mL straw ใน

การทดลองนี� ไดห้าปัจจยัร่วมที�เหมาะสมในการแช่แข็งดว้ย �.�� mL straw โดยใชก้ารแช่แข็งดว้ย 

Cryotop เป็นกลุ่มเปรียบเทียบ  ผลการทดลองพบวา่ความเขม้ขน้ของนํ� าตาลซูโครสในนํ� ายาเจือจาง

สารแช่แข็ง และวิธีการจุ่มหลอด �.�� mL straw ลงในไนโตรเจนเหลว ไม่มีผลต่ออตัรารอดและการ

เจริญต่อในหลอดทดลองของตวัอ่อนโคระยะบลาสโตซีสที�แช่แข็งดว้ย �.�� mL straw     นอกจากนี�  

ไม่พบความแตกต่างทางสถิติของอตัรารอดและการเจริญต่อในหลอดทดลอง เมื�อใชน้ํ�ายาแช่แข็งที� 
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ประกอบดว้ย EG-DMSO (VS�) และ EG-Gly (VS�) ในการแช่แข็งตวัอ่อนโคระยะบลาสโตซีสที�

ไดจ้ากการผลิตในหลอดทดลองดว้ย �.�� mL straw   แต่อยา่งไรก็ตามพบวา่ประสิทธิภาพของการ

แช่แข็งดว้ยวิธี �.�� mL straw ยงัตํ�ากวา่ Cryotop                                                                                   

 การศึกษาที�สามเพื�อศึกษาผลกระทบของการตดัแบ่งตวัอ่อนดว้ยไมโครเบลดก่อนการแช่

แข็งแบบ vitrification ดว้ยอุปกรณ์สองชนิดคือ Cryotop และ �.�� mL straw ต่ออตัรารอดและการ

เจริญต่อในหลอดทดลองของตวัอ่อนโคระยะบลาสโตซีสได้จากการผลิตในหลอดทดลอง โดยนาํ

ตวัอ่อนโคดงักล่าวนาํมาตดัแบ่งเซลล์ออกบางส่วนดว้ยไมโครเบลด ส่วนกลุ่มตวัอ่อนที�ไม่ถูกตดั

แบ่งเซลลจ์ะใชเ้ป็นกลุ่มควบคุม จากนั�นนาํตวัอ่อนทั�งสองกลุ่มมาแช่แข็งดว้ยวิธี Cryotop และ �.�� 

mL straw ผลการทดลองพบวา่อตัรารอดและการเจริญต่อในหลอดทดลองในตวัอ่อนแช่แข็งทั�งสอง

กลุ่มไม่แตกต่างทางสถิติกบักลุ่มตวัอ่อนสดที�ไม่แช่แข็ง ส่วนในตวัอ่อนที�ผา่นการตดัแบ่งตวัเซลล์ 

ไม่พบความแตกต่างของอตัรารอดและการเจริญต่อในหลอดทดลองในกลุ่มตวัอ่อนแช่แข็งด้วย 

Cryotop หรือตวัอ่อนสด แต่อยา่งไรก็ตามอตัราดงักล่าวในทั�งสองกลุ่มการทดลอง สูงกว่ากลุ่มตวั

อ่อนที�ผา่นการตดัแบ่งเซลล์และแช่แข็งดว้ย 0.25 mL straw ทางสถิติ นอกจากนี�ผลของค่าเฉลี�ยเซลล ์

apoptotic ต่อบลาสโตซีสพบค่าเฉลี�ยสูงในทุกกลุ่มของตวัอ่อนที�ผา่นการแช่แข็งมากกวา่ในกลุ่มตวั

อ่อนสด (P<�.��)  

 จากการศึกษาดงักล่าวขา้งตน้สรุปไดว้่า สามารถพฒันาการแช่แข็งตวัอ่อนที�ผ่านการตดั

แบ่งเซลล์ดว้ยอุปกรณ์ �.�� mL straw ซึ� งช่วยลดการปนเปื� อน และสามารถเจือจางสารแช่แข็งใน

ขั�นตอนเดียวหลงัการทาํละลายเพื�อการยา้ยฝากตรงในภาคสนาม  
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IN VITRO PRODUCED BOVINE BLASTOCYSTS/MICRO VOLUME AIR 

COOLING/CRYOTOP/0.25 ML STRAW 

 

Vitrification of in vitro produced bovine (IVP) blastoycsts is necessary to 

develop for sanitary and one-step dilution after warming to improve the economic 

value of IVP bovine embryos. In the first study, to evaluate the efficiency of the micro 

volume air cooling (MVAC) system, IVM-oocytes and IVP bovine blastocysts were 

vitrified using the MVAC device without direct contact with liquid nitrogen (LN2; 

MVAC group) and directly plunged into LN2 (MVAC in LN2 group) as similar to the 

Cryotop method (without direct contact with LN2). After warming, vitrified oocytes 

were fertilized and cultured in vitro. Between the three vitrified groups, there were no 

significant differences in cleavage and blastocyst formation rates, ranging from 53.1% 

to 56.6% and 20.0% to 25.5%, respectively. In vitrified IVP bovine blastocysts, the 

rate of development of vitrified-warmed blastocysts changed into the hatched 

blastocyst stage after 72 h of culturing; there was no significant diffence between the 

groups.  

In the second study, to improve the in vitro survival rates of vitrified IVP bovine 

blastocysts using the 0.25 mL straw method with the optimum combined factors when 

compared with the standard Cryotop. The result suggested that the sucrose 

concentrations and the methods of immersion of 0.25 mL straw into the LN2 did not  
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affect the in vitro survival of vitrified IVP bovine blastocyst with 0.25 mL straw 

method. Moreover, the vitrification solution which was composed of the mixtures of 

cryoprotectants (CPAs) between EG-DMSO (VS1) and EG-Gly (VS2) showed equal 

efficiency for both mixtures of CPAs used for vitrifying IVP bovine blastocysts using 

0.25 mL straws. However, the in vitro survival rates of the Cryotop were higher than 

those of vitrification using the 0.25 mL straw method.  

In the third study, to evaluate the effects of biopsying with microblade prior to 

vitrification using the Cryotop or 0.25 mL straw methods on their in vitro survival 

rates after vitrification-warming. IVP bovine blastocysts were subjected to biopsy 

with microblade and were not subjected to biopsy before vitrified using the Cryotop or 

0.25 mL straw methods. In vitro survival rates of non biopsied groups were not 

different when vitrified using the Cryotop, 0.25 mL straw, and fresh control groups. In 

the biopsy-derived blastocyst groups, the difference in in vitro survival rates after 

vitrification-warming using the Cryotop and fresh control groups were not found. 

Moreover, they were higher than the rates of vitrification of biopsied-derived 

blastocysts using 0.25 mL straw. In addition, the numbers of apoptotic cells per 

blastocyst were higher in all vitrified groups derived from biopsied and non-biopsied 

blastocysts than those of fresh control groups (P<0.05).  

In conclusion, this study can develop the 0.25 mL straw device for sanitary 

vitrification, which enables one step dilution after warming for the direct transfer of 

biopsied IVP bovine embryos on farm. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Introduction  

In vitro embryos production (IVP) has become a useful procedure to enhance 

genetic improvement in dairy and beef cattle when transvaginal ultrasound-guided 

follicle aspiration (Ovum Pick-Up: OPU) was established (Hasler, 2003). The OPU 

technique allowed the collection of oocytes from a living female with high genetic 

merit. Subsequently, the oocytes were fertilized in vitro with superior male sperms 

which have proved for improving the yield of embryos from the designated donor 

(Boni, 2012). Because cattle are found to be significant for economy (Hochi, 2003), it 

is important to cryopreserve those embryos for commercial advantages. Moreover, the 

cryopreserved embryos can be transferred to a recipient animal at the most convenient 

time.   

Previously, it has been found that IVP bovine embryos have higher thermal 

sensitivity than in vivo produced bovine embryos due to the difference in morphology 

between each source of embryos (Leibo and Loskutoff, 1993; Massip et al., 1995; 

Boni et al., 1999; Hochi et al., 2003). IVP bovine embryos have been reported for their 

swollen blastomeres (van Soom, A. and de Kruif, A., 1992) and poor compaction with 

darkness of cytoplasm at the morula stage (Hochi et al., 1998; Hochi et al., 2003). 

Moreover, from a higher ratio of lipid to proteins, it has been hypothesized to explain 

the darker of cytoplasm in IVP bovine embryos than in vivo produced bovine embryos 

which make IVP bovine embryos weaker to chill (Hochi et al., 2003), and the yield of 
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pregnancy rates is lower than in vivo produced bovine embryos (Farin and Farin, 

1995). 

A major breakthrough of IVP bovine embryo cryopreservation has been 

reported in 1985, when Rall and Fahy used the vitrification method for mouse embryo 

cryopreservation with 0.25 mL straw and glass tube devices. Vitrification method is 

found to the higher survival rates after vitrification-warming because of the use of 

minimum volume in combination with rapid cooling achieving the high cooling 

velocity, transferring heat, and preventing ice crystal formation during vitrification 

procedure (Arav et al., 2012). Since then, several vitrification devices have been 

developed: Cryoloop (Lane et al., 1999), nylon loop (Lane et al., 2001), hemi-straw 

(Vanderzwalmen et al., 2000), electron microscopy grid (Martino et al., 1996), open 

pulled straw (Vajta et al., 1997), glass capillary (Hochi et al., 1994) and Cryotop 

(Hamawaki et al., 1999). However, one of the most efficient devices for vitrification 

of both oocytes and embryos in domestic animals is Cryotop resulting in high survival 

and developmental rates (Isachenko et al., 2001; Martino et al., 1996; Dhali et al., 

2000; Kuwayama and Kato, 2000; Katayama et al., 2003).   

Although, the open system devices such as Cryotop are found to be a high 

probability of successful vitrification, it allows for the possibility of microbial disease 

transmission and viral contamination when the samples come into direct contact with 

LN2 (Abdelhafez et al., 2011). Therefore, the development of a vitrification technique 

that concerns with sanitary vitrification and high success rates is necessary.  

To improve the economic value of IVP bovine embryos, it is extremely 

important to develop the vitrification technique not only for sanitary, but for embryo 

transfer under field conditions. A 0.25 mL device is widely used for freezing and 
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transferring embryos at the industry level (Wright, 1985), because it is commonly used 

with 0.25 mL transfer gun in the field condition. However, the high cooling rates is not 

achieved by the close system devices when compared with the open system device 

(Saragusty and Arav, 2011).  Thus, vitrification system of the 0.25 mL straw should 

improve the survival rates after vitrification-warming. 

Embryo biopsy in bovine for sex analysis of preimplantation developmental 

stage before transferring to recipients is the crucial step on the survival rates after 

being biopsied. Therefore, cryopreservation of biopsied embryos until the sexing 

results are obtained, led to the use of biopsied embryos in bovine embryo transfer 

industry. However, previous reported suggested that bovine sexed embryos after 

cryopreservation resulted in the reduction of viability and pregnancy rates after 

embryo transfer (Thibier and Nibart, 1995; Hasler et al., 2002). The question 

addressed here is the efficiency of 0.25 mL for vitrification of biopsied IVP bovine 

embryos.   

The present study was to investigate the efficiency of the close system device 

of micro volume air cooling (MVAC) and 0.25 mL straw for vitrification of IVP 

bovine embryos at the blastocyst stage. Subsequently, the improvement of vitrification 

with 0.25 mL straw device for sanitary vitrification, which enables one step diluation 

after warming for the direct transfer of biopsied IVP bovine embryos on farm were 

investigated on in vitro survival rate after vitrification-warming. Moreover, the effect 

of biopsy and vitrification on the embryos after these procedures was also 

investigated.  
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CHAPTER II 

REVIEW OF LITERATURES 

 

2.1 Cryopreservation of mammalian embryos 

The first success of cryopreserved mammalian embryos reported by Whittingham 

and colleagues in 1972. In 1973, the first live calf born was reported from the transfer 

of a thawed bovine embryo by the studied of Wilmut and Rawson (1973). This 

technique is accepted to be a safe procedure because of the use of relatively low 

concentration of cryoprotectants that might not cause serious toxic and osmotic 

damage. However, as low concentrations of cryoprotectants may be insufficient for 

avoiding ice crystal formation within the cells, the slow freezing is more time 

consuming and requires an expensive programmable freezing machine; most of the 

embryologists are not satisfied with this technique and try to find other 

cryopreservation protocols. 

The latter technique named vitrification, was first reported by Rall and Fahy in 

1985 for cryopreservation of mouse embryos. The physical definition of vitrification 

is the solidification of solution at low temperature. The water will cool by use ultra 

rapid cooling rate and it changes into a glassy, vitrify state from the liquid phase. 

Vitrification technique not created ice crystal by using the extreme elevation in 

viscosity during cooling, (Fahy et al., 1984). The ultra-rapid cooling rate is based on 

direct contact between the vitrification solution and LN2. Pioneering studies on mouse 

embryos vitrified at freezing rates of -3,000C per min have resulted in high 
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percentages of post-thaw viability (Rall and Fahy, 1985). The vitrification technique 

requires high concentration of cryoprotectants and supplement with macromolecule to 

dehydrate the cell such as sucrose, Ficoll and Polyvinylpyrolidone (PVP) prior to the 

initiation of the cooling process. Vitrification solutions share three common 

properties. First, these vitrification solutions contain a combination of low and high 

molecular weight cryoprotectants. Low molecular weight cryoprotectants penetrate 

cell membranes and protect the cytoplasm from damage during freezing. Higher 

molecular weight cryoprotectants do not pass across the cell membrane. However, 

they are effective extracellular dehydration agents. Secondly, the final overall 

concentration of the cryoprotective agents in the mixture is high, to enhance 

vitrification and thus, avoiding lethal ice crystal formation. Finally, the standard 

vitrification solution contains an isotonic level of saline (Yavin and Arav, 2007).  

During vitrification procedure, viable embryos are equilibrated in a 1.5 M 

concentration of cryoprotectants. As in the standard slow freezing protocol, embryos 

will shrink as water leaves the cells in response to the increased concentration of 

solute. Following a short equilibration period, the cell will return to their initial 

volume. The embryo will transfer to the final concentration of cryoprotectants in a 

one-step or two-step procedure prior to plunging into LN2. This short exposure to 

high concentrations of cryoprotectant agents causes rapid cellular dehydration, 

preventing intracellular ice formation in the embryo during the cooling process (Fahy 

and Rall, 2007).  

Vitrification has more advantages than conventional freezing.  For example, in 

case of economic, vitrification technique is cheaper and much simpler than 

conventional freezing because the programmable freezing machine is not required to 
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decrease the temperatures. For the operating time, vitrification consumed a few 

seconds while conventional freezing took as long as 2-3 hours. Moreover, vitrification 

technique can get away from the formation of intracellular and extracellular ice 

crystals which are the major cause of cell damage (Jin et al., 2010). 

  

 

 

2.2 Cryopreservation technology for in vitro produced bovine   

embryos. 

Bovine embryos cryopreservation is a fundamental issue in the widespread use 

of embryo transfer. The progress in cryopreservation of bovine embryos was 

substantially improved due to factors such as an increase in embryo quality, an 

adequate selection of the recipient and an appropriate synchronization between donor 

and recipient (Gordon, 1996). In addition, the improvement of the cryopreservation 

methods has significantly contributed to the success of bovine embryo freezing. The 

Figure 2.1 Diagram showing volume 

changes of an embryo (circle) during slow 

freezing and vitrification. Hexagons 

represent ice crystals. Concentration of 

cryoprotectant is shown by darkness of 

shading. In both processes, final step is 

immersion in liquid nitrogen (LN2) (Jin et 

al., 2010) 
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development of vitrification method for the cryopreservation of embryos was a major 

cryobiologic advance (Rall and Fahy, 1985) and the technique has application for IVP 

of bovine embryos (Agca et al., 1994). Throughout the world, approximately 15% of 

bovine embryos are produced by in vitro technology. However, IVP and 

cryopreservation have advantages over the in vivo methods in terms of cost 

effectiveness (Mapletoft and Hasler, 2005). In general, IVP embryos are more 

sensitive to cryopreservation than their in vivo embryos (Enright et al., 2000). 

Therefore, it has been shown that IVP bovine embryos are required the special 

cryopreservation method to gain the survival rates after cryopreservation.  

2.2.1 Vitrification method for one step dilution after warming 

For many years, vitrification procedures appear to be more efficient for 

the cryopreservation of IVP bovine embryos than other freezing methods (Massip et 

al., 1987; Douchi et al., 1990; Ishimori et al., 1993; Agca et al., 1998; Akiyama et al., 

2010; Vieira et al., 2007). The first successful vitrification of bovine embryos was 

performed using 0.25 mL straw (Massip et al., 1986). Since then several vitrification 

devices have been developed, each with a specific method of minimizing the volume 

vitrification solution. Smaller volumes allow better heat transfer, thus achieved the 

superior cooling rates. Furthermore, the smaller the volume can results in the 

following general equation for the probability of vitrification:  

     

 

Previously, these devices can generally be separated into two categories: 

surface techniques and tubing techniques (Saragusty and Arav, 2011). The surface 

technique include electron microscope grid (Martino et al., 1996), minimum drop size 

Probability of vitrification = Cooling rate  Viscosity 

                                                            Volume 
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technique (Arav et al., 1987), Cryotop (Hamawaki et al., 1999), Cryoloop (Lane et 

al., 1999), solid surface (Dinnyes et al., 2000), nylon loop (Lane et al., 2001), Hemi-

straw (Vanderzwalmen et al., 2001), nylon mesh (Matsumoto et al., 2001), Cryoleaf 

(Chian et al., 2005), direct cover vitrification (Chen et al., 2006), fiber plug 

(Muthukumar et al., 2008), vitrification spatula (Tsang and Chow, 2009), Cryo-E 

(Petyim et al., 2009), plastic blade (Sugiyama et al., 2010), and Vitri-Inga (Almodin 

et al., 2010). For the tubing techniques belongs the plastic straw (Rall and Fahy, 

1985), open-pulled straw (Vajta et al., 1997), closed pulled straw (Chen et al., 2001), 

flexipet-denuding pipette (Liebermann et al., 2002), superfine open-pulled straw 

(Isachenko et al., 2003), high-security vitrification device (Camus et al., 2006), 

CryoTip (Kuwayama et al., 2007), pipette tip (Sun et al., 2008), sealed pulled straw 

(Yavin et al., 2009), Cryopette (Portmann et al., 2010), Rapid-i (Larman et al., 2010) 

and JY Straw (Wang et al., 2014). 

One of the most efficient techniques for vitrification of embryos is 

Cryotop, resulting in high survival and developmental rates in pigs (Esaki et al., 2004; 

Ushijima et al., 2004), cattle (Martino et al., 1996; Vajta et al., 1998), buffalo (Duran 

et al., 2004), and humans (Kuwayama and Kato, 2000). However, because it is an 

open method in which samples come into direct contact with LN2, it allows for the 

possibility of microbial disease transmission and viral contamination (Abdelhafez et 

al., 2011). Therefore, the development of a vitrification technique that concerns with 

sanitary vitrification and high success rates is necessary. Moreover, to improve the 

economic value of IVP bovine embryos, it is extremely important to develop the 

vitrification technique not only for sanitary, but for embryo transfer under field 

conditions. 
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Several methods of vitrification have been developed for IVP bovine 

embryos (Massip et al., 1987; Douchi et al., 1990; Ishimori et al., 1993; Akiyama et 

al., 2010), however; they have not been widely adopted for commercial use for 

bovine embryo transfer (Van Wagtendonk-de Leeuw et al., 1997; Vijta, 2000). 

Therefore, vitrification requires several steps for cryoprotectant dilution in laboratory 

setting (Ishimori et al., 1993) because it uses a high concentration of cryoprotectants. 

Recently, it has been shown that some of vitrification methods which 

enable one step dilution after warming before being transferred into the recipients. 

Considerably, as it would bring embryo transfer on the farm to the same level of 

artificial insemination (AI) (Kuwayama et al., 1994; Wurth et al., 1994; Vajta et al., 

1995; Van Wagtendonk-de Leeuw et al., 1997). 

 

2.3 The preselection of the sex of offspring in bovine 

The sex pre-selection of offspring has been a goal of livestock producers for 

generations. Female is the choice animal for dairy industry whereas the male is the 

first choice in meat industry. Sex pre-selection is one of the most sought after 

biotechnology of all times. The hunt has been on for several decades to find the 

scientific breakthrough that will allow one to use spermatozoa which will produce 

offspring of the desired sex (Sperm sexing) and sexing concepts before embryo 

transfer (Embryo sexing) (Prasad et al., 2010). 

Both of sperm and embryo sexing have some advantage and disadvantage for 

each method. Of all the semen sexing techniques available till date, one commonly 

used method to accomplish this is flow cytometry. With accuracy of 90%, 

approximately 10 million live sperm of each sex (X and Y) can be sorted per hour 
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(Siedel, 2003). Sexed semen is currently commercially used in cattle for general AI 

programs to produced replacement offspring from genetically superior cows (Cran et 

al., 1995). The disadvantages of sperm sexing is the low percentage of embryo 

development to blastocyst and pregnancy rates when compared to unsexed semen 

(Mapletoft and Hasler, 2005). Because during sorting process indicated that the injury 

of sperm cell occurred from the fluorochrome-stained, the fluorescence emission and 

the exposure to Hoechst 33342-staining dye. The sperm viability test with SYBR-14 

and PI showed that the mechanical stresses of sorting and centrifugation increase the 

number of dead or damaged sperm (Garner, 2006).  Determining the sex of embryos 

before implantation has been developed to solve the low percentage of blastocyst and 

pregnancy rates when using sexed semen. Since the development of DNA 

amplification techniques by Polymerase Chain Reaction and the identification of 

bovine Y-chromosome specific DNA probes, the idea of embryos sexing has become a 

reality. Sexing based on detection of specific DNA probes has been used to predict the 

sex of offspring. Polymerase chain reaction (PCR) is routinely used in the field for 

sexing (Thibier and Nibart, 1995). This technique enables amplification of a target 

sequence from a small number of blastomeres. However, these methods require 

technical skill and are time consuming. Furthermore, PCR has the risk of false 

positives because of DNA contamination during the handling of the PCR products in 

duplicate PCR procedures and/or electrophoresis. Loop-mediated isothermal 

amplification (LAMP) is a novel DNA amplification method reported by Notomi et al 

(2000). The LAMP method amplifies a target DNA with high specificity, efficiency, 

and rapidity. The LAMP reaction is carried out under isothermal conditions (range, 

60–65C) using DNA polymerase with strand displacement activity. This reaction 

requires four specific primers (inner and outer primer sets) recognizing six 
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independent sequences, and specifically synthesizes a large amount of the 

amplification products, which are a mixture of stem-loop DNAs with various sizes and 

cauliflower-like structures with multiple loops. When the target DNA is amplified by 

LAMP, a white precipitate derived from magnesium pyrophosphate (a byproduct of 

the LAMP reaction) is observed. It is noteworthy that LAMP does not need special 

reagents or electrophoresis to detect the amplified DNA (Mori et al., 2001). 

 

2.4 Bovine embryo biopsy for sex preselection of offspring   

Biopsy for sample collection of embryonic cells has been applied for sex 

preselection of offspring. Therefore, a biopsy is a crucial step for the success of 

embryo sexing which cause of embryos damaged and reduced the quality of embryos 

after biopsied. In general, biopsy methods for bovine embryo sexing are derived from 

preimplantation genetic diagnosis (PDG) in human embryos. According to the 

development stage, two different biopsy procedures are used for bovine embryo 

sexing: cleavage stage embryo biopsy (early development stage) and biopsy at the 

blastocyst stage (later development stage).  

Previous reports suggested that biopsy at later developmental stage, such as 

morula or blastocyst is less affected to embryos when compared with biopsy at earlier 

development stages due to more relatively collected cells (De Vos and Van 

Steirteghem, 2001). Moreover, it is difficult to biopsy at the morula stage because of 

the extensive compaction (Van Blerk et al., 1991). Therefore, biopsying at the 

blastocysts stage by removing off the small portion of trophectoderm is widely used 

due to its ease and less damage than the other stages of embryos (Evsikov and 

Verlinsky, 1998). 
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The biopsy procedure always takes two steps: opening of the zona pellucida and 

then removal of the cells. Opening of zona pellucida can be done in three ways: 

mechanically (partial zona dissection or zona slitting), chemically (using acidic 

Tyrode’s solution), and laser technology (De Vos and Van Steirteghem, 2001). For 

acidic Tyrode’s solution has no report in bovine embryo biopsy and its proven to be 

harmful for oocytes (De Vos and Van Steirteghem, 2001). To our knowledge, laser 

technology has not yet been reported in bovine biopsy for sexing. Therefore, only the 

mechanically technique is often used for opening of the zona pellucida of bovine in 

several reports (Macháty et al., 1993; Thibier and Nibart, 1995; Vajta et al., 1997; 

Leoni et al., 2000; Cenariu et al, 2012ab)  

 Various methods have been used for removal of the embryo cells, such as the 

needle technique (Thibier and Nibart, 1995; Cenariu et al, 2012b), the aspiration 

technique (Thibier and Nibart, 1995; Vajta et al., 1997), and the microblade technique 

(Thibier and Nibart, 1995; Leoni et al., 2000). It shows that the microblade technique 

is widely used for bovine embryo biopsy for sexing as this technique has more rapid 

and simpler procedure than the other two approaches. It is suitable for sexing a large 

number of embryos (Cenariu et al, 2012a). 
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CHAPTER III 

COMPARISON OF CRYOTOP AND MICRO VOLUME 

AIR COOLING METHODS FOR CRYOPRESERVATION 

OF BOVINE MATURED OOCYTES AND 

BLASTOCYSTS 

 

3.1 Abstract 

 This study was designed to compare the efficiency of the Cryotop method and 

that of two methods that employ the micro volume air cooling (MVAC) device by 

analyzing the survival and development of bovine oocytes and blastocysts vitrified 

using each method. In experiment I, in vitro-maturation (IVM)-oocytes were vitrified 

using MVAC device without direct contact with liquid nitrogen (LN2; MVAC group) 

or directly plunged into LN2 (MVAC in LN2 group). A third group of IVM oocytes 

was vitrified using the Cryotop device (Cryotop group). After warming, vitrified 

oocytes were fertilized in vitro. Between the three vitrified groups, there were no 

significant differences in cleavage and blastocyst formation rates, ranged from 53.1% 

to 56.6% and 20.0% to 25.5%, respectively; however, these rates were significantly 

lower (P<0.05) than Fresh control group (89.3% and 43.3%, respectively) and in the 

Solution control group (87.3% and 42.0%, respectively). In experiment II, in vitro-

produced (IVP)-expanded blastocysts were vitrified using the MVAC, MVAC in LN2, 

and Cryotop methods, then warmed and cultured for survival analysis and comparison 

with the Solution control group. The rate of developmental of vitrified-warmed 
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expanded blastocysts into hatched blastocyst stage after 24 h of culturing was lower in 

the MVAC in LN2 group than in the Solution control group; however, after 48–72 h of 

culturing, they did not significantly differ between the groups. These results indicated 

that the MVAC method without direct LN2 contact are equally effective to the 

standard Cryotop method for vitrification of bovine IVM oocytes and IVP expanded 

blastocysts. 

 

3.2 Introduction 

Vitrification was initially used for cryopreservation of mouse embryos (Rall and 

Fahy, 1985) and has become a viable alternative to traditional freezing protocols, as it 

prevents chilling injury and ice crystal formation. During the vitrification procedure, 

cells and tissues are exposed to high concentration of cryoprotectants (CPAs), which 

effectively dehydrate the cells prior to initiation of the cooling process. Extended 

exposure to high concentrations of permeating CPAs is detrimental to cells (Hochi et 

al., 2004). To achieve a high probability of successful vitrification, the volume of the 

vitrification solution is minimized, which increases cooling velocity and heat transfer 

and prevents ice crystal formation (Arav et al., 2002). A rapid cooling rate during 

vitrification is the key to successful vitrification that avoids chilling injury in sensitive 

cells (Arav et al., 1993).  

Oocytes are highly sensitive to chilling because of their low surface-to-volume 

ratio, which makes it difficult for water and CPAs to move across the cell plasma 

membranes (Pereire and Marques, 2008). Furthermore, vitrification of mature oocytes 

that are in metaphase of meiosis II (MII) leads to disorganization or disruption of the 

meiotic spindle, resulting in chromosome aberration (Arav et al., 1996; Rho et al., 
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2002). The first successful vitrification of MII bovine oocytes was performed using 

electron microscope grids and a 0.25-ml straw as a vitrification device (Martino et al., 

1996). Since then, other methods, such as the solid surface vitrification and Cryotop 

methods, have been found to allow for high-efficiency vitrification of MII bovine 

oocytes (Dinnyes et al., 2000; Chian et al., 2004). In contrast, embryos are more 

cryotolerant than oocytes because the properties of the plasma membrane change after 

fertilization, promoting dehydration and reducing ice formation during 

cryopreservation (Chen et al., 2003). Massip et al. (1986) were the first to report 

successful vitrification of bovine embryos using a 0.25-ml straw. Since then, several 

vitrification devices have been developed, each with a specific method of minimizing 

the volume of the vitrification solution: Cryoloop (Lane et al., 1999), nylon loop (Lane 

et al., 2001), hemi-straw (Vanderzwalmen et al., 2000), electron microscopy grid 

(Martino et al., 1996), open pulled straw (Vajta et al., 1997) , glass capillary (Hochi et 

al., 1994) and Cryotop (Hamawaki et al., 1999). 

 The Cryotop method is one of the most efficient techniques for vitrification of 

both oocytes and embryos, resulting in high survival and developmental rates in pigs 

(Isachenko et al., 2001; Esaki et al., 2004; Ushijima et al., 2004), cattle (Martino et al., 

1996; Dinnyes et al., 2000; Vajta et al., 1998), buffalo (Dhali et al., 2000; Duran et al., 

2004, Gasparrini et al., 2007), and humans (Kuwayama  and Kato, 2000; Katayama et 

al., 2003). However, because it is an open method in which samples come into direct 

contact with LN2, it allows for the possibility of microbial disease transmission and 

viral contamination (Abdelhafez et al., 2011). Therefore, a new device and the 

corresponding micro volume air cooling (MVAC) method have been invented to 

prevent direct contact with LN2 during vitrification. The MVAC and Cryotop devices  
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are equally effective for vitrification of in vivo-derived porcine expanded blastocysts 

(Misumi et al., 2013). However, there have been no reports on the application of the 

MVAC device (both with and without direct exposure to LN2) to oocytes and embryos 

at the blastocyst stage in bovine species.  

The objective of this study was to compare the efficacy of the MVAC and 

Cryotop devices for vitrification of both bovine IVM oocytes and bovine IVP embryos 

at the blastocyst stage by analysis of subsequent in vitro development after warming. 

 

3.3 Materials and Methods 

3.3.1 Chemicals and media 

 All reagents were purchased from Sigma-Aldrich Corporation (St. Louis, 

MO, USA), unless otherwise indicated. 

3.3.2 Oocyte collection and IVM 

 Collection and IVM of bovine follicular oocytes were performed as 

previously described (Imai et al., 2006). Briefly, slaughterhouse ovaries were washed 

and stored in physiological saline supplemented with 50 µg/ml gentamicin for 

approximately 20 h at 20 °C. Cumulus-oocyte complexes (COCs) were aspirated from 

follicles (2–8 mm in diameter) using a 5 ml syringe connected to a 19-gauge needle. 

The IVM medium consisted of 25 mM Hepes-buffered TCM199 (Life Technologies 

Inc Gibco-BRL Division, Grand Island, NY, USA) and 5% calf serum (CS; Life 

Technologies Inc Gibco-BRL Division). COCs were washed twice with IVM medium, 

then cultured for 20 h in 600-µl droplets of IVM medium (80–100 oocytes/droplet) 

that were covered with paraffin oil (Nacalai Tesque, Inc., Kyoto, Japan) in 35-mm 
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plastic dishes (Nalge Nunc International, Roskilde, Denmark) at 38.5 °C under a 

humidified atmosphere of 5% CO2 in air. 

3.3.3 Vitrification and warming of oocytes 

  Twenty hours after IVM, cumulus cells were partially removed by 

repeated pipetting using a fine glass pipette in Dulbecco’s phosphate-buffered saline 

(DPBS; Life Technologies Inc Gibco-BRL Division) supplemented with 0.1% (w/v) 

hyaluronidase. IVM oocytes with two to three layers of cumulus cells on their surface 

were subsequently washed five times in holding medium (HM), which consisted of 25 

mM Hepes-buffered TCM 199 supplemented with 20% (v/v) CS. Thereafter, they 

were vitrified using either the MVAC device or the Cryotop device (Kitazato 

BioPharma Co., Ltd., Shizuoka, Japan) in a vitrification solution, as described 

previously by Dinnyes et al. (2000). Briefly, three separate groups of 5–10 oocytes 

were placed in equilibration medium, which was composed of HM supplemented with 

4% (v/v) ethylene glycol (EG; Wako Pure Chemical Industries, Ltd., Osaka, Japan), 

for 12–15 min at 38.5 °C, then transferred into a vitrification solution composed of 

HM supplemented with 35% EG, 50 mg/ml polyvinyl pyrrolidone, and 0.4 M 

trehalose. Then, one group of 5–10 oocytes (Cryotop group) was placed on a Cryotop 

sheet as described previously (Chian et al., 2004), while another group was placed in a 

small volume of vitrification solution (<1 µl) on the inner surface of a stainless steel 

sheet in the MVAC device, which was then plunged directly into LN2 (MVAC in LN2 

group). The third group was treated with the MVAC method (MVAC group), as 

follows: A 0.25-ml plastic straw was precooled in LN2 while sealed with a plastic plug 

to prevent LN2 from entering the straw. Thereafter, the plug was removed, followed by 

insertion of the MVAC device containing oocytes entirely into the straw. The straw 
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containing the MVAC device was then plunged into LN2 (Misumi et al., 2013). Each 

cryodevice containing oocytes was kept in LN2 for at least 24 h. 

  While submerged in LN2, cover straws were removed from the 

vitrification devices used for the Cryotop and MVAC in LN2 groups, followed by 

removal of the devices from inner straws. For the MVAC group, the cover straw was 

removed from the device above the surface of the LN2, ensuring that the oocytes could 

be warmed without directly contacting LN2. Thereafter, the devices were transferred 

into 3 ml of warming solution, which was composed of HM supplemented with 0.3 M 

trehalose, in a 35-mm plastic dish at 38.5 °C. Two minutes later, oocytes were 

consecutively transferred to 500 µl droplets of HM supplemented with 0.15, 0.075, or 

0.0375 M trehalose at 38.5 °C, where they were held for 1 min each. They were 

washed three times with HM at 38.5 °C, and then transferred into IVM medium and 

incubated for an additional 2 h at 38.5 °C in a humidified atmosphere of 5% CO2 in 

air. 

3.3.4 In vitro fertilization (IVF) 

  The vitrified-warmed oocytes and non-vitrified oocytes were subjected to 

IVF as described previously (Imai et al., 2006). Briefly, frozen semen from a Japanese 

Black bull was thawed in a 37 °C-water bath for 30 sec and then centrifuged in 3 ml of 

90% Percoll solution at 740  g for 10 min. The pellet was resuspended and 

centrifuged in 6 ml of BO medium (Brackett and Oliphant, 1975) supplemented with 

10 mM hypotaurine and 4 U/ml heparin (Novo-heparin Injection 1000; Aventis 

Pharma Ltd., Tokyo, Japan) at 540  g for 5 min. Then, the pellet was resuspended 

with BO medium supplemented with 20 mg/ml BSA (IVF medium) to reach a final 

concentration of 3  10
6
 spermatozoa/ml. To prepare fertilization droplets, 100 µl-
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droplets of the sperm suspension were placed in a 35-mm dish and covered with 

paraffin oil. A group of 20 oocytes was washed three times in IVF medium. The 

oocytes were transferred into the fertilization droplets and cultured for 6 h at 38.5 °C 

under a humidified atmosphere of 5% CO2 in air. 

3.3.5 In vitro culture (IVC) of embryos 

  After IVF, cumulus cells and sperm attached to oocytes were removed by 

gentle pipetting with a fine glass pipette. IVC was performed in CR1aa medium 

(Rosenkrans et al., 1993) supplemented with 5% CS and covered with paraffin oil in a 

35-mm dish at 38.5 °C under a humidified atmosphere of 5% CO2 in air. Twenty 

presumptive zygotes derived from vitrified oocytes and fresh oocytes (Experiment I) 

were cultured in a 100-µl IVC drop, and 80 presumptive zygotes derived from vitrified 

oocytes and fresh oocytes (Experiment II) were cultured in a 600-µl IVC drop. After 

culturing for 48 h, cleavage rates were recorded. The blastocysts were continuously 

cultured in the same drop without changing of the medium. Blastocyst formation rates 

were recorded on Days 7, 8, and 9 (Day 0 was defined as the day of IVF). 

3.3.6 Vitrification of IVP expanded blastocysts 

  Grade 1 IVP expanded blastocysts (IETS code 7; n = 345) obtained on 

Day 7 were vitrified using either the Cryotop or the MVAC device. Briefly, the 

expanded blastocysts were washed three times in HM consisting of DPBS 

supplemented with 20% (v/v) CS. The expanded blastocysts were then placed in 

equilibration medium, which was composed of HM supplemented with 7.5% EG and 

7.5% dimethyl sulfoxide (DMSO) for 3 min at 38.5 °C, and then transferred into a 

vitrification solution composed of HM supplemented with 16.5% EG, 16.5% DMSO, 

and 0.5 M sucrose (VS33 solution), where they were held for 1 min. Then, a group of 
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three to five blastocysts was placed either on the inner surface of an MVAC device 

(Misumi et al., 2013) or on a Cryotop device before vitrification by the MVAC, 

MVAC in LN2, or Cryotop method. Thereafter, cryodevices containing IVP expanded 

blastocysts were immediately plunged into LN2, where they were stored for at least 24 

h. 

3.3.7 Culture of vitrified-warmed IVP expanded blastocysts 

  In each vitrification method, cover straws were removed from the devices 

in a process similar to the cover straw removal process used during vitrification and 

warming of oocytes, described above. After being washed in HM three times, the 

devices were placed in TCM-199 (Life Technologies Inc Gibco-BRL Division) 

supplemented with 20% CS and 0.1 mM -mercaptoethanol, and then cultured for 72 

h in the same medium (3-4 blastocysts/20 µl) covered with paraffin oil at 38.5 °C in a 

humidified atmosphere of 5% CO2 in air. To evaluate blastocyst survival after 

vitrification-warming, the percentages of vitrified-warmed expanded blastocysts that 

developed to the hatched blastocyst stage were determined at 24, 48, and 72 h of IVC. 

3.3.8 Evaluation of blastocyst cell numbers with differential staining 

  Differential staining of inner cell mass (ICM) and trophectoderm (TE) 

nuclei in blastocysts was performed as previously described (Thouas et al., 2001) with 

slight modifications. Briefly, the blastocysts were simultaneously treated with 0.1 

mg/ml propidium iodide (PI) and 0.2% Triton X-100 dissolved in DPBS for 60 sec to 

permeabilize the membrane and stain the nuclei of TE cells. The blastocysts were then 

treated for 5 min with 25 µg/ml Hoechst 33342 (Calbiochem, San Diego, CA, USA) 

dissolved in 99.5% ethanol, and then mounted on glass slides in glycerol droplets that 

were flattened by cover slips. The blastocysts were examined under UV light with an 
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excitation wavelength of 330-385 nm using an epifluorescence microscope (IX-71; 

Olympus Corporation, Tokyo, Japan). The nuclei of TE cells labeled with both PI and 

Hoechst 33342 appeared pink or red, whereas the nuclei of ICM cells labeled only 

with Hoechst 33342 appeared blue. A digital image of each blastocyst was captured, 

and the cell numbers of both cell types were counted using NIH Image J (v. 1.40) 

software (Abramoff et al., 2004). Numbers of ICM and TE cells were counted 

separately in blastocysts that had clearly distinguishable populations of red and blue 

nuclei. 

 

3.4 Experimental design  

 Experiment I: This experiment was designed to investigate the effect of 

cryodevices (MVAC and Cryotop) used for vitrification of bovine IVM oocytes on 

oocyte development rates after IVF. To serve as the Solution control group, some IVM 

oocytes were exposed to equilibration medium, vitrification medium, and warming 

solutions without cooling. Untreated oocytes served as the Fresh control group. In 

vitrified groups, IVM oocytes were randomly vitrified by the MVAC, MVAC in LN2, 

or Cryotop method (MVAC, MVAC in LN2, and Cryotop groups, respectively), and 

then warmed before IVF. After IVF, all oocytes were cultured in vitro. Rates of 

development of the oocytes to the blastocyst stage and cell numbers of the obtained 

blastocysts were compared between all five groups. 

 Experiment II: The objective of this experiment was to compare the efficiency of 

cryodevices for the vitrification of IVP blastocysts. Grade 1 IVP expanded blastocysts 

(IETS Quality code 1, Stage code 7; n = 455) were randomly divided into four groups; 

the expanded blastocysts were 1) exposed to vitrifcation and warming solutions 
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(Solution control group), 2) vitrified by the MVAC method (MVAC group), 3) 

vitrified by the MVAC in LN2 method (MVAC in LN2 group), or 4) vitrified by the 

Cryotop method (Cryotop group). Blastocyst survival after vitrification-warming was 

assessed by their hatching ability during 72 h of additional IVC. 

 

3.5 Statistical analysis 

 The percentages of IVM-IVF oocytes that developed to the blastocyst stage and 

survival rates of IVP blastocysts after vitrification-warming were arcsine-transformed. 

Cell numbers of the embryos were expressed as untransformed means ± standard error 

of the mean (SEM). Data were analyzed by analysis of variance (ANOVA). 

Differences were considered to be significant for P<0.05. 

 

3.6 Results 

3.6.1 Experiment I 

  The developmental rates of fresh and vitrified-warmed oocytes after IVF 

are shown in Table 1. Oocytes from all vitrification groups showed lower rates of 

cleavage and development to the blastocyst stage than those from the Fresh and 

Solution control groups (P<0.05). Cleavage rates of the vitrified oocytes did not differ 

between the MVAC, MVAC in LN2, and Cryotop groups. The cleavage rates of 

oocytes in all vitrified groups were lower than those of oocytes in the Fresh and 

Solution control groups (P<0.05); however, there was no difference in these rates 

between the two control groups. Rates of oocyte development to the blastocyst stage 

did not differ between the MVAC, MVAC in LN2, and Cryotop groups on Days 7, 8, 
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or 9; however, they were lower than those of the Fresh and Solution control groups 

(P<0.05). 

 As shown in Figure 1, there were no significant differences between all 

five groups in the total number of nuclei in blastocysts obtained on Day 9. Similarly, 

no significant difference was found in the numbers of ICM and TE cells between all 

groups. 

3.6.2 Experiment II 

  Rates of development to the hatched blastocyst stage of vitrified-warmed 

expanded blastocysts after 24 h of IVC differed between the MVAC in LN2 and 

Solution control groups (35.1% and 62.4%, respectively; P<0.05); however, there 

were no significant differences in these rates between the Solution control, MVAC, 

and Cryotop groups. Hatched rates at 48 and 72 h of culture did not differ between the 

Cryotop, MVAC, and MVAC in LN2 groups; moreover, no difference was observed in 

hatched rates between the vitrified and Solution control groups (Table 2). 
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Figure 3.1 Cell numbers in blastocysts derived from fresh IVM bovine oocytes 

(Fresh control), treated with vitrification solution (Solution control), or 

vitrified by the MVAC or Cryotop methods after IVF and in vitro 

culture for 9 days. 

 

 

 

Data presented as mean no. of nuclei ± SEM. 

Fresh control: IVM oocytes without any vitrification treatments. Solution control: 

IVM oocytes that were exposed to vitrification and warming solutions. MVAC: 

IVM oocytes that were vitrified by inserting the MVAC device containing them 

into a precooled 0.25-ml plastic straw. MVAC in LN2: IVM oocytes that were 

vitrified by plunging the MVAC device containing them directly into LN2. Cryotop: 

IVM oocytes that were vitrified by the Cryotop method. ICM: inner cell mass. TE: 

trophectoderm. No significant differences in ICM and TE cell numbers were 

detected between the treatment groups at P<0.05 using one-way ANOVA. 
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Table 3.1 In vitro development of fresh IVM bovine oocytes (Fresh control), IVM bovine oocytes treated with vitrification solution (Solution 

control), and IVM bovine oocytes vitrified using the MVAC or Cryotop device after IVF and in vitro culture for 9 days. 

Treatment 

group 

No. of IVF 

oocytes 

Oocytes cleaved and developed into blastocysts (%) 

Cleaved (Day 2*)  Blastocyst (BL) 

Total ≥5 Cells Day 7 Day 8 Day 9 Total BL 

Fresh control 150 134 90 48 14 3 65 

 

(89.3)
a
 (60.0)

a
 (32.0)

 a
 (9.3)

a
 (2.0)

a
 (43.3)

a
 

Solution control 150 131 93 43 15 5 63 

 

(87.3)
a
 (62.0)

a
 (28.7)

a
 (10.0)

a
 (3.3)

a
 (42.0)

a
 

MVAC  

 

145 77 59 26 6 1 33 

 

(53.1)
b
 (40.7)

b
 (17.9)

b
 (4.1)

b
 (0.7)

b
 (22.9)

b
 

MVAC in LN2 145 81 60 24 4 1 29 

 

(55.9)
b
 (41.4)

b
 (16.6)

b
 (2.8)

b
 (0.7)

b
 (20.0)

b
 

Cryotop 145 82 63 30 5 2 37 

 

(56.6)
b
 (43.5)

b
 (20.7)

b
 (3.5)

b
 (1.4)

b
 (25.5)

b
 

 

Five replications were performed. 
a,b

Values within a single column that have different superscripts are significantly different at P<0.05 using one-way 

ANOVA. *Day 0 was defined as the day IVF was performed. MVAC: IVM oocytes that were vitrified by inserting the MVAC device containing them into a 

precooled 0.25-ml plastic straw. MVAC in LN2: IVM oocytes that were vitrified by plunging the MVAC device containing them directly into LN2. Cryotop: 

IVM oocytes that were vitrified by the Cryotop method. 
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Table 3.2 Development to the hatched blastocyst stage of in vitro-produced expanded blastocysts vitrified using the MVAC or Cryotop device, 

warmed, and cultured in vitro for 72 h 

 

 

 

 

 

 

Vitrification 

method 

 

No. of cryopreserved 

embryos 

No. of hatched embryos (%) 

24 h 48 h 72 h 

Solution control 117 

 

73
a
 94 109 

  (62.4%) (80.3%) (93.2%) 

MVAC 110 53
ab

 88 102 

  (48.2%) (80.0%) 

82 

(92.7%) 

MVAC in LN2 

 

114 

 

40
b
  104 

  (35.1%) (71.9%) (91.2%) 

 Cryotop 

 

114 

 

61
ab

 89 102 

  (53.5%) (78.1%) (89.5%) 

Six replications were performed. a,bValues within a single column that have different superscripts are significantly different at P<0.05 using one-way 

ANOVA. Solution control: IVP expanded blastocysts that were exposed to vitrifcation and warming solutions. MVAC: IVP expanded blastocysts 

that were vitrified by inserting the MVAC device containing them into a precooled 0.25-ml plastic straw. MVAC in LN2: IVP expanded blastocysts 

that were vitrified by plunging the MVAC device containing them directly into LN2. Cryotop: IVP expanded blastocysts that were vitrified by the 

Cryotop method. No significant difference in development to hatched blastocyst stage was detected between the treatment groups at P<0.05. 
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3.7 Discussion 

 In this study, it is demonstrated for the first time that both bovine IVM oocytes 

and IVP expanded blastocysts can be successfully cryopreserved by the MVAC 

device. The triangular MVAC sheet (1.0 mm wide, 60 mm long, and 0.2 mm thick) is 

made from stainless steel, which supports high rates of heat exchange. High survival 

and developmental rates of vitrified-warmed IVM oocytes (Experiment I) and IVP 

embryos at the expanded blastocyst stage (Experiment II) were also achieved by the 

MVAC device as a result of rapid heat exchange and high cooling and warming rates.  

 Although Cryotop vitrification has been reported to be a highly efficient method 

for cryopreservation of bovine oocytes (Dinnyes et al., 2000; Chian et al., 2004) and 

embryos (Laowtammathron et al., 2005), the 0.4-mm-wide and 20-mm-long sheet 

allows for the placement of oocytes and embryos in less than 1 µl of vitrification 

solution (Kuwayama, 2007). Thus, only 5-10 oocytes can be cryopreserved on each 

Cryotop sheet (Sripunya et al., 2010). In contrast, the longer sheet used in the MVAC 

method (60 vs. 20 mm) can hold as many as 25 oocytes or blastocysts, according to 

our preliminary study (unpublished data). 

Many viral and bacterial agents can survive in LN2 and be transmitted into 

cryopreserved and banked embryos (Bielanski et al., 2003; Bielanski, 2005). Potential 

sources of contamination during freezing are the cryopreserved samples and LN2 

themselves (Bielanski, 2012). For example, when an infected embryo is stored in LN2, 

cross-contamination between it and LN2 may occur. Also, as water evaporates, it 

cools and freezes above the LN2 tank, forming small ice crystals with a high 

electrostatic charge. These ice crystals can capture airborne microorganisms, which in 

turn, fall into the tank (Morris, 2005; Grout and Morris, 2009). Pessoa et al. (2014) 

reported that up to 84.3% of farms and 100% of companies in Southern Brazil use 
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LN2 contaminated with bacteria, fungi, or both. Therefore, an alternative method for 

cryopreservation that avoids exposing samples directly to LN2 is required. In this 

study, the MVAC method without LN2 contact was shown to be as effective as the 

MVAC in LN2 and Cryotop methods, in which samples had direct contact with LN2. 

Because the actual heat transfer in the MVAC device was not investigated in 

Experiment I (because of the closed carriers), the MVAC device was employed in two 

separate methods to determine which method provided greater heat exchange during 

cooling. The results suggest that heat exchange and cooling rates associated with 

direct plunging of the device into LN2 (MVAC in LN2) and without direct contact 

between the device and LN2 (MVAC) did not differ significantly from each other. A 

previous report on porcine embryos produced in vivo also showed equal efficiency 

between the MVAC and Cryotop vitrification methods (Misumi et al., 2013). 

However, because the stainless steel sheet of the MVAC device is non-transparent, 

loading a small volume of the vitrification solution (<1 µl) requires extensive skills. 

 In this study, a toxicity test of the vitrification solution showed that treatment 

with CPAs did not affect the developmental competence of vitrified IVM oocytes. 

Similar results have been reported previously in bovine IVM oocytes (Martino et al., 

1996; Dinnyes et al., 2000; Sripunya et al., 2010). 

 We achieved relatively high rates of development of vitrified-warmed IVM 

oocytes to the blastocyst stage, ranging from 20% to 25.5% for all vitrification 

methods. In general, higher cooling rates are expected to be achieved by open system 

methods, such as Cryotop and MVAC in LN2, than by closed system methods, such as 

MVAC, because conductive heat transfer is very rapid in LN2 (Liebermann and 

Tucker, 2002). However, our results showed similar developmental competence of 

vitrified-warmed IVM oocytes to the blastocyst stage in all vitrification groups 
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(P<0.05). These results indicate that all of the cooling systems investigated in this 

study are equally effective for cryopreservation of bovine IVM oocytes. Moreover, for 

the MVAC device, recovery rates after warming of both bovine IVM oocytes and IVP 

expanded blastocysts were nearly 100% and did not significantly differ from those of 

the standard Cryotop method. Recovery rates for the MVAC device in our study were 

higher than those measured in a previous study of vitrified mouse oocytes, in which 

recovery rates were 62% in an open pulled straw (OPS) and 81% in a 0.25-ml plastic 

straw (Chen et al., 2000). Abdelhafez et al. (2011) reported lower recovery rates in 

mouse embryos vitrified by the Cryotip method than we report here; their recovery 

rates were 85% for the cleavage stage and 75% for the blastocyst stage. In this study, 

cleavage rates of vitrified-warmed bovine IVM oocytes after IVF did not differ 

significantly between the treatment groups, ranging from 53% to 56%; these rates are 

higher than cleavage rates previously reported by Vajta et al. (1998) (47–50%) using 

the OPS method. Similarly, Sripunya et al. (2010) reported that the cleavage rate of 

vitrified-warmed bovine IVM oocytes was 41%. Our findings suggest that bovine 

IVM oocytes vitrified by the MVAC method, avoiding direct contact between the 

samples and LN2, can be fertilized with equal efficiency as oocytes vitrified by other 

standard methods that allow direct contact with LN2 (Cryotop and MVAC in LN2). 

Furthermore, we found similar blastocyst rates and quality (as measured by the 

numbers of TE cells and ICM cells, as well as by the total numbers of nuclei in the 

blastocysts) between the MVAC, MVAC in LN2, and Cryotop groups. 

 The results of our comparison study of the effect of cryodevices on the survival 

of IVP expanded blastocysts after vitrification-warming in experiment II showed that 

there was no significant difference between the Cryotop, MVAC, MVAC in LN2, and 

Solution control groups (P<0.05). However, the rate of hatched blastocysts after 
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warming and 24 h of IVC was lower in the MVAC in LN2 group than in the Solution 

control group. The reasons for this low hatched rate in the MVAC in LN2 group are 

not clear; however, it may be partially explained by the difficulty of controlling the 

vitrification solution volume (<1 µl) in the MVAC device. Indeed, a higher volume of 

vitrification solution, which acts as an insulator surrounding the blastocysts, has been 

reported to result in decreased cooling viscosity and heat transfer (Arav et al., 2002; 

Kuwayama, 2007). However, the lower blastocyst viability in our MVAC in LN2 

group was slight; later, at 48 and 72 h after warming, there were no significant 

differences in the rates of hatched blastocysts between the groups. Although direct 

comparison between our results and results obtained by previous studies is impossible, 

our results showed higher survival rates for vitrified-warmed bovine blastocysts 

treated with the Cryotop method than those previously reported using the same 

Cryotop method: 75% (De Rosa et al., 2007), 81.9% (Min et al., 2013) and 47.6% 

(Morató et al., 2014). 

 

3.8 Conclusion 

 In conclusion, the results of this study demonstrate that the Cryotop and MVAC 

cooling systems are equally effective for vitrification of both bovine IVM oocytes and 

bovine IVP embryos at the expanded blastocyst stage, resulting in high survival and 

developmental rates. Thus, we suggest that the MVAC system is a new, useful method 

for vitrification of both bovine IVM oocytes and bovine IVP embryos. Our results 

also show that the modified MVAC device used in the MVAC method may address 

biosafety concerns by serving as a closed carrier system that prevents exposure to 
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LN2. However, it is necessary for future studies to investigate live calf production 

from oocytes and embryos vitrified by the MVAC method. 
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CHAPTER IV 

A COMBINED-FACTORS APPROACH TO SUCCESSFUL 

VITRIFICATION OF IN VITRO PRODUCED BOVINE 

BLASTOCYSTS BY USING 0.25 ML STRAWS 

 

4.1 Abstract 

This study was designed to improve the in vitro survival of vitrified IVP bovine 

blastocysts using the 0.25 mL straw method. The combined factors have been 

investigated to improve the efficiency of vitrification with the designed straw columns. 

Experiment 1 was done to evaluate the effect of sucrose concentration in diluting solution 

of the in vitro survival of vitrified IVP bovine blastocysts using the 0.25 mL straw 

method, IVP bovine blastocysts were exposed to VS1 and then were loaded into 0.25 mL 

straws each containing three diluting solutions (0 M, 0.2 M and 0.5 M sucrose) before 

vitrification. Their in vitro survival rates of vitrification-warming approach after 2472 h 

of culture showing no significant difference among 0 M, 0.2 M and 0.5 M of sucrose 

solution groups (3070%, 34.766.6% and 35.168.9%, respectively); whereas, they 

were significantly lower when compared with fresh control group (P<0.05). Regarding 

Experiment 2, after vitrification IVP bovine blastocysts using the 0.25 mL straw method, 

then the straws were sealed and then immersed with the LN2 or LN2 vapor method before 

plunging into LN2. No significant differences were found in the in vitro survival rates 

between the two methods. For Experiment III, it was designed to compare the efficiency 

of solutions between VS1 and VS2 that were used to vitrification of IVP bovine 
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blastocysts by using the 0.25 mL straw method. There was no significant difference in the 

in vitro survival rates between the two groups. In terms of Experiment IV, when IVP 

bovine blastocysts were vitrified by using the Cryotop or 0.25 mL straw method, there 

was no significant difference in the in vitro survival rates at 24 h of additional IVC 

between the two methods. However, the in vitro survival rates at 48 and 72 h of culture in 

the Cryotop were higher than those of vitrification using the 0.25 mL straw method. Our 

results indicated that the use of our straw columns with the optimum combined factors 

was effective for vitrified IVP bovine blastocysts and it allowed the one step dilution 

after warming. This could simplify the embryo transfer on the farm.  

 

4.2 Introduction 

A 0.25 mL French semen straw or 0.25 mL straw has become the standard use for 

freezing and transferring embryos at the industry level (Wright, 1985). It has been 

especially convenient to freeze bovine embryos since the first success of a one step 

dilution method of bovine embryos has been developed (Leibo, 1984). The one step 

dilution procedure started with freezing single bovine embryo in one straw. 

Subsequently, the individual embryo was diluted and warmed in the straw in sucrose 

solution before being transferred into the recipients. Thereafter, several studies 

demonstrated the one step dilution method without requiring several steps for 

cryoprotectants (CPAs) dilution after warming in a laboratory setting (Massip et al., 

1987; Voelkel and Hu, 1992; Dochi et al., 1998). This method is commonly used for 

bovine embryos transfer in the field and it achieved the pregnancy rates slightly less than 

fresh embryos (Leibo and Mapletoft, 1998).  
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Although 0.25 mL straws are useful for direct transfer through one step dilution of 

freezing bovine embryos, they are limited to apply for slow freezing technique (Massip et 

al., 1987, 1995; Voelkel and Hu, 1992; Dochi et al., 1995, 1998). However, several 

studies indicated that rapid freezing or vitrification was more proper than slow freezing; 

because the higher survival rates of in vitro produced bovine (IVP) embryos would be the 

one reason (Leibo and Loskutoff, 1993; Pollard and Leibo, 1994; Agca et al., 1998; 

Vieira et al., 2007; Rodriguez-Villamil et al., 2012; Caamaño et al., 2015). Moreover, this 

technique provided rapid, simple and inexpensive procedures (Agca et al., 1994).  

Early vitrification experiments have not been widely adopted for commercial use 

for bovine embryo transfer (Van Wagtendonk-de Leeuw et al., 1997; Vijta, 2000). 

Therefore, vitrification procedure required several steps for CPAs dilution in laboratory 

setting due to their toxicity at high concentration of CPAs (Ishimori et al., 1993). 

Accordingly, the vitrification method of direct transfer to recipients should be developed 

to simplify this technology for farming applications. With this idea, vitrification of IVP 

embryos should go through warming and diluting procedures in one step.  

Previously, two techniques have been widely used for one step dilution after 

warming the vitrified IVP bovine embryos: the 0.25 mL straws and the additional devices 

combined with the 0.25 mL straws. For the first technique, 0.25 mL straws is used for 

vitrification, followed by warming procedure (Mahmoudzadeh et al., 1995; Saha et al., 

1996; Vajta et al., 1996; Ohboshi et al., 1997; Agca et al., 1998; Donnay et al., 1998; 

Sommerfeld and Niemann, 1999; Pugh et al., 2000; Campos-Chillòn et al., 2006; 

Akiyama et al., 2010, 2012; Inaba et al., 2011; Na Ha et., 2014). For the second 

technique, the additional devices is used for vitrification before reloading vitrified 
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embryos into the plastic straws for warming and diluting CPAs. They include open-

pulled straws (OPS) (Vajta et al., 1999), hand-pulled glass micropipettes (GMP) (Vieira 

et al., 2007), Cryotop (Inaba et a., 2011), Fyberplug with solid surface vitrification 

(Rodriguez-Villamile et al., 2013; Caamaño et al., 2015) and VitTrans (Morató and 

Mogas, 2014).  

The additional devices are used to gain the highest cooling rate because the higher 

heat was transferred than that of plastic straws before inserting into plastic straws for 

diluting and warming (Rodriguez-Villamil et al., 2013). However, using 0.25 mL straws 

as a vitrification device is still attractive, because this device is commonly used with 0.25 

mL transfer gun in the field condition. Therefore, it is not complicated and it simplifies 

the transfer procedure of vitrification embryos as a basic technique for artificial 

insemination (Taniguchi et al., 2007; Vajta et al., 1997) because the requirement of 

involved method in introducing vitrification devices into 0.25 mL straws for warming 

and diluting is not necessary.  

The objective of this study was to improve the efficacy of the 0.25 mL straws for 

vitrification of IVP bovine blastocysts. Therefore, we investigated the combined factors 

that affected the survival rates after warming of vitrified IVP bovine embryos in the 

expanding blastocyst stage using 0.25 mL straws in the sucrose concentration of diluting 

solution; the immersion methods and the vitrification solutions. Finally, the 0.25 mL 

straw was compared with the standard Cryotop in terms of the efficacy of IVP bovine 

blastocyst vitrification. 
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4.3 Materials and Methods 

 4.3.1 Chemicals and media 

Except where otherwise indicated, all chemicals were purchased from Sigma-

Aldrich, Co (St. Louis, MO, USA).  

 4.3.2 Oocyte collection and in vitro maturation (IVM)  

The slaughterhouse ovaries of Holstein cows were washed and stored in 

physiological saline (0.9% NaCl) during transportation to the laboratory at room 

temperature. Cumulus oocyte complexes (COCs) were collected from follicles (28 mm 

in diameter) using a 10-ml syringe connecting with a 18-gauge needle. The IVM 

procedure was performed as previously described (Parnpai et al., 1999). Briefly, a group 

of 20 to 25 COCs was washed five times in modified Dulbecco’s phosphate buffer saline 

(mDPBS) supplemented with 0.1% polyvinyl pyrolidone (PVP). Groups of 20-25 COCs 

were washed three times with 100-µl droplets of IVM medium, before being cultured for 

22 h in 100-µl droplets of IVM that was covered with mineral oil under humidified 

atmosphere with 5% CO2 in air at 38.5ºC. The IVM medium consisted of TCM199 

supplemented with 10% fetal bovine serum (FBS; Life Technologies Inc Gibco-BRL 

Division, Grand Island), 50 IU/ml hCG (Intervet UK Ltd., Milton Keynes, UK), 0.02 

AU/ml FSH (FSH, Antrin
®
, Denka Phamaceutical Co., Kanagawa, Japan) and 1 µg/ml 

17ß-estradiol.  

 4.3.3 In vitro fertilization (IVF)   

The frozen semen was thawed in 37 °C water for 30 sec. Then, the thawed 

sperm was layered under 2 mL of TALP (Tyrode’s albumin lactate pyruvate; Lu et al., 

1987) medium in a 5 mL snap tube and incubated at 38.5°C under humidified atmosphere 
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with 5% CO2 in air for 40 min to allow live spermatozoa to swim up. The top 1.5 ml from 

each tube was removed, pooled in a 15 ml conical tube centrifuged at 400  g for 7 min. 

The pellets were resuspended in TALP medium to adjust the final concentrations of 2  

10
6
 spermatozoa/ml.  One hundred l drops of sperm suspension were prepared in 

culturing dish, covered with mineral oil and used as fertilization droplets. The groups of 

2025 oocytes were washed three times in TALP medium. After that, the oocytes were 

added into 100 l of fertilization droplets and cultured for 12 h at 38.5 C under 

humidified atmosphere with 5% CO2 in air.  

 4.3.4 In vitro culture (IVC) 

IVC was performed in 100 μl droplets of mSOF medium supplemented with 3 

mg/ml BSA covered with mineral oil. At the end of insemination, putative zygotes were 

completely denuded from cumulus cells and spermatozoa by gently pipetting with a fine 

glass pipette in pre-incubated IVC medium. Twenty to twenty five zygotes were placed in 

each culture drop and then were cultured at 38.5°C under humidified atmosphere with 5% 

O2, 5% CO2 and 90% N2 for 2 days. Thereafter, embryos at the 8-cell stage were selected 

and co-cultured with bovine oviduct epithelium cells (BOEC) in mSOF medium under 

humidified atmosphere with 5% CO2 in air at 38.5°C for 5 days (Parnpai et al., 1999). 

Half volume of mSOFaa was replaced daily and the development of embryos was 

recorded (Day 0 was defined as the day of IVF). 

4.3.5 Blastocyst vitrification and warming using 0.25 mL straws   

IVP expanded blastocysts (IETS quality code 1, stage 7) were washed three times 

in HM consisting of DPBS supplemented with 20% (v/v) FBS. The expanding 

blastocysts were then placed in equilibration medium, which was composed of HM 
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supplemented with 7.5% Ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO) for 

3 min, and then transferred into a vitrification solution comprising HM supplemented 

with 16.5% EG, 16.5% DMSO, and 0.5 M sucrose (VS1) or placed in pre-equilibration 

medium 1, which consisted of mDPBS supplemented with 10% glycerol (Gly), 0.1 M 

Xylose, 0.1 M Sucrose and 0.1% BSA for 5 min, after that they were transferred into pre-

equilibration medium 2, which contained mDPBS supplemented with 10% Gly, 10% EG, 

0.2 M Xylose, 0.2 M Sucrose and 0.2% BSA for 2 min. After the pre-equilibration step, 

blastocysts were exposed to vitrification solution that consisted of mDPBS supplemented 

with 10% Gly, 30% EG, 0.3 M Xylose, 0.3 M Sucrose and 0.3% BSA (VS2) (depending 

on the experiments). Subsequently, blastocysts (one blastocyst per straw) were then 

pipetted into 0.25 mL straws and placed in the inner surface of straws (Fig. 1). The straws 

contained diluting solution which was HM supplemented with three different sucrose 

concentrations (0 M, 0.2 M and 0.5 M groups). The loaded straw was immediately heat-

sealed and the part of straw containing blastocysts was placed vertically into LN2 for 1 

min (LN2 group) or placed horizontally above LN2 about 1-1.5 cm for 1 min to get the 

cool from LN2 vapor (LN2 vapor group) before immersing in LN2 for storage (depending 

on the experiment). The process of blastocysts exposure to vitrification solution and their 

immersion in LN2 was completed within 30 sec. All vitrification procedure was 

performed at room temperature (24-26 ºC). After being stored for at least 24 hrs in LN2 

tank, the straws containing embryos were warmed by exposing in the air for 10 sec and 

then plunged into the 35 ºC water to warm the diluents for 20 sec. Straws were then 

removed from the water and shaken to mix the columns of the straws. After that, the 

straws were vertically held in the same water at 35 ºC for 5 min. Thereafter, the 
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blastocysts were transferred into culturing dishes and cultured in vitro for 72 h in TCM-

199 supplemented with 20% FBS and 0.1 mM ß-merceptoethanol at 38.5°C in 

humidified atmosphere with 5% CO2 to evaluate the survival of embryos after being 

thawed (Saito et al., 1994).     

4.3.6 Blastocyst vitrification and warming using Cryotop 

IVP expanded blastocysts (IETS quality code 1, stage 7) were exposed to VS1 as 

described above. Then, a group of 5 blastocysts was placed on a Cryotop sheet in a small 

volume of vitrification solution (<1 µl) and then the Cryotop was plunged into LN2. The 

process of exposure of the blastocysts to vitrification solution and their immersion in LN2 

was completed within 30 sec. All vitrification procedure was performed at room 

temperature (24-26 ºC). After being stored for at least 24 h in LN2 tank, vitrified 

blastocysts were warmed by inserting the Cryotop sheet into HM at 38.5 ºC for 5 min. 

After washing them three times in HM, they were transferred into culturing dishes and 

cultured in vitro for 72 h at 38.5 ºC in humidified atmosphere with 5% CO2 in air with the 

same medium used in 0.25 mL straw method to evaluate the survival of embryos after 

being thawed.  

 4.3.7 Evaluation of blastocyst cell numbers with different staining 

Staining inner cell mass (ICM) and trophectoderm (TE) nuclei in blastocysts was 

performed as previously described (Thouas et al., 2001), with slight modifications. 

Briefly, the blastocysts were simultaneously treated with 0.1 mg/ml propidium iodide 

(PI) and 0.2% Triton X-100 dissolved in DPBS for 60 sec to permeate the membrane and 

stain the nuclei of TE cells. The blastocysts were then treated for 5 min with 25 µg/ml 

Hoechst 33342 (Calbiochem, San Diego, CA, USA) dissolved in 99.5% ethanol, and then 
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mounted on glass slides in glycerol droplets that were flattened with cover slips. The 

blastocysts were examined under UV light with an excitation wavelength of 330-385 nm 

using an epifluorescence microscope (IX-71; Olympus Corporation, Tokyo, Japan). The 

nuclei of TE cells labeled with both PI and Hoechst 33342 became pink or red, whereas 

the nuclei of ICM cells labeled only with Hoechst 33342 became blue. A digital image of 

each blastocyst was captured, and the cell numbers of both cell types were counted using 

the NIH ImageJ (v. 1.40) software (Abramoff et al., 2004). With clearly distinguishable 

population of red and blue nuclei, numbers of ICM and TE cells in blastocysts, were 

counted separately. 

 

4.4 Experimental design  

Experiment 1: Effects of sucrose concentrations of diluting solution on the in vitro 

survival after vitrification-warming approach of IVP bovine blastocysts using 0.25 

mL straws  

This experiment was to examine the effects of sucrose concentrations for one step 

dilution on the in vitro survival after vitrification-warming IVP bovine blastocysts using 

0.25 mL straws. IVP bovine expanded blastocysts (IETS quality code 1, stage 7; n = 288) 

were exposed to VS1 and then were loaded into 0.25 mL straws which contained one of 

three groups of diluting solution (0 M, 0.2 M and 0.5 M sucrose). After being sealed, the 

parts of loaded straws containing blastocysts were placed vertically into LN2 for 1 min 

before immersing in LN2 for storage. Blastocysts that were not vitrified served as a fresh 

control group. Thereafter, the straws containing blastocysts were warmed and the in vitro 
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survival rates after being vitrification-warming was assessed by their hatching ability to 

hatch blastocyst stage during 72 h of additional IVC.  

Experiment 2: Effects of immersion methods on the in vitro survival after 

vitrification-warming bovine blastocysts using 0.25 mL straws 

The effects of immersion methods were examined by exposing IVP bovine 

expanded blastocysts (IETS quality code 1, stage 7; n = 150) to VS1 and then they were 

loaded into 0.25 mL straws which contained diluting solution (0 M sucrose). After 

sealing the straws, they were randomly divided into two groups. For the first group, the 

parts of straws containing blastocysts were placed vertically into LN2 for 1 min (LN2 

group). For the second group, they were placed horizontally above LN2 about 1-1.5 cm 

for 1 min to get the cool from LN2 vapor (LN2 vapor group). Blastocysts that were not 

vitrified served as a fresh control group. The in vitro survival rates after vitrification-

warming were assessed. They were similar to Experiment I which was described above.  

Experiment 3: Effects of vitrification solutions on the in vitro survival after 

vitrification-warming IVP bovine blastocysts using 0.25 mL straws 

The effects of vitrification solutions which were examined by IVP bovine expanded 

blastocysts (IETS quality code 1, stage 7; n = 314) were exposed to VS1 or VS2 and 

vitrified using 0.25 mL straws which contained 0 M sucrose of diluting solution. After 

sealing the straws, the parts of straws containing blastocysts were placed vertically into 

LN2 for 1 min before immersing in LN2 for storage. Blastocysts that were not vitrified 

served as a fresh control group. The in vitro survival rates after vitrification-warming 

were assessed. They were similar to those of Experiment I and II which were described 

above. 
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Experiment 4: Effects of cryodevices on the in vitro survival after vitrification-

warming IVP bovine blastocysts 

This experiment was to compare the efficiencies of the cryodevices for the 

vitrification of IVP bovine blastocysts. IVP expanded blastocysts (IETS quality code 1, 

stage 7; n = 315) were exposed to VS1, and then randomly vitrified by 0.25 mL straws 

which contained 0 M sucrose of diluting solution (0.25 mL straws groups) or vitrified by 

the Cryotop method (Cryotop group). For the hatching ability during 72 h of additional 

IVC, the cell numbers and ICM ratio of survival blastocysts at 72 h in each treatment 

group were compared.  

 

4.5 Statistical analysis 

The percentages of embryos hatching rates in each group were subjected to arcsine 

transformation. Cell numbers of embryos were expressed as untransformed means ± 

standard error of the mean (SEM). Data were analyzed by the analysis of variance 

(ANOVA). Differences were considered to be significant when P<0.05. 

 

4.6 Results 

 4.6.1 Experiment 1 

There were no different rates of development in hatching blastocyst stage during 72 

h of additional IVC after verifying and warming IVP bovine expanded blastocysts in each 

concentrated sucrose dilution (0 M, 0.2 M and 0.5 M sucrose) which was loaded into 0.25 

mL straws. However, the rates of hatching embryos during 72 h of additional IVC in all 

vitrified groups were significantly lower than those of fresh control group (P<0.05) 

(Table 1). 
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 4.6.2 Experiment 2 

As shown in Table 2, there were no different rates of embryos developing in the 

hatching blastocyst stage during 72 h of additional IVC after warming and vitrification of 

IVP bovine blastocysts during the immersion methods (LN2 vs. LN2 vapor groups). 

However, the hatching rates in the vitrified groups were significantly lower than the fresh 

control group (P<0.05). 

 4.6.3 Experiment 3 

The rates of development in hatching blastocysts stage of vitrification-warming 

expanded blastocysts during 72 h of additional IVC between the blastocysts that were 

exposed to VS1 or VS2 groups were not different. However, there were lower rates 

between groups of vitrified-warmed IVP bovine blastocysts and fresh control groups 

during 72 h of additional IVC at significant differences (P<0.05) (Table 3).  

4.6.4 Experiment 4 

As shown in Table 4, there were no differences in the rates of embryos developing 

to the hatching blastocyst stage at 24 h of additional IVC between the Cryotop or 0.25 

mL straw methods. However, the rates of hatching blastocysts at 48 and 72 h of culture in 

the Cryotop were higher than those of the 0.25 mL straw methods (77.5% and 92.5% vs. 

65.3% and 80.8%, P<0.05; respectively).    

The total number of nuclei and ICM ratios of the blastocysts survival between the 

Cryotop and 0.25 mL straw groups after vitrification-warming approach obtaining 72 h of 

additional IVC was not different. Similarly, no significance was found in total number of 

nuclei and ICM ratio obtaining 72 h of additional IVC in both devices and in vitro culture 

for 9 days (fresh control group).  
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Figure 4.1 The loading columns in 0.25 mL straw. From cotton plug to heat seal: 7.5 cm 

of diluting solution, 0.5 cm of air, 0.2 cm of vitrification solution was 

loaded into the straws to prevent the embryo diluted in diluting solution. 

Then they were removed before petting the embryo with vitrification 

solution (≤1 µl) into the inner surface of the straws. The rest of the straw is 

filled with 1.5 cm of air before being sealed by heat (Petty patent: 9367, 

Parnpai et al., 2014). 
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Table 4.1 Effects of sucrose concentrations of diluting solution on in vitro development 

of vitrified-warmed IVP bovine blastocysts using the 0.25 mL straw method 

Seven replications were performed. 
a,b

Values within a single column having different 

superscripts were significantly different at P<0.05 using one-way ANOVA. 0 M Sucrose: 

IVP expanded blastocysts were vitrified by 0.25 mL straw containing sucrose-free in 

diluting solution. 0.2 M Sucrose: IVP expanded blastocysts were vitrified by 0.25 mL 

straws containing 0.2 M sucrose in diluting solution. 0.5 M Sucrose: IVP expanded 

blastocysts were vitrified by 0.25 mL straws containing 0.5 M sucrose in diluting solution. 

 

 

 

 

 

 

Treatment 

group 

No. of 

embryos 

No. of hatching embryos (%) 

24 h 48 h 72 h 

0 M Sucrose 70 
21

b

 37
 b

 49
 b

 

  (30.0%) (52.8%) (70.0%) 

0.2 M Sucrose 72 25
b

 
38

b

 
48

b

 

  (34.7%) (52.7%) (66.6%) 

0.5 M Sucrose 74 26
b

 
39

b

 
51

b

 

  (35.1%) (52.7%) (68.9%) 

Fresh Control 72 45
a

 
68

a

 
70

a

 

  (62.5%) (94.4%) (97.2%) 
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Table 4.2 Effects of immersion methods on the in vitro development of vitrified-

warmed IVP bovine blastocysts using the 0.25 mL straw method 

 

Five replications were performed. 
a,b

Values within a single column having different 

superscripts were significantly different at P<0.05 using one-way ANOVA. LN2 group: 

IVP expanded blastocysts were vitrified by 0.25 mL straw, after the straws were sealed, 

the parts of straws containing blastocysts were placed vertically into LN2 for 1 min before 

being immersed in LN2 for storage. LN2 vapor group: IVP expanded blastocysts were 

vitrified by 0.25 mL straw, after the straws were sealed, they were placed horizontally 

above LN2 about 1-1.5 cm for 1 min to achieve the cool from LN2 vapor before being 

immersed in LN2 for storage. 

 

 

 

 

Treatment 

group 

No. of embryos No. of hatching embryos (%) 

24 h 48 h 72 h 

LN2 50 10
b

 
26

b

 
32

b

 

  (20.0%) (52.0%) (64.0%) 

LN2 vapor 50 
11

b

 28
 b

 34
b

 

  (22.0%) (56.0%) (68.0%) 

Fresh Control 50 20
a

 
40

a

 
49

a

 

  (40.0%) (80.0%) (98.0%) 
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Table 4.3 Effects of vitrification solutions on in vitro survival after vitrification-warming 

IVP bovine blastocysts using 0.25 mL straws  

 

Twelve replications were performed. 
a,b

Values within a single column having different 

superscripts are significantly different at P<0.05 using one-way ANOVA. VS1: IVP 

expanded blastocysts were exposed to VS1 (EG-DMSO) before being vitrified using 0.25 

mL straws. VS2: IVP expanded blastocysts were exposed to VS2 (EG-Gly) before being 

vitrified using 0.25 mL straws. 

 

 

 

 

 

 

 

 

Treatment 

group 

No. of embryos No. of hatching embryos (%) 

24 h 48 h 72 h 

VS1 105 35
6
 69

b
 87

b
 

  (33.33%) (60.00%) (82.85%) 

VS2 104 41
b
 68

b
 84

b
 

   (39.42%) (65.38%) (80.76%) 

Fresh control 105 61
a
 83

a
 102

a
 

  (58.10%) (79.05%) (97.14%) 

 

 

 

 

 

 

 

 



Table 4.4 Development to the hatching blastocysts stage of IVP vitrified bovine blastocysts using the Cryotop or 0.25 mL 

device and cultured in vitro for 72 h  

Treatment 

 method 

 

embryos (%) 

No. of hatching 

 

No. of nuclei ± SEM 

No. of 

embryos 

 

24 h 48 h 72 h No. of 

embryos 

 

Total ICM cells 

(%) 

Cryotop 

  

107 49
ab

 83
a
 99

a
 10 114±1.54 32±1.21 

 (45.79%) (77.57%) (92.52%)    

0.25 mL straw 

  

104 41
b
 68

b
 84

b
 11 110±1.91 30±1.37 

 (39.42%) (65.38%) (80.76%)    

Fresh control 105 61
a
 83

a
 102

a
 10 116±1.00 33±1.20 

  (58.10%) (79.05%) (97.14%))    

 

Twelve replications were performed. 
a,b

Values within a single column having different superscripts are significantly 

different at P<0.05 using one-way ANOVA. Cryotop: IVP expanded blastocysts were exposed to VS1 before being 

vitrified using Cryotop device. 0.25 mL straw: IVP expanded blastocysts were exposed to VS1 before being vitrified 

using 0.25 mL straws device. No. of nuclei were presented as mean ± SEM. Total: total no. of nuclei in blastocysts. ICM: 

inner cell mass. No significant differences in total no. of nuclei and ICM ratio in blastocysts were detected between the 

treatment groups at P<0.05 using one-way ANOVA. 
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4.7 Discussions 

In this study, it was demonstrated that our straw columns used in combination with 

the optimal factors can be successful cryopreservation of IVP bovine blastocysts. We 

achieved highest survival rates of vitrified-warmed IVP bovine blastocysts with 0.25 mL 

straw method that were assessed by their development competence in hatching blastocyst 

stage at 24 to 72 h of additional of IVC, ranging from 33.3% to 82.8%. The 0.25 plastic 

straw in our study has been designed to reduce the volume of vitrification solution less 

than 1 µl to achieve the high cooling rates for vitrification, due to minimum volume of 

vitrification solution which is one of the three factors  improving the probability of 

vitrification by increasing the cooling rates and reducing the probability of ice formation 

(Arav, 2014).  

The efficiency of our straw columns that were used in combination with the optimal 

factors was investigated. Sucrose solution was used as an osmotic buffer to prevent the 

rapid hydration leading to over swelling embryos during rehydration and removal of 

CPAs of the cells which was first introduced by Leibo and Mazur (1978). In this study, 

0.2 M and 0.5 M sucrose solutions were used to compare with sucrose-free (0 M sucrose) 

in diluting solution for one step dilution during warming process. The results suggested 

that sucrose solution comprising two permeable CPAs (16.5%EG + 16.5%DMSO) as the 

vitrification solution did not affect the survival ability of embryos (Table 1). In contrast, a 

previous study reported that the sucrose solution, which was required to improve the 

survival ability of vitrified-warmed IVP bovine blastocysts, was the two combination of 

permeable CPAs such as EG and propanediol (PROH) in vitrification solution 

(Rodriguez-villamil et al., 2013). Besides, they found the survival ability did not improve 
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when vitrified embryos warmed and diluted in one step with sucrose solution with only 

one permeable CPA such as EG during vitrification. Similar reports showed the 

vitrification with EG as only one permeable CPA in equine (Hochi et al., 1994) and 

bovine embryos (Mahmouzadeh et al., 1995; Saha et al., 1996; Campos-Chillon et al., 

2006). However, Inaba et al. (2011) reported the same corresponding results as those of 

our current study, which did not show the effect on the survival ability of vitrified IVP 

bovine blastocysts of  sucrose in diluting solution comprising 16.5% EG and 16.5% 

DMSO in vitrification solution. Similarly, Ohboshi et al. (1997) reported that sucrose 

solution did not help improve survival ability after warning IVP bovine blastocysts 

vitrified in the solution with the combination of two permeable CPAs like EG and 

polyethylene glycol (PEG).                      

It is unclear for the addition of sucrose in diluting solution that affected in different 

ways on the survival ability of vitrified IVP bovine embryos in various combinations of 

two permeable CPAs. However, it can be assumed that the components affecting two 

permeable CPAs were related to the requirement of sucrose solution during warming 

process. In addition, the characteristic of expanded blastocysts that were used in our 

study and suggested in a previous study showed greater cryosurvivals due to their more 

tolerance to an osmotic shock after warming. Therefore, there are low surface-to-volume 

ratio when compared with embryos at the blastocyst stage, resulting in slower rehydration 

after warming (Camargo et al., 2011). These indicated that sucrose had no effect on 

embryo survival after vitrification-warming bovine embryos at the expanded blastocyst 

stage using the diluting solution comprising 16.5% EG and 16.5% DMSO and following 

one step dilution in 0.25 mL straw.  
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The fractures of zona or embryos during the immediate plunge of the straw into 

LN2 could occur because of the rapid change of the pressure leading to a fast shrinkage 

and air bubbles which expanded during the changes of temperature (Vajta et al., 1997a). 

Therefore, the immersion method which was placing the straws into LN2 vapor before 

plunging into LN2 has been introduced to prevent the fractures of zona or embryos (Rall 

and Meyer, 1989). However, our results showed an equal efficiency between the two 

immersion methods for survival ability after warming and vitrifica IVP bovine 

blastocysts using 0.25 mL straws. This corresponding result was found in Donnay et al. 

(1998).  

Vitrification requires a high concentration of CPAs to avoid the ice-crystals 

formation and achieve glass transition (Jain and Paulson, 2006). However, the high 

concentration of CPAs used for vitrification was damaged. It caused cells to have osmotic 

stress or chemical toxicity (Arav, 2014). These effects can be minimized: (i) stepwise 

addition of CPAs in vitrification solution (Saha and Suzuki, 1997); (ii) addition of non 

permeable CPAs such as sugar (Fahy et al., 1984); (iii) decrease the concentration of 

CPAs and expose the embryos to vitrification solution at low temperatures (Rall et al., 

1987); (iv) use the low toxicity of CPAs (Voelkel and Hu, 1992; Kasai et al., 1996); (v) 

using a mixture of two or more CPAs (Massip et al., 1987). Among most of these 

methods, the low toxicity of CPAs like EG (Newton and Subramoniam, 1996) is used for 

embryos as a standard component of most successfully vitrification solutions (Kasai and 

Mukaida, 2004).  

Although EG has high penetrating rates into the cells (Dochi et al., 2006) due to 

lower molecular possession than the other permeables including glycerol, DMSO and 
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propylene glycol (62.07 vs. 92.07, 78.13 and 76.10, respectively), it has poor glass 

forming tendency (Mullen and Critser, 2007). It has been proposed that the mixtures of 

EG with other CPAs which have greater glass forming characteristic like DMSO or EG 

(Ali and Shelton, 1993) can achieve the glass-forming tendency, avoid devitrification 

(MacFarlane et al., 1992), and reduce risks of chemical toxicity of any one permeable 

CPA (Rall and Fahy, 1985).  

To our knowledge, this is the first report to compare the efficacy of vitrification 

solution which is composed of the mixtures of CPAs between EG-DMSO (VS1) and EG-

Gly (VS2) used for vitrification of IVP bovine blastocysts using 0.25 mL straw method. 

This study suggested the equal efficiency of both mixtures of CPAs used for vitrification 

of IVP bovine blastocysts using 0.25 mL straws. Our results, however, were slightly 

lower than those obtained in the previous study, which vitrified IVP bovine blastocysts in 

the same vitrification solution that was composed of the mixture of EG-Gly in the 0.25 

mL straws (Inaba et al., 2011). Nevertheless, the highest in vitro survival rates of 82.8% 

of vitrified IVP bovine blastocysts achieved from vitrification solution comprising the 

mixture of EG-DMSO in our study are higher than those of previous reports in which the 

in vitro survival rates were 69% at 72 h of additional IVC (Mahmoudzadeh et al., 1995), 

63% at 72 h of additional IVC (Vajta et al., 1996), 70% at 72 h of additional IVC (Saha et 

al., 1996) and 37.1% at 24 h of additional IVC (Na ha et al., 2014).  

 To investigate the efficiency of our straw columns, IVP bovine blastocysts that 

were vitrified with the 0.25 mL straw method were compared with those of blastocysts 

vitrified with the standard Cryotop method (Experiment IV). Our results showed the 

lower rates of in vitro survival after vitrification-warming IVP bovine blastocysts using 
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our straw columns than those of blastocysts that vitrification-warming by the standard 

Cryotop method at 48 and 72 h of additional IVC (65.3% and 80.8% vs. 77.5% and 

92.5%, P<0.05; respectively). These results suggested that the Cryotop method provided 

a higher efficiency than 0.25 mL straw method for cryopreservation obtained with open 

system devices, such as The Cryotop of which the cooling rate was reported 

approximately 20,000 ºC /min (Kuwayama et al., 2005), while the close system devices 

such as the 0.25 mL straw of which the maximum cooling rate was limited at 2500 

ºC/min (Shaw et al., 1991. However, we found the equal qualities when measured by 

ICM ratios and the total numbers of nuclei in the blastocysts between the IVP bovine 

blastocysts that were vitrified by using Cryotop and 0.25 mL methods. 

4.8 Conclusion 

In conclusion, the uses of our straw columns in combination with the optimum 

factors are effective for vitrified IVP bovine blastocysts using the 0.25 mL straw method. 

Therefore, we suggest that this method is allowed the one step dilution after warming 

vitrified IVP bovine embryos of which the transfer can be simplified on the farm to the 

same level of artificial insemination. 
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CHAPTER V 

THE EFFECTS OF BIOPSY WITH MICROBLADE 

PRIOR TO VITRIFIED USING THE CRYOTOP OR  

0.25 ML STRAW METHODS ON IN VITRO SURVIVAL 

AFTER VITRIFICATION-WARMING 

 

5.1 Abstract 

This study was designed to evaluate the effects of biopsying with microblade 

prior to vitrification using the Cryotop or 0.25 mL straw methods on their in vitro 

survival after vitrification-warming. In vitro-produced (IVP) bovine blastocysts were 

subjected to biopsy with microblade (biopsied-derived blastocyst groups) and were not 

subjected to biopsy (non-biopsied derived blastocyst groups). Thereafter, both of 

biopsied and non-biopsied derived blastocyst groups were vitrified using the Cryotop 

(biopsied + Cryotop and non-biopsied + Cryotop groups) or 0.25 mL straw methods 

(biopsied + 0.25 mL straw and non-biopsied + 0.25 mL straw groups). After 

vitrification-warming, the rates of embryos developing to the hatching blastocyst stage 

at 24 h of additional IVC in biopsied- derived blastocyst were higher than those of 

non-biopsied derived blastocyst groups. However, the in vitro survival rates of 

biopsying + 0.25 mL straw group had no   significant difference than those of vitrified 

and freshly derived from non biopsied blastocysts. After 48-72 h of culture, the rates 

of development to hatching blastocyst stage between the vitrification of non-biopsied  
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derived blastocysts using the Cryotop and 0.25 mL straws devices were not different. 

Similarly, they did not differ from the rates of fresh control group at 72 h of culture. In 

biopsied- derived blastocyst groups, the rates of hatching blastocysts after 48-72 h of 

culture between vitrification of biopsied-derived blastocysts using the Cryotop and 

fresh control groups were not different; moreover, they were higher than the rates of 

vitrification of biopsied-derived blastocysts using 0.25 mL straw (83.0-88.0%, 93.7-

96.8% vs. 64.4-72.1%, P<0.05; respectively). Moreover, the numbers of apoptotic 

cells per blastocyst were higher in all vitrified groups derived from biopsied and non-

biopsied blastocysts than those of fresh control groups (P<0.05). These results 

indicated that biopsy with microblade prior to vitrification using Cryotop method is 

greater in in vitro survival after vitrification-warming as well as as non-biopsied and 

fresh embryos. However, it is necessary to improve vitrification system for sanitary 

vitrification and simplify this technique for direct transfer of vitrified sexed bovine 

embryos. 

 

5.2 Introduction 

 Embryo biopsy in bovine has become a useful tool for embryo sexing to produce 

offspring pertinent to the owner’s desire. The advances in state of art has made it 

possible to sexing embryos by Polymerase Chain Reaction (PCR) and the 

identification of bovine Y-chromosome specific DNA probes (Kageyama et al., 2004). 

Nowadays, PCR is routinely used in the field for embryo sexing because this 

technique enables amplification of a target sequence from a small number of 

blastomeres (Thibier and Nibart, 1995).  

 The embryo biopsy is the process to remove the cells from the preimplantation 
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embryos for diagnosis. Therefore, this process is an invasion that caused embryos 

damage which reduces the quality of embryos after being biopsied (Polisseni et al., 

2010). Various methods have been used for embryo biopsy such as the needle 

technique (Thibier and Nibart, 1995; Cenariu et al, 2012b), the aspiration technique 

(Thibier and Nibart, 1995; Vajta et al., 1997), and the microblade technique (Thibier 

and Nibart, 1995; Leoni et al., 2000). It has been showed that the microblade 

technique is widely used for bovine embryos biopsy for sexing as this technique has 

more rapid and simpler procedure than the other two approaches. It is suitable for 

sexing a large number of embryos (Cenariu et al, 2012a).  

 Previous reports suggested that biopsy at later developmental stage, such as 

morula or blastocyst is less affected to embryos when compared with biopsy at earlier 

development stages due to more relatively collected cells(de Vos and Van 

Steirteghem, 2001). However, it is difficult to biopsy at the morula stage because of 

the extensive compaction (Van Blerk et al., 1991). Therefore, biopsying at the 

blastocysts stage by removing off the small portion of trophectoderm is widely used 

due to its ease and less damage than the other stages of embryos (Evsikov and 

Verlinsky, 1998). 

 The pregnancy rates obtained from the transfer of frozen-warmed biopsied 

embryos were lower in microblade than those of needle and aspiration techniques 

(Nibart et al., 1997; Shea, 1999; Cenariu et al.; 2012a). Furthermore, several studies 

reported that the high rates of pregnancy, ranged from 53 to 62% when transferring 

biopsied bovine embryos with microblade without frozen (Bredbacka et al., 1996; 

Herr and Reed, 1991; Thibier and Nibart, 1995; Roschlau et al., 1997).  

              To our knowledge, there has been little information of in vitro survival and 
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damage of embryos after using frozen-warmed biopsied IVP bovine embryos for 

vitrification method. Therefore, this study was to evaluate the effects of embryo 

biopsy with microblade on their subsequent development and their in vitro survival 

when subjected to be vitrified with the Cryotop and 0.25 mL straw methods. 

Moreover, the damage of embryos after vitrification-warming of biopsied IVP bovine 

blastocysts was investigated by using the TUNEL assay.  

 

5.3 Materials and Methods 

 5.3.1 Chemicals and media 

Except where otherwise indicated, all chemicals were purchased from 

Sigma-Aldrich, Co (St. Louis, MO, USA).  

 5.3.2 Oocytes collection and in vitro maturation (IVM)  

The  slaughterhouse ovaries of Holstein cows were washed and stored in 

physiological saline (0.9% NaCl) during transportation to the laboratory at room 

temperature (RT). Cumulus oocyte complexes (COCs) were collected from follicles 

(28 mm in diameter) using a 10-ml syringe connected with 18-gauge needle. The 

IVM procedure was performed as described previously (Parnpai et al., 1999). Briefly, 

a group of 20 to 25 COCs was washed five times in modified Dulbecco’s phosphate 

buffer saline (mDPBS) supplemented with 0.1% polyvinyl pyrolidone (PVP). Groups 

of 20-25 COCs were washed three times with 100-µl droplet of IVM medium, before 

being cultured for 22 h in 100-µl droplet of IVM that covered with mineral oil under 

humidified atmosphere with 5% CO2 in air at 38.5ºC. The IVM medium consisted of 

TCM199 supplemented with 10% fetal bovine serum (FBS; Life Technologies Inc 

Gibco-BRL Division, Grand Island), 50 IU/ml hCG (Intervet UK Ltd., Milton Keynes, 
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UK), 0.02 AU/ml FSH (FSH, Antrin
®
, Denka Phamaceutical Co., Kanagawa, Japan) 

and 1 µg/ml 17ß-estradiol.  

 5.3.3 In vitro fertilization (IVF)   

The frozen semen was thawed in a 37°C water bath for 30 sec. Then, the 

thawed sperm was layered under 2 mL of TALP (Tyrode’s albumin lactate pyruvate; 

Lu et al., 1987) medium in a 5 mL snap tube and incubated at 38.5°C under 

humidified atmosphere of 5% CO2 in air for 40 min to allow live spermatozoa to swim 

up. The top 1.5 ml from each tube was removed, pooled in a 15 ml conical tube 

centrifuged at 400  g for 7 min. The pellets were resuspended with TALP medium to 

adjust the final concentrations of 2  10
6
 spermatozoa/ml.  One hundred l drops of 

sperm suspension were prepared in culture dish, covered with mineral oil and used as 

fertilization droplets. The groups of 2025 oocytes were washed three times in TALP 

medium. After that, the oocytes were added into 100 l of fertilization droplets and 

cultured for 12 h at 38.5 C under a humidified atmosphere with 5% CO2 in air.  

 5.3.4 In vitro culture (IVC) 

IVC was performed in 100 μl droplets of mSOF medium supplemented 

with 3 mg/ml BSA covered with mineral oil. At the end of insemination, putative 

zygotes were completely denuded from cumulus cells and spermatozoa by gently 

pipetting with a fine glass pipette in pre-incubated IVC medium. Twenty to twenty 

five zygotes were placed in each culture drop and then were cultured at 38.5°C under 

humidified atmosphere of 5% O2, 5% CO2 and 90% N2 for 2 days. Thereafter, 

embryos at the 8-cell stage were selected and co-cultured with bovine oviductal 

epithelium cells (BOEC) in mSOF medium under humidified atmosphere with 5% 

CO2 in air at 38.5°C for 5 days (Parnpai et al., 1999). Half volume of mSOF medium 
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was replaced daily and the development of embryos was recorded (Day 0 was defined 

as the day of IVF). 

5.3.5 Blastocyst biopsy with microblade technique 

IVP blastocysts (IETS quality code 1, stage 6) were placed into a 

microdrop of DPBS (without CaCl2 and MgCl2) supplemented with 10% (v/v) FBS, in 

a scratched bottom dish. The scratches were made for stabilizing the embryos as 

suggested by Bredbacka et al. (1995). All procedure was done under an inverted 

microscope (IX71, Olympus, Tokyo, Japan) with a micromanipulator (M0188NE, 

Narishige Co., Ltd., Tokyo, Japan). A small portion of embryo (about 5%) was cut off 

from the trophoblast of blastocysts by using microblade (Bio-cut blade, Feather Safety 

Razor Co., Ltd., Osaka, Japan). The biopsied blastocysts were co-cultured with BOEC 

cells in mSOF medium and under humidified atmosphere with 5% CO2 in air at 

38.5°C for 4-6 h. The survival after biopsy was assessed by their morphological 

development to hatching blastocyst and subjected to vitrification procedure 

subsequently.     

5.3.6 Blastocyst vitrification and warming using 0.25 mL straws   

Biopsied and non-biopsied derived blastocysts were washed three times in 

HM consisting of DPBS supplemented with 20% (v/v) FBS. The expanded blastocysts 

were then placed in equilibration medium, which was composed of HM supplemented 

with 7.5% Ethylene glycol (EG) and 7.5% dimethyl sulfoxide (DMSO) for 3 min, and 

then transferred into vitrification solution that was composed of HM supplemented 

with 16.5% EG, 16.5% DMSO, and 0.5 M sucrose. Subsequently, blastocysts (one 

blastocyst per straw) were then pipetted into 0.25 mL straw and placed on the inner 

surface of straw. The straw contained diluting solution which was HM. The loaded 
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straw was immediately heat-sealed and the part of straw containing blastocyst was 

placed vertically into LN2 for 1 min before immersing in LN2 for storage. The process 

of exposure of the blastocysts to vitrification solution to their immersion in LN2 was 

completed within 30 sec. All vitrification procedure was performed at RT (24-26 ºC). 

After beingstored for at least 24 h in LN2 tank, the straws containing embryos were 

warmed by exposing in the air for 10 sec and then plunged into the 35 ºC water to 

warm the diluents for 20 sec. Straws were then removed from the water and shaken to 

mix the columns of the straws. After that straws were held vertically in the same water 

at 35 ºC for 5 min. Thereafter, the blastocyst were transferred into culture dishes and 

cultured in vitro for 72 h in TCM-199 supplemented with 20% FBS and 0.1 mM ß-

merceptoethanol at 38.5°C in a humidified atmosphere of 5% CO2 to evaluate the 

survival of embryos after being thawed (Saito et al., 1994).    
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Figure 5.1 IVP bovine blastocysts were subjected to biopsy with microblade in a 

dish with scratched bottom. All procedure was done under an inverted 

microscope (IX71, Olympus, Tokyo, Japan) with a micromanipulator 

(M0188NE, Narishige Co., Ltd., Tokyo, Japan) (magnification 100x). 

 

 

Figure 5.2 A small portion of embryo (about 5%) was cut off from the trophoblast 

of blastocysts by using microblade (Bio-cut blade, Feather Safety Razor 

Co., Ltd., Osaka, Japan) (magnification 100x). 
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Figure 5.3 The biopsied blastocysts were co-cultured with BOEC cells in mSOF 

medium and under humidified atmosphere with 5% CO2 in air at 

38.5°C for 4-6 h to check their survival after biopsied (magnification 

100x). 

 

 

Figure 5.4 The biopsied blastocysts were subjected to be vitrified with the Cryotop 

method, and their in vitro survival after vitrification-warming was 

assessed by their hatching ability to hatch blastocyst stage during 72 h 

of additional IVC (magnification 100x) 
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Figure 5.5 The biopsied blastocysts were subjected to be vitrified with the 0.25 mL 

straw method and in vitro culture for 24 h after vitrification-warming 

(magnification 100x). 

 

 

Figure 5.6 The biopsied blastocysts were subjected to be vitrified with the 0.25 mL 

straw method and in vitro culture for 72 h after vitrification-warming 

(magnification 100x). 
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5.3.7 Blastocyst vitrification and warming using Cryotop 

Biopsied and non-biopsied derived blastocysts were exposed to 

vitrification solution as used in 0.25 mL straw method. Then, a group of 5 blastocysts 

was placed on a Cryotop sheet in a small volume of vitrification solution (<1 µl) and 

then the Cryotop was plunged into LN2. The process of exposing the blastocysts to 

vitrification solution to their immersion into LN2 was completed within 30 sec. All 

vitrification procedure was performed at room temperature (24-26 ºC). After stored for 

at least 24 h in LN2 tank, vitrified blastocysts were warmed by insertion of the 

Cryotop sheet into HM at 38.5 ºC for 5 min. After washing three times in HM, they 

were transferred into culture dishes and cultured in vitro for 72 h at 38.5 ºC in 

humidified atmosphere of 5% CO2 in air with the same medium used in 0.25 mL 

straws method to evaluate their survival of embryo after being thawed.  

5.3.8 TUNEL assay 

DNA fragmentation evaluation was performed using TUNEL (In Situ Cell 

Death Detection kit; Roche, USA) as previously described (Park et al., 2007). 

Blastocysts were washed in phosphate buffer saline (PBS) containing 

polyvinylpyrrolidone (PVP, 1 mg/ml) (PBS-PVP) before fixation in 3.7% 

paraformaldehyde in PBS for 1 h at RT. After fixation, blastocysts were permeabilized 

with 0.5% Triton X-100 in PBS for 1 h at RT. The blastocysts were then washed twice 

in PBS-PVP and incubated in fluorescein-dUTP and terminal deoxynucleotidyl 

transferase for 1 h at 37 ºC in the dark. Then, blastocysts were incubated with 50µg/ml 

RNase A in 40µg/ml propidium iodide (PI) for 1 h at 37 ºC to label all nuclei. 

Blastocysts were washed in PBS-PVP, mounted on glass slides in glycerol droplets 

that were flattened by cover slips. The blastocysts were examined under UV light with 
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an excitation wavelength of 330-385 nm using an epifluorescence microscope (IX-71; 

Olympus Corporation, Tokyo, Japan). TUNEL-positive nuclei appeared bright 

yellowish-green and the PI staining allowed counting the total cell number.  

 

5.4 Experimental design  

This experiment was designed to evaluate the effects of blastocysts biopsy 

with microblade prior to vitrification by using Cryotop or 0.25 mL straw methods on 

their in vitro survival after vitrification-warming. IVP bovine blastocysts (IETS 

quality code 1, stage 6; n = 594) were biopsied with microblade technique, or were not 

biopsied (control) and then randomly vitrified using Cryotop or 0.25 mL straw 

methods. Non-vitrified blastocysts from each biopsied or non-biopsied groups served 

as the fresh control groups. The in vitro survival after vitrification-warming was 

assessed by their hatching ability to hatch blastocyst stage during 72 h of additional 

IVC. The in vitro survival after vitrification-warming, the total number of cells and the 

number of apoptotic cells per blastocyst were compared between the groups.  

 

5.5 Statistical analysis 

The rates of hatching blastocysts were expressed as percentage and subjected to 

arcsine transformation. Total numbers of cells and apoptotic cells per blastocyst were 

expressed as untransformed means ± standard error of the mean (SEM). Data were 

performed using 2 × 3 factorial randomized complete block design. Differences were 

considered to be significant when P<0.05. 

 

5.6 Results 

             As shown in Table 4, the rates of embryos developing to the hatching blastocyst 

 

 

 

 

 

 

 

 



92 

 

 

 

 

stage at 24 h of additional IVC after vitrification-warming of biopsied-derived 

blastocyst groups were higher than those of non-biopsied derived blastocyst groups. 

However, the hatching rate of biopsied derived-blastocyst and vitrified using 0.25 mL 

straw (biopsied + 0.25 mL straw) were not significantly different from the hatching 

rate of non-biopsied derived blastocyst groups. After 48-72 h of culture, the rates of 

development to hatched blastocyst stage between vitrified non-biopsy derived 

blastocysts using the Cryotop and 0.25 mL straw devices were not difference. 

Similarly, they did not differ in the hatching rates with fresh control group at 72 h of 

culture. In biopsied-derived blastocyst groups, the rates of hatching blastocysts after 

48-72 h of culture between vitrified biopsied-derived blastocysts using the Cryotop 

and fresh control groups were not different; moreover, they were higher in these rates 

than vitrified biopsied-derived blastocysts using 0.25 mL straw (83.0-88.0%, 93.7-

96.8% vs. 64.4-72.1%, P<0.05; respectively). Furthermore, we found a negative 

correlation between the blastocysts biopsy with microblade and vitrify with the 0.25 

mL method (r= -0.72, P=0.05).    

 The total number of nuclei after vitrification-warmed that obtained at 72 h of 

additional IVC and in vitro culture for 9 days (fresh control) between all groups were 

not different. However, the numbers of apoptotic cells per blastocyst were higher in all 

  

 vitrified groups derived from biopsied and non-biopsied blastocysts than those 

of fresh control groups (P<0.05).  
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Table 5.1  Development to the hatching blastocysts stage of biopsied and non-

biopsied derived blastocyst vitrified using the Cryotop or 0.25 mL 

device, warmed and cultured in vitro for 72 h 

 

Ten replications were performed. 
a,b

Values that have different superscripts within a 

single column are significantly different at P<0.05. Biopsied + Cryotop: IVP 

blastocysts that were biopsied with microblade prior vitrified using Cryotop device. 

Biopsied + 0.25 mL straw: IVP blastocysts that were biopsied with microblade prior 

to vitrification using 0.25 mL straws device. Biopsied + fresh control: IVP 

blastocysts that were biopsied with microblade but were not subjected to vitrification.  

Non-biopsied + Cryotop: non-biopsied of IVP blastocysts that vitrified using Cryotop 

device. Non-biopsied + 0.25 mL straw: non-biopsied of IVP blastocysts that were 

vitrified using 0.25 mL straws device. Non-biopsied + fresh control: non-biopsied of 

IVP blastocysts that were not subjected to vitrification. 

Treatment 

No. of 

cryopreserved 

embryos 

No. of hatched embryos 

 

24 h 48 h 72 h 

Biopsied 

Cryotop 100 71
a
 83

a
 88

a
 

    (71.0%) (83.0%) (88.0%) 

0.25 mL straw 104 61
b
 67

b
 75

b
 

    (58.6%) (64.4%) (72.1%) 

fresh control 95 81
a
 89

a
 92

a
 

    (85.3%) (93.7%) (96.8%) 

Non-biopsy 

Cryotop 100 52
b
 76

ab
 93

a
 

    (52.0%) (76.0%) (93.0%) 

0.25 mL straw 100 45
b
 66

b
 84

ab
 

    (45.0%) (66.0%) (84.0%) 

fresh control 95 53
b
 78

a
 95

a
 

    (55.7%) (82.1%) (100.0%) 
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Table 5.2 Total cell numbers and apoptosis cells per blastocyst derived from 

biopsied and non-biopsied blastocysts with microblade, and then randomly 

vitrified using the Cryotop or 0.25 mL straws device, warmed and cultured 

in vitro for 72 h.  

Treatment No. of 

blastocyst 

evaluated 

 

 No. of nuclei ± SEM 

 

 
Total cells 

per per 

Apoptosis cells 

per 
blastocyst blastocyst 

 Cryotop 10 103.3±0.3 13.4±9.2
a
 

Biopsied 0.25 mL straw 10 101.7±0.7 15.1±8.5
a
 

 fresh control 10 110.3±0.5 0.7±3.0
b
 

Non-biopsy 

Cryotop 10 123.3±1.5 8.8±10.1
a
 

0.25 mL straw 10 121.5±1.9 9.5± 8.0
a
 

fresh control 11 133.3±1.2 0.5±3.9
b
 

 

Data presented as means ± SEM. 
a,b

Values that have different superscripts within a 

single column are significantly different at P<0.05. Biopsied + Cryotop: IVP 

blastocysts that were biopsied with microblade prior to vitrification using Cryotop 

device. Biopsied + 0.25 mL straw: IVP blastocysts that were biopsied with 

microblade prior to vitrification using 0.25 mL straws device. Biopsied + fresh 

control: IVP blastocysts that were biopsied with microblade but were not subjected to 

vitrification.  Non-biopsied + Cryotop: non-biopsied of IVP blastocysts that vitrified 

using Cryotop device. Non-biopsied + 0.25 mL straw: non-biopsied of IVP 

blastocysts that were vitrified using 0.25 mL straws device. Non-biopsied + fresh 

control: non-biopsied of IVP blastocysts that were not subjected to vitrification.  
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Table 5.3 Correlation between the blastocysts biopsy with microblade and 

vitrification methods on their in vitro survival after these processes  

Treatment In vtiro survival 

R P-value 

Biopsied 

Cryotop 0.70 0.11 

0.25 mL straw -0.72 0.05 

fresh control 0.86 0.14 

 

Non-biopsy 

Cryotop 0.84 0.06 

0.25 mL straw 0.64 0.12 

fresh control 0.89 0.06 

 

Differences were considered to be significant when P<0.05. 
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Figure 5.7 Fluorescence images in each treatment groups of bovine blastocysts. Red 

color of PI stained total nuclei and bright yellowish-green of TUNEL kit 

stained DNA fragmentation (magnification 100x). 
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5.7 Discussions 

It is known that the biopsy procedure could risk the embryonic damage by 

reducing the available cells number for differentiation (de Vos and Van Steirteghem, 

2001). Moreover, combining embryo biopsy and freezing had more impact on their 

pregnancy rates or in vivo survival (Shea, 1999). All three biopsy techniques that were 

used for embryo sexing in previous reports, the microblade technique tended to 

decrease the pregnancy rate in recipients when compared with needle and aspiration 

technique (12% vs. 22 and 18%, respectively) (Cenariu et al., 2012a). Similarly, 

Nibart et al. (1997) and Shea (1999) obtained pregnancy rates, ranged from 23 and 

28%, respectively, when frozen-warmed with  mocroblade biopsies bovine embryos 

were transferred; whereas, the pregnancy rates ranged from 33 to 66% when the 

needle or aspiration biopsied were used. Moreover, Vajta et al. (1997) reported that 

98% of survival after being biopsied, and 86% of re-expanded rate after vitrification 

warming with 0.25 mL straw method when a biopsy was performed before 

vitrification. In addition, they found the less efficient when biopsy after vitrification, 

which the survival rate in both process was only 69%. In this study, we achieved the 

highest rate at 88% of in vitro survival following microblade biopsied and vitrified 

using the Cryotop method. The in vitro survival after vitrification-warming was 

assessed by their hatching ability to hatch blastocyst stage during 72 h of additional 

IVC in our study. Besides, our results supported the in vitro survival rate, which 

obtained from biopsied prior to vitrification with the Cryotop method was not different 

from fresh and non-biopsied blastocysts (Table 1).  

It has already been described that the short-term culture of bovine blastocysts for 

2.5 to 5 h after being biopsied and before being subjected to vitrification improved 
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their in vitro survival after warming vitrified IVP bovine blastocysts using 0.25 mL 

straw method (Ito et al., 1999). In our study, 4 to 6 h of culture after being biopsied 

and before being subjected to vitrification was used to improve the in vitro survival 

after warming of vitrified IVP bovine blastocysts using the Cryotop method. However, 

successful rates that were achieved in this study may be occurred by the other factors 

such as, the high efficiency vitrification system of Cryotop device which achieved the 

cooling rate approximately 20,000 °C/min (Kuwayama et al., 2005). Moreover, in 

vitro survival after warming of vitrified biopsied blastocysts using 0.25 mL straw was 

lower than those of the Cryotop and two control groups. In addition, we found a 

significant negative correlation between the blastocysts biopsy with microblade and 

vitrify with the 0.25 mL method. These agree with Bredbacka et al. (1995), who 

showed that microblade biopsy without micromanipulator caused cell lysis 

approximately 15-30%, after biopsying blastocysts. Therefore, microblade biopsy 

under micromanipulator is the beneficial effect in this study. 

  To investigate the quality of IVP bovine embryos derived from biopsy with 

microblade prior to vitrification using the Cryotop or 0.25 mL straw methods, the total 

cell number and the number of apoptotic cells per blastocyst was determined. It has 

been proposed that apoptosis play a potentially important role in early embryonic loss 

and in cellular responses to stress and suboptimal developmental condition (Betts and 

King, 2001; Gjørret et al., 2003). Therefore, when the cell number is increasing and 

smaller number of apoptotic cells may indicate improved embryo health and 

embryonic viability after being transferred to recipients (Caamaño et al., 2015). Our 

results showed that no differences between biopsied and non biopsied derived-

blastocyst that subjected to vitrification with the Cryotop or 0.25 mL straw method in 
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total cell number per blastocyst. However, the apoptotic cell per blastocyst was greater 

in all vitrified groups derived from both of biopsied and non-biopsied blastocysts than 

those of fresh control groups (P<0.05) (Table 2). These corresponding results were 

found in Park et al. (2007) and Ha et al. (2014a, b). In addition, we did not findthe 

significant differences in apoptotic cell per blastocyst between bovine blastocysts 

derived from biopsied and non biopsied blastocysts. These indicated that microblade 

biopsy had no effect on increasing apoptotic cells per blastocyst; whereas, the 

vitrification performed an effect on increasing apoptotic celsl per blastocyst after 

vitrification-warming.       

      

5.8 Conclusion 

In conclusion, the use of microblade for biopsy prior to vitrification using the 

Cryotop method is the highest in vitro survival after vitrification-warming as well as 

non-biopsied and fresh embryos. When vitrified biopsied IVP bovine blastocysts using 

0.25 mL straw, the lower in vitro survival after vitrification-warming was found. It 

may be caused by the combined-effects between microblade biopsy and vitrification 

with 0.25 mL straw methods which had more impact on their in vitro survival. 

However, it is necessary to improve the vitrification system for sanitary vitrification 

and simplifies this technique for direct transfer of vitrified sexed embryos on the farm. 
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CHAPTER VI 

OVERALL CONCLUSIONS AND IMPLICATIONS 

 
Bovine blastocysts produced in vitro have been successfully cryopreserved by 

vitrification method. To improve the economic value of IVP bovine embryos, it is 

necessary to develop the vitrification technique for sanitary and one step dilution after 

warming, which supported direct transfer of vitrified bovine embryos under field 

conditions.  

Vitrification of both bovine IVM oocytes and bovine IVP embryos at the 

expanded blastocyst stage by using Cryotop and MVAC cooling systems are equally 

effective, resulting in high survival and developmental rates. Thus, this study suggests 

that the MVAC system is a new, useful method for vitrification of both bovine IVM 

oocytes and bovine IVP embryos. Our results also show that the modified MVAC 

device used in the MVAC method may address biosafety concerns by serving as a 

closed carrier system that prevents exposure to LN2.  

To improve the efficiency of the 0.25 mL straw for vitrification device, our 

straw columns in combination with the optimum factors have been suggested for 

vitrified IVP bovine blastocysts. Therefore, this study suggests that this method is 

allowed the one step dilution after warming of vitrified IVP bovine embryos, which 

embryo transfer can be simplified on the farm to the same level of artificial 

insemination. 

Using microblade for biopsy prior to vitrification with 0.25 mL straw method, 

resulting in a decrease after biopsied and vitrified procedures. When vitrified biopsied  
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IVP bovine blastocysts using 0.25 mL straw, the lower in vitro survival rates after 

vitrification-warming was found. It may be caused by the combined-effects between 

microblade biopsy and vitrification with 0.25 mL straw methods which had more 

impact on their in vitro survival. However, no differences between biopsied and non 

biopsied derived-blastocyst that subjected to vitrification with the Cryotop or 0.25 mL 

straw method in total cell number per blastocyst. Moreover, this study did not find the 

significant differences in apoptotic cell per blastocyst between bovine blastocysts 

derived from biopsied and non biopsied blastocysts. These indicated that microblade 

biopsy had no effect on increasing apoptotic cells per blastocyst. 

In this study, we found that vitrification with 0.25 mL straw device can be 

successful develop for sanitary vitrification and one step dilution after warming for the 

direct transfer of biopsied IVP bovine embryos on the farm. However, it is necessary 

for the future studies to investigate in vivo survival rates from biopsied and non-

biopsied IVP blastocysts that vitrified by 0.25 mL straw method.     
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