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Abstract

Relaxation control for a class of semilinear impulsive controlled systems is investigated. Existence of mild solutions for
semilinear impulsive controlled systems is proved. By introducing a regular countably additive measure, we convexify the original
control systems and obtain the corresponding relaxed control systems. The existence of optimal relaxed controls and relaxation
results is also proved.
c© 2008 Published by Elsevier Ltd
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1. Introduction

Let I ≡ [0, T ] be a closed and bounded interval of the real line. Let D ≡ {t1, t2, . . . , tn} be a partition on (0, T )
such that 0 < t1 < t2 < · · · < tn < T . A semilinear impulsive controlled system can be described by the following
evolution equation:ẋ(t) = Ax(t)+ f (t, x(t), u(t)) t ∈ (0, T ) \ D,

x(0) = x0,

∆x(ti ) = Ji (x(ti )), i = 1, 2, . . . , n,
(1.1)

where A is the infinitesimal generator of a C0-semigroup {T (t), t ≥ 0} in a Banach space X , the functions f, Ji ,

i = 1, 2, . . . , are continuous nonlinear operators from X to X , and ∆x(ti ) ≡ x(ti +0)− x(ti −0) = x(ti +0)− x(ti ).
This system contains the jump in the state x at time ti with Ji determining the size of the jump at ti . In this
paper, we aim to prove the existence of state–control pairs of the system (1.1). Moreover, by defining the objective
functional J (x, u) =

∫ T
0 L(t, x(t), u(t))dt , we shall find sufficient conditions to guarantee the existence of optimal

state–control pairs when convexity conditions on a certain orientor field are not assumed. This is the relaxation
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problem. By introducing regular countable additive measures, we convexify the original control systems and obtain
the corresponding relaxed control systems. Under some reasonable assumptions, we prove that the set of original
trajectories is dense in the set of relaxed trajectories in an appropriate space. The existence of optimal relaxed controls
is obtained under some regularity hypotheses concerning the cost functional.

In recent years, relaxed systems have attracted much attention since some orientor fields do not satisfy the
convexity condition. See, for instance, [1,6,7]. Ahmed [1] dealt with this problem and introduced measure-valued
controls in which the control space is compact and values of relaxed control are countable additive measures, while
Papageorgious [6] and other authors including us continue to discuss this problem in another direction. However,
to our knowledge, there are few authors who have studied the problem of relaxed controls of systems governed by
impulsive evolution equations, particularly, relaxation on semilinear impulsive evolution equations. We organize the
paper as follows. In Section 2, we describe the original control systems and the corresponding relaxed control systems.
The properties of relaxed trajectories are given in Section 3. Section 4 is devoted to the existence of relaxed optimal
controls and relaxation theorems.

2. Original and relaxed controlled systems

In what follows, let the Banach space (X, ‖ · ‖X ) be the state space, I ≡ [0, T ] be a closed and bounded interval of
the real line, C(I, X) denote the space of continuous functions, and C1(I, X) denote the space of first-order continuous
differentiable functions. Let L(X, Y ) denote the space of bounded linear operators from X to Y and L(X) denote the
space of bounded linear operators from X to X .

We denote the ball {x ∈ X : ‖x‖ ≤ r} by Br . Define PC(I, X) ≡ {x : I → X : x(t) is continuous at t 6=

ti , left continuous at t = ti , and the right hand limit x(t+i ) exists}. Equipped with the supremum norm topology, it is
a Banach space.

We introduce the following assumptions.

[A]: The operator A is the infinitesimal generator of a C0-semigroup {T (t), t ≥ 0} on X .
[F]: f : I × X → X is an operator such that

(1) t → f (t, ξ) is measurable and locally Lipschitz continuous with respect to the last variable, i.e., for any
finite number ρ > 0, there exists a constant L1(ρ) > 0 such that

‖ f (t, x1)− f (t, x2)‖X ≤ L1(ρ)‖x1 − x2‖X ,

∀x1, x2 ∈ Bρ .
(2) There exists a constant k > 0 such that ‖ f (t, x)‖X ≤ k(1 + ‖x‖X ).

[J]: Ji : X → X is an operator such that
(1) Ji maps a bounded set to a bounded set.
(2) There exist constants hi > 0, i = 1, 2, . . . , n, such that

‖Ji (x)− Ji (y)‖ ≤ hi‖x − y‖, x, y ∈ X.

Consider the following impulsive systems:ẋ(t) = Ax(t)+ f (t, x(t)) t ∈ [0, T ] \ D,
x(0) = x0,
∆x(ti ) = Ji (x(ti )), i = 1, 2, . . . , n.

(2.1)

By a mild solution of (2.1), we shall mean that a function x ∈ PC(I, X) satisfies the following integral equation:

x(t) = T (t)x0 +

∫ t

0
T (t − τ) f (τ, x(τ ))dτ +

∑
0<ti<t

T (t − ti )Ji (x(ti )).

Theorem 1. Suppose the assumptions [A], [F], and [J] hold; then for every x0 ∈ X the system (2.1) has a unique mild
solution x ∈ PC(I, X) and the mild solution depends continuously on the initial conditions—that is, if x0, y0 ∈ X
and if x(t), y(t) are mild solutions of Eq. (2.1) which satisfy x(0) = x0 and y(0) = y0. Then there exists a constant
C > 0 s.t.

sup
t∈[0,T ]

‖x(t)− y(t)‖ ≤ C‖x0 − y0‖X .
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Proof. Firstly, we consider the following general differential equation without impulse:{
ẋ(t) = Ax(t)+ f (t, x(t)) t > 0,
x(0) = x0.

(2.1.1)

Define a closed ball B(x0, 1) as follows:

B(x0, 1) = {x ∈ C([0, T1], X), ‖x(t)− x0‖ ≤ 1, 0 ≤ t ≤ T1},

where T1 will be chosen later. Define a map P on B(x0, 1) by

(Px)(t) = T (t)x0 +

∫ t

0
T (t − τ) f (τ, x(τ ))dτ

and let M ≡ supt∈[0,T ] ‖T (t)‖. Using assumption [F], one can verify that P maps B(x0, 1) to B(x0, 1). To prove this,
we note that

‖(Px)(t)− x0‖ ≤ ‖T (t)x0 − x0‖ +

∫ t

0
‖T (t − τ)‖‖ f (τ, x(τ ))‖dτ

≤ Mk(1 + ρ)t + ‖T (t)x0 − x0‖.

Since T (t) is the strongly continuous C0-semigroup, there exists T11 > 0 such that for all t ∈ [0, T11], ‖T (t)x0−x0‖ ≤
1
2 . Now, let 0 < T22 <

1
2Mk(1+ρ)

. Set T ′

1 = min{T11, T22}; hence for all t ∈ [0, T ′

1] we have ‖(Px)(t) − x0‖ ≤ 1.

Hence P : B(x0, 1) → B(x0, 1).
Let x1, x2 ∈ B̄(x0, 1). By assumption [F](1), we have

‖(Px1)(t)− (Px2)(t)‖ ≤

∫ t

0
‖T (t − τ)‖‖ f (τ, x1(τ ))− f (τ, x2(τ ))‖dτ

≤ Mt L1(ρ)‖x1 − x2‖.

Now, let 0 < T ′′

1 =
1

2M L1(ρ)
; then ‖(Px1)(t)− (Px2)(t)‖ ≤

1
2‖x1 − x2‖. Hence, we shall choose T1 = min{T ′

1, T ′′

1 }

to guarantee that P is a contraction map on B(x0, 1). This implies that (2.1.1) has a unique mild solution on [0, T1].
Again, using the assumption [F], we can obtain the a priori estimate of mild solutions of Eq. (2.1.1). To see this, we
note that

‖x(t)‖ ≤ ‖T (t)x0‖ +

∫ t

0
‖T (t − τ)‖‖ f (τ, x(τ ))‖dτ

≤ M‖x0‖ + MkT + Mk
∫ t

0
‖x(τ )‖dτ.

By the Gronwall inequality, we obtain

‖x(t)‖ ≤ (M‖x0‖ + MkT ) eMk
∫ t

0 dτ

≤ (M‖x0‖ + MkT ) eMkT
≡ M .

That is, there exists a constant M = (M‖x0‖ + MkT ) eMkT > 0 such that for t ∈ [0, T ] we have ‖x(t)‖ ≤ M . Then
we can prove the global existence of the mild solution of system (2.1.1) on [0, T ].

Now, we are ready to construct a mild solution for the impulsive system (2.1). For t ∈ [0, t1), the above result
implies that x(t) = T (t)x0 +

∫ t
0 T (t − τ) f (τ, x(τ ))dτ is the unique mild solution of the system (2.1) on [0, t1].

Clearly the solution is continuous on [0, t1) and since T (t) is a continuous semigroup, then x(t) can be extended
continuously until the point of time t1 which is denoted by x(t1). It is easy to see that x(t1) ∈ X . Since J1 maps
bounded sets to bounded subsets of X , the jump is uniquely determined by the expression

x(t1 + 0) = x(t1 − 0)+ J1(x(t1 − 0)) ≡ x(t1)+ J1(x(t1)) ≡ x1.

Consider the time t ∈ (t1, t2). We have

x(t) = T (t)x0 +

∫ t

0
T (t − τ) f (τ, x(τ ))dτ + T (t − t1)J1(x(t1)).
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Again, x ∈ C((t1, t2), X) and can be extended continuously until the point of time t2 which is denoted by x(t2) ∈ X .
By the previous result, x(·) is a mild solution of Eq. (2.1) on (t1, t2]. Because J2 maps bounded sets to bounded sets,
the jump is uniquely determined by

x(t2 + 0) = x(t2 − 0)+ J2(x(t2 − 0)) ≡ x(t2)+ J2(x(t2)) ≡ x2.

This procedure can be repeated on t ∈ (t2, t3], (t3, t4], . . . , (tn, T ]. Thus we obtain a unique mild solution of problem
(2.1) on [0, T ] and it is given by

x(t) = T (t)x0 +

∫ t

0
T (t − τ) f (τ, x(τ ))dτ +

∑
0<ti<t

T (t − ti )Ji (x(ti )), 0 ≤ t ≤ T .

For the proof of continuous dependence on the initial value, one can use the Gronwall inequality to find a constant C
such that ‖x(t)− y(t)‖ ≤ C‖x0 − y0‖X for all t ∈ [0, T ]. The proof is now complete. �

Now, we introduce the admissible controls space Uad.
Let Γ be a compact Polish space (i.e., a separable complete metric space).
We define

Uad = {u : [0, T ] → Γ |u is strongly measurable}.

By the measurable selection theorem, Uad 6= φ (see [3]). We make the following assumptions for our control systems.

Assumptions

[F1] f : I × X × Γ → X is an operator such that

(1) t 7→ f (t, ξ, η) is measurable, and (ξ, η) 7→ f (t, ξ, η) is continuous on X × Γ .

(2) For any finite number ρ > 0, there exists a constant L(ρ) > 0 such that

‖ f (t, x1, σ )− f (t, x2, σ )‖X ≤ L(ρ)‖x1 − x2‖X ,

for all ‖x1‖ < ρ, ‖x2‖ < ρ, and t ∈ I, σ ∈ Γ .

(3) There exists a constant kF > 0 such that

‖ f (t, x, σ )‖X ≤ kF (1 + ‖x‖X ) (t ∈ I, σ ∈ Γ ).

Consider the following original control system:ẋ(t) = Ax(t)+ f (t, x(t), u(t)),
x(0) = x0,
∆x(ti ) = Ji (x(ti )), u(·) ∈ Uad.

(2.2)

Theorem 2. Suppose the assumptions [A], [J], and [F1] hold. Then for every x0 ∈ X and u ∈ Uad, the system (2.2)
has a unique mild solution x ∈ PC(I, X) which satisfies

x(t) = T (t)x0 +

∫ t

0
T (t − τ) f (τ, x(τ ), u(τ ))dτ +

∑
0<ti<t

T (t − ti )Ji (x(ti )).

Proof. Let u ∈ Uad and define gu(t, x) = f (t, x, u). Since f is measurable, then gu : I × X → X is measurable on
[0, T ] for each fixed x ∈ X . Hence gu satisfies the assumption [F]. By Theorem 1, the system (2.2) has a unique mild
solution x ∈ PC(I, X).

In order to introduce the relaxed control system corresponding to (2.2), we need some preparations which are drawn
from ([4], p. 618–650). Let Γ be a compact Polish space, and C(Γ ) consist of all continuous real-valued functions.
Endowed with the supremum norm, C(Γ ) is a Banach space. Let Φ(C) be a σ -field generated by the collection C of
all closed sets of Γ and let Σrca(Γ ) be the space of all regular countably additive measures on the measurable space
(Γ ,Φ(C)). For µ ∈ Σrca(Γ ), |µ| denotes the total variation of µ. �
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Lemma 3. The dual space C(Γ )∗ can be identified algebraically and metrically with Σrca(Γ ) with the norm

‖µ‖Σrca(Γ ) = |µ|(Γ ).

The duality pairing of C(Γ ) and Σrca(Γ ) is given by

〈 f, µ〉 =

∫
Γ

f (σ )µ(dσ)

for f ∈ C(Γ ), µ ∈ Σrca(Γ ).
Let L1(I,C(Γ )) be the space of all (the equivalence class of) strongly measurable C(Γ )-valued functions u(·)

defined on I such that

‖u‖ =

∫
I
‖u(t)‖dt < +∞.

L1(I,C(Γ )) is a Banach space. L∞
w (I,C(Γ )∗) is the space of all C(Γ )∗-valued C(Γ )-weakly measurable functions

g(·) such that there exists C > 0 with

|〈g(t), y〉| ≤ C‖y‖C(Γ ) a.e. in 0 ≤ t ≤ T, (2.2.1)

for each y ∈ C(Γ ) (the null set where (2.2.1) fails to hold may depend on y). Two functions g(·), h(·) are said to be
equivalent in L∞

w (I,C(Γ )∗) (in symbols, g ≈ h) if 〈g(t), y〉 = 〈 f (t), y〉 a.e. in 0 ≤ t ≤ T for each y ∈ C(Γ ).

Lemma 4. The dual L1(I,C(Γ ))∗ is isometrically isomorphic to L∞
w (I,C(Γ )∗). The duality pairing between the two

spaces is given by

〈〈g, f 〉〉 =

∫ T

0
〈g(t), f (t)〉dt,

where g ∈ L∞
w (I,C(Γ )∗) and f ∈ L1(I,C(Γ )).

Since Γ is a compact metric space, C(Γ )∗ is a separable Banach space (see [8], p. 265) and hence has the
Radon–Nikodym property which tells us that L1(I,C(Γ ))∗ = L∞(I,Σrca(Γ )).

Definition 1. The space R(I,Γ ) of relaxed controls consists of all µ(·) in L∞(I,Σrca(Γ )) = L1(I,C(Γ ))∗ that
satisfy

(i) if f (·, ·) ∈ L1(I,C(Γ )) is such that f (t, σ ) ≥ 0 for σ ∈ Γ a.e. in 0 ≤ t ≤ T then∫ T

0

∫
Γ

f (t, σ )µ(t, dσ)dt ≥ 0,

(ii) if χ(t) is the characteristic function of a measurable set e ⊆ [0, T ], and 1 ∈ C(Γ ) is the function 1(σ ) = 1, then∫ T

0

∫
Γ
(χ(t)⊗ 1(σ ))µ(t, dσ)dt = |e|.

Note that χ(·)⊗ 1(·) ∈ L1(I,C(Γ )).
We note that (ii) can be generalized to∫ T

0

∫
Γ
(φ(t)⊗ 1(σ ))µ(t, dσ)dt =

∫ T

0
φ(t)dt

for any φ(·) ∈ L1(I ).
In fact, for µ(·) ∈ R(I,Γ ), we have

‖µ‖L∞(I,Σrca(Γ )) ≤ 1, µ(t) ≥ 0, and µ(t,Γ ) = 1 a.e. in 0 ≤ t ≤ T .

In particular,

‖µ(t)‖Σrca(Γ ) = 1 a.e. in 0 ≤ t ≤ T .
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Lemma 5. Let {µn(·)} be a sequence in R(I,Γ ). Then there exists a subsequence which is L1(I,C(Γ ))-weakly
convergent in L∞(I,Σrca(Γ )) to µ(·) ∈ R(I,Γ ).

Sometimes, using another equivalent definition of R(I,Γ ) is more convenient. We denote by Πrca(Γ ) the set of all
probability measures µ in Σrca(Γ ). We denote the Dirac measure with mass at u using the functional notation δ(·−u)
or δu . The set D = {δu : u ∈ Γ } of all Dirac measures is a subset of Πrca(Γ ).

Lemma 6. Πrca(Γ ) is C(Γ )-weakly compact, also C(Γ )-weakly closed in Σrac(Γ ).
Let conv denote the closed convex hull (closure taken in the weak C(Γ )-topology). Then

Πrca(Γ ) = conv(D).

Since C(Γ ) is separable, the equivalent relation in L∞(I,Σrca(Γ )) is equality almost everywhere. Let us define
the set

R(I,Πrca(Γ )) = {u ∈ L∞(I,Σrca), ∃v s.t. v ≈ u and v(t) ∈ Πrca(Γ ) a.e. in 0 ≤ t ≤ T }.

If u(·) ∈ Uad then one can check that the Dirac delta with mass at u(t) (written as δ(· − u(t)) is an element of
R(I,Πrca(Γ )). Hence we can identify Uad as a subset of R(I,Πrca(Γ )). We note further that R(I,Πrca(Γ )) = R(I,Γ )
(see [4], Theorem 12.6.7).

Now, let us consider the new larger system known as the “relaxed impulsive system”:ẋ(t) = Ax(t)+ F(t, x(t))µ(t),
x(0) = x0,

∆x(ti ) = Ji (x(ti )), µ(·) ∈ Ur .

(2.3)

The admissible control space is Ur = R(I,Πrca(Γ )). The function F : I × X × Σrca(Γ ) → X is defined by

F(t, x)µ =

∫
Γ

f (t, x, σ )µ(dσ).

The following theorem is an immediate consequence of Theorem 2.

Theorem 7. Assume that assumptions [A], [J] and [F1] hold. For every µ(·) ∈ Ur , the relaxed control system (2.3)
has a unique solution.

3. Properties of relaxed trajectories

In this section, we will denote the set of original trajectories and relaxed trajectories of the system (2.2) by X0 and
the system (2.3) by Xr , i.e.,

X0 = {x ∈ PC([0, T ]; X) | x is a solution of (2.2) corresponding to u(·) ∈ Uad}

and

Xr = {x ∈ PC([0, T ]; X) | x is a solution of (2.3) corresponding to µ(·) ∈ Ur }.

Theorems 2 and 7 show that X0 6= φ implies Xr 6= φ. Moreover, since Uad ⊆ Ur we have X0 ⊆ Xr .
Next, we introduce one more hypothesis concerning the operator A.

[A1] An operator A is the infinitesimal generator of a compact C0-semigroup {T (t), t ≥ 0}.

Lemma 8. Let A satisfy assumption [A1] on Banach space X. Let 1 < p and define

S(g(·)) =

∫
·

0
T (· − s)g(s)ds ∀g(·) ∈ L p(I, X).

Then S : L p(I, X) → C(I, X) is compact.

Proof. See Lemma 3.2 in [5]. �
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Lemma 9. Let X be reflexive and separable. Suppose the assumptions [A1] and [F1] hold. If {µn(·)} is a sequence
in L∞(I,Σrca(Γ )) with µn(·) → µ(·) L1(I,C(Γ ))-weakly as n → ∞ then

ρn(·) =

∫
·

0
T (· − τ)

∫
Γ

f (τ, x(τ ), σ )(µn(τ )− µ(τ))(dσ)dτ → 0 in C(I, X) as n → ∞,

where x ∈ C([0, T ], X).

Proof. Due to reflexivity of X , {T ∗(t), t ≥ 0} is a C0-semigroup in Banach space X∗ (see [2], p. 47). Define
gn(τ ) =

∫
Γ f (τ, x(τ ), σ )(µn(τ )− µ(τ))(dσ); then

‖gn(τ )‖ ≤

∫
Γ

‖ f (τ, x(τ ), σ )‖(µn(τ )− µ(τ))(dσ)

≤ kF (1 + ‖x(τ )‖)‖µn(τ )− µ(τ)‖Σrca(Γ )

≤ 2kF (1 + ‖x(τ )‖).

Since x(t) is the solution of (2.3), then it is bounded by M̄ . This implies that {gn(·)} is bounded in L p(I, X),
1 < p < +∞. Hence there exists a subsequence (denoted with the same symbol) with gn(·)

w
→ g(·) in L p(I, X).

By Lemma 8, we have

ρn(·) =

∫
·

0
T (· − τ)gn(τ )dτ

s
−→

∫
·

0
T (· − τ)g(τ )dτ ≡ ρ(·) in C(I, X).

For fixed 0 ≤ t ≤ T, h∗
∈ X∗, we have

〈ρn(t), h∗
〉 =

∫ t

0
〈T (t − τ)gn(τ ), h∗

〉dτ

=

∫ t

0
〈gn(τ ), T ∗(t − τ)h∗

〉dτ

=

∫ t

0

∫
Γ

〈 f (τ, x(τ ), σ ), T ∗(t − τ)h∗
〉(µn(τ )− µ(τ))(dσ)dτ

=

∫ t

0

∫
Γ
ξ(τ, σ )(µn(τ )− µ(τ))(dσ)dτ

where ξ(τ, σ ) = 〈 f (τ, x(τ ), σ ), T ∗(t − τ)h∗
〉.

By assumption [F1], for τ fixed, the map σ 7→ ξ(τ, σ ) is continuous. This implies that ξ(τ, σ ) ∈ C(Γ ) and

|ξ(τ, σ )| ≤ k(1 + ‖x(τ )‖).

Hence ξ(·, ·) ∈ L1(I,C(Γ )).
Since µn(·) → µ(·) L1(I,C(Γ ))-weakly in L∞(I,Σrca(Γ )), then∫ t

0

∫
Γ
ξ(τ, σ )(µn(τ )− µ(τ))(dσ)dt −→ 0 as n → ∞.

This implies that, for fixed t ∈ I ,

〈ρn(t), h∗
〉 −→ 0 ∀h∗

∈ X∗.

Hence ρn(t)
w

−→ 0 as n → ∞. Thus ρ(t) ≡ 0. This means that ρn(·) −→ 0 as n → ∞ in C(I, X). �

Remark. Using the same proof, one can see that the result of Lemma 9 is also true when x ∈ PC([0, T ], X).

Theorem 10. Let X be reflexive and separable. Suppose the assumptions [A1], [J], and [F1] hold. If x(·, µ) is the
solution of (2.3) corresponding to µ then, for every ε > 0, there exists u(·) ∈ Uad such that x(·, u) is a solution of
(2.2) corresponding to u and satisfying

‖x(·, µ)− x(·, u)‖PC(I,X) < ε, t ∈ I.
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Proof. Let µ(·) ∈ Ur ; since Uad ⊆ Ur and Uad is dense in Ur , there thus exists a sequence {un} ⊆ Uad such that

un
w∗

−→µ. Let xn(·) = x(·, un) be the solution of (2.2) corresponding to un and x(·) = x(·, µ) be the solution of (2.3)
corresponding to µ. Since

xn(t) = T (t)x0 +

∫ t

0
T (t − τ) f (τ, xn(τ ), un(τ ))dτ +

∑
0<ti<t

T (t − ti )Ji (xn(ti ))

= T (t)xo +

∫ t

0
T (t − τ)

[∫
Γ

f (τ, xn(τ ), σ )δun (τ )(dσ)
]

dτ +

∑
0<ti<t

T (t − ti )Ji (xn(ti ))

and

x(t) = T (t)x0 +

∫ t

0
T (t − τ)

[∫
Γ

f (τ, x(τ ), σ )µ(τ)(dσ)
]

dτ +

∑
0<ti<t

T (t − ti )Ji (x(ti )),

we have

xn(t)− x(t) =

∫ t

0
T (t − τ)

[∫
Γ
( f (τ, xn(τ ), σ )δun (τ )− f (τ, x(τ ), σ )δun (τ ))(dσ)

]
dτ

+

∫ t

0
T (t − τ)

[∫
Γ

f (τ, x(τ ), σ )(δun (τ )− µ(τ))(dσ)
]

dτ

+

∑
0<ti<t

T (t − ti )[Ji (xn(ti ))− Ji (x(ti ))]

≡ I1 + I2 + I3.

By the Lipschitz condition [F1], we get

|I1| ≤ M
∫ t

0
L(ρ)‖xn(τ )− x(τ )‖,

where I1 ≡
∫ t

0 T (t − τ)[
∫
Γ ( f (τ, xn(τ ), σ )δun (τ ) − f (τ, x(τ ), σ )δun (τ ))(dσ)]dτ , and M is a bound for ‖T (t)‖ in

0 ≤ t ≤ T .
Using assumption [J](2), we have

|I3| ≤

∑
0<ti<t

Mhi‖xn(ti )− x(ti )‖,

where I3 ≡
∑

0<ti<t T (t − ti )[Ji (xn(ti ))− Ji (x(ti ))].
We denote the second integral I2 by ρn(t), i.e.,

ρn(t) ≡ I2 ≡

∫ t

0
T (t − τ)

[∫
Γ

f (τ, x(τ ), σ )(δun (τ )− µ(τ))(dσ)
]

dτ.

Thus

‖xn(t)− x(t)‖ ≤ M
∫ t

0
L(ρ)‖xn(τ )− x(τ )‖dτ + ‖ρn(t)‖ +

∑
0<ti<t

Mhi‖xn(ti )− x(ti )‖.

By the impulsive Gronwall inequality, we get

‖xn(t)− x(t)‖ ≤ C‖ρn(t)‖,

where C ≡
∏

0<ti<t (1 + Mhi ) exp(M L(ρ)t).
By using Lemma 9, we show that ρn(·) → 0 as n → ∞ in PC([0, T ], X). Hence xn(·) → x(·) as n → ∞ in

PC([0, T ], X). The proof is complete. �
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4. Relaxed optimal controls and relaxation theorems

Consider the following Lagrange optimal control (Pr): Find a control policy µ0 ∈ Ur such that it imparts a
minimum to the cost functional J given by

J (µ) ≡ J (xµ, µ) ≡

∫
I

∫
Γ

l(t, xµ(t), σ )µ(t)(dσ)dt, (Pr)

where xµ is a solution of the system (2.3) corresponding to the control µ ∈ Ur .
We make the following hypotheses concerning the integrand l(·, ·, ·).

[L] l : I × X × Γ → R̄ = R ∪ {+∞} is an operator such that
(1) (t, ξ, σ ) 7→ l(t, ξ, σ ) is measurable,
(2) (ξ, σ ) 7→ l(t, ξ, σ ) is lower semicontinuous,
(3) |l(t, ξ, σ )| ≤ θR(t) for almost all t ∈ I provided that ‖ξ‖X ≤ R, σ ∈ Γ and θR(t) ∈ L1(I ).

Before proving the existence of the relaxed control, we need a lemma.

Lemma 11. Suppose h : I × X × Γ → R satisfies

(1) t 7→ h(t, ξ, σ ) is measurable, (ξ, σ ) 7→ h(t, ξ, σ ) is continuous,
(2) |h(t, ξ, σ )| ≤ ψR(t) ∈ L1(I ) provided that ‖ξ‖X ≤ R and σ ∈ Γ .

If xn → x in C(I, X) then hn(·, ·) → h(·, ·) in L1(I,C(Γ )) as n → ∞, where hn(t, σ ) = h(t, xn(t), σ ) and
h(t, σ ) = h(t, x(t), σ ).

Proof. It follows immediately from the first hypothesis of this lemma that

hn, h ∈ L1(I,C(Γ )).

For each fixed t ∈ I , we shall show that hn(t, ·) → h(t, ·) in C(Γ ) as n → ∞.
By definition, we have

sup
σ∈Γ

|hn(t, σ )− h(t, σ )| = ‖hn(t, ·)− h(t, ·)‖C(Γ ).

Since Γ is compact, there exists σn ∈ Γ such that

|hn(t, σn)− h(t, σn)| = ‖hn(t, ·)− h(t, ·)‖C(Γ )

and we can assume σn → σ ∗ as n → ∞. We note that

sup
σ∈Γ

|hn(t, σ )− h(t, σ )| = |hn(t, σn)− h(t, σn)|

≤ |hn(t, σn)− hn(t, σ
∗)| + |hn(t, σ

∗)− h(t, σ ∗)| + |h(t, σ ∗)− h(t, σn)|.

Then, by continuity of h, we have |hn(t, σn)− h(t, σn)| → 0 as n → ∞.
This means

‖hn(t, ·)− h(t, ·)‖C(Γ ) → 0 as n → ∞.

Assuming that xn → x in C(I, X) as n → ∞ then there exists R such that ‖xn(t)‖, ‖x(t)‖ ≤ R.
Hence, by the second hypothesis of this lemma, we have

‖hn(t, ·)− h(t, ·)‖C(Γ ) ≤ ψR(t).

This implies that∫
I
‖hn(t, ·)− h(t, ·)‖C(Γ )dt → 0 as n → ∞.

We have

hn(·, ·) → h(·, ·) in L1(I,C(Γ )) as n → ∞.

This proves the lemma. �
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Let mr = inf{J (µ) : µ ∈ Ur }. We have the following existence of relaxed optimal control.

Theorem 12. Suppose assumptions [A1], [F1], [J] and [L] hold. Then there exists µ∗
∈ Ur such that J (µ∗) = mr .

Proof. Let {µn} be a minimizing sequence so that limn→∞ J (µn) = mr . Recall that Ur is w∗-compact in

L∞(I,Σrca(Γ )); by passing to a subsequence if necessary, we may assume µn
w∗

→µ∗ in L∞(I,Σrca(Γ )) as n → ∞.
Next, we shall prove that (x, µ∗) is an optimal pair, where x is the solution of (2.3) corresponding to µ∗.

Since every lower semicontinuous measurable integrand is the limit of an increasing sequence of Caratheodory
integrands, there exists an increasing sequence of Caratheodory integrands {lk} such that

lk(t, ξ, σ ) ↑ l(t, ξ, σ ) as k → ∞ for all t ∈ I, σ ∈ Γ .

Invoking the definition of weak topology and applying Lemma 11 on each subinterval of [0, T ], lk(t, xn(t), σ ) →

lk(t, x(t), σ ) as n → ∞ for almost all t ∈ I and all σ ∈ Γ , then

J (x, µ∗) = J (µ∗) =

∫
I

∫
Γ

l(t, x(t), σ )µ∗(t)(dσ)dt

= lim
k→∞

∫
I

∫
Γ

lk(t, x(t), σ )µ∗(t)(dσ)dt

= lim
k→∞

lim
n→∞

∫
I

∫
Γ

lk(t, xn(t), σ )µn(t)(dσ)dt

≤ lim
n→∞

∫
I

∫
Γ

l(t, xn(t), σ )µn(t)(dσ)dt

= mr .

However, by definition of mr , it is obvious that J (x, µ∗) ≥ mr . Hence J (x, µ∗) = mr .
This implies that (x, µ∗) is an optimal pair. �

If J (u) =
∫

I l(t, x(t), u(t))dt is the cost function for the original problem, and J (u0) = inf{J (u), u ∈ Uad} = m0,
in general, since Uad ⊆ Ur , we have mr ≤ m0. It is desirable that mr = m0, i.e., our relaxation is reasonable. We have
the following relaxation theorem. For this, we need hypotheses on l stronger than [L]:

[L1] l : I × X × Γ → R is an operator such that
(1) (t, ξ, σ ) → l(t, ξ, σ ) is measurable,
(2) (ξ, σ ) → l(t, ξ, σ ) is continuous,
(3) |l(t, ξ, σ )| ≤ θR(t) for almost all t ∈ I , provided ‖ξ‖X ≤ R, σ ∈ Γ and θR ∈ L1(I ).

Theorem 13. If assumptions [A1], [J], [F1], and [L1] hold and Γ is compact then m0 = mr .

Proof. Let (x, µ∗) be the optimal pair (the existence was guaranteed by the previous theorem); that is mr = J (x, µ∗).
By Theorem 10, there exists {un

} ⊆ Uad and {xn} ⊆ PC(I, X) such that

δun (·) → µ∗(·) L1(I,C(Γ ))-weakly in L∞(I,Σrca(Γ )),

and xn → x in PC(I, X) as n → ∞.
Applying Lemma 11 to each subinterval of [0, T ], one can verify that

l(·, xn(·), ·) → l(·, x(·), ·) in L1(I,C(Γ )).

By definition of the weak topology on Ur , we have

J (un) = J (δun ) =

∫
I

∫
Γ

l(t, xn(t), σ )δun (t)(dσ)dt

→

∫
I

∫
Γ

l(t, x(t), σ )µ∗(t)(dσ)dt = J (x, µ∗) = mr .

But, by definition of m0, J (un) ≥ m0. Hence mr = limn→∞ J (un) > m0. This implies m0 = mr . The proof is now
complete. �
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