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p̄D atoms in realistic potentials
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Abstract

The p̄D atoms are studied in various realistic, popular N̄N potentials. The small energy shifts and decay widths of the atoms, which stem
from the short-ranged strong interactions between the antiproton and deuteron, are evaluated in a well-established, accurate approach based on the
Sturmian functions. The investigation reveals that none of the employed potentials, which reproduce the N̄N scattering data quite well, is able to
reproduce the experimental data of the energy shifts of the 2p p̄D atomic states. The energy shifts of the 2p p̄D atomic states are very sensitive
to the N̄N strong interactions, hence the investigation of the p̄D atoms is expected to provide a good platform for refining the N̄N interaction,
especially at zero energy.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The second simplest antiprotonic atom is the antiprotonic
deuteron atom p̄D, consisting of an antiproton and a deuteron
bound mainly by the Coulomb interaction but distorted by the
short range strong interaction. The study of the p̄D atom is
much later and less successful than for other exotic atoms like
the protonium and pionium. Experiments were carried out at
LEAR just in very recent years to study the properties of the
p̄D atom [1,2]. Even prior to the experiments some theoretical
works [3–5] had been carried out to study the p̄D atomic states
in simplified p̄D interactions. Recently, a theoretical work [6]
proposed a mechanism explaining the unexpected behavior, of
the scattering lengths of N̄N and p̄D system, that the imagi-
nary part of the scattering length does not increase with the size
of the nucleus.
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In the theoretical sector, one needs to overcome at least two
difficulties in the study of the p̄D atom. First, the interaction
between the antiproton and the deuteron core should be derived
from realistic N̄N interactions, for example, the Paris N̄N po-
tentials [7–9], the Dover–Richard N̄N potentials I (DR1) and II
(DR2) [10,11], and the Kohno–Weise N̄N potential [12]. Even
if a reliable p̄D interaction is in hands, the accurate evalua-
tion of the energy shifts and decay widths (stemming for the
strong p̄D interactions) and especially of the nuclear force dis-
torted wave function of the atom is still a challenge. It should
be pointed out that the methods employed in the works [3–5]
are not accurate enough for evaluating the wave functions of
the p̄D atoms.

In the present work we study the p̄D atom problem employ-
ing a properly adapted numerical method based on Sturmian
functions [13]. The method accounts for both the strong short
range nuclear potential (local and non-local) and the long range
Coulomb force and provides directly the wave function of the
p̄D system with complex eigenvalues E = ER − i Γ

2 . The pro-
tonium and pionium problems have been successfully investi-
gated [14,15] in the numerical approach. The numerical method
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is much more powerful, accurate and much easier to use than
all other methods applied to the exotic atom problem in his-
tory. The p̄D interactions in the work are derived from various
realistic N̄N potential, which is state-dependent. The work is
organized as follows. The p̄D interactions are expressed in Sec-
tion 2 in terms of the N̄N interactions. In Section 3 the energy
shifts and decay widths of the 1s and 2p p̄D atomic states are
evaluated. Discussions and conclusions are given in Section 3,
too.

2. p̄D interactions in terms of N̄N potentials

We start from the Schrödinger equation of the antiproton–
deuteron system in coordinate space(

P 2
ρ

2Mρ

+ P 2
λ

2Mλ

+ V12(�r2 − �r1) + V13(�r3 − �r1)

(1)+ V23(�r3 − �r2)

)
Ψ (�λ, �ρ) = EΨ (�λ, �ρ)

where �λ and �ρ are the Jacobi coordinates of the system, defined
as

(2)�λ = �r3 − �r1 + �r2

2
, �ρ = �r2 − �r1,

Mρ = M/2 and Mλ = 2M/3 are the reduced masses. Here we
have assigned, for simplicity, the proton and neutron the same
mass M . Eq. (1) can be expressed in the form, where the strong
interaction is expressed in the isospin basis,

(3)

(
P 2

ρ

2Mρ

+ P 2
λ

2Mλ

+ VS + VC

)
Ψ (�λ, �ρ) = EΨ (�λ, �ρ)

where VS and VC stand for the nuclear interaction and Coulomb
force, respectively, and take the forms

(4)

VS = V 0
NN(�r2 − �r1) + 1

4

[
V 0

N̄N
(�r3 − �r1) + V 0

N̄N
(�r3 − �r2)

]
+ 3

4

[
V 1

N̄N
(�r3 − �r1) + V 1

N̄N
(�r3 − �r2)

]
,

(5)VC = 1

2

[
VC(�r3 − �r1) + VC(�r3 − �r2)

]
V 0 and V 1 in Eq. (4) are the isospin 0 and 1 nuclear inter-
actions, respectively. Note that we have assigned �r12 as the
relative coordinate of the deuteron core.

One may express the interactions VC and VS in Eqs. (4) and
(5) in terms of the interactions of certain N̄N states. In the
|JMLS〉 basis of the p̄D states

(6)|JMLS〉 = ∣∣(Lρ ⊗ Lλ)L ⊗ (S12 ⊗ S3)S
〉
JM

we derive(
H0 + WC(λ,ρ) + V 0

NN(ρ) + WS(λ,ρ)
)
Ψ (λ,ρ)

(7)= EΨ (λ,ρ)

with

(8)H0 = P 2
ρ

2Mρ

+ P 2
λ

2Mλ
WC and WS in Eq. (7) are respectively the Coulomb force and
strong interaction between the antiproton and deuteron, and
V 0

NN the interaction between the proton and neutron in the
deuteron core. WC and WS are derived explicitly as

(9)WC(λ,ρ) = 1

2

1∫
−1

dx VC(r13),

WS(λ,ρ)

(10)= 1

2

1∫
−1

dx
∑
Q,Q′

〈P |Q〉〈Q|VN̄N(�r13)|Q′〉〈Q′|P ′〉

with

(11)VN̄N(�r13) = 1

2
V 0

N̄N
(�r13) + 3

2
V 1

N̄N
(�r13),

(12)r13 ≡ |�r1 − �r3| =
(

λ2 + ρ2

4
− λρx

)1/2

where x = cos θ with θ being the angle between �λ and �ρ. In
Eq. (10) |P 〉 ≡ |JMLS〉 and |P ′〉 ≡ |JML′S〉 are as defined in
Eq. (6) while the states |Q〉 and |Q′〉 are

(13)|Q〉 = ∣∣(Lσ ⊗ S13)Jσ ⊗ (Lγ ⊗ S2)Jγ

〉
JM

,

(14)|Q′〉 = ∣∣(L′
σ ⊗ S13)Jσ ⊗ (Lγ ⊗ S2)Jγ

〉
JM

.

Here �σ and �γ are also the Jacobi coordinates of the system,
defined as

(15)�γ = �r2 − �r1 + �r3

2
, �σ = �r3 − �r1.

So defined the states |Q〉 and |Q′〉 is based on the consider-
ation that the N̄N interactions can be easily expressed in the
|Jσ Mσ Lσ S13〉 basis of the N̄N states. Note that 〈P |Q〉 depends
on not only the quantum numbers of the states |P 〉 and |Q〉,
but also λ, ρ and the angle θ between �λ and �ρ resulting from
the projection of the orbital angular momenta between different
Jacobi coordinates. We listed the integral kernels in Eq. (10),∑

Q,Q′ 〈P |Q〉〈Q|V (�r13)|Q′〉〈Q′|P ′〉, for the lowest p̄D states
in the approximation that the deuteron core is assumed in the
S-state, as follows:
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〉
:
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Table 1
The energy shifts 	E and decay widths of the 1s and 2p antiproton–deuteron atomic states in the approximation of undistorted deuteron core. The minus sign of
the energy shifts means that the strong interaction is repulsive. The units are eV and meV for 1s and 2p states, respectively

Paris98 DR2 KW Data

	E Γ 	E Γ 	E Γ 	E Γ

2S1/2 −2445 1781 −2673 2380 −2478 2450
4SD3/2 −2680 2822 −2668 2390 −2503 2469
2P1/2 −186 584 17 896 99 657
4P1/2 265 402 47 846 101 785
2P3/2 −128 515 14 897 98 643
4PF3/2 282 477 21 887 97 648
4PF5/2 244 814 21 877 101 660
	Ē1s , Γ̄1s −2602 2475 −2670 2387 −2494 2463 −1050±250 [1] 1100±750 [1]

2270±260 [2]
	Ē2p , Γ̄2p 124 602 22 883 99 668 −243±26 [2] 489±30 [2]
|P 〉 = |P ′〉 = ∣∣4P5/2
〉
: F 2
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)
,
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2
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)]
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〉
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)
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〉
: F 2

2 ·
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4

9
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) + 5

9
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(3F3
)]

,

|P 〉 = ∣∣4P3/2
〉
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〉
: F1F2 · 1√

6
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(3PF2
)
,

|P 〉 = ∣∣4P5/2
〉
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〉
: F1F2 · 2

3
VN̄N

(3PF2
)
,

|P 〉 = ∣∣4S3/2
〉
, |P ′〉 = ∣∣4D3/2

〉
:

(16)F3 ·
[

1√
2
VN̄N

(3SD1
) + 1√

2
VN̄N

(3SD2
)]

where |P 〉 ≡ |JMLS〉 and |P ′〉 ≡ |JML′S〉 are the p̄D atomic
states. Both the p̄D and N̄N states in Eq. (16) are labelled as
2S+1LJ with S, L and J being respectively the total spin, total
orbital angular momentum and total angular momentum. The
potentials VN̄N , being functions of r13 = √

λ2 + ρ2/4 − ρλx,

stand for the N̄N interactions for various N̄N states as indi-
cated in the brackets.

The F1, F2 and F3 in Eq. (16) are functions of only λ and ρ,
taking the forms

(17)F1 =
{

1 − 1
12

ρ2

λ2 , ρ < 2λ,

4λ
3ρ

, ρ > 2λ,

(18)F2 =
{

(1 − ρ2

4λ2 )2, ρ < 2λ,

0, ρ > 2λ,

(19)

F3 =
⎧⎨
⎩ 2F

1(1,− 3
2 , 3

2 ,
ρ2

4λ2 ), ρ < 2λ,

5
8 − 3ρ2

32λ2 + Artanh( 2λ
ρ

)[ 3λ
4ρ

− 3ρ
8λ

+ 3ρ3

64λ3 ], ρ > 2λ,

where 2F
1(α,β, γ, x) is the hypergeometric function and

Artanh(x) the inverses hyperbolic tangent function.
3. Energy shifts and decay widths of p̄D atoms

It is not a simple problem to accurately evaluate the energy
shifts and decay widths, especially wave functions of exotic
atoms like protonium, pionium and antiproton–deuteron atoms,
which are mainly bound by the Coulomb force, but also effected
by the short range strong interaction. In this work we study the
p̄D atoms in the Sturmian function approach which has been
successfully applied to our previous works [14,15]. Employed
for the N̄N interactions are various realistic N̄N potentials,
namely, the Paris N̄N potentials of the 1994 version (Paris84),
1998 version (Paris98) and 2004 version (Paris04), the Dover–
Richard N̄N potentials I (DR1) and II (DR2), and the Kohno–
Weise N̄N potential (KW). In this preliminary work, we just
limit our study to the approximation of undistorted deuteron
core. However, one may see that the main conclusions of the
work are free of this approximation.

Shown in Table 1 are the energy shifts and decay widths,
which stem from the Paris98, DR2 and KW N̄N interactions, in
the approximation of undistorted deuteron core. The theoretical
results for other interactions like Paris84, Paris04 and DR1 are
quite similar to the ones listed in Table 1. The wave function of
the undistorted deuteron core is evaluated in the Bonn OBEPQ
potential [16]. It is found that the theoretical results for the 1s

p̄D atomic states are more or less the same by all the employed
N̄N potentials. The predicted energy shifts are roughly as twice
large as the experimental data. However, one may expect that
the predictions of the potentials in question could be improved
to some extent by solving the p̄D dynamical equation in Eq. (7)
without any approximation. A better treatment of the deuteron
core will yield lower 1s p̄D atomic states, hence smaller energy
shifts. The theoretical results for the decay widths of the 1s p̄D

atoms are also larger than the experimental data though not as
far from the data as for the energy shifts. The predictions for
the decay widths are also expected to be improved by treating
the deuteron core more properly.

The theoretical predictions for the energy shifts of the 2p

p̄D atomic states are totally out of line for all the N̄N poten-
tials employed. The experimental data show that the averaged
energy level of the 2p p̄D atoms is pushed up by the strong
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interaction, the same as for the 1s p̄D atoms, but the theoret-
ical results uniquely show the averaged energy level shifting
down. It is unlikely to improve, by treating the deuteron core
more accurately, the theoretical predictions of the N̄N poten-
tials in question for the 2p p̄D energy shifts since a more
accurate treatment of the deuteron core will lead to deeper 2p

p̄D atomic states.
All the N̄N potentials employed in the work reproduce N̄N

scattering data reasonably, but badly fail to reproduce the en-
ergy shifts of the 2p p̄D atoms. The investigation of the p̄D

atoms may provide a good platform for refining the N̄N inter-
action, especially at zero energy since the energy shifts of the
2p p̄D atomic states are very sensitive to the N̄N strong inter-
actions.

The research here is just a preliminary work, where a frozen,
S-state deuteron is employed. The work may be improved at
two steps, considering that the numerical evaluation is time-
consuming. One may, at the first step, solve the p̄D dynamical
equation in Eq. (7) by expanding the p̄D wave function in a bi-
wave basis of the Sturmian functions, where a realistic nucleon–
nucleon potential is employed but the deuteron core is assumed
to be at the S-state. Such an evaluation is still manageable at a
personnel computer but it may take a week or longer. We may
compare the results of the improved work with the results here
to figure out how important an unfrozen deuteron core is.

One may also consider, at the second step, to solve the p̄D

dynamical equation in Eq. (7) by expanding the p̄D wave func-
tion in a bi-wave basis of the Sturmian functions without any
approximation, where realistic nucleon–nucleon and nucleon–
antinucleon potentials are employed and the deuteron core is
allowed to be at both the S- and D-waves. It is certain that the
numerical calculation will take longer time but, anyway, we will
do it after we complete the first-step improvement.
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