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Abstract

We present a method for constructing wavelet frames on the sphere. This is achieved by mapping
the sphere onto the extended plane in a_.\a'fiay which takes rotations to translations, We thus can make
use of the various wavelet constructions in the plane to obtain continuous frames, discrete tight
frames and multiresolutions on the sphere. In addition, we show that there exists a great variety of

smooth frames on the sphere.
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CHAPTER 1

INTRODUCTION

1.1 Backg-l"ound and Rationale

Continuous wavelet transforms and discrete wavelet series are now widely used to analyze
functions and signals in Fuclidean space. Often termed “Windowed Fourier Transform”, the
continuous wavelet transform permits analysis of signals in both spatial and time domains.
Discrete wavelet series on the other hand are often used in image or data compression where the

numerical reconstruction of a signal from its wavelet coefficients is desired.

In the general mathematical setting one starts with a closed group H of invertible # x n matrices
acting in the usual way on Euclidean space, and considers the natural representation n of the semi-
direct product GG of the two groups on the space of square integrable functions Lz(R") which is
given by nfa, z) = DT, , where D_ denotes the dilation operator associated with a matrix a of H,
and T, the translation operator determined by a vector z in R'. For a given square integrable
function w, the wavelet transform associated with w maps an element {in LZ(R") to a function Wf

defined on G by means of the inner product, Wffa,z) = <f, a(a, z)w>.

It is now natural to ask under what conditions the original function can be reconstructed from its
wavelet transform. A frequently used sufficient condition is that ¥ be an isometry with regards to
the Z” norms, in which case we call w a tight frame generator although this condition can be
relaxed somehow. While it was first thought that square integrability of the representation oowas
necessary [2, 4, 6, 7] it later turned out that this condition is not required, and that loosely

speaking, the group H must not be too large and must act on R” in some regular fashion [10, 12].

In practical reconstruction, one wishes both the dilation and the translation parameters to be

discrete. That is, one chooses « to lie in some discrete subgroup of A and z in some sublattice of



R". Appropriate choices for these groups and lattices are discussed in [2} and [9]. Multiresolution
decomposition [14, 15] is a method of constructing such wavelet series in a way so that they can
be computed with particularly efficient algorithms. Only in the one-dimensional setting or in the
case of some special one-parameter groups of diagonal matrices, however, is it known how to

generate a multiresolution analysis in a systematic way.

Since the earth and many objects of interest are of spherical shape, one is also interested in doing
wavelet analysis on the sphere. The problem one faces here is that there does not exist a natural
concept of dilation because the sphere is compact. In addition, rotations on the sphere do not form
an abelian group and thus the usual Fourier transform techniques used in wavelet analysis can not
be used. To overcome this problem, many authors have introduced mappings from the sphere or

subsets of the sphere into the plane.

Torresani [13] maps a hemisphere into the tangent plane, thus introducing some notion of dual
group. However, there is still no notion of dilation, and thus only local Gabor type analysis is
achieved. Holschneider [8] makes use of spherical harmonics, but introduces dilations in an ad-
hoc and rather unsystematic way. Antoine and Vandergheynst [1] discuss continuous wavelet
transforms using an elegant group-theoretical approach. They are able to specify necessary
conditions for a function to be a wavelet frame, but can not abtain tight frames. In addition, they
only use the simplest type of dilation which stretches in all directions at the same rate, and their
approach does not lend itself easily to obtaining discrete frames. A number of authors have
addressed this question by constructing multiresolution analysis on the sphere, either using the
tensor product of multiresolutions on the unit interval [3], or by devising subdivision schemes on

the sphere itself [5, 11]. None of these multiresolutions are derived from group representations.

Thus, it is still of interest to investigate other methods for obtaining discrete frames on the sphere,

and in particular, for discretizing continucus wavelet frames.



1.2 Research Objectives

The objective of this profect was to
1. find new ways to introduce continuous wavelet frames on the sphere,
2. investigate ways for disretizing these continuous frames,

3. investigate methods for obtaining multiresolutions on the sphere.

1.3 Scope and Limitations

A variety of schemes for introducing frames are known today, each having its own advantages and
weak points. This project did not intend to obtain a “best” or most “elegant” method, but to shed
some insight into the relationship between continuous and discrete frames. Nor did it intend to
compare these schemes, or consider the construction of algorithms for the practical computation of

wavelet coefficients or series.

1.4 Benefits from Research

This project adds to the variety of methods for continuous and discrete wavelet analysis on the
sphere. Its results may be of use to engineers and scientists requiring data analysis and

compression tools.



CHAPTER 2

METHODOLOGY

2.1 Constructions

Most of the authors discussing wavelet analysis on the sphere do so by either mapping points of
the sphere into the plane [3, 13}, or trying to adapt the standard wavelet analysis techniques to the

sphere [1, 8].

We choose the first method, and introduce two maps not yet described in the literature. The first
map takes the sphere minus its poles onto the infinite cylinder. We theﬂ need to define and discuss
the construction of frames on the cylinder which are generated by translations in all directions and
dilation along its axis. The second map takes the sphere minus a median onto the plane, thus
making the well-established machinery of wavelet analysis in the plane available. In particular, we

can introduce dilations which scale differently in each direction.



CHAPTER 3

RESULTS

3.1 Main Results

We have been able to establish the following results:

L.

Using a smooth map from a dense subset of the sphere onto the infinite cylinder, we have
introduced a type of wavelet analysis on the sphere which consists of rotations in
longitudional and latitudional directions, and dilations in a single direction. However,
frame generators are never smooth, so that this case is only sketched in the attached
preprint.

Using a smooth map from a dense subset of the sphere onto the plane, we have introduced
a type of wavelet analysis on the sphere which consists of rotations around the polar and
equatorial axes, and dilations in both directions at different scaling factors and generated
by a single matrix. We have shown that there exist many smooth tight frame generators
provided that the dilation matrix is a proper contraction. Finally, we have been able to
describe a method to show how these smooth frame generators can generate discrete
wavelet frames.

Using the map discussed in 2., any multiresolution on the plane can easily be transferred

onto the sphere.

Further details can be seen from the preprint which is included in the appendix.

3.2 Discussion

We have introduced two relatively simple schemes for obtaining continuous and discrete wavelet

frames on the sphere. The particular new feature is that one can choose from a wide range of

dilations, either of unidirectional type or of omnidiretional type and where the dilation scale varies

with direction or where there is even a rotational dilation component present which happens when

the dilation matrix has complex eigenvalues.



The disadvantage of this scheme is that by identifying translations in the plane with rotations on
the compact sphere, the rate of spherical rotations decreases with increasing translation parameter.
Thus, this method is well suited only for analyzing small-scale features on a well-localized
domain. In order to analyze small-scale features over the whole sphere one may need to operate
with a family of such frames, obtained by placing median where the sphere is cut at various

locations across the sphere.



CHAPTER 4

CONCLUSION

4.1 Summary

We have described a new way of doing wavelet analysis on the sphere by introducing to new maps
from the sphere onto locally Fuclidean abelian groups. The map which takes the sphere onto the
plane makes available a great variety of smooth continuous and discrete tight frame generators for

the sphere, provided that one chooses a dilation generated by a proper contraction matrix.

4,2 Recommendations

The results of this project could be expanded on in several directions. First, it should be easy to
adapt the maps used here to obtain continuous and discrete wavelet frames on the n-sphere.
Secondly, we have only used one-parameter groups of dilations, and one naturally can introduce
and investigate two-parameter groups of dilations on the sphere. Finally, several schemes for
obtaining frames and multiresotutions on the sphere available now, and one could do a detailed

comparison of all theses techniques by means of some practical examples.



(1

(2]

3]

(4]

(5]

(6]

[9]

[10]

[11]

(121
f13]

[14]

[15]

REFERENCES

J.-P. Antoine and P. Vandergheynst. 1999. Wavelets on the 2-sphere: a group-theoretical
approach, Appl. Comp. Harm. Anal. 7, 262-291.

D. Bernier and K. F. Taylor. 1996. Wavelets from square infegrable representations, SIAM
J. Math. Anal. 27, 594-608.

S. Dahlke, W. Dahmen and I. Weinreich, Multiresolution analysis and wavelets on § and § ,
Numer. Funct. Anal. Optim. 16, 19-41.

H. Fuehr. 1996. Wavelet frames and admissibility in higher dimensions, J. Math. Phys, 37,
6353-6366.

J. Goettelmann. 1999. Locally supported wavelets on manifolds, with applications to the 2D
sphere, Appl. Comp. Harm. Anal. 7, 1-33.

A. Grossmann, J. Morlet and T. Paul. 1985. Transforms associated to square integrable
group representations I, general results, J. Math. Phys 26, 2473-2479.

C. E. Heil and D. F. Walnut. 1989. Continuous and discrete wavelet transforms, SIAM
Review 4, 628-666.

M. Holschnetder. 1996. Continuous wavelet transforms on the sphere, J. Math. Phys. 37,
4156-4165.

R. Laugesen. 2002. Tramnslational averaging for completeness, characterization and
oversampling of wavelets, Collectanea Mathematica 53, 211-249.

R. Laugesen, N. Weaver, G. Weiss and E. Wilson. 2002, 4 characterization of the higher
dimensional groups associated with continuous wavelets, J. Geom. Anal. 12, 89-102.

P. Schroeder and W. Sweldens. 1995. Spherical wavelets: texture processing, in: Rendering
Techniques '95, P. Hanrahan and W. Purghathofer eds., Springer Verlag, 252-263.

E. Schulz and K. F. Taylor. 2002. Continuous and semi-discrete tight frames on R, preprint.

B. Torresani. 1995, Phase space decompositions: Local Fourier analysis on spheres, Signal
Process. 43, 341-346.

G. Weiss and E. N. Wilson. 2001. The mathematical theory of wavelets, in: Proceedings of
the NATO-ASI Meeting "Harmonic Analysis 2000 -- A Celebration”, Kluwer.

P. Wojtasczyk. 1997. 4 Mathematical Introduction to Wavelets, Cambridge University Press.



APPENDIX

PREPRINT OF RESEARCH RESULTS



11

CONTINUOUS AND DISCRETE FRAMES ON THE
SPHERE

ECKART SCHULZ

ABSTRACT. In this note we present a method for constructing wavelet
frames on the sphere. This is achieved by mapping the sphere onto
the extended plane in a way which takes rotations to translations. We
thus can make use of the various wavelet constructions in the plane to
obtain continuous and discrete tight frames on the sphere. In addition,
we show that there exists a great variety of stnooth wavelets frames on
the sphere.

1. INTRODUCTION

Continuous wavelet transforms and discrete wavelet series are now widely
used to analyze functions and signals in Euclidean space. In the most general
setting one starts with a semi-direct product of groups H x R" [10], where
H is a closed subgroup of GL,(R) acting on R® by multiplication. There is
then a natural representation = of H x B* on L?(R™) given by

(e, 2)w = D, Trw (ec H 7 R")

where D, denotes the dilation operator on L?(R") associated with matrix
multiplication, and 7 the translation operator determined by the vector Z.
For a fixed square integrable function w € L?(R™), the wavelet transform
associated with w maps a function f € L?(R") to a function Wf on H x ®B?
through the inner product

Wf(anz) =< fym{a, 2w > .

Numerous authors have investigated sufficient and necessary conditions on
H and w which allow the reconstruction of the function f from its wavelet
transform. While it was first thought that square integrability of « was
necessary (2], [4], [6], [7]} it later turned out that this condition is not
required in many cases ([10], [12]) .

In practical computations, one wishes both parameters a and Z to be
discrete. That is, one chooses e to lie in some discrete subgroup of H,
and Z in some sublattice of R*. Appropriate choices for these groups and
lattices are discussed in [2] and [9]. Multiresolution decomposition ([14],
[15]} is a method of constructing such wavelet series in a way so that they
can be computed with particularly efficient algorithms. Only in the one-
dimensional setting or in the case of some special one-parameter groups of

Supported by a research grant from Suranaree University of Technology.
1
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diagonal matrices, however, is it known how to generate a multiresolution
analysis in a systematic way.

When considering wavelets on the sphere one encounters the problem
that although the sphere is of simple topological structure, there is by its
compactness no natural concept of dilation. Furthermore, rotations on the
sphere do not form an abelian group and thus the usual Fourier transform
techniques fail. To overcome this problem, many authors have introduced
mappings from the sphere or subsets of the sphere into the plane.

Torresani [13] maps a hemisphere into the tangent plane, thus introducing
some notion of dual group. However, there is still no notion of dilation, and
thus only local Gabor-type analysis is achieved. Holschneider [8} makes use
of spherical harmonics, but introduces dilations in an ad-hoc and rather un-
systematic way. Antoine and Vandergheynst [1] discuss continuous wavelet
transforms using an elegant group-theoretical approach. While they are able
to specify necessary conditions for a function to be a wavelet frame, they
can not obtain tight frames, and their approach does not lend itself easily
to obtaining discrete frames. :

Various authors have addressed this question by constructing multireso-
lution analysis on the sphere, either using the tensor product of multires-
olutions in L2[0,1] ([3]), or by devising subdivision schemes on the sphere
(i5],[11}). None of these methods is directly related with group representa-
tions.

In this note, we suggest a way to apply the wavelet theory of the plane
to the sphere. We do so by mapping a dense subset of the sphere diffeo-
morphically onto the plane, in a way which maps rotations on the sphere
to translations in the plane. We show that there exist a variety of smooth
wavelets, and apply the discretization techniques in the plane to obtain dis-
crete wavelet frames on the sphere. In addition, this map makes it possible
to transfer a multiresolution analysis from the plane to the sphere.

This paper is organized as follows. In section 2 we review some of the
standard techniques of wavelet analysis in the plane and adapt some results
to our situation. In section 3 we introduce a map from a dense subset of the
sphere onto the cylinder, thus obtaining a one-dimensional wavelet analysis
on the sphere. In section 4 we then use a map from a dense subset of the
sphere onto the plane and discuss how tight and smooth tight frames can be
introduced onto the sphere by this map. Finally, the discretization of these
frames is discussed in section 5.

2. FrRAMES ON LocaLly EUCLIDEAN ABELIAN GROUPS

Let us first review the concept of frames on Buclidean Spaces generated
by one-parameter groups, as discussed in [10] or [12]. Given a fixed matrix
A€ GL,(R), consider the families of translation operators T with

(Trw)(Z) = w(Z - 7)
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and dilation operators Dy with
(Dyw)(Z) = 6 2w(A %)

for w € L} R"), #,7 € R* and k ¢ Z, and where § = | det(A)|. Here we
have written elements of R as column vectors. Since the Lebesgue measure
on R” is translation invariant and

| det(A)| /R fands= [ f@)as

for f € L'(R™), both families constitute groups of unitary operators on
L%(R"™). For a fixed w € L*(R"), the wavelet transform associated with w is
the map f - W{ with :

Wik, 2) =< f, Dk Tzw >

for f € L?(R*). A function w € L*(R*) is called a tight frame genera-
tor {with frame bound one) if the wavelet transform constitutes a partial
isometry from L?(R") onto a subspace of L?{Z x R"), that is if

1P =3 [ 1<5DiTew > Paz (21)

kcz R
for all f € L?(R™). One can then reconstruct the function f from its wavelet
transform. In fact, from the polarization identity it follows that for all

f.g € L*(R™),

< f,g >=Z[R < < §,DpTow > DipTsw, g > dZ
PUTAS

that is,

1=3 | With2)DiTow a2 (2.2)
- kez’R”
weakly in L?(R").

In order to discuss tight frame generators, one needs to work with Fourier
transforms. As usual, R® denotes the dual group of R* which can be iden-
tified with R" itself through the pairing (7, #) — e~ %"7%, where elements ¥
of B" are now written as row vectors. In case n = 1 we will omit the vector
notation and simply write e~ 2*"?%. The Fourier transform

@ - ) = [ f@e2midaz

maps L'{R") into CO(H’EE), the set of continuous functions vanishing at in-
finity, and its restriction to L'(R") N L?(R*) extends to a Hilbert space
isororphism between L?(R") and L2(I§;’), also denoted by f — f, which
takes the translation operator Ty to the phase shift operator £_z and the
dilation operator Dy, to the dilation operator D_. Here,

(E_a8)(7) = 2T D5(F) and  (D_pd)(3) = 620 (7A%)
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for @ € LQ(@), 7eERY, Y€ " and & € Z. Condition (2.1} then becomes

1P =Y [ 1< f.DEosi> a2
kez /R
for all f € L2(R™).

In [10] and [12] it is shown that there exist tight frame generators if and
only if |det A| # 1. Furthermore, w € L?>(R") is a tight frame generator if
and only if the mean square value of @ over orbits is essentially constant,
that is,

Y (AP =1

keZ
for almost all ¥ € Rn

As in the next section we will work over the space RxII, we first generalize
these results to spaces R™ x IT™ (n > 1,m > 0} where Il denotes the unit
circle. These spaces are direct products of two locally compact abelian
groups, and thus their dual groups and the corresponding Fourier transforms
are derived from those of the two component groups in an obvious way.

Recall that the dual group of the n-torus II™ is the discrete group Z™.
Parametrizing elements of 1" by n-vectors ® = (p1,...,¢n)7 with 0 <
wi < 1, and elements of Z™ as discrete row vectors 7, this duality is given
through the pairing (%, ®) — ¢ #™"® While there is no natural dilation on
L(11"), rotation by a multiangle @ = (6y,...,6,)" gives rise to a natural
translation operator Ty, given by

(Tow)(®) = w(® - ©)

where subtraction on the right denotes componentwise subtraction modulo
one. The Fourier transform

1@ - @) = [ 7@

now extends to an isomorphism between the Hilbert spaces L?(11"*) and
L?(Z™) mapping translation T to phase shift £ o.
As the Lebesgue measure on R® x I[I™ is d(Z, @) = d© dZ, the translation
and dilation operators on LZ(R” x IF?) given by
(T{E,e)w)(f? @) = ’LU(.’,-L"—- ’_2'7 b — 6)
and
(Drw)(Z, ®) = 6%/ 2w(A*Z, ©)

for we LA(R* xII"™), k € Z, &, Z € B* and &, © € II'™ are again unitary.
As before, the Fourier Transform takes these operators to phase shift and
dilation operators, with

(B(_z_ey@) (7, 1) = 2T (=D Hm(=O)p (5 )
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and
(D) (7, 7) = 8*2p(7AF, 7).

forw € L3RR x Z™), k€ Z,Zc ®*, ¥ ¢ B7, © € 1™ and 7 € Z™. In this
setup, w € L?(R™ x II'™) is called a tight frame generator provided that

£ = Z// | < f. DiTizeyw > 2 dO d7

kEZ

for all f € L2(R* x II™).

Theorem 1. Let H =R* x I (n > 1,m > 0) and let A € GL,(R). Then
w € L2(R™ x TI™) is a tight frame generator if and only if

> (AR ) =1 (2.3)

kel

for all @ € Z™ and almost all ¥ € Rr.

Proof. The proof is a simple modification of the standard result for m = 0
presented in {12]. For all f € L2(R" x II™),

- 2
ff ‘< FLD_xE_z oy >| dodz

:/ 2 / 6612 f(7,7) B(TAR, 7) 2 7TANE 2O gy d(2,0)
H rezm K"

:/H Z fﬂ éﬁk‘/zf(’YA ) ( ) 2wz 21’?Tﬂed,}, d(f,("))

AacZm™

35—’“/
H

where we have set gx(7,7) = f(FA~* @) 0 (7, 7) € LI(H) Now the in-
ner integral is precisely the inverse Fourier transform ¢; of ¢y, so that by

2
ﬁ on(3,7) AT EO) g3 m)| d(z, 0)
H
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Plancherel’s formula

/?‘ /m "( f’ —k (_5’_6}1& >i2 d@ d;?
keZ
=2, 5""/H|¢k(5,e)|2d(z',e)

keZ
=5 [ lontd, i a7, )
keZ H
=S o Y [ 1A m e Ak e

keZ AEL™

=X > [ iR Gt d

keZ ngim
= /A |f (3, 7)? (Z Itb('?Ak,ﬁ)]"’) d5.
nchm R» kc?

It follows that w is a semi-discrete tight frame generator if and only if

1717 = 3 [ 1fGaP (Z sw(m’“,ﬁ)ﬁ) 47

g™ kel

forall f € L2(R"). Now this identity holds if and only if 37, o [#(F4F, 7)[> =
1 almost everywhere, and thus the assertion follows. U

Theorem 2. Let H = B xII™ (n > 1,m > 0) and let A € GL,(R).
Then there exists a tight frame genmerator w € L2(R™ x TI™) if and only if _
| det{A}| # 1.

Proof. Suppose first that |det(A)| # 1. Then by theorem 3 in [12], there
exists a tight frame generator v(Z) for the wavelet transform in L?(R*)
associated with A, and then by theorem 1,

Do pEFARPE =1 ae 7.
keZ

Now list all the elements of Z™ in a sequence {7;}52,, pick integers p; so
that

M= i [det( A} < 00

and set
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for (¥,7;) € R x Z™. Then 4 is measurable and
(e8]

> [ wGare = Y [amap
=1 v} "

AEZ™
[» =
= 3 [ e omP ar
=1 R»
= M|s]> < oo,
that is, @ € L2(R* x Z™). Furthermore, for each I,

Sl = ST pFARPPE = S |6(7AR))F = 1

k€L kCZ kEZ
for almost all ¥, which shows that w is a tight frame generator.

Now suppose to the contrary that |det(A)| = 1 but there exists a tight
frame generator w in L2(R™ x II™). Set #(¥) = @(¥,0). Then & € L*(R"*)
and

D IBFANE = Y jw(FAn 0 =1

kel keZ
that is, v is a tight frame generator for L?(IR) contradicting theorem 3 in
[12]. This proves the theorem. O

3. FRAMES ON THE SPHERE GENERATED BY UNIDIRECTIONAL DILATIONS

Let S? denote the 2-sphere. Using spherical coordinates, we can describe
its points by the pair of Euler angles (#,¢) with0 <8 < 7mand 0 < ¢ <
27. In these coordinates, the Lebesgue measure is d(f,p) = sinfdfdyp.
Since this measure is rotation invariant, rotations take the natural role of
translations on the sphere. However, there is no notion of dilation because
the sphere is compact.

Our idea is to map the sphere onto a space on which we can do wavelet
analysis, in a way which maps rotations along the Euler angles to transla-
tions. Since this space must possess dilations and can thus not be compact,
our map can obviously not preserve measures. In this section, we choose
this space to be the infinite cylinder B x II, while in the next section we will
choose it to be the plane.

Let p = (0,¢) and ¢ = (&, ¢) denote the two poles on the sphere, respec-
tively, and define a diffeomorphism IT : §%\{p,q} — R x I by

I1(0, p) = (cot 8, ¢).
Then 11 induces an isomorphism II between L%($?} and L#(IR x II) which is
given by

(I1f)(z, ) Fleot™ z, )

i
T (2?4 1)3/1
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for f € L?(S?). Conjugating twodirectional translations on the cylinder as
well as unidirectional dilations in direction of its axis with the map II we
obtain corresponding translation operators T{z $) = - T(z ¢)H and dilation

operators in longitudinal direction, Dy = II='D;II on L?(8?). In fact, one
easily computes that
csc3/2 6

T F Y0, 0) = [(cot 0 — 2)2 + 1]

371 fleot™ et 0 —2),0 — ¢}  (3.1)

and

sc?/2 9
[cot? 8 + a2k]3/4
for f e L3(8%), k€ Z,z € Rand 0 < ¢ < 27, where a # 0 is a fixed dilation
parameter,

From theorem 2 we see directly that tight frame generators exists, and
we formulate this observation as a theorem:

(Drf)(8, ) = |aff Fleot™ (@ cot.8), ) (3.2)

Theorem 3. Let a be a dilation parameter with |a] # 0,1. Then there exists
a tight frame generator w in L?(S?) for the wavelet transform associated with

the operators T, and Dy defined in (3.1) and (3.2).
4, FRAMES ON THE SPHERE GENERATED BY OMNIDIRECTIONAL
DILATIONS

In order to map the sphere onto the Euclidean plane, we slice it along a
meridian M = {(#,0) € 52 : 0 < # < 7} and flatten and stretch it. That is,
we use the diffeomorphism T' : S\ M — R? given by

T(0,p) = (cot§,2cot g ).
The corresponding isomorphism L from £2($?) onto L*(R?) is

~ 2
(L), v} = (x2 + 1)374 (2 + 4)1/2

and it gives rise to translation operators Ty = I—T:[ acting on L2(5?)
through

fleot™' z,2cot™! g )

csc®? 6 csc (£)
[(cot — z)2 + 1]%* [(cot (£) — 2)* + 1]/
f (cot_l(coté‘ - z), 2cot™! (cot (g) - 2—2) ) (4.1)

for f € L?(S?) and 7 = (z1,22) € R?. Dilations are now determined by an
invertible 2 x 2 matrix A giving rise to omnidirectional dilations

Dy =T71D,T {4.2)

(Tef)(0,9) =



19

CONTINUQUS AND DISCRETE FRAMES ON THE SPHERE 9

in £2(52). If we choose the matrix A to be diagonal, A = diag(ay, as), then
the dilations (4.2) simply become

csc¥2 8 cse (£)
[cot? @+ a2]** [cot? (£) + aZF]"?
f ( cot™! (a7 cot 8), 2cot™? (a;k cot (%)) )
for f € L2(S?) and k € Z.
From theorem 2 we obtain again:

Theorem 4. Let A € GL(R) be a dilation matriz with | det(A4)[ # 1. Then
there exists a tight frame generator w in L?(5?) for the wavelet transform
assoctated with the operators Tz and Dy defined in (4.1) and (4.2).

(ka)(g, p) = [a'llk |Cﬂ2§k’/2

5. SMOOTH FRAME GENERATORS

Ideally, one wishes frame generators to possess nice properties. They
should be smooth and compactly supported, or at least vanish rapidly at
infinity. We now show that given a proper contraction matrix, there exist
tight frames generators on the plane which are in the class of Schwartz
functions. Then we show that the corresponding frame generators on the
sphere are smooth.

Theorem 5. Let A € GLy(R) be a dilation matriz whose eigenvalues all lic
in the open unit disk. Then there exists a tight frame generator w € L?(R?)
with 1 € C°(R?). In particular, w is in the class of Schwartz functions.

Proof. Using the real Jordan form of A, one sees that A* is equivalent to

exactly one of
AE D pLAND 5 L AcoskB  Asinkf
0 k)’ (I L —Asink8 Acoskf

with 0 < |A}, [#] < 1. Fix a number « such that |A|, |g] < a < 1. It is easy
to see that there exists an integer k, such that

4% < o* Yk >k (5.1)
Now since A is invertible, there exists a constant ¢1, 0 < ¢; < 1 such that
|7l < 17 Al (5.2)
for all ¥. Let us set
S={FeR*:ci < |5l <1}
and
Se={7eR’:c-e< |7l <1+¢}

for some fixed €, 0 < € < ¢;.
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Note that the orbit of each ¥ # 0 intersects the annulus S. In fact, since

lim 74% =0 and lim {|74%|| = o0 (5.3)
k—oo k——co

there exists a largest k = ki such that ||[FA*|| > 1. Then by (5.2),
o1 < e[ §AR | < |FARH < 1.

Now pick a function f € C°(R?) whose support is-contained in the larger
annulus S, and such that |f(¥)| >m > 0for 7€ 5. Set

oM =D IfFANP  (F#0)
keZ :

By (5.1) and (5.3) we see that for each ¥, there exists a neighborhood on
which this sum is finite and that

m<o(y) < M

for some M > 0 and all § # 0. In particular, o € C®°(R?). It follows that
the inverse Fourier transform of

0

“H

¥

=

2
|

=

is the desired tight frame generator. 0O

Theorem 6. Let A € GLy(R} be a dilalion matriz whose eigenvalues all Lie
in the open unit disk. Then there exists a tight frame generator w in L2(8%)
which is infinstely differentiable.

Proof. Let w be as constructed in theorem 5. Since [ is a diffeomorphism,
the function @ := I' 1w is a tight frame generator for L2(S$?) which actually
lies in C°(S?\M).

By induction, one easily shows that any partial derivative D@ of @ on
S?\ M is a finite linear combination of functions

i+ f
mw (COt 9, 2 cot (g))

for some non-negative integers p, q,r,s. Thus if & € M is arbitrary, we have
for each such v,

v(8, ) = {cscB)P/2(cot §)9/2 (csc (£)) (cot (%))

lim »(@
ol (8, ¢)
i+
— 1 2 P/t .q/2 y__2+4)r/2 s O —
-l e e () e =
because w is a Schwartz function. Thus

Hm D@8, ¢) =0
oim w(f, )
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and we can extend all derivatives D1 to the whole of the sphere by assigning
a value of zero on M. Again, since w i3 a Schwartz function we have for
each @ with 0 < @ < 7 and v # 0,

2 r/2 it
v(0, @) (z2 + l)p/4$q/2 (L;H) i —-——a?xa;y w(z,y)
lim = lim = =
w0t P y—o0 cot™ ¥y
and similarly,
~ 0

im Y020 o M09 g g nm 209 g

w—2n— 27— -0+ 0 for- m™— 0

so that we can in fact consider @ an element of C'°°(5?), all of whose deriva-
tives vanish on M. O

6. DISCRETE FRAMES

In practical applications it is easier to work with infinite sums than with
integrals. We therefore would like to discretize the continuous frames con-
structed above. We begin by answering this question in L*(R?).

A function w € L*(R") is called discrete tight frame generator if there
exists a lattice A € R” so that

I£12 =3 ST < f, DiTyw >|° (6.1)
KEZ TeA

for all f € L*(R™). The reconstruction formula (2.2) then becomes a strongly
convergent infinite sum [7]

F=33" Wfk,D) DyTrw.
) k€Z TcA
Applying the Fourier transform, (6.1) is equivalent to
~ 4 2
WA =3 Y [< f.DsE i >
k€EZ Ten

for all f € L2(R?).
The next theorem is a generalization of the one dimensional situation
discussed in {7].

Theorem 7. Let A € GL,(R) be a dilation matriz, and w € L*(R") a tight
frame generator. Set

S = {7 R (7) #0}.
If there exists v > O so that SN S+ rm is a set of measure zero for all

m € Z™\{0} then
. 2 ~
> 3 |< A DosB i >| =6 IA

keZ meir
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forall f e Lz(@), where b= L. That is, {DyTim b2w} is a discrete frame
for L2(R™).

Proof. For each k € Z, set

Thus F}, is periodic; indeed for all [ € Z™ we have

F(7—rl) = 3 HG—rl —rm)A™ ) a(§ - ol ~ri)

MmEZ™

= Y F(F-rT+m)AF)o(F ~r(l +m))
meZ®

= 3 HG-ri)A*)a(5 - rm)
MEL™

= FR().

Set I, = (—%,%]". Then Fy € L'(Z,). In fact, since Rt = Upezn(Ir — r)

we have
> PG - ri) AT B =) | a7

lek(f?)ldf?=f
Ir mezZn

/ ST (G — AT [@(F — r)| 47

Ir MELT

- /ﬂ? FFAF)| [0(7)] & < oo

because f,1 € LZ(@). In a similar way we have for m € 2",

f(’Ml Yo (3) T 4y

= /; Z f( (¥ - rf)A—k) B(F — Tf) B?iw(fy_rf}.bm &7

= [ B g (6.2)
I
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As the collection {v/B"eZ™7¥"} - 7. forms an orthonormal basis {es}mezn
for L%(I,}, we have

Z / Fi (ﬁ;)eQW'y b d
Ir

mEL™

EEDY

mEZ"

= b_" E |< Fi,em >12

MEL™

/ Fk(7 b" 217r'y -brit d’)’

1‘

1
= B;IIFkH?

1 S -
— 5 [ B & (63)
I

provided that Fy € L3(I,) as well. In this case, by (6.2) and (6.3),

Z Z i< _}F, D_ B >‘2
k€L e '
=2 ">

kEZ MEL™ ’"
=20 >

[ B g
keZ  megn VI

=5 ot [ RGP &

2
_ fEATR BT dy

2

keZ
2
=it [ S G =i e )
- kel Ir |mezn
=Y 5Fpm / (2 F((F—ri)A™ )11“)(7'—-7‘f))
keZ Ir lezn
(Z FOF —rm)Ak )wﬁ—rﬁ)) &5
MELT
=3 6 Ry Z[ F((F DA™ )a(F — D)
keZ fezn’?r
( S TG ) ARyl - mﬁ)) d
meZ™
_Zé kp—n f f 7A (Z f (¥ — rm)A—k )1&(’}’—?“':71)) dy
keZ meEn

=St [ X AT i A B o - 1) dF

keZ mez”
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Now by the assumption on the set S, the terms in the inner sum are zero
a.e. for 71 # 0, so that the above becomes

>N ‘< FD_4E it >‘2

kEZ MecE™
=St [ AR e a7

keZ
=6 @R a7
kCZ
Zp A|f(~7)|2( |wwA‘“)|2) 47 = b
JlFor (3

by theorem 1. Going backwards, we conclude that the interchange of summa-
tion and integration in the above computations is justified and that indeed
Py, € L*(1,). Thus, b7 w is a discrete tight frame generator. O

Corollary 1. Let A € GLy(R) be a dilation matric whose eigenvalues all
lie in the open unit disk. Then there exists a discrete tight frame generator
w € L2(R?) which lies in the class of Schwartz functions.

Proof. Let w € C2° denote the tight frame generator for L?(R?) constructed
in the proof of theorem 5. Since supp(w) lies inside a bounded set, the
assumptions of theorem 7 are satisfied. O

Conjugating with the map I' above we obtain:

Corollary 2. Let A € GLy(R) be a dilotion matriz whose eigenvalues all
lie in the open unit disk. Then there exists a_discrete tight frame generator
w € L*(8?) associated with the translations Tz and Dy defined in (4.1) and
(4.2) and which is infinitely differentiable.

We note that we can show that in the case where A has one eigenvalue
of absolute value one, or where A is a one-dimensional dilation as discussed
in section 3, discrete tight frame generators w still exist. However, their
Fourier transforms 1 do no longer vanish at infinity, so that these functions
are not smooth, and we therefore do not provide details.

7. CONCLUSION

We have introduced two types of continuous tight frames on the sphere,
one type associated with one-dimensional dilations, and a general type asso-
ciated with two-dimensional dilations by making use of the tools of wavelet
analysis on the real line and the plane, respectively. The latter admits a large
number of smooth tight frame generators in L*(5?), and using a periodiza-
tion technique we were able to discretize these frames. A multiresolution
analysis in the plane can easily be transfered onto the sphere by the map
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we have introduced. In addition, we can obtain frame generators which are
well localized on the sphere.

The disadvantage of this scheme is that by mapping translations in the
plane to rotations on the compact sphere, the rate of rotations decreases with
increasing translation parameter. Thus, this method is well suited only for
analyzing small-scale features on a well-localized domain. In order to analyze
small-scale features over the whole sphere one may need to operate with a
family of such frames, obtained by placing the cut M at various locations
across the sphere.
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