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ในพืชชั้นสูงเอนไซม์เบตา-กลูโคซิเดสจดัอยู่ในตระกูลไกลโคไซไฮโดรเลส กลุ่มท่ี 1 มี
หน้าท่ีส าคญัหลายอยา่ง รวมไปถึงกระบวนการสร้างลิกนิน จากการวิเคราะห์ phylogenetic ของ
เอนไซมเ์บตา-กลูโคซิเดสในขา้ว พบวา่ Os4BGlu14 Os4BGlu16 และ Os4BGlu18 มีล าดบักรด   
อะมิโนท่ีมีความใกลเ้คียงกบัเอนไซม์ในกลุ่มโมโนลิกนอลเบตา-กลูโคซิเดสมากท่ีสุด จึงน ามาสู่
สมมติฐานว่าเอนไซม์ทั้ง 3 ตวัน้ีเก่ียวขอ้งกบักระบวนการสร้างลิกนิน cDNA ของโมโนลิกนอล    
เบตา-กลูโคซิเดส ยนี Os4BGlu14 และ Os4BGlu18 ถูกโคลน ตรวจสอบความถูกตอ้งของล าดบัเบส
นิวคลีโอไทด์ และตดัต่อเขา้ไปในพลาสมิด pET32a จากนั้นพลาสมิดท่ีถูกตดัต่อยีนเหล่าน้ี ถูก
น าเขา้ใน Escherichia coli เพื่อน าไปใชใ้นการผลิตเอนไซมโ์ดยมี thioredoxin และ His6 tags ต่อท่ี
ปลาย N-terminal เน่ืองจากต าแหน่ง acid/base ของ Os4BGlu14 ถูกแทนท่ีดว้ยกรดอะมิโนกลูทามิน 
ซ่ึงกรดอะมิโนน้ีอาจท าให้เอนไซม ์Os4BGlu14 ไม่สามารถท างานไดเ้หมือนเอนไซมเ์บตา-กลูโคซิ
เดสโดยทัว่ไป ดงันั้น การดดัแปลงกรดอะมิโนกลูทามินไปเป็นกลูทาเมทจึงถูกท าข้ึนดว้ยเทคนิค 
QuikChange site-directed mutagenesis อยา่งไรก็ตาม ไม่สามารถตรวจวดัการท างานของเอนไซม ์
Os4BGlu14 ไดท้ั้งในเอนไซมด์ั้งเดิมและเอนไซม์ท่ีถูกดดัแปลงกรดอะมิโน และเน่ืองจากมีปัญหา
ในการโคลน Os4BGlu16 จึงท าการสังเคราะห์ยีนของ Os4BGlu16 ข้ึนเพื่อใชใ้นการผลิตเอนไซม์
ตวัน้ีในยีสต์ เอนไซม ์Os4BGlu16 ท่ีถูกผลิตและปล่อยออกมาจากผนงัเซลล์ของยีสตถู์กน ามาแยก
ให้บริสุทธ์ิดว้ยวิธี immobilized metal affinity chromatography (IMAC) ส่วนเอนไซม ์Os4BGlu18 
ถูกสกดัมาจาก E. coli และน ามาแยกให้บริสุทธ์ิดว้ย anion exchange chromatography hydrophobic 
interaction chromatography และ  IMAC column ตามล าดบั เอนไซม ์Os4BGlu16 และ Os4BGlu18 
สามารถย่อยโมโนลิกนอลกลูโคไซด์สับสเตรท coniferin (ดว้ย kcat/KM, 21.6 mM-1s-1 ส าหรับ
Os4BGlu16 และ 31.9 mM-1s-1 ส าหรับ Os4BGlu18) syringin (ดว้ย kcat/KM, 22.8 mM-1s-1 ส าหรับ 
Os4BGlu16 และ 24.0 mM-1s-1 ส าหรับ Os4BGlu18) และ p-coumarol glucoside (ดว้ยkcat/KM, 6.2 
mM-1s-1 ส าหรับ Os4BGlu16 และ 1.4 mM-1s-1 ส าหรับ Os4BGlu18) ไดอ้ยา่งมีประสิทธิภาพมากกวา่
สับสเตรทตวัอ่ืน 

ในการตรวจหาการแสดงออกของยีนโมโนลิกนอลเบตา-กลูโคซิเดสในขา้ว พบวา่ mRNA 
ของ Os4BGlu14 มีการตรวจพบมากท่ีสุดในส่วนของเมล็ด รวง และเกสร ส่วน mRNA ของ 

 

 

 

 

 

 

 

 



 

 

Os4BGlu16 พบมากท่ีสุดในส่วนของใบจากตน้ขา้วสัปดาห์ท่ี 4 ถึงสัปดาห์ท่ี 10 เอนโดสเปิร์ม และ
เปลือกเมล็ดส่วนนอก และ mRNA ของ Os4BGlu18 ส่วนใหญ่ถูกพบในช่วงแรกของการ
เจริญเติบโตตั้งแต่สัปดาห์แรกถึงสัปดาห์ท่ี 4 และยงัถูกพบในเกสรและเปลือกเมล็ดส่วนนอกอีก
ด้วย ขอ้มูลเหล่าน้ีบ่งบอกถึงการท างานของเอนไซม์โมโนลิกนอลเบตา-กลูโคซิเดสเกิดข้ึนทั้ง
ในช่วงเจริญเติบโตจนถึงช่วงออกผลผลิต การศึกษาปริมาณของสารโมโนลิกนอล โมโนลิกนอลกลู
โคไซด์ และสารท่ีเก่ียวขอ้งในขา้วโดยใช้เคร่ือง UPLC-MS เพื่อหาความสัมพนัธ์ระหว่างปริมาณ
เอนไซมแ์ละสับสเตรทท่ีถูกผลิต พบวา่ ปริมาณ sinapyl alcohol ถูกพบในส่วนของรากและกาบใบ
อายุ 10 ถึง 40 วนั ในขณะท่ีรูปกลูโคไซด์คือ syringin เพิ่มข้ึนในช่วงอายุ 2-3 เดือนทั้งในราก ใบ 
กาบใบ และขอ้ปลอ้ง เช่นเดียวกบั p-coumarol glucoside และ coniferin ในส่วนของดอกขา้ว พบวา่
มีปริมาณของ p-coumarol glucoside มากกวา่ syringin sinapic acid coniferin caffeic acid sinapyl 
alcohol coniferyl alcohol และ p-coumaric acid ตามล าดบั จึงสรุปไดว้า่เอนไซมน้ี์จะถูกสร้างข้ึนใน
ระหว่างการสร้างสารโมโนลิกนอลกลูโคไซด์ซ่ึงมีความสัมพนัธ์กนัทางดา้นกระบวนการชีวเคมี 
และการศึกษาสภาพทางชีววิทยาส าหรับการปล่อยสารโมโนลิกนอลส าหรับกระบวนการสร้าง
ลิกนินยงัคงตอ้งมีการทดสอบกนัต่อไป 
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GLYCOSIDE HYDROLASE/CHARACTERIZATION/RICE/MONOLIGNOL  

β-GLUCOSIDASE/MONOLIGNOL COMPOUNDS 

In higher plants, β-glucosidases belonging to glycoside hydrolase family 1 

(GH1) have been implicated in several fundamental processes, including lignification. 

Phylogenetic analysis of rice (Oryza sativa L.) GH1 β-glucosidases indicated that 

Os4BGlu14, Os4BGlu16, and Os4BGlu18 are closely related to known monolignol β-

glucosidases, leading to the hypothesis that they may release monolignols from their 

inactive glucosides. The cDNAs for Os4BGlu14 and Os4BGlu18 genes were cloned, 

sequenced, and ligated into pET32a, and the resulting recombinant plasmids were 

used to express fusion proteins with N-terminal thioredoxin and His6 tags in 

Escherichia coli. Because the conserved acid/base glutamate position of Os4BGlu14 

is replaced with glutamine residue 191, the cDNA of Os4BGlu14 was mutated to 

glutamate at this position to produce Os4BGlu14 Q191E. However, no activity could 

be detected for proteins expressed from pET32a/Os4BGlu14 and 

pET32a/Os4BGlu14Q191E. Due to difficulty in cloning a functional cDNA for E. 

coli expression, an optimized Os4BGlu16 cDNA was synthesized for expression of 

the protein in Pichia pastoris. The secreted Os4BGlu16 fusion protein was purified 

from induced P. pastoris culture media by immobilized metal affinity 

chromatography (IMAC) to yield a single prominent protein band on SDS-PAGE 

analysis and strong -glucosidase activity. In contrast, active Os4BGlu18 -

glucosidase fusion protein with N-terminal thioredoxin and His6 tags was successfully 

 

 

 

 

 

 

 

 



 

 

expressed and extracted from E. coli cells, and was purified by anion exchange 

chromatography, hydrophobic interaction chromatography and IMAC. Os4BGlu16 

and Os4BGlu18 hydrolyzed the monolignol glucosides coniferin (kcat/KM, 21.6 

mM
−1

s
−1

for Os4BGlu16 and 31.9 mM
−1

s
−1 

for Os4BGlu18), syringin (kcat/KM, 22.8 

mM
−1

s
−1 

for Os4BGlu16 and 24.0 mM
−1

s
−1 

for Os4BGlu18), and p-coumarol 

glucoside (kcat/KM, 6.2 mM
−1

s
−1 

for Os4BGlu16 and 1.4 mM
−1

s
−1 

for Os4BGlu18) 

with much higher catalytic efficiencies than other substrates.  

By quantitative RT-PCR, highest Os4BGlu14 mRNA levels were detected in 

seed, panicle and pollen. Os4BGlu16 was detected at highest levels in leaf from 4 to 

10 weeks, endosperm and lemma, while Os4BGlu18 mRNA was most abundant in 

vegetative tissues from 1 week to 4 weeks old and in pollen and lemma. These data 

suggest a role for monolignol β-glucosidases in both vegetative and reproductive rice 

tissues. The relative amounts of monolignols, their glycosides and related compounds 

in rice tissues were analyzed by UPLC-MS to relate the enzyme expression levels to 

levels of putative substrates and products. Sinapyl alcohol was detected in root and 

leaf sheath from 10-40 days, whereas its glucoside, syringin, was dramatically 

increased in 2-3 month-old roots, leaf, leaf sheath, and stem, as were the levels of p-

coumarol glucoside and coniferin. In rice flower extracts, p-coumarol glucoside was 

highest, followed by syringin, sinapic acid, coniferin, caffeic acid, sinapyl alcohol, 

coniferyl alcohol, and p-coumaric acid, respectively. Thus, the enzymes appear to be 

present during the build-up of monolignol glucosides, although the exact biological 

context for the release of the monolignols from these compounds remains to be 

determined. 
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CHAPTER I 

INTRODUCTION 

 

1.1  Overview of β-glucosidases 

β-Glucosidases (EC. 3.2.1.21) are hydrolases that catalyze the hydrolysis of β-

glycosidic linkages in aryl and alkyl β-O-D-glucosides and gluco-oligosaccharides to 

release D-glucose and an aglycone. These enzymes are found widely in the living 

organisms, including plants, fungi, animals, archaea and bacteria. β-Glucosidases 

have several important roles, including acting in cell wall remodeling, chemical 

defense, plant-microbe interactions, phytohormone activation, activation of metabolic 

intermediates, release of volatiles from their glycosides in plants, conversion of 

biomass in micro-organisms and breakdown of glycolipids and exogenous glucosides 

in animals (Ketudat Cairns and Esen, 2010). Many β-glucosidases from different 

sources have similarity in substrate specificity for glycone and some non-

physiological aglycones, although they may have different physiological glucosidic 

substrates with different aglycone moieties. 

In mammals, there are four known β-glucosidases, including the glycoside 

hydrolase (GH) family 1 (GH1) enzymes lactase-phloridzin hydrolase and 

cytoplasmic β-glucosidase, the GH family 30 (GH30) enzyme human acid β-

glucosidase and the GH family 116 (GH116) bile acid β-glucosidase (Ketudat Cairns 

and Esen, 2010). The most studied and best characterized is the human acid β-

 

 

 

 

 

 

 

 



 

 

glucosidase or lysosomal glucocerebrosidase, the deficiency of which causes Gaucher 

disease. Such defects are usually the result of mutations in the glucocerebrosidase 

gene located in the q21 region of chromosome 1. More than 100 different mutations 

have been identified in this gene, with the two point mutations N370S and L444P 

being most frequently observed in patients with Gaucher disease (Koprivica et al., 

2000).  Human cytosolic β-glucosidase, also known as klotho-related protein and 

glucoceramidase 3 (KLrP, GBA3), is an enzyme that hydrolyzes a wide variety of β-

D-glucosides, such as synthetic aryl glycosides (4-nitrophenyl and 4-

methylumbelliferyl monoglycosides), dietary flavonoid and isoflavone glucosides, 

and glucosyl ceramide (Berrin et al., 2003; Tribolo et al., 2007; Noguchi et al., 2008; 

Hayashi et al., 2007). The bile acid β-glucosidase GBA2 is predicted to be involved in 

the metabolic pathway of glucosylceramide synthesized on the cytosolic faces of the 

ER/Golgi membranes (Körschen et al., 2013). 

In fungi, β-glucosidases play an important role in the cellulase system. This 

system requires three cellulolytic enzymes for complete degradation of cellulose. Two 

of these that catalyze hydrolysis of internal bonds to produce cellobiose and cello-

oligosaccharides are endo-glucanases (EC 3.2.1.4) and cellobiohydrolases (EC 

3.2.1.91), while the other is β-glucosidase that hydrolyzes cellobiose and cello-

oligosaccharides to produce glucose (Coughlan and Ljungdahl, 1988). Fungi have 

also been reported to produce saponin-hydrolyzing enzymes, such as the 

avenacinases, which are a subset of β-glucosidases that hydrolyze antimicrobial 

saponins to suppress induced defense responses and signal transduction processes 

leading to disease resistance in plants (Bouarab et al., 2002; Osbourn et al., 1995). 
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β-Glucosidases are also found in the insect midgut or specialized tissues such 

as defensive glands (Boonclarm et al., 2006). Insect β-glucosidases have been divided 

into two classes based on their relative catalytic efficiency toward several substrates. 

Class A β-glucosidases hydrolyze substrates with hydrophilic aglycones, such as 

disaccharides and oligosaccharides with β-1,3-, β-1,4-, and β-1,6- glycoside bonds, 

while class B β-glucosidases are active toward substrates with hydrophobic 

aglycones, such as alkyl, 4-nitrophenyl-, and methylumbelliferyl-glycosides, as well 

as plant glycosides (Terra and Ferreira, 2005). From their substrate specificity, β-

glucosidases may release toxic aglycones from plant glycosides, which might lead to 

autotoxicity because β-glucosidases act as activation enzymes (Ferreira et al., 1997; 

Yu, 1989). 

Plant β-glucosidases play important roles in defense, symbiosis, cell wall 

catabolism and lignification, signaling, and plant secondary metabolism. β-

Glucosidases help defend against herbivores and invasive fungi by hydrolyzing 

relatively inert glycosides to produce toxic compounds, such as hydrogen cyanide, 

saponins, coumarins, quinones, hydroxamic acid, rotenoids, etc. (Poulton, 1990, 

Nisius, 1988, Duroux et al., 1998, Babcock and Esen, 1994, and Svasti et al., 1999). 

Moreover, β-glucosidases are thought to play roles in cell wall metabolism by the 

degradation of oligosaccharides, such as β-1,3- and β-1,4- linked oligosaccharides 

from plant cell walls (Hrmova et al., 1998), and release of monolignols by removing 

β-glucosyl residues from monolignol glycosides, like cinnamyl alcohol β-glucoside 

(Hösel et al., 1978). β-Glucosidases control the biological activity of phytohormones, 

including cytokinins, gibberellins, auxins, and abscisic acids by releasing active forms 

from inactive glucoside conjugates (Gaskin and MacMillian, 1975; Ganguly et al., 
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1974; Brzobohatý et al., 1994; Millborrow, 1970).  β-Glucosidases are also important 

for release of plant volatiles, and metabolism of many other significant natural 

products (Ketudat Cairns and Esen, 2010). 

 

1.2  Glycoside hydrolases 

β-Glucosidases are classified as glycoside hydrolases (EC 3.2.1-3.2.3) which 

are an extensive group of enzymes that hydrolyze the glycosidic bond between two 

carbohydrates or between a carbohydrate and a noncarbohydrate moiety. The 

biological functions of oligo- and polysaccharides and glycosides are various, so 

glycoside hydrolases act in many essential steps of life, including hydrolysis of 

structural or storage polysaccharides, defense against pathogens, invasion of certain 

pathogens into cells, turnover of cell surface carbohydrates, etc (Henrissat et al., 

1995).  

The large diversity in the stereochemistry of carbohydrates and the 

astronomical number of their possible combinations are paralleled by a large 

multiplicity of the enzymes designed for their selective hydrolysis. Since the number 

of protein folds has been determined to be not more than a few thousand (Chothia, 

1992 and Orengo et al., 1994), this suggests that glycoside hydrolases of different 

substrate specificity could well have similar folds and may have evolved from a 

common ancestor. 

Glycoside hydrolases have been grouped and classified in families based on 

amino acid sequence similarities (Henrissat, 1991 and Henrissat and Bairoch, 1993). 

If the sequences of two or more glycoside hydrolases can be aligned significantly over 

an entire domain, they are assigned to the same family. Cellulases belonging to 
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different glycoside hydrolase families have been found to have different folds (Davies 

et al., 1993 and Divne et al., 1994), as do chitinases from GH18 and GH19, but GH19 

chitinases and lysozymes from GH22, GH23, and GH24 have related folds (Holm and 

Sander, 1994). The three-dimensional structures of two plant β-glucanases with 

distinct substrate specificities have been found to be strongly related (Varghese et al., 

1994). Given that the fold of proteins is better conserved than the sequence, it is 

possible that several families share similar folds. Therefore, glycoside hydrolases 

have been assigned to 14 structurally related clans, comprising 133 families 

(http://www.cazy.org/fam/acc_GH.html). The largest of the glycoside hydrolase clans 

is the GH-A clan, in which the proton donor and the nucleophile are found on β-

strands 4 and 7 of a (β/α)8 barrel, respectively (Jenkins et al., 1995). It includes GH 

families 1, 2, 5, 10, 17, 26, 30, 35, 39, 42, 50, 51, 53, 59, 72, 79, 86, 113 and 128, 

which contain enzymes that possess different substrate specificities. 

Catalysis by most glycoside hydrolases can be divided into two mechanisms, 

retaining and inverting, which differ in whether the anomeric configuration of the 

product is the same as the substrate or not. Both types of mechanisms result from the 

action of a catalytic acid/base and nucleophile (Koshland, 1953; Sinnott, 1990; and 

Davies and Henrissat, 1995). The retaining mechanism occurs in two steps. First, the 

glycosidic oxygen is protonated by the acid catalyst to facilitate agylcone departure 

and the nucleophile forms a covalent bond with the glycone anomeric center 

producing a glycosyl-enzyme intermediate (Figure1.1a). Second, a water molecule 

hydrolyzes the glycosyl-enzyme intermediate with basic assistance from the catalytic 

acid/base to generate a product which has the same stereochemistry as the substrate. 

For the inverting mechanism, the hydrolysis activity occurs when water attacks the 
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anomeric carbon and plays the role of the nucleophile. The water is activated by the 

carboxylate of an acidic amino acid residue acting as a catalytic base (Figure1.1b). 

The carboxylate side chain of another acidic residue facilitates departure of the 

aglycone part by protonating the oxygen atom at the glycosidic bond (Davies and 

Henrissat, 1995). 

 

Figure 1.1 The two major mechanisms of glycoside hydrolase enzymes. (a) Retaining 

mechanism and (b) inverting mechanism (Davies and Henrissat, 1995). 
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1.3  Plant glycoside hydrolase family 1 

β-Glucosidases are grouped into GH families 1, 3, 5, 9, 30, and 116, and most 

plant β-glucosidases that have been characterized fall in GH family 1 (GH1) (Ketudat 

Cairns and Esen, 2010). Besides β-glucosidases, plant GH1 members include 

myrosinases (thio-β-glucosidases) hydrolyzing the S-glycosidic bonds of plant 1-thio-

β-D-glucosides (glucosinolates), (Burmeister et al., 1997), β-mannosidases, β-

galactosidases, β-glucuronidases, β-fucosidases, diglycosidases like primeverosidase 

(Mizutani et al., 2002), furcatin hydrolase (Ahn et al., 2004) and isoflavone 7-O-β-

apiosyl -1,6-β-glucosidase (Chuankhayan et al., 2005), hydroxyisourate hydrolase, 

which hydrolyzes an internal bond in a purine ring, rather than a glycosidic bond 

(Raychaudhuri and Tipton, 2002), and galactosyl and glucosyl transferases 

(Moellering et al., 2010; Matsuba et al., 2010). GH1 members catalyze their reactions 

with a molecular mechanism leading to overall retention of the anomeric 

configuration, which involves the formation and breakdown of a covalent glycosyl 

enzyme intermediate as described above (Figure 1). All of the enzymes display a 

common (β/α)8 TIM barrel structure. Apart from plant myrosinases and animal Klotho 

(KL) subfamily members, all GH1 β-glucosidases contain two conserved catalytic 

glutamate residues located at the C-terminal end of β-strands 4 and 7 (Jenkins et al., 

1995). 

The Agrobacterium sp. β-glucosidase (Abg) was the first to have the catalytic 

nucleophile identified, as Glu358 in the sequence YITENG, through trapping of the 2-

deoxy-2-fluoroglucosyl-enzyme intermediate and subsequent peptide mapping 

(Withers et al., 1990). The general acid/base catalyst was identified as Glu170 in this 

same enzyme through detailed mechanistic analysis of mutants at that position, which 

7 

 

 

 

 

 

 

 

 



 

 

included azide rescue experiments (Wang et al., 1995). Interestingly, the plant 

myrosinases, which catalyze hydrolysis of thioglycosides to release an anionic 

aglycone (glucosinolates), have evolved an active site in which the acid/base 

glutamate is replaced by glutamine. The activity of these enzymes with substrates 

does not require the acid catalyst, while the base catalyst is provided by ascorbate 

acting as a cofactor, which binds to the glycosyl enzyme after aglycone departure 

(Burmeister et al., 2000). 

 

1.4  Rice β-glucosidases 

Opassiri et al. (2006) identified GH1 genes from the rice genome, and their 

structures, predicted protein products and evidence of expression were evaluated. 

They found forty putative β-glucosidase genes, including 34 full-length genes, 2 

pseudogenes, 2 gene fragments, and 2 intronless genes, likely to come from 

endophytes. Thirty-six out of 40 genes are found in both japonica and indica rice with 

98-100% sequence identity.  

Phylogenetic analysis of predicted protein sequences of rice and Arabidopsis 

GH1 genes showed that there are eight clusters containing both rice and Arabidopsis 

proteins that are more closely related to each other than they are to enzymes from the 

same plants outside the clusters, and two clusters (AtI and AtII) are found only in 

Arabidopsis (Figure 1.2). Interestingly, Os4BGlu14, Os4BGlu16 and Os4BGlu18 are 

clustered with Arabidopsis BGLU45, 46 and 47, which have been shown to hydrolyze 

glucosides of lignin precursors (Escamilla-Treviño et al., 2006), suggesting that 

Os4BGlu14, Os4BGlu16 and Os4BGlu18 may play roles in lignification. In addition, 

thirty-seven of the rice GH1 genes showed high protein sequence similarity to each 
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other and other known plant β-glucosidases. However, all β-glucosidases contain 

conserved acid/base and nucleophile residues that are glutamate residues. Normally, 

GH1 enzymes have W-XT/I-F/L/I/V/S/M-N/A/L/I/D/G-E/Q-P/I/Q and V/I/L-X-EN-

G as conserved sequences around the catalytic acid/base and nucleophile, respectively 

(Czjzek et al., 2000; Hoffman   et al., 1999). 

In Os4BGlu14 and Os9BGlu33, the acid/base is replaced by glutamine, as 

seen in thioglucosidases (Opassiri et al., 2006). Therefore, Os4BGlu14 and 

Os9BGlu33 may be inactive as β-glucosidases, because the catalytic acid/base is 

converted to a nonionizable residue. β-Glucosidases with glutamate replaced by 

glutamine at the acid/base residue have been shown to have transferase activity in the 

presence of good leaving group aglycone and a nucleophilic acceptor, however 

(Müllegger et al., 2005; Chuenchor et al., 2011). In terms of the genome organization, 

Os4BGlu14, Os4BGlu15, Os4BGlu16, Os4BGlu17, and Os4BGlu18 are located in 

the same region of chromosome 4. However, Os4BGlu15 and Os4BGlu17 were 

identified as gene fragments, into which additional DNA had been inserted into 

Os4BGlu16 gene sequences. Os4BGlu15 and Os4BGlu17 lack half of the exons and 

are inactive as they do not have EST/full-length cDNA representation in the public 

databases (Opassiri et al., 2006).  
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Figure 1.2 Phylogenetic tree of the predicted protein sequences of rice and 

Arabidopsis glycoside hydrolase family 1 genes (Opassiri et al., 2006). The clusters 

supported by a maximum parsimony analysis are shown as bold lines, and the loss 

and gain of introns are shown as open and closed diamonds, respectively. 
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Several rice β-glucosidase isoenzymes have been characterized for the 

possible function. For example, a cell wall-bound β-glucosidase (Os4BGlu12) and 

BGlu1 (Os3BGlu7) and BGlu2 (Os9BGlu30) β-glucosidases have been characterized 

and cloned from rice seedlings (Akiyama et al., 1998; Opassiri et al., 2003, 2006). 

Akiyama et al. (1998) determined the N-terminal sequence of the cell wall-bound β-

glucosidase, this enzyme that is able to hydrolyze laminari- and cello-

oligosaccharides. Opassiri et al. (2003) reported that BGlu1 (Os3BGlu7) and BGlu2 

(Os9BGlu30) were both highly expressed in germinating shoots; the BGlu1 gene was 

also highly expressed in flower. The BGlu1 protein was expressed in Escherichia coli, 

purified and characterized. It showed activity with a variety of p-nitrophenyl β-D-

glycosides, demonstrating some flexibility in sugar binding. It also hydrolyzed a 

variety of natural glycosides at low levels and showed strong hydrolysis of 

laminaribiose, laminaritriose, and cello-oligosaccharides. These two reports suggested 

that rice β-glucosidases not only have hydrolytic activity, but can also catalyze 

tranglycosylation of β-(1,3)- and β-(1,4)-linked oligosaccharides. 

Another rice β-glucosidase that has been characterized is Os4BGlu12, which 

was found to be induced by herbivore attack and salinity stress (Opassiri et al., 2006). 

It has recently been reported that the transcription of Os4BGlu12 is up-regulated by 

wounding, methyl jasmonate and ethephon responses (Opassiri et al., 2010). 

Moreover, the sequence of Os4BGlu12 is most closely related to the cell wall bound 

β-glucosidase (Akiyama et al., 1998), among the GH1 sequences identified in the rice 

genome (Opassiri et al., 2006). Os4BGlu12 may be involved in remodeling of 

damaged cell wall, because it can hydrolyze mixed β-(1,3)- and β-(1,4)-linked 

oligosaccharides generated by wounding-induced rice endo-(1,3)-,-(1,4)-β-glucanase. 
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Among natural glycosides, Os4BGlu12 hydrolyzed deoxycorticosterone 21-glucoside 

(an animal steroid glucoside) and apigenin 7-O-β-D-glucoside, which suggests that 

this enzyme’s function may also be related to defense (Opassiri et al., 2010). 

Recently, it has been shown that Os4BGlu12 has high activity toward salicylic acid 

(SA) glucoside, suggesting a different role in signaling in response to plant wounding 

as well (Himeno et al., 2013).  

Rice Os3BGlu6 has also been characterized and was found to hydrolyze p-

nitrophenyl β-D-glycosides, n-octyl-β-D-glucoside, and β-(1,2)- and β-(1,3)-linked 

disaccharides. The crystal structures of Os3BGlu6 alone and in complex with 2-

deoxy-2-fluoroglucoside and n-octyl-β-D-thioglucopyranoside suggested that 

methionine residue 251 located in the mouth of the active site may block the binding 

of β-(1,4)-linked oligosaccharides and, therefore Os3BGlu6 cannot hydrolyze long 

chain cellooligosaccharides (Seshadri et al., 2009). Hua et al., 2013 found that 

Os3BGlu6 hydrolyzed gibberellin A4 β-D-glucosyl ester (GA4-GE) at a higher rate 

than Os3BGlu7, Os4BG12, Os4BGlu18, and Os9BGlu31, which are associated with 

different phylogenetic clusters within GH1. The crystal structure of Os3BGlu6 and 

the rates of hydrolysis of pNPGlc and GA4-GE by Os3BGlu6 and its mutated form 

E178Q, E178A, E394D, E394Q, and M251N revealed that M251 plays a role in 

binding to the hydrophobic aglycones. The crystal structure of Os3BGlu6 E178Q in 

complex with glucose released from GA4-GE or pNPGlc showed that the α-D-

glucosyl moiety is attached to the catalytic nucleophile, E394, suggesting that the 

hydrolysis of 1-O-acyl glucose ester and glucoside had the same retaining mechanism. 

Kuntothom et al. (2009) reported that Os3BGlu8, which is closely related to 

Os3BGlu7, hydrolyzed pNPGlc much better than p-nitrophenyl β-D-mannopyranoside 
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(pNPMan), while Os7BGlu26, which is closely related to barley rHvBII β-D-

mannosidase can hydrolyze pNPMan better than pNPGlc. However, both enzymes 

can hydrolyze β-(1,2)-, -(1,3)-, and -(1,4)-linked gluco-oligosaccharides, while only 

Os4BGlu8 can hydrolyzed β-(1,6)-linked disaccharide (gentiobiose).  

OsTAGG1 (Os4BGlu13) is a tuberonic acid glucoside (TAG) hydrolyzing β-

glucosidase found to hydrolyze a variety of other natural substrates as well, including 

methyl tuberonic acid glucoside, jasmonoyl-1-β-glucoside, and salicylic acid 

glucoside, as well as p-nitrophenyl β-D-glycosides (Wakuta et al., 2010). Tuberonic 

acid (TA) and TAG are produced from jasmonic acid (JA) by hydroxylation and 

glycosylation, respectively. Since TAG was hydrolyzed most efficiently, the authors 

concluded that OsTAGG1 is a specific β-glucosidase hydrolyzing tuberonic acid 

glucoside to release the active TA, but this TA cannot be converted into jasmonic acid 

(Wakuta et al., 2010). Moreover, Himeno et al., 2013 reported that OsTAGG2 

(Os4BGlu12) is upregulated by wounding and methyl jasmonate, and that 

recombinant OsTAGG2 produced in P.pastoris (rOsTAGG2P) hydrolyzed salicylic 

acid β-D-glucoside (SAG), another inactive phytohormone, around 4.5-fold more 

rapidly than TAG.  

 

1.5  Plant lignification  

Many plants have a variety of biochemical solutions to reinforce their cell 

walls and fulfill different adaptive strategies. Lignification is an important component 

of the cell wall thickening process (Lewis and Davin, 1994). Some genes for 

lignification are similar to the flavonoid synthesis pathway, suggesting that the 

lignification genes may have evolved from the flavonoid synthesis genes, or have 
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diverged from a common ancestral gene associated with primary metabolism has 

occurred (Lacombe et al., 1997). The lignin polymer is a major component of many 

plant cell walls, such as cell walls of tracheids, vessels and fibers, and it has 

significant impact on the pulp and paper industry, for which removal of lignin is a 

major process. The functions of lignin were found to include contributing to the 

strength of woody stems and water proofing of the liquid-conducting elements within 

the xylem (Donaldson, 2001). 

Lignins are complex, three-dimensional aromatic polymers derived from three 

hydroxycinnamyl alcohol monomers, which differ only in their degree of 

methoxylation, p-coumaryl (M1H), coniferyl (M1G), and sinapyl (M1S) alcohols 

(Boerjan et al., 2003) (Figure 1.3). These monolignols produce the p-hydroxyphenyl 

(H), guaiacyl (G), and syringyl (S) phenylpropanoid units that are found in the lignin 

polymer. The amount and composition of lignins vary among taxa, cell types, and 

individual cell wall layers and are influenced by developmental and environmental 

cues (Campbell and Sederoff, 1996). Although there are exceptions, dicotyledonous 

angiosperm (hardwood) lignins consist principally of G and S units and traces of H 

units, whereas gymnosperm (softwood) lignins are composed mostly of G units with 

low levels of H units.  

Lignins from grasses (monocots) contain G and S units at comparable levels, 

and more H units than dicots (Baucher et al., 1998). In wheat straw, triticale straw, rye 

straw, and maize stalk, the levels of H units are three to fifteen times higher than 

Arabidopsis stem, tobacco stem, and poplar wood (Barrière et al., 2007). The 

significant amount of H units is a special characteristic for monocotyledonous lignins 

that separates them from constitutive dicotyledonous. She et al. (2011) reported that 
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dewaxed rice straw with different alcohol treatments was composed of phenolic acids 

and aldehydes in the lignin fractions. The ratios of G (vanillin, vanillic acid, and 

acetovanillin), S (syringaldehyde, syringic acid, and acetosyringone), and H (p-

hydroxybenzaldehyde and p-hydroxybenzoic) were found to change as large amounts 

of non-condensed guaiacyl, syringyl, and p-hydroxyphenyl units were produced. The 

composition suggest that the lignin preparations from rice straw can be considered as 

GSH lignin. 

Lignification is the process by which the monolignol units are linked together 

via radical coupling reactions (Freudenberg and Neish, 1968; Sarkanen and Ludwig, 

1971). The main “end-wise” reaction couples a new monomer to the growing 

polymer, giving rise to structures A, B, and D2 shown in Figure 1.3 (Boerjan et al., 

2003). Coupling between preformed lignin oligomers results in units linked 5-5 (D) 

and 5-O-4 (E). The coupling of two monolignols is a minor event, with resinol (β-β) 

units (C) or cinnamyl alcohol end groups (X1) as the outcome. Monolignol 

dimerization and lignin production are substantially different processes (Adler, 1977). 

Normally, almost all of the inter-unit linkages of lignin are β-O-4 (β-aryl ether), that 

are easy to chemically hydrolyze for industrial processes. However, lignin can have 

other linkages, which are difficult to degrade by chemical means, such as β-5 (B), β-β 

(C), 5-5 (D), 5-O-4 (E), and β-1 (F). The properties of different lignin polymers 

depend on the relative abundance of particular monomer units. For example, conifer 

lignin consists mainly of G units linked β-5 (B), 5-5 (D), and 5-O-4 (E), and are more 

difficult to hydrolyze than lignins with S units because the C5 position are available 

for coupling (Boerjan et al., 2003). 
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1.6 Lignans, structure and functions 

The phenylpropanoid pathway is the initial pathway of lignin biosynthesis and 

also of another hydrophobic polymer, the lignans. Lignans are a large group of 

naturally occurring phenols, widely spread within the plant kingdom, that are derived 

from the shikimic acid biosynthetic pathway (Ayres and Loike, 1990). Normally, the 

plant lignans are polymers of phenolic compounds mainly derived from cinnamyl 

units, such as by dimerization of cinnamic alcohols to dibenzylpropane.  The 

structures formed vary by β,β'-linkage between two phenyl propane units with a 

different degrees of oxidation in the side-chains and by a different substitution pattern 

in the aromatic moieties (Ayres and Loike, 1990). Because of their activities, such as 

antioxidant, antimicrobial, antitumor, anti-inflammatory and antiviral properties, 

lignans have been used for a long time both in ethnic and conventional medicine 

(Osawa, 1992). In addition, most researchers have been focused on their antioxidant 

activity, which is mainly due to the radical scavenging properties of these compounds.  

The study of dirigent proteins implicated in lignin biosynthesis found that 

lignans are dehydro-dimers of monolignols and are typically optically active. 

Pinoresinol formation is catalyzed by the first dirigent protein discovered by the 

dimerization of coniferyl alcohol radicals to generate an optically active lignan (Davin 

and Lewis, 2000; Davin et al., 1997).  

 

16 

 

 

 

 

 

 

 

 



 

 

 

 Figure 1.3 Lignin monomers and structures in the polymer (Boerjan et al., 2003). 
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Although monolignol glycosides could be involved in lignan formation, 

available evidence suggests that lignans are glycosylated after they form. The study of 

Sesamum indicum uridine diphosphate (UDP) glucose:lignan glucosyltransferases 

revealed that these enzyme could glucosylate at the 2-hydroxyl group of (+)-

sesaminol (Noguchi et al., 2008). Moreover, a lignan glucosyltransferase from 

Forsythia koreana, which contains the majority of accumulated lignans in glucoside 

forms,  including pinoresinol 4-O-glucoside, epipinoresinol 4-O-glucoside, phillyrin, 

matairesinoside, and arctiin, (Guo et al., 2007; Ono et al., 2010) was described and 

biochemical characterized. The recombinant UDP-sugar dependent-

glycosyltransferases (UGT) 71A17 and UGT71A18 encoded by Forsythia cDNA 

could glycosylate (+)-pinoresinol (Ono et al., 2010). More recently, Okazawa et al. 

(2014) reported that the expressed Arabidopsis thaliana UGT71C1 showed 

glucosyltransferase activity towards pinoresinol and lariciresinol lignan, suggesting 

that UGT is involved in lignan glucosylation. It is interesting to determine the 

localization of UGT. Monolignol dimerization is catalyzed by peroxidase enzyme that 

islocalized in the cell wall and vacuole, which led to the proposal that lignan should 

be localized around these organelles (Wang et al., 2013). 

 

1.7  Monolignol β-glucosidases  

Lignin production could be regulated by both monolignol synthesis and by the 

transport of monolignol precursors to the cell wall and their release from inactive 

forms (Terashima, 1989). The 4-O-β-D-glucosides of monolignols, namely p-

coumaryl alcohol glucoside, coniferin and syringin have been suggested to serve as 

inactive transport or storage forms of monolignols. They are synthesized by uridine 
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diphosphate-glucose (UDPGlc)-utilizing glucosyltransferases and subsequently 

hydrolyzed by monolignol-specific β-glucosidases (Dharmawardhana and Ellis, 

1998). A coniferin β-glucosidase was described in Pinus banksiana (Leinhos et al., 

1994). Subsequent characterization of a coniferin β-glucosidase (CBG) from Pinus 

contorta allowed cDNA cloning and the predicted amino acid sequence suggested that 

CBG is an extracellular glycoprotein belonging to GH1 (Dharmawardhana et al., 

1995; Dharmawardhana and Ellis, 1998). CBG was also found to be localized in the 

lignification zone in the tree stem. Although monolignol glucosides are found in all 

gymnosperms, not all angiosperms appear to have them. However, in poplar, 

coniferin β-glucosidase activity has been histochemically localized to lignifying cells 

(Dharmawardhana and Ellis, 1998) and radiolabeled monolignol glucosides are 

efficiently incorporated into lignin (Fukushima and Terashima, 1990). These data 

suggest that the monolignol glucosides may be hydrolyzed by β-glucosidases in 

lignifying tissues of angiosperms. In fact, monolignol-specific glycosyltransferase 

activity was detected in all angiosperm species tested, and a β-glucosidase that could 

hydrolyze monolignol glucosides were originally isolated from cell walls of chick pea 

cell suspension cultures (Hösel et al., 1978). While the chick pea monolignol β-

glucosidase had higher hydrolysis activity against coniferin than syringin, a β-

glucosidase purified from cell cultures of soybean (Glycine max) hypocotyls and roots 

had identical Vmax values for the two substrates and a Km for coniferin two times 

higher than that for syringin (Hösel and Todenhagen, 1980; Hösel et al., 1982).  

In a more recent study of monolignol glucosidases in Arabidopsis, the proteins 

encoded by the loci At1g61810 (BGLU45), At1g61820 (BGLU46), and At4g21760 

(BGLU47) were found to cluster with P. contorta coniferin β-glucosidase in protein 
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sequence-based phylogenetic analysis, leading to the hypothesis that the respective 

gene products may hydrolyze monolignol glucosides (Escamilla-Treviño et al., 2006). 

The cDNA encoding mature BGLU45 and BGLU46 were cloned and expressed in a 

yeast system. The recombinant BGLU45 and BGLU46 proteins were purified to 8.8 

and 13.7-fold, respectively. Among the natural substrates tested, BGLU45 exhibited 

specific activity toward the monolignol glucosides syringin, coniferin, and p-

coumarol glucoside, while BGLU46 exhibited broader substrate specificity, cleaving 

salicin, p-coumarol glucoside, phenyl-β-D-glucoside, coniferin, syringin, and arbutin. 

In addition, among nitrophenol (NP) glycoside substrates, BGLU45 hydrolyzed 

pNPGlc, pNPGal, and o-nitrophenly β-D-glucoside (oNPGlc). BGLU46 hydrolyzed 

pNPGlc, pNPGal, pNPXyl, and oNPGlc. RT-PCR showed that BGLU45 and 

BGLU46 expression was highest in Arabidopsis organs that are major sites of lignin 

deposition. Both genes showed to increase the levels of gene expression from apex to 

base. Moreover, BGLU45 is expressed in siliques, while BGLU46 is expressed in 

roots. 

Recently, Chapelle et al. (2012) reported that T-DNA insertions in the 

Arabidopsis thaliana BGLU45 and BGLU46 genes resulted in a significant increase 

in coniferin content in stem extracts, while syringin content was not changed. Other 

compounds of the phenylpropanoid pathway such as ferulic acid hexoside, sinapyl 

alcohol hexose, coniferaldehyde derivate, and syringaresinol were also detected in 

these mutants but at low levels. The knockout BGLU45 and BGLU46 plant lines do 

not exhibit a lignin-deficient phenotype. Immunolocalization showed that BGLU45 

protein is mainly located in the interfascicular fibers, whereas BGLU46 protein is 

located in the protoxylem. Moreover, no change was observed in plants with a T-
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DNA insert in the BGLU47 gene, suggesting it is not involved in the phenylpropanoid 

pathway or lignification in the stem (Chapelle et al., 2012). The lack of large changes 

in the lignin content and composition in these Arabidopsis gene knockout lines 

suggested that the monolignol glucosides may be storage forms, but are not required 

transport forms of monolignols or direct precursors of lignin.  

Little has been reported about monolignol β-glucosidases in monocots. 

Opassiri et al. (2006) identified the GH1 genes from the rice (Oryza sativa L.) 

genome. Phylogenetic analysis of predicted protein sequences of rice and Arabidopsis 

GH1 genes showed that Os4BGlu14, Os4BGlu16, and Os4BGlu18 are clustered with 

Arabidopsis BGLU45 and BGLU46 β-glucosidases. Since BGLU45 and BGLU46 

have been shown to hydrolyze lignin precursors (Escamilla-Treviño et al., 2006), 

Os4BGlu14, Os4BGlu16 and Os4BGlu18 were hypothesized to have similar 

activities. However, Os4BGlu14 may be inactive as a β-glucosidase, since it is one of 

the 2 putative active rice β-glucosidase genes identified by Opassiri et al. (2006) in 

which the conserved catalytic acid/base glutamate residue is replaced by a 

nonionizable glutamine residue. 
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1.8  Research objectives 

The objectives of this study included: 

1. To clone and express the putative rice monolignol β-glucosidases, optimize for 

suitable expression conditions, and purify proteins. 

2. To characterize the enzymatic properties and substrate specificities of 

recombinant Os4BGlu16 and Os4BGlu18 enzymes, including activities toward 

monolignol substrates, pNP-glycosides, natural glycosides and oligosaccharides. 

3. To investigate the relative expression of monolignol β-glucosidase gene in 

different rice tissues. 

4. To measure the level of monolignol compounds by UPLC-MS to see how it 

corresponds to monolignol β-glucosidase gene expression patterns. 
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CHAPTER II 

MATERIALS AND METHODS 

 

2.1  Materials 

2.1.1 Plant, plasmids, bacterial and yeast strains 

The accession AK067841 cDNA clone plasmid that encodes full length 

precursor of Os4BGlu14 was provided by the Rice Genome Resource full-lengh 

cDNA project (Kikuchi et al., 2003). A cDNA optimized for Os4BGlu16 expression 

in Pichia pastoris (Genbank accession number KJ579205) was synthesized and 

inserted into the pUC57 vector by GenScript Corporation (Piscataway, NJ, USA). 

Seven-day-old rice (Oryza sativa L. ssp. Indica cv. KDML105) seedlings were used 

to extract RNA for cloning of the cDNA encoding the mature Os4BGlu18 protein. 

The vectors used for cloning and expression of monolignol β-glucosidase included 

pENTR
TM

/D-TOPO (Invitrogen, CA, USA), pET32a(+) (Novagen, WI, USA), and 

pPICZαB(NH8) (Toonkool et al., 2006). Escherichia coli stains DH5α and XL1-Blue 

were used for cloning and Origami(DE3) was used for protein expression. P. pastoris 

strain SMD1168H was used to produce the Os4BGlu16 protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2.1.2 Oligonucleotides primers 

Oligonucleotides were synthesized by BioDesign Co., Ltd. (Thailand) and Bio 

Basic Inc. (Canada) and are shown in Table 2.1. 

Table 2.1 Oligonucleotides primers for monolignol β-glucosidase cloning, mutagenic 

primers of Os4BGlu14, and unique primers for RT-PCR. The extra CACC bases used 

for directional cloning in the pENTR
TM

/D-TOPO
®
 vector are shown in bold and the 

sequences of the restriction enzyme sites for cloning are underlined. 

Primer name Sequence (5′-3′) 

Os4BGlu14Matstrf 

Os4BGlu14Stop 

BG14OxNotIF 

BG14OxAscISpeIR 

 

Os4BGlu14AB2Ef 

 

Os4BGlu14AB2Er 

 

BG16OxNotIF 

BG16OxAscISpeIR 

 

Os4BGlu18Startf 

CACCATGGCCGTCGACCGCAGCCAG 

GAGGATCCTTAATAAGAGTTAAACTTATGAAGC 

GCGGCCGCATGGCGGCGGCGTGGCTCG 

ACTAGTGGCGCGCCAATAAGAGTTAAACTTATGA

AGCTGAGATTC 

CGAATAAAATTCTGGACAACATTTAATGAGCCGA

ATTTGTCCATAAAGTTCAGTTAC 

GTAACTGAACTTTATGGACAAATTCGGCTCATTAA

ATGTTGTCCAGAATTTTATTCG 

GCGGCCGCATGGCCGTGGCGGCGGCGA 

ACTAGTGGCGCGCCACGAATCTGCTCTACGTGACC

GCACTTGG 

CACCATGGCAGGGAGGCAGTAAGACG 
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Table 2.1 Oligonucleotides primers for monolignol β-glucosidase cloning, mutagenic 

primers of Os4BGlu14, and unique primers for RT-PCR. The extra CACC bases used 

for directional cloning in the pENTR
TM

/D-TOPO
®
 vector are shown in bold and the 

sequences of the restriction enzyme sites for cloning are underlined. (Continued). 

Primer name Sequence (5′-3′) 

Os4BGlu18MatStf 

Os4BGlu18StopR 

BG18OxNotIF 

BG18OxAscISpeIR  

 

eGFPNotIF 

eGFPAscIF 

eGFPSpeIR 

 

Os4BGlu14RNAiF 

Os4BGlu14RNAiR 

Os4BGlu16RNAiF 

Os4BGlu16RNAiR 

Os4BGlu18RNAiF 

Os4BGlu18RNAiR 

OsActinF 

OsActinR 

CACCATGGCGATCCACAGGAGCGACTTC 

GAGGATCCTCATGCAGATTTTGGAGGAATTC 

GCGGCCGCATGGCAGGAGGCAGTAAGACG 

ACTAGTGGCGCGCCATTGATTTTCATGCAGATTTTG

GAGG  

GCGGCCGCATGGTGAGCAAGGGCGAGGAGCTGTT 

GGCGCGCCATGGTGAGCAAGGGCGAGGAG 

GGACTAGTCTACTATTACTTGTACAGCTCGTCCATG

CCGAGAGT 

CACCGAATTACCTACATTCAAGGCTACC 

CAGTACATATTATACTCTATGCATATGG 

CACCGAGGGGAATGCTCTCG 

ACCACTTGGCAGACATC 

CACCTGCCAATGTTCATCAC 

TAGGTGGATATCATGTATCC 

ACTCTGGTGATGGTGTCAGCC 

GTCAGCAATGCCAGGGAACATA 
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2.1.3 Chemicals and reagents 

Tryptone, yeast extract, sodium dodecyl sulfate (SDS), acrylamide, N, N′, N′′, 

N′′′- tetramethylethylenediamine (TEMED), ammonium persulfate (APS), Triton X-

100, lysozyme, sodium hydroxide (NaOH), sodium acetate (NaAc), sodium chloride 

(NaCl), sodium carbonate (Na2CO3), ethylene diamine tetraacetic acid (EDTA), 

glacial acetic acid, methanol, acetonitrile, HPLC-grade water, ethanol, 2,2′-azinobis 

(3-ethylbenthaiazolinesulfonic acid) (ABTS), 3,3′,5,5′-tetramethyl benzidine (TMB), 

isopropyl thio-β-D-galactoside (IPTG), β-mercaptoethanol (BME), p-nitrophenol-β-D-

glucoside (pNPGlc), pNP-β-D-fucoside, pNP-α-L-arabinoside, pNP-β-D-galactoside, 

pNP-β-D-xyloside, pNP-β-D-mannoside, pNP-β-D-cellobioside， Coomassie brilliant 

blue R250, phenylmethylsulfonylfluoride (PMSF), calcium chloride (CaCl2), ethidium 

bromide (EB), Pfu DNA polymerase, Taq DNA polymerase, ammonium sulfate 

((NH4)2SO4), potassium dihydrogen phosphate (KH2PO4), manganese sulfate 

(MnSO4), zinc sulfate heptahydrate (ZnSO4·7H2O), potassium iodide (KI), boric acid 

(H3BO3), cobalt chloride hexahydrate (CoCl2·6H2O), copper sulfate pentahydrate 

(CuSO4·5H2O), disodium molybdrate 45-hydrate (Na2MoO4·2H2O), calcium chloride 

dihydrate (CaCl2·2H2O), magnesium sulfate heptahydrate (MgSO4·7H2O), iron 

sulfate heptahydrate (FeSO4·7H2O), dipotassium hydrogen phosphate (K2HPO4), 

sodium dihydrogen phosphate dihydrate (NaH2PO4·2H2O), ammonium chloride 

(NH4Cl), and potassium chloride (KCl) were purchased from a variety of suppliers. 

Cellooligosaccharides of degree of polymerization (DP) 3-6 and laminari-

oligosaccharides of DP 2-6 were purchased from Segu-gaku Corp. (Tokyo, Japan) or 

Megazyme (Bray, Ireland), SYBR Green PCR master mix was purchased from Kapa 

Biosystems, Inc (Boston, MA, USA), optical tubes and cap strips were purchased 
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from Bio-Rad (Hercules, CA, USA), and Superscript first-strand cDNA synthesis 

system for RT-PCR and 100 bp DNA ladder were purchased from Invitrogen 

(Carlsbad, CA, USA).   

 

2.2  General methods 

2.2.1 RNA extraction 

The rice (Oryza sativa L. ssp. Indica cv. KDML105) seeds were washed with 

5% Chlorox bleach for 20 min, washed with distilled water twice, and soaked in 

distilled water overnight. The rice seeds were spread onto a polystyrene box with wet 

tissue paper at the bottom. The rice was germinated in the dark from day 0 to day 3 

and in 12 h light 12 h dark from day 4 to day 7 at room temperature (25-30 °C) on 

paper moistened with distilled water. The shoots from 7 days rice seedlings were 

harvested and used in total RNA purification. The total RNA was isolated according 

to the Spectrum™ plant total RNA kit (Sigma-Adrich, St. Louis, MO, USA). The 

total RNA was used immediately for cDNA synthesis or stored at -80 °C. 

2.2.2 First-strand cDNA synthesis 

Total cDNA was reverse-transcribed from the total RNA template. Total RNA 

at a concentration of 100 ng/µl was mixed with 2.5 µM oligo(dT)20 and 0.5 mM 

dNTP, adjusted to a final volume of 10 µl with DEPC-treated water and incubated at 

65 °C for 5 min and immediately placed on ice at least 1 min. After that, 1X RT 

buffer, 5 mM MgCl2, 10 mM DTT, and 40 U RNase OUT
TM

 were added into the 

reaction mixture and it was incubated at 50 °C for 2 min. Then, 200 U Superscript™ 

III reverse transcriptase (Invitrogen, CA, USA) was added to the mixture and it was 

incubated at 50 °C for an additional 50 min. The reaction was stopped by incubating it 
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at 85 °C for 5 min. The mRNA was then hydrolyzed by 1 µl of Rnase-H (Invitrogen, 

CA, USA) at 37 °C for 20 min. The single stranded cDNA was ready for PCR. 

2.2.3 Preparation of E. coli strains DH5α, XL1-Blue and Origami(DE3) 

for competent cells 

Glycerol stocks of DH5α and XL1-Blue were streaked on LB plates without 

antibiotic. Origami(DE3) was streaked on an LB plate containing 15 µg/ml 

kanamycin and 12.5 µg/ml tetracycline and incubated at 37 °C for 16-18 h. A single 

colony was picked and inoculated into 5 ml of LB broth with shaking at 37 °C, 200 

rpm for 16-18 h. One hundred microliters of starter culture was transferred to 100 ml 

of LB broth and shaken at 37 °C, 200 rpm until the optical density at 600 nm (OD600) 

reached to 0.4-0.6. The cell culture was chilled on ice for 5 min in sterile 

polypropylene tube and collected at 4,000 rpm at 4 °C for 10 min. The cell pellets 

were resuspended in 10 ml ice-cold sterile 0.1 M CaCl2 and centrifuged to collect the 

cell pellets again. Finally, the pellets were resuspended with 1 ml of 0.1 M CaCl2 

containing 15% glycerol and 50 µl aliquots were stored at -80 °C. 

2.2.4 Transformation of plasmids into competent cells 

An aliquot of frozen competent cells was thawed 5 min on ice, then 1 µl of 

cloning or expression plasmids (20-100 ng) or ligation reactions were mixed with 

fresh or thawed competent cells. The reaction was incubated on ice for 30 min. The 

plasmid was transformed by heat shocking the cells at 42 °C for 45 s and quickly 

chilling on ice for 5 min. Two hundred microliters of LB broth was added to the 

transformed competent cells, which were then incubated at 37 °C for 1 h. The 

transformed cells were spread on LB agar containing appropriate antibiotics and 

incubated at 37 °C overnight. 
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2.2.5 Plasmid isolation by alkaline lysis method 

A single colony of transformed recombinant bacteria was picked into 5 ml of 

LB broth and incubated at 37 °C with shaking at 200 rpm for 16-18 h. The cultured 

cells were collected by centrifugation at 10,000 rpm, 1 min. The supernatant was 

removed and the cells were resuspended in 100 μl of lysis buffer I (50 mM glucose, 

10 mM EDTA, 50 mM Tris-HCl, pH 8.0). Then, 200 μl of freshly prepared lysis 

buffer II (0.2 N NaOH, 1% (w/v) SDS) was added and the tube was inverted 4-6 

times. After that, 150 μl of ice-cold lysis buffer III (3 M potassium acetate, pH 4.8) 

was added and the tube was mixed by inverting 4-6 times. The alkaline lysis reaction 

was incubated on ice for 5 min and the clear solution containing the plasmids was 

separated from the cell debris by centrifugation at 13,000 rpm, 10 min. The 

supernatant was transferred to a new tube and the DNA was precipitated with 2 

volumes absolute ethanol for 10 min at 4 °C. The precipitated DNA was collected by 

centrifugation at 13,000 rpm for 10 min. The left over absolute ethanol was removed 

by speed vacuum. Then, the DNA pellet was resuspended in 100 μl TE buffer 

containing 2 μg RNase A and incubated at 37 °C for 10 min. The RNase A-treated 

plasmids were further purified by adding 70 μl of ice-cold precipitation solution (20% 

PEG 6000, 2.5 M NaCl) and chilled on ice for 1 h. The precipitated DNA was 

collected by centrifugation at 13,000 rpm for 10 min. The supernatant was removed 

and the pellet was washed by adding 0.5 ml of 70% ethanol and inverting the tube 

twice, after that the ethanol solution was removed and the tube dried by speed 

vacuum. Finally, the DNA was redissolved with 30 μl of TE buffer or sterile water. 
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2.2.6 QIAGEN plasmid miniprep 

The QIAprep
®
 spin miniprep kit (QIAGEN) was used to purify recombinant 

plasmid DNA according to the manufacturer’s instructions. A single colony was 

picked and inoculated in 5 ml LB broth with appropriate antibiotics, as described in 

sections 2.2.3 and 2.2.5. The cultured cells were pelleted by centrifugation at 10,000 

rpm for 1 min. The cell pelleted was resuspended completely in 250 μl P1 buffer (100 

mg/ml RNas A in 10 mM EDTA, 50 mM Tris-HCl, pH 8.0). Two hundred fifty 

microliters of P2 buffer (200 mM NaOH, 1% (v/v) SDS) was added to the 

resuspended cells, and mixed by inverting the tube gently 4-6 times until the solution 

became viscous and slightly clear. After that, 350 µl of P3 buffer (3 M potassium 

acetate, pH 5.5) was added and mixed immediately, to avoid localized precipitation, 

by inverting the tube gently 4-6 times. The solution was centrifuged at 12,000 rpm for 

10 min to compact the white pellet. The supernatant was applied to a QIA prep 

column by pipetting and centrifuging at 12,000 rpm for 1 min, and then the flow-

through was discarded. To protect nuclease activity or carbohydrate content, 0.5 ml of 

PB buffer (1.0 M potassium acetate, pH 5.0) was added to the column and centrifuged 

at 12,000 rpm for 1 min. The column was washed 2 times by applying 0.75 ml PE 

buffer (1.0 M NaCl, 50 mM MOPS, pH 7.0, 15% (v/v) isopropanol) and centrifuging 

at 12,000 rpm for 1 min. The flow-through was discarded, and the column was 

centrifuged for an additional 1 min to remove residual wash buffer. Lastly, the 

column was placed in a new 1.5 ml microtube and 50 μl distilled water was added to 

the center of column. The column was allowed to stand for 1 min, and centrifuged at 

12,000 rpm for 1 min to elute the plasmid DNA. 
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2.2.7 Agarose gel electrophoresis for DNA 

The purified plasmids and PCR products were checked by agarose gel 

electrophoresis. One percent agarose gels were prepared in TAE buffer (40 mM Tris-

HCl, pH 8.0, 40 mM acetic acid, 1 mM EDTA, pH 8.0) or in TBE buffer (90 mM 

Tris-HCl, pH 8.0, 89 mM boric acid, 2.5 mM EDTA, pH 8.0). The DNA samples 

were mixed 5:1 with 6X loading dye (0.025% (w/v) bromophenol blue, 0.025% (w/v) 

xylene cyanol, 30% (v/v) sterilized glycerol). Agarose gel electrophoresis was 

performed in a Pharmacia GNA-100 Gel Electrophoresis Apparatus (GE Healthcare, 

Buckinghamshire, UK) at a constant voltage of 120 V for 30 min. The DNA bands on 

the agarose gel were detected by staining with ethidium bromide (0.1 μg/ml) 30 s and 

destained in distilled water for 5 min. The DNA bands were visualized by UV light 

transillumination with a Fluoro-S TM MultiImager (Bio-Rad). The sizes of the DNA 

bands were estimated by comparing their migration with those of 1 kb or 100 bp 

ladder (Fermentas, Burlington, ON, Canada). 

2.2.8 Purification of DNA bands from gels 

The correct size DNA bands that had been separated on agarose gel 

electrophoresis were purified with a HiYield
TM

 Gel/PCR DNA fragments extraction 

kit (RBC Bioscience Corp., Taiwan). The agarose gel containing the target DNA band 

was sliced with a blade cutter and not more than 300 mg was transferred to a 

microtube. The agarose gel purification was done according to the manufacturer’s 

instructions. 

2.2.9 SDS-PAGE electrophoresis 

The protein profile and the apparent molecular weights of proteins in various 

fractions were determined by SDS-PAGE, as described by Laemmli (1970). The 
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SDS-PAGE 12% separating gel consisted of 12% (w/v) acrylamide, 375 mM Tris-

HCl, pH 8.8, 0.1% SDS, 0.05% ammonium persulfate and 0.05% TEMED, while the 

4% stacking gel consisted of 4% (w/v) acrylamide, 125 mM Tris-HCl, pH 6.8, 0.1% 

SDS, 0.05% ammonium persulfate and 0.05% TEMED. Protein samples were mixed 

5:1 with 6X loading buffer (50 mM Tris-HCl, pH 6.8, 10% SDS, 0.2 mg/ml 

bromophenol blue, 50% glycerol, 20% β-mercaptoethanol) and boiled for 5 min to 

denature proteins. Twenty microliters of protein samples were loaded into sample 

wells, and electrophoresed through the polymerized gel at 170 V with Tris-glycine 

electrode buffer (50 mM Tris base, 125 mM glycine and 0.1% SDS, pH 8.3) until the 

dye front reached the bottom of the gel plate. The gels were subsequently stained in 

staining solution containing 0.1% (w/v) Coomassie Brilliant Blue R250, 40% (v/v) 

methanol, and 10% (v/v) acetic acid in water for 30 min and destained with destaining 

solution [40% (v/v) methanol and 10% (v/v) acetic acid] for 1-2 h. The molecular 

masses of protein bands were determined by comparing to standard low molecular 

weight protein markers (GE Healthcare, Uppsala, Sweden), which consist of 

phosphorylase b (97.4 kDa), bovine serum albumin (66 kDa), ovalbumin (45 kDa), 

bovine carbonic anhydrase (31 kDa), trypsin inhibitor (21.5 kDa) and bovine α-

lactalbumin (14.0 kDa). 

2.2.10 Determination of protein concentration 

The protein concentration was determined by the Bio-Rad assay (Hercules, 

CA, USA). The bovine serum albumin (BSA) was used as a standard ranging from 0-

5 µg. Each concentration containing 200 µl of Bio-Rad protein assay solution and 

made up to 1 ml with sterile water. The mixture was incubated at room temperature 

for 10 min. The absorbance was measured at a wavelength of 595 nm (A595) with the 
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Protein Bradford program of a NanoDrop 2000 spectrophotometer (Thermo 

Scientific, MA, USA). 

2.2.11 Preparation of P. pastoris SMD1168H competent cells 

A glycerol stock of P. pastoris strain SMD1168H was streaked on a yeast 

extract peptone dextrose (YPD) plate without antibiotic, which was then incubated at 

28 °C for 2-3 days. A single colony was inoculated into 5 ml YPD broth and grown at 

28 °C with 220 rpm overnight. The starter culture was transferred into 500 ml YPD 

broth and grown until the OD600 reached 1.3-1.5. The cells were collected by 

centrifugation at 1,500 rpm for 5 min at 4 °C. The pellet was washed 2 times in 500 

ml and 250 ml of ice-cold sterile water and collected by centrifugation at 1,500 rpm 

for 5 min at 4 °C each time. Next, the pellet was resuspended with 20 ml of ice-cold 1 

M sorbitol and centrifuged at 1,500 rpm for 5 min at 4 °C. Finally, the pellet was 

resuspended and kept in 1 ml of ice-cold 1 M sorbitol and 80 µl aliquots per tube was 

used for transformation. 

 

2.3  Amplification and cloning of Os4BGlu14 

2.3.1 Amplification of gene encoding mature Os4BGlu14 

Os4BGlu14 was cloned from the Genbank accession number AK067841 

cDNA plasmid clone name J013128A11 provided by the Rice Genome Resource full-

length cDNA project. A fragment of the cDNA that encoded the predicted mature rice 

Os4BGlu14 gene was amplified with Os4BGlu14Matstrt primer, which contains a 

CACC sequence and NcoI site at the 5′ end, and Os4BGlu14StopR primer, which 

contains a BamHI site at 5′ end, respectively (Table 2.1), and Pfu DNA polymerase 
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(Promega, WI, USA). The PCR product around 1.5 kb was run checked on 1% 

agarose gel.  

2.3.2 Cloning of mature Os4BGlu14 into the pET32a vector 

The PCR product of mature Os4BGlu14 was combined with pENTR-D-TOPO 

from a pENTR™ Directional TOPO
®
 Cloning Kit, in a 2:1 molar ratio of purified 

PCR product:TOPO vector, to which were added 1 µl of salt solution and sterile water 

to 6 µl final volume. The topoisomerase reaction was incubated at room temperature 

overnight, and the mixture was used to transform chemically competent XL1-Blue or 

DH5α E. coli. The transformed XL1-Blue competent cells were spread onto an LB 

plate containing 15 μg/ml kanamycin, then incubated at 37 °C overnight. The colonies 

that had grown overnight were picked, and the plasmids prepared by the QIAGEN 

minipreparation method (section 2.2.6) were checked by digestion with EcoRV, 

followed by agarose gel electrophoresis. The cDNA insert sequences of the plasmids 

with proper sized inserts were determined by automated DNA sequencing at 

Macrogen Corp. (Seoul, South Korea). 

The recombinant pENTR-D-TOPO plasmid containing the cDNA encoding 

the mature Os4BGlu14 was recombined with pET32a/DEST (Opassiri et al., 2006) by 

an LR clonase recombination reaction, as described by the supplier (Invitrogen, CA, 

USA), to insert the Os4BGlu14 cDNA into pET32a/DEST. Each LR recombination 

reaction was transformed into competent cells by the CaCl2 heat shock method 

(section 2.2.4) and selected on LB-agar containing 50 μg/ml ampicillin at 37 °C 

overnight. The colonies that grew overnight were picked and inoculated into LB 

media containing 50 μg/ml ampicillin and incubated at 37 °C, shaking at 200 rpm 
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overnight. The recombinant plasmids were extracted from the cultures by the alkaline 

lysis method. 

In addition, the PCR mixture that contained mature Os4BGlu14 gene was 

cloned into the pET32a expression vector. The vector and insert gene were digested 

with NcoI and BamHI, then incubated at 37 °C for 2 h. The digested Os4BGlu14 gene 

and pET32a vector were purified with a HiYield
TM

 Gel/PCR DNA fragments 

extraction kit (RBC Bioscience Corp., Taiwan). The purified Os4BGlu14 gene and 

pET32a vector were ligated by mixing vector:DNA insert (1:3) at 45 °C for 5 min to 

melt any cohesive termini that had reannealed, then immediately chilled on ice and 

1X ligation buffer and 1 µl of T4 DNA ligase (Promega, WI, USA) were added and 

mixed in well but gently, and the reaction mixture was incubated at 15 °C for 18 h. 

Then, 1 µl of the reaction was transformed into competent cells and selected on a 50 

µg/ml ampicillin LB agar plate. The colonies were cultured and plasmids extracted as 

described above. The presence of the gene insert was checked by cutting the prepared 

plasmids with NcoI and BamHI and evaluating the digested DNA bands by agarose 

gel electrophoresis, and the plasmid insert sequence was verified by automated DNA 

sequencing at Macrogen Corp. 

2.3.3 Mutagenesis of pET32a/Os4BGlu14 

To try to produce active Os4BGlu14 protein, the mutation of Os4BGlu14 

Q191 to E was done with the QuikChange
®
 Site-Directed Mutagenesis Kit 

(Strategene, CA, USA). The pET32(a)/Os4BGlu14 plasmid was used as a template to 

amplify full-length plasmid with specific Os4BGlu14AB2Ef and Os4BGlu14AB2Er 

primers (Table 2.1) designed according to the criteria of QuikChange user manual. 

The PCR reaction was set up to contain 5-50 ng template, 125 ng forward and reverse 
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primers, 0.2 µM dNTP mix, 1× Pfu Ultra HF reaction buffer (20 mM Tris-HCl (pH 

8.8), 10 mM (NH4)2SO4, 10 mM KCl, 0.1% (v/v) Triton X-100, 0.1 mg/ml BSA and 2 

mM MgSO4.), and 2.5 U of Pfu Ultra HF DNA polymerase and amplified with the 

temperature cycling parameters shown in Table 2.2. To eliminate the methylated and 

hemimethylated DNA of the DNA template, 10 U of DpnI endonuclease was used to 

treat the PCR products overnight at 37 °C. One microliter of the products was 

transformed into XL1-Blue competent cells and selected on 50 µg/ml ampicillin LB 

agar plate. The recombinant insert gene was checked by automated DNA sequencing 

at Macrogen Corp. (Seoul, Korea). 

Table 2.2 Cycling parameters for mutation of pET32a/Os4BGlu14 by the 

QuikChange
®
 Site-Directed Mutagenesis method. 

Segment 
Cycles Temperature (ºC) Time 

1 1 95 30 s 

2 16 

95 

55 

68 

30s 

1 min 

6 min 

3 1 68 10 min 
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2.4 Cloning of Os4BGlu16 

2.4.1 Cloning of optimized Os4BGlu16 cDNA into the pPICZαB(NH8)    

vector 

An optimized Os4BGlu16 cDNA (protein accession number Q7XSK2) was 

synthesized and inserted into the pUC57 vector by GenScript Corporation 

(Piscataway, NJ, USA). The optimized Os4BGlu16 cDNA was transformed into XL1-

Blue competent cells and spread onto LB agar containing 50 μg/ml ampicillin. The 

colonies were picked and inoculated into LB media containing 50 μg/ml ampicillin 

and incubated at 37 °C overnight. The plasmid was extracted with a QIAprep Spin 

miniprep Kit (QAIGEN, CA, USA). The optimized Os4BGlu16 and pPICZαBNH8 

plasmid (Toonkool et al., 2006) were cut with PstI and XbaI.  The gel purified 

Os4BGlu16 insert and pPICZαBNH8 plasmid were ligated as described for the 

cloning of Os4BGlu14 and colonies selected on 25 μg/ml zeocin. Colonies were 

picked and plasmid DNA extracted as described in section 2.2.6. The recombinant 

gene insert was checked by cutting the plasmid clones with PstI and XbaI and 

evaluating the products by agarose gel electrophoresis, and the sequence confirmed by 

automated DNA sequencing at Macrogen Corp. (Seoul, Korea). 

 

2.5  Amplification and cloning of Os4BGlu18 

2.5.1 Amplification of cDNA encoding mature Os4BGlu18 

The gene encoding full-length rice Os4BGlu18 was amplified from the cDNA 

synthesis product with the Os4BGlu18Startf and Os4BGlu18Stop primers (Table 2.1). 

Then, the gene encoding the predicted mature protein was also amplified from the 

initial PCR product with the Os4BGlu18MatStf and Os4BGlu18Stop primers. Both 
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reactions were carried out with Pfu DNA polymerase with the temperature cycling 

parameters shown in Table 2.3. The PCR product (   1.5 kb) was checked by 

electrophoresis on a 1% agarose gel.  

Table 2.3 Cycling parameters for amplification of cDNA encoding mature 

Os4BGlu18. 

Segment Cycles Temperature (ºC) Time 

1 1 95 2 min 

2 30 

95 

58 

72 

30 s 

30 s 

3 min 

3 1 72 10 min 

 

2.5.2 Cloning of mature Os4BGlu18 into pET32a 

The PCR mixture that contained the mature Os4BGlu18 gene and pET32a 

expression vector were digested with NcoI and BamHI at 37 °C for 2 h. The digested 

Os4BGlu18 gene and pET32a vector were purified with the HiYield
TM

 Gel/PCR 

DNA fragments extraction kit. The purified Os4BGlu18 gene and pET32a vector 

were ligated together by mixing 1:3 vector:DNA insert and heating at 45 °C for 5 min 

to melt any cohesive termini that have reannealed, then immediately chilled on ice. 

Then, 1X ligation buffer and T4 DNA ligase were added and the tube was mixed well 

but gently and incubated at 15 °C for 18 h. One microliter of the reaction was 

transformed into DH5α competent cells and selected on a 50 µg/ml ampicillin LB 

agar plate. The colonies were cultured and plasmids prepared as described for the 
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pET32/Os4BGlu14 plasmid (section 2.2.6). The recombinant gene insert was checked 

by cutting with NcoI and BamHI and the sequence verified by automated DNA 

sequencing at Macrogen Corp. (Seoul, South Korea). 

 

2.6  Expression of Os4BGlu14 

The recombinant pET32a/Os4BGlu14 wild type and pET32a/Os4BGlu14 

Q191E mutant plasmids were transformed into Origami(DE3), Origami B(DE3), 

Rosetta-gami(DE3), and BL-21(DE3) competent cells and spread onto LB-agar 

containing 50 μg/ml ampicilin, 15 μg/ml kanamycin and 12.5 μg/ml tetracycline for 

Origami(DE3) and Origami B(DE3), the same antibiotics plus 34 μg/ml 

chloramphenicol for Rosetta-gami(DE3), and 50 μg/ml ampicilin alone for BL-

21(DE3). The transformed cells were incubated at 37 °C overnight. The colonies that 

grew overnight were picked and inoculated into LB media containing the same 

antibiotics to make a starter culture. To express recombinant β-glucosidases, 1% final 

concentration of starter culture was added into the same type of media and cultured at 

37 °C with rotary shaking at 200 rpm. Protein expression was induced when the 

OD600 of the culture reached 0.4. The optimum expression conditions were 

determined by varying the final concentration of IPTG from 0 to 0.8 mM, and the 

temperature at 10 °C, 15 °C, 18 °C, 20 °C, and 22 °C for 16 h. The cell pellets were 

collected by centrifugation at 4,500 rpm for 15 min at 4 °C. The cell pellets was kept 

at -80 °C to allow freeze-thaw breakage before use. 

The IPTG-induced bacterial cell pellets were thawed on ice and then 

resuspended in freshly prepared extraction buffer (20 mM Tris-HCl buffer, pH 8.0, 

200 μg/ml lysozyme, 1% Triton-X 100, 1 mM phenylmethylsulfonylfluoride (PMSF), 
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25 µg/ml DNase I and 0.1 mg/ml soy bean trypsin inhibitor) in a ratio of 5 ml 

extraction buffer per gram fresh weight of cell pellets. The resuspended cells were 

incubated at room temperature for 30 min. Then, the insoluble proteins were removed 

by centrifugation. An aliquot of 5 µl of the supernatant fraction was used to test 

hydrolysis activity with 2 mM pNPGlc at 30 °C for 30 min.  

 

2.7  Expression and purification of Os4BGlu16 

The optimized pPICZαBNH8/Os4BGlu16 plasmid was linearized with SacI. 

Linearization of the plasmid was checked by electrophoresis on a 1% agarose gel. The 

restriction enzyme was inactivated by heating at 65 °C for 10 min. Linear DNA was 

precipitated with PEG6000/2.5 M NaCl solution. The DNA pellet was dissolved in 5-

10 µl of sterile de-ionized water. The linearized recombinant 

pPICZαBNH8/Os4BGlu16 vector was transformed into P. pastoris competent cells by 

electroporation (Bio-Rad) with the parameters of 1.5 kV, 25 µF and 400 Ω (Pichia 

manual, Invitrogen). The transformed cells were selected on Yeast Extract Peptone 

Dextrose medium with Sorbitol (YPDS) plates containing 100 µg/ml zeocin. The 

YDPS plate was incubated at 28 °C for 3-5 days. The transformed cells were selected 

again on a YPDS plate containing 500 µg/ml zeocin.  The colonies were screened for 

protein production in small scale cultures. For protein production, a single colony that 

has been selected on a 500 µg/ml zeocin YPDS plate was inoculated into 500 ml of 

buffered glycerol-complex medium (BMGY) medium containing 100 µg/ml zeocin 

and grown in a shaking incubator (220 rpm) at 28 °C until the cell culture optical 

density at 600 nm (OD600) reached 2-3. The cells were harvested by centrifugation and 

resuspended in 1000 ml buffered methanol-complex medium (BMMY) at the final 
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OD600 of 1. Protein expression was induced by adding methanol to 1% (v/v) final 

concentration every 24 h for 4 days at 20 °C with shaking, and the media was checked 

each day for activity (Luang et al., 2010). 

The protein was purified from the culture broth after removal of the cells by 

centrifugation.  The pH of the culture broth with secreted protein was adjusted to 7.5 

with 2 M K2HPO4 and it was loaded onto immobilized metal ion affinity 

chromatography (IMAC) column (GE Healthcare, Buckinghamshire, United 

Kingdom) charged with Co
2+

, and the column was washed with 5 column volumes of 

5 mM and 10 mM of imidazole in 50 mM sodium phosphate buffer, pH 7.5, then the 

protein was eluted with 250 mM imidazole in 50 mM sodium phosphate buffer, pH 

7.5. The active fractions were reconstituted by centrifugal filtration. 

To test for the significance of glycosylation, the purified protein was 

deglycosylated with endoglycosidase H (New England BioLabs, MA, USA). The 

mixture of 90 µg Os4BGlu16 enzyme and 500 U endoglycosidase H in 50 mM 

sodium acetate, pH 5.5, was incubated at 4 °C for 3-4 days with gentle shaking, until 

deglycosylation was completed, based on inspection on SDS-PAGE. 

 

2.8  Expression and purification of Os4BGlu18 

The recombinant pET32a/Os4BGlu18 plasmids was transformed into 

Origami(DE3) competent cells and spread onto LB-agar containing 50 μg/ml 

ampicillin, 15 μg/ml kanamycin and 12.5 μg/ml tetracycline. The plate was incubated 

at 37 °C overnight. The colonies that grew overnight were picked and inoculated into 

LB media containing the same antibiotics to make a starter culture. To express the 

recombinant Os4BGlu18 β-glucosidases, 1% final concentration of starter culture was 
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added into the same type of media and cultured at 37 °C with rotary shaking at 200 

rpm. Protein expression was induced when the OD600 of the culture reached 0.6. The 

protein expression was induced with 0.1 mM IPTG at 18 °C for 16-18 h. The cell 

pellets were collected by centrifugation at 4,500 rpm 15 min at 4 °C. The cell pellets 

was kept at -80 °C to allow freeze-thaw breakage before use. 

The IPTG-induced bacterial cell pellets were thawed on ice and then 

resuspended in freshly prepared extraction buffer (20 mM Tris-HCl buffer, pH 8.0, 

200 μg/ml lysozyme, 1% Triton-X 100, 1 mM PMSF, 25 µg/ml DNase I and 0.1 

mg/ml soy bean trypsin inhibitor) in a ratio of 5 ml extraction buffer per gram fresh 

weight of cell pellets. The resuspended cells were incubated at room temperature for 

30 min. Then, the insoluble proteins and cell debris were removed by centrifugation. 

The supernatant fraction was loaded onto a Q sepharose chromatography (GE 

Healthcare) column, which had been pre-equilibrated with 50 mM Tris-HCl buffer, 

pH 8.0, and run at a flow rate of 2 ml/min. Unbound protein was washed out with 2 

CV of 50 mM Tris-HCl buffer, pH 8.0. The protein was eluted by a gradient from 0-1 

M NaCl in 50 mM Tris-HCl buffer, pH 8.0. The active protein was pooled and NaCl 

was added to 2 M final concentration. The protein solution was then loaded onto a 

phenyl sepharose chromatography (GE Healthcare) column, which was pre-

equilibrated with 2 M NaCl in 50 mM Tris-HCl, pH 8.0. The column was washed 

with 2 CV of 2 M NaCl in 50 mM Tris-HCl, pH 8.0, and eluted with gradient from 2-

0 M NaCl in 50 mM Tris-HCl, pH 8.0, and further eluted with 0-60% ethylene glycol 

in 50 mM Tris-HCl, pH 8.0. The fractions that contained β-glucosidase activity were 

pooled and concentrated, and the buffer was changed to 50 mM Tris-HCl buffer, pH 

8.0, in 30 kDa molecular weight cut-off (MWCO) Amicon® Ultra-15 centrifugal 

42 

 

 

 

 

 

 

 

 



 

 

filter. Finally, active Os4BGlu18 protein from the previous column was loaded into an 

immobilized metal affinity chromatography (IMAC) column charged with Co
2+

. After 

loading the active protein, the IMAC column was washed twice with 10 CV of 

equilibration/wash buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl) to remove 

unbound protein and washed again with 5 CV each of equilibration/wash buffer 

containing 5 mM and 10 mM of imidazole, respectively. Bound protein was eluted 

with 3 CV of elution buffer (50 mM Tris-HCl, pH 8.0, containing 250 mM 

imidazole). The eluted protein was checked by assaying activity with pNPGlc and the 

presence and purity of protein of appropriate size evaluated by SDS-PAGE. The 

fractions that contained β-glucosidase were pooled and imidazole removed by buffer 

exchange in 30 kDa MWCO Amicon® Ultra-15 centrifugal filters.  

 

2.9 Enzyme assay, pH and temperature optimum and stability 

studies 

Initially, 1 µg of purified protein or 5–50 µl of purification fraction was 

incubated in 140 µl total volume with 1 mM pNPGlc in 50 mM sodium acetate, pH 

5.0, at 30 °C for 30 min, and then 70 µl of 2 M Na2CO3 was added to stop the 

reaction. The absorbance was measured at 405 nm and compared to a p-

nitrophenolate (pNP) standard curve in the same buffers to determine the amount of 

pNP released. Upon determination of the pH optima, Os4BGlu16 was assayed in 50 

mM sodium phosphate, pH 6.5, and Os4BGlu18 in 50 mM sodium acetate, pH 5.0. 

To determine the pH optima of the purified protein, activity was assayed in 

100 mM universal buffers (citric acid–disodium hydrogen phosphate) ranging from 
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pH 2.0 to 9.0, at 0.5 pH increments. The pH stability for the purified enzyme was 

determined by incubating the enzymes in 100 mM buffers ranging from pH 2.0 to 9.0 

for 15, 30, 60 min and 2 h at room temperature (~25 °C). After incubation, the 

enzyme was assayed in 50 mM buffer at the optimum pH and 1 mM pNPGlc, as 

described above. 

The optimum temperature for enzyme activity was determined by pre-

incubating the purified enzyme at temperatures ranging from 5 °C to 70 °C at 5 °C 

increments for 10 min, and then pre-incubated enzyme was incubated with 1 mM 

pNPGlc in 50 mM buffer at the optimum pH, in a reaction volume of 140 µl at the 

same temperatures for 30 min, and then 70 µl of 2 M Na2CO3 was added to stop the 

reaction, the enzyme activity was measured, as described above. Thermostability of 

the purified enzyme was measured by incubating the enzyme in 50 mM buffer at 

different temperatures in the range of 20 °C to 60 °C at 10 °C increments for 15, 30, 

45, 60 min, then the enzyme samples was assayed with 1 mM pNPG in 50 mM 

sodium acetate, pH 5.0, at 30 °C for 30 min. 

 

2.10 Substrate specificity and enzyme kinetics 

The substrate specificity toward natural and synthetic substrates was evaluated 

by incubating 1 µg of enzyme with 1 mM final concentration of substrates at 30 °C 

for 1 h in 100 mM sodium phosphate, pH 6.5, for Os4BGlu16 or 100 mM sodium 

acetate, pH 5.0, for Os4BGlu18. Hydrolysis of pNP- and ortho-nitrophenyl (oNP) 

glylcosides was detected as described for pNPGlc above. Reactions with other 

synthetic and natural glucosides were stopped by boiling for 5 min and the amount of 
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glucose released was determined by peroxidase/glucose oxidase coupled reactions 

(PGO assay, Sigma Aldrich) or the product from the hydrolysis reaction was spotted 

onto thin-layer chromatography silica gel 60 F254plates (Merck, Darm-stadt, 

Germany). TLC plates were developed with a solvent of ethyl acetate, methanol and 

water (7:2.5:1, v/v/v) and detected by spraying with 10% sulfuric acid in methanol, 

drying and heating at 120 °C. 

Apparent kinetic parameters, KM and Vmax, of purified protein with pNP-

glycosides and natural and synthetic substrates were determined in triplicate reactions. 

The optimum time point, at which the velocity of hydrolysis gives a first order rate 

constant, was determined. The rates were determined over a substrate concentration 

range of at least 0.2 KM to 3 KM. Kinetic parameters were calculated by fitting the rate 

of product formation and substrate concentrations by nonlinear regression of the 

Michaelis-Menten curves with Grafit 5.0 (Erithacus Software, Horley, Surrey, U.K.). 

The apparent kcat values were calculated by dividing the Vmax by the total amount of 

enzyme in the reaction.  

For monolignol substrates, glucose released was measured by high 

performance anion exchange chromatography on a Dionex ion chromatography 

system (ICS-3000). The boiled reactions were diluted 100-fold with HPLC grade 

water and loaded onto a Dionex CarboPac
TM

 PA20 carbohydrate column (3 × 150 

mm), which was then eluted with 10 mM NaOH in water. The peak areas were 

compared to a glucose standard curve to determine the amount of glucose released. 

Since the substrate concentrations in these assays did not bracket the KM for accurate 

nonlinear regression, the kinetic parameters were calculated by linear regression of 
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the Hanes-Woolf ([S]/v vs. [S]) plot, which produced a straight line with slope 1/Vmax 

and a y-intercept of KM/Vmax and an x-intercept of -KM (Haldane, 1957). 

 

2.11 Inhibition study 

To evaluate inhibition of Os4BGlu16 and Os4BGlu18, one microgram of 

enzyme was pre-incubated with 1 mM of potential inhibitor at 30 °C for 1 h and then 

pNPGlc was added to 3 mM for Os4BGlu16 protein and to 5 mM for Os4BGlu18 

protein, and the reactions were incubated for another 20 min. The released pNP was 

then measured as described above and the absorbance was compared to identical 

reactions pre-incubated without inhibitor. 

 

2.12 In planta expression analysis of rice monolignol β-glucosidase 

Total RNA was isolated from tissues of various age rice plants with the 

Spectrum
TM

 plant total RNA kit (Sigma-Aldrich, MO, USA). Subsequently, 100 ng/µl 

of total RNA was mixed with 2.5 µM oligo(dT)20 and 200 U Superscript
TM

III reverse 

transcriptase (Invitrogen, CA, USA), and the mixture was reverse transcribed at 50 °C 

for 50 min. Real-time PCR was done with the gene-specific primers listed in Table 

2.1. The PCR reaction included SYBR Green Mix (KapaBiosystems, Boston, MA, 

USA), 1
st
 strand cDNA, the gene specific primer pair and Taq polymerase, along with 

deoxyribonucleotides and buffer. After the PCR finished, the products were examined 

by 2% agarose gel to verify specificity. Relative gene expression ratios (rERs) were 

calculated from the CT values and efficiency, E, with a 7-day-old shoot cDNA as the 

reference sample and actin as the reference gene (Schefe et al., 2006). 
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2.13 Detection of monolignol compounds in rice KDML105 by 

UPLC-MS analysis 

The rice (Oryza sativa L. ssp. Indica cv. KDML105) seeds were soaked in 

water until coleoptiles were generated, then they were planted in soil in pots. The rice 

samples were collected every 10 days and the tissues separated, then frozen at -40 °C. 

Fifty-milligram samples of frozen samples of rice tissues at various ages from 

vegetative until ripening stage were ground in liquid nitrogen and extracted in 500 µl 

of 80% methanol. The samples were mixed by vortexing 5 min and sonicating 15 min. 

Then, the supernatant was collected by centrifugation at 13,000 rpm for 15 min. Five 

microliters of each sample was injected onto an Agilent SB-C18 RRHD 1.8 µm, 

2.1x150 mm column (Agilent Technologies, CA, USA) on an Agilent 1290 UPLC 

system inline with an Agilent 6490 triple quadrupole mass spectrometer. A gradient 

of buffer A (100:1:0.1, water:actronitrile:2 M ammonium acetate, pH 5.0) and buffer 

B (100:1:0.1, actronitrile:water:2 M ammonium acetate, pH 5.0) was used. The 

gradient was begun at 95% buffer A, 5% buffer B at 0.1 min and increased to 45% 

buffer B in 36.9 min at the flow rate of 0.2 ml/min (Chapelle et al., 2012). The 

temperature of the column was set at 40 °C. A UV visible spectrum was measured 

between 190-600 nm on the inline diode array detector (DAD). Electrospray 

ionization (ESI) was used in the negative ion mode with MS2 selected ion monitoring 

(SIM). Ionic masses of p-coumaric acid (m/z 163, retention time [Rt] 10.8 min), 

caffeic acid (m/z 179, Rt 7.6 min), coniferyl alcohol (m/z 179, Rt 13.6 min), sinapyl 

alcohol (m/z 209, Rt 14.1 min), sinapic acid (m/z 223, Rt 12.9 min), p-coumaryl 

alcohol glucoside [pCAG] (m/z 371, Rt 6.8 min), coniferin (m/z 401, Rt 8.2 min), and 

syringin (m/z 431, Rt 9.2 min) were monitored. The abundance values were compared 
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to standard curves of the specific compounds to determine the amount of each 

monolignol compound in the extract. Five replicates of each sample were analyzed to 

carry out statistical analyses.  
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CHAPTER III 

RESULTS 

 

3.1  Cloning and expression of Os4BGlu14 

The cDNA encoding the mature Os4BGlu14 protein was amplified from the 

Genbank accession number AK067841 cDNA clone plasmid provided by the Rice 

Genome Resource full-length cDNA project (Kikuchi et al., 2003). The PCR product 

around 1.5 kb (Figure 3.1) was ligated into the pET32a expression vector. Sequencing 

of the recombinant pET32a/Os4BGlu14 plasmid showed that it matched the expected 

sequence from the Oryza sativa Japonica group cDNA clone: J013128A11 (GenBank: 

AK067841.1) in the National Center for Biotechnology Information (NCBI). 

Because the catalytic acid/base of Os4BGlu14 is replaced by glutamine 

residue 191 (Figure 3.2), the mutation of pET32a/Os4BGlu14Q191E was made by 

site-directed mutagenesis to test if regenerating the catalytic acid/base would rescue 

catalytic activity. 

Expression of Os4BGlu14 was attempted with the recombinant 

pET32a/Os4BGlu14 wild-type and pET32a/Os4BGlu14Q191E mutant plasmids in 

E.coli strains Origami(DE3), Origami B(DE3), and Rosetta-gami(DE3) (Figure 3.3). 

The concentration of IPTG used for induction was varied from 0 to 0.8 mM (Figure 

3.4) and the temperature of induction from 10-37 °C (Figure 3.5). SDS-PAGE 

analysis of fractions which induced at 0.4 mM IPTG at 20 °C for 16 h from an attempt 

 

 

 

 

 

 

 

 



 

 

to purify the expressed protein by IMAC is shown in Figure 3.6. No correct-size 

protein band could be observed in the elution fractions and no activity could be 

detected in assays of the soluble cell lysate with pNPGlc, oNPGlc, and 2,4-dNPGlc 

substrates.  

 

 

Figure 3.1 Amplification of a cDNA encoding mature Os4BGlu14 gene. The 

AK067841 cDNA clone plasmid (J013128A11) was used as a template. The PCR 

products were separated on 1% agarose gel electrophoresis and stained with ethidium 

bromide.  

Lane M, Thermo Scientific GeneRuler 1kb DNA ladder and Lanes 1-4, PCR 

products of a cDNA encoding mature Os4BGlu14 which differ in annealing 

temperature at 54, 56, 58, and 60 °C, respectively. 
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*        20         *        40         *        60         *        80         *       100         *             

Os4BGlu14  : -------------------MAAAWLVVLLTVHRL-----------LHLSGVSAVDRSQFPPDFLFGTSSSAYQVEGGYLEGNKGLSNWDVFTHKQ-GTIEDGSNGDTANDHYHRY :  84  

Os4BGlu18  : ----------------MAGGSKTRIHASLVSTLL-----------LLLPLASAIHRSDFPASFLFGTATSSYQIEGAYLEGNKSLSNWDVFTHLP-GNIKDGSNGDIADDHYHRY :  87 

Os4BGlu16  : ----------------MAVAAATRIAVVVVVLAL----------AVLAPAARGLRRDDFPPGFLFGAATSAYQIEGAYLDDNKGLNNWDVFTHTQAGRISDGRNGDVADDHYHRY :  89 

AtBGLU45   : -----------------MKNLTSFVIVILLQSLL--FHVYGR--HQSSSKNILVDSSPFPSDFLFGTASSAYQYEGAFLTDGKSLNNWDVFTHKNPGKILDKNNADRAVDQYNRF :  94 

AtBGLU46   : -----------------MKTFANFAILFLLQSLL--FPLYSSCLHQTSD-----DSSPFPSDFLFGTASSAFQYEGAFLTDGKGLNNWDVFAHENPGKIVDGSNGDIATDQYHRY :  91 

AtBGLU47   : MKKSIVYEIMETKSSMYLSQFRLWLCFIITTLVSLSSSTRWYDDHISLKEIHAEETFHFPKNFLFGTASSAYQYEGAYLTDGKTLSNWDVFTNIS-GKIADGSHGKVAVDHYHRY : 114 

Pc_conifer : ----------------MEVSVLMWVLLFYSLLGF----------QVT---TARLDRNNFPSDFMFGTASSAYQYEGAVREDGKGPSTWDALTHMP-GRIKDSSNGDVAVDQYHRY :  85 

Os3BGlu7__ : ----------------MAARRANCALVLVLALALLAARDAGAAAVPKPNWLGGLSRAAFPKRFVFGTATSAYQVEGMAASGGRGPSIWDAFAHTP-GNVAGNQNGDVATDQYHRY :  98 

                                                                                     ▲                       

120         *       140         *       160         *       180         *       200         *       220         *       

Os4BGlu14  : MEDIELMHSLGVNSYRFSISWARILPKGRFGDVNPDGVAFYNALIDGLVQKGIQPFVTICHYDIPHELDERYGGWLSPEIQKDFSYFAEVCFKLFGDRIKFWTTFNQPNLSIKFS : 199 

Os4BGlu18  : EEDVELMNSLGVNAYRFSISWSRILPKGRFGGVNPAGIDFYNKLIDSILLKGIQPFVTLTHYDIPQELEDRYGAWLNAEIQSDFGHFADVCFGAFGDRVKYWTTFNEPNVAVRHG : 202 

Os4BGlu16  : TEDVDILHNLGVNSYRFSISWARILPRGRLGGVNSAGIAFYNRLINALLQKGIQPFVTLNHFDIPHELETRYGGWLGAAIREEFEYYSDVCFNAFGDRVRFWTTFNEPNLSTRHQ : 204 

AtBGLU45   : LEDIQLMSFLGVNSYRFSISWCRILPRGRFGEINYLGIKYYNIFIDALISRGIKPFVTLNHVDYPQELEDRFQSWLNPEMQKEFGYLADICFKHFGNRVKYWTTLNEPNQQLILG : 209 

AtBGLU46   : MEDIQSMNFLGVNSYRLSISWSRVLPNGRFGVINYKGIKYYNNLIDALIKKGITPFVTLNHFDYPQELENRFKSWLSSEMQKDFGYLADICFKHFGDRVKHWITINEPNQHISLA : 206 

AtBGLU47   : PGDLDLMEDLGVNSYRLSLSWARILPKGRFGDVNMGGIDHYNRMINDILKTGIEPFVTLTHYDIPQELEYRYGSWLNPQIREDFEHYANICFRHFGDRVKFWSTFNEPNVQVILG : 229 

Pc_conifer : MEDIELMASLGLDAYRFSISWSRILPEGR-GEINMAGIEYYNNLIDALLQNGIQPFVTLFHFDLPKALEDSYGGWLSPQIINDFEAYAEICFRAFGDRVKYWATVNEPNLFVPLG : 199 

Os3BGlu7__ : KEDVNLMKSLNFDAYRFSISWSRIFPDGE-GRVNQEGVAYYNNLINYLLQKGITPYVNLYHYDLPLALEKKYGGWLNAKMADLFTEYADFCFKTFGNRVKHWFTFNEPRIVALLG : 212 

                                                                         ▲○             ▲◊ ○●  ●○ 

                    +1     +2+1 +2+1 

                    240         *       260         *       280         *       300         *       320         *       340            

Os4BGlu14  : YMDGFYSPGRCSEPFGK--CAL-GNSSIEPYVAGHNIILSHANAVSVYRNKYQGKQGGQIGIALSITWYEPFRNTTIDLLAVKRALSFGASWFLDPILLGDYPTEMREVLGQSLP : 311 

Os4BGlu18  : YMLGTYPPSRCSPPFGH--CARGGDSHAEPYVAAHNVILSHATAIEIYKRKYQSKQRGMIGMVLYSTWYEPLRDVPEDRLATERALAFETPWFLDPLVYGDYPPEMRQILGGRLP : 315 

Os4BGlu16  : YILGEFPPNHCSPPFGN--CSS-GDSRREPYAAAHNILLSHAAAVHNYKTNYQAKQGGSIGIVIAVKWYEPLTNSTEDVRAARRALAFEVDWFLDPIFFGDYPREMREILSSNLP : 316 

AtBGLU45   : YLTGKFPPSRCSSPYGN--CSQ-GNSETEPFIAAHNMILAHAKAVNIYKTKYQKEQKGSIGIVVQTSWFEPISDSNADKEAAERAQSFYSNWILDPVIYGKYPKEMVDILGPALP : 321 

AtBGLU46   : YRSGLFPPARCSMPYGN--CTH-GNSETEPFIAAHNMILAHAKAIQIYRTKYQREQKGIIGIVVQTSWFEPISDSIADKNAAERAQSFYSNWILDPVVYGKYPEEMVNLLGSALP : 318 

AtBGLU47   : YRTGTYPPSRCSKPFGNCSC---GDSYIEPLVAAHNIILSHLAAVNLYRTKFQEQQRGQIGIVMNTIWFEPISDSLADRLAADRAQAFYLTWFLDPVVFGRYPREMREILGDDLP : 341 

Pc_conifer : YTVGIFPPTRCAAPHANPLCMTGNCSSAEPYLAAHHVLLAHASAVEKYREKYQKIQGGSIGLVISAPWYEPLENSPEERSAVDRILSFNLRWFLDPIVFGDYPQEMRERLGSRLP : 314 

Os3BGlu7__ : YDQGTNPPKRCTK------CAAGGNSATEPYIVAHNFLLSHAAAVARYRTKYQAAQQGKVGIVLDFNWYEALSNSTEDQAAAQRARDFHIGWYLDPLINGHYPQIMQDLVKDRLP : 321 

                 ●●              ●   ●     ○ 

+1+1             -1  +2                  +2                                                                                  

                 *       360         *       380         *       400         *       420         *       440         *       460       

Os4BGlu14  : KFTSKQKNRLQSTKLDFIGLNHYTTCYVKDCIFSPCEIDPV---NADARVFSLYERDGVPIGKATGAPFFHDVPRGMEEAVTYYKQRYNNTPTYITENGYSQASNSNMTAKDFTN : 423 

Os4BGlu18  : SFSPEDRRKLRY-KLDFIGVNHYTTLYARDCMFSDCPQGQE---TQHALAAVTGESNGLPIGTPTAMPTFYVVPDGIEKMVKYFMRRYNNLPMFITENGYAQGGDSYTDAEDWID : 426 

Os4BGlu16  : KFTPEEKKLLQNNKVDFIGINHYTAIYAKDCIYSPCTLDTY---EGNALVYAIGRRNGKIIGKPTALHGYFVVPEAMEKVVMYVNDRYRNTTIYITENGYSQHS--DTSMEDLIN : 426 

AtBGLU45   : QFSSNEVKNLEKSRADFVGINHYTSYFIQDCLTSACNTGHGAF-KAEGYALKLDRKGNVTIGELTDVNWQHIDPTGFHKMLNYLKDRYPNMPMFITENGFGDLQKPETTDKELLN : 435 

AtBGLU46   : KFSSNEMNSLMSYKSDFLGINHYTSYFIQDCLITACNSGDGAS-KSEGLALKLDRKGNVSIGELTDVNWQHIDPNGFRKMLNYLKNRYHNIPMYITENGFGQLQKPETTVEELLH : 432 

AtBGLU47   : EFTKDDLKSSKN-ALDFIGINQYTSRYAKDCLHSVCEPGKGGS-RAEGFVYANALKDGLRLGE----------PVGMEEMLMYATERYKNITLYVTENGFGENNTGVL-----LN : 439 

Pc_conifer : SISSELSAKLRG-SFDYMGINHYTTLYATST--PPLSPDHTQYLYPDSRVYLTGERHGVSIGERTGMDGLFVVPHGIQKIVEYVKEFYDNPTIIIAENGYPESEESSSTLQENLN : 426 

Os3BGlu7__ : KFTPEQARLVKG-SADYIGINQYTASYMKGQQLMQQTPTSY---SADWQVTYVFAKNGKPIGPQANSNWLYIVPWGMYGCVNYIKQKYGNPTVVITENGMDQPA--NLSRDQYLR : 430 

                                 ▲ ▲                                            ○                           ◊        

                    +2 

                      *       480         *       500         *       520         *       540         *              

Os4BGlu14  : DTGRITYIQGYLISLASAIRKGADVRGYFVWSLLDDFEWNFGYTLRFGLYHVHY-KTLKRTPKLSVDWYRKFLTGSLLRRKFRDESQLHKFNSY--- : 516 

Os4BGlu18  : DEDRIEYLEGYLTKLAKVIRDGADVRGYFAWSVVDNFEWLFGYTLRFGLYYIDY-RTQERSPKLSALWYKEFL------------QNLHENQ----- : 505 

Os4BGlu16  : DVERVNYMHDYLKYLSSAIRKGANVGGYFAWSIVDNFEWVYGYTVKFGLYQVDF-DTQERIPRMSAKWYRDFLTSSSLTDGLQVRSRRADS------ : 516 

AtBGLU45   : DTKRIQYMSGYLEALQAAMRDGANVKGYFVWSLLDNFEWLFGYKVRFGLFHVDL-TTLKRSPKQSASWYKNYIEEH---------VNRRDIVDNY-- : 520 

AtBGLU46   : DTKRIQYLSGYLDALKAAMRDGANVKGYFAWSLLDNFEWLYGYKVRFGLFHVDF-TTLKRTPKQSATWYKNFIEQN---------VNIEDQIDK--- : 516 

AtBGLU47   : DYQRVKFMSNYLDALKRAMRKGADVRGYFAWSLLDNFEWISGYTIRFGMYHVDF-STQERTPRLSASWYKNFIFQHRALSKDDWCLKQKEDTNFFLI : 535 

Pc_conifer : DVRRIRFHGDCLSYLSAAIKNGSDVRGYFVWSLLDNFEWAFGYTIRFGLYHVDFISDQKRYPKLSAQWFRQFLQHD-------DQGSIRSSSSI--- : 513 

Os3BGlu7__ : DTTRVHFYRSYLTQLKKAIDEGANVAGYFAWSLLDNFEWLSGYTSKFGIVYVDF-NTLERHPKASAYWFRDMLKH---------------------- : 504 

                                          ▲      ▲▲●● 

                                                                     +1+1 

Figure 3.2 Amino acid sequence alignment of predicted rice monolignol β-glucosidases, rice Os3BGlu7 (BGlu1), Arabidopsis thaliana 

β-glucosidases (BGLU45, BGLU46, BGLU47) and Pinus contorta coniferin β-glucosidase. 5
1
 

 

 

 

 

 

 

 

 

 



 

 

 
 

Figure 3.3 SDS-PAGE analysis of pET32a/Os4BGlu14 expression in various E. coli 

host cells. The cells were induced with 0.4 mM IPTG at 20 °C for 16 h.  

 Lane M, Bio-Rad low molecular weight markers; Lane 1, insoluble protein 

from Origami(DE3); Lane 2, soluble protein from Origami(DE3); Lane 3, insoluble 

protein from Origami B(DE3); Lane 4, soluble protein from Origami B(DE3); Lane 5, 

insoluble protein from Rosetta-gami(DE3); Lane 6, soluble protein from Rosetta-

gami(DE3). 
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Figure 3.4 SDS-PAGE analysis of pET32a/Os4BGlu14 (BGlu14) expression in 

Origami(DE3) induced at 0 to 0.8 mM of IPTG. Cultures were induced at 20 °C for 

16 h.  

Lane M, Bio-Rad low molecular weight markers; Lane 1, 0 mM IPTG pET32a 

culture insoluble protein; Lane 2, 0 mM IPTG pET32a culture soluble protein; Lane 

3, 0.4 mM IPTG pET32a culture insoluble protein; Lane 4, 0.4 mM IPTG pET32a 

culture soluble protein; Lane 5, 0 mM IPTG BGlu14 culture insoluble protein; Lane 

6, 0 mM IPTG BGlu14 culture soluble protein; Lane 7, 0.1 mM IPTG BGlu14 culture 

insoluble protein; Lane 8, 0.1 mM IPTG BGlu14 culture soluble protein; Lane 9, 0.2 

mM IPTG BGlu14 culture insoluble protein; Lane 10, 0.2 mM IPTG BGlu14 culture 

soluble protein; Lane 11, 0.3 mM IPTG BGlu14 culture insoluble protein; Lane 12, 

0.3 mM IPTG BGlu14 culture soluble protein; Lane 13, 0.4 mM IPTG BGlu14 

culture insoluble protein; Lane 14, 0.4 mM IPTG BGlu14 culture soluble protein; 

Lane 15, 0.5 mM IPTG BGlu14 culture insoluble protein; Lane 16, 0.5 mM BGlu14 

culture soluble protein; Lane 17, 0.6 mM IPTG BGlu14 culture insoluble protein; 

Lane 18, 0.6 mM IPTG BGlu14 culture soluble protein; Lane 19, 0.7 mM IPTG 

BGlu14 culture insoluble protein; Lane 20, 0.7 mM IPTG BGlu14 soluble protein; 

Lane 21, 0.8 mM IPTG BGlu14 culture insoluble protein; Lane 22, 0.8 mM IPTG 

BGlu14 culture soluble protein. 
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Figure 3.5 SDS-PAGE analysis of pET32a/Os4BGlu14 expression in Origami(DE3) 

at temperatures varying from 10-22 °C and induced at 0.4 mM IPTG for 16 h.  

 Lane M, Bio-Rad low molecular weight markers; Lane 1, insoluble protein 

from pET32a/Os4BGlu14 culture at 10 °C ; Lane 2, pET32a/Os4BGlu14 soluble 

protein at 10 °C; Lane 3, pET32a/Os4BGlu14 insoluble protein at 15 °C; Lane 4, 

pET32a/Os4BGlu14 soluble protein at 15 °C; Lane 5, pET32a/Os4BGlu14 insoluble 

protein at 18 °C; Lane 6, pET32a/Os4BGlu14 soluble protein at 18 °C; Lane 7, 

pET32a/Os4BGlu14 insoluble protein at 20 °C; Lane 8, pET32a/Os4BGlu14 soluble 

protein at 20 °C; Lane 9, pET32a/Os4BGlu14 insoluble protein at 22 °C; Lane 10, 

pET32a/Os4BGlu14 soluble protein at 22 °C. 
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Figure 3.6 SDS-PAGE analysis of pET32a/Os4BGlu14 expression in Origami(DE3) 

induced with 0.4 mM IPTG at 20 °C for 16 h and purified by IMAC column.  

Lane M, Bio-Rad low molecular weight markers; Lane 1, insoluble protein 

from induced cells carrying empty pET32a; Lane 2, soluble protein from induced 

cells with empty pET32a; Lane 3, insoluble protein from induced cells with 

pET32a/Os4BGlu14; Lane 4, soluble protein from induced cells with 

pET32a/Os4BGlu14; Lane 5, flow-through fraction after passing pET32a/Os4BGlu14 

cell lysate through the IMAC column; Lane 6, IMAC wash with equilibration buffer; 

Lane 7, wash of IMAC column with 5 mM imidazole; Lane 8, wash of IMAC column 

with 10 mM imidazole; Lanes 9-11, fractions from IMAC elution with 250 mM 

imidazole. 
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3.2  Cloning and expression of Os4BGlu16 

A gene optimized for Os4BGlu16 (Genbank accession number KJ579205) 

expression in Pichia pastoris was synthesized and inserted into the pUC57 vector by 

GenScript Corporation (Piscataway, NJ, USA) (Figure 3.7). The optimized 

Os4BGlu16 cDNA was inserted into the pPICZαBNH8 plasmid (Toonkool et al., 

2006).  

  

Figure 3.7 The optimized Os4BGlu16 in pUC57 plasmid cut with PstI and XbaI. The 

digestion reaction was separated on 1% agarose gel electrophoresis and stained with 

ethidium bromide.  

Lane M, Thermo Scientific GeneRuler 1kb DNA ladder and Lane 1, the 

digestion product of the optimized Os4BGlu16. 
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The pPICZαBNH8/Os4BGlu16 plasmid was cloned into P. pastoris strain 

SMD1168H, and protein expression was induced with 1% (v/v) methanol for 7 days 

at 20 °C. Of the twenty clones examined for pNPGlc hydrolysis activity in the media, 

Clone 6 had the highest activity, which was maximal at 4 days induction (Figure 3.8). 

 

Figure 3.8 The pNPGlc hydrolysis activity in pichia media over 7 days of expression 

of clones expressing Os4Glu16. The activity was determined by incubating 50 μl of 

induced cells media with 1 mM pNPGlc, in 50 mM NaOAc, pH 5.0, at 30 °C for 30 

min. The OD405 is plotted versus the day. 
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 Cloning and expression of Os4BGlu18 
The cDNA encoding mature rice Os4BGlu18 was amplified by reverse 

transcription and nested PCR with total mRNA of 7-day-old rice (cv.KDML105) 

roots and shoots as template. First, the cDNA encoding the full-length rice 

Os4BGlu18 precursor protein was amplified by varying annealing temperature at 50, 

54, 58 °C and then the fragment encoding the mature protein was also amplified from 

the initial PCR product. The single DNA band of mature Os4BGlu18 gene could be 

amplified from 7-day-old rice shoots at 58 °C annealing temperature (Figure 3.9). The 

cDNA encoding the mature Os4BGlu18 was cloned into the pET32a(+) expression 

vector. 

 

Figure 3.9 Amplification of a cDNA encoding mature Os4BGlu18 gene from 7-day-

old rice roots and shoots cDNA as a template. The PCR products were separated on 

1% agarose gel electrophoresis and stained with ethidium bromide.  

Lane M, Thermo Scientific GeneRuler 1kb DNA ladder, Lane 1-3, PCR 

product when used 7-day-old rice roots as template and varied annealing temperature 

at 50, 54, 58 °C, respectively, Lane 4-6 , PCR product when used 7-day-old rice 

shoots as template and varied annealing temperature at 50, 54, 58 °C, respectively. 
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Expression of Os4BGlu18 was attempted with the recombinant 

pET32a/Os4BGlu18 plasmids in E.coli strains Origami(DE3), Origami B(DE3), and 

Rosetta-gami(DE3) by inducing with 0.4 mM IPTG at 20 °C for 16 h  (Figure 3.10). 

The activity of this enzyme could detected in soluble cell lysates of Origami(DE3) 

and Origami B(DE3) with pNPGlc substrate as the same pNP release value; thus, 

Origami(DE3) was used as host cells for Os4BGlu18 expressions. The optimization of 

expression temperature was varied from 10 °C to 22 °C (Figure 3.11) with 18 °C 

found to give highest activity with pNPGlc substrate. Then, the concentration of IPTG 

used for induction was varied from 0 to 0.8 mM at 18 °C for 16 h (Figure 3.12). 

Os4BGlu18 enzyme could be expressed at all concentrations of IPTG. However, cells 

induced with 0.1 mM IPTG had the highest activity when Os4BGlu18 enzyme 

activity was tested with pNPGlc. In the absence of IPTG, the activity detected was 

only 44% compared with 0.1 mM IPTG induced cells. At 0.2-0.8 mM IPTG 

induction, the activity decreased 10-30%. Os4BGlu18 required at least 16 h to 24 h 

for induction. After induction for 12 h, the activity detected was only 28% of that at 

16 h. Finally, the E.coli strains Origami(DE3) was used to express Os4BGlu18 

enzyme and induced with 0.1 mM IPTG at 18 °C. 
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Figure 3.10 SDS-PAGE analysis of pET32a/Os4BGlu18 expression in various E. coli 

host cells. The cells were induced with 0.4 mM IPTG at 20 °C for 16 h.  

Lane M, Bio-Rad low molecular weight markers; Lane 1, insoluble protein 

from Origami(DE3); Lane 2, soluble protein from Origami(DE3); Lane 3, insoluble 

protein from Origami B(DE3); Lane 4, soluble protein from Origami B(DE3); Lane 5, 

insoluble protein from Rosetta-gami(DE3); Lane 6, soluble protein from Rosetta-

gami(DE3). 
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Figure 3.11 SDS-PAGE analysis of pET32a/Os4BGlu18 expression in Origami(DE3) 

at temperatures varying from 10-22 °C and induced at 0.4 mM IPTG for 16 h.  

 Lane M, Bio-Rad low molecular weight markers; Lane 1, insoluble protein 

from pET32a/Os4BGlu18 culture at 10 °C; Lane 2, pET32a/Os4BGlu18 soluble 

protein at 10 °C; Lane 3, pET32a/Os4BGlu18 insoluble protein at 15 °C; Lane 4, 

pET32a/Os4BGlu18 soluble protein at 15 °C; Lane 5, pET32a/Os4BGlu18 insoluble 

protein at 18 °C; Lane 6, pET32a/Os4BGlu18 soluble protein at 18 °C; Lane 7, 

pET32a/Os4BGlu18 insoluble protein at 20 °C; Lane 8, pET32a/Os4BGlu18 soluble 

protein at 20 °C; Lane 9, pET32a/Os4BGlu18 insoluble protein at 22 °C; Lane 10, 

pET32a/Os4BGlu18 soluble protein at 22 °C. 
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Figure 3.12 SDS-PAGE analysis of pET32a/Os4BGlu18 expression in Origami(DE3) 

induced at 0 to 0.8 mM of IPTG.  Cultures were induced at 18 °C for 16 h.  

Lane M, Bio-Rad low molecular weight markers; Lane 1, 0 mM IPTG 

pET32a/Os4BGlu18 culture soluble protein; Lane 2, 0 mM IPTG 

pET32a/Os4BGlu18 culture insoluble protein; Lane 3, 0.1 mM IPTG 

pET32a/Os4BGlu18 culture soluble protein; Lane 4, 0.1 mM IPTG 

pET32a/Os4BGlu18 culture insoluble protein; Lane 5, 0.2 mM IPTG 

pET32a/Os4BGlu18 culture soluble protein; Lane 6, 0.2 mM IPTG 

pET32a/Os4BGlu18 culture insoluble protein; Lane 7, 0.3 mM IPTG 

pET32a/Os4BGlu18 culture soluble protein; Lane 8, 0.3 mM IPTG 

pET32a/Os4BGlu18 culture insoluble protein; Lane 9, 0.4 mM IPTG 

pET32a/Os4BGlu18 culture soluble protein; Lane 10, 0.4 mM IPTG 

pET32a/Os4BGlu18 culture insoluble protein; Lane 11, 0.5 mM IPTG 

pET32a/Os4BGlu18 culture soluble protein; Lane 12, 0.5 mM pET32a/Os4BGlu18 

culture insoluble protein; Lane 13, 0.6 mM IPTG pET32a/Os4BGlu18 culture soluble 

protein; Lane 14, 0.6 mM IPTG pET32a/Os4BGlu18 culture insoluble protein; Lane 

15, 0.7 mM IPTG pET32a/Os4BGlu18 culture soluble protein; Lane 16, 0.7 mM 

IPTG pET32a/Os4BGlu18 insoluble protein; Lane 17, 0.8 mM IPTG 

pET32a/Os4BGlu18 culture soluble protein; Lane 18, 0.8 mM IPTG 

pET32a/Os4BGlu18 culture insoluble protein. 
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3.3  Purification of Os4BGlu16 

An optimized Os4BGlu16 cDNA was used to produce a secreted, N-

terminally His8-tagged protein in P. pastoris, the recombinant protein was induced 

and purified from the pichia media by IMAC. β-Glucosidase activity was detected in 

the media, as shown in Figure 3.8, and a broad protein band was detected above 67 

kDa on the SDS-PAGE gel (Figure 3.13). To test whether the broadness of the protein 

band was due to glycosylation, deglycosylation with endoglycosidase H was done and 

a single band of approximately 60 kDa was detected on a Coomassie-stained SDS-

PAGE gel (Figure 3.13).  

 

Figure 3.13 SDS-PAGE analysis of Os4BGlu16 protein expressed in Pichia pastoris.  

Lane 1, standard protein marker; Lane 2, Os4BGlu16 protein before 

deglycosylation; Lane 3, Os4BGlu16 protein after deglycosylation with 

endoglycosidase H. 
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3.4 Effect of pH and temperature on the activity and stability of 

Os4BGlu16 

As shown in Figure 3.14, the optimum pH for glycosylated Os4BGlu16 was 

found to be 6.5 and after deglycosylation the optimum pH for Os4BGlu16 was 6.0, 

but at pH 5.5 and 6.5 the activity was within error of this (only 4% and 2% lower, 

respectively). Figure 3.15 shows that the activity of Os4BGlu16 maintained >50% 

maximal activity when incubated up to an hour at pH values ranging from pH 5.5 to 

11.5 at 25 °C, indicating that this enzyme was stable at neutral to basic pH, but lost its 

activity in the highly acidic range. The temperature optimum for both the glycosylated 

and deglycosylated forms of the enzyme was 45 °C (Figure 3.16), but it was 

thermostable over the range of 20-40 °C from 15-60 min and began to lose activity at 

50 °C, while, at 60 °C no activity was detectable (Figure 3.17). 
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Figure 3.14 Activity versus pH profiles of Os4BGlu16. The purified enzyme was 

incubated with 1 mM pNPGlc in 100 mM McIlvaine’s universal buffers (citric acid-

disodium hydrogen phosphate) ranging from pH 2.0 to 9.0 at 30 °C for 30 min. A is 

pH optimum of recombinant Os4BGlu16 before deglycosylation and B is pH 

optimum of recombinant Os4BGlu16 after deglycosylation. 
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Figure 3.15 pH stability of Os4BGlu16 activity. The Os4BGlu16 was incubated in 

universal buffer (pH 2-12) for time periods of 15, 30, 45, and 60 min at 25 °C, then 

enzyme was diluted 100 fold into 100 mM sodium phosphate buffer, pH 6.5, and 

assayed with 1 mM pNPGlc for 30 min at 30 °C. 
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Figure 3.16 Temperature optima of Os4BGlu16. The activity was assayed by pre-

incubating 1 g of enzyme in 50 mM sodium phosphate buffer, pH 6.5, at the 

specified temperatures for 10 min to bring the reactions up to temperature, then the 

enzymes were assayed with 1 mM pNPGlc for 10 min at the same temperature as the 

preincubation. Panel A depicts the temperature optimum of recombinant Os4BGlu16 

before deglycosylation while panel B shows the temperature optimum of recombinant 

Os4BGlu16 after deglycosylation. 
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Figure 3.17 Thermostability of Os4BGlu16. The Os4BGlu6 was incubated at various 

temperatures (20-60 °C) from 15 to 60 min in 50 mM sodium phosphate buffer, pH 

6.5, and enzyme activity was determined at 30 °C by adding 1 mM final concentration 

of pNPGlc and incubating for 30 min. Pre means preincubation time at 0 min. 
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3.5  Purification of Os4BGlu18 

The Os4BGlu18 fusion protein with N-terminal thioredoxin, His6 and S-tags 

was highly expressed in E. coli strain Origami(DE3) and induced with 0.1 mM IPTG 

at 18 °C for 16-18 h. The soluble protein of recombinant Os4BGlu18 was purified by 

anion-exchange chromatography, and the active protein started to elute at 0.3-0.5 M 

NaCl. Then, the active protein was loaded on hydrophobic interaction 

chromatography and eluted at 0.3-0.5 M NaCl concentration. Finally, the protein was 

purified by IMAC column as described in section 2.8. Os4BGlu18 was produced at 

approximately 75 kDa  and approximately 90% pure, as judged by SDS-PAGE 

(Figure 3.18).  

 

Figure 3.18 SDS-PAGE analysis of Os4BGlu18 production in Escherichia coli.  

Lane 1, standard protein marker; Lane 2, crude protein extract of cells 

expressing Os4BGlu18; Lane 3,Os4BGlu18 purified by Q-sepharose ion exchange 

chromatography; Lane 4, Os4BGlu18 after purification by phenyl sepharose 

chromatography; Lane 5, Os4BGlu18 after purification by IMAC. 
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3.6  Effect of pH and temperature on the activity and stability of 

Os4BGlu18 

The optimum pH for Os4BGlu18 was found to be 5.0 and the activity dropped 

by 40% and 60% at pH 3.5 and 6.5, respectively (Figure 3.19). Figure 3.20 shows that 

Os4BGlu18 maintained similar activity when it was incubated 15-60 min at pH values 

from pH 4.0 to 8.0 at 25 °C, indicating that this enzyme was stable from pH 4.0 to 8.0, 

but unstable at pH ≤3.5 and ≥8.5. The temperature optimum for this enzyme is 55 °C 

(Figure 3.21), but it was only thermostable for 60 min between 20-40 °C as it began to 

lose activity at 50 °C in 30 min, and only a little activity could detected at 60 °C 

(Figure 3.22). 

 

Figure 3.19 Activity versus pH profile of Os4BGlu18 purified from E. coli. The 

purified enzyme was incubated with 1 mM pNPGlc in 100 mM McIlvaine’s universal 

buffers (citric acid-disodium hydrogen phosphate) ranging from pH 2.0 to 9.0 at 30 °C 

for 30 min. 
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Figure 3.20 pH stability of Os4BGlu18 activity. The Os4BGlu18 was incubated in 

universal buffer (pH 2-12) for time periods of 15, 30, 45, and 60 min at 25 °C, then 

was diluted 100 fold into 100 mM sodium acetate buffer, pH 5.0, and assayed with 1 

mM pNPGlc for 30 min at 30 °C. 
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Figure 3.21 Temperature optimum of Os4BGlu18 fusion protein expressed in E. coli. 

The activity was assayed by pre-incubating 1 g of enzyme in 50 mM buffer (sodium 

phosphate, pH 6.5, for Os4BGlu16 or sodium acetate, pH 5.0, for Os4BGlu18) at the 

specified temperatures for 10 min to bring the reactions up to temperature, then the 

enzymes were assayed with 1 mM pNPGlc for 10 min at the same temperature as the 

preincubation. 
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Figure 3.22 Thermostability of Os4BGlu18. The Os4BGlu18 was incubated at 

various temperatures (20-60 °C) from 15 to 60 min in 50 mM sodium acetate buffer, 

pH 5.0, and enzyme activity was determined at 30 °C by adding 1 mM final 

concentration of pNPGlc and incubating for 30 min. Pre means preincubation time at 

0 min. 
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3.7  Substrate specificity and kinetic analysis of Os4BGlu16 and 

Os4BGlu18 

The substrate specificities of the purified recombinant Os4BGlu16 and 

Os4BGlu18 enzymes were determined by testing different pNP glycosides and natural 

and synthetic glucosides, as shown in Table 3.1. First, the glycone specificities of 

both enzymes were investigated by assaying their activities toward β- and α-linked p-

nitrophenyl (pNP)-sugars. Among all the pNP glycosides tested, Os4BGlu16 

hydrolyzed pNP-β-D-fucopyranoside best, followed by pNPGlc, oNP-β-D-

glucopyranoside, pNP-β-D-galactopyranoside and pNP-β-D-xylopyranoside, 

respectively. Among the pNP-glycosides, Os4BGlu18 hydrolyzed the same substrates 

as Os4BGlu16. Os4BGlu16 hydrolyzed oNP-β-D-glucopyranoside with higher 

activity than pNP-β-D-galactopyranoside, while Os4BGlu18 displayed low activity 

toward oNP-β-D-glucopyranoside, suggesting a difference in aglycone specificity. To 

evaluate further their aglycone specificities, hydrolysis of natural and synthetic 

glycosides and oligosaccharides was tested by TLC analysis. Os4BGlu16 and 

Os4BGlu18 could hydrolyze the monolignol glucosides p-coumarol β-D-glucoside, 

coniferin and syringin, along with daidzin, esculin, helicin, salicin, indoxyl β-D-

glucoside, 4-methylumbelliferyl β-D-glucoside and 4-methylumbelliferyl β-D-

fucoside. Moreover, Os4BGlu18 also hydrolyzed arbutin, methyl β-D-glucoside, n-

octyl β-D-glucoside and n-heptyl β-D-glucoside. Neither enzyme could hydrolyze β-

1,3-, β-1,4-, or β-1,6-linked gluco-oligosaccharides. 
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Table 3.1 Relative activities of Os4BGlu16 and Os4BGlu18 toward nitrophenyl 

glycosides. 

Substrates Relative activity (%)* 

Os4BGlu16 Os4BGlu18 

pNP glycosides 

pNP-β-D-glucopyranoside 

pNP-β-D-mannopyranoside 

pNP-β-D-fucopyranoside 

pNP-β-D-galactopyranoside 

pNP-β-D-maltopyranoside 

pNP-β-D-cellobiopyranoside 

pNP-β-D-xylopyranoside 

pNP-1-thio-β-D-glucopyranoside 

pNP-β-L-arabinopyranoside 

oNP-β-D-glucopyranoside 

pNP-α-D-glucopyranoside 

pNP-α-D-mannopyranoside 

pNP-α-D-galactopyranoside 

pNP-α-D-glucopyranoside 

pNP-α-L-fucopyranoside 

pNP-N-acetyl-β-D-glucosaminide 

 

100.0±1.9 

NA 

297.3±5.9 

31.8±2.5 

NA 

NA 

25.8±0.4 

NA 

NA 

46.2±2.5 

NA 

NA 

NA 

NA 

NA 

NA 

 

100.0±4.8 

NA 

214.2±2.8 

38.4±3.9 

NA 

NA 

23.1±0.8 

NA 

NA 

3.7±1.6 

NA 

NA 

NA 

NA 

NA 

NA 

*The substrates were assayed at 1 mM substrate concentrations at 30 °C for 30 min. 

**NA means no activity detected. 
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Table 3.2 Activities of Os4BGlu16 and Os4BGlu18 toward natural and synthetic 

glycosides based on TLC analysis. 

Natural and synthetic 

glucosides 

 

Activity 

Os4BGlu16 Os4BGlu18 

Monolignol glucosides 

p-Coumarol glucoside 

Coniferin 

Syringin  

Natural glucosides 

D-Amygdalin 

Quercetin-3-glucoside 

Phlorizin 

Daidzin 

Gossypin 

Mangiferin 

Esculin 

Arbutin 

Helicin 

Salicin 

Naringin 

Dhurrin 

Apigenin 7-glucoside 

 

+ 

+ 

+ 

 

NA 

NA 

 NA  

+ 

NA  

NA  

+ 

NA 

 + 

+ 

NA 

 NA  

NA   

 

+ 

+ 

+ 

 

NA  

NA 

NA 

 + 

NA  

NA  

+ 

+ 

+ 

+ 

NA  

NA  

NA   

The “+” sign means activity detected, while “NA” means no activity detected. 
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Table 3.2 Activities of Os4BGlu16 and Os4BGlu18 toward natural and synthetic 

glycosides based on TLC analysis (Continued). 

Substrates Activity 

Os4BGlu16 Os4BGlu18 

Pyridoxyl β-D-glucoside 

Trans-zeatin-glucoside 

Indoxyl β-D-glucoside 

Alkyl glycosides 

Methyl β-D-glucoside 

n-octyl β-D-glucoside 

n-heptyl β-D-glucoside 

4-methylumbelliferyl β-D-glucoside 

4-methylumbelliferyl β-D-fucoside 

Thioglycosides 

Octyl β-D-thio-glucoside 

Isopropyl β-D-thiogalactoside 

Oligosaccharides 

Sophorose 

Laminari oligosaccharides 

Cello oligosaccharides 

Gentiobiose  

NA  

NA  

+ 

 

NA  

NA  

NA 

+ 

+ 

 

NA  

NA  

 

NA 

NA 

NA  

NA 

NA  

NA  

+ 

 

+ 

+ 

+ 

+ 

+ 

 

NA  

NA  

 

NA 

NA 

NA  

NA  

The “+” sign means activity detected, while “NA” means no activity detected. 
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The kinetic parameters for hydrolysis of pNP-β-D-glucopyranoside, pNP-β-D-

fucopyranoside, pNP-β-D-xylopyranoside, oNP-β-D-glucopyranoside, p-coumarol β-D 

glucoside, coniferin, syringin, salicin, helicin, n-octyl β-D-glucoside, n-heptyl β-D-

glucoside and 4-methylumbelliferyl β-D-glucoside were determined for Os4BGlu16 

and Os4BGlu18 (Table 3.3). Among pNP-glycosides, Os4BGlu16 has highest 

catalytic efficiency with pNPGlc (kcat/KM=1.062), followed by pNP-β-D-

fucopyranoside (kcat/KM=0.896), pNP-β-D-xylopyranoside (kcat/KM=0.263) and oNP-

β-D-glucopyranoside (kcat/KM=0.275). Os4BGlu18 preferred pNP-β-D-fucopyranoside 

(kcat/KM=4.06), followed by pNPGlc (kcat/KM=0.789) and pNP-β-D-xylopyranoside 

(kcat/KM=0.302) (Table 3.3).  

Among monolignol glucoside substrates, Os4BGlu16 hydrolyzed syringin 

with a kcat/KM of 22.8 mM
-1

s
-1

, followed by coniferin and p-coumarol glucoside, with 

kcat/KM values of 21.6 and 6.2 mM
-1

s
-1

, respectively. In comparison, Os4BGlu18 

hydrolyzed coniferin with a kcat/KM of 31.9 mM
-1

s
-1

, followed by syringin and p-

coumarol glucoside, with kcat/KM values of 24.0 and 1.41 mM
-1

s
-1

, respectively. 

However, these high kcat/KM values were driven by the high kcat values, with rather 

high KM for these substrates, and both enzymes have lower KM values for syringin 

than for the other two monolignol glucosides (Table 3.4). The high KM and kcat/KM 

values for these substrates would make the rates of monolignol glucoside hydrolysis 

by Os4BGlu16 andOs4BGlu18 highly sensitive to the substrate concentrations in the 

plant. 

Hydrolysis of other synthetic and natural glycosides was tested to assess the 

aglycone specificity of Os4BGlu16 and Os4BGlu18. Os4BGlu16 hydrolyzed helicin, 

4-methylumbelliferyl β-D-glucopyranoside, and salicin with kcat/KM values of 0.145, 
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0.139, and 0.035 mM
-1

s
-1

, respectively. Os4BGlu18 showed broader substrate 

specificity than that of Os4BGlu16, in that it could hydrolyze 4-methylumbelliferyl β-

D-glucopyranoside, n-octyl β-D-glucopyranoside, n-heptyl β-D-glucopyranoside, and 

salicin with kcat/KM values of 1.054, 0.998, 0.452, and 0.0321 mM
-1

s
-1

, respectively 

(Table 3.4). 

Table 3.3 Kinetic parameters of Os4BGlu16 and Os4BGlu18 for hydrolysis of 

nitrophenyl glycosides. 

Substrate Chemical structure Os4BGlu16 Os4BGlu18 

pNP-β-D-glucopyranoside 

KM (mM) 

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

pNP-β-D-fucopyranoside 

KM (mM) 

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

pNP-β-D-xylopyranoside 

KM (mM) 

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

oNP-β-D-glucopyranoside 

KM (mM) 

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

 

 

 

 

 

 

 

 

 

 

2.88±0.26 

3.05±0.22 

1.062±0.077 

 

7.72±0.45 

6.92±0.15 

0.896±0.035 

 

2.99±0.27 

0.788±0.028 

0.263±0.034 

 

23.1±1.1 

6.34±0.52 

0.275±0.014 

 

4.84±0.15 

3.82±0.16 

0.789±0.012 

 

5.86±0.58 

23.8±2.3 

4.06±0.07 

 

1.26±0.064 

0.381±0.009 

0.302±0.018 

 

ND 

ND 

ND 

ND means not determined due to low activity. 

79 

 

 

 

 

 

 

 

 



 

 

Table 3.4 Kinetic parameters of Os4BGlu16 and Os4BGlu18 for hydrolysis of 

monolignol glucosides and other aryl and alkyl glucosides. 

Substrate Chemical structure Os4BGlu16 Os4BGlu18 

p-coumarol glucoside 

KM (mM) 

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

coniferin 

KM (mM) 

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

syringin 

KM (mM) 

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

salicin 

KM (mM) 

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

 

 

 

 

 

 

 

 

 

 

 

13.10±0.88 

81.5±3.0 

6.22±0.19 

 

19.9±2.2 

429±31 

21.6±0.89 

 

4.66±0.13 

106.3±2.1 

22.8±0.2 

 

0.622±0.058 

0.0218±0.0027 

0.0350±0.0010 

 

8.15±0.20 

11.49±0.08 

1.411±0.024 

 

8.02±0.19 

255.8±4.1 

31.9±0.3 

 

5.34±0.06 

127.9±1.7 

24.0±0.1 

 

5.41±0.21 

0.1736±0.0009 

0.0321±0.0011 
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Table 3.4 Kinetic parameters of Os4BGlu16 and Os4BGlu18 for hydrolysis of 

monolignol glucosides and other aryl and alkyl glucosides (Continued). 

Substrate                               Chemical structure Os4BGlu16 Os4BGlu18 

Helicin 

KM (mM)                                                         

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

n-octyl β-D-glucopyranoside 

KM (mM)  

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

n-heptyl β-D-glucopyranoside 

KM (mM)  

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

 

18.4±1.4 

2.66±0.12 

0.145±0.005 

 

ND 

ND 

ND 

 

ND 

ND 

ND 

 

ND 

ND 

ND 

 

8.05±0.64 

8.03±0.15 

0.998±0.067 

 

24.5±2.0 

11.05±0.66 

0.452±0.010 

4-methyl umbelliferyl β-D-glucopyranoside 

KM (mM)  

kcat  (s
 -1

) 

kcat/ KM (mM
-1

s
-1

) 

4.62±0.38 

0.641±0.027 

0.139±0.005 

9.39±0.48 

9.89±0.22 

1.054±0.049 

ND means not determined, due to low activity. 
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3.8  Inhibition of Os4BGlu16 and Os4BGlu18 by metal salts and 

organic  inhibitors 

The effects of various chemicals that have been reported to affect β-

glucosidase activity were tested, as shown in Table 3.5. Mercury ion and glucono δ-

lactone caused nearly complete inhibition of Os4BGlu16 activity at 1 mM, while 

copper, zinc, and nickel, had moderate effects. 2,4-Dinitrophenyl-β-D-2-deoxy-2-

fluoro-glucopyranoside at 0.1 mM could inhibit the activity of Os4BGlu16 65% when 

pre-incubated for 1 h. Os4BGlu18 was inhibited 95% by 1 mM glucono δ-lactone, 

and partially inhibited by copper and zinc at 1 mM inhibitor and conduritol B epoxide 

at 0.1 mM. Both enzymes retained around 45% activity with 500 mM glucose present 

in the reaction, so little product inhibition by the glucose is expected to occur in the 

plant. 
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Table 3.5 Effects of EDTA, metal salts and inhibitors on Os4BGlu16 and Os4BGlu18 

activity. 

Potential  

inhibitor 

Concentration 

(mM) 

Relative activity of 

Os4BGlu16 (%) 

Relative activity of 

Os4BGlu18 (%) 

None 

EDTA 

CaCl2 

CoCl2 

HgCl2 

MgCl2 

MnCl2 

FeCl3 

NiSO4 

ZnSO4 

CuSO4 

Glucono δ-lactone 

2,4-Dinitrophenyl-β-

D-2-deoxy-2-fluoro-

glucopyranoside 

Conduritol B epoxide 

D-Glucose 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0.1 

 

 

0.1 

500 

100.0±6.9 

102.1±0.9 

102.6±2.0 

93.5±2.3 

3.7±0.7 

89.4±4.2 

106.8±5.4 

101.1±2.7 

68.8±1.1 

66.6±4.2 

51.4±0.9 

4.2±0.35 

35.1±1.1 

 

 

98.2±0.9 

45.4±0.4 

100.0±6.5 

97.9±3.3 

97.8±2.9 

93.7±2.8 

89.6±8.6 

96.2±5.2 

96.7±3.6 

101.7±2.0 

94.7±0.6 

71.6±1.7 

53.5±1.0 

5.3±0.5 

101.9±1.3 

 

 

52.5±4.5 

45.04±0.05 
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3.9 In planta expression analysis  

Quantitative real-time RT-PCR was used to measure the level of the 

putative monolignol β-glucosidases gene expression in various rice organs. The 

Os4BGlu14 gene is most highly expressed in reproductive tissues, especially in 

endosperm, lemma, embryo, pollen, panicle and flower (Figure 3.23). Os4BGlu16 is 

most highly expressed in 4 weeks to 10 weeks-old leaves, endosperm and lemma 

(Figure 3.24). Os4BGlu18 is most highly expressed in 1-week-old seedling, stem, leaf 

and leaf sheath at 4 weeks, pollen and lemma, and moderately expressed in other 

young vegetative tissues (Figure 3.25). 
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Figure 3.23 Gene expression analysis of rice Os4BGlu14 from qRT-PCR. RNA was 

extracted from tissues from 7 days to 10 weeks and endosperm and embryo of mature, 

dried seed, and the relative mRNA amounts for each gene assessed by qRT-PCR with 

gene-specific primers. Actin was used as a reference gene and 7-day shoots as the 

reference tissue, which is 100% in the graphs. 
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Figure 3.24 Gene expression analysis of rice Os4BGlu16 from qRT-PCR. RNA was 

extracted from tissues from 7 days to 10 weeks and endosperm and embryo of mature, 

dried seed, and the relative mRNA amounts for each gene assessed by qRT-PCR with 

gene-specific primers. Actin was used as a reference gene and 7-day shoots as the 

reference tissue, which is 100% in the graphs. 
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Figure 3.25 Gene expression analysis of rice Os4BGlu18 from qRT-PCR. RNA was 

extracted from tissues from 7 days to 10 weeks and endosperm and embryo of mature, 

dried seed, and the relative mRNA amounts for each gene assessed by qRT-PCR with 

gene-specific primers. Actin was used as a reference gene and 7-day shoots as the 

reference tissue, which is 100% in the graphs. 
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3.10 Detection of monolignol compounds in rice KDML105 by UPLC-

MS 

 The content of monolignol compounds in rice tissues, as analyzed by UPLC-

MS, is shown in Figure 3.26. The compounds measured included the monolignol 

glucosides (p-coumarol glucoside, coniferin, syringin), monolignols (coniferyl and 

sinapyl alcohol), and the lignin precursor metabolic intermediate hydroxycinnaminic 

acids (p-coumaric, caffeic, and sinapic acids). In the early stages of developing roots, 

sinapyl alcohol levels were relatively higher than other compounds. In 2-3 month-old 

roots, the levels of p-coumarol glucoside, coniferin, syringin, and sinapic acid were 

dramatically increased. The level of sinapic acid was still higher than the other 

compounds from 100 to 120 days (Figure 3.27). In the rice leaf extracts, p-coumarol 

glucoside, coniferin, syringin, and sinapic acid were higher than coniferyl alcohol and 

the lignin precursor metabolic intermediates in all ages of leaf. Their levels increased 

at 60 days until 90 days, then decreased at 100 days (Figure 3.28). The monolignol 

compouns in the leaf sheath showed the same patterns as in the leaf, but the level of 

sinapyl alcohol at 20 days to 40 days was highest compared to the other compounds 

(Figure 3.29). In extracts from 60-90 day-old stems, p-coumarol glucoside, coniferin, 

syringin, and sinapic acid were high compared with other monolignol compounds, 

and in extracts from 100-120 day-old sinapic acid was highest. In the rice flower 

extract, p-coumarol glucoside was highest, followed by syringin, sinapic acid, 

coniferin, caffeic acid, sinapyl alcohol, coniferyl alcohol, and p-coumaric acid, 

respectively. Sinapic acid was higher than other compounds in seed at all ages (Figure 

3.30). The level of p-coumaric acid in every stage and tissue was lower than the other 
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compounds and after 90 days it was undetectable. These values give relative 

concentrations under the assumption that similar losses occured for extraction of all 

compounds from all tissues, since no internal standard was available to generate truly 

quantitative data. 

 

 

 

 

 

 

Figure 3.26 Chemical structures of monolignol compounds. The monolignol 

glucoside substrates p-coumarol glucoside, coniferin, and syringin. Monolignol 

alcohol monomer coniferyl and sinapyl alcohol, and lignin precursor metabolic 

intermediates p-coumaric acid, caffeic acid, and sinapic acid. 

p-coumarol glucoside coniferin 

coniferyl alcohol sinapyl alcohol 

p-coumaric acid caffeic acid 

syringin 

sinapic acid 

89 

 

 

 

 

 

 

 

 



 

 

 

Figure 3.27 Relative abundance of monolignol compounds and intermediates in their 

biosynthesis in root extracts from rice (cv. KDML105) from 10 days to 120 days, as 

determined by UPLC-MS analysis. Caffeic acid was used as a reference compound 

with the abundance shown relative to the measured caffeic acid concentration. The 

abundance values of each compound based on the abundance of their selected ions at 

in the peak at their specific elution time relative to a standard curve of the same 

compound.  The labels coniferyl and sinapyl refer to the corresponding alcohols, 

while the labels p-coumaric, caffeic and sinapic refer to the corresponding acids. 
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Figure 3.28 Relative abundance of monolignol compounds and intermediates in their 

biosynthesis in leaf extracts from rice (cv. KDML105) from 10 days to 120 days, as 

determined by UPLC-MS analysis. Caffeic acid was used as a reference compound 

with the abundance shown relative to the measured caffeic acid concentration. The 

abundance values of each compound based on the abundance of their selected ions at 

in the peak at their specific elution time relative to a standard curve of the same 

compound. The labels coniferyl and sinapyl refer to the corresponding alcohols, while 

the labels p-coumaric, caffeic and sinapic refer to the corresponding acids. 
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Figure 3.29 Relative abundance of monolignol compounds and intermediates in their 

biosynthesis in leaf sheath extracts from rice (cv. KDML105) from 20 days to 120 

days, as determined by UPLC-MS analysis. Caffeic acid was used as a reference 

compound with the abundance shown relative to the measured caffeic acid 

concentration. The abundance values of each compound based on the abundance of 

their selected ions at in the peak at their specific elution time relative to a standard 

curve of the same compound. The labels coniferyl and sinapyl refer to the 

corresponding alcohols, while the labels p-coumaric, caffeic and sinapic refer to the 

corresponding acids. 
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Figure 3.30 Relative abundance of monolignol compounds and intermediates in their 

biosynthesis in stem extracts from rice (cv. KDML105) from 60 days to 120 days, 

flower, and seed, as determined by UPLC-MS analysis. Caffeic acid was used as a 

reference compound with the abundance shown relative to the measured caffeic acid 

concentration. The abundance values of each compound based on the abundance of 

their selected ions at in the peak at their specific elution time relative to a standard 

curve of the same compound. The labels coniferyl and sinapyl refer to the 

corresponding alcohols, while the labels p-coumaric, caffeic and sinapic refer to the 

corresponding acids. 
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CHAPTER IV 

DISCUSSION 

 

4.1  Rice monolignol β-glucosidase sequence identification and 

analysis 

The protein sequence alignment in Figure 3.2 compares the putative rice 

monolignol β-glucosidases, Os4BGlu14, Os4BGlu16, and Os4BGlu18, with the 

related monolignol β-glucosidases from A. thaliana, AtBGLU45 and AtBGLU46, 

their closely related homologue AtBGLU47, and pine coniferin β-glucosidase 

(Escamilla-Treviño et al., 2006; Dharmawardhana et al., 1995; Dharmawardhana and 

Ellis, 1998). Os3BGlu7 (also called rice BGlu1) is included as a non monolignol β-

glucosidase with a known X-ray crystallographic structure (Chuenchor et al., 2008). 

Os4BGlu14, Os4BGlu16 and Os4BGlu18 shared 58–60% amino acid sequence 

identity with each other, 47–55% identity with Arabidopsis BGLU45, BGLU46, and 

BGLU47 and 45–47% with Os3BGlu7 (rice BGlu1). It is also notable that residue 

W358 of Os3BGlu7, which has been shown to stack aglycones in plant GH1 β-

glucosidases (Czjzek et al., 2000; Verdoucq et al., 2004; Barleben et al., 2007; 

Chuenchor et al., 2008; Chuenchor et al., 2011) is replaced by smaller residues in the 

rice and pine monolignol β-glucosidase group, similar to the disaccharidase 

primeverosidase (Saino et al., 2014). The loop containing this interacting tryptophan 

 

 

 

 

 

 

 

 



 

 

is greatly shortened in AtBGLU47, although AtBGLU45 and AtBGLU46 maintain 

tryptophan in this position. 

 

4.2  Expression and purification of Os4BGlu14 

The cloned Os4BGlu14 cDNA sequence had 1,551 bases which match 100% 

with Oryza sativa Japonica Group Os04g0513100 mRNA and cDNA clone 

J013128A11 accession number AK067841. The longest Os4BGlu14 cDNA ORF 

translates to a protein containing 516 amino acid residues and mature protein 493 

amino acid residues. The SignalP program predicted Os4BGlu14 to have an N-

terminal secretory signal sequences with a cleavage site between residues 23 and 24 

(VSA-VDR). To produce mature Os4BGlu14 in E.coli, the forward and reverse 

primers were designed to amplify a cDNA encoding Os4BGlu14 without the signal 

sequence. The cDNA encoding the mature Os4BGlu14 was cloned into the pET32a+ 

expression vector, as was previously successful with other rice β-glucosidase 

(Opassiri et al., 2003, 2006; Kuntothom et al., 2009; Seshadri et al., 2009). However, 

Opassiri et al. (2006) reported that most putative family GH1 β-glucosidase enzymes 

encoded in the rice genome have the catalytic acid/base glutamate in the conserved 

sequence “TXNEP”, except for Os4BGlu14 and Os9BGlu33, in which the glutamate 

(E) is replaced with glutamine (Q). So, Os4BGlu14 and Os9BGlu33 were predicted to 

be inactive β-glucosidases. To produce active Os4BGlu14, pET32a/Os4BGlu14 was 

used as a template to mutant Q191 to E. The predicted molecular weight and 

isoelectric point (pI) of the Os4BGlu14 fusion protein were approximately 73 kDa 

and 6.35, respectively. I attempted to express the wild type Os4BGlu14 from 

pET32a/Os4BGlu14 and mutant from pET32a/Os4BGlu14Q191E with N-terminal 
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thioredoxin and His6 fusion tags in E.coli strains Origami(DE3), Origami B(DE3), 

Rosettagami(DE3), and BL21(DE3). Expression from both plasmid clones was 

attempted at various temperatures (10-37 °C) and concentrations of IPTG (0-1 mM) to 

find the appropriate expression condition. However, most of the expressed protein 

was observed in the insoluble fraction of the cell lysates, and no activity could be 

detected in the soluble cell lysate, suggesting that this Os4BGlu14 β-glucosidase was 

not expressed in soluble, active form. Since Os4BGlu14 was predicted to be inactive 

(Opassiri et al., 2006), expression was not pursued further. Nevertheless, the 

corresponding Agrobacterium sp. β-glucosidase E170Q mutant (Abg E170Q) has 

thioglycoligase activity which can transglycosylate the sugar moiety onto a thio sugar 

acceptor. Abg E170Q showed the highest catalytic efficiency compared to other 

mutants selected for this activity (E170G, E170N, E170S, E170A, E170T) when β-D-

glucopyranosyl azide (Glc-N3) was used as a donor and 4-methylumbelliferyl 4-

deoxy-4-thio-β-D-glucopyranoside (4SGlcMU) as acceptor (Müllegger et al., 2005). 

The Gln residue could assist binding at the deglycosylation step by hydrogen bonding 

with the incoming thio sugar acceptor. Additionally, Chuenchor et al. (2011) reported 

that the activity of acid/base mutant of rice BGlu1 E176Q can be rescued by anionic 

nucleophiles such as ascorbate, azide, acetate, formate, KF, TFA, and cyanate in 50 

mM MES buffer. Testing of more expression systems and activity assays may be 

required to understand the function of Os4BGlu14. 
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4.3 Expression and purification of Os4BGlu16 

The predicted Os4BGlu16 cDNA sequence also had 1,551 bases, with 100% 

match between the Oryza sativa Japonica group Os04g0513400 mRNA and cDNA 

clones J013081O13 and J013164L07, corresponding to NCBI Genbank accession 

numbers AK066850 and AK068772, respectively. The Os4BGlu16 cDNA ORF 

translates to a protein containing 516 amino acid residues and mature protein 489 

amino acid residues. The SignalP program predicted that Os4BGlu16 has a secretory 

signal sequence with a cleavage site between amino acid residues 27 and 28 (ARG-

LRR). To produce mature Os4BGlu16 in E.coli, the forward and reverse primers were 

designed as for Os4BGlu14, but several attempts resulted in no correct PCR product 

clones for mature Os4BGlu16, with various deletions, insertions and mutations 

occurring in the clones obtained.  To facilitate cloning and expression in yeast, an 

Os4BGlu16 cDNA (Genbank accession number KJ579205) optimized for expression 

in P. pastoris was synthesized.  

The optimized Os4BGlu16 cDNA was used to produce a secreted, N-

terminally H-tagged protein in P. pastoris, with an expected molecular weight (MW) 

of 58.2 kDa and pI of 6.4. After purification from the pichia media by IMAC, β-

glucosidase activity was detected with pNPGlc substrate and a broad band was 

detected above 67 kDa on the SDS-PAGE gel (Figure 3.7). After deglycosylation with 

endoglycosidase H, a single band of approximately 61 kDa was detected on a 

Coomassie-stained SDS-PAGE gel (Figure 3.7). Thus, a heterogeneously 

glycosylated, active Os4BGlu16 was expressed in pichia. 
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4.4 Expression and purification of Os4BGlu18 

The Os4BGlu18 mRNA sequence contains 1,518 bases, corresponding to that 

of the Oryza sativa Japonica Group Os04g0513900 mRNA and cDNA clone 

J090046N08, accession number AK058333. The longest Os4BGlu18 cDNA ORF 

translates to a protein containing 505 amino acid residues and mature protein 479 

amino acid residues. The SignalP program predicted that the Os4BGlu18 precursor 

contains an N-terminal signal sequence prepeptide with a cleavage site between 

amino acid residues 26 and 27 (in the sequence ASA-IHR). The cDNA encoding 

mature Os4BGlu18 was amplified from 7-day-old rice shoot and cloned into the 

pET32a+ expression vector, as was done with Os4BGlu14. The Os4BGlu18 fusion 

protein with N-terminal thioredoxin, His6 and S-tags, which was predicted to have a 

molecular weight of 73 kDa and pI of 5.3, was optimally expressed in E. coli strain 

Origami(DE3) induced with 0.1 mM IPTG at 18 °C for 16 h, and significant pNPGlc 

hydrolysis activity was detected in the crude cell extract. Protein purification by ion-

exchange chromatography, hydrophobic interaction chromatography and IMAC 

produced a protein of approximately 75 kDa that was approximately 90% pure, as 

judged by SDS-PAGE (Figure 3.8). Although the IMAC step provided most of the 

purification, it was done last, since purification with IMAC first resulted in less pure 

Os4BGlu18 fusion protein and more degradation. 
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4.5 Substrate specificity of Os4BGlu16 and Os4BGlu18 

The hydrolysis specificity of Os4BGlu18 is much broader than that observed 

for Os4BGlu16. Both enzymes hydrolyzed several pNP-glycosides, including pNP-β-

D-glucopyranoside (pNPGlc), pNP-β-D-fucopyranoside, oNP-β-D-glucopyranoside 

(oNPGlc), pNP-β-D-galactopyranoside (pNPGal) and pNP-β-D-xylopyranoside 

(pNPXyl). Similarly, other known monolignol β-glucosidases, including native pine 

tree coniferin β-glucosidase (CBG) and E. coli-expressed CBG, crude cell wall 

preparations from Cicer urietinurn L. cell suspension cultures, and Arabidopsis 

BGlu45 and BGlu46 recombinant proteins are able to hydrolze pNPGlc, pNPGal, 

pNPXyl, oNPGlc, and oNPGal (Dharmawardhana et al., 1995; Dharmawardhana and 

Ellis, 1998; Hösel et al., 1978; Escamilla-Treviño et al., 2006).  

Os4BGlu16 showed higher catalytic efficiency with pNPGlc and pNP-β-D-

fucopyranoside, which were hydrolyzed at around 4-fold higher rates than pNP-β-D-

xylopyranoside and oNP-β-D-glucopyranoside. Os4BGlu18 preferred pNP-β-D-

fucopyranoside, with catalytic efficiency (kcat/Km) 5-fold higher than that for pNPGlc 

and 13-fold higher than that for pNP-β-D-xylopyranoside. Since β-D-fucopyranosides 

have rarely been reported in nature and many GH1 β-glucosidases have high β-D-

fucosidase activity (Ketudat Cairns and Esen, 2010), these data support the 

designation of these enzymes as β-glucosidases. 

Among natural and synthetic glycosides, Os4BGlu16 and Os4BGlu18 could 

hydrolyze monolignol glucosides (p-coumarol glucoside, coniferin and syringin), 

isoflavonoid glucosides (daidzin), phenolic alcohol glucoside (salicin and esculin), 

plant glycosides with similarity to phytohormones (helicin and indoxyl β-D-

glucoside), and alkyl glycosides (4-methylumbelliferyl β-D-glucoside and 4-
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methylumbelliferyl β-D-fucoside). Neither enzyme could hydrolyze oligosaccharide 

substrates. 

By comparing the kinetic parameters of Os4BGlu16 and Os4BGlu18, it was 

found that Os4BGlu16 could hydrolyze coniferin and syringin at approximately the 

same catalytic efficiencies (kcat/Km), which were higher than that for p-coumarol 

glucoside by around 3.5 fold. Os4BGlu18 hydrolyzed coniferin at around 1.3- and 

22.6-fold higher rates than that of syringin and p-coumarol glucoside, respectively. In 

addition, Os4BGlu18 could hydrolyze coniferin and syringin at higher efficiencies 

than Os4BGlu16, but Os4BGlu16 hydrolyzed p-coumarol glucoside about 4.4-fold 

more efficiently than Os4BGlu18. Characterization of the relative activities of E. coli-

expressed CBG and native CBG revealed that these enzymes hydrolyzed coniferin at 

a rate 1.5-2-fold higher than syringin around and 10-fold higher than salicin 

(Dharmawardhana et al., 1995). Hösel et al. (1978) reported that the β-glucosidase 

from a crude particulate fraction of pine xylem show high specificity activity to 

coniferin (4.2 µmolmin
-1

mg
-1

) which was approximately 7-fold higher than syringin 

and 35-fold higher than that for salicin. CBG and pine cell wall extract isoenzyme 

exhibited activity similar to rice Os4BGlu16, which prefers coniferin to other 

substrates. Furthermore, Arabidopsis BGlu45 has same relative activity toward 

coniferin and syringin as Os4BGlu18 and this was about 12.6-14.5-fold higher than p-

coumarol glucoside. On the other hand, Arabidopsis BGlu46 showed high activity 

against salicin, which was 1.4-fold higher than p-coumarol glucosideand 12.5- and 

16.6-fold, higher than coniferin and syringin, respectively (Escamilla-Treviño et al., 

2006). 
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4.6 Inhibition of Os4BGlu16 and Os4BGlu18 

The hydrolysis activity of Os4BGlu16 was near completely inhibited by 1 mM 

mercury ion and glucono δ-lactone, which is a strong inhibitor for other rice β-

glucosidases such as Os3BGlu7 (rice BGlu1), and Os1BGlu4 (Opassiri et al., 2003; 

Rouyi et al., 2014). Mercury ion and glucono δ-lactone have also been reported to be 

strong inhibitors of Dalbergia cochinchinensis β-glucosidase and Cicer arietinum 

isoflavonoid β-glucosidases, whereas 1 mM glucono δ-lactone inhibited D. nigescens 

isoflavonoid 7-O-β-apiosyl-glucoside β-glucosidase only 34% (Srisomsap et al., 

1996; Hösel and Barz 1975; Chuankhayan et al., 2005). On the other hand, mercury 

ion could not inhibit the activity of Os4BGlu18, even though Hg
+
 is often a potent 

GH1 β-glucosidase inhibitor. 

The activities of Os4BGlu16 and Os4Blu18 were also inhibited by other metal 

salts, including copper, zinc and nickel, in the presence of which these enzymes 

retained 51% to 69% of their activities without inhibitor. In addition, 2,4-

dinitrophenyl-β-D-2-deoxy-2-fluoro-glucopyranoside inhibited the activity of 

Os4BGlu16, but not Os4BGlu18.  The lack of sensitivity of Os4BGlu18 to this 

inhibitor was also seen for Os9BGlu31 GH1 transglucosidase (Luang et al., 2013). 

The activity of Os4BGlu18 was, however, affected by the covalent inhibitor 

conduritol B epoxide at 0.1 mM. These data suggested that Os4BGlu16 and 

Os4BGlu18 showed metal sensitivities comparable to other GH1 β-glucosidases, but 

were relatively resistant to the mechanism-based inhibitor 2,4-dinitrophenyl-β-D-2-

deoxy-2-fluoro-glucopyranoside (Withers et al., 1990; Ketudat Cairns and Esen, 

2010).  
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4.7 mRNA expression of monolignol β-glucosidase genes 

The levels of the Os4BGlu16 and Os4BGlu18 gene expression are relatively 

high in the organs that undergo lignification. Fukushima and Terashima (1990) found 

that the differentiating xylem of magnolia, beech, lilac, and poplar contain H, G, and 

S units of lignin. H units were found in the initial stage of secondary cell wall and 

middle lamella of vessels and fibers. G units were also found in the initial and late 

stages of secondary cell wall and middle lamella. S units were mostly found at the late 

stage of secondary cell wall. In monocots (wheat straw, triticale straw, rye straw, and 

maize stalk), Barrière et al. (2007) demonstrated that the levels of H units are three to 

fifteen times higher than dicot plants, which when compared with monocots had S 

units at higher relative frequencies than G and H units, respectively. Moreover, She et 

al. (2011) reported that dewaxed rice straw after different alcohol treatments 

contained phenolic acids and aldehydes in the lignin fractions, and the ratios of G, S, 

and H were found to include large amounts of non-condensed guaiacyl, syringyl, and 

p-hydroxyphenyl units, suggesting the lignin preparations from rice straw can be 

considered as GSH lignin. 

The preference of Os4BGlu16 and Os4BGlu18 for coniferin and syringin 

rather than p-coumarol glucoside is in line with the lower levels of H units than G and 

S units in grass lignin. The Os4BGlu16 gene is highly expressed in maturing leaves, 

which are at the stage of secondary cell wall production, and Os4BGlu16 protein 

could hydrolyze coniferin with the same catalytic efficiency as syringin. Although 

Os4BGlu16 had a pH optimum of 6.5, it had roughly 50% maximal activity at pH 5, 

suggesting it could act in either neutral or moderately acidic compartments, such as 

the apoplast.  The Os4BGlu18 gene was expressed in young vegetative tissues at an 
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early stage of secondary cell wall production. In these rapidly growing tissues, the 

middle lamella is being produced with more G than S units (Terashima et al., 1989; 

Fukushima and Terashima, 1990), which is consistent with Os4BGlu18 β-glucosidase 

having higher catalytic efficiency for coniferin than syringin hydrolysis. Moreover, 

the Os4BGlu14 and Os4BGlu18 genes were expressed in the seed, similar to 

Arabidopsis BGLU45 which was suggested to be involved in the lignification of valve 

margin layers of siliques (Escamilla-Treviño et al., 2006). The pH optimum of 

Os4BGlu18 is in the acidic range, consistent with a role in the apoplast, as suggested 

for BGLU45. The specific expression of Os4BGlu14 in reproductive tissues suggests 

it may play an active role, although whether this involves β-glucosidase activity is 

unclear, given the substitution of its catalytic acid/base position with glutamine.  

BGLU45 and BGLU46 have been shown to be expendable for lignin 

production in Arabidopsis, despite their activities on monolignol β-glucosidases, 

protoxylem and tracheal localization and the build-up of coniferin in knockout lines 

(Escamilla-Treviño et al., 2006; Chapelle et al., 2012). Only small changes in 

lignification were seen in certain BGLU45 knockout lines (Chapelle et al., 2012). The 

biochemical functions of Os4BGlu16 and Os4BGlu18 appear to be similar, but given 

the differences in lignin structure between grasses and Arabidopsis, the biological 

function of the rice enzymes requires further assessment. As noted earlier lignin in 

grasses is composed mainly of G and S units but contains more H units than dicot 

plants. The kinetics results of rice Os4BGlu16 and Os4BGlu18, however, revealed 

that these enzymes are able to hydrolyze coniferin and syringin more efficiently than 

p-coumarol glucoside. In comparison, substrate specificity of chick pea and 

Arabidopsis BGlu45 showed to hydrolyze coniferin rather than syringin and p-
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coumarol glucoside, respectively.  For each of these enzymes, the biological function 

will depend on to which of these substrates they have access in the plant. 

 

4.8 Level of monolignol compounds and its precursor in rice   

KDML105 plants 

In the initial stage of root and leaf sheath development (10-40 days) higher 

levels of sinapyl alcohol were detected than coniferyl alcohol and other compounds. 

Analysis of the levels of monolignol glucosides, coniferin, syringin, and p-coumarol 

glucoside, showed that all three compounds dramatically increase from 60-90 days of 

all tissues tested, then decreased until harvesting stage. 

Generally, lignin is generated by radical coupling of coniferyl alcohol, sinapyl 

alcohol, and p-coumaryl alcohol in vascular plants (Martone et al., 2009). Although it 

was at one point thought that monolignol glucosides played a role in transport of 

monolignols to the cell wall, it has recently been shown that the monolignols can be 

directly transported across the plasma membrane. Miao and Liu (2010) noted that in 

poplar and Arabidopsis, tonoplast-derived vesicles transported coniferin, but not 

coniferyl alcohol. In contrast, plasma membrane-derived vesicles transported 

coniferyl alcohol but not coniferin suggesting that aglycone forms of monolignol unit 

could transported into the cell wall across the plasma membrane in an ATP-dependant 

manner by an ABC-transporter and consequently polymerized by laccases and/or 

peroxidases (Wang et al., 2013). An ABC transporter in Arabidopsis (AtABCG29) 

that transports monolignols to the cell wall was localized in the plasma membrane and 

this protein could transport p-coumaryl alcohol and had minor activity with sinapyl 

alcohol, but not coniferyl alcohol (Alejandro et al., 2012). An Abcg29 mutant showed 
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reduced root growth and decreases in the amounts of H, G, and S units compared to 

WT root, which was an unexpected result since AtABCG29 is highly specific for p-

coumaryl alcohol so only H unit should be reduced.  

Irrespective of their biological roles, the levels of monolignol glucosides must 

be regulated by their production by glycosyltransferases and break-down by -

glucosidases. The over-expression of Arabidopsis UGT72E2 gene resulted in a 10-

fold increase in coniferin and a lower increase in syringin in roots, suggesting the 

involvement of this glycosyltransferase gene in monolignol glycosylation (Lanot et 

al., 2006). They noted that rosette leaves have more syringin than coniferin and 

suggested this reflects tissue-specific variations in glycosylation mechanisms. If 

monolignol glucosides release monolignols for building up of lignin polymers, then 

monolignol β-glucosidase should be co-localized with coniferin and syringin (Wang 

et al., 2013). Further study on the localization of monolignol β-glucosidase is 

important to gain further insights on the control of lignin biosynthesis. 
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CHAPTER V 

CONCLUSION 

 

 Based on their amino acid sequences, Os4BGlu14, Os4BGlu16, and 

Os4BGlu18 cluster with characterized monolignol β-glucosidases, including 

Arabidopsis BGLU45 and BGLU46 and Pinus contorta coniferin β-glucosidase. The 

cDNA sequence of Os4BGlu14 contains an open reading frame of 1551 nucleotides 

encoding 516 amino acids, which is predicted to include an N-terminal secretory 

signal peptide of 23 residues and a mature protein of 493 residues. However, the 

catalytic acid/base glutamate residue of Os4BGlu14 is replaced by glutamine, which 

led to the prediction that it may be an inactive β-glucosidase. The cDNA sequence of 

Os4BGlu16 also contained an open reading frame of 1551 nucleotides encoding 516 

amino acids, including a predicted N-terminal secretory signal peptide of 27 residues 

and mature protein of 489 residues. Similarly, the cDNA sequence of Os4BGlu18 

contained an open reading frame of 1518 nucleotides encoding 505 amino acids, 

which were predicted to include an N-terminal secretory signal peptide of 26 residues 

and a mature protein of 479 residues. 

The plasmid containing the AK067841 cDNA provided by the Rice Genome 

Resource full-length cDNA project was used to amplify the mature gene of 

Os4BGlu14 to get PCR product size around 1.5 kb. The purified gene encoding 

mature Os4BGlu14 was cloned into a pET32a expression vector to express an 

Os4BGlu14 fusion protein with N-terminal thioredoxin and His6 tags. The 

 

 

 

 

 

 

 

 



 

 

recombinant pET32a/Os4BGlu14 plasmid was used as a template for mutation of 

pET32a/Os4BGlu14Q191E by site-directed mutagenesis to test if regenerating the 

catalytic acid/base would rescue the activity. Nevertheless, Os4BGlu14 protein could 

not be expressed in E. coli as an active β-glucosidase, suggesting that Os4BGlu14 

may indeed be an inactive β-glucosidase as described by Opassiri et al., 2006. 

The gene optimized for Os4BGlu16 expression in P. pastoris was inserted in 

the recombinant pPICZαB(NH8)/Os4BGlu16 plasmid, which was used to express 

Os4BGlu16 as a secreted protein from P. pastoris strain SMD1168 at 20 °C for 4 days 

of inducing with 1% methanol. Os4BGlu16 enzyme was successfully purified to 

produce an apparently homogeneous protein with only one IMAC step from the 

Pichia media. 

 The cDNA encoding the full-length Os4BGlu18 protein was amplified from 7 

days rice shoot cDNA and a cDNA encoding the predicted mature Os4BGlu18 gene 

was amplified from that initial amplicon. The gene encoding mature Os4BGlu18 was 

cloned into the pET32a expression vector and the thioredoxin-Os4BGlu18 fusion 

protein expressed in E. coli Origami(DE3) at 18 °C for 16-18 h. The catalytically 

active Os4BGlu18 enzyme was purified to get a single prominent protein with ion-

exchange chromatography, hydrophobic interaction chromatography and IMAC, 

respectively. 

The optimum pH of Os4BGlu16 was found to be 6.5 and after deglycosylation 

the optimum pH for Os4BGlu16 was 6.0, but its activity was stable after incubation 

from pH 5.5 to 11.5 over a period of 15 min up to 60 min at 25 °C, indicating that this 

enzyme was stable at neutral to basic pH, but it lost its activity in the highly acidic 

range. The temperature optimum for both the glycosylated and deglycosylated forms 
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of the Os4BGlu16 enzyme is 45 °C, but it was thermostable only over the range of 20-

40 °C from 15-60 min. Meanwhile, the optimum pH for Os4BGlu18 was found to be 

5.0. The activity of Os4BGlu18 maintained similar activity when incubated 15-60 min 

at pH values from pH 4.0 to 8.0 at 25 °C. The temperature optimum for Os4BGlu18 

enzyme is 55 °C, but it was only thermostable over the range of 20-40 °C from 15-60 

min. 

Among pNP glycosides, Os4BGlu16 and Os4BGlu18 hydrolyzed pNP-β-D-

fucopyranoside, pNP-β-D-glucopyranoside (pNPGlc), oNP-β-D-glucopyranoside, 

pNP-β-D-galactopyranoside and pNP-β-D-xylopyranoside, respectively, in overall 

order of activity. However, Os4BGlu16 hydrolyzed oNP-β-D-glucopyranoside with 

higher activity than pNP-β-D-galactopyranoside, while Os4BGlu18 displayed low 

activity toward oNP-β-D-glucopyranoside. For hydrolysis of natural and synthetic 

glycosides and oligosaccharides substrates, Os4BGlu16 and Os4BGlu18 could 

hydrolyze the monolignol glucosides p-coumarol β-D-glucoside, coniferin and 

syringin, along with daidzin, esculin, helicin, salicin, indoxyl β-D-glucoside, 4-

methylumbelliferyl β-D-glucoside and 4-methylumbelliferyl β-D-fucoside. In addition, 

Os4BGlu18 hydrolyzed arbutin, methyl β-D-glucoside, n-octyl β-D-glucoside and n-

heptyl β-D-glucoside. Neither enzyme could hydrolyze β-1,3-, β-1,4-, or β-1,6-linked 

gluco-oligosaccharides, which suggests neither enzyme plays a role in cell wall 

degradation. 

Os4BGlu16 and Os4BGlu18 have more efficiency to hydrolyze monolignol 

glucoside substrates than other natural and synthetic substrates. The kinetic 

parameters for hydrolysis of monolignol glucoside substrates, Os4BGlu16 has high 

catalytic efficiency toward syringin (kcat/KM of 22.8 mM
-1

s
-1

), followed by coniferin 
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(kcat/KM 21.6 mM
-1

s
-1

) and p-coumarol glucoside (kcat/KM 6.2 mM
-1

s
-1

). In 

comparison, Os4BGlu18 hydrolyzed coniferin best (kcat/KM 31.9 mM
-1

s
-1

), followed 

by syringin (kcat/KM 24.0   mM
-1

s
-1

) and p-coumarol glucoside (kcat/KM 1.41 mM
-1

s
-1

), 

respectively. These high kcat/KM values were driven by the high kcat values, with rather 

high KM for these substrates, and both enzymes have lower KM values for syringin 

than for the other two monolignol glucosides. This study supports the hypothesis that 

Os4BGlu16 and Os4BGlu18 are monolignol β-glucosidase enzyme. 

The inhibition study showed that Os4BGlu16 activity was inhibited nearly 

completely by mercuric ion and glucono δ-lactone at 1 mM, while copper, zinc, and 

nickel, had partial effects. 2,4-Dinitrophenyl-β-D-2-deoxy-2-fluoro-glucopyranoside, 

which is a strong inhibitor for other β-glucosidases could inhibit the activity of 

Os4BGlu16. Os4BGlu18 was inhibited by 1 mM glucono δ-lactone, and moderately 

inhibited by copper and zinc at 1 mM inhibitor and conduritol B epoxide at 0.1 mM. 

Both enzymes retained around 45% activity with 500 mM glucose present in the 

reaction, so little product inhibition by the glucose is expected to occur in the plant. 

Analysis of the gene expression level of the putative monolignol β-

glucosidases in various rice organs showed that the Os4BGlu14 gene is highly 

expressed in reproductive tissues, especially in endosperm, lemma, embryo, pollen, 

panicle and flower. Os4BGlu16 is highly expressed in leaf from 4 weeks to 10 weeks, 

endosperm and lemma. Os4BGlu18 is highly expressed in 1-week-old seedling, stem, 

leaf and leaf sheath at 4 weeks, pollen and lemma, and moderately expressed in other 

young vegetative tissues. This result suggested that Os4BGlu14 enzyme may 

primarily function in the reproductive tissue, while Os4BGlu16 and Os4BGlu18 

apparently function in both vegetative and reproductive tissues. 
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 The monolignol glucosides and related compounds in rice tissues were 

analized by UPLC-MS. Sinapyl alcohol levels were relatively high in root and leaf 

sheath from 10-40 days. In 2-3 month-old roots, leaf, leaf sheath, and stem, the levels 

of p-coumarol glucoside, coniferin, and syringin were dramatically increased. Their 

levels increased at 60 days until 90 days, then decreased at 100 days. In the rice 

flower extract, p-coumarol glucoside was highest, followed by syringin, sinapic acid, 

coniferin, caffeic acid, sinapyl alcohol, coniferyl alcohol, and p-coumaric acid, 

respectively. Sinapic acid was higher than other compounds in seed at all ages. The 

level of p-coumaric acid in every stage and tissue was lower than the other 

compounds and after 90 days it was undetectable. 

 In sumary, several lines of evidence support the idea that Os4Bglu14, 

Os4Bglu16, and Os4Bglu18 are monolignol β-glucosidase that are involved in the 

lignification system in rice plants. First, successful recombinant expression and 

purification allowed us to see that Os4BGlu16 and Os4BGlu18 enzymes have higher 

efficiency to hydrolyze monolignol glucoside substrates than other substrates. Second, 

the pH optimum of Os4BGlu16 and Os4BGlu18 is in the acidic range, consistent with 

a role in the apoplast or acidic vacuole. The synthesis of monolignols from 

phenylalanine and shikimate involves in cytosolic and ER membrane-anchored 

cytosolic enzymes. Monolignols and lignans may then be conjugated by UGTs and 

then transported to the vacuole or the monolignols may be directly transported to the 

cell wall for oxidative cross-linking by apoplastic peroxidases and laccases into 

lignins (Wang et al., 2013), so a role in further processing of monoglucosides in the 

vacuoles or upon release to the apoplast is possible for Os4BGlu16 and Os4BGlu18. 

Last, the Os4BGlu14, Os4BGlu16, and Os4BGlu18 expression was found to occur in 
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the tissues that undergo lignification from vegetative to reproductive stage, and were 

in line with and the build-up of monolignol compounds in this study. 
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APPENDIX A 

 

DETECTION OF MONOLIGNOL COMPOUNDS  

BY UPLC-MS METHOD 

1. Methodology 

An Agilent 1290 UPLC system inline with an Agilent 6490 triple quadrupole 

mass spectrometer with an Agilent SB-C18 RRHD 1.8 µm, 2.1x150 mm column 

(Agilent Technologies, CA, USA) was used to detected monolignol compounds. Ionic 

masses of p-coumaric acid (m/z 163, retention time [Rt] 10.8 min), caffeic acid (m/z 

179, Rt 7.6 min), coniferyl alcohol (m/z 179, Rt 13.6 min), sinapyl alcohol (m/z 209, 

Rt 14.1 min), sinapic acid (m/z 223, Rt 12.9 min), p-coumarol glucoside [pCAG] (m/z 

371, Rt 6.8 min), coniferin (m/z 401, Rt 8.2 min), and syringin (m/z 431, Rt 9.2 min) 

were monitored.  

2. Standard chromatograms. 

2.1 Mixed standard of monolignol compounds 
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Table AI 1 Mass and its retention time of each compounds. 

Monolignol compounds m/z Time (min) 

p-coumarol glucoside  

Caffeic acid 

Coniferin 

Syringin 

p-coumaric acid 

Sinapic acid 

Coniferyl alcohol 

Sinapyl alcohol 

371.1 

179.0 

401.1 

431.1 

163.1 

223.0 

179.1 

209.0 

6.6 

7.4 

7.9 

8.9 

10.8 

12.7 

13.4 

13.8 

 

2.2 Single injection of p-coumarol glucoside standard 
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2.3 Single injection of caffeic acid standard 

 

 

2.4 Single injection of coniferin standard 
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2.5 Single injection of syringin standard 

 

 

2.6 Single injection of p-coumaric acid standard 
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2.7 Single injection of sinapic acid standard 

 

 

2.8 Single injection of coniferyl alcohol standard 
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2.9 Single injection of sinapyl alcohol standard 

 

 

2.10 An example total ion chromatogram of 40 days rice leaf 
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II. Standard curves 

1. Standard curve of p-coumarol glucoside 

 
 

2. Standard curve of caffeic acid 
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3. Standard curve of coniferin 

 
 

4. Standard curve of syringin 
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5. Standard curve of p-coumaric acid 

 
 

6. Standard curve of sinapic acid 
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7. Standard curve of coniferyl alcohol 

 
 

8. Standard curve of sinapyl alcohol 
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