การปรับปรุงเสถียรภาพทางความร้อนและการลดอันตรกิริยาของ ลิเทียมโบโรไฮไดรด์และพอลิเมอร์หลังการเติมโซเดียมอะลูมิเนียมไฮไดรด์ ในการบรรจุระดับนาโนของลิเทียมโบโรไฮไดรด์ใน พอลิเมทิลเมทาคริเลต-โค-บิวทิลเมทาคริเลต

นางสาวนั้นท์ธิดา วิเศษ รักว_ักยาลัยเทคโนโลยีส^{ุย}

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี มหาวิทยาลัยเทคโนโลยีสุรนารี ปีการศึกษา 2557

IMPROVEMENT OF THERMAL STABILITY AND REDUCTION OF LIBH4/POLYMER INTERACTION AFTER NaAIH4 DOPING IN NANOCONFINED LIBH4– POLY (METHYL METHACRYLATE)-co-BUTYL METHACRYLATE

Nuntida Wiset

ร_{ักบวั}กยาลัยเทคโนโล

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Chemistry

Suranaree University of Technology

Academic Year 2014

IMPROVEMENT OF THERMAL STABILITY AND REDUCTION OF LIBH4/POLYMER INTERACTION AFTER NaAlH4 DOPING IN NANOCONFINED LIBH4– POLY (METHYL METHACRYLATE)-co-BUTYL METHACRYLATE

Suranaree University of Technology has approved this thesis submitted in partial fulfillment of the requirements for a Master's Degree.

Thesis Examining Committee

(Asst. Prof. Dr. Sanchai Prayoonpokarach)

Chairperson

(Asst. Prof. Dr. Rapee Gosalawit-Utke)

Member (Thesis Advisor)

(Asst. Prof. Dr. Kunwadee Rangsriwatananon) Member

(Dr. Theeranun Siritanon)

Member

(Prof. Dr. Sukit Limpijumnong)

(Assoc. Prof. Dr. Prapun Manyum)

Vice Rector for Academic Affairs

Dean of Institute of Science

and Innovation

นันท์ธิดา วิเศษ : การปรับปรุงเสถียรภาพทางความร้อนและการลดอันตรกิริยาของลิเทียม โบโรไฮไดรด์และพอลิเมอร์หลังการเติมโซเดียมอะลูมิเนียมไฮไดรด์ในการบรรจุระดับนา โนของลิเทียมโบโรไฮไดรด์ในพอลิเมทิลเมทาคริเลต-โค-บิวทิลเมทาคริเลต (IMPROVEMENT OF THERMAL STABILITY AND REDUCTION OF LiBH₄/POLYMER INTERACTION AFTER NaAIH₄ DOPING IN NANOCONFINED LiBH₄-POLY (METHYL METHACRYLATE)-co-BUTYL METHACRYLATE) อาจารย์ที่ปรึกษา : ผู้ช่วยศาสตราจารย์ ดร.ระพี โกศัลวิตร-อูทเคอ, 68 หน้า.

์ โซเดียมอะถูมิเนียมไฮไครค์ที่ถูกเติมถุงไปในถิเทียมโบโรไฮไครค์บรรจุในระคับนาโนใน พอลิเมทิลเมทาคริเลต-โค-บิวทิลเมทาคริเลต ถูกคาดหวังให้เป็นระบบกักเก็บไฮโครเจนที่ผันกลับ ้ได้ การปรับปรุงเสถียรภาพทางความร้อนและการถดอันตรกิริยาของถิเทียมโบโรไฮไดรด์และพอลิ เมอร์ของตัวอย่างก็ถูกกาดหวังหลังการเติมโซเดียมอะลูมิเนียมไฮไดรด์ การลดอันตรกิริยาของ ้ ถิเทียมโบโรไฮไครค์และพอลิเมอร์ของตัวอย่างจะถูกวิเคราะห์เชิงปริมาณโคยใช้เทคนิค FTIR ซึ่ง ้จะศึกษาโดยการหาอัตราส่วนของพื้นที่ใต้พืกของ (V(B–H)/V(C=O)) ซึ่งจะสอดคล้องกับปริมาณ ของโบโรไฮไครด์ [BH,] การมีอัตราส่วนของ (V(B–H)/V(C=O)) มากจะส่งผลให้มีปริมาณของ ์ โบโรไฮไครค์สำหรับปลคปล่อยไฮโครเจนมากค้วย และอันตรกิริยาของลิเทียมโบโรไฮไครค์และ พอลิเมอร์ก็จะลดลงด้วย จากการเติมโซเดียมอะลูมิเนียมไฮไดรด์ อันตรกิริยาของลิเทียมโบโรไฮ-ใครค์และพอลิเมอร์ถูกทำให้ลคลงซึ่งจะสอคคล้องกับผลของ B 1s XPS ปริมาณของอันตรกิริยา ของโบรอนและพอลิเมอร์ที่ได้จากตัวอย่างที่มีการเติมโซเดียมอะลูมิเนียมไฮไครค์น้อยกว่าเมื่อเทียบ กับตัวอย่างที่ไม่ได้เติม โซเดียมอะถูมิเนียมไฮไดรค์ นอกจากนี้ผลของ solid state MAS NMR และ XRD ก็ยืนยันอีกด้วยว่าอันตรกิริยาของลิเทียมโบโรไฮไครด์และพอลิเมอร์ถูกทำให้ลดลง เนื่องจาก ้อะลูมิเนียมไฮไครค์ [AlH4] ของโซเคียมอะลูมิเนียมไฮไครค์มาแข่งขันเกิคอันตรกิริยากับหมู่ เมทอกซีหรือหมู่บิวทอกซีของพอลิเมอร์ จึงส่งผลให้ปริมาณไฮโครเจนที่ถูกปลคปล่อยออกมาจาก ้การเกิดปฏิกิริยาการปล่อยไฮโครเงนในรอบแรกและรอบที่สองมีปริมาณเพิ่มขึ้น นอกจากนี้พบว่ามี การเกิดอันตรกิริยาระหว่างหมู่เมทอกซึ่งองพอลิเมอร์กับโลหะไฮไดรด์ (ลิเทียมโบโรไฮไดรด์และ ์ โซเดียมอะลูมิเนียมไฮไดรค์) และการเกิดอันตรกิริยาระหว่างหมู่การ์บอนิลของพอลิเมอร์กับโลหะ ใอออน (Li⁺ และ Na⁺) ซึ่งจะช่วยเพิ่มความเสถียรภาพทางความร้อนของพอลิเมอร์ ดังนั้นปริมาณ การปลดปล่อยแก๊สทั้งหมดที่เกิดจากการสลายตัวของพอลิเมอร์ของตัวอย่างที่มีการเติมโซเดียม-้อะถูมิเนียมไฮไครค์จะปล่อยน้อยกว่าตัวอย่างที่ไม่ได้เติมโซเดียมอะถูมิเนียมไฮไครค์

ลายมือชื่อนักศึกษา	
ลายมือชื่ออาจารย์ที่ปรึกษา_	

สาขาวิชาเคมี ปีการศึกษา 2557

NUNTIDA WISET : IMPROVEMENT OF THERMAL STABILITY AND REDUCTION OF LIBH4/POLYMER INTERACTION AFTER NaAlH4 DOPING IN NANOCONFINED LIBH4–POLY (METHYL METHACRYLATE)-co-BUTYL METHACRYLATE. THESIS ADVISOR : ASST. PROF. RAPEE GOSALAWIT-UTKE, Ph.D. 68 PP.

THERMAL STABILITY / POLYMER HOSTS / NANOCONFINEMENT / HYDRIDE-POLYMER INTERACTION / LITHIUMBOROHYDRIDE / SODIUMALUMINIUMHYDRIDE

NaAlH₄ doped into nanoconfined LiBH₄ in poly (methyl methacrylate)-cobutyl methacrylate (PcB), denoted as nano LiBH₄–NaAlH₄–PcB, is proposed for reversible hydrogen storage. The reduction of LiBH₄/PcB interaction (B---OCH₃) and improvement of thermal stability of PcB are expected to obtain by adding small amount of NaAlH₄. The LiBH₄/PcB interaction of the nanoconfined samples is analyzed quantitatively by using FTIR technique, where the v(B–H)/v(C=O) ratio directly related to the amount of [BH₄]⁻ is determined. The more the (v(B–H)/v(C=O)) ratio, the higher the free [BH₄]⁻ content and the lower the LiBH₄/PcB interaction. The (v(B–H)/v(C=O)) ratio of the nano LiBH₄–PcB and nano LiBH₄–NaAlH₄–PcB are 0.6 and 2.8, respectively. This refers to the reduction of LiBH₄/PcB interaction due to addition of NaAlH₄. This is in agreement with B 1*s* XPS results, the relative amount of B_xO_y (from LiBH₄/PcB interaction) with respect to LiBH₄ of nano LiBH₄– NaAlH₄–PcB is lower than that of nano LiBH₄–PcB. In addition, the solid state MAS NMR and XRD results of nano LiBH₄–NaAlH₄–PcB confirms that the LiBH₄/PcB interaction is decreased due to the competitive reaction of $[AlH_4]^-$ (of NaAlH₄) with – OCH₃ and/or –OC₄H₉ (of PcB). These results increase of H₂ content dehydrogenated during cycling. Moreover, the interaction between alkoxy groups (–OCH₃ and/or – OC₄H₉) of PcB and metal hydrides (LiBH₄ and NaAlH₄) as well as that between carbonyl group (from PcB) and metal ions (Li⁺ and Na⁺) result in the improvement of thermal stability of PcB.

School of Chemistry

Student's Signature_____

Academic Year 2014

Advisor's Signature_____

ACKNOWLEDGEMENTS

I would like to thank everyone, who has helped me throughout my studies. I am immensely grateful to my advisor, Asst. Prof. Dr. Rapee Gosalawit-Utke for the patience and hard lessons, making me an independent and critical mind. I am also thankful to the thesis examining committee, including Asst. Prof. Dr. Sanchai Prayoonpokarach, Asst. Prof. Dr. Kunwadee Rangsriwatananon, and Dr. Theeranun Siritanon for their helpful and suggestions during my thesis defense.

I would like to acknowledge Mrs. Yanling Hua (The center for Scientific and Technological Equipment, Suranaree University of Technology, Thailand) for technical help and suggestions for solid-state MAS NMR measurements, Dr. Hideki Nakajima (BL3.2a: PES, Synchrotron Light Research Institute, Thailand) for technical help and suggestions for XPS measurements, Mr. Danial Laipple (Institute of Materials Research, Helmholtz–Zentrum Geesthacht, Geesthacht 21502, Germany) for technical help of SEM-EDS-mapping, and Dr. Chiara Minalese (Pavia Hydrogen Lab., C. S. G.I., Department of Chemistry, Physical Chemistry Division, University of Pavia, Pavia 27100, Italy) for technical help of gas analysis.

Personal thanks and love to my family, who has supported me. I am also grateful to all friends in the research group for sharing with me good and bad time.

Nuntida Wiset

CONTENTS

ABS	TRACT IN THAII
ABS	TRACT IN ENGLISHII
ACK	IV
CON	VTENTSV
LIST	OF TABLES
LIST	OF FIGURES IX
LIST	OF ABBREVIATIONS XI
CHA	APTER ELEVER
Ι	INTRODUCTION
	1.1 Renewable energy technology 1
	1.2 Hydrogen energy
	1.3 Fuel cells
	1.4 Hydrogen storage methods
II	LITERATURE REVIEWS
	2.1 Catalytic doping 13
	2.2 Composite hydrides
	2.3 Nanoconfinement in nanoporous scaffolds
	2.4 Research objectives
III	EXPERIMENTS

CONTENTS (Continued)

			Pa	ge
	3.1	Chem	icals and materials	23
	3.2	Samp	le preparations	23
		3.2.1	Purification of tetrahydrofuran	23
		3.2.2	Precipitation of PcB	23
		3.2.3	Dissolving of NaAlH ₄ in anhydrous tetrahydrofuran	24
		3.2.4	Synthesis of nanoconfined LiBH ₄ in PcB	24
		3.2.5	Synthesis of nanoconfined LiBH4-NaAlH4 in PcB	24
	3.3	Chara	cterizations	25
		3.3.1	Fourier transform infrared spectrometry (FTIR)	25
		3.3.2	Scanning electron microscopy (SEM)	25
		3.3.3	Kinetics measurement	26
		3.3.4	X-ray photoelectron spectroscopy (XPS)	27
		3.3.5	Nuclear magnetic resonance (NMR) measurement	28
		3.3.6	Powder X-ray diffraction (XRD) measurement	28
		3.3.7	Gas analysis	28
IV	RE	SULT	S AND DISCUSSION	30
	4.1	Disso	lving of NaAlH4 in anhydrous tetrahydrofuran	30
	4.2	Dispe	rsion of LiBH4 and NaAlH4 in PcB polymer matrix	31
	4.3	Kinet	ic properties	33
	4.4	Rever	sibility	36
	4.5	LiBH	4/PcB interaction and prevention of LiBH4 oxidation in air	38

CONTENTS (Continued)

	4.6 Thermal stability	. 46
V	CONCLUSION	. 50
REF	ERENCES	. 52
APP	ENDICE	. 64
CUR	RICULUM VITAE	. 68

Page

LIST OF TABLES

Table	Page
1.1	Comparisons of fuel cell technologies applications
1.2	Comparison of three major competing technologies
	for hydrogen storages
1.3	US DOE Freedom CAR hydrogen storage system targets
4.1	Amount of all components and theoretical hydrogen
	storage capacities of nanoconfined samples
4.2	Peak area of vibrations B-H stretching, O=C stretching, and
	v(B-H)/v(O=C) ratio of nanoconfined samples
4.3	Amount of gas desorption from thermal degradation of PcB
	with respect to H_2 at 120 °C
	้ ^{ับก} ยาลัยเทคโนโลยีส ^{ุร} ั

LIST OF FIGURES

Figur	e Pag	;e
1.1	Components of fuel cell car	2
1.2	PEMFC single cell	5
1.3	Compressed gas hydrogen tank	7
1.4	Liquid hydrogen tank	8
1.5	Solid state hydrogen storage tank	9
2.1	Volumetric and gravimetric hydrogen storage densities of different	
	hydrogen storage methods 1	1
2.2	Hydrogen desorption curves of pure LiBH4 (S1) and LiBH4-Ni	
	with LiBH ₄ : Ni molar ratios of 2:1 (S2), 4:1 (S3) and 6:1 (S4) 1	3
2.3	Isothermal dehydrogenation kinetics of 4LiBH ₄ –MgH ₂ –Al,	
	2LiBH ₄ –MgH ₂ , and 2LiBH ₄ –Al systems under a background	
	pressure of 0.01 bar H_2 and at 400 °C 1	6
2.4	Dehydrogenation kinetics of 4LiBH ₄ -5Mg ₂ NiH ₄ , Mg ₂ NiH ₄	
	and LiBH ₄ 1	7
2.5	In situ SR-PXD data for the dehydrogenation of LiBH ₄ -NaAlH ₄ 1	8
2.6	Mg NCs in a gas-barrier PMMA polymer matrix 2	21
3.1	Picture (a) and schematic diagram (b) of Sievert-type apparatus 2	27
4.1	FTIR patterns of NaAlH ₄ (a) and dissolved NaAlH ₄ in THF (b)	51

LIST OF FIGURES (Continued)

Figure	Page
4.2	SEM image of nano LiBH ₄ -NaAlH ₄ -PcB (A), carbon mapping (B),
	boron mapping (C), aluminium mapping (D), sodium mapping (E)
	and quantitative elemental analysis (F)
4.3	Hydrogen desorption 1^{st} and 2^{nd} cycles of nano LiBH ₄ -PcB (A)
	and nano LiBH ₄ -NaAlH ₄ -PcB (B)
4.4	FTIR spectra of LiBH ₄ (a), NaAlH ₄ (b) and PcB (c)
4.5	FTIR spectra of nano LiBH ₄ -NaAlH ₄ -PcB before desorption (a),
	after desorption (b), and after absorption (c)
4.6	Curves fitting of FTIR spectra of nano LiBH ₄ -PcB and nano
	LiBH ₄ -NaAlH ₄ -PcB
4.7	Li 1s and B 1s XPS spectra of LiBH ₄ (a), nano LiBH ₄ -PcB (b),
	and nano LiBH ₄ -NaAlH ₄ -PcB (c)
4.8	Solid state ¹¹ B, ²³ Na, and ²⁷ Al MAS NMR of LiBH ₄ , NaAlH ₄ ,
	and nano LiBH ₄ -NaAlH ₄ -PcB (a)
4.9	XRD patterns of PcB (a), nano LiBH ₄ -PcB (b,) and
	nano LiBH ₄ –NaAlH ₄ –PcB (c)
4.10	Gas analysis during dehydrogenation of nano LiBH ₄ –PcB (A) and
	nano LiBH ₄ -NaAlH ₄ -PcB (C) and peak area of gas desorption from
	thermal degradation of PcB with respect to H_2 at 120 °C of
	nano LiBH ₄ –PcB (B) and nano LiBH ₄ –NaAlH ₄ –PcB (D)

LIST OF ABBREVIATIONS

°C	=	degree celsius
μs	=	micro second
20	=	two theta
cm ⁻¹	=	wavenumber
eV	=	electron volt
g	=	gram
h	=	hour
Κ	CI	Kelvin
kgH_2m^{-3}	J.	kilograms of hydrogen per cubic meter
kHz	= N	kilohertz
L	=	liter
М	<i>า</i> ยาลัย	molar
mA	=	mill ampare
mg	=	milligram
min	=	minute
MJ kg ⁻¹	=	megajoules per kilogram
mL	=	milliliter
MPa	=	megapascal
mV	=	millivolt
MW	=	molecular weight

LIST OF ABBREVIATIONS (Continued)

ppm	=	part per million
S	=	second
w/v	=	weight by volume

CHAPTER I

INTRODUCTION

1.1 Renewable energy technology

Energy sources

Energy can be obtained from different sources, such as chemical (fossil fuels), solar (photovoltaic cell), nuclear (uranium) and thermo mechanical (wind, water and hot water) energy. Each kind of energy has its own problems. For example, the use of fossil fuels leads to the production of the greenhouse gas (CO₂). This causes global warming and climate change (Environmental and Energy Study Institute, www, 2014). For the nuclear energy, the problem is nuclear wastes (Problems and Dangers of Nuclear Energy, www, 2014), while solar and wind energy require the use of large areas (Michael, 2014).

Currently, fossil fuel and nuclear sources are the main energy suppliers for the world. The high consumption of fossil fuel is expected to enhance the greenhouse gas (CO_2) in the atmosphere and to deplete fossil fuel supplies in the coming decades. The continuous emission of CO_2 , which leads to world warming, is a serious problem for the global environment. Also, in the coming century, the world population is supposed to be increased together with a rapid growth of the economies. Thus, this will result in a higher demand of the energy consumption of the world. In order to meet the growth of energy requirement, while producing less CO_2 , the current energy

of fossil fuels has to be replaced by new environmental friendly sources, such as solar, geothermal, wind, and hydrogen energy (Energy Resources, www, 2014).

1.2 Hydrogen energy

Hydrogen is one of the most promising energy carriers, which can potentially replace fossil fuels as sources of clean energy due to high energy density of 142 MJ kg⁻¹ (Jain *et al.*, 2010), light weight, great variety of potential sources (water, biomass, and organic matter), and low environmental impact (water and heat are by-product). Hydrogen energy is mainly used in fuel cells for various applications, such as electric power, transportation, industry, and public welfare. Good example is hydrogen car (Figure 1.1), planned to be worldwide sold by Honda and Toyota in 2015.

Figure 1.1 Components of fuel cell car (http://www.engineering.com/DesignerEdge/ DesignerEdgeArticles/ArticleID/5974/Hydrogen-Powered-Cars-Coming-to-ahighway -near-you.aspx).

Fuel cell car includes four major components of:

- fuel cell stack: the fuel cell is an electrochemical device that produces electricity using hydrogen and oxygen. To obtain enough electricity to power a vehicle, individual fuel cells are combined in series to make a fuel cell stack,
- 2. hydrogen tank: instead of a gasoline or diesel tank, a fuel cell car has a hydrogen storage tank. The hydrogen gas must be compressed at extremely high pressure of 5,000 to 10,000 pounds per square inch (psi) to store enough fuel to obtain adequate driving range (Natural Gas Vehicles for America, www, 2011),
- 3. motor: it governs flow of electricity in the vehicle. By drawing power from either the battery or the fuel cell stack, it delivers electric power to the motor, which then uses the electricity to drive the vehicle (U.S. DOE, Office of EERE, Alternative & Advanced Vehicles, www, 2010), and
- battery: fuel cell car has a battery that stores electricity generated, which increase the overall efficiency of the vehicle (U.S. DOE, Office of EERE, Alternative & Advanced Vehicles, www, 2010).

1.3 Fuel cells

A fuel cell is a device that generates electricity by an electrochemical reaction. A single fuel cell has two electrodes (anode and cathode), an electrolyte, and a catalyst. In practice, many fuel cells are usually assembled into a stack for more electricity production. There are several different types of fuel cells, typically grouped according to their operating temperatures and types of electrolytes used (Table 1.1). The amount of power generated by a fuel cell is determined by several factors including fuel cell types, size, operating temperatures, and pressure. The most common type of fuel cell used in fuel cell car is proton exchange membrane fuel cell (PEMFC).

Fuel cell types	Electrolytes	Operating temperatures (°C)	Applications
Proton exchange membrane fuel cell (PEMFC)	Polymer	50-100	Backup powerPortable powerTransportation
Alkaline fuel cell (AFC)	КОН	90-100	- Military, Space
Phosphoric acid fuel cell (PAFC)	H ₃ PO ₄	150-200	- Distributed generation
Solid oxide fuel cell (SOFC)	ZrO ₂	700-1000	Auxiliary powerElectric utilityDistributed generation

Table 1.1 Comparisons of fuel cell technologies applications (Carrette et al., 2001).

Figure 1.2 PEMFC single cell (http://energydesignresources.com/resources/e-news/e-news-90-fuel-cells.aspx).

Considering reaction mechanisms of PEMFC, the anode interacts with the provided fuel source hydrogen gas to generate protons and electrons. The protons travel through the electrolyte membrane to the cathode, while the electrons, which cannot pass through the electrolyte, create the electric current before being returned to cathode. The cathode then catalyzes oxygen with protons and returned electrons, and this combination produces water and heat as products. The reaction mechanisms of PEMFC are shown in the following equations.

Anode:
$$2H_2 \rightarrow 4H^+ + 4e^-$$
 (1)

- Cathode: $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O + \Delta$ (2)
- Overall: $2H_2 + O_2 \rightarrow 2H_2O + \Delta$ (3)

PEMFC is a type of low temperature fuel cell with an operating temperature in the range of 50-100 °C. Moreover, it has high current density and power density. When compared to other fuel cells, PEMFC has compact design, light weight, and faster response time. For practical uses in fuel cell car, many single PEMFCs are usually combined as a fuel cell stack. Furthermore, to use PEMFC stack efficiently, effective on-board hydrogen storages with high capacity (both gravimetric and volumetric storage) as well as operating at moderate temperature conditions are extremely required.

1.4 Hydrogen storage methods

In principle, hydrogen can be stored in many forms, mainly as compressed hydrogen gas, liquid hydrogen, and solid state hydrides (Table 1.2).

 Table 1.2 Comparison of three major competing technologies for hydrogen storages

 (Varin *et al.*, 2009).

The second se		
Storage systems	Volumetric hydrogen capacity (kgH ₂ m ⁻³)	Drawbacks
Compressed hydrogen gas under 80 MPa pressure	~40	 safety problem cost of pressurization large pressure drop during use
Liquid hydrogen at cryogenic tank at -252 °C (21 K)	~71	 large thermal losses (open system) safety problem cost of liquefaction
Solid state hydrides	80-160	- none of the above

1.4.1 Compressed hydrogen gas

For this system, hydrogen is normally compressed and stored in gas cylinders, which are the simplest and cheapest method for on-board vehicles. However, its main obstacle is low storage density. In addition, high storage pressures raise the cost of the system as well as safety issues (Sandi, 2004).

Figure 1.3 Compressed hydrogen gas tank (Tomioka et al., 2011).

1.4.2 Liquid hydrogen

Liquid hydrogen is an alternative storage to compressed hydrogen, where hydrogen can be liquefied under critical low temperature (-252 °C). Liquefaction takes place through a number of steps, in which the hydrogen is compressed and cooled to form a dense liquid. A major drawback of liquefied hydrogen storage is high cost of liquefaction processes and huge amount of electricity consumption (Züttel, 2004).

Figure 1.4 Liquid hydrogen tank (Mori et al., 2009).

1.4.3 Solid state hydrides

In solid state hydrides, hydrogen can be stored by combining hydrogen with solid state materials through chemical reactions. Many metals are able to be combined chemically with hydrogen to form a class of compounds called metal hydrides. Metal hydrides have the highest volumetric hydrogen density and operate without drawbacks as in compressed and liquid hydrogen systems. Moreover, the storage tank is compact with respect to those of compressed and liquid hydrogen (Basic Research Challenges for Hydrogen Storage, 2004).

Figure 1.5 Solid state hydrogen storage tank (http://www.flyhy.eu/HZG.html).

Therefore, several research groups have focused on solid state hydrides for hydrogen storage applications. However, there are still a lot of obstacles needed to be solved, especially high temperature of hydrogen sorption and slow kinetics. The targets for hydrogen storage materials mentioned by Department of Energy (US DOE) in 2015 are reviewed by Varin *et al.* (2009) and shown in Table 1.3.

 Table 1.3 US DOE Freedom CAR hydrogen storage system targets (Varin *et al.*,

 2009).

Targets	2015
Specific energy (MJ kg ⁻¹)	10.8
Gravimetric capacity (wt.%)	9
Volumetric capacity (kgH $_2$ m $^{-3}$)	81
Storage system cost ($\$ per kgH ₂)	67
Operating temperature (°C)	-40/60
Cycle life-time (absorption/desorption cycles)	1,500

CHAPTER II

LITERATURE REVIEWS

Among all hydrogen storage materials, solid state hydrides have the highest hydrogen volumetric and gravimetric densities, and they do not need excessively high pressure and low temperature as required for compressed gas and liquid hydrogen. Moreover, the solid state hydrides have been proposed to be one of the most suitable on-board H₂ storages in transportation applications powered by PEMFC stack due to its high volumetric hydrogen capacity of 80-160 kgH₂ m⁻³, compact size, light weight, and high purity of H₂ output (Varin *et al.*, 2009; Schlapbach and Züttel, 2001; Ritter *et al.*, 2003; Züttel *et al.*, 2003; Fichtner *et al.*, 2005). These solid state H₂ storage materials are reported in several forms, e.g., metal hydrides (MgH₂ and AlH₃) (Bogdanovic and Schwickardi, 1997), complex hydrides (LiAlH₄, Mg(AlH₄)₂, NaAlH₄, Na₃AlH₆, Na₂LiAlH₆) (Sun *et al.*, 2003; Fu *et al.*, 2006), and composite hydrides (LiBH₄-NaAlH₄) (Gross *et al.*, 2008; Rongeata *et al.*, 2010).

Figure 2.1 Volumetric and gravimetric hydrogen storage densities of different hydrogen storages (Grochala and Edwards, 2004).

From Figure 2.1, metal hydrides are represented by squares and complex hydrides triangles. Among them, lithium borohydride (LiBH₄) is one of the most outstanding complex hydrides because of its high volumetric and gravimetric hydrogen storage capacities (Züttel *et al.*, 2003). Unfortunately, its practical application in mobile fuel cell systems is limited due to both thermodynamic and kinetic drawbacks. It was found that after melting at about 280 °C, LiBH₄ started to dehydrogenate slowly (above 400 °C) to form LiH, B, and H₂ as shown in the following equation.

$$LiBH_4 \rightarrow LiH + B + 3/2H_2$$
 (13.8 wt.% H₂) (4)

For rehydrogenation, it remains difficult due to the inactive elemental boron, resulting in very high operating temperature (above 600 °C) and pressure (350 bar H₂) required (Aoki *et al.*, 2005).

Moreover, sodium aluminium hydride (NaAlH₄), which has gravimetric and volumetric hydrogen storage capacities of 7.6 wt.% H₂ and 94 kgH₂ m⁻³, respectively, is regarded as one of the most promising compounds for H₂ storage material (Bogdanovic and Schwichardi, 1997). The dehydrogenation and hydrogenation of NaAlH₄ occur according to the following equations:

$$NaAlH_4 \leftrightarrow 1/3Na_3AlH_6 + 2/3Al + 3/2H_2 \quad (3.7 \text{ wt.}\% \text{ H}_2) \tag{5}$$

$$Na_{3}AlH_{6} \leftrightarrow 3NaH + Al + 3/2H_{2} \qquad (1.9 \text{ wt.}\% \text{ H}_{2}) \qquad (6)$$

$$NaH \rightarrow Na + 1/2H_2 \qquad (1.9 \text{ wt.\% } H_2) \qquad (7)$$

In theory, the first and the second steps released 3.7 and 1.9 wt.% H₂ at temperature of 274 and 299 °C, respectively (equations (5) and (6)). The last step released 1.9 wt.% H₂, which occurred in the temperature range of 425-500 °C (equation (7)). For the last step, the decomposition of NaH required high temperature is not useful for PEMFC. Therefore, the practical H₂ capacity is only 5.7 wt.%. Moreover, the reversibility was achieved only under high temperature (150 °C) and pressure (100 bar H₂) conditions (Bogdanovic *et al.*, 2006). From the disadvantages of LiBH₄ and NaAlH₄, there are various methods including catalytic doping, composite hydrides, and nanoconfinement in nanoporous scaffolds, proposed to decrease dehydrogenation temperature and to increase reversible reaction kinetics of LiBH₄ and NaAlH₄.

2.1 Catalytic doping

Yang *et al.* (2007) reported the destabilization of LiBH₄ by doping with metals (Mg, Al, Ti, V, Cr, or Sc) or metal hydrides (MgH₂, TiH₂, or CaH₂). They found that all LiBH₄ composites with metals and metal hydrides showed lower desorption temperature than pure LiBH₄ and LiBH₄ mixed with MgH₂ presented the lowest desorption temperature. Xia *et al.* (2009) enhanced the hydrogen storage properties of LiBH₄ by ball milling with various ratios of Ni powder, i.e., 2:1, 4:1 and 6:1 (LiBH₄:Ni molar ratio) (Figure 2.2).

Figure 2.2 Hydrogen desorption curves of pure LiBH₄ (S1) and LiBH₄–Ni with LiBH₄:Ni molar ratios of 2:1 (S2), 4:1 (S3) and 6:1 (S4) (Xia *et al.*, 2009).

From Figure 2.2, the dehydrogenation of LiBH₄ and LiBH₄–Ni samples starts at approximately 300 °C, suggesting that the addition of Ni did not reduce the dehydrogenation temperature of LiBH₄. However, at about 600 °C, the weight loss

from S2, S3 and S4 samples are 17.2, 14.4 and 16.5 wt.% H₂, respectively, which are higher than that of pure LiBH₄ (11 wt.% H₂). Furthermore, the rehydrogenation of LiBH₄-Ni systems could be reversible partially at 600 °C under 100 bar H₂, where the operating condition is milder than pure LiBH₄ (600 °C, 350 bar H₂).

In the case of NaAlH₄, Bogdanovic *et al.* (2000) showed that the decomposition of NaAlH₄ could be kinetically enhanced and reversible with the addition of Tidopants. They found that addition of the Ti-dopants to NaAlH₄ enhanced the rate of reaction by decreasing the activation energy of the absorption and desorption cycles; however, the change in composition formation with the addition of Ti occurred in this material was still unknown. Sun *et al.* (2002) studied X-ray diffraction of NaAlH₄ doped with Ti-based dopants and they found that Ti^{3+} probably substituted Na⁺ of bulk NaAlH₄, resulting in induced distortions of the lattice.

2.2 Composite hydrides

A typical example for destabilization of LiBH₄ is the composite hydrides. Shi *et al.* (2008) investigated the hydrogen storage properties of LiBH₄-NaAlH₄ composite, both undoped and doped with a TiCl₃ additive. They found that milled 2LiBH₄–3NaAlH₄ doped with TiCl₃ gave a significant lower hydrogen release temperature as compared with undoped system. In the doped systems, the reaction between LiBH₄ and NaAlH₄ resulted in the formations of LiAlH₄ and NaBH₄. LiAlH₄ released hydrogen already at room temperature to form Li₃AlH₆, while NaBH₄ was destabilized by oxide-free Al at higher temperatures, which led to decrease of desorption temperature. In addition, the excess of NaAlH₄ could produce LiNa₂AlH₆ phase, which could be reversibly discharged and recharged hydrogen at 80 bar and 180 °C. In 2009, Blanchard *et al.* modified the reversibility of LiBH₄ by ball-milling

with LiAlH₄. LiAlH₄ could reduce the hydrogen desorption temperature of LiBH₄. For instance, the decomposition of LiBH₄+LiAlH₄ started at 100 °C and ended at 500 °C, which was lower than pure LiBH₄ (starting at 360 °C and ending at 500 °C). Later, Yu *et al.* (2009) investigated de/rehydrogenation mechanisms of LiBH₄ destabilized with metallic Al. They found that LiBH₄/Al mixture decomposed in two steps as the following reactions:

$$2\text{LiBH}_4 + \text{Al} \rightarrow 2\text{LiH} + \text{AlB}_2 + 3\text{H}_2 \tag{8}$$

$$2\text{LiH} + 2\text{Al} \rightarrow 2\text{AlLi} + \text{H}_2 \tag{9}$$

From reaction (8), AlB₂ was formed in the dehydrogenated state and disappeared in the hydrogenated state. The formation of AlB₂ decreased the stability of the materials, resulting in lower desorption temperature. Furthermore, rehydrogenation experiments revealed that an intermediate hydride was formed firstly at 600 °C and 30 bar H₂ pressure, and LiBH₄ could be reformed completely when H₂ pressure was increased to 100 bar. Zhang *et al.* (2009) improved the reversibility of LiBH₄ by synthesis of LiBH₄–MgH₂–Al (4:1:1 molar ratio) composite. They found that the onset dehydrogenation temperature of 4LiBH₄–MgH₂–Al was reduced by 173 °C as compared with those of 2LiBH₄–MgH₂ and 2LiBH₄–Al systems.

Figure 2.3 Isothermal dehydrogenation kinetics of 4LiBH₄–MgH₂–Al, 2LiBH₄–MgH₂, and 2LiBH₄–Al systems under a background pressure of 0.01 bar H₂ and at 400 °C. (Zhang *et al.*, 2009).

From Figure 2.3, at 3000 s, 4LiBH₄–MgH₂–Al system releases hydrogen of 9.4 wt.%, approaching to theoretical value (9.9 wt.% H₂), while those of the 2LiBH₄–MgH₂ and 2LiBH₄–Al samples are 8 and 6.5 wt.% H₂, respectively. The dehydrogenation reaction mechanism of 4LiBH₄–MgH₂–Al composite was proposed as shown in the following reaction:

$$4LiBH_4 + MgH_2 + Al \rightarrow 4LiH + MgAlB_4 + 7H_2$$
(10)

As shown in reaction (10), the additions of MgH₂ and Al could effectively inhibit the formation of elemental boron during dehydrogenation (MgAlB₄ instead). For the rehydrogenation reaction of LiH–MgAlB₄, it occurred in two steps as 4LiH + MgAlB₄ + $6H_2 \rightarrow Mg + 4LiBH_4 + Al$ and Mg+H₂ $\rightarrow MgH_2$. However, MgH₂ in the second step could not be fully recovered because partial Mg forming in the first step could alloy with Al to form Mg₂Al₃. Next, Vajo *et al.* (2010) investigated thermodynamic and kinetic destabilization of LiBH₄ by addition of Mg₂NiH₄. They found that the equilibrium hydrogen pressure was higher than that of either pure LiBH₄ or pure Mg₂NiH₄, and it approached to ideal value for hydrogen storage in PEMFC applications. Moreover, onset dehydrogenation temperature of LiBH₄–Mg₂NiH₄ composite was lower than those of LiBH₄ and Mg₂NiH₄ individually, illustrating a new pathway enabled by the mixture (reaction (11)).

$$4\text{LiBH}_4 - 5\text{Mg}_2\text{NiH}_4 \leftrightarrow 2\text{MgNi}_{2.5}\text{B}_2 + 4\text{LiH} + 8\text{MgH}_2 + 8\text{H}_2$$
(11)

Figure 2.4 Dehydrogenation kinetics of 4LiBH₄–5Mg₂NiH₄, Mg₂NiH₄, and LiBH₄ (Vajo *et al.*, 2010).

From Figure 2.4, the dehydrogenation of 4LiBH_4 – $5\text{Mg}_2\text{NiH}_4$ occurs three steps at 250 °C, 340 °C, and 425 °C respectively. The amount of hydrogen desorbed in the 1st step is consistent with the reaction (11), which theoretically releases 2.6 wt.% H₂. The 2nd step corresponds to dehydrogenation of MgH₂ produced during the reaction between LiBH₄ and MgNiH₄ (reaction (11)) and the 3rd step is due to the decomposition of

excess LiBH₄ (Figure 2.4). Moreover, Dorthe *et al.* (2010) studied the hydrogen release of LiBH₄-NaAlH₄ composite.

Figure 2.5 In situ SR-PXD data for the dehydrogenation of LiBH₄–NaAlH₄: \circ LiAlH₄, \blacksquare NaBH₄, \blacktriangle *o*-LiBH₄, \blacktriangledown *h*-LiBH₄, \triangle Li₃AlH₆, \Box Al+LiH, \blacksquare AlB₂, \blacklozenge LiAl, and *TiB₂ (Dorthe *et al.*, 2010).

From Figure 2.5, the formation of AlB_2 is observed about 450 °C, which destabilizes boron and may be optimized to eliminate the release of diboran (B_2H_6). The pressure for dehydrogenation is reduced by the formation of LiAl. Moreover, the rehydrogenation of LiBH₄–NaAlH₄ composite could be reversible partially at 400 °C under 110 bar H₂, where the operating condition was milder than pure LiBH₄ (600 °C, 350 bar H₂).

2.3 Nanoconfinement in nanoporous scaffolds

Further approach to improve de/rehydrogenation kinetics is confinement of light metal hydrides in nanoporous scaffolds. Zhang *et al.* (2007) reported that LiBH₄ nanoparticles supported by disordered mesoporous carbon CMK-3 showed favorable

latent heat of dehydrogenation (40 kJ/mol H₂), large amount of dehydrogenation capacity (14 wt.% H₂) below 600 °C, and reversible capacity of 6.0 wt.% H₂ at 350 $^{\circ}$ C. Gross *et al.* (2008) demonstrated that the desorption temperature of LiBH₄ was lowered by 75 °C and the dehydrogenation rate at 300 °C increased up to 50 times, when LiBH₄ was incorporated into nanoporous structure of carbon scaffold. Furthermore, nanoconfined LiBH₄ showed a reversible hydrogen uptake (75 % of original capacity) at relatively mild conditions of 100 bar H₂, 400 °C for 2 h. Next, Liu *et al.* (2010) investigated the wetting and decomposition behavior of LiBH₄ in the presence of highly ordered nanoporous hard carbon (NPC) with hexagonally packed (2 nm diameter columnar pores). The confinement of LiBH₄ in small pores showed low temperatures of phase transition and melting of LiBH₄ as well as the significant decrease of the onset desorption temperature with respect to bulk LiBH₄. Most significantly, their results suggested that diborane release was suppressed during the decomposition of nanoconfined LiBH₄. For nanoconfined NaAlH₄, Nielsen et al. (2014) studied nanoconfined NaAlH₄ in nanoporous scaffolds with different surface areas, pore volumes, and pore sizes. Carbon aerogel scaffold (CAS) was obtained by pyrolyzing at 950 °C under CO₂ flow (CO₂-activated CAS). They found that by using CO₂-activated technique surface area and pore volume of CAS were significantly increased as compared with that prepared by using N₂ as flowed gas. The content of NaAlH₄ melt infiltrated into CO₂-activated CAS was up to 91 mol%, significantly higher than that into CAS prepared by using N₂-flowed gas (52 mol%). Furthermore, the stability of nanoconfined NaAlH₄ over several cycles of hydrogen release and uptake was significantly improved by the CO2-activated CAS due to interaction between NaAlH₄ and CAS. However, the disadvantages of nanoconfinement in

nanoporous carbon scaffolds are high operating pressure and temperature for de/rehydrogenation as well as oxidation of metal hydrides. Therefore, new host materials for nanoconfinement are expected not only to reduce pressure and temperature for de/rehydrogenation, but also to prevent metal hydrides from air and humidity.

Interestingly, Jeon *et al.* (2011) reported the synthesis of an air-stable composite material consisting of Mg nanocrystals (NCs) in poly (methyl methacrylate) (PMMA). PMMA shows high permeability ratio of H_2/O_2 (ratio of 42.9 at 35 °C). In this work, PMMA was used to keep Mg away from water and oxygen but let hydrogen in or out freely (Wang *et al.*, 2008; Liang *et al.*, 2011; Mark, 1999). They found that the sample could absorb 5.97 wt.% H_2 at 200 °C under 35 bar H_2 within 80 min, while Mg powder could not absorb hydrogen in the same condition. Moreover, prevention of Mg nanoparticles from deterioration by oxygen and water was obtained by embedding in PMMA (Figure 2.6).

รั_{้รัววักยาลัยเทคโนโลยีสุรุบ}า

Figure 2.6 Mg NCs in a gas-barrier PMMA polymer matrix (Jeon et al., 2011).

Next, Huang *et al.* (2014) investigated the dehydrogenation temperature of LiBH₄ compositing with poly (methyl methacrylate) (PMMA). They found that interaction between LiBH₄ and PMMA led to fast H₂ release at low temperature. Meanwhile, PMMA not only can protect LiBH₄ from water and oxygen, but also let hydrogen in and out freely. LiBH₄ composited with PMMA started to dehydrogenate at 53 °C and released 5.2 wt.% H₂ at 162 °C within 1 h. It could be concluded that PMMA could prevent deterioration of LiBH₄ in the atmosphere and could reduce its dehydrogenation temperature.

Recently, Gosalawit-Utke *et al.* (2014) destabilized LiBH₄ by nanoconfinement in poly (methyl methacrylate)-co-butyl methacrylate (PcB) polymer matrix. On the basis of a butyl-branched chain, PcB has a superior amorphous degree as compared to PMMA, leading to higher free volume in the polymer matrix for H_2
permeability. They found that the onset dehydrogenation temperature of nanoconfined LiBH₄ in PcB was ~80 °C and it released 0.74 wt.% H₂ (8.8 wt.% H₂ with respect to LiBH₄ content) at 120 °C under vacuum within 4 h during the 1st dehydrogenation. Furthermore, the nanoconfined LiBH₄–PcB could be rehydrogenated at mild condition of 140 °C under 50 bar H₂ for 12 h. However, the disadvantages of nanoconfined LiBH₄–PcB are LiBH₄/PcB interaction between boron (B) of LiBH₄ with metoxy (–OCH₃) group of PcB and partial thermal degradation of PcB polymer, resulting in the reduction of H₂ content release and uptake.

Therefore, in this work, we doped small amount of NaAlH₄ in nanoconfined LiBH₄–PcB. NaAlH₄ is expected to decrease LiBH₄/PcB interaction and improve thermal stability of PcB host by providing competitive interaction with PcB.

2.4 Research objectives

- 2.5.1 To prepare NaAlH₄ doped into nanoconfined LiBH₄–PcB.
- 2.5.2 To study kinetic properties of nanoconfined LiBH₄–PcB samples with and without NaAlH₄.
- 2.5.3 To reduce LiBH₄/PcB interaction and to improve thermal stability of PcB.

CHAPTER III

EXPERIMENT

3.1 Chemicals and materials

Poly (methyl methacrylate)-co-butyl methacrylate (PcB, MW = 75,000), 2 M lithium borohydride solution in THF (LiBH₄, ≥90%, hydrogen storage grade), and sodium aluminium hydride (NaAlH₄, \geq 93%, hydrogen storage grade) were purchased from Sigma-Aldrich (St. Louis, MN, USA). Tetrahydrofuran (THF, HPLC grade) and n-hexane (AR grade) were purchased from $\mathsf{QR\ddot{e}C^{TM}}.$ Metallic sodium (Na) and benzophenone $((C_6H_5)_2CO)$ were purchased from Fluka chemika (Buchs, Switzerland).

Sample preparations 3.2

3.2.1 Purification of tetrahydrofuran THF was pre-dried overnight by molecular sieves. Metallic Na and benzophenone of 5 and 20 g, respectively, were added to 500 mL of pre-dried THF (Schwartz, 1978). The mixture was refluxed under nitrogen atmosphere at 80 °C until a deep blue color was obtained. The mixture was distilled at 70 °C under nitrogen atmosphere to obtain anhydrous THF.

3.2.2 Precipitation of PcB

PcB of 20.4890 g was dissolved in 100 mL anhydrous THF with continuous stirring to obtain homogeneous polymer solution (20.0 %w/v). The PcB polymer solution was precipitated in distillated n-hexane and dried at 90 °C for 24 h in vacuum oven to obtain dried PcB polymer powder.

3.2.3 Dissolving of NaAlH4 in anhydrous tetrahydrofuran

NaAlH₄ powder of 0.3013 g was dissolved in 85 mL anhydrous THF and continuously stirred for several hours in the glove box to obtain NaAlH₄ solution $(0.35 \% \text{w/v} \text{ NaAlH}_4 \text{ in THF}).$

3.2.4 Synthesis of nanoconfined LiBH₄ in PcB

The polymer solution was prepared by dissolving 5.0656 g of PcB in 20 mL anhydrous THF with continuous stirring. LiBH₄ solution of 15 mL was added into PcB polymer solution with continuous stirring under argon atmosphere in the glove box. The transparent gel was obtained after stirring the mixture of LiBH₄ and PcB for approximately 10 min. The LiBH₄–PcB gel was dried in the glove box to achieve the powder sample, containing 11.5 wt.% of LiBH₄, denoted as nano LiBH₄–PcB. With respect to the LiBH₄ content, theoretical hydrogen storage capacity of 1.60 wt.% was achieved.

3.2.5 Synthesis of nanoconfined LiBH₄–NaAlH₄ in PcB

PcB powder of 0.5144 g was dissolved in 5 mL anhydrous THF to obtain PcB polymer solution. The solutions of LiBH₄ and NaAlH₄ of 1.5 and 2 mL, respectively, were added into PcB polymer solution. The mixture was stirred for 1 h until transparent gel was achieved. The transparent gel was dried at room temperature in the glove box for several days to obtain nano LiBH₄–NaAlH₄–PcB powder sample, where the molar ratio of LiBH₄:NaAlH₄ was 10:0.5. The sample contained 11.2 and 1.2 wt.% of LiBH₄ and NaAlH₄, respectively. Due to small amount of NaAlH₄ doped,

it was considered as an additive, where H_2 storage capacity could be negligible. Thus, with respect to LiBH₄ content, theoretical hydrogen storage capacity of nano LiBH₄–NaAlH₄–PcB was calculated to be 1.55 wt.%.

3.3 Characterizations

3.3.1 Fourier transform infrared spectrometry (FTIR)

Fourier transform infrared (FTIR) spectra of standard samples (NaAlH₄, LiBH₄ and PcB) and nanoconfined samples of LiBH₄–PcB and LiBH₄–NaAlH₄–PcB were obtained by using a Bruker, IR spectrometer (Tensor 27). The sample was ground with anhydrous KBr (1:10 weight ratio of sample:anhydrous KBr) and pressed under 3 tons for 2 min to obtain KBr pellet. KBr pellet containing the sample was assembled in the FTIR machine on the direction of infrared. The spectrum was recorded in the range of 4000-400 cm⁻¹ with 32 scans at room temperature. Quantitative analysis was done by curve fitting technique using Magic plot program.

3.3.2 Scanning electron microscopy (SEM)

Morphologies of the samples were obtained using scanning electron microscopy (SEM) (Zeiss, Auriga). Nano LiBH₄–NaAlH₄–PcB powder sample was deposited on the sample holder by using silver glue (in *n*-butyl acetate). The powder sample was coated with platinum (Pt) by using a sputtering technique with a current of 30 mA for 30 s under vacuum. An energy-dispersive X-ray spectroscopy (EDS)-elemental mapping were managed by an apparatus from EDAX Inc., USA. Smart SEM and EDS Genesis programs were used for morphological studies and elemental analysis of the samples, respectively.

3.3.3 Kinetics measurement

De/rehydrogenation kinetics and hydrogen reproducibility of nano LiBH₄-PcB and nano LiBH₄-NaAlH₄-PcB were studied by using a laboratory scale setup of a Sievert-type apparatus (Figure 3.1) (Gosalawit-Utke et al., 2014). The powder sample of ~50–100 mg was packed in a high pressure stainless steel sample holder (316SS, Swagelok) under argon atmosphere in the glove box, and transferred to the Sievert-type apparatus. Two K-type thermocouples (-250-1,300 °C, SL heater) were attached to the sample holder and to the furnace for measuring the temperature change of the system during de/rehydrogenation. Pressure transducers (C206, Cole Parmer) in the pressure range of 0-500 psig and 0-3000 psig were used to measure the pressure change due to hydrogen desorption and absorption, respectively. Thermocouples and pressure transducers were connected to an AI210I module convertor data logger (from Wisco), measuring and transferring (every 1 s) the pressure and temperature changes of the sample to the computer for further evaluation. The samples was dehydrogenated by heating from room temperature to 120 °C (5 °C/min) under vacuum. Temperature was controlled by a PID temperature controller. In the case of rehydrogenation, the dehydrogenated powder sample was pressurized under 60 bar H₂ (purity = 99.999 %) at 120 °C for 12 h. Once the pressure reading was constant over a period of time, the amount of hydrogen released was calculated by the pressure change (ΔP) and the following equations:

$(\Delta P)V = nRT$

H₂ desorbed (wt.%) = $[(n \times 2.0158)/\text{sample weight}] \times 100$

where *P*, *V*, and *T* are hydrogen pressure (atm), volume of the system (L), and temperature (K), respectively, *n* is the number of hydrogen moles (mol), and *R* is gas constant (0.0821 L atm K^{-1} mol⁻¹).

Figure 3.1 Picture (a) and schematic diagram (b) of Sievert-type apparatus.

3.3.4 X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy was carried out at the Siam Photon Laboratory, BL3.2a in the Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand. The powder samples of LiBH₄, nano LiBH₄–PcB, and nano LiBH₄–NaAlH₄–PcB were held on the sample holders by using carbon glue tape in the glove box atmosphere. Prior to the measurements, all prepared samples were placed in an ultrahigh vacuum chamber for approximately 6 h. The photon energy of 400 eV was used to detect the signals of Li 1*s* and B 1*s*. Each element was investigated at the kinetic energy step of 0.1 eV for 5 scans by using an CLAM2 analyzer. The multi spectra were analyzed by using a macro XPS MS Excel 2007 (Windows XP) software.

3.3.5 Nuclear magnetic resonance (NMR) measurement

Solid-state ¹¹B, ²⁷Al and ²³Na magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of LiBH₄, NaAlH₄, and nano LiBH₄–NaAlH₄–PcB were recorded by a Bruker ASCENDTM 500 spectrometer using a BL4 VNT probe for 4 mm outer diameter rotors. The powder sample was tightly packed in a zirconia end-capped tube in the glove box, and solid–state MAS NMR measurements were carried out at 302 K. Solid-state MAS NMR experiments employed a rotation frequency of 10 kHz. The excitation pulse lengths of ¹¹B and ²⁷Al MAS NMR were 5 and 9.8 µs, respectively. The relaxation delays of ¹¹B, ²⁷Al, and ²³Na MAS NMR were 5 s. The ¹¹B, ²⁷Al, and ²³Na chemical shifts were detected in part per million (ppm) relative to neat boric acid (H₂BO₃), aluminium oxide (Al₂O₃), and NaCl, respectively.

3.3.6 Powder X-ray diffraction (XRD) measurements

Powder X-ray diffraction patterns of PcB, nano LiBH₄ – PcB, and nano LiBH₄–NaAlH₄–PcB were obtained from a Bruker D8 Advance by using a CuK_{α} (λ = 0.15406 nm) radiation. The experiments were done in step scan mode with a step interval of 0.500°/s (40 mV and 40 mA) over the 20 range of 10–80°. The powder sample was packed in a sample holder under argon atmosphere in the glove box and covered by a plastic dome made from PMMA.

3.3.7 Gas analysis

The analyses of gases released during dehydrogenation of nano LiBH₄–PcB and nano LiBH₄–NaAlH₄–PcB were carried out by connecting a manometric PCTPro–2000 apparatus with a residual gas analyzer (RGA200, Setaram, France) by using a 1/8" stainless steel tube. The powder sample (~200 mg) was loaded in the sample

holder and transferred to the PCTPro–2000 apparatus. The measurement was done by heating the powder sample from room temperature to 300 $^{\circ}$ C (5 $^{\circ}$ C/min) under vacuum.

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Dissolving of NaAlH₄ in anhydrous tetrahydrofuran

In order to confirm the successful dissolving of NaAlH₄ in THF, Fourier transform infrared spectrometer (FTIR) was used to characterize NaAlH₄ and dissolved NaAlH₄ in THF. NaAlH₄ exhibits characteristic vibrational peaks of [AlH₄]⁻ stretching and bending at 1636 and 888 cm⁻¹, respectively, (Figure 4.1 (a)) corresponding to the FTIR spectrum of NaAlH₄ previously reported (Rafi *et al.*, 2012). For dissolved NaAlH₄ in THF, all the characteristic peaks corresponding to NaAlH₄ in THF, all the characteristic peaks corresponding to NaAlH₄ in THF.

Figure 4.1 FTIR patterns of NaAlH₄ (a) and dissolved NaAlH₄ in THF (b).

4.2 Dispersion of LiBH₄ and NaAlH₄ in PcB polymer matrix

To investigate the dispersion of LiBH₄ and NaAlH₄ in PcB polymer matrix, SEM and EDS–mapping experiments of nano LiBH₄–NaAlH₄–PcB sample were done. Figure 4.2 (A) shows SEM image of nano LiBH₄–NaAlH₄–PcB and the elemental maps corresponding to the area depicted (Figures 4.2 (B-E)). From Figures 4.2 (B-E), good dispersion of carbon (C) from PcB, boron (B) from LiBH₄, and sodium (Na) and aluminium (Al) from NaAlH₄ are detected all over sample bulk. From Figure 4.2 (F), the signals of C and oxygen (O) from PcB are observed together with those of Na, Al, and B from NaAlH₄ and LiBH₄, respectively, as well as platinum (Pt) from surface coating. The missing of lithium (Li) signal from LiBH₄ can be due to the limitation of EDS technique to light element. From these results, it can be confirmed that LiBH₄ and NaAlH₄ are well dispersed into PcB polymer matrix.

Figure 4.2 SEM image of nano LiBH₄–NaAlH₄–PcB (A), carbon mapping (B), boron mapping (C), aluminium mapping (D), sodium mapping (E), and quantitative elemental analysis (F).

4.3 Kinetic properties

To evaluate the performance of the hydrogen storage material, the storage capacity obtained from the sample must be compared with theoretical values. Theoretical hydrogen storage capacities of nanoconfined samples based on the amount of all components in the mixtures are calculated (Table 4.1). With respect to PcB polymer content in the samples, nano LiBH₄–PcB contains LiBH₄ of 11.5 wt.%, while nano LiBH₄–NaAlH₄–PcB consists of LiBH₄ and NaAlH₄ of 11.2 and 1.2 wt.%, respectively. On the basis of dehydrogenation of LiBH₄ (equation (4)), where 13.8 wt.% H₂ are theoretically released, the theoretical hydrogen storage capacity of the nano LiBH₄–PcB and nano LiBH₄–NaAlH₄–PcB are calculated to be 1.60 and 1.55 wt.%, respectively (Table 4.1).

Table 4.1 Amount of all components and theoretical hydrogen storage capacities of nanoconfined samples.

Nanoconfined	Amount of	f all compone	Theoretical H ₂	
samples	РсВ	LiBH4	NaAlH4	capacity (wt.%)
LiBH ₄ –PcB	88.5	11.5	-	1.60
LiBH4-NaAlH4-PcB	87.6	11.2	1.2	1.55

To study the dehydrogenation kinetics, hydrogen release and uptake cycles of nano LiBH₄–PcB and nano LiBH₄–NaAlH₄–PcB were performed by using Sieverttype apparatus. Dehydrogenation and rehydrogenation were done at the same temperature of 120 °C under vacuum and 60 bar H₂, respectively. The amount of gases desorbed due to thermal degradation (at 120 °C under vacuum) of PcB polymer

matrix and NaAlH₄–PcB composite are 0.04 and 0.005 wt.%, respectively. Hydrogen content released from nano LiBH4-PcB and nano LiBH4-NaAlH4-PcB is obtained from total amount of gas release subtracted with those of PcB and NaAlH₄-PcB composite, respectively. From Figure 4.3 (A), the 1st dehydrogenation cycle of nano LiBH₄-PcB releases 0.78 wt.% H₂ (49 % H₂ with respect to theoretical hydrogen storage capacity) within 4 h. The inferior amount of H₂ released during 1st dehydrogenation (0.78 wt.% H₂) with respect to theoretical value (1.60 wt.% H₂) could be due to the interaction between LiBH₄ and PcB polymer chains (B---OCH₃), discussed in the previous studies (Gosalawit-Utke et al., 2014). Afterwards, the dehydrogenated sample from the 1st dehydrogenation was rehydrogenated at 120 °C under 60 bar H₂ for 12 h. It results in desorbed hydrogen of only 0.32 wt.% H₂ during the 2nd dehydrogenation (20 % H₂ with respect to theoretical hydrogen storage capacity). The reduction of H₂ content released in the 2nd cycle with respect to the 1st one could be due to the greater interaction between LiBH₄ and PcB after cycling and thermal degradation of PcB polymer host during cycling under temperature and pressure as previously discussed (Gosalawit-Utke et al., 2014). The latter leads to the inferior nanoconfinement of LiBH₄ in PcB polymer matrix. Moreover, the higher the interaction of LiBH₄/PcB (B---OCH₃), the lower the [BH₄]⁻ content, resulting in the lower H₂ storage capacity. In the case of nano LiBH₄-NaAlH₄-PcB, it exhibits H₂ desorption of 1.29 and 0.67 wt.% H₂ (83 and 43 % H₂ with respect to theoretical hydrogen storage capacity, respectively) during the 1st and 2nd dehydrogenations, respectively (Figure 4.3 (B)). It should be noted that nano LiBH₄-NaAlH₄-PcB shows not only higher H₂ desorption content with respect to nano LiBH₄-PcB (the 1st and 2nd cycles), but also faster desorption kinetics. For example, the dehydrogenation

of nano LiBH₄–NaAlH₄–PcB is completed within 1 h, while that of nano LiBH₄–PcB requires up to 4 h. Fast kinetics of nano LiBH₄–NaAlH₄–PcB could be due to the catalytic effects of NaAlH₄ on dehydrogenation of LiBH₄ (Shi *et al.*, 2008).

Figure 4.3 Hydrogen desorption 1st and 2nd cycles of nano LiBH₄–PcB (A) and nano LiBH₄–NaAlH₄–PcB (B).

4.4 Reversibility

In order to investigate the characteristics peak of reference materials and to study reversibility of nano LiBH₄-NaAlH₄-PcB, FTIR technique was used.

Figure 4.4 FTIR spectra of LiBH₄ (a), NaAlH₄ (b), and PcB (c).

For the reference materials, bulk LiBH₄ reveals the triplet peaks of B–H bond stretching at 2385, 2293, and 2226 cm⁻¹, while that of bending is at 1125 cm⁻¹ (Figure 4.4 (a)). The peak at 1640 cm⁻¹ refers to O–H bond from oxidation of LiBH₄ in ambient condition during the experiment (Yang *et al.*, 2014). NaAlH₄ exhibits vibrational peaks of [AlH₄]⁻ stretching and bending at 1635 and 888 cm⁻¹, respectively (Rafi *et al.*, 2012) (Figure 4.4 (b)). For PcB, Figure 4.4 (c) shows a vibrational peak corresponding to C–H stretching at 2992–2956 cm⁻¹ and C=O stretching of ester group at 1730 cm⁻¹. The vibrational peaks at about 1486 and 1443 cm⁻¹ belong to asymmetric bending vibrations of (C–CH₂) and (C–CH₃) bonds, respectively. The two

peaks at 1387 and 752 cm⁻¹ are in accordance with α -methyl group vibration. The two doublet bands at 1273–1242 and 1196–1154 cm⁻¹ belong to C–O stretching of ester group and that at 991–961 cm⁻¹ refers to C–H bending (Swain *et al.*, 2010).

Figure 4.5 FTIR spectra of nano LiBH₄–NaAlH₄–PcB before desorption (a), after desorption (b), and after absorption (c).

In the case of the nano LiBH₄-NaAlH₄-PcB, the sample before desorption shows characteristic peaks of [BH₄]⁻ stretching (2385, 2293, and 2226 cm⁻¹) and bending (1127 cm⁻¹) of LiBH₄ together with all peaks of PcB (Figure 4.5 (a)). This suggests the existence of LiBH₄ in nano LiBH₄-NaAlH₄-PcB. Moreover, the spectrum shows a small shoulder at 1709 cm⁻¹ referring to not only Li⁺---O=C interaction (Lim *et al.*, 2008) formed between LiBH₄ and PcB, but also probably Na⁺---O=C interaction between NaAlH₄ and PcB. From the previous work, vibrational peak of B-O bonds due to B---OCH₃ interaction, hinting at LiBH₄/PcB interaction was observed as a sharp peak at 1383 cm⁻¹ (Gosalawit–Utke *et al.*, 2014). However,

for nano LiBH₄–NaAlH₄–PcB, this vibration is not obviously detected (Figure 4.4 (a)). This could be due to the fact that B---OCH₃ interaction (LiBH₄/PcB interaction) is reduced by adding small amount of NaAlH₄ in nano LiBH₄–PcB, further discussed and confirmed in section 4.5. In the case of the sample after desorption, all vibrational peaks of PcB are still observed as in case of sample before dehydrogenation. However, the vibrational peaks of B–H bond of LiBH₄ are not observed, demonstrating complete dehydrogenation of LiBH₄ (Figure 4.5 (b)). For the sample after rehydrogenation, the vibrational peaks of B–H bond from LiBH₄ are recovered, referring to successful reversibility of nano LiBH₄–NaAlH₄–PcB (Figure 4.5 (c)).

4.5 LiBH₄/PcB interaction and prevention of LiBH₄ oxidation in air

In order to quantitatively determine the reduction of LiBH₄/PcB (B---OCH₃) interaction, quantitative analysis by FTIR technique was carried out. Relative concentration (or amount) of the phase of interest with respect to the reference can be quantitatively determined by the ratio of their FTIR peak area (Pierce *et al.*, 1990 and Xiong *et al.*, 2013). In this work, phase of interest and reference are B–H (ν (B–H)) and C=O (ν (O=C)) stretching from LiBH₄ and PcB, respectively. The more the ratio of peak area of ν (B–H)/ ν (O=C), the lower the LiBH₄/PcB (B---OCH₃) interaction.

Figure 4.6 Curves fitting of FTIR spectra of nano LiBH₄–PcB and nano LiBH₄–NaAlH₄–PcB.

This results in the higher content of $[BH_4]^-$ for dehydrogenation and increase of H₂ storage capacity. The peak areas of v(B-H) (in the range of 2386–2226 cm⁻¹) and v(O=C) (at 1730 cm⁻¹ and the shoulder due to Li⁺/Na⁺---O=C interaction at 1710–1708 cm⁻¹) were calculated by curve fitting method using Magic Plot program. The curve fitting results of FTIR spectra of nano LiBH₄–PcB and nano LiBH₄–PcB are shown in Figure 4.6. The peak area of both vibrations (v(B-H)) and v(O=C)) as well as the ratio of their peak area (v(B-H)/v(O=C)) calculated from Figure 4.6 are summarized in Table 4.2.

	Peak ar			
Nanoconfined samples	v(B-H)	υ(O=C)	ν(B–H)/ν(O=C) ratio	
	(2226-2386 cm ⁻¹)	(1730 cm ⁻¹)		
LiBH ₄ –PcB	109.5	171.2	0.6	
LiBH4–NaAlH4–PcB	48.4	17.1	2.8	
	44			

Table 4.2 Peak area of B–H stretching, O=C stretching, and ν (B–H)/ ν (O=C) ratio of nanoconfined samples.

From Table 4.2, the $\nu(B-H)/\nu(O=C)$ ratio of nano LiBH₄–PcB and nano LiBH₄–NaAlH₄–PcB are 0.6 and 2.8, respectively. Because of lower $\nu(B-H)/\nu(O=C)$ ratio, it is clear that the nano LiBH₄–PcB has higher B---OCH₃ interaction as compared with nano LiBH₄–NaAlH₄–PcB. Therefore, it can confirm that the interaction between LiBH₄ with PcB is reduced by adding small amount of NaAlH₄. With respect to the amount of hydrogen in the 1st cycle (Figures 4.3), the higher hydrogen content released from nano LiBH₄–NaAlH₄–PcB with respect to that of nano LiBH₄–PcB can be due to the reduction of B---OCH₃ interaction. The reduction of LiBH₄/PcB interaction can be due to the competitive interaction of partial [AlH₄]⁻ from NaAlH₄ with alkoxy (–OCH₃ and/or –OC₄H₉) groups of PcB. The interaction between [AlH₄]⁻ and alkoxy groups (–OCH₃ and/or –OC₄H₉) is confirmed and discussed in solid-state MAS NMR results.

Moreover, to confirm the ability to prevent hydride deterioration in air of nano LiBH₄–PcB and nano LiBH₄–NaAlH₄–PcB as well as the reduction of LiBH₄/PcB (B---OCH₃) interaction after adding small amount of NaAlH₄ into nano LiBH₄–PcB, Xray photoelectron spectroscopy (XPS) was used to investigate the elemental

compositions and the local chemical environment of the target elements in the sample surface (up to 10 nm depth). From Figure 4.7 (a), Li 1s of bulk LiBH₄ shows a peak of Li₂O at 55 eV (Deprez *et al.*, 2011). In the case of B 1s, formations of B_xO_y (x/y = 3) and B₂O₃ are observed at 187 and 192 eV, respectively (Alexander et al., 2000; Deprez et al., 2011). The formations of Li₂O, B_xO_y (x/y = 3), and B_2O_3 refer to oxidation of LiBH₄ with oxygen or humidity in air. Moreover, the signal of LiBH₄ in Li 1s and B 1s spectra is not detected (Figure 4.7 (a)), hinting at instability of LiBH₄ under ambient condition (25 °C under atmospheric pressure). For nanoconfined samples, prior to the XPS experiments the samples were left in ambient environment (25 °C under atmospheric pressure) for 3 days. From Figure 4.7 (b) and (c), Li 1s of both nanoconfined samples shows characteristic peaks of LiH and LiBH₄ at 54.5 and 56.2 eV, respectively (Haipinga et al., 2011; Fang, et al., 2011). The signals of LiBH₄ found in Li 1s spectra of both nanoconfined samples confirmed that PcB is able to prevent oxidation of LiBH₄ under ambient condition. For LiH formation, it suggests partial dehydrogenation of LiBH₄ during nanoconfinement, in agreement with the inferior hydrogen content released with respect to theoretical value during the 1st dehydrogenation (Figure 4.3). In the case of B 1s, both nanoconfined samples reveal characteristic peaks of B_xO_y (x/y = 3) and LiBH₄ at 187 and 188 eV, respectively (Haipinga *et al.*, 2011; Deprez *et al.*, 2011). The formation of B_xO_y (x/y = 3) in case of nanoconfined samples hints at LiBH₄/PcB interaction formed between [BH₄⁻] of LiBH₄ with –OCH₃ of PcB (B---OCH₃ interaction) (Gosalawit–Utke et al., 2014).

Figure 4.7 Li 1*s* and B 1*s* XPS spectra of bulk LiBH₄ (a), nano LiBH₄–PcB (b), and nano LiBH₄–NaAlH₄–PcB (c).

However, the relative amount of B_xO_y (from B---OCH₃ interaction) with respect to LiBH₄ obtained from nano LiBH₄–NaAlH₄–PcB is lower than that of nano LiBH₄–PcB (B 1*s* spectra in Figures 4.7 (b) and (c)), suggesting the reduction of LiBH₄/PcB interaction after adding small amount of NaAlH₄ into nano LiBH₄–PcB. This is in agreement with FTIR curve fitting results (Figure 4.6).

To further investigate the reason for the reduction of LiBH₄/PcB interaction, nano LiBH₄–NaAlH₄–PcB was studied by solid state ¹¹B, ²³Na, and ²⁷Al MAS NMR measurements. From Figure 4.8, ¹¹B MAS NMR spectrum of LiBH₄ shows a single peak at -41.5 ppm, corresponding to LiBH₄ reported elsewhere (Choi *et al.*, 2011). In the case of nano LiBH₄–NaAlH₄–PcB, the signal of LiBH₄ at -41.5 ppm is observed together with a shoulder at -42.7 ppm, corresponding to NaBH₄ (Figure 4.8 (a)) (Garroni *et al.*, 2011). This suggests partial reaction between LiBH₄ and NaAlH₄ to

produce NaBH₄ during sample preparation. Furthermore, the peaks of B–O bonds are found in the range of 0-20 ppm (MacKenzie and Smith, 2002), especially the main peak at 0.4 ppm corresponding to LiBH₄/PcB (B---OCH₃) interaction, in agreement with B 1s XPS results (Figure 4.7 (c)). For ²³Na MAS NMR, NaAlH₄ and the nano LiBH₄–NaAlH₄–PcB show a single peak at -9.6 ppm, corresponding to NaAlH₄ (Nielsen et al., 2014; Liang et al., 2011). In the case of ²⁷Al MAS NMR, NaAlH₄ shows a main peak at 95.6 ppm as well as a small peak at 81.3 ppm, corresponding to NaAlH₄ and aluminum oxide or hydroxide species (e.g., AlO₄) (Choi et al., 2011), respectively. For nano LiBH₄-NaAlH₄-PcB, Figure 4.8 (a) shows the signals of NaAlH₄ (at 95.6 ppm) together with those of aluminium alkoxide (Al(OR)₃) (at 50.1 and 43.6 ppm), where R could be either metyl $(-CH_3)$ or butyl $(-C_4H_9)$ group of PcB polymer branches (KŘĺž *et al.*, 1984). A small peak at 22.2 ppm relates to β -AlH₃ (Hwang et al., 2007) (Figure 4.8 (a)). It can be concluded that there is not only B---OCH₃ interaction in nano LiBH₄-NaAlH₄-PcB, but also those of Al---OCH₃ and/or Al---OC₄H₉ interactions are observed. Therefore, by adding amount of NaAlH₄ in nano LiBH₄–PcB, competitive interaction of [AlH₄⁻]/PcB is accomplished, leading to the reduction of LiBH₄/PcB interaction, in accordance with FTIR and XPS results. Therefore, the H₂ content released during the 1st and the 2nd desorption of nano LiBH₄-NaAlH₄-PcB is higher than that of nano LiBH₄-PcB (Figures 4.3 (A) and (B)).

Figure 4.8 Solid state ¹¹B, ²³Na, and ²⁷Al MAS NMR of LiBH₄, NaAlH₄, and nano LiBH₄–NaAlH₄–PcB (a).

Furthermore, powder X–ray diffraction (XRD) of PcB and nanoconfined samples was carried out to study the effects of LiBH₄/PcB and NaAlH₄/PcB interaction on d-spacing of PcB polymer chains. From Figure 4.9 (a), pure PcB shows broad peaks at 20 values of 13.9°, 29.7°, and 42.0° indicating amorphous nature of PcB (Gosalawit–Utke *et al.*, 2014). For nanoconfined samples, splitting of XRD peak at 13.9° to higher and lower values is detected (Figures 4.9 (c) and (d)), referring to change of PcB polymer d-spacing. For nano LiBH₄–PcB, XRD peak at 13.9° splits into two peaks at 13.9° and 17.0° (Figure 4.9 (b)). Based on Bragg's Law, where $n\lambda =$ 2dsin0, enhancement of 20 value means decrease of d-spacing. The peaks at 13.9° is a character of PcB polymer and at 17.0° should be due to the LiBH₄/PcB interaction (B---OCH₃ and Li⁺--O=C). Because the LiBH₄/PcB interaction probably draws the PcB polymer chains to be closed to each other, d-spacing of PcB polymer decreases. In the case of nano LiBH₄–NaAlH₄–PcB, the peak shifts toward the higher and lower 20 values of 17.0° and 12.4°, respectively (Figure 4.9 (c)). For the peak at 17.0°, it refers to LiBH₄/PcB interaction as explained in the XRD pattern of nano LiBH₄/PcB (Figure 4.9 (b)). The peak at 12.4° leads to higher d-spacing of PcB polymer chains, probably relating to NaAlH₄/PcB interaction. Due to the higher dissociation enthalpy of B-O bond (Δ H = 808 kJ/mol) as compared with that of Al-O bond (Δ H = 511 kJ/mol) (Luo, 2007), the interaction of LiBH₄/PcB is stronger than that of NaAlH₄/PcB. Therefore, the d-spacing of B-O bond is smaller than that of Al-O bond. Moreover, the atomic size of Li, smaller than that of Na, could probably corresponds to the lower d-spacing of PcB in nano LiBH₄–PcB with respect to that of nano LiBH₄–NaAlH₄– PcB. From these results, it can conclude that there is not only LiBH₄/PcB interaction observed, but also that of NaAlH₄/PcB interaction is observed.

Figure 4.9 XRD patterns of PcB (a), nano LiBH₄–PcB (b) and nano LiBH₄–NaAlH₄–PcB (c).

4.6 Thermal stability

To study the effects of NaAlH₄ on thermal stability of nano LiBH₄-PcB, gas analysis was performed in the temperature range of 30-300 °C (dT/dt = 5 °C/min) under dynamic vacuum. From gas analysis results, the main gas released from nano LiBH₄–PcB and nano LiBH₄–NaAlH₄–PcB is hydrogen (H₂) together with gases due to thermal degradation of PcB; that is, methyl radical (\cdot CH₃), carbon monoxide (CO), metoxy radical (•OCH₃), carbon dioxide (CO₂), and butoxy radical (•OC₄H₉) (Figures 4.10 (A) and (C)) (Kashiwagi and Inabi, 1989; Rajkumar et al., 2010; Chang et al., 2001). Therefore, this can be concluded that not only H₂ releases from nanoconfined samples, but also other gases due to thermal degradation of PcB polymer. Figures 4.7 (B) and (D) are the plots between peak area of each gas signal versus temperature from gas analyses in Figures 4.7 (A) and (C), respectively. Nano LiBH₄–PcB shows onset temperature (T_i) of H₂ release at ~80 °C. The main hydrogen desorption temperature (T_p) is at 105 °C and the H₂ signal finishes (T_f) at 135 °C (Figures 4.7 (B)). In the case of nano LiBH₄–NaAlH₄–PcB, it starts (T_i) and finishes (T_f) at 95 and 165 °C, respectively, while the main H₂ desorption temperature (T_p) is at 125 °C (Figure 4.10 (D)). For thermal degradation of PcB from nano LiBH₄–PcB, combination of gases (•CH₃, CO, •OCH₃, CO₂, and •OC₄H₉) are observed during dehydrogenation range (80-135 °C), and especially CO₂, •CH₃ and •OC₄H₉ are firstly detected approximately at onset dehydrogenation temperature (T_i) (~ 80 °C) (Figure 4.7 (B)). Moreover, significant amount of •CH₃ (59 % with respect to the highest content of hydrogen released) is detected at ~145 °C. Considerable amount of gases obtained from thermal degradation of PcB during dehydrogenation of nano LiBH₄-PcB hits at thermal instability of PcB host. For nano LiBH₄–NaAlH₄–PcB, the peak area of gases release due to thermal degradation of PcB is reduced, suggesting that thermal stability of PcB is improved by adding small amount of NaAlH₄.

Figure 4.10 Gas analysis during dehydrogenation of nano LiBH₄–PcB (A), and nano LiBH₄–NaAlH₄–PcB (C), and peak area of gas desorption from thermal degradation of PcB with respect to H₂ at 120 °C of nano LiBH₄–PcB (B), and nano LiBH₄–NaAlH₄–PcB (D).

Moreover, the relative amounts of gases desorbed with respect to hydrogen content at dehydrogenation temperature (120 °C) of nanoconfined samples were studied.

Table 4.3 Amount of gas desorption from thermal degradation of PcB with respect to H_2 at 120 °C.

Nanoconfined samples	Desorption temperature (°C)			Amount of gases desorbed with respect to that of H ₂ at 120 °C (%)						
	Ti	Tp	T_{f}	•CH ₃	H ₂ O	СО	•OCH ₃	CO ₂	•OC ₄ H ₉	Total
LiBH ₄ –PcB	80	105	135	13.4	0	6.9	0.8	16.3	26.9	64.3
LiBH4– NaAlH4–PcB	95	125	165	1.0	2.8	1.1	1.3	1.1	0.6	7.9

 T_i = Onset temperature, T_p = peak temperature and T_f = end temperature

From Table 4.3, the relative amounts of •CH₃, CO, •OCH₃, CO₂, and •OC₄H₉ with respect to H₂ content of nano LiBH₄–PcB and nano LiBH₄–NaAlH₄–PcB are totally 64.3 and 7.3 %, respectively. This hits at significant reduction of gases desorbed due to thermal degradation of PcB by adding small amount of NaAlH₄ in nano LiBH₄–PcB. This refers to significant improvement in thermal stability of PcB. The improvement in thermal stability of PcB is probably due to the interaction of PcB with metal hydrides; i.e., LiBH₄ and NaAlH₄, as explained in section 4.1.5, leading to the restriction of PcB polymer chain motion. Moreover, thermal stability of polymer could be improved by compositing with metal or metal ion. Thus, in the case of nano LiBH₄–NaAlH₄–PcB, not only Li⁺---O=C interaction is observed, but also that of Na⁺ from NaAlH₄ (Na⁺---O=C interaction) is probably achieved. As reported by Lekesiz *et al.* (2014), thermal stability of polystyrene–block–poly (2–vinylpyridine) (PS–b–

P2VP) polymer was improved by compositing with metal or metals ion (Co, Cr, and Au^{3+}). They found that the more the interaction between polymer and metal (or metal ion), the higher the thermal stability.

CHAPTER V

CONCLUSION

In this thesis, nano LiBH₄–NaAlH₄–PcB was proposed for reversible hydrogen storage. The reduction of LiBH₄/PcB interaction (B---OCH₃) and improvement of thermal stability of PcB polymer were developed by adding small amount of NaAlH₄ (1.2 wt.%). The LiBH₄/PcB interaction of the nanoconfined samples was analyzed quantitatively by using FTIR technique, the ratio of the peak area between B-H stretching (from LiBH₄) and C=O stretching (from PcB) (v(B-H)/v(C=O)), corresponding to the relative amount of [BH₄]⁻ with respect to PcB, was determined. The more the (v(B-H)/v(C=O)) ratio, the higher the free $[BH_4]^-$ content and the lower the LiBH₄/PcB interaction. The (v(B-H)/v(C=O)) ratio of the nano LiBH₄-PcB and nano LiBH₄-NaAlH₄-PcB were 0.6 and 2.8, respectively. Therefore, it could be confirmed that LiBH₄/PcB interaction was decreased by adding small amount of NaAlH₄. From the B 1s XPS result, the relative amount of B_xO_y (from B---OCH₃) interaction) with respect to LiBH₄ of nano LiBH₄-NaAlH₄-PcB was lower than that of nano LiBH₄–PcB. In addition, the solid state MAS NMR and XRD results of nano LiBH₄–NaAlH₄–PcB confirmed that the LiBH₄/PcB interaction was decreased due to the competitive reaction of $[AlH_4]^-$ (of NaAlH₄) with $-OCH_3$ and/or $-OC_4H_9$ (of PcB). These result in increase of H₂ content desorbed during the 1st and 2nd dehydrogenations of nano LiBH₄–NaAlH₄–PcB as compared with nano LiBH₄–PcB. Moreover, the total amount of gases desorbed due to thermal degradation of PcB with

respect to H₂ content at 120 °C from nano LiBH₄–PcB and nano LiBH₄–NaAlH₄–PcB were 64.3 and 7.9 %, respectively. This could be due to not only the interaction of PcB at methoxyl and/or buthoxyl groups with metal hydrides (LiBH₄ and NaAlH₄), but also that of carbonyl group (from PcB) with metal ions (Li⁺ and Na⁺). In conclusion, the reduction of LiBH₄/PcB interaction and the improvement of thermal stability of nano LiBH₄–PcB were obtained by doping with small amount of NaAlH₄.

REFERENCES

- Ahmad, A., Rahman, A., Su'ait, S., and Hamzah, H. (2011). Study of MG49-PMMA Based Solid Polymer Electrolyte. **TOMSJ.** 5: 170-177.
- Alexander, V. (2000). NIST X-ray Photoelectron Spectroscopy Database. [On-line]. Available: http://srdata.nist.gov/xps/selEnergyType.aspx.
- Aoki M., Miwa K., Noritake T., Kitahara G., Nakamori Y., Orimo S., and Towata S. (2005). Destabilization of LiBH₄ by mixing with LiNH₂. Appl. Phys. A. 80: 1409-1412.
- Bal, S., and Sama, S. (2007). Carbon nanotube reinforced polymer composite-A state of the art. B. Mater. Sci. 30: 86-379.
- Basic research needs for the hydrogen economy, Second Printing. (2004). BasicResearch Challenges for Hydrogen Storage. (pp. 31-51). Washington, DC: U.S. Department of Energy.
- Blanchard D., Shi Q., Boothroyd C. B., and Vegge T. (2009). Reversibility of Al/Ti Modified LiBH₄. J. Phys. Chem. C. 113: 14059-14066.
- Bogdanovic, B., Hartwig, T., and Spliethoff, B. (1993). The development, testing and optimization of energy storage materials based on the MgH₂Mg system. Int. J.
 Hydrogen Energy. 18: 575-589.
- Bogdanovic, B., and Schwickardi, M. (1997). Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloys. Compd. 1-9: 253-254.

- Bogdanovic, B., Brand, A., Schwickardi, M., and Tolle, J. (2000). Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J. Alloys. Compd. 302: 36-58.
- Bogdanovic, B., Felderhoff, M., Pommerin, A., Schüth, F., and Spielkamp, N. (2006).
 Advanced hydrogen storage materials based on Sc-, Ce-, and Pr-doped NaAlH₄.
 Adv. Mater. 18: 1198-1201.
- Carrette, L., Friedrich, K. A., and Stimming, U. (2001). Fuel Cells-fundamental and application. (pp. 1-2). Weinheim: WILEY-VCH Verlag GmbH.
- Choi, J., Lu, J., Sohn, Y., Fang, Z., Kim, C., and Bowman, C. (2011). Reaction Mechanism in the Li₃AlH₆/LiBH₄ and Al/LiBH₄ System for Reversible Hydrogen Storage. Part 2: Solid-state NMR Studies. J. Phys. Chem. C. 115: 6048-6056.
- Dell, R. M., and Rand, D. A. J. (2001). Energy storage-a key technology for global energy sustainability. J. Power Sources. 100: 2-17.
- Deprez, E., Munoz-Marquez, A., Jimenez de Haro, C., Palomares, J., Soria, F., Dornheim, M., Bormann, R., and Fernandez, A. (2011). Combined x-ray photoelectron spectroscopy and scanning electron microscope studied of the LiBH₄-MgH₂ reactive hydride composite with and without a Ti-based additive. J. Appl. Phys. 109: 014913-10.
- Dorthe, B., Ravnsbaek, Torben, R., and Jensen. (2010). Tuning hydrogen storage properties and reactivity: Investigation of LiBH₄–NaAlH₄ system. J. Phys. Chem. Solids. 71: 1144-1149.
- Dresselhaus, M. S., and Thomas, I. L. (2001). Alternative energy technologies. Nature. 414: 332-337.

Energy Resources. (2014). [On-line]. Available: http://nurer2014.org/.

- Environmental and Energy Study Institute. (2014). Environmental and Energy Study Institute. (2014). [On-line]. Available: http://www.eesi.org/.
- Fang, Z., Kang, D., Yang, X., Walker, S., and Wang, P. (2011). Combined effects of functional cation and anion on the reversible dehydrogenation of LiBH4. J.
 Phys. Chem. C. 115: 11839-11845.
- Fichtner, M. (2005). Nanotechnological aspects in materials for hydrogen storage. Adv. Eng. Mater. 7: 443-455.
- Fu, J., Ramirez-Cuesta, J., and Tsang, C. (2006). Molecular aluminum hydrides NaAlH₄. J. Phys. Chem. B. 11: 711-715.
- Fuel Cells Fuel Alternative Energy Options. (2013). [On-line]. Available: http://energydesignresources.com/resources/e-news/e-news-90-fuel-cells.aspx.
- Garroni, S., Milanese, C., Pottmaie,r D., Mulas, G., Nolis, P., and Girella, A. (2011). Experimental Evidence of Na₂[B₁₂H₁₂] and Na Formation in the Desorption Pathway of the 2NaBH₄+MgH₂ System. J. Phys. Chem. C. 115: 16664-71.
- Gosalawit–Utke, R., Meethom, S., Pistidda, C., Milanese, C., Laipple, D., Saisopa, T., Marini, A., Klassen, T., and Dornheim, M. (2014). Destabilization of LiBH₄ by nanoconfinement in PMMA-co-BM polymer matrix for reversible hydrogen storage. **Int. J. Hydrogen Energy.** 39: 5019-29.
- Grochala, W., and Edwards, P. (2004). Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen. **Chem. Rev.** 104: 1283.
- Gross, F., Vajo, J., Van Atta, L., and Olson, L. (2008). Thermal Decomposition of the kinetics in nanoporous carbon scaffold. J. Phys. Chem. C. 112: 5651-5657.

Huang, J., Yan, Y., Ouyang., L, Wang, H., Liu, J., and Zhua, M. (2014). Increased air

stability and decreased dehydrogenation temperature of LiBH₄ via modification within poly(methylmethacrylate). **R. Soc. Chem.** 43: 410-413.

- Haipinga, W., Tiechengb, L., Xuemina, W., Fangfanga, G., Linhonga, C., Honglianga, Z., Chunhonga, L., Xiaohanc, Y., Xind, J., and Weidonga, W. (2011). Corrosion characteristics of LiBH₄ film exposed to a CO₂/H₂O/O₂/N₂ mixture. Corros. Sci. 53: 1115-1119.
- Hwang, J., Bowman, C., Graetz, J., Reilly, J., Langley, W., and Jensen, M. (2007).
 NMR studies of the aluminium hydride phases and their stabilities. J. Alloys.
 Compd. 5-290: 446-447.
- Hydrogen powered cars. (2013). [On-line]. Available: http://www.engineering.com/DesignerEdge/DesignerEdgeArticles/ArticleID/59 74/Hydrogen-Powered-Cars--Coming-to-a-highway-near-you.aspx.
- Jain, P., Lal, C., and Jain, A. (2010). Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy. 35: 5133-5144.
- Jeon, J., Moon, R., Ruminski, M., Jiang, B., Kisielowski, C., Bardhan, R., and Urban, J. J. (2011). Air-stable magnesium nanocomposites provide rapid and highcapacity hydrogen storage without using heavy-metal catalysts. Nat. Mater. 10: 286-290.
- Kashiwaki, T., Inaba, A., Brown, J., Hatada, K., Kitayama, T., and Masuda, E. (1986). Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). J. Am. Chem. Soc.19: 2160-2168.
- Kashiwagi, T., Inaba, A., and Hamins, A. (1989). Behavior of primary radicals during thermal degradation of poly (methyl methacrylate). Polym. Degrad. Stab. 26: 84-161.

- KŘĺž, O., ČÁSENSKÝ, B., LYčKA, A., FUSEK, J., and HEŘMÁNEK, S. (1984).
 ²⁷Al NMR Behavior of Aluminum Alkoxides. J. Magn. Reson. 60: 375-381.
- Lekesiz, O., Kaleli, K., Uyar, T., Kayran, C., and Hacaloglu, J. (2014). Preparation and characterization of polystyrene-b-poly-(2-vinylpyridine) coordinated to metal or metal ion nanoparticles. J. Anal. Appl. Pyrol. 106: 81-85.
- Liang, C., Liu, F., Jiang, Y., Wei, Z., Gao, M., Pan, H., and Wang, Q. (2011). Local defects enhanced dehydrogenation kinetics of the NaBH₄-added Li–Mg–N–H system. J. Phys. Chem. 13: 314-321.
- Liang, C., Liu, F., Fu, L., Ding, F., Gao, X., and Pan, G. (2011). Li–Mg–N–H-based combination systems for hydrogen storage. J. Alloys. Compd. 509: 7844-7853.
- Lim, S., Noda, I., and Im, S. (2008). Effects of metal ion-carbonyl interaction on miscibility and crystallization kinetic of poly(3-hydroxybutyrate-co-3hydroxyhexanoate)/lightly ionized PBS. Eur. Polym. J. 44: 1428-1440.
- Liu X., Peaslee D., Jost C. Z., and Majzoub E. H. (2010). Controlling the decomposition Pathway of LiBH₄ via confinement in highly ordered nanoporous carbon. J. Phys. Chem. C. 114: 14036-14041.
- Luo, R. (2007). **Comprehensive Handbook of Chemical Bond Energies.** (pp. 9-79). United States of America: CRC Press.
- Mackenzie, D., and Smith, E. (2002). Multinuclear Solid-State NMR of Inorganic Materials. (pp. 330). United Kingdom: Pergamon Materials Series.
- Majzoub, H., and Gross, J. (2003). The reversible hydrides solution for hydrogen storage. J. Alloys. Compd. 356-357: 363-367.
- Mark, E. (1999). Polymer Data Handbook. (pp. 9-79). New York, NY: Oxford University Press.
Michael, B. (2014). Solar Electricity Handbook: A Guide to Solar Energy. (pp. 5-

9). USA: Springer Science and Business Media.

- Mori, D. and Hirose, K. (2009). Recent challenges of hydrogen storage technologies for fuel cell vehicles. **Int. J. Hydrogen Energy.** 34(10): 4569-4574.
- Nakamori, Y., Miwa, K., Ninomiya, A. Li, H., Ohba, N., Towata, S. (2006). Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments. Phys. Rev. B. 74: 045126-045134.
- Natural Gas Vehicles for America. (2011). Technology. [On-line]. Available: http://www.ngvc.org/tech_data/index.html.
- Nielsen, K., Javadian, P., Polanski, M., Besenbacher, F., Bystrzycki, J., Skibsted, J., and Jensen, R. (2014). Nanoconfined NaAlH₄: prolific effects from increased surface area and pore volume. J. R. Soc. Chem. 6: 599-607.
- Ozolins, V., Majzoub, H., and Udovic, J. (2004). Electronic structure and rietveld refinement parameters of Ti-doped sodium alanates. J. Alloys. Compd. 375: 1-10.
- Pierce, A., Jackson, S., Van, W., Griffiths, R., and Gao, H. (1990). Combined deconvolution and curve fitting for quantitative analysis of unresolved spectral bands. Anal. Chem. 62: 477-84.
- Problems and Dangers of Nuclear Energy. (2014). [On-line]. Available: http://www.buzzle.com/articles/nuclear-energy-problems-and-dangers.html.
- Prototype tank for NaAlH₄ based solid state hydrogen storage. (2010). [On-line]. Available: http://www.flyhy.eu/structure.html.

- Rafi-ud-din, Xuanhui, Q., Ping, L., Zhang, L., Qi, W., Iqbal, Z., and Rafique, Y. (2012). Implementing a hydrogen economy. Mater. Today 6. 9: 18-23.
 Superior Catalytic Effrcts of Nb₂O₅, TiO₂, and Cr₂O₃ Nanoparticles in Improving the Hydrogen Sorption Properties of NaAlH₄. J. Phys. Chem. C. 116: 11924-38.
- Ritter, A., Ebner, D., Wang, J., and Zidan, R. (2003). Implementing a hydrogen economy. Mater. Today 6. 9: 18-23.
- Rongeata, C., Annac, D., Hagemannc, H., Borgschulteb, A., Züttelb, A., Schultza, L., and Gutfleischa, O. (2010). Effect of additives on the synthesis and reversibility of Ca(BH₄)₂. J. Alloys. Compd. 493: 281-287.
- Sandi, G. (2004). "Hydrogen storage and its limitations," The Electrochem. Soc. Interface. 13: 40-44.
- Schlapbach, S., and Züttel, A. (2001). Hydrogen storage materials for mobile. (pp. 5) Berlin: Springer, Heidelberg: 113-213.
- Seidl, J., Malinský, J., Dušek, K., and Heitz, W. (1967). In Fortschritte der Hochpolymeren-Forschung. Nature. 414: 353-358.
- Schwartz, M. (1978). Schlapbach, S., and Züttel, A. (2001). The Benzophenone/Ketyl Tetrahydrofuran (THF). **Still. Chem. Eng. News.** 24: 88.
- Shi, Q., Yu, X., Feidenhans'l, R., and Vegge, T. (2008). Destabilized LiBH₄-NaAlH₄ Mixtures Doped with Titanium Based Catalysts. J. Phys. Chem. C. 112: 18244-18248.
- Stambouli, B., and Traversa, E. (2002). Fuel cell, an alternative standard sources of energy. Renew. Sust. Energ. Rev. 6: 297-306.

- Stampfer, J., Holley, C., and Suttle, J. (1960). The Magnesium-Hydrogen System. J.Am. Chem. Soc. 82: 3504-3508.
- Sun, D., Kiyobayashi, T., Takeshita, T., Kuriyama, N., and Jensen, M. (2002). X-ray diffraction studies of titanium and zirconium doped NaAlH₄: euclidation of doping induced structural changes and their relationship to enhanced hydrogen storage properties. J. Alloys. Compd. 337: 8-11.
- Sun, D., Srinivasan, S., Kiyobayashi, T., Kuriyama, N., and Jensen, M. (2003).
 Rehydrogenation of dehydrogenated NaAlH₄ at low temperature and pressure.
 J. Phys. Chem. B. 17: 1176-1179.
- Singh, R., Kulkarni, S., and Naik, N. (2013). Effect of nano sized transition metal salts and metals on thermal decomposition behavior of polyvinyl alcohol. Adv. Mat. Lett. 4: 82-88.
- Swain, K., and Jena, I. (2010). Polymer/carbon nanotube nanocomposites: A novel material. Asian. J. Chem. 22: 1-15.
- Tang, E., Cheng, G., and Ma, X. (2006). Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles. **Powder. Technol.** 161: 209-214.
- Thakur, K., and Shukla, N. (2009). Role of salt concentration on conductivity optimization and structural phase separation in a solid polymer electrolyte based on PMMA-LiClO₄. **Ionics.** 15: 357-367.
- Tomar, K., Mahendia, S., and Kumar, S. (2011). Structural characterization of PMMA blended with chemically synthesized PAni. Adv. Appl. Sci. Res. 2: 327-333.

- Tomioka, J. I., Kiguchi, K., Tamura, Y., Mitsuishi, H. (2011). Influence of temperature on the fatigue strength of compressed-hydrogentanks for vehicles. Int. J. Hydrogen Energy. 36: 2513-2519.
- U.S. DOE, Office of EERE, Alternative & Advanced Vehicles. (2010). What is a fuel cell vehicle. [On-line]. Available: http://www.afdc.energy.gov/afdc/vehicle /fuel_cell_what_is.html.
- U.S. DOE, Office of EERE, fueleconomy.gov. (2011). Fuel Cell Vehicles. [On-line]. Available: http://www.fueleconomy.gov/feg/fuelcell.shtml.
- Vajo, J., Mertens, F., Ahn, C., Bowman, R., and Fultz, B. (2004). Altering Hydrogen Storage Properties by Hydride. J. Phys. Chem. B. 108: 13977-13983.
- Vajo, J., Skeith, S., and Mertens, F. (2005). Reversible storage of hydrogen in destabilized LiBH₄. J. Phys. Chem. B. 109: 3719-3722.
- Vajo, J., and Olson, G. (2007). Hydrogen storage in destabilized chemical, systems Scripta. Mater. 56: 829.
- Vajo, J., Li, W., and Liu, P. (2010). Thermodynamic and kinetic destabilization in LiBH₄/Mg₂NiH₄: promise for borohydride-based hydrogen storage. Chem. Comm. 46: 6687-6689.
- Varin, A., Czujko, T., and Wronski, S. (2009). Nanomaterials for Solid State Hydrogen Storage. (pp. 3-4). USA: Springer Science and Business Media.
- Viratyaporn, W., and Lehman, L. (2011). Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J. Therm. Anal. Calorim. 103: 267-73.

- Wang, Q., Chen, U., Tao, D., and Wu, L. (2008). Review on hydrogen storage properties and reaction mechanism of metal-NH systems. Rare. Met. Mater. Eng. 37: 382-385.
- Xia L., Guo H., Wu, Z., and Yu, B. (2009). Enhanced hydrogen storage performance of LiBH₄–Ni composite. J. Alloys. Compd. 479: 545-548.
- Xiong, Y., Chen, G., Guo, S., and Li, G. (2013). Lifetime prediction on NBR composite sheet in aviation kerosene by using nonlinear curve fitting of ATR– FTIR spectra. J. Ind. Eng. Chem. 19: 1606-1611.
- Yang, J., Sudik, A., and Wolverton, C. (2007). Destabilizing LiBH₄ with a Metal (M = Mg, Al, Ti, V, Cr, or Sc) or Metal Hydride (MH₂ = MgH₂, TiH₂, or CaH₂). J.
 Phys. Chem. C. 111: 19134-19140.
- Yang, Y., Liu, Y., Wu, H., Zhou, W., Gao, M., and Pan, H. (2014). An ammoniastabilized mixed-cation borohydride: synthesis, structure and thermal decomposition behavior. Phys. Chem. Chem. Phys. 16: 135-143.
- Yu X., Xia G., Guo. Z., and Liu, K. (2009). Dehydrogenation/rehydrogenation mechanism in aluminum destabilized lithium borohydride. J. Mater. Res. 24: 2720-2727.
- Zhang, Y., Zhang, W. S., Wang, A. Q., Suna, L. X., Fana, Me. Q., Chua, H. L. et al. (2007). LiBH₄ nanoparticles supported by disordered mesoporous carbon: Hydrogen storage performances and destabilization mechanisms. Int. J. Hydrogen Energy. 32: 3976-3980.
- Zhang. Y., Tian. Q., Chu. H., Zhang. J., Sun. L., Sun. J., and Wen. Z. (2009). Hydrogen de/resorption properties of LiBH₄-MgH₂-Al. J. Phys. Chem. C. 113: 21964-21969.

- Züttel, A. (2003). Materials for hydrogen storage. Mater. Today 6. 9: 24-33.
- Züttel, A. (2004). Hydrogen storage methods. Naturwissenschaften. 91: 157-172.
- Züttel, A., Rentsch, S., Fisher, P., Wenger, P., Sudan, P., Mauron, Ph., a Emmenegger, Ch. (2003). Hydrogen storage properties of LiBH₄. J. Alloys.
 Compd. 356-357: 515-520.

APPENDIX

CALCULATION OF HYDROGEN CAPACITY

A.1 Calculation of theoretical hydrogen storage capacity

> Nano LiBH₄-PcB

Amount of PcB (5.0656g) and LiBH₄ (0.66 g), wt.% of LiBH₄ in PcB is calculated by:

Wt.% of LiBH₄ =
$$0.66 \text{ g} / (5.0656 \text{ g} + 0.66 \text{ g}) \times 100$$

= 11.53 wt.\%

From 13.8 wt.% of hydrogen released by pure LiBH₄, the theoretical of hydrogen capacity of nanoconfined LiBH₄–PcB is calculated by:

Wt.% of hydrogen =
$$(13.8 \text{ wt.\%} \times 11.53 \text{ wt.\%}) / 100$$

= 1.60 wt.% H₂

➢ Nano LiBH₄−NaAlH₄−PcB

Amount of PcB (0.5144), LiBH4 (0.066) and NaAlH4 (0.007), wt.% of LiBH4

and NaAlH₄ in PcB is calculated by:

Wt.% of composite = 0.5144 g + 0.066 g + 0.007 g= 0.5874 gWt.% of LiBH₄ = $(0.066 \text{ g} / 0.5874 \text{ g}) \times 100$ = 11.23 wt.% From 13.8 wt.% of hydrogen released by pure LiBH₄, the theoretical of hydrogen capacity of LiBH₄ in nanoconfined LiBH₄–NaAlH₄–PcB is calculated by:

Wt.% of hydrogen =
$$(13.8 \text{ wt.}\% \times 11.23 \text{ wt.}\%) / 100$$

 $= 1.55 \text{ wt.\% } H_2$

A.2 Calculation of hydrogen desorption capacity

1. Nano LiBH₄-PcB

 $T = 120 \ ^{\circ}C$

 $P_1 = -1.33 \text{ atm}$

 $P_2 = -0.60 \text{ atm}$

V = 0.024 L

 $R = 0.0821 L atm K^{-1} mol^{-1}$

$$(\Delta P)V = nRT$$

n = [(-0.60 atm)-(-1.33 atm)] × 0.024 L/ [(0.0821 L atm K⁻¹ mol⁻¹) × 393 K] = 5.43×10^{-4} mol

H₂ desorbed (wt.%) = $[(n \times 2.0158)/\text{sample weight}] \times 100$

 $= [(5.43 \times 10^{-4} \text{ mol x } 2.0158 \text{ g/mol})/ 0.1402 \text{ g}] \times 100$

 $= 0.78 \text{ wt.}\% \text{ H}_2$

• 2nd dehydrogenation

 $P_1 = -1.33 \text{ atm}$

$$P_2 = -1.04$$
 atm

 $n = [(-1.04 \text{ atm})-(-1.33 \text{ atm})] \times 0.024 \text{ L/} [(0.0821 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}) \times 393 \text{ K}]$

 $= 2.16 \times 10^{-4} \text{ mol}$

H₂ desorbed (wt.%) = $[(2.16 \times 10^{-4} \text{ mol} \times 2.0158 \text{ g/mol})/0.1402 \text{ g}] \times 100$

 $= 0.32 \text{ wt.}\% \text{ H}_2$

2. Nano LiBH4–NaAlH4–PcB

• 1st dehydrogenation

T = 120 °C $P_1 = -1.29 \text{ atm}$ $P_2 = -0.60 \text{ atm}$ V = 0.023 L $R = 0.0821 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}$ $(\Delta P)V = nRT$

n = [(-0.60 atm)-(-1.30 atm)] × 0.023 L/ [(0.0821 L atm K⁻¹ mol⁻¹) × 393 K] = 4.99×10^{-4} mol

H₂ desorbed (wt.%) = [(n × 2.0158)/sample weight] × 100 = [(5.43 × 10⁻⁴ mol x 2.0158 g/mol)/ 0.0861 g] × 100

= 1.29 wt.% H₂

• 2nd dehydrogenation

 $P_1 = -1.33 \text{ atm}$

 $P_2 = -1.04 \text{ atm}$

 $n = [(-0.90 \text{ atm})-(-1.30 \text{ atm})] \times 0.023 \text{ L/} [(0.0821 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}) \times 393 \text{ K}]$

 $= 2.85 \times 10^{\text{-}4} \text{ mol}$

H₂ desorbed (wt.%) = [($2.85 \times 10^{-4} \text{ mol} \times 2.0158 \text{ g/mol})/0.0861 \text{ g}] \times 100$

 $= 0.67 \text{ wt.}\% \text{ H}_2$

CURRICULUM VITAE

Name	Miss Nuntida Wiset
Date of Birth	18 July 1988
Address	22 Moo 4, Kantharalak, Srisaket, 33110, Thailand
Education	
2007-2010	B.Sc. (Chemistry), Khon Kaen University, Thailand
2010-present	M.Sc. Program in Chemistry, Suranaree University of
	Technology, Thailand
	ะ _{หาวอักยาลัยเทคโนโลยีสุรับไว้}