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�� Introduction

Spline theory is mainly grounded on two approaches� the algebraic one
�where splines are understood as smooth piecewise functions� see e�g� �����	
�
and the variational one �where splines are obtained via minimization of qua�
dratic functionals with equality andor inequality constraints� see e�g� �	�
��
Although less common� a third approach where splines are de�ned as the solu�
tions of di�erential multipoint boundary value problems �DMBVP for short��
has been considered� ��
� Even though some of the important classes of splines
can be obtained from all three schemes� speci�c features make sometimes the
last one an important tool in practical settings� We want to illustrate this
fact by the example of hyperbolic tension splines�

Introduced by Schweikert in 	���� ���
� hyperbolic tension splines are
solutions of DMBVP where the di�erential operators depend on tension pa�
rameters� Their tension properties �that is the possibility of pulling the curve
toward a piecewise linear function� have kept hyperbolic splines popular �see
for example �		���������
 and references quoted therein� in shape�preserving
interpolation andor approximation� Unfortunately� it is di�cult to work with
hyperbolic splines for small or large values of the tension parameters� For this
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reason� in spite of the presence of re�ned algorithms for their calculation ���
�
hyperbolic tension splines were forced out by rational splines �see for example
��� 	�
� in practical applications�

We observe that for practical purposes� it is often neccessary to know the
values of the solution S of a DMBVP only over a prescribed grid instead of
its global analytic expression� In this paper� we study a natural discretization
of the DMBVP replacing� in the given interval �a� b
� the di�erential operator
by its di�erence approximation� This provides a linear system with a pen�
tadiagonal matrix� It turns out that the solution of the discretized problem�
called mesh solution� is not a tabulation of S but can be extended on �a� b

to a smooth function U which has shape properties very similar to those of
S and which provides a second order approximation of S as the discretization
step goes to zero� Due to these properties we will refer to U as a discrete

hyperbolic tension spline�
In contrast with the continuous case� an important fact here is that the

values of a discrete hyperbolic tension spline over a prescribed grid in �a� b

�basically the mesh solution� can be obtained solving a pentadiagonal system�
This construction is substantially cheaper than performing calculations by the
standard algorithm ���
� which involves the solution of a simple ��diagonal sys�
tem� but with hyperbolic coe�cients� In addition� the classical construction
requires the evaluation of hyperbolic functions over the prescribed grid with
much larger computational cost�

Moreover� just as cubic splines can be seen as a subclass of the exponential
ones in the continuous setting� our discrete hyperbolic splines generalize the
concept of discrete polynomial splines and reduce to them as the tension
parameters go to zero�

Discrete polynomial splines have been studied extensively� They were
introduced in �	�
 as solutions to certain minimization problems involving
di�erences instead of derivatives� They are connected to best summation for�
mulas �	�
 and have been used in �	�
 for the computation of nonlinear splines
by iteration� Approximation properties of discrete splines have been studied
in �	�
� Discrete B�splines on a uniform partition were introduced in ���
 and
discrete B�splines on a non�uniform partition were de�ned in ��� p�	�
� In
��
 discrete B�splines were applied to the general area of subdivision� While
discrete polynomial splines are currently attracting widespread research in�
terest ��	������
� discrete tension splines and B�splines have been less studied�
The only results we know regarding this topic concern discrete exponential
Box�splines ��� ��
 and are therefore related to uniform partitions�

The content of this paper is as follows� In Section � we formulate the
problem� In Section � we prove the existence of a mesh solution by construct�
ing its extension as a discrete hyperbolic tension spline� An upper bound for
the distance between a discrete hyperbolic tension spline and the correspond�
ing continuous one is established in Section �� In Section � we give direct and
recurrence algorithms for constructing discrete hyperbolic tension B�splines�
Section �� with its subsections� is devoted to the discussion of practical as�
pects and computational advantages of our discrete spline� Finally� Section
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� gives some graphical examples to illustrate the main properties of discrete
hyperbolic tension splines�

�� Finite Di�erence Approximation

Let the data
�xi� fi�� i � �� � � � � N � 	� ���	�

be given� where� a � x� � x� � � � � � xN�� � b� Let us put

hi � xi�� � xi� i � �� � � � � N�

An interpolating hyperbolic tension spline S with a set of tension param�
eters fpi � � j i � �� � � � � Ng is a solution of the DMBVP

d�S

dx�
�

�
pi
hi

��
d�S

dx�
� �� in each �xi� xi���� i � �� � � � � N� �����

S � C��a� b
� �����

with the interpolation conditions

S�xi� � fi� i � �� � � � � N � 	� �����

and some end constraints� For the sake of simplicity we only consider the
following classical end conditions

S���a� � f ��� and S���b� � f ��N��� �����

Let us now consider a discretized version of the previous DMBVP� Let
ni � IN� i � �� � � � � N� be given� we look for

fuij � j � �	� � � � � ni � 	� i � �� � � � � Ng�

satisfying the di�erence equations�h
��
i �

� pi
hi

��
�i

i
uij � �� j � 	� � � � � ni � 	 � i � �� � � � � N� �����

where

�iuij �
ui�j�� � �uij � ui�j��

��i
� �i �

hi
ni
�

The smoothness condition ����� is changed into

ui���ni�� � ui� �

ui���ni���� � ui���ni����

��i��
�

ui�� � ui���
��i

�

�i��ui���ni�� � �iui��

i � 	� � � � � N� �����

while conditions ����������� take the form

ui�� � fi � i � �� � � � � N� uN�nN � fN�� �

��u��� � f ��� � �NuN�nN � f ��N�� �
�����

Our discrete mesh solution will be then de�ned as

fuij � j � �� � � � � ni� i � �� 	� � � � � Ng � �����

In the next section we prove the existence of the solution of the previous
linear system while we postpone to Section � the comments on the practical
computation of the mesh solution�
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�� System Splitting and Mesh Solution Extension

In order to analyze the solution of system ����������� we introduce the notation

mij � �iuij � j � �� � � � � ni� i � �� � � � � N� ���	�

Then� on the interval �xi� xi��
� ����� takes the form

mi� � mi�

mi�j�� � �mij �mi�j��

��i
�
� pi
hi

��
mij � �� j � 	� � � � � ni � 	�

mi�ni � mi���

�����

where mi and mi�� are prescribed numbers� The system ����� has a unique
solution� which can be represented as follows

mij � Mi�xij�� xij � xi � j�i� j � �� � � � � ni�

with

Mi�x� � mi

sinh ki�	� t�

sinh�ki�
�mi��

sinh kit

sinh�ki�
� t �

x� xi
hi

�

and where the parameters ki are the solutions of the transcendental equations

�ni sinh
ki
�ni

� pi� pi � ��

that is

ki � �ni ln

�
� pi
�ni

�

s�
pi
�ni

��

� 	

�
A � �� i � �� � � � � N�

From ���	� and from the interpolation conditions ����� we have

ui� � fi�

ui�j�� � �uij � ui�j��
��i

� mij � j � �� � � � � ni�

ui�ni � fi���

�����

For each sequence mij � j � �� � � � � ni� system ����� has a unique solution which
can be represented as follows

uij � Ui�xij�� j � �	� � � � � ni � 	�

where

Ui�x� � fi�	� t� � fi��t� �i�	� t�h�imi � �i�t�h
�
imi��� �����



yp p

with

�i�t� �
sinh�kit�� t sinh�ki�

p�i sinh�ki�
�

In order to solve system ������������ we only need to determine the values
mi� i � �� � � � � N � 	� so that the smoothness conditions ����� and the end
conditions in ����� are veri�ed� From ������������ conditions ����� can be
rewritten as

Ui���xi� � Ui�xi��

Ui���xi � �i����Ui���xi � �i���

��i��
�

Ui�xi � �i�� Ui�xi � �i�

��i
�

�i��Ui���xi� � �iUi�xi��

�����

where

�jUj�x� �
Uj�x� �j�� �Uj�x� � Uj�x� �j�

��j
� x � �xj� xj��
�

Then� from ���	������� and ������ the �rst and the third equalities in �����
are immediately satis�ed� while� using ����� and the end conditions in ������
the second equality provides the following linear system with a ��diagonal
matrix for the unknown values mi�

m� � f ��� �

�i��hi��mi�� � ��i��hi�� � �ihi�mi � �ihimi�� � di� i � 	� � � � � N�

mN�� � f ��N���
�����

where

di �
fi�� � fi

hi
�

fi � fi��
hi��

�

�i � �
�i�

�
ni
�� �i��

�
ni
�

�
ni

� �
ni sinh�

ki
ni
�� sinh�ki�

p�i sinh�ki�
�

�i �
�i�	 �

�
ni
�� �i�	�

�
ni
�

�
ni

�
ni cosh�ki� sinh�

ki
ni
�� sinh�ki�

p�i sinh�ki�
�

Expanding the hyperbolic functions in the above expressions as power series
we obtain

�i � ��i � �� i � �� � � � � N� for all ni � 	� pi � ��

Therefore� the system ����� is diagonally dominant and has a unique solution�
We can now conclude that system ����������� has a unique solution which
can be represented as Ui�xij�� j � �	� � � � � ni � 	� i � �� � � � � N� whenever the
constants mi are solution of ������
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Let us put

U�x� �� Ui�x�� x � �xi� xi��
� i � �� 	� � � � � N� �����

Due to the previous construction we will refer to U as discrete hyperbolic

tension spline interpolating the data ���	�� We observe that we recover the
result of �	�
 for discrete cubics since

lim
pi��

�i �
	

�

�
	�

	

n�i

�
� lim

pi��
�i �

	

�

�
� �

	

n�i

�
� lim

pi��
�i�t� �

t�t� � 	�

�
� �����

�� Error Estimates

In this section� we present a bound for the distance between the discrete
hyperbolic tension spline de�ned in ����� and the corresponding continuous
one interpolating the same set of data and having the same end conditions�

As mentioned in section �� the classical C� hyperbolic tension spline
interpolating the data ���	� is a function S satisfying ������������ It is well
known that we can express Si�x� �� S�x�j�xi�xi��� as

Si�x� � fi�	� t� � fi��t� ��i�	� t�h�i �mi � ��i�t�h
�
i �mi��� ���	�

where

�mi�j �
d�S

dx�
�xi�j�� ��i�t� �

sinh�pit�� t sinh�pi�

p�i sinh�pi�
� i � �� � � � � N� j � �� 	�

and the constants �mi are solutions of the linear system

�m� � f ��� �

��i��hi�� �mi�� � ���i��hi�� � ��ihi� �mi � ��ihi �mi�� � di� i � 	� � � � � N�

�mN�� � f ��N���
�����

where

��i � � ���i��� �
sinh�pi�� pi
p�i sinh�pi�

� ��i � ���i�	� �
pi cosh�pi�� sinh�pi�

p�i sinh�pi�
�

It is easy to verify that ��i � ���i � �� �pi � �� so that the ��diagonal linear
system ����� is diagonally dominant� In addition� as ni � ��� systems �����
and ����� coincide since

lim
ni���

�i � ��i� lim
ni���

�i � ��i�

Let us put

�A �� min
i�������N

� ��i � ��i�hi � ���i�� � ��i���hi�� � �� �����
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For notational purposes� let us consider systems ����� and ����� where the
�rst and the last equation have been multiplied by �A� let T and �T be the
corresponding matrices and let m� �m be the corresponding solutions� We
have �T � T� 	T� where

	T �

�
														


� �

a��
�
�

h�

b��
�
�

h�
�

b��
�
�

h�

a��
�
�

h�

�
a��

�
�

h�

b��
�
�

h�
�

b��
�
�

h�

a��
�
�

h�

� � �

aN���
�
N��

hN��

bN���
�
N��

hN��
�

bN��N
hN

aN��N
hN

� �

�
��������������

�

and

ai �
n�i
pi

hcosh ki
�ni

sinh�ki�
�

	

sinh�pi�

i
� bi � �

n�i
pi

hcosh�ki� cosh ki
�ni

sinh�ki�
�

cosh�pi�

sinh�pi�

i
�

After some computations we obtain that ai� bi are bounded functions of ni�
more precisely

jaij� jbij � Ai �� lim
ni���

jbij �
�pi cosh�pi� sinh�pi� � p�i

�� sinh��pi�
� �����

Then� following �	�
� �	�
 and ��


km� �mk� � k�T��k�k	Tk�kmk��

Since k�Trk� � �Akrk� for all r � IRN��� then k�T��k� � �A��� In addition�

k	Tk� � �� max
i�������N

�Ai

hi
� � � max

i�������N
�i�

Therefore

km� �mk� � kmk���
	
�A

�
max

i�������N

�Ai

hi

�
� �����

Then� setting

Bi �� � max
t������

j ��i�t�j� Ci �� �n�i max
t������

j ��i�t�� �i�t�j � �����

we obtain from the expressions of Si and Ui� see ���	� and ������ and from
�����

kSi � Uik� � max
x��xi�xi���

jSi�x�� Ui�x�j � h�i

�
km� �mk�Bi � kmk�Ci

��i
h�i

�

� h�i �
�kmk�

hBi
�A

max
i�������N

�Ai

hi
�
Ci
h�i

i
�

�����
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Since �see ��
 for details� Ci is a bounded function of ni� then from ������
for each �xed sequence of the values p�� � � � � pN � we have a second order con�
vergence of the discrete hyperbolic tension splines to the corresponding con�
tinuous spline� The results agree with the order of approximation of the
discretization which we have used for the �rst� second and fourth derivatives�
For example� let us consider in detail the upper bound ����� in the limit case
pi � �� i � �� � � � � N � From ������ ����� and ����� we obtain

lim
pi��

Ai �
	

�
� lim

pi��
� ��i � ��i� �

	

�
� lim

pi��
Bi � 	� lim

pi��
Ci � ��

so that from ����� and �����

kSi � Uik � �h�i �
�kmk� max

i�������N

	

hi � hi��

�
max

i�������N

	

hi

�
�

and we recover� with some improvements� the corresponding result of �	�
�
Finally� we observe that ����� can be used to estimate the rate of con�

vergence of a discrete hyperbolic tension spline towards a function generating
the interpolation points as maxi hi � �� To do this� it su�ces to combine�
via the triangle inequality� ����� with the results of ���
 where the convergence
of a continuous hyperbolic tension spline towards a function generating the
interpolation points is studied�

	� Discrete Hyperbolic Tension B
Splines

In this section� we use the strategy outlined in �	��	�
� where generalized B�
splines and their properties are discussed in more detail�

Let us associate with a partition � � a � x� � x� � � � � � xN�� � b of
the interval �a� b
 a space of functions SDH

� whose restriction to an interval
�xi� xi��
� i � �� � � � � N is spanned by the system of four linearly independent
functions f	� x��i��ig and where every function in SDH

� satis�es smoothness
conditions ����� for discrete hyperbolic tension splines�

Following �	�
 let us rewrite formula ����� on the interval �xi� xi��
� i �
�� � � � � N � in the form

U�x� 	 Ui�x� ��fi � �i�xi�mi
�	� t� � �fi�� ��i�xi���mi��
t

� �i�x�mi ��i�x�mi���
���	�

where t � �x� xi�
hi� mj � �iUi�xj�� j � i� i� 	� and

�i�x� � �i�t�h
�
i � ��pi� t�h

�
i � �i�x� � �i�	� t�h�i �

�i�t� �
sinh�kit�� tni sinh�ki
ni�

p�i sinh�ki�
� �����

Functions �i and �i satisfy the conditions

�i�xi � j�i� � �i�xi�� � j�i� � �� j � �	� �� 	�

�i�i�xi� � �i�i�xi��� � 	�
�����
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Let us construct a basis for the space of discrete hyperbolic tension splines
SDH
� by using functions which have local supports of minimum length� Since

dim�SDH
� � � ��N � 	� � �N � N � � we extend the grid � by adding the

points xj � j � �������	� N��� N��� N��� such that x�	 � x�� � x�� � a�
b � xN�� � xN�	 � xN���

We demand that the discrete hyperbolic tension B�splines �HB�splines
for short� Bi� i � ��� � � � � N have the following properties

Bi�x� � �� x � �xi � �i� xi�� � �i����

Bi�x� 	 �� x 
� �xi� xi����
NX

j��	

Bj�x� 	 	� x � �a� b
� �����

	�� Construction of HB
Splines

According to ���	�� on the interval �xj � xj��
� j � i� � � � � i��� the discrete
HB�spline Bi has the form

Bi�x� 	 Bi�j�x� � Pi�j�x� � �j�x�mj�Bi ��j�x�mj���Bi �

where Pi�j is a polynomial of the �rst degree and ml�Bi � �lBi�xl�� l �
j� j �	 are constants to be determined� The smoothness conditions ����� and
constraints ����� give the following relations

Pi�j�xj� � Pi�j���xj� � zjmj�Bi �

Pi�j�xj � �j� xj � �j 
 � Pi�j���xj � �j��� xj � �j��
 � cj����mj�Bi �

where

zj 	 zj�xj� � �j���xj�� �j�xj��

cj���� � �j���xj � �j��� xj � �j��
� �j �xj � �j � xj � �j
�

Thus
Pi�j�x� � Pi�j���x� � �zj � cj�����x� xj�
mj�Bi � �����

As Bi vanishes outside the interval �xi� xi���� we have from ������ in
particular� Pi�j 	 � for j � i� i� �� By repeated use of formula ����� we get

Pi�j�x� �

jX
l�i��

�zl � cl�����x� xl�
ml�Bi � �
i�	X

l�j��

�zl � cl�����x� xl�
ml�Bi �

In particular� the following identity is valid

i�	X
j�i��

�zj � cj�����x� xj�
ml�Bi 	 ��



� �

from which one obtains the equalities
i�	X

j�i��

cj����y
r
jmj�Bi � �� r � �� 	� yj � xj �

zj
cj����

� �����

Thus� the formula for the discrete HB�spline Bi takes the form

Bi�x� �

������������������
�����������������

�i�x�mi���Bi � x � �xi� xi����

�x� yi���ci��mi���Bi

��i���x�mi���Bi ��i���x�mi���Bi �

x � �xi��� xi����

�yi�	 � x�ci����mi�	�Bi

��i���x�mi���Bi ��i���x�mi�	�Bi �

x � �xi��� xi�	��

�i�	�x�mi�	�Bi � x � �xi�	� xi����

�� otherwise�

�����

Substituting formula ����� into the normalization condition ����� written
for x � �xi� xi��
� we obtain

iX
j�i�	

Bj�x� � �i�x�
i��X

j�i�	

mi�Bj ��i�x�
iX

j�i��

mi���Bj

� �yi�� � x�ci��mi���Bi�� � �x� yi�ci����mi�Bi�� 	 	�

As according to �����
i��X

j�i�	

mi�Bj �
iX

j�i��

mi���Bj � � �����

the following identity is valid

�yi�� � x�ci��mi���Bi�� � �x� yi�ci����mi�Bi�� 	 	�

From here one gets the equalities

yri��ci��mi���Bi�� � yri ci����mi�Bi�� 	 	��r� r � �� 	�

where 	��r is the Kronecker symbol� Solving this system of equations and
using ����� or ������ we obtain

mj�Bi �
yi�	 � yi��

cj������i���yj�
� j � i� 	� i� �� i� ��

�i���x� � �x� yi����x� yi����x� yi�	�

or with the notation cj�	 � yj�� � yj��� j � i� i� 	�

mi���Bi �
	

ci��ci�	
�

mi���Bi � �
	

ci����

� 	

ci�	
�

	

ci���	

�
�

mi�	�Bi �
	

ci����ci���	
�

�����
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	�� Recurrence Formulas for HB
Splines

Let us de�ne functions

Bj���x� �

��
�

�j�j�x�� x � �xj� xj����
�j���j���x�� x � �xj��� xj��
�
�� otherwise�

j � i� i� 	� i� �� ���	��

Using ����� one can readily check that �j�j and �j�j are strictly monotonic
functions on the interval �xj� xj��
� The splines Bj�� are a generalization
of the  hat�functions! for polynomial B�splines� They are nonnegative and�
furthermore� Bj���xj�l� � 	��l� l � �� 	� ��

Let us denote

�U�x� 	 �iUi�x��

D�U�x� 	 Ui�x� �i� x� �i
�
x � �xi� xi��
� i � �� � � � � N �

then from ����� �U and D�U are well de�ned if U � SDH
� � With the previous

notation� according to ������ ������ and ���	�� we obtain

�Bi�x� �
i�	X

j�i��

mj�BiBj�����x�

�
	

ci�	

�Bi���x�

ci��
�

Bi�����x�

ci����

�
�

	

ci���	

�Bi�����x�

ci����
�

Bi�����x�

ci����

�
� ���		�

In addition the function D�Bi satis�es to the relation

D�Bi�x� �
Bi�	�x�

ci�	
�

Bi���	�x�

ci���	
� ���	��

where

Bj�	�x� �

����������
���������

	
cj���j �x� �j� x� �j 
� x � �xj � xj����

	 � 	
cj���j���x� �j��� x� �j��


� 	
cj�����j���x� �j��� x� �j��
� x � �xj��� xj����

� 	
cj�����j���x� �j��� x� �j��
� x � �xj��� xj�	��

�� otherwise�

���	��

Functions Bj�	 and Bj�� 	 Bj possess many of the properties inherent
in usual discrete polynomial B�splines� We collect their characteristics in the
next theorem which can be proved by using the explicit formulae ������ ���	���
and ���	�� for discrete HB�splines Bj�k� j � �� �� �� and the relations ���		�
and ���	���



� �

Theorem �� The functions Bj�k� k � �� � have the following properties�

�� Bj���x� � � for x � �xj��j � xj����j���� and Bj���x� 	 � if x 
� �xj � xj����
Bj�	�x� � � for x � �xj � xj�	�� and Bj�	�x� 	 � if x 
� �xj � xj�	��

�� Bj�� satis�es the continuity conditions �	�
��

	� Bj�	 satis�es the �rst and second continuity conditions in �	�
��

��
PN

j��� Bj�	�x� 	 	 for x � �a� b
�
�j �x� �j� x� �j 
 � �cj����Bj���	�x�� �j �x� �j � x� �j
 � cj��Bj�	�x�
for x � �xj � xj��
� j � �� � � � � N �


�
PN

j��	 y
r
j��Bj���x� 	 xr� r � �� 	 for x � �a� b
�

�j�x� � cj����cj���	Bj�	���x�� �j�x� � cj��cj�	Bj���x�
for x � �xj � xj��
� j � �� � � � � N �

Figures 	 and � show the graphs of discrete HB�splines Bj�k� k � �� �� �
�from left to right� on a uniform mesh with step size h � 	 and with �i � � for
all i� We have chosen discretization parameters � � ��	 �Fig� 	� left and Fig� ��
right�� � � ���� �Fig� 	� right� and � � ��� �Fig� �� left� for �i�t� from ������
In �gures 	 and � �left� we have parameters pi � �� i�e� we have conventional
discrete cubic B�splines �e�g�� see �	�
�� Visually� the presence of intervals
where the B�spline Bj�� is negative is more visible with growing discretization
parameter � � In �gure � �right� the tension parameters are pi � �� for all
i� whence the shape of the graphs is practically unchanged when � increases
from ��	 to ���� As the limit for pi �� we obtain the pulse function for Bj���
the  step�function! for Bj�	 and the  hat�function! for Bj�� �all of height 	��

Figure � shows the graphs of discrete HB�splines Bj�� on a uniform mesh
�left� and on a nonuniform mesh �right�� where the asterisk 
 denotes the xi�
For both plots pi � � and ni � ��

Using the approach of �	�
� it is easy to show that the functions Bj �
j � ��� � � � � N have supports of minimum length� are linearly independent
and form a basis in the space SDH

� � So any discrete hyperbolic tension spline
U � SDH

� can be uniquely represented in the form

U�x� �
NX

j��	

bjBj�x� ���	��

with some constant coe�cients bj�
Applying formulae ���		� and ���	�� to the representation ���	�� we ob�

tain

D�U�x� �
NX

j���

bj�	Bj�	�x�� �U�x� �
NX

j���

bj��Bj���x�� ���	��

where

bj�	�k �
bj���k � bj�����k

cj�	�k
� k � �� 	� bj�� 	 bj �
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Fig� 	� The discrete HB�splines Bj�k� k � �� �� � �from left to right�
on a uniform mesh with step size h � 	� no tension and

discretization parameter � � ��	 �left� and � � ���� �right��
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Fig� �� Same as Fig� 	� but with discretization parameter � � ���
�left� and with tension parameters pi � �� for all i �right��
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on a uniform mesh �left� and on a nonuniform mesh �right��
The asterisk 
 denotes the xi� For both plots pi � � and ni � ��
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	�� Formulas for Local Approximation by HB
Splines

If the coe�cients bj in ���	�� are known then by virtue of formula �����
we can write out an expression for the discrete hyperbolic tension spline U on
the interval �xi� xi��
� which is convenient for calculations�

U�x� � bi�� � ��ibi���x� yi� � ci�i�x� � ci���i�x�� ���	��

where

cj �
��jbj�� � ��j��bj�	

cj����
� j � i� i� 	� ��jbj�� �

bj�� � bj��
cj���	

�

The representations ���	�� and ���	�� allow us to �nd a simple and e�ec�
tive way to approximate a given function f from its samples�

Theorem �� For bj � f�yj���� j � ��� � � � � N � formula �
���� is exact for
polynomials of the �rst degree and provides a formula for local approximation�

Proof� It su�es to prove that the identities
NX

j��	

yrj��Bj�x� 	 xr� r � �� 	 ���	��

hold for x � �a� b
� Using formula ���	�� with the coe�cients bj�� � 	 and
bj�� � yj � j � i� 	� i� i� 	� i� �� for an arbitrary interval �xi� xi��
� we �nd
that identities ���	�� hold�

For bj�� � f�yj�� formula ���	�� can be rewritten as

U�x� �f�yi� � f �yi� yi��
�x� yi� � �yi�� � yi���f �yi��� yi� yi��
c
��
i�����i�x�

� �yi�� � yi�f �yi� yi��� yi��
c
��
i���i�x�� x � �xi� xi��
�

This is the formula of local approximation� The theorem is proved�

Corollary �� By setting

bj�� � fj �
	

cj����

h
�j���xj�

fj�� � fj
hj

� �j�xj�
fj � fj��
hj��

i
���	��

in �
����� we obtain a formula of threepoint local approximation� which is
exact for polynomials of the �rst degree�

Proof� To prove the corollary� it is su�cient to take the monomials 	 and x
as f � Then according to ���	��� we obtain bj�� � 	 and bj�� � yj and it only
remains to make use of identities ���	��� This proves the corollary�

Equation ���	�� permits us to write the coe�cients of the spline U in its
representation ���	�� in the form

bj�� �

�
U�yj�� �j��U�xj����j���yj�� �jU�xj��j���yj�� yj � xj �

U�yj�� �jU�xj��j�yj�� �j��U�xj����j�yj�� yj � xj �

���	��

Using this formula we obtain bj�� � U�yj� � O�h
�

j�� hj � max�hj��� hj��
Hence it follows that the control polygon �e�g�� see ��
� converges quadratically
to the function f for bj�� � f�yj�� or if the formula ���	�� is used� Formulas
���	��� ���	��� and ���	�� generalize their continuous equivalents developed in
�	�
�
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�� Computational Aspects

The aim of this section is to investigate the practical aspects related to the
numerical evaluation of the mesh solution de�ned in ������

A standard approach� ���
� consists of solving the tridiagonal system �����
and then evaluating ����� at the mesh points as is usually done for the evalu�
ation of continuous hyperbolic splines� At �rst sight� this approach based on
the solution of a tridiagonal system seems preferable because of the limited
waste of computational time and the good classical estimates for the condi�
tion number of the matrix in ������ However� it should be observed that� as
in the continuous case� we have to perform a large number of numerical com�
putations of hyperbolic functions of the form sinh�kit� and cosh�kit� both to
de�ne system ����� and to tabulate functions ������ This is a very di�cult
task� both for cancellation errors �when ki � �� and for over"ow problems
�when ki � ��� A stable computation of the hyperbolic functions was pro�
posed in ���
� where di�erent formulas for the cases ki � ��� and ki � ��� were
considered and a specialized polynomial approximation for sinh��� was used�

However� we note that this approach is the only one possible if we want
a continuous extension of the discrete solution beyond the mesh point�

In contrast� the discretized structure of our construction provides us with
a much cheaper and simpler approach to compute the mesh solution ������
This can be achieved both by following the system splitting approach pre�
sented in Section �� or by a direct computation of the solution of the linear
system ������������

As for the system splitting approach� presented in Section �� the following
algorithm can be considered�

Step �� Solve the ��diagonal system ����� for mi� i � 	� � � � � N �

Step �� Solve N � 	 ��diagonal systems ����� for mij � j � 	� � � � � ni � 	�
i � �� � � � � N �

Step �� Solve N � 	 ��diagonal systems ����� for uij � j � 	� � � � � ni � 	�
i � �� � � � � N�

In this algorithm� hyperbolic functions need only be computed in step 	�
Furthermore� the solution of any system ����� or ����� requires �q arithmetic
operations� namely� �q additions� �q multiplications� and �q divisions ��	
�
where q is the number of unknowns� and is thus substantially cheaper than
direct computation by formula ������

Steps � and � can be replaced by a direct splitting of the system ������
����� into N � 	 systems with ��diagonal matrices

ui�� � fi� �iui�� � Mi�

��
iui�j �

� pi
hi

��
�iui�j � �� j � 	� � � � � ni � 	� i � �� � � � � N�

ui�ni � fi��� �iui�ni � Mi���

���	�

Also� in this case the calculations for steps � and � or for system ���	�
can be tailored for a multiprocessor computer system�



� �

Let us discuss now the direct solution of system ����������� which� of
course� only involves rational computations on the given data� In order to do
this in the next subsections we investigate in some details the structure of the
mentioned system�

��� The Pentadiagonal System

Eliminating the unknowns fui���� i � 	� � � � � N� g and fui�ni��� i �
�� � � � � N � 	g� from ����� determining the values of the mesh solution at the
data sites xi by the interpolation conditions and eliminating u����� uN�nN��

from the end conditions ����� we can collect ����������� into the system

Au � b� �����

where

u � �u��� � � � � u��n���� u��� � � � � u��� � � � � uN�� � � � � uN�nN���
T �

A is the following pentadiagonal matrix �see also Fig� 	� left���
																	


b� � 	 a� 	
a� b� a� 	
	 a� b� a� 	

� � �
	 a� b� a�

	 a� ��n��� 	��n���
	��� ��� a� 	

a� b� a� 	
� � �

	 aN bN aN 	
	 aN bN aN

	 aN bN � 	

�
�����������������

with

ai � ��� � �i� � bi � � � ��i � �i �

�
pi
ni

��

� i � �� 	� � � � � N�

i���ni���� � � � ��i�� �
	� �i
	 � �i

� i�� � � � ��i �
�i � 	

�i � 	

	i���ni���� �
�

�i��i � 	�
� 	i�� � �

��i
�i � 	

�

�i �
�i
�i��

� i � 	� �� � � � � N �

and

b � ���a� � ��f� � ��� f
��
� ��f�� �� � � � � ���f������n���f�������f���f�� ��

� � � � ���fN�����aN � ��fN�� � ��Nf
��
N���

T �

with

�i���ni���� � ��� � �i�� � �
	� �i
�i

��

�i�� � ��� � �i � ���i � 	���

i � 	� �� � � � � N�
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��� The Uniform Case

From the practical point of view it is interesting to examine the structure of
A when we are dealing with a uniform mesh� that is �i � � � In such a case
it is immediately seen that A is symmetric� In addition� following �	�
 we
observe that A � C�D� where both C and D are symmetric block diagonal
matrices� To be more speci�c�

C �

�
		

C�

C�

� � �

CN

�
�� � Ci � B�

i � �iBi�

where Bi is the �ni � 	�� �ni � 	� tridiagonal matrix

Bi �

�
					


�� 	
	 �� 	

	 �� 	
� � �
	 �� 	

	 ��

�
����� �

and

D �

�
																							


� �
� �

�� �

�
	 	
	 	

�
� � �

�
	 	
	 	

�
� � �

� �
� �

�
�����������������������

�

The eigenvalues of C� �k�C�� are the collection of the eigenvalues of Ci� Since�
�see �	�
��

�j�Bi� � ��
�
	� cos

j�

ni

�
� j � 	� � � � � ni � 	�

we have

�j�Ci� � �
�
	� cos

j�

ni

��
� ��i

�
	� cos

j�

ni

�
j � 	� � � � � ni � 	�



� �

In addition� the eigenvalues of D are � and �� thus we deduce from a corol�
lary of the Courant�Fisher theorem ��
 that the eigenvalues of A satisfy the
following inequalities

�k�A� � �k�C� � min
i�j

�j�Ci� � min
i

h
�
�
	� cos

�

ni

��
� ��i

�
	� cos

�

ni

�i
�

Hence� A is a positive matrix and we directly obtain that the pentadiagonal
linear system has a unique solution�

In addition� by Gershgorin#s theorem� �k�A� � maxi�	� � ��i
� Then
we obtain the following upper bound for the condition number of A which
is independent of the number of data points� N � �� and which recovers the
result presented in �	�
 for the limit case pi � �� i � �� � � � � N �

kAk�kA
��k� �

maxi
�
	� � �� pi

ni
��
�

mini
�
��	� cos �

ni
�� � �� pi

ni
���	� cos �

ni
�
�

�
maxi

�
	� � �� pi

ni
��
�

mini�
�
ni
����� � ��pi��


�

�����

Summarizing� in the particular but important uniform case we can com�
pute the mesh solution by solving a symmetric� pentadiagonal� positive de��
nite system and therefore� we can use specialized algorithms� with a compu�
tational cost of 	�q arithmetic operations� namely� �q additions� �q multipli�
cations� and �q divisions ��	
� where q is the number of unknowns�

Moreover� since the upper bound ����� for the condition number of the
matrix A does not depend on the number of interpolation points� such meth�
ods can be used with some con�dence�

In the general case of a non�uniform mesh� the matrix A is no longer
symmetric� and an analysis of its condition number cannot be carried out
analytically� However� several numerical experiments have shown that the
condition number is not in"uenced by the non�symmetric structure� but does
depend on the maximum number of grid points in each subinterval� exactly as
in the symmetric case� In other words� symmetric and nonsymmetric matri�
ces� with the same dimension and produced by di�erence equations with the
same largest ni� produce very close condition numbers� Non�uniform discrete
hyperbolic tension splines have in fact been used for the graphical tests of the
following section�

��� System Splitting

Sometimes the number of unknowns in ����� can be very large �for exam�
ple for generating a grid in bivariate interpolation� and then even the linear
computational cost of the solution of the pentadiagonal system may turn out
to be too expensive� However� as for the two �rst approaches proposed at
the beginning of this section for evaluating the mesh solution� if we have a
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Fig� �� Left� the form of A for N � �� ni � 	�� Right� the matrix K�

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

30

35

40

45

50

Fig� �� Left� The block matrix E� Right� the block matrix F�

parallel machine we can easily share the computation of the solution of our
pentadiagonal system among the processors as outlined below�

The basic idea is to transform A� which� for N � �� ni � 	� has the
form shown in Fig� � left� into the form K �see Fig� � right�� Setting ri �Pi��

����n� � 	�� we note that the rows ri � 	� � � � � ri � ni � 	 of A describe
equations ����� for the subinterval �xi� xi��
� If we extract from K the rows
ri � 	� � � � � ri � �� i � �� 	� � � � � N� we get a block matrix E of the form shown
in Fig� � left� The corresponding linear system has few equations� and having
solved it� it is possible to solve in parallel the N � 	 linear systems obtained
from the  remaining! matrix F of Fig� � right by extracting its independent
blocks�

The problem now is how to move from A to K� From Sections � and �
we have the following two facts� Having in mind the structure of A and the
corresponding Fig� �� let us consider the section given by rows ri�	� � � � � ri���
We note that the entries of the columns with index ri � �� � � � � ri�� � � are



� �

	� ai� bi� ai� 	 which are the coe�cients of the di�erence equation ������ On the
other hand� it is shown in Section � that any function of the form

$i�x� � c��	� t� � c�t� c	�i�	� t� � c��i�t� � �����

is a solution for ������ therefore if we multiply the row of index ri � j� j �
	� � � � � ni� 	� by $i�xi�j� � $i�xi� j�i� and then add all these rows� then the
contribution of all the columns from ri�� to ri���� sums up to zero� The idea
for obtaining the matrix K from A is the following� we replace the four rows
of index ri�	� ri��� ri��� ri�� with the sum of the rows from ri�	 to ri��
multiplied by the values assumed in xij by four linearly independent functions
of the form ������ The remaining question is how to choose these functions�
Several numerical experiments have shown that the lowest condition number
of the matrix K �which is in general larger than that of A� is achieved when
we use the cardinal functions for Lagrange interpolation at the points xi�
closest to xi� xi � hi
�� xi�� � hi
�� xi���

�� Graphical Examples

The aim of this �nal section is to illustrate the tension features of discrete
hyperbolic tension splines with some �famous� examples� Before� we want to
notice that the continuous form Ui of our solution given in ����� has the good
shape�preserving properties of cubics �see e�g� ���
� in the sense that Ui is
convex �concave� in �xi� xi��
 if and only if mi�j � � �� ��� j � �� 	� and has
at most one in"ection point in �xi� xi��
� In order to preserve the shape of the
data� we therefore simply have to analyze the values �iui�� and �iui�ni and
increase the tension parameters if necessary� All the strategies proposed for
the automatic choice of tension parameters in continuous hyperbolic tension
spline interpolation can be used in our discrete context� see e�g� ���� ��
�

In our �rst example we have interpolated the radio chemical data reported
in Table 	� The e�ects of changing the tension values pi are depicted in Figs� ��
�� We have adopted a non�uniform mesh� assigning the same number of points
���� to each interval of the main mesh� and imposed natural end conditions�
that is� following formulas ������ m� � mN�� � ��

Table 	� Radio chemical data�

xi ���� ���� ��	� ��� ���

fi � �������E�� �������E�� ��	��	�� ��������

xi 	� 	� 	� ��

fi �������� �������� ������	� ��������

Fig� � is obtained setting pi � �� that is considering the discrete cubic spline
interpolating the data� In Fig � a new discrete interpolant with p� � p� �
���� pi � 	�� i � �� � � � � �� is displayed for the same data� and the stretching
e�ect of the increase in tension parameters is evident�

In the second example we have taken Akima�s data of Table � and con�
structed discrete interpolants with �� points for each interval� with natural
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Fig� �� The radio chemical data with natural end conditions m� � mN�� � �
Interpolation by discrete cubic spline� �pi � ��
Right� a magni�cation of the lower left corner�
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Fig� �� Akima#s data with natural end conditions�
Left� Discrete interpolating cubic spline �pi � ��

Right� discrete hyperbolic spline with p
 � p� � p� � 	��



� �

end conditions m� � mN�� � �� Fig� � left shows the plot produced by a
uniform choice of tension factors� namely pi � �� The right part of the same
�gure shows a second mesh solution� which perfectly reproduces the data
shape� where we have set p
 � p� � p� � 	� while the remaining pi are
unchanged�

Table �� Akima�s data �	
�
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