PERFORMANCE ASSESSMENT OF SLUDGE-MIXED CEMENT GROUT IN ROCK FRACTURES

Khomkrit Wetchasat

A Thesis Submitted in Partial Fulfillment of the Requirements for the Doctor of Philosophy of Engineering in Geotechnology

Suranaree University of Technology

Academic Year 2013

การศึกษาศักยภาพของส่วนผสมตะกอนกับซีเมนต์เพื่ออุดรอยแตกหิน

[^0]
PERFORMANCE ASSESSMENT OF SLUDGE-MIXED CEMENT GROUT IN ROCK FRACTURES

Suranaree University of Technology has approved this thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

Thesis Examining Committee
(Dr. Decho Phueakphum)
Chairperson
(Prof. Dr. Kittitep Fuenkajorn)
Member (Thesis Advisor)

(Assoc. Prof. Ladda Wannakao)
Member
(Dr. Prachya Tepnarong)
Member
(Prof. Dr. Sukit Limpijumnong)
Vice Rector for Academic Affairs and Innovation
(Assoc. Prof. Flt. Lt. Dr. Kontorn Chamniprasart)
Dean of Institute of Engineering

คมกริช เวชสัสถ์ : การศึกษาศักยภาพของส่วนผสมตะกอนกับซีเมนต์เพื่ออุดรอยแตกหิน (PERFORMANCE ASSESSMENT OF SLUDGE-MIXED CEMENT GROUT IN ROCK FRACTURES) อาจารย์ที่ปรึกษา : ศาสตราจารย์ ดร.กิตติเทพ เฟื่องขจร, 192 หน้า.

วัตถุประสงค์ของการศึกษานี้คือเพื่อประเมินศักยภาพของดินตะกอนผสมกับปูนซีเมนต์ ปอร์ตแลนด์ประเภท 1 เพื่อใช้ลดความซึมผ่านของน้ำในรอยแตกของหินทราย รอยแตกถูกทำขึ้น โดยแรงกดในแนวเส้นบนตัวอย่างหินทรายชุดภูกระดึงเพื่อให้หินแตกออกจากกันด้วยแรงดึง ตัวอย่างหินมีขนาด $0.15 \times 0.15 \times 0.15 \mathrm{~m}$ ตะกอนจากโรงงานกำจัดตะกอนบางเขนถูกนำมาทดสอบ คุณสมบัติเชิงกายภาพและเชิงเคมี มีการหาค่าความหนืดของส่วนผสมเหลวที่น้อยที่สุดแต่ให้ค่า กำลังกดในแกนเดียวที่เหมาะสม ผลทดสอบระบุว่าสัดส่วนที่เหมาะสมของตะกอนต่อซีเมนต์ $(\mathrm{S}: \mathrm{C})$ เท่ากับ $1: 10,3: 10,5: 10$ และเบนทอไนต์ต่อซีเมนต์ (B:C) เท่ากับ $1: 10,2: 10,3: 10$ ใช้ปริมาณน้ำต่อ ซีเมนต์เท่ากับ $1: 1$ เนื่องจากให้ค่าความหนืดของส่วนผสมเหลวไม่เกิน $5 \mathrm{~Pa} \cdot \mathrm{~s}$ และให้ค่ากำลังกด สูงสุด สัดส่วนของ $\mathrm{S}: \mathrm{C}$ เท่ากับ $3: 10$ จะให้ค่ากำลังกดเท่ากับ 1.22 MPa และค่าสัมประสิทธิ์ความ ยืดหยุ่นเท่ากับ 224 MPa ซึ่งต่ำกว่าค่าจาก $\mathrm{B}: \mathrm{C}$ เล็กน้อย ค่ากำลังเฉือนระหว่างผิวรอยแตกกับ ส่วนผสมทั้งหมดมีค่าใกล้เคียงกันคืออยู่ในช่วง 0.22 ถึง 0.90 MPa ภายใต้ความเค้นตั้งฉากจาก 0.25 ถึง 1.25 MPa ค่าความซึมผ่านของทุกส่วนผสมจะลดลงในเชิงเวลาซึ่งให้ค่าอยู่ในช่วง 10^{-17} ถึง 10^{-15} m^{2} สัดส่วนของ $\mathrm{S}: \mathrm{C}$ เท่ากับ $5: 10$ ให้ค่าความซึมผ่านต่ำสุด และของส่วนผสมที่อยู่ในรอยแตกมี ระยะการเปิดเผยอเท่ากับ $0.2,1.0$ และ 2.0 cm มีค่าใกล้เคียงกันในช่วง 10^{-16} to $10^{-14} \mathrm{~m}^{2}$
\qquad
ปีการศึกษา 2556

ลายมือชื่อนักศึกษา \qquad
ลายมือชื่ออาจารย์ที่ปรึกษา \qquad

KHOMKRIT WETCHASAT : PERFORMANCE ASSESSMENT OF SLUDGEMIXED CEMENT GROUT IN ROCK FRACTURES. THESIS ADVISOR : PROF. KITTITEP FUENKAJORN, Ph.D., P.E., 192 PP.

FRACTURE/ ROCK MASS/ PERMEABILITY/ GROUTING/ SLUDGE

The objective of this study is to assess the performance of sludge mixed with the commercial grade Portland cement type I for use in reducing permeability of fractures in sandstone. The fractures are artificially made in Phu Kradung sandstone by applying a line load to induce a splitting tensile crack in $0.15 \times 0.15 \times 0.15 \mathrm{~m}$ prismatic blocks. The Bang Khen water treatment sludge is used. The physical and chemical properties of the sludge are examined. This research emphasizes on determining the minimum slurry viscosity and appropriate strength of the grouting materials. The results indicate that the suitable mixing ratios for sludge:cement (S:C) are 1:10, 3:10, 5:10 and for bentonite:cement (B:C) are $1: 10,2: 10,3: 10$ with water-cement ratio of $1: 1$ by weight. These proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$ and the highest compressive strength. For $\mathrm{S}: \mathrm{C}=3: 10$, the compressive strength and elastic modulus are 1.22 MPa and 224 MPa which are similar to those of bentonite mixed with cement. The shear strength of grouted fractures varies from 0.22 to 0.90 MPa under normal stresses ranging from 0.25 to 1.25 MPa . Permeability of grouting materials is from 10^{-17} to $10^{-15} \mathrm{~m}^{2}$ and decrease with curing time. $\mathrm{S}: \mathrm{C}$ of 5:10 give the lowest permeability. Permeabilities of grouted fractures with apertures of $0.2,1.0$ and 2.0 cm range frome 10^{-16} to $10^{-14} \mathrm{~m}^{2}$.
\qquad
\qquad

TABLE OF CONTENTS

Page
ABSTRRACT (THAI) I
ABSTRACT (ENGLISH) II
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF TABLES IX
LIST OF FIGURES VI
SYMBOLS AND ABBREVIATIONS XVI
CHAPTER
I INTRODUCTION 1
1.1 Background of problems and significance of the study 1
1.2 Research objectives 2
1.3 Research methodology 2
1.3.1 Literature review 2
1.3.2 Sample collection and preparation. 4
1.3.3 Permeability testing of fractures. 4
1.3.4 Basic properties testing of grouting materials 5
1.3.5 Uniaxial compressive strength testing of grouting materials 5
1.3.6 Sheared fracture testing of grouting materials 5

TABLE OF CONTENTS (Continued)

Page
1.3.7 Permeability testing of grouting materials in rock fractures 5
1.3.8 Data analysis and comparisons 6
1.3.9 Discussions and conclusions 6
1.3.10 Conclusions and thesis writing 6
1.4 Scope and limitations of the study 6
1.5 Thesis contents 7
II LITERATUREREVIEW 8
2.1 Introduction 8
2.2 Experimental researches on the water treatment sludge 8
2.3 Permeability of Single Fracture 12
2.4 Experimental researches on grouting materials 15
III SAMPLE PREPARATIONS 22
3.1 Introduction 22
3.2 Sludge preparation 22
3.3 Bentonites 24
3.4 Portland cement 25
3.5 Rock samples 25
3.5.1 Sample preparation for constant head flow test under various normal stresses 26

TABLE OF CONTENTS (Continued)

Page
3.5.2 Sample preparation for direct shear test under various normal stresses 26
IV GROUT PREPARATIONS 38
4.1 Introduction 38
4.2 Viscosity and density of mixtures 38
4.2.1 Test methods 39
4.2.2 Test results 41
V MECHANICAL PROPERTIES TESTING 56
5.1 Introduction 56
5.2 Uniaxial compressive strength testing 56
5.2.1 Test methods 57
5.2.2 Test results 59
5.3 Shearing resistance between grout and fracture. 59
5.3.1 Test methods 60
5.3.2 Test results 61
VI HYDRAULIC PROPERTIES TESTING 84
6.1 Introduction 84
6.2 Permeability of grouting materials 84
6.2.1 Test methods 85
6.2.2 Test results 85

TABLE OF CONTENTS (Continued)

Page
6.3 Permeability of rock fractures 85
6.3.1 Test methods 86
6.3.2 Test results 87
6.4 Permeability of grouting materials in rock fractures 87
6.4.1 Test methods 87
6.4.2 Test results 88
VII DISCUSSIONS 107
7.1 Viscosity and density of mixtures 107
7.2 Mechanical properties testing 108
7.2.1 Uniaxial compressive strength testing 108
7.2.2 Shearing resistance between grout and fracture 109
7.3 Hydraulic properties testing 109
7.3.1 Permeability of grouting materials 109
7.3.2 Permeability of rock fractures 110
7.3.3 Permeability of grouting materials in rock fractures 110
VIII CONCLUSIONS AND RECOMMENDATIONS FOR
FUTURE STUDIES 111
8.1 Conclusions 111
8.2 Recommendations for future studies 113

TABLE OF CONTENTS (Continued)

Page
REFERENCES 117
APPENDICES
APPENDIX A PUBLICATIONS 137
BIOGRAPHY 192

LIST OF TABLES

Table Page
3.1 Atterberg's limits and specific gravity of sludge and bentonite 27
3.2 Results of oxide concentrations in the bentonite and sludge samples 28
3.3 Results of oxide concentrations in Porland cement 29
4.1 Mixture ratios by weight of the total volume of $1,000 \mathrm{cc}$ 42
4.2 Results of slurry density tests in beakers of 500 cc 44
4.3 Results of slurry viscosity tests 46
5.1 Summary of parameters and results for basic mechanical testing 62
5.2 Summary of uniaxial compressive strength test results on the $\mathrm{C}, \mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ mixtures specimens of 50.8 mm diameter 64
5.3 Summary of uniaxial compressive strength test results on the C, B:C and S:C mixtures specimens of 101.6 mm diameter with $\mathrm{W}: \mathrm{C}=1: 1$ 65
5.4 Poisson's ratio and elastic modulus from uniaxial compressive strength testing 65
5.5 Summary of uniaxial compressive strength test results on the C, B:C and S:C mixtures specimens of 50.8 mm diameter with $\mathrm{W}: \mathrm{C}=1: 1$ 66
5.6 Summary of direct shear strength test results on the $\mathrm{C}, \mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ mixtures specimens with $\mathrm{W}: \mathrm{C}=1: 1$ 66
5.7 Summary of shear strength parameters calibrated from direct shear tests using Coulomb's criteria 67

LIST OF TABLES (Continued)

Table Page
6.1 Summary of permeability testing of grouting material results at $3,7,14$ and 28 days of curing 89
6.2 Summary of permeability of rock fractures results 90
6.3 Summary of permeability of grouting material in rock fractures aperture 2 mm 91
6.4 Summary of permeability of grouting material in rock fractures aperture 10 mm 93
6.5 Summary of permeability of grouting material in rock fractures aperture 20 mm 95
8.1 Mixture ratios with $\mathrm{W}: \mathrm{C}=1: 1$ 114
8.2 Summary of mechanical property results of mixture ratios with $\mathrm{W}: \mathrm{C}=1: 1$ 114
8.3 Summary of hydraulic property results of mixture ratios with $\mathrm{W}: \mathrm{C}=1: 1$ 115
8.4 Estimated quantities of mixture proportions and cost for grout in rock fracture by fractured volume of $1 \mathrm{~m}^{3}$ 115
8.5 Recommended applications for sludge-mixed cement grout in rock fracture 116

LIST OF FIGURES

Figure Page
1.1 Research plan 3
3.1 Sludge from sludge dewatering plant of Bang Khen Water Treatment Plant located in Bangkok Metropolis 30
3.2 Sludge samples packed in a moisture barrier bag 31
3.3 Sludge is dehydrated by drying under sunlight 32
3.4 Sludge particles are cracked by a milling machine 33
3.5 Sludge in a hot-air oven at $140^{\circ} \mathrm{C}$ for at least 24 hours or until its weight remains constant 34
3.6 Grain size distribution of water treatment sludge compared SUT and DPIM test results 35
3.7 Some sandstone samples with $152.4 \times 152.4 \times 152.4 \mathrm{~mm}^{3}$ prismatic blocks for series for constant head flow testing 36
3.8 Sandstone samples with a nominal dimension of 100 mm in diameter and 100 nm long for direct shear testing 37
4.1 Sludge sample packed in a plastic box with a lid to prevent moisture. 48
4.2 American Colloid Bentonite used in this study 48
4.3 Bag of Portland cement 40 kg is used in this study 49
4.4 Digital weight scale with maximum capacity for 2000 grams and accuracy to ± 0.01 gram 49

LIST OF FIGURES (Continued)

Figure Page
4.5 Mixer, Kitchenaid Professional 600 6QT 575 watt stand mixer, with maximum capacity for $5,000 \mathrm{~cm}^{3}$ and 6 speed control 50
4.6 Viscometer, Bookfield viscometer RV 203 Watt 50 Hz 50
4.7 Digital thermometer HIP C0905019480 with accuracy to $\pm 0.1^{\circ} \mathrm{C}$ 51
4.8 Grouting materials in plastic bags are prepared for mix proportion (a) cement and water, (b) cement, water and sludge, and (c) bentonite, cement and water 52
4.9 Slurry volume of 500 cc in beakers for the density and viscosity tests (a)
cement paste (b) sludge-cement slurry, and (c) bentonite-cement slurry 53
4.10 Brookfield model RV dial reading viscometer is used for viscosity and slurry density tests 54
4.11 Dynamic viscosity of bentonite-cement and sludge-cement mixtures for different W:C ratios 55
5.1 PVC mold has an inner diameter of 50.8 mm with a rubber stopper on the bottom 68
5.2 Core sample is cut to obtain the desired length with ZE-LG3-570A Tile Cutter 68
5.3 Some specimens prepared for basic mechanical testing (a) sludge-mixed cement, and (b) bentonite-mixed cement 69

LIST OF FIGURES (Continued)

Figure Page
5.4 Uniaxial compressive strength test with constant loading rate. The cylindrical specimen is loaded vertically using the compression machine, (a) cement, (b) sludge-mixed cement, and (c) bentonite-mixed cement 70
5.5 Specimens (a) sludge-mixed cement, and (b) bentonite-mixed cement after failure under loading with constant stress rate of $1 \mathrm{MPa} / \mathrm{s}$. 71
5.6 PVC mold has an inner diameter of 101.6 mm with 203.2 mm in length 72
5.7 Uniaxial compressive strength test with constant loading rate.
The cylindrical specimen is loaded vertically using the compression machine, (a) $\mathrm{B}: \mathrm{C}=2: 10$, (b) $\mathrm{C}: \mathrm{W}=1: 1$, and (c) $\mathrm{S}: \mathrm{C}=3: 10$ 73
5.8 Specimens of 101.6 mm diameter (a) sludge-mixed cement, and (b) bentonite-mixed cement after failure under loading with constant stress rate of $1 \mathrm{MPa} / \mathrm{s}$ 74
5.9 Uniaxial compressive strengths for B:C and S:C mixtures with
$\mathrm{W}: \mathrm{C}=10: 10,8: 10,12.5: 10,40: 10$ at 3 days of curing 75
5.10 Uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$ 76
5.11 Comparisons of elastic modulus between $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ mixtures 76
5.12 Some sandstone specimens of 101.6 mm diameter prepared for direct shear testing 77
5.13 Surface sandstone specimen prepared for direct shear testing (left) and surface sandstone model of laser scan (right) 77
5.14 PVC mold has an inner diameter of 101.6 mm for direct shear testing 78

LIST OF FIGURES (Continued)

Figure Page
5.15 Laboratory arrangement for three-ring direct shear test 78
5.16 Some specimens of grouting material in sandstone fracture after failure under shearing between grout and fracture 79
5.17 Shearing resistance between cement grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$ 79
5.18 Shearing resistance between $\mathrm{S}: \mathrm{C}=1: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$ 80
5.19 Shearing resistance between $\mathrm{S}: \mathrm{C}=3: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$ 80
5.20 Shearing resistance between $\mathrm{S}: \mathrm{C}=5: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$ 81
5.21 Shearing resistance between $\mathrm{B}: \mathrm{C}=1: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$ 81
5.22 Shearing resistance between $\mathrm{B}: \mathrm{C}=2: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$ 82
5.23 Shearing resistance between $\mathrm{B}: \mathrm{C}=3: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$ 82
5.24 Normal stress and peak shear stress 83
6.1 PVC mold has an inner diameter of 101.6 mm for permeability testing of grouting materials 97
6.2 PVC mold has sealed between two acrylic platens with the aid of O-ring rubber and epoxy coating for permeability testing of grouting materials 97

LIST OF FIGURES (Continued)

Figure Page
6.3 Diagram of laboratory arrangement for permeability testing of grouting materials. 98
6.4 Laboratory arrangement for permeability testing of grouting materials 98
6.5 Intrinsic permeability as a function of time for pure cement (C), B:C, and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$ 99
6.6 Some sandstone specimens of $152.4 \times 152.4 \times 152.4 \mathrm{~mm}$ prepared for permeability testing of rock fractures 100
6.7 Surface sandstone specimen prepared for permeability testing of rock fractures (left) and surface sandstone model of laser scan (right) 100
6.8 Laboratory arrangement for permeability testing of fractures 101
6.9 Intrinsic permeability (k), hydraulic conductivity (K), and aperture $\left(e_{h}\right)$ as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture in Phu Kradung sandstone. 102
6.10 Diagram of laboratory arrangement for permeability testing of grouting materials in rock fracture 103
6.11 Permeability testing of grouting materials in rock fracture 103
6.12 Intrinsic permeability (k), hydraulic conductivity (K), and aperture $\left(e_{h}\right)$ as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture aperture 2 mm 104
6.13 Intrinsic permeability (k), hydraulic conductivity (K), and aperture (e_{h}) as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture aperture 10 mm 105
6.14 Intrinsic permeability (k), hydraulic conductivity (K), and aperture (e_{h}) as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture aperture 20 mm 106

SYMBOLS AND ABBREVIATIONS

ROMAN ABBREVIATIONS:

A	$=$	Cross-section area
A, B, m	=	Constants
b	=	Spacing between fracture
B:C	=	Proportion of betonite-mixed cement or betonite:cement
C	=	Porland cement
C_{0}	=	Constant depends on fracture surface and initial joint aperture
c_{p}	=	Cohesion
D	$=$	Diameter of the injection hole at the center of the upper block
e	=	Hydraulic aperture
e_{0}	$=$	Hydraulic aperture at zero stress
e_{0}	=	Initial joint aperture
e_{h}	=	Hydraulic aperture
F	=	Sheared force
g	$=$	Acceleration due to gravity
$\mathrm{H}_{\text {c }}$	$=$	Constant head
K	=	Hydraulic conductivity between smooth and parallel plates
k	$=$	Intrinsic permeability
k_{0}	=	Initial fracture permeability at initial normal stress

SYMBOLS AND ABBREVIATIONS (Continued)

K_{f}	=	Fracture conductivity
K_{n}	$=$	Normal stiffness of discontinuity
L	=	Thickness of grouting material in fracture apertures
L/D	=	Length to diameter ratio
m	=	Constant is equal to 1
P	=	Normal load
P_{1}	=	Effective modulus of the asperities
P_{f}	=	Maximum load
p_{w}	=	Water pressure within the discontinuity
Q	=	Flow rate
q	=	Water flow rate through the specimen
r	=	Radius of flow path
r_{0}	=	Radius of the radius injection hole
s	=	Fracture spacing
S:C	=	Proportion of sludge-mixed cement or sludge:cement.
SG	$=$	Specific gravity
W:C	$=$	Water-cement ratio or water:cement

GREEK ABBREVIATIONS:

$\beta \quad=\quad$ Orientation of discontinuity
$\mu \quad=\quad$ Dynamic viscosity

SYMBOLS AND ABBREVIATIONS (Continued)

τ	=	Shear stress
ρ	$=$	Slurry density
v_{1}	=	Normal deformation of the joint
v	=	Kinetic viscosity
v_{0}	$=$	Closure of the joint when the hydraulic aperture becomes zero
$\sigma, \sigma_{\mathrm{n}}$	=	Normal stress
σ_{0}	=	Initial normal stress
$\sigma_{\text {c }}$	=	Compressive strength or effective confining stress
$\sigma_{c h}$	=	Confining healing pressure in which the permeability is zero
$\sigma_{\text {h }}$	=	Horizontal stress applied to the discontinuity
σ_{z}	$=$	Vertical stress applied to the discontinuity
Se	$=$	Change of the joint aperture due to stresses
$\delta \mathrm{e}_{\mathrm{n}}$	$=$	Normal deformation component
$\Delta \mathrm{P}$	$=$	Injecting water pressure
$\rho_{\text {slurry }}$	$=$	density of mixture slurry
$\rho_{\text {w }}$	$=$	Density of distilled water at the time of measurement
$\gamma_{\text {w }}$	=	Unit weight of water
μ	$=$	Dynamic viscosity of the water
$\phi_{\text {p }}$	=	Angle of internal friction

CHAPTER I

INTRODUCTION

1.1 Background of problems and significance of the study

The increasing amount of the water treatment sludge from the Metropolitan Waterworks Authority (MWA) has called for a permanent solution to dispose of the sludge from four water treatment plants, including Bang Khen, Samsen, Thonburi, and Mahasawat. The water production report of the MWA (2007-2009) indicates that the Bang Khen Water Treatment Plant produces the largest capacity of 3,200,000 $\mathrm{m}^{3} /$ day. The sludge has been collected from the water treatment process (clarifying water system and filtering water system). The increasing sludge is about 162 tons/day. The sludge volume depends on the amount of sediment transported by rain water in the Choa Phraya River basin (Raw water source). The MWA has high expenditure for sludge disposal, especially during heavy rain years at which time there is more sludge deposited and slowly dried. The increase of potable water utilization results in the increase in size and duration of precipitation in sludge lagoon. The sludge in the lagoon has been treated by turning over and drying by sunlight, then becoming sludge cake. The sludge cake is usually taken to fill in abandoned land. After several years, it results in an excessively high deposition. Utilization of the sludge for other purposes is being considered in order to reduce the volumes of the sludge and the cost of disposal

One of the solutions is to mix the sludge with cement slurry for minimizing the groundwater circulation in rock mass. Groundwater in rock mass is one of the key
factors governing the mechanical stability of slope embankments, underground mines, tunnels, and dam foundation. A common solution practiced internationally in the construction industry is to use bentonite-mixed with cement as a grouting material to reduce permeability in fractured rock mass. (Castelbaum and Shackelford 2009; Joshi et al. 2010; Malusis et al. 2009). The lack of a true understanding of the permeability characteristics of the sludge-mixed cement in fractured rock makes it difficult to predict the water flow in geological structures under the complex hydro-geological environments. Knowledge and experimental evidences about the permeability of the sludge-mixed cement in fractured rock under varied stress conditions have been rare.

1.2 Research objectives

The objectives of this study are to assess the performance of the Bang Khen water treatment sludge mixed with the commercial grade Portland cement for reducing permeability in saturated fractured rock in the laboratory and to compare the results with the bentonite-mixed cement in terms of the mechanical and hydraulic properties.

1.3 Research methodology

1.3.1 Literature review

Literature review is carried out to study the experimental researches on the water treatment sludge, grouting materials, and permeability of single fracture. The sources of information are from text books, journals, technical reports and conference papers. A summary of the literature review will be given in the thesis.

Figure 1.1 Research plan

1.3.2 Sample collection and preparation

The grouting materials used in this research are 1) the water treatment sludge with particle sizes less than $75 \mu \mathrm{~m}, 2$) commercial grade bentonite for comparing with the sludge test results, 3) commercial grade Portland cement type I for mixing with the sludge and bentonite, and 4) sandstone samples from Phu Kradung formation. Sample preparation is carried out in the Geomechanics Research (GMR) Laboratory at Suranaree University of Technology. The fractures are artificially made by applying a line load at the center to induce a splitting tensile crack in $152.4 \times 152.4 \times 152.4 \mathrm{~mm}^{3}$ blocks of sandstones. The fracture area is 152.4×152.4 mm^{2}. A minimum of eighteen sandstone specimens is tested for the three portions of sludge-mixed cement and bentonite-mixed cement under normal stresses ranging from 0.25 to 1.25 MPa . The sludge is collected from the Bang Khen Water Treatment Plant, the Metropolitan Waterworks Authority.

1.3.3 Permeability testing of fractures

Before grouting with sludge-mixed cement or bentonite-mixed cement into the artificial fracture of the sandstone specimens, the fracture permeability needed to be measured. The fracture permeability is used to compare with the permeability of grouting materials for both sludge and bentonte. Constant head flow tests are performed to determine the fracture permeability of sandstone specimens under normal stresses. The normal stresses are ranging from 0.25 to 1.25 MPa . Results simulate stress under various depths which can affect the permeability of grouting materials in fractured sandstone.

1.3.4 Basic properties testing of grouting materials

The objective of basic property test is to determine the density, viscosity, and permeability of sludge-mixed cement and bentonite-mixed cement. Sludge and bentonite-mixed cement ratios vary from 1:10, 2:10, 3:10, 4:10, to 5:10 for selecting the optimum mixing content. Similarities and differences of the results will be compared.

1.3.5 Uniaxial compressive strength testing of grouting materials

The objective of the uniaxial compressive strength tests is to determine the uniaxial compressive strength and elastic modulus of grouting material specimens. Grouting materials are sludge-mixed cement and bentonite-mixed cement. The test procedure is similar to the ASTM standards (ASTM C938, D4832 and C39). Sludge and bentonite-mixed cement ratios vary from $1: 10,2: 10,3: 10,4: 10$, to $5: 10$ for determining the strength and the elastic modulus.

1.3.6 Sheared fracture testing of grouting materials

The objective of the sheared fracture tests is to determine the shear strength of grouting material in sandstone fracture. Grouting materials are sludge and bentonite-mixed cement. The experimental procedure is similar to the ASTM standard (D5607). The constant normal stresses are $0.25,0.5,1.0$ and 1.25 MPa . The shear stress is applied while the shear displacement and head drop is monitored for every 0.2 mm of shear displacement. Similarities and differences of the results are compared with other researches.

1.3.7 Permeability testing of grouting materials in rock fractures

The objective of permeability test of grouting materials in rock fractures is to determine the permeability of sludge-mixed cement and bentonite-
mixed cement in artificial fractures. The grouting materials are used to fill the fractures. The constant normal stresses are $0.25,0.5,1.0$ and 1.25 MPa .

1.3.8 Data analysis and comparisons

The research results are analyzed to optimize the grout mix ratios in terms of the mechanical and hydraulic properties. The results from the analysis are used in the comparison with other researches.

1.3.9 Discussions and conclusions

Discussions of the results are described to determine the reliability and accuracy of the measurements. Performance of the new grouting material is discussed based on the test results. Similarities and discrepancies of the grouting material in terms of the mechanical and hydraulic properties are discussed to apply the sludgemixed cement in the fields.

1.3.10 Conclusions and thesis writing

All research activities, methods, and results are documented and complied in the thesis. The research or findings will be published in the conference proceedings or journals.

1.4 Scope and limitations of the study

The scope and limitation of the research include as follows.
a. This research emphasizes on studying the mechanical and hydraulic properties of water treatment sludge-mixed cement as a grouting material to reduce permeability in fractured rock mass.
b. Laboratory tests of water treatment sludge-mixed cement include constant head flow tests and uniaxial compression test.
c. Portland cement type I is used. (ASTM C150)
d. The particle sizes of the sludge are less than 0.075 mm (sieve no. 200).
e. The sludge-to-cement (by dry weight) ratios of $1: 10,2: 10,3: 10$, 4:10, and 5:10 are primarily selected.
f. Laboratory testing will be conducted on specimens from Phu Kradung sandstone. The fracture area of the specimens is $152.4 \times 152.4 \mathrm{~mm}$
g. All tested fractures are artificially made in the laboratory.
h. The constant normal stresses on the fracture range from 0.25 to 1.25 MPa.
i. Mixing, curing and testing of the cement and mixtures follows, as much as practical, the ASTM and the API standards.

1.5 Thesis contents

Chapter I introduces the thesis by briefly describing the background of problems and significance of the study. The research objectives, methodology, scope and limitations are identified. Chapter II summarizes the results of the literature review. Chapter III describes the sample and mixture preparations. Chapter IV to VI describes the results from the laboratory experiments. The experiments are divided into 4 tests, including 1) Viscosity and density of mixtures tests 2) Uniaxial compressive testing 3) Shearing resistance between grout and fracture 4) Permeability of grouting materials and 5) Permeability of grouting materials in rock fractures. Chapter VII and VIII discusses and concludes the research results, and provides recommendations for future research studies.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

This chapter summarizes the results of literature review carried out to improve an understanding of the permeability in fractured rock mass, which include recent research results and utilization of the water treatment sludge.

2.2 Experimental researches on the water treatment sludge

Laothong (2003) studies the sludge cake from the water treatment process at Wang Noi Power Plant. The results indicate that the sludge is a nonhazardous waste. These are 300 tons of the sludge per month, costing $2.48 \mathrm{baht} / \mathrm{kg}$ or 460,000 baht per month for disposal. The utilization of the sludge cake can reduce operation cost of the power plant. The sludge is found to be loamy sand. Four sludge cake utilization alternatives have been explored, including cement replacement in mortar, laterite replacement in interlocking block, clay replacement in baked clay brick and ceramic wares. The results indicate that the best alternative is laterite replacement in interlocking block with the proportion of 2:2:5 by weight (cement:sludge:laterite). The laterite at the optimum gives the 28 days compressive strength of $82.14 \mathrm{~kg} / \mathrm{m}^{2}$, which is greater than $70 \mathrm{~kg} / \mathrm{m}^{2}$ required by the Thai Industrial Standard (TIS). With the interlocking block alternative, although the production cost of 3.83 baht $/ \mathrm{kg}$ was higher than disposal cost of $1.35 \mathrm{baht} / \mathrm{kg}$, the product could be sold at the price of
about 6 to 8 baht. Utilization of sludge cake in making interlocking block is being considered to be a feasible alternative.

Suriyachat et al. (2004) study the basic properties of the water treatment sludge. The results indicate that the liquid limit is 77.96%, plastic limit is 50.76%, shrinkage limit is 11.15%, the plasticity index is 27.20%, and the maximum density is $1.33 \mathrm{~g} / \mathrm{cm}^{3}$. The correlation between permeability coefficient and the moisture content is found when the moisture content is low with high permeability coefficient. This is probably a result of a rearrangement of molecules at the particle surfaces by the action of adsorbing water leading to a formation of gain-soil bridges. The optimum moisture content of 29% is suitable for the minimum coefficient of permeability. The coefficient of permeability is similarly to the clay used in the ceramic industry.

The chemical compositions of the sludge and clay from the pottery in central and northern parts of Thailand suggest that the sludge properties are similar to the clay properties of these manufacturers. The analysis of chemical compositions shows that the amount of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is between 4 and 5%, including the optimal values of SiO_{2} and $\mathrm{Al}_{2} \mathrm{O}_{3}$ as it is similar to red clay. This is an important raw material used in the ceramic industry.

Laboratory experiments in ceramic product made of the sludge are in the areas of pottery and jewelry. Those must be mixed with sand. To obtain a beautiful shape it must have the sand portion of 30%, but it takes several times for fermentation of the clay. The initially result showed that the water treatment sludge could be used as a raw material in the ceramic industry. It makes to achieve a renewable and reused in the manufacturing of integrated and sustainable natural materials.

Bunjongsiri and Bunjongsiri (2005) studyd the content of clay mix with sludge from community wastewater treatment to make brick. There are six ratios of clay and sludge from community wastewater treatment: $3: 1,7: 3,6.5: 3.5,3: 2,5.5: 4.5$ and 3:7. The experiment indicated the quantity of the heavy metal in the brick ($\mathrm{mg} / \mathrm{kg}$) and two ratios of 1:3 and 3:7 by leachate extraction procedure. The quantities in $\mathrm{mg} / \mathrm{kg}$ of the heavy metal were 240.84 and 490.07 for copper, 17.66 and 59.16 for lead, 0.636 and 0.96 for cadmium, 667.87 and 973.28 for manganese, 167.44 and 157.45 for chromium and 136.82 and 337.75 for zinc. The bricks could not reach the industrial standard of TIS 77-2531. The ratio of 3:1 represents the best value close to the industrial standard as the value of compressive strength was $15.05 \mathrm{~kg} / \mathrm{cm}^{2}$. The density was $1.10 \mathrm{~g} / \mathrm{cm}^{3}$. Tolerance of length, wide, and thickness was $5.24,6.16$, and 9.35% respectively. The weight was 388.60 g and the absorber was 36.23%.

Poonsawat and Lertpocasombut (2006) study the properties of tile bodies to produce clay plan roofing tile by using sludge from Bang Khen and Mahasawat water treatment plants as a raw material. The tile bodies are consisted of 70 to 100% of the sludge and 0 to 30% of quartz and feldspar. They are fired at $1,000,1,050$ and $1,100^{\circ} \mathrm{C}$. The results indicate that the plasticity index of the sludge from Bang Khen water treatment plant is higher than those from Mahasawat water treatment plant. Temperature increases the strength, shrinkage and bulk density and decreases water absorption and porosity. At $1,100^{\circ} \mathrm{C}$, the ratios of 90:5:5 (Bang Khen sludge:quartz:feldspar) and 85:5:10 (Mahasawat sludge:quartz:feldspar) are suitable for making clay plan roofing tile.

Kongthong and Lertpocasombut (2006) study adsorption by using sludge from Bang Khen water treatment plant. Research objective was aimed to reduce color
remaining of effluent wastewater from dye industries. Fifty mg/l of three solutions (basic, reactive, and disperse dyes) is used as initial concentration. Sludge ash which is obtained after burning at $500^{\circ} \mathrm{C}$ and dried sludge is used as an adsorbent. The pH results showed no effect on the adsorption of the basic and re-active dyes while disperse to dye is effectively adsorbed at pH 4 . Equilibrium time and isotherm of the adsorption are determined and found that the dried sludge gave good results compared to the sludge ash in basic dye adsorption. It is in contrast to the disperse dye adsorption. The results are not found in re-active dye adsorption either using dried sludge or sludge ash.

Adamant et al. (2006) determine the mechanical and durability of mortar to replace cement with dry sludge ash from Bang Khen water treatment plant. This research studies the chemical compositions and physical properties of the dry sludge ash, including the flow value, and compressive strength. Durability against the sulfuric attack which is tested by using a sulfuric solution with pH of 1.0 , and sodium sulfate $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Binder materials containing various proportions between the sludge ash and Portland cement, $0,10,20$, and 30% by weight are prepared with the water to the binder material ratios of $0.50,0.55$, and 0.60 . The results indicate that the dry sludge ash increased with decreasing flow value, compressive strength, and weight loss due to sulfuric acid attack.

Sa-ngiumsak and Cheerarot (2008) determine the properties of artificial aggregates made from the water treatment sludge. The aggregates containing various proportions between the sludge and clay, 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100 by weight were prepared by molding and firing at $800,1,000$, and $1,200^{\circ} \mathrm{C}$ for $24-$ hour firing time. Then compressive strength of an artificial aggregate is tested. Some
mixtures are chosen to test abrasion, stability in sodium sulfate, and absorption. Finally, the compressive strength of concrete containing the artificial aggregates is tested. The results showed that the compressive strength of the artificial aggregates increased with increasing firing temperature and amount of sludge. The aggregates with the ratio of sludge to clay of $60: 40$ fired at $1,200^{\circ} \mathrm{C}$ had the highest compressive strength of 490 ksc . The aggregate fired at $1,200^{\circ} \mathrm{C}$ had the highest compressive strength while the aggregate fired at 800 and $1,000^{\circ} \mathrm{C}$ gave similar compressive strengths. When the amount of the sludge increased, the water absorption, abrasion, and stability in sodium sulfate of the aggregates decreased. Comparing with natural aggregates, the water absorption of all proportions of the artificial aggregates was higher than that of the natural aggregates. The abrasion and stability in sodium sulfate were low. The concrete containing the artificial aggregates had higher compressive strength than the concrete containing natural aggregates.

2.3 Permeability of Single Fracture

The main factors controlling fluid flow through a single fracture are the surface roughness, apertures, orientation of fractures, normal and shear stresses, and unloading behavior. Out of these controlling factors, the aperture is the major parameter, which is a function of external stress, fluid pressure and geometrical properties of the fracture (Indraratna and Ranjith, 2001).

The conductivity of a single fracture is given by the 'cubic law': (Witherspoon et al., 1980; Indraratna and Ranjith, 2001; Ranjith and Viete, 2011)

$$
\begin{equation*}
\mathrm{K}_{\mathrm{f}}=\mathrm{ge}^{3} / 12 \mathrm{vb} \tag{2.1}
\end{equation*}
$$

where $\mathrm{K}_{\mathrm{f}}=$ fracture conductivity $(\mathrm{m} / \mathrm{s}), \mathrm{e}=$ hydraulic aperture $(\mathrm{m}), \mathrm{g}=$ acceleration due to gravity $\left(\mathrm{m} / \mathrm{s}^{2}\right), v=$ kinematic viscosity, which is $1.01 \times 10^{-6}\left(\mathrm{~m}^{2} / \mathrm{s}\right)$ for pure water at $20^{\circ} \mathrm{C}$, and b is the spacing between fracture (m).

For a smooth, planar joint having an aperture of magnitude e, the fracture permeability (k) for laminar flow is given by (Barton et al., 1985)

$$
\begin{equation*}
\mathrm{k}=\mathrm{e}^{2} / 12 \tag{2.2}
\end{equation*}
$$

The joint aperture e is mainly dependent on the normal and shear stress acting on the joint. Assuming the rock matrix to be isotropic and linear elastic, obeying Hooke's law, the following aperture-stress relationship can be formulated: (Rutqvist, 1995; Indraratna and Ranjith, 2001)

$$
\begin{equation*}
\mathrm{e}=\mathrm{e}_{0} \pm \delta \mathrm{e} \tag{2.3}
\end{equation*}
$$

where e_{0} is the initial joint aperture and $\delta \mathrm{e}$ is the change of the joint aperture due to stresses (i.e., both normal and shear components) acting on the joint. In conventional rock mechanics, the normal deformation component is given by Jaeger and Cook (1979):

$$
\begin{equation*}
\delta \mathrm{e}_{\mathrm{n}}=\left(1 / \mathrm{K}_{\mathrm{n}}\right)\left(\sigma_{\mathrm{z}} \cos \beta+\sigma_{\mathrm{h}} \sin \beta\right) \tag{2.4}
\end{equation*}
$$

where $K_{n}=$ normal stiffness of discontinuity, $\sigma_{z}=$ vertical stress applied to the discontinuity, $\sigma_{h}=$ horizontal stress applied to the discontinuity, and $\beta=$ orientation of discontinuity.

Considering the water pressure to be acting perpendicular to the joint surface, the equation can be modified to obtain (Indraratna and Ranjith, 2001)

$$
\begin{equation*}
\delta \mathrm{e}_{\mathrm{n}}=\left(1 / \mathrm{K}_{\mathrm{n}}\right)\left(\sigma_{1} \cos \beta-\sigma_{3} \sin \beta-\mathrm{p}_{\mathrm{w}}\right) \tag{2.5}
\end{equation*}
$$

where $\mathrm{p}_{\mathrm{w}}=$ water pressure within the discontinuity.
Combining the above equations for planar and smooth joints, the permeability of a single fracture is given by

$$
\begin{equation*}
\mathrm{k}=\left(\mathrm{e}_{0}+\delta \mathrm{e}_{\mathrm{n}}\right)^{2} / 12 \tag{2.6}
\end{equation*}
$$

Based on the initial hydraulic aperture and the closure of joint, Detoumay (1980) suggested the following relationship to determine the fracture permeability:

$$
\begin{equation*}
\mathrm{k}=\mathrm{e}_{0}^{2}\left(1-\mathrm{v} / \mathrm{v}_{0}\right)^{2} / 12 \tag{2.7}
\end{equation*}
$$

where $\mathrm{e}_{0}=$ hydraulic aperture at zero stress, $\mathrm{v}_{0}=$ closure of the joint when the hydraulic aperture becomes zero and $v=$ normal deformation of the joint.

Snow (1968) observed an empirical model to describe the fracture fluid flow variation against the normal stress, as described by

$$
\begin{equation*}
\mathrm{k}=\mathrm{k}_{0}+\mathrm{K}_{\mathrm{n}}\left(\mathrm{e}^{2} / \mathrm{s}\right)\left(\sigma-\sigma_{0}\right) \tag{2.8}
\end{equation*}
$$

where $\mathrm{k}_{0}=$ initial fracture permeability at initial normal stress $\left(\sigma_{0}\right), \mathrm{K}_{\mathrm{n}}=$ normal stiffness, $\mathrm{s}=$ fracture spacing and $\mathrm{e}=$ hydraulic aperture .

Jones (1975) suggested the following empirical relation between the fracture permeability and the normal stress:

$$
\begin{equation*}
\mathrm{k}=\mathrm{C}_{0}\left[\log \left(\sigma_{\mathrm{ch}} / \sigma_{\mathrm{c}}\right)\right]^{3} \tag{2.9}
\end{equation*}
$$

where $\sigma_{\mathrm{ch}}=$ confining healing pressure in which the permeability is zero and $\sigma_{\mathrm{c}}=$ effective confining stress. The constant $\left(\mathrm{C}_{0}\right)$ depends on the fracture surface and the initial joint aperture.

Nelson (1975) suggested the following empirical relation between the fracture permeability and the normal stress:

$$
\begin{equation*}
\mathrm{k}=\mathrm{A}+\mathrm{B}{\sigma_{\mathrm{c}}}^{-\mathrm{m}} \tag{2.10}
\end{equation*}
$$

where A, B and mare constants which are determined by regression analysis. These constants may vary from one rock to another, and even for the same rock type, depending on the topography of the fracture surface.

Gangi (1978) reports a theoretical model for fracture permeability as a function of the confining pressure, as represented by

$$
\begin{equation*}
\mathrm{k}=\mathrm{k}_{0}\left[1-\left(\sigma_{\mathrm{c}} / \mathrm{P}_{1}\right)^{\mathrm{m}}\right]^{3} \tag{2.11}
\end{equation*}
$$

where $\mathrm{P}_{1}=$ effective modulus of the asperities and $\mathrm{m}=$ constant which describes the distribution function of the asperity length. This expression gives a better prediction if the effect of surface roughness on flow is negligible, which of course is not reasonable in practice.

2.4 Experimental researches on grouting materials

Huang (1997) investigates the properties of cement-fly ash grout mixtures as barriers for isolation of hazardous and low-level radioactive wastes. The fly ash was used to replace 30 percent by mass of cement. Three additives, including bentonite, silica fume, and polypropylene fiber were used individually in the grout mixes to improve the properties of the grouts in different aspects. The flow ability, bleeding, and setting time of freshly mixed grouts were determined; and the unconfined compressive strength, pore size distribution, and water permeability were determined for hardened grouts at various curing durations up to 120 days. Finally, the durability of cement-fly ash grouts was carefully examined in terms of the changes in their physical properties after different levels of exposure to sulfate attack and wet-dry cycles.

Owaidat et al. (1999) reported that the U.S. Army Corps of Engineers had recently implemented a levee-strengthening program along the banks of the American River in Sacramento, California. During the rainy season, the existing levee system protected major commercial and residential areas of this metropolitan area. One of the main components of this program was the construction of slurry walls through the existing levee to improve stability by preventing seepage through and beneath the levee. Since conventional soil-bentonite (SB) slurry walls had little shear strength, which would jeopardize the stability, of the existing levees, and cement-bentonite (CB) slurry walls were significantly more expensive, soil-cement-bentonite (SCB) slurry walls were being utilized for this strengthening program. This research described a case study on the design, construction and performance of an underground SCB barrier wall, which was used to isolate river water seeping into the American

River levee and its foundation soils. Challenges to barrier performance included achieving a maximum allowable hydraulic conductivity of $5 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$ while having a minimum unconfined compressive strength of 15 psi .

Kashir and Yanful (2000) reported that the use of slurry walls to contain oxidized tailings and provide cutoff below tailings dams were generally a costeffective way of preventing environmental degradation due to seepage of acid water from tailing's areas. Long-term environmental protection dictated that the slurry wall materials been compatible with the acid water. Six percent bentonite by weight was added separately to two natural soils to represent slurry wall backfill materials, which were then permeated with several pore volumes of acid mine drainage (AMD) in the laboratory. Results using both flexible wall and fixed wall permeameters were similar. The carbonate-rich backfill gave an average hydraulic conductivity (K) of $1 \times 10^{-9} \mathrm{~cm} / \mathrm{s}$, buffered the AMD at circumneutral pH , and kept effluent metal concentrations to very low values, for example, less than $0.05 \mathrm{mg} / \mathrm{l}$ zinc. The carbonate-free backfill also maintained low K (average $3 \times 10^{-9} \mathrm{~cm} / \mathrm{s}$) during AMD permeation, it could not neutralize the AMD as effluent pH decreased to approximately 3.5, and metal concentrations reached those of the influent or permeant after about 17 pore volumes.

Fransson (2001) describes a rock volume suitable for a grouting field test at the Äspö Hard Rock Laboratory, Sweden. Fixed interval length transmissivities and the corresponding number of fractures from geological mapping of a probe hole were used to calculate a probability of conductive fractures for analyses of data from individual boreholes. The transmissivity and specific capacity of the boreholes were compared to examine the robustness of the specific capacity. From the findings of the
study, the probability of conductive fractures from probe hole data, the specific capacity and fracture frequency of individual boreholes were sufficient to construct a simplified model of the fracture and the rock volume. The median specific capacity of the boreholes was a good description of the effective cross-fracture transmissivity. The field test was also carried out to demonstrate the usefulness of the methodology for improving the analyses of data from the hydraulic tests and geological mapping for a grouting fan.

Ryan and Day (2002) state that Soil-Cement-Bentonite (SCB) slurry walls had been used with increasing frequency in recent years to provide barriers to the lateral flow of groundwater in situations where the strength of a normal soil-bentonite (SB) wall would be inadequate to carry foundation loads. The addition of cement to the backfill blended allows the backfill to set and from a more rigid system that could support greater overlying loads. Construction and quality control for the SCB wall were more demanding than that needed for the SB walls. Backfill mixing, sampling and testing of this type of wall involve more exacting procedures. Recommendations were made for methods to carry out pre-job design mix testing and in-field quality control testing for the most reliable results. Designing the SCB backfill was a complex issue involving conflicting actions of the various materials involved. While the SCB wall provides additional strength, permeability was one property that generally suffers in comparison to the SB walls. A normal permeability specification would be a maximum of $1 \times 10^{-6} \mathrm{~cm} / \mathrm{sec}$. With special attention to materials and procedures, a specification of a maximum 5×10^{-7} could be achieved. The results were presented that the strengths of the SCB were in the range of $15-300 \mathrm{psi}$.

Rahmani (2004) stated that grouting had been used over the past two centuries to increase the strength, decrease the deformation and reduce the permeability of soils or fractured rocks. Due to its significance in engineering and science predicting grout effectiveness in fractured rocks was of interest. There were different approaches to estimate the effectiveness of grouting, one of which was numerical modeling. Numerical models could simulate a distribution of grout inside fractures by which the effectiveness of grout could be estimated. Few numerical studies had been carried out to model grout penetration in fractured rocks. Due to complexities of modeling grout and fracture most of these studies had either used simplifying assumptions or been bound to small sizes of fractures, both resulting in unrealistic simulations.

Then the current work is aimed to eliminate some of the simplifying assumptions and to develop a model that could improve the reliability of the results. In reality, grouts were believed to behave as a Bingham fluid, but many models did not consider a full Bingham fluid flow solution due to its complexity. Real fractures had rough surfaces with randomly varying apertures. However, some models considered fractures as planes with two parallel sides and a constant aperture. In this work the Bingham fluid flow equations were solved numerically over a stochastically varying aperture fracture. To simplify the equations and decrease the computational time the current model substituted two-dimensional elements by one-dimensional pipes with equivalent properties. The model was capable of simulating the time penetration of grout in a mesh of fracture over a rather long period of time. The results of the model could be used to predict the grout penetration for different conditions of fractures or grout (Rahmani, 2004).

Baik et al. (2007) described that compacting bentonite had been considered as a candidate buffer material in the underground repository for the disposal of highlevel radioactive waste. An erosion of bentonite particles caused by a groundwater flow at the interface of a compacting bentonite, and fractured granite was studied experimentally under various geochemical conditions. The experimental results showed that bentonite particles could be eroded from a compacted bentonite buffer by a flowing groundwater depending upon the contact time, the flow rate of the groundwater, and the geochemical parameters of the groundwater such as the pH and ionic strength. A gel formation of the bentonite was observed to be a dominant process in the erosion of bentonite particles, although an intrusion of bentonite into a rock fracture also contributed to the erosion. The concentration of the eroded bentonite particles eroded by a flowing groundwater was increased with an increasing flow rate of the groundwater. It was observed from the experiments that the erosion of the bentonite particles was considerably affected by the ionic strength of a groundwater, although the effect of the pH was not great within the studied pH range from 7 to 10 . An erosion of the bentonite particles in a natural groundwater was also observed to be considerable, and the eroded bentonite particles were expected to be stable at the given groundwater condition. The erosion of the bentonite particles by a flowing groundwater did not significantly reduce the physical stability and thus the performance of a compacted bentonite buffer. However, it was expected that an erosion of the bentonite particles due to a groundwater flow will generate bentonite particles in a given groundwater condition, which could serve as a source of the colloids facilitating radionuclide migration through rock fractures.

Butron et al. (2010) presented a new pre-excavation grouting concept to prevent dripping and reduced the inflow into a railway tunnel. For this purpose, the tunnel's roof was driped-sealed using colloidal silica and the walls and invert of the tunnel were grouted with cement. The grouting design process followed a structured approach with pre-investigations of core-drilled boreholes providing parameters for the layout. Water pressure tests and pressure volume time recordings were used for the evaluation. Results showed that the design was successful: the total transmissivity was reduced from $4.9 \times 10^{-8} \mathrm{~m}^{2} / \mathrm{s}$ to the measurement limit $\left(1.6 \times 10^{-8} \mathrm{~m}^{2} / \mathrm{s}\right)$, and the dripping was reduced to eight spots from the roof. Improved rock characterization showed that the grout hole separation was within the transmissivity correlation length and that grouting efficiency depends to a large extent on the dimensionality of the flow system of the rock mass.

CHAPTER III

SAMPLE PREPARATIONS

3.1 Introduction

This chapter describes basic characteristics of materials tested in this study. Materials used in this experiment consist of sludge, bentonite, Portland cement and sandstone samples.

3.2 Sludge preparation

Sludge samples used in this research have been donated by Metropolitan Waterworks Authority. They are collected from sludge dewatering plant of Bang Khen Water Treatment Plant located in Bangkok Metropolis (Figures 3.1). Sludge is drained from the bottom of the clarifiers and backwash water from the filter beds. Sludge is pumped to the sludge dewatering plant. Dried sludge is a moist, brown, rough, fine-grained soil. Sludge samples are collected and packed in a moisture barrier bag. The $1,000 \mathrm{~kg}$ in bags is transported to Geomechanics Research Laboratory of Suranaree University of Technology, Nakhon Ratchasima province (Figures 3.2).

Dried sludge cake is taken out and dried under sunlight (Figure 3.3). The moisture is removed one more time in a hot-air oven at $140^{\circ} \mathrm{C}$ for at least 24 hours or until its weight remains constant. The dried sludge is sieved through a mesh no. 200. The packed sludge retaining on the mesh of the size is grounded by a milling machine
(Figure 3.4), and sieved through the mesh again. Dried sludge from the oven (Figure 3.5) is stored in a plastic box with a tight lid to prevent moisture.

One of the basic physical properties of the sludge is the distribution of the grain size particles. The distribution of different grain sizes affects the engineering properties of soil. Grain size analysis provides the grain size distribution, and it is required in classifying the soil. This test is performed to determine the percentage of different grain sizes contained within sludge. Sieve analysis is performed to determine the distribution of the coarser particles, and the hydrometer method is used to determine the distribution of the finer particles. Testing of these samples follows, as much as practical, the ASTM standards (D4543). Results of these tests can be shown in Figure 3.6. Comparison the grain sizes distribution obtained here with those from the Department of Primary Industries and Mines (DPIM) shows that they are slightly different due to the different sludge sampling periods. Sludge form Bang Khen Water Treatment Plant is likely to have different properties for different seasons. The test method of the ASTM standard (D854) used for determination of the specific gravity of solids passing a sieve indicates that the sludge has a specific gravity of 2.56 .

The Atterberg's limits are index properties of soil. Depending on the water content of the soil, it may appear in four states: solid, semi-solid, plastic and liquid. In each state the consistency and behavior of a soil is different and thus so are its engineering properties. The Atterberg limits can be used to distinguish between silt and clay, and it can distinguish between different types of silts and clays. Thus, sludge has been tested to find these indexes by using the ASTM D4318 and D2487 (ASTM

2010e, 2010f). The results are listed in Table 3.1. The sludge samples are classified according to the Unified Soil Classification System is in the MH (elastic silt).

Sludge samples from sludge dewatering plan of Bang Khen contain more than 52 percent silicon dioxide $\left(\mathrm{SiO}_{2}\right)$ and 24 percent aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ that chemical composition is determined based on X-ray fluorescence spectrometer (reported from National Metal and Materials Technology Center, National Science and Technology Development Agency database). X-ray fluorescence (XRF) is used to study the chemical compositions of the materials. The objective of analysis is to determine oxide concentrations in samples with X-ray fluorescence spectrometer, Philips PW-2404. Samples used in this analysis are sludge and bentonite powders. Test method is semi-quantitative X-ray fluorescence spectrometry analysis. Laboratory conducted here are under $25 \pm 5^{\circ} \mathrm{C}$ and relative humidity of $60 \pm 10 \%$. The sample were mixed with binder $\left(\mathrm{C}_{38} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{2}\right.$, sample:binder, 4:0.8 by weight). They were pressed to form pellets with 3.2 cm diameter. Results of oxide concentrations in the sludge samples are shown in Table 3.2.

3.3 Bentonites

Bentonite is an engineering material as excellent sealant material because of its low permeability, desirable swelling and self-healing characteristic, sorptive qualities and longevity in nature. Bentonite is used extensively for grouting material to reduce permeability in fractured rock mass. Bentonite mixed with cement is made to hold themselves, and not piping with the water pressure while curing in the rock fractures (Akgün and Daemen, 1999; Fuenkajorn and Daemen, 1996; Svermova et al., 2003; Metcalfe and Walker, 2004). The bentonite used in this study is from American

Colloid Company, United States of America. This is the widely used in the drilling industry, oil exploration, natural gas and mineral deposits. Tables 3.1 and 3.2 summarize the chemical compositions and engineering properties of the bentonite tested in this study.

3.4 Portland cement

Portland cement type I is used in conforms to the ASTM (C150). Portland cement can be purchased readily, low cost and widely used in the construction construction. Portland cement of INSEE Thong brand, bag cement 40 kg , used in this study is from the City Cement Public Company Limited, Thailand. The cement is kept in plastic box sealed to prevent moisture, cool-dry area.

Porland cement of INSEE Thong brand conforms to the ASTM C91 standard which is autoclave expansion of 0.001%, setting time (by Gillmore Method) for initial of 145 minutes and final of 245 minutes. The mortar compressive strength for 7 and 28 days is 13 and 15.5 MPa . The amount of air content in mortar is 15.5%, with water retention value of 78.5% (percentage of original flow). Table 3.3 summaries the chemical compositions of Portland cement type I, which is the same type used in this study.

3.5 Rock samples

The selection criteria for rock sample are that the rock should be homogeneous, low permeability and availability as much as possible. This is to minimize the intrinsic variability of the test results. The sandstone samples are used and collected from Phu Kradung formation. Sample preparations are carried out in the

Geomechanics Research (GMR) laboratory facility at Suranaree University of Technology. Sample preparations have been carried out for series for constant head flow testing (Figure 3.7) and direct shear test (Figure 3.8).

3.5.1 Sample preparation for constant head flow test under various normal stresses

Sandstone samples for the constant head test are prepared to have prismatic blocks of sandstone. Preparation of these samples follows the suggested methods proposed by Navarro (2010). The fractures are artificially made by applying a line load at the center to induce a splitting tensile crack in $152.4 \times 152.4 \times 152.4 \mathrm{~mm}^{3}$ prismatic blocks. The fracture area is $152.4 \times 152.4 \mathrm{~mm}^{2}$. The injection hole at the center of the upper block is 8 mm in diameter. A minimum of sixty sandstone specimens are tested for constant head flow test with both three portions of sludgemixed cement and bentonite-mixed cement under normal stress ranging from 0.25 1.25 MPa .

3.5.2 Sample preparation for direct shear test under various normal stresses

Sandstone samples for the constant head test are prepared to have cylindrical shape. Preparation of these samples follows the ASTM standards (D4543) with a nominal dimension of 100 mm in diameter and 100 nm long. The fractures are artificially made by applying a line load at the center of length to induce a splitting tensile crack. The fracture area is $7,854 \mathrm{~mm}^{2}$. A minimum of forty sandstone specimens are tested for direct shear test under normal stress ranging from 0.25-1.25 MPa.

Table 3.1 Atterberg's limits and specific gravity of sludge and bentonite.

Atterberg Limits	Bentonite (\% weight)		Sludge (\% weight)	
	SUT $^{\mathbf{1}}$	US $^{\mathbf{2}}$	SUT $^{\mathbf{1}}$	KU $^{\mathbf{3}}$
Liquid limit	357	478	55	69
Plastic limit	44	28	22	42
Plasticity index	313	449	23	28
Specific gravity	2.50	-	2.56	-

Note: $\quad{ }^{1}$ SUT $=$ Suranaree University of Technology Laboratory,
${ }^{2}$ after Castelbaum and Shackelford (2009)
${ }^{3}$ after Kanchanamai (2003)

Table 3.2 Results of oxide concentrations in the bentonite and sludge samples.

Oxide	Concentration (\% weight)			
	Bentonite		Sludge	
	SUT ${ }^{1}$	ACC^{2}	SUT	TU ${ }^{\mathbf{3}}$
$\mathrm{Na}_{2} \mathrm{O}$	1.63	2.2	0.22	0.37
MgO	2.44	1.3	0.96	1.43
$\mathrm{Al}_{2} \mathrm{O}_{3}$	19.85	19.8	23.47	25.76
SiO_{2}	61.93	61.3	52.37	59.44
$\mathrm{P}_{2} \mathrm{O}_{5}$	0.05	-	0.34	0.30
SO_{3}	1.27	-	0.55	0.37
Cl	N/D ${ }^{4}$	-	0.07	-
$\mathrm{K}_{2} \mathrm{O}$	0.44	0.4	1.55	2.39
CaO	1.27	0.6	0.79	0.91
TiO_{2}	0.19	0.1	0.79	0.83
$\mathrm{V}_{2} \mathrm{O}_{5}$	N/D	-	0.02	-
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	N/D	-	0.02	-
MnO	0.02	-	0.22	-
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	4.45	3.9	6.33	7.84
CuO	0.01	-	0.01	-
$\mathrm{Rb}_{2} \mathrm{O}$	N/D	-	0.01	-
SrO	0.03	-28	0.01	-
$\mathrm{Y}_{2} \mathrm{O}_{3}$	0.01	-	<0.01	-
ZrO_{2}	0.03	-	0.03	-
$\mathrm{Nb}_{2} \mathrm{O}_{5}$	0.01	-	<0.01	-
BaO	0.03	-	0.01	-
CeO_{2}	0.04	-	N/D	-
LOI. at $1,025^{\circ} \mathrm{C}$	6.29	-	12.20	3.06
Total	100	-	100	-

Note: $\quad{ }^{1}$ SUT = Suranaree University of Technology Laboratory,
${ }^{2}$ ACC $=$ American Colloid Company Technical Data,
${ }^{3} \mathrm{TU}=$ Tummasart University Laboratory (after Hadsanan et al., 2006)
${ }^{4} \mathrm{~N} / \mathrm{D}=$ Not detectable

Table 3.3 Results of oxide concentrations in Porland cement. (Ali, 2008)

Silicon dioxide $\left(\mathrm{SiO}_{2}\right)$	20.58
Aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$	5.71
Ferric oxide $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$	2.94
Calcium oxide (CaO)	64.76
Magnesium oxide (MgO)	0.87
Potassium oxide $\left(\mathrm{K}_{2} \mathrm{O}\right)$	0.67
Sulfer trioxide $\left(\mathrm{SO}_{3}\right)$	2.63
Sodium oxide $\left(\mathrm{Na}_{2} \mathrm{O}\right)$	0.14
Titanium Oxide $\left(\mathrm{TiO}_{2}\right)$	0.29
Phosphorus oxide $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$	0.06
Loss on ignition $\left(\mathrm{LOI}^{2}\right)$	0.96

Figure 3.1 Sludge from sludge dewatering plant of Bang Khen Water Treatment Plant located in Bangkok Metropolis.

Figure 3.2 Sludge samples packed in a moisture barrier bag.

Figure 3.3 Sludge is dehydrated by drying under sunlight.

Figure 3.4 Sludge cakes are cracked by a milling machine.

Figure 3.5 Sludge in a hot-air oven at $140^{\circ} \mathrm{C}$ for at least 24 hours or until its weight remains constant.

Figure 3.6 Grain size distribution of water treatment sludge compared SUT and DPIM test results.

Figure 3.7 Some sandstone samples with $152.4 \times 152.4 \times 152.4 \mathrm{~mm}^{3}$ prismatic blocks for series for constant head flow testing.

Figure 3.8 Sandstone samples with a nominal dimension of 100 mm in diameter and 100 nm long for direct shear testing.

CHAPTER IV

GROUT PREPARATIONS

4.1 Introduction

This chapter describes the methods and results of laboratory experiments used to determinate the most suitable mixing ratios for grouting in rock fracture.

4.2 Viscosity and density of mixtures

The objectives of these tests are to determine proportioning of mixtures and methods to be used to test the mechanical and hydraulic properties in the next step. These results lead to the determination that the most suitable mixing ratios of sludgemixed cement should be proportional for grouting in rock fracture. Viscosity measurement follows, as much as practical, the ASTM standard (D2196). Apparatus used in these experiment consist of:

1) Sludge (Figure 4.1),
2) Bentonite (Figure 4.2),
3) Porland cement (Figure 4.3),
4) Distilled water,
5) Digital weight scale with maximum capacity of $2,000 \mathrm{~g}$ and accuracy to ± 0.01 g. (Figure 4.4),
6) Mixer, Kitchenaid Professional 600 6QT 575 watt stand mixer, with maximum capacity of $5,000 \mathrm{~cm}^{3}$ and 6 speed control (Figure 4.5),
7) Viscometer,Bookfield viscometer RV 203 Watt 50 Hz (Figure 4.6)
8) Digital thermometer HIP C0905019480 with accuracy to $\pm 0.1^{\circ} \mathrm{C}$ (Figure 4.7).

4.2.1 Test methods

The preliminary selection in proportions of mixtures are determined and given by using viscosity values. Proportions of mixtures, $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$, are 0:10, 1:10, 2:10, $3: 10,4: 10,5: 10,6: 10,7: 10,8: 10,9: 10$ and $10: 10$ with $\mathrm{W}: \mathrm{C}$ ratios ranging from 4:10, 8:10, 10:10 and 12.5:10. Slurry of mixtures in $1,000 \mathrm{~cm}^{3}$ by weight used here are shown in Table 4.1. Test procedure also follow:

1) Material balance of the four types defined, proportion. Then pack into plastic bags type bag and tie securely (Figure 4.8).
2) The material is weighed and then put together in a plastic bag and tie tightly. Make a homogeneous mixture by shaking several times.
3) Pour the distilled water in the bag to weigh it down and turn the mixer speed up to 275 rpm . Mixing of all grouts is accomplished using a blade paddle mixer as suggested in ASTM standard C938.
4) Pour the mixed material in Section 2) into the mix to run at the same time. If there is additional material should be poured within a two-minute timer and start pouring the mixture into distilled water. I measured the room temperature.
5) In a homogeneous mix for 3 minutes to complete mixing at 275 rpm , then turn off the mixer.
6) Determine the density and viscosity of the mixture slurry by using standard ASTM standard (D2196). Pour in a beaker with a volume of the mixture is equal to exactly 500 cc (Figure 4.9).
7) Weigh the beaker with the mixture. Subtract the weight of the beaker from the results and then divided by the volume of the mixture (500 cc) is the density of mixture slurry.
8) Specific gravity (SG) of the mixture is calculated from equation

$$
\begin{equation*}
\mathrm{SG}=\rho_{\text {slurry }} / \rho_{\mathrm{w}} \tag{4.1}
\end{equation*}
$$

where $\rho_{\text {slurry }}$ is a density of mixture slurry, and ρ_{w} is density of distilled water at the time of measurement. The results of the test density and specific gravity are summarized in Table 4.2.

Viscosity test is performed after the weighing of ingredients in the measuring beaker with a volume of 500 cc , which is continuing immediately. The viscosity of the mixture, which is resistant to flow, can be determined by a rotational viscometer, Brookfield model RV dial reading viscometer. Spindle set (RV-1 through RV-7) is selected for this test. Testing of viscosity follows the ASTM standard D2196.

1) For the mixture of given viscosity, the resistance is greater as the spindle size and rotational speed increase. The minimum viscosity ranged, is obtained by using the largest spindle at the highest speed; the maximum range by using the smallest spindle at the slowest speed.
2) The sample is placed in Glass Beaker ($500 \mathrm{~cm}^{3}$) under viscometer (Figure 4.10).
3) Weigh and temperature of each sample are recorded to determine a slurry density.
4) Releasing the brake once the viscometer is rotating smoothly and time for 60 seconds. Brake firmly is depressed and the viscometer is turned off during continuing to hold the brake down. Values on the viscometer gauge are read and recorded. Recording the number of the spindles are used.
5) Calculating the viscosity in centipoises by multiplying the meter reading by the multiplier corresponding to the particular spindle used.

The reading of the test Viscosity Brookfield is in units of centipoise (cP) or equal mPa $\cdot \mathrm{s}$ in dynamic viscosity. The dynamic viscosity is converted to the kinetic viscosity by equation (4.2).

$$
\begin{equation*}
\mu=\rho \cdot v \tag{4.2}
\end{equation*}
$$

where μ is dynamic viscosity, v is the kinetic viscosity, and ρ is slurry density.

4.2.2 Test results

Figure 4.11 shows dynamic viscosity of bentonite-cement and sludgecement mixtures for different $\mathrm{W}: \mathrm{C}$ ratios. The results of mixture ratios by weight of the total volume of $1,000 \mathrm{cc}$ are listed in Table 4.2. The results of slurry density tests in beakers of 500 cc are listed in Table 4.2. The results of slurry viscosity tests are listed in Table 4.3.

Table 4.1 Mixture ratios by weight of the total volume of $1,000 \mathrm{cc}$.

Binder	W:C	$\begin{gathered} \mathrm{S}: \mathrm{C} \\ \text { or } \\ \mathrm{B}: \mathrm{C} \end{gathered}$	Weight (g)		
			Cement	Sludge or Bentonite	Water
Sludge	8:10	1:10	636	64	509
	8:10	2:10	595	119	476
	8:10	3:10	558	167	446
	8:10	4:10	526	210	421
	8:10	5:10	497	249	398
	8:10	6:10	471	283	377
	8:10	7:10	448	314	359
	10:10	1:10	564	56	564
	10:10	2:10	531	106	531
	10:10	3:10	502	151	502
	10:10	4:10	476	190	476
	10:10	5:10	452	226	452
	10:10	6:10	431	258	431
	10:10	7:10	411	288	411
	10:10	8:10	393	315	393
	10:10	0/9:10	3778	339	377
	10:10	10:10	362	362	362
	12.5:10	1:10	495	49	618
	12.5:10	2:10	469	94	586
	12.5:10	3:10	446	134	558
	12.5:10	4:10	425	170	532
	12.5:10	5:10	406	203	508
	12.5:10	6:10	389	233	486
	12.5:10	7:10	373	261	466
	12.5:10	8:10	358	287	448
	12.5:10	9:10	345	310	431
	12.5:10	10:10	332	332	415

Table 4.1 Mixture ratios by weight of the total volume of $1,000 \mathrm{cc}$ (continued).

Binder	W:C	$\begin{gathered} \mathrm{S}: \mathrm{C} \\ \text { or } \\ \mathrm{B}: \mathrm{C} \end{gathered}$	Weight (g)		
			Cement	Sludge or Bentonite	Water
Bentonite	10:10	1:10	570	57	570
	10:10	2:10	542	108	542
	10:10	3:10	516	155	516
	40:10	1:10	210	21	841
	40:10	2:10	206	41	825
	40:10	3:10	203	61	810
	40:10	4:10	199	80	795
	40:10	5:10	195	98	781
	40:10	6:10	192	115	767
	40:10	7:10	189	132	754
	40:10	8:10	-185	148	741
	40:10	9:10	- 182	164	729
	40:10) 10:10	(179	179	717
Cement	8:10	${ }^{7} 0: 10$ gil	โUโ684	0	547
	10:10	0:10	602	0	602
	12.5:10	0:10	537	0	644
	40:10	0:10	214	0	858

Table 4.2 Results of slurry density tests in beakers of 500 cc .

Binder	W:C	$\begin{gathered} \mathrm{S}: \mathrm{C} \\ \text { or } \\ \mathrm{B}: \mathrm{C} \end{gathered}$	Slurry Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Slurry Weight (g)	Slurry Density (g/cc)	Water Density (g/cc)	Specific Gravity
Sludge	8:10	1:10	28.4	766.6	1.53	0.9961	1.54
	8:10	2:10	28.7	777.6	1.56	0.9960	1.56
	8:10	3:10	29.6	787.5	1.58	0.9958	1.58
	8:10	4:10	29.3	825.3	1.65	0.9959	1.66
	8:10	5:10	31	872.7	1.75	0.9953	1.75
	8:10	6:10	31.5	836.4	1.67	0.9952	1.68
	8:10	7:10	31.5	888.0	1.78	0.9952	1.78
	10:10	1:10	28.6	733.5	1.47	0.9961	1.47
	10:10	2:10	30.4	734.6	1.47	0.9955	1.48
	10:10	3:10	30.2	742.0	1.48	0.9956	1.49
	10:10	4:10	31.5	774.8	1.55	0.9952	1.56
	10:10	5:10	30.3	794.5	1.59	0.9956	1.60
	10:10	6:10	28.9	818.8	1.64	0.9960	1.64
	10:10	7:10	30.6	811.9	1.62	0.9955	1.63
	10:10	8:10	30.3	825.10	1.65	0.9956	1.66
	10:10	9:10	30.6	846.9	1.69	0.9955	1.70
	10:10	10:10	อาล30.6คโし	930.3	1.86	0.9955	1.87
	12.5:10	1:10	27.6	685.6	1.37	0.9963	1.38
	12.5:10	2:10	28.4	695.6	1.39	0.9961	1.40
	12.5:10	3:10	28.8	725.9	1.45	0.9960	1.46
	12.5:10	4:10	29.3	713.3	1.43	0.9959	1.43
	12.5:10	5:10	30.9	760.4	1.52	0.9954	1.53
	12.5:10	6:10	29.8	727.1	1.45	0.9957	1.46
	12.5:10	7:10	29.3	728.6	1.46	0.9959	1.46
	12.5:10	8:10	29.8	754.0	1.51	0.9957	1.51
	12.5:10	9:10	30.3	762.7	1.53	0.9956	1.53
	12.5:10	10:10	30.8	777.8	1.56	0.9954	1.56

Table 4.2 Results of slurry density tests in beakers of 500 cc (continued).

Binder	W:C	$\begin{gathered} \mathrm{S}: \mathrm{C} \\ \text { or } \\ \mathrm{B}: \mathrm{C} \end{gathered}$	Slurry Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Slurry Weight (g)	Slurry Density (g/cc)	Water Density (g/cc)	Specific Gravity
Bentonite	10:10	1:10	28.2	705.4	1.41	0.9962	1.42
	10:10	2:10	27.9	725.0	1.45	0.9963	1.46
	10:10	3:10	29.4	757.1	1.51	0.9958	1.52
	40:10	1:10	28.9	584.9	1.17	0.9960	1.17
	40:10	2:10	29.3	554.9	1.11	0.9959	1.11
	40:10	3:10	28.8	583.4	1.17	0.9960	1.17
	40:10	4:10	28.6	585.3	1.17	0.9961	1.18
	40:10	5:10	29.8	577.6	1.16	0.9957	1.16
	40:10	6:10	28.6	571.5	1.14	0.9961	1.15
	40:10	7:10	29.1	583.2	1.17	0.9959	1.17
	40:10	8:10	29	575.5	1.15	0.9959	1.16
	40:10	9:10	29.1	586.9	1.17	0.9959	1.18
	40:10	10:10	28.8	589.8	1.18	0.9960	1.18
Cement	8:10	0:10	ปาลัย 29のโนโล	769.5	1.54	0.9959	1.55
	10:10	0:10	29.1	723.3	1.45	0.9959	1.45
	12.5:10	0:10	27.6	725.4	1.45	0.9963	1.46
	40:10	0:10	27.9	584.7	1.17	0.9963	1.17

Table 4.3 Results of slurry viscosity tests.

| Binder | W:C | $\begin{array}{c}\text { S:C } \\ \text { or } \\ \text { B:C }\end{array}$ | Air | | Water | Slurry | $\begin{array}{c}\text { Slurry } \\ \text { Density } \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right)\end{array}$ | $\begin{array}{c}\text { Dynamic } \\ \text { Viscosity } \\ (\mathrm{mPa} \cdot \mathrm{s})\end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Kinematic

Viscosity

\left(10^{-4} \mathrm{~m}^{2} / \mathrm{s}\right)\end{array}\right]\)

Table 4.3 Results of slurry viscosity tests (continued).

Binder	W:C	$\begin{gathered} \text { S:C } \\ \text { or } \\ \text { B:C } \end{gathered}$	Temperature (${ }^{\circ} \mathrm{C}$)			Slurry Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Dynamic Viscosity (mPa•s)	Kinematic Viscosity $\left(10^{-4} \mathrm{~m}^{2} / \mathrm{s}\right)$
			Air	Water	Slurry			
Bentonite	10:10	1:10	27.8	27.8	28.2	1.41	30,930	2.19
	10:10	2:10	27.7	27.5	27.9	1.45	106,000	7.31
	10:10	3:10	28.7	28.8	29.4	1.51	346,400	22.88
	40:10	1:10	30.1	27.5	28.9	1.17	480	0.04
	40:10	2:10	30.5	27.5	29.3	1.11	960	0.09
	40:10	3:10	30.5	27.5	28.8	1.17	1,380	0.12
	40:10	4:10	30.3	17.5	28.6	1.17	3,020	0.26
	40:10	5:10	30.4	27.5	29.8	1.16	6,290	0.54
	40:10	6:10	30.4	29.4	28.6	1.14	13,580	1.19
	40:10	7:10	30.4	29.4	29.1	1.17	26,530	2.27
	40:10	8:10	29.6	29.4	29.0	1.15	43,000	3.74
	40:10	9:10	30.3	29.4	29.1	1.17	80,700	6.88
	40:10	10:10	29.6	29.4	28.8	1.18	160,670	13.62
Cement	8:10	0:10	31.4	27.5	29.0	1.54	10,380	0.67
	10:10	0:10	30.8	27.9	29.15	1.45	6,230	0.43
	12.5:10	0:10	31.0	27.5	27.6	1.45	1,770	0.12
	40:10	0:10	29.8	27.5	27.9	1.17	170	0.01

Figure 4.1 Sludge sample packed in a plastic box with a lid to prevent moisture.

Figure 4.2 American Colloid Bentonite used in this study.

Figure 4.3 Bag of Portland cement 40 kg is used in this study.

Figure 4.4 Digital weight scale with maximum capacity for 2000 grams and accuracy to ± 0.01 gram.

Figure 4.5 Mixer, Kitchenaid Professional 600 6QT 575 watt stand mixer, with maximum capacity for $5,000 \mathrm{~cm}^{3}$ and 6 speed control.

Figure 4.6 Viscometer, Bookfield viscometer RV 203 Watt 50 Hz .

Figure 4.7 Digital thermometer HIP C0905019480 with accuracy to $\pm 0.1^{\circ} \mathrm{C}$.

Figure 4.8 Grouting materials in plastic bags are prepared for mix proportion (a) cement and water, (b) cement, water and sludge, and (c) bentonite, cement and water.

Figure 4.9 Slurry volume of 500 cc in beakers for the density and viscosity tests (a) cement paste (b) sludge-cement slurry, and (c) bentonite-cement slurry.

Figure 4.10 Brookfield model RV dial reading viscometer is used for viscosity and slurry density tests.

Figure 4.11 Dynamic viscosity of bentonite-cement and sludge-cement mixtures for different $\mathrm{W}: \mathrm{C}$ ratios.

CHAPTER V

MECHANICAL PROPERTIES TESTING

5.1 Introduction

This chapter describes the methods and results of laboratory tests used to determinate the maximum compressive strength, elastic modulus, and Poisson's ratio for the six proportions of grouting materials selected from Chapter IV. Pure cement is tested in term of mechanical properties. Preparation of these samples follows, as much as practicable, the ASTM standards (ASTM D7012). Direct shear testing is performed to determine the maximum shear force occurs at the interface among the surfaces of the grouting material and surface of fractured sandstone.

5.2 Uniaxial compressive strength testing

The objectives of the uniaxial compressive strength tests are, 1) to evaluate the basic mechanical properties of grouting material specimens of two-inch in diameter at three days curing. They are used as an index to confirm that the proportions of S:C and $B: C$ mixtures are appropriate selection of the viscosity of mixture slurry form Chapter IV, and 2) to determine the uniaxial compressive strength, Poison's ratio and elastic modulus of grouting material specimens of four-inch in diameter at three days curing. This is a part of the material characterization. The material parameters are sample size, weight, density, failure load, and mode of failure, etc. These parameters are monitored, recorded and analyzed. The suitable mixing ratios for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ mixtures are selected and compared.

5.2.1 Test methods

Preparation of these samples follows, as much as practical, the ASTM D7012, C938 and C39 (ASTM 2010a, 2010b, 2010c). The uniaxial compressive strength test is carried out at the ages of 3 days curing. Cylindrical specimens of 50.8 mm diameter are prepared for the basic uniaxial compressive strength test. During the test, cylindrical specimens of 101.6 mm diameter, the axial deformation and lateral deformation are monitored. The maximum loaded at the failure is recorded. The compressive strength $\left(\sigma_{\mathrm{C}}\right)$, Poisson's ratio (v), elastic modulus (E) are determined for sludge and bentonite-mixed cement ratios vary from 1:10, 2:10, 3:10, 4:10, to 5:10.

Equipment and Apparatus

1) Rubber stopper for PVC pipe of 2 inches in diameter.
2) Point Loaded-Uniaxial Tester, model PLT-75, provide up to 30 tons of load.
3) Cutter, model 51 ZE-LG3-570A Tile Cutter, with speed $2,950 \mathrm{r} / \mathrm{min}$ can be cut with a maximum 51 mm thick.

Initially uniaxial compressive strength test procedure follows as below:

1) The mixture slurry from the preparation in Chapter IV is placed in a 54 mm PVC mold with rubber stopper plugged at the bottom (Figure 5.1). Joint connection should not leak out between PVC pipe and rubber stopper.
2) They are cured under water at room temperature (ASTM standard C192).
3) All specimens are cured for three days before testing. They are out of the mold and cut to a L/D ratio of about 2.0 to 2.5 (about 4 to 6 inches in length) (Figures 5.2 and 5.3).
4) Specimens are tested with a loading rate of $1 \mathrm{MPa} / \mathrm{s}$ for uniaxial compressive strength test (Figure 5.4).
5) During the test, the failure modes are monitored (Figure 5.5). The maximum loaded at the failure is recorded. The compressive strength $\left(\sigma_{\mathrm{C}}\right)$ is determined and compared for suitable mixing ratios.

The mixtures from the preparation (in Chapter IV) and the results from initially uniaxial compressive strength test are used for selected suitable mixing ratios. The suitable mixing ratios for the $\mathrm{S}: \mathrm{C}$ mixtures are $1: 10,3: 10,5: 10$ and for the $\mathrm{B}: \mathrm{C}$ mixtures are $1: 10,2: 10,3: 10$ both with the $\mathrm{W}: \mathrm{C}$ of $1: 1$ by weight. Uniaxial compressive strength test procedure follows as below:

1) The mixture slurry from the preparation (in section 5.1) is placed in a PVC mold of 101.6 mm diameter and 203.2 mm long (Figure 5.6).
2) They are cured under water at room temperature (ASTM standard C39).
3) All specimens are cured for three days before testing. They are out of the mold and cut to L/D ratio of about 2.0. Summary of parameters and results for basic mechanical testing are listed in Table 5.1.
4) Uniaxial compressive strength tests have been performed on specimens with loading rate of $1 \mathrm{MPa} / \mathrm{s}$ (ASTM D7012).
5) During the test, axial and diametric deformations are monitored. Dial gauges are the resolutions of $\pm 0.01 \mathrm{~mm}$.
6) The maximum loaded at the failure is recorded. The cylindrical specimen is loaded vertically using the compression machine shown in Figure 5.7. Figure 5.8 shows failure modes for each specimen.

The failure stress is calculated by dividing the axial load by the crosssection area of specimen. The compressive strength $\left(\sigma_{c}\right)$ is determined from the maximum load $\left(\mathrm{P}_{\mathrm{f}}\right)$ divided by the original cross-section area (A) :

$$
\begin{equation*}
\sigma_{c}=\mathrm{P}_{\mathrm{f}} / \mathrm{A} \tag{5.3}
\end{equation*}
$$

5.2.2 Test results

The results of the uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ mixtures with $\mathrm{W}: \mathrm{C}=10: 10,8: 10,12.5: 10,40: 10$ at 3 days of curing are shown in Figure 5.9. Parameters and results of uniaxial compressive strength test on the C, B:C and $\mathrm{S}: \mathrm{C}$ mixtures specimens of 50.8 mm and 101.6 mm diameter with $\mathrm{W}: \mathrm{C}=1: 1$ are summarized in Table 5.2.

The results of the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ show that the chemical reaction between cement and water with the large cast are better than the small cast. Figures 5.10 and 5.11 show the uniaxial compressive strength and elastic modulus for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$. The uniaxial compressive strength and elastic modulus for the specimens with the diameter of 101.6 mm are summarized in Tables 5.3 and 5.4. The uniaxial compressive strength for the specimens with the diameter of 50.8 mm is summarized in Table 5.5. The maximum compressive strengths for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ mixtures are similar.

5.3 Shearing resistance between grout and fracture

The objective of the fracture shear test is to determine the direct shear strength of grouting material in sandstone fracture. Grouting materials are sludge- and bentonite-mixed cement. The experimental procedure is similar to the ASTM standard
(D5607). The constant normal stresses are $0.25,0.5,0.75,1.0$ and 1.25 MPa . The shear stresses are applied while the shear displacement and head drop is monitored for every 0.2 mm of shear displacement. Similarities and differences of the results are compared. The mixtures from the preparation in Chapter IV and the results from tasks 5.2 are used for selected suitable mixing ratios.

5.3.1 Test methods

Proportions of S:C mixtures are $0: 10,3: 10,5: 10$, and for $\mathrm{B}: \mathrm{C}$ mixtures are 1:10, 2:10, $3: 10$ with $\mathrm{W}: \mathrm{C}$ ratio of $10: 10$ by weight. Preparation of these samples follows, as much as practical, the ASTM C938 (ASTM 2010b). The PVC molded of 101.68 mm diameter is attributed to the rock samples with a nominal dimension of 100 mm in diameter and 100 nm long. The fractures are artificially made by applying a line load at the center of length to induce splitting tensile crack. Some sandstone specimens and surface sandstone of 101.6 mm diameter prepared for direct shear testing are shown in Figures 5.12 and 5.13. The grouting material in the PVC mold has 50.8 mm thick that occur between the two rock samples (Figure 5.14). The grouting materials are placed into the cylindrical PVC mold. The shear strength tested, is carried out at the ages of 3 days curing. Laboratory arrangement for the three-ring shear test equipment is shown in Figure 5.15 (Sonsakul and Fuenkajorn, 2013). The constant normal stresses used, are $0.25,0.5,0.75,1.0$ and 1.25 MPa . The shear stressed, is applied while the shear displacement and dilation are monitored for every 0.2 mm of shear displacement. The failure modes are recorded. The test results are presented in forms of the shear strength as a function of normal stress as follows:

$$
\begin{equation*}
\tau=\mathrm{F} / 2 \mathrm{~A} \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\mathrm{n}}=\mathrm{P} / \mathrm{A} \tag{5.5}
\end{equation*}
$$

where τ is the shear stress, F is sheared force, A is cross section area, σ_{n} is normal stress, P is normal load.

The results are presented in the form of the Coulomb's criterion. The line tangent to each of these circles defines the Coulomb's criterion and can be expressed by:

$$
\begin{equation*}
\tau=c_{p}+\sigma \tan \phi_{p} \tag{5.6}
\end{equation*}
$$

where τ and σ are the shear stress and normal stress, ϕ_{p} is the angle of internal friction, and c_{p} is cohesion.

5.3.2 Test results

Figure 5.16 shows some samples after testing. Table 5.6 lists the result of shear strength. Shearing resistance between cement grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$ are shown in Figures 5.17 to 5.23 . The results in the form of the Coulomb's criterion are shown in Figure 5.24. Table 5.7 lists the Coulomb's parameters.

Table 5.1 Summary of parameters and results for basic mechanical testing.

Types	Sample no.	Length (mm)	$\begin{aligned} & \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$	L/D	Weight (kg)	Density (g/cc)
C	C9-1	202.7	107.6	1.88	1.53	0.83
	C9-2	201.0	106.9	1.88	1.50	0.83
	C9-3	206.4	106.4	1.94	1.49	0.81
	C9-4	203.3	107.0	1.90	1.54	0.84
	C9-5	202.6	107.6	1.88	1.55	0.84
B:C=0.1	BC20-1	204.3	107.8	1.89	2.46	1.32
	BC20-2	204.7	106.2	1.93	2.45	1.35
	BC20-3	204.1	107.7	1.90	2.43	1.31
	BC20-4	204.3	105.9	1.93	2.42	1.34
	BC20-5	205.0	105.6	1.94	2.54	1.41
$\mathrm{B}: \mathrm{C}=0.2$	BC21-1	202.0	107.1	1.89	2.60	1.43
	BC21-2	204.4	106.5	1.92	2.56	1.41
	BC21-3	196.8	106.8	1.84	2.43	1.38
	BC21-4	205.6	106.8	1.93	2.44	1.32
	BC21-5	7 207.5	106.3	, 1.95	2.50	1.36
B:C $=0.3$	BC9-6	207.5	าค106.3	1.95	2.45	1.33
	BC9-7	207.5	106.3	1.95	2.50	1.36
	BC9-8	207.5	106.3	1.95	2.43	1.32
	BC9-9	207.5	106.3	1.95	2.44	1.32
	BC9-10	207.5	106.3	1.95	2.43	1.32

Table 5.1 Summary of parameters and results for basic mechanical testing (continued).

Types	Sample no.	Length (mm)	$\begin{aligned} & \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$	L/D	Weight (kg)	Density (g/cc)
$\mathrm{S}: \mathrm{C}=0.1$	SC40-1	202.7	105.4	1.92	3.50	1.98
	SC40-2	202.9	106.3	1.91	3.30	1.83
	SC40-3	204.4	106.9	1.91	3.60	1.96
	SC40-4	204.6	106.9	1.91	3.45	1.88
	SC40-5	204.4	107.3	1.90	3.50	1.89
$\mathrm{S}: \mathrm{C}=0.3$	SC22-6	203.9	107.4	1.90	3.21	1.74
	SC22-7	206.6	107.4	1.92	3.24	1.73
	SC22-8	203.2	108.3	1.88	3.50	1.87
	SC22-9	205.3	107.0	1.92	3.41	1.85
	SC22-10	205.2	106.7	1.92	3.44	1.88
S:C=0.5	SC21-6	205.5	106.6	1.93	3.20	1.74
	SC21-7	207.0	105.7	1.96	3.25	1.79
	SC21-8	208.8	107.3	1.95	3.35	1.77
	SC21-9	208.2	108.1	1.93	3.40	1.78
	SC21-10	208.4	106.4	1.96	3.50	1.89

Table 5.2 Summary of uniaxial compressive strength test results on the C, B:C and S:C mixtures specimens of 50.8 mm diameter.

Binder	W:C	S:C or B:C	Number of	Uniaxial Compressive
Sludge	8:10	1:10	5	1.39 ± 0.19
	8:10	2:10	15	2.77 ± 0.20
	8:10	3:10	8	2.75 ± 0.12
	8:10	4:10	5	2.72 ± 0.14
	10:10	1:10	2	0.79 ± 0.12
	10:10	2:10	13	0.95 ± 0.11
	10:10	3:10	3	1.22 ± 0.10
	10:10	4:10	3	1.13 ± 0.17
	10:10	5:10	3	1.10 ± 0.34
	10:10	6:10	3	1.02 ± 0.00
	10:10	8:10	3	0.88 ± 0.01
	10:10	10:10	3	0.81 ± 0.00
	12.5:10	2:10	5	0.62 ± 0.02
	12.5:10	4:10	5	0.52 ± 0.09
	12.5:10	5:10	15 ¢	0.44 ± 0.01
Bentonite	10:10	1:10	10	1.05 ± 0.10
	10:10	2:10	7	1.83 ± 0.00
	10:10	3:10	9	1.77 ± 0.09
	40:10	1:10	5	0.19 ± 0.05
	40:10	2:10	5	0.07 ± 0.03
	40:10	3:10	5	0.08 ± 0.02
	40:10	4:10	5	0.04 ± 0.00
	40:10	5:10	5	0.05 ± 0.02
Cement	8:10	0:10	5	1.14 ± 0.10
	10:10	0:10	5	0.85 ± 0.00
	12.5:10	0:10	5	0.70 ± 0.10
	40:10	0:10	5	0.41 ± 0.03

Table 5.3 Summary of uniaxial compressive strength test results on the C, B:C and $\mathrm{S}: \mathrm{C}$ mixtures specimens of 101.6 mm diameter with $\mathrm{W}: \mathrm{C}=1: 1$.

Types	Number of Samples	Mixing Ratio	Uniaxial Compressive Strength (MPa)
C	5	$0: 10$	1.40 ± 0.27
B:C	5	$1: 10$	1.59 ± 0.28
B:C	5	$2: 10$	2.09 ± 0.26
B:C	5	$3: 10$	1.92 ± 0.05
S:C	5	$1: 10$	1.35 ± 0.06
S:C	5	$3: 10$	1.77 ± 0.21
S:C	5	$5: 10$	1.52 ± 0.19

Table 5.4 Poisson's ratio and elastic modulus from uniaxial compressive strength testing.

Types	Number of Samples	Mixing Ratio	Poisson's Ratio	Elastic Modulus (MPa)
C	5	$0: 10$	0.18	212
B:C	5	$1: 10$	0.17	193
B:C	5	$2: 10$	0.14	275
B:C	5	$3: 10$	0.16	228
S:C	5	$1: 10$	0.15	190
S:C	5	$3: 10$	0.21	224
S:C	5	$5: 10$	0.16	261

Table 5.5 Summary of uniaxial compressive strength test results on the C, B:C and $\mathrm{S}: \mathrm{C}$ mixtures specimens of 50.8 mm diameter with $\mathrm{W}: \mathrm{C}=1: 1$.

Types	Number of Samples	Mixing Ratio	Uniaxial Compressive Strength (MPa)
C	4	-	0.85 ± 0.00
B:C	2	$1: 10$	1.05 ± 0.10
B:C	2	$2: 10$	1.83 ± 0.00
B:C	2	$3: 10$	1.77 ± 0.09
S:C	2	$1: 10$	0.79 ± 0.12
S:C	3	$3: 10$	1.22 ± 0.10
S:C	3	$5: 10$	1.10 ± 0.34

Table 5.6 Summary of direct shear strength test results on the C, B:C and S:C mixtures specimens with $\mathrm{W}: \mathrm{C}=1: 1$.

Normal Stress (MPa)	Pure Cement								Seak Shear Stress (MPa) S:C	S:C $=3: 10$	S:C $=5: 10$	B:C $=1: 10$	B:C $=2: 10$	B:C $=3: 10$
	0.62	0.36	0.31	0.34	0.37	0.22	0.25							
0.50	0.68	0.49	0.42	0.46	0.53	0.34	0.37							
0.75	0.77	0.62	0.55	0.60	0.65	0.43	0.47							
1.00	0.86	0.74	0.68	0.71	0.77	0.52	0.56							
1.25	0.90	0.83	0.77	0.80	0.85	0.63	0.67							
1.50	0.93	0.90	0.83	0.86	0.90	0.74	0.80							

Table 5.7 Summary of shear strength parameters calibrated from direct shear tests using Coulomb's criteria.

Sample No.	$c_{p}(\mathrm{MPa})$	$\tan \phi_{\mathrm{p}}$	$\phi_{\mathrm{p}}($ degrees $)$	R^{2}
Pure Cement	0.563	0.263	14.7	0.962
$\mathrm{~S}: \mathrm{C}=1: 10$	0.275	0.436	23.6	0.985
$\mathrm{~S}: \mathrm{C}=3: 10$	0.213	0.435	23.5	0.988
$\mathrm{~S}: \mathrm{C}=5: 10$	0.255	0.428	23.2	0.985
$\mathrm{~B}: \mathrm{C}=1: 10$	0.306	0.424	23.0	0.968
$\mathrm{~B}: \mathrm{C}=2: 10$	0.121	0.410	22.3	0.998
$\mathrm{~B}: \mathrm{C}=3: 10$	0.143	0.430	23.3	0.996

Figure 5.1 PVC mold has an inner diameter of 50.8 mm with a rubber stopper on the

Figure 5.2 Core sample is cut to obtain the desired length with ZE-LG3-570A Tile Cutter.

Figure 5.3 Some specimens prepared for basic mechanical testing (a) sludge-mixed cement, and (b) bentonite-mixed cement.

Figure 5.4 Uniaxial compressive strength test with constant loading rate. The cylindrical specimen is loaded vertically using the compression machine,
(a) cement, (b) sludge-mixed cement, and (c) bentonite-mixed cement.

Figure 5.5 Specimens (a) sludge-mixed cement, and (b) bentonite-mixed cement after failure under loading with constant stress rate of $1 \mathrm{MPa} / \mathrm{s}$.

Figure 5.6 PVC mold has an inner diameter of 101.6 mm with 203.2 mm in length.

Figure 5.7 Uniaxial compressive strength test with constant loading rate.
The cylindrical specimen is loaded vertically using the compression machine, (a) $\mathrm{B}: \mathrm{C}=2: 10$, (b) $\mathrm{C}: \mathrm{W}=1: 1$, and (c) $\mathrm{S}: \mathrm{C}=3: 10$.

(c)

Figure 5.8 Specimens of 101.6 mm diameter (a) sludge-mixed cement, and (b) bentonite-mixed cement after failure under loading with constant stress rate of $1 \mathrm{MPa} / \mathrm{s}$.

Figure 5.9 Uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ mixtures with $\mathrm{W}: \mathrm{C}=$ 10:10, 8:10, 12.5:10, 40:10 at 3 days of curing.

Figure 5.10 Uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.11 Comparisons of elastic modulus between $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ mixtures.

Figure 5.12 Some sandstone specimens of 101.6 mm diameter prepared for direct shear testing.

Figure 5.13 Surface sandstone specimen prepared for direct shear testing (left) and surface sandstone model of laser scan (right).

Figure 5.14 PVC mold has an inner diameter of 101.6 mm for direct shear testing.

Figure 5.15 Laboratory arrangements for three-ring direct shear test.

Figure 5.16 Some specimens of grouting material in sandstone fracture after failure under shearing between grout and fracture.

Figure 5.17 Shearing resistance between cement grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.18 Shearing resistance between $\mathrm{S}: \mathrm{C}=1: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.19 Shearing resistance between $S: C=3: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.20 Shearing resistance between $S: C=5: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.21 Shearing resistance between $B: C=1: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.22 Shearing resistance between $\mathrm{B}: \mathrm{C}=2: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.23 Shearing resistance between $\mathrm{B}: \mathrm{C}=3: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.24 Normal stress and peak shear stress.

CHAPTER V

MECHANICAL PROPERTIES TESTING

5.1 Introduction

This chapter describes the methods and results of laboratory tests used to determinate the maximum compressive strength, elastic modulus, and Poisson's ratio for the six proportions of grouting materials selected from Chapter IV. Pure cement is tested in term of mechanical properties. Preparation of these samples follows, as much as practicable, the ASTM standards (ASTM D7012). Direct shear testing is performed to determine the maximum shear force occurs at the interface among the surfaces of the grouting material and surface of fractured sandstone.

5.2 Uniaxial compressive strength testing

The objectives of the uniaxial compressive strength tests are, 1) to evaluate the basic mechanical properties of grouting material specimens of two-inch in diameter at three days curing. They are used as an index to confirm that the proportions of S:C and $B: C$ mixtures are appropriate selection of the viscosity of mixture slurry form Chapter IV, and 2) to determine the uniaxial compressive strength, Poison's ratio and elastic modulus of grouting material specimens of four-inch in diameter at three days curing. This is a part of the material characterization. The material parameters are sample size, weight, density, failure load, and mode of failure, etc. These parameters are monitored, recorded and analyzed. The suitable mixing ratios for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ mixtures are selected and compared.

5.2.1 Test methods

Preparation of these samples follows, as much as practical, the ASTM D7012, C938 and C39 (ASTM 2010a, 2010b, 2010c). The uniaxial compressive strength test is carried out at the ages of 3 days curing. Cylindrical specimens of 50.8 mm diameter are prepared for the basic uniaxial compressive strength test. During the test, cylindrical specimens of 101.6 mm diameter, the axial deformation and lateral deformation are monitored. The maximum loaded at the failure is recorded. The compressive strength $\left(\sigma_{\mathrm{C}}\right)$, Poisson's ratio (v), elastic modulus (E) are determined for sludge and bentonite-mixed cement ratios vary from 1:10, 2:10, 3:10, 4:10, to 5:10.

Equipment and Apparatus

1) Rubber stopper for PVC pipe of 2 inches in diameter.
2) Point Loaded-Uniaxial Tester, model PLT-75, provide up to 30 tons of load.
3) Cutter, model 51 ZE-LG3-570A Tile Cutter, with speed $2,950 \mathrm{r} / \mathrm{min}$ can be cut with a maximum 51 mm thick.

Initially uniaxial compressive strength test procedure follows as below:

1) The mixture slurry from the preparation in Chapter IV is placed in a 54 mm PVC mold with rubber stopper plugged at the bottom (Figure 5.1). Joint connection should not leak out between PVC pipe and rubber stopper.
2) They are cured under water at room temperature (ASTM standard C192).
3) All specimens are cured for three days before testing. They are out of the mold and cut to a L/D ratio of about 2.0 to 2.5 (about 4 to 6 inches in length) (Figures 5.2 and 5.3).
4) Specimens are tested with a loading rate of $1 \mathrm{MPa} / \mathrm{s}$ for uniaxial compressive strength test (Figure 5.4).
5) During the test, the failure modes are monitored (Figure 5.5). The maximum loaded at the failure is recorded. The compressive strength $\left(\sigma_{\mathrm{C}}\right)$ is determined and compared for suitable mixing ratios.

The mixtures from the preparation (in Chapter IV) and the results from initially uniaxial compressive strength test are used for selected suitable mixing ratios. The suitable mixing ratios for the $\mathrm{S}: \mathrm{C}$ mixtures are $1: 10,3: 10,5: 10$ and for the $\mathrm{B}: \mathrm{C}$ mixtures are $1: 10,2: 10,3: 10$ both with the $\mathrm{W}: \mathrm{C}$ of $1: 1$ by weight. Uniaxial compressive strength test procedure follows as below:

1) The mixture slurry from the preparation (in section 5.1) is placed in a PVC mold of 101.6 mm diameter and 203.2 mm long (Figure 5.6).
2) They are cured under water at room temperature (ASTM standard C39).
3) All specimens are cured for three days before testing. They are out of the mold and cut to L/D ratio of about 2.0. Summary of parameters and results for basic mechanical testing are listed in Table 5.1.
4) Uniaxial compressive strength tests have been performed on specimens with loading rate of $1 \mathrm{MPa} / \mathrm{s}$ (ASTM D7012).
5) During the test, axial and diametric deformations are monitored. Dial gauges are the resolutions of $\pm 0.01 \mathrm{~mm}$.
6) The maximum loaded at the failure is recorded. The cylindrical specimen is loaded vertically using the compression machine shown in Figure 5.7. Figure 5.8 shows failure modes for each specimen.

The failure stress is calculated by dividing the axial load by the crosssection area of specimen. The compressive strength $\left(\sigma_{c}\right)$ is determined from the maximum load $\left(\mathrm{P}_{\mathrm{f}}\right)$ divided by the original cross-section area (A) :

$$
\begin{equation*}
\sigma_{c}=\mathrm{P}_{\mathrm{f}} / \mathrm{A} \tag{5.3}
\end{equation*}
$$

5.2.2 Test results

The results of the uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ mixtures with $\mathrm{W}: \mathrm{C}=10: 10,8: 10,12.5: 10,40: 10$ at 3 days of curing are shown in Figure 5.9. Parameters and results of uniaxial compressive strength test on the C, B:C and $\mathrm{S}: \mathrm{C}$ mixtures specimens of 50.8 mm and 101.6 mm diameter with $\mathrm{W}: \mathrm{C}=1: 1$ are summarized in Table 5.2.

The results of the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ show that the chemical reaction between cement and water with the large cast are better than the small cast. Figures 5.10 and 5.11 show the uniaxial compressive strength and elastic modulus for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$. The uniaxial compressive strength and elastic modulus for the specimens with the diameter of 101.6 mm are summarized in Tables 5.3 and 5.4. The uniaxial compressive strength for the specimens with the diameter of 50.8 mm is summarized in Table 5.5. The maximum compressive strengths for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ mixtures are similar.

5.3 Shearing resistance between grout and fracture

The objective of the fracture shear test is to determine the direct shear strength of grouting material in sandstone fracture. Grouting materials are sludge- and bentonite-mixed cement. The experimental procedure is similar to the ASTM standard
(D5607). The constant normal stresses are $0.25,0.5,0.75,1.0$ and 1.25 MPa . The shear stresses are applied while the shear displacement and head drop is monitored for every 0.2 mm of shear displacement. Similarities and differences of the results are compared. The mixtures from the preparation in Chapter IV and the results from tasks 5.2 are used for selected suitable mixing ratios.

5.3.1 Test methods

Proportions of S:C mixtures are $0: 10,3: 10,5: 10$, and for $\mathrm{B}: \mathrm{C}$ mixtures are 1:10, 2:10, $3: 10$ with $\mathrm{W}: \mathrm{C}$ ratio of $10: 10$ by weight. Preparation of these samples follows, as much as practical, the ASTM C938 (ASTM 2010b). The PVC molded of 101.68 mm diameter is attributed to the rock samples with a nominal dimension of 100 mm in diameter and 100 nm long. The fractures are artificially made by applying a line load at the center of length to induce splitting tensile crack. Some sandstone specimens and surface sandstone of 101.6 mm diameter prepared for direct shear testing are shown in Figures 5.12 and 5.13. The grouting material in the PVC mold has 50.8 mm thick that occur between the two rock samples (Figure 5.14). The grouting materials are placed into the cylindrical PVC mold. The shear strength tested, is carried out at the ages of 3 days curing. Laboratory arrangement for the three-ring shear test equipment is shown in Figure 5.15 (Sonsakul and Fuenkajorn, 2013). The constant normal stresses used, are $0.25,0.5,0.75,1.0$ and 1.25 MPa . The shear stressed, is applied while the shear displacement and dilation are monitored for every 0.2 mm of shear displacement. The failure modes are recorded. The test results are presented in forms of the shear strength as a function of normal stress as follows:

$$
\begin{equation*}
\tau=\mathrm{F} / 2 \mathrm{~A} \tag{5.4}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{\mathrm{n}}=\mathrm{P} / \mathrm{A} \tag{5.5}
\end{equation*}
$$

where τ is the shear stress, F is sheared force, A is cross section area, σ_{n} is normal stress, P is normal load.

The results are presented in the form of the Coulomb's criterion. The line tangent to each of these circles defines the Coulomb's criterion and can be expressed by:

$$
\begin{equation*}
\tau=c_{p}+\sigma \tan \phi_{p} \tag{5.6}
\end{equation*}
$$

where τ and σ are the shear stress and normal stress, ϕ_{p} is the angle of internal friction, and c_{p} is cohesion.

5.3.2 Test results

Figure 5.16 shows some samples after testing. Table 5.6 lists the result of shear strength. Shearing resistance between cement grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$ are shown in Figures 5.17 to 5.23 . The results in the form of the Coulomb's criterion are shown in Figure 5.24. Table 5.7 lists the Coulomb's parameters.

Table 5.1 Summary of parameters and results for basic mechanical testing.

Types	Sample no.	Length (mm)	$\begin{aligned} & \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$	L/D	Weight (kg)	Density (g/cc)
C	C9-1	202.7	107.6	1.88	1.53	0.83
	C9-2	201.0	106.9	1.88	1.50	0.83
	C9-3	206.4	106.4	1.94	1.49	0.81
	C9-4	203.3	107.0	1.90	1.54	0.84
	C9-5	202.6	107.6	1.88	1.55	0.84
B:C=0.1	BC20-1	204.3	107.8	1.89	2.46	1.32
	BC20-2	204.7	106.2	1.93	2.45	1.35
	BC20-3	204.1	107.7	1.90	2.43	1.31
	BC20-4	204.3	105.9	1.93	2.42	1.34
	BC20-5	205.0	105.6	1.94	2.54	1.41
$\mathrm{B}: \mathrm{C}=0.2$	BC21-1	202.0	107.1	1.89	2.60	1.43
	BC21-2	204.4	106.5	1.92	2.56	1.41
	BC21-3	196.8	106.8	1.84	2.43	1.38
	BC21-4	205.6	106.8	1.93	2.44	1.32
	BC21-5	7 207.5	106.3	, 1.95	2.50	1.36
B:C $=0.3$	BC9-6	207.5	าค106.3	1.95	2.45	1.33
	BC9-7	207.5	106.3	1.95	2.50	1.36
	BC9-8	207.5	106.3	1.95	2.43	1.32
	BC9-9	207.5	106.3	1.95	2.44	1.32
	BC9-10	207.5	106.3	1.95	2.43	1.32

Table 5.1 Summary of parameters and results for basic mechanical testing (continued).

Types	Sample no.	Length (mm)	$\begin{aligned} & \text { Diameter } \\ & (\mathrm{mm}) \end{aligned}$	L/D	Weight (kg)	Density (g/cc)
$\mathrm{S}: \mathrm{C}=0.1$	SC40-1	202.7	105.4	1.92	3.50	1.98
	SC40-2	202.9	106.3	1.91	3.30	1.83
	SC40-3	204.4	106.9	1.91	3.60	1.96
	SC40-4	204.6	106.9	1.91	3.45	1.88
	SC40-5	204.4	107.3	1.90	3.50	1.89
$\mathrm{S}: \mathrm{C}=0.3$	SC22-6	203.9	107.4	1.90	3.21	1.74
	SC22-7	206.6	107.4	1.92	3.24	1.73
	SC22-8	203.2	108.3	1.88	3.50	1.87
	SC22-9	205.3	107.0	1.92	3.41	1.85
	SC22-10	205.2	106.7	1.92	3.44	1.88
S:C=0.5	SC21-6	205.5	106.6	1.93	3.20	1.74
	SC21-7	207.0	105.7	1.96	3.25	1.79
	SC21-8	208.8	107.3	1.95	3.35	1.77
	SC21-9	208.2	108.1	1.93	3.40	1.78
	SC21-10	208.4	106.4	1.96	3.50	1.89

Table 5.2 Summary of uniaxial compressive strength test results on the C, B:C and S:C mixtures specimens of 50.8 mm diameter.

Binder	W:C	S:C or B:C	Number of	Uniaxial Compressive
Sludge	8:10	1:10	5	1.39 ± 0.19
	8:10	2:10	15	2.77 ± 0.20
	8:10	3:10	8	2.75 ± 0.12
	8:10	4:10	5	2.72 ± 0.14
	10:10	1:10	2	0.79 ± 0.12
	10:10	2:10	13	0.95 ± 0.11
	10:10	3:10	3	1.22 ± 0.10
	10:10	4:10	3	1.13 ± 0.17
	10:10	5:10	3	1.10 ± 0.34
	10:10	6:10	3	1.02 ± 0.00
	10:10	8:10	3	0.88 ± 0.01
	10:10	10:10	3	0.81 ± 0.00
	12.5:10	2:10	5	0.62 ± 0.02
	12.5:10	4:10	5	0.52 ± 0.09
	12.5:10	5:10	15 ¢	0.44 ± 0.01
Bentonite	10:10	1:10	10	1.05 ± 0.10
	10:10	2:10	7	1.83 ± 0.00
	10:10	3:10	9	1.77 ± 0.09
	40:10	1:10	5	0.19 ± 0.05
	40:10	2:10	5	0.07 ± 0.03
	40:10	3:10	5	0.08 ± 0.02
	40:10	4:10	5	0.04 ± 0.00
	40:10	5:10	5	0.05 ± 0.02
Cement	8:10	0:10	5	1.14 ± 0.10
	10:10	0:10	5	0.85 ± 0.00
	12.5:10	0:10	5	0.70 ± 0.10
	40:10	0:10	5	0.41 ± 0.03

Table 5.3 Summary of uniaxial compressive strength test results on the C, B:C and $\mathrm{S}: \mathrm{C}$ mixtures specimens of 101.6 mm diameter with $\mathrm{W}: \mathrm{C}=1: 1$.

Types	Number of Samples	Mixing Ratio	Uniaxial Compressive Strength (MPa)
C	5	$0: 10$	1.40 ± 0.27
B:C	5	$1: 10$	1.59 ± 0.28
B:C	5	$2: 10$	2.09 ± 0.26
B:C	5	$3: 10$	1.92 ± 0.05
S:C	5	$1: 10$	1.35 ± 0.06
S:C	5	$3: 10$	1.77 ± 0.21
S:C	5	$5: 10$	1.52 ± 0.19

Table 5.4 Poisson's ratio and elastic modulus from uniaxial compressive strength testing.

Types	Number of Samples	Mixing Ratio	Poisson's Ratio	Elastic Modulus (MPa)
C	5	$0: 10$	0.18	212
B:C	5	$1: 10$	0.17	193
B:C	5	$2: 10$	0.14	275
B:C	5	$3: 10$	0.16	228
S:C	5	$1: 10$	0.15	190
S:C	5	$3: 10$	0.21	224
S:C	5	$5: 10$	0.16	261

Table 5.5 Summary of uniaxial compressive strength test results on the C, B:C and $\mathrm{S}: \mathrm{C}$ mixtures specimens of 50.8 mm diameter with $\mathrm{W}: \mathrm{C}=1: 1$.

Types	Number of Samples	Mixing Ratio	Uniaxial Compressive Strength (MPa)
C	4	-	0.85 ± 0.00
B:C	2	$1: 10$	1.05 ± 0.10
B:C	2	$2: 10$	1.83 ± 0.00
B:C	2	$3: 10$	1.77 ± 0.09
S:C	2	$1: 10$	0.79 ± 0.12
S:C	3	$3: 10$	1.22 ± 0.10
S:C	3	$5: 10$	1.10 ± 0.34

Table 5.6 Summary of direct shear strength test results on the C, B:C and S:C mixtures specimens with $\mathrm{W}: \mathrm{C}=1: 1$.

Normal Stress (MPa)	Pure Cement								Seak Shear Stress (MPa) S:C	S:C $=3: 10$	S:C $=5: 10$	B:C $=1: 10$	B:C $=2: 10$	B:C $=3: 10$
	0.62	0.36	0.31	0.34	0.37	0.22	0.25							
0.50	0.68	0.49	0.42	0.46	0.53	0.34	0.37							
0.75	0.77	0.62	0.55	0.60	0.65	0.43	0.47							
1.00	0.86	0.74	0.68	0.71	0.77	0.52	0.56							
1.25	0.90	0.83	0.77	0.80	0.85	0.63	0.67							
1.50	0.93	0.90	0.83	0.86	0.90	0.74	0.80							

Table 5.7 Summary of shear strength parameters calibrated from direct shear tests using Coulomb's criteria.

Sample No.	$c_{p}(\mathrm{MPa})$	$\tan \phi_{\mathrm{p}}$	$\phi_{\mathrm{p}}($ degrees $)$	R^{2}
Pure Cement	0.563	0.263	14.7	0.962
$\mathrm{~S}: \mathrm{C}=1: 10$	0.275	0.436	23.6	0.985
$\mathrm{~S}: \mathrm{C}=3: 10$	0.213	0.435	23.5	0.988
$\mathrm{~S}: \mathrm{C}=5: 10$	0.255	0.428	23.2	0.985
$\mathrm{~B}: \mathrm{C}=1: 10$	0.306	0.424	23.0	0.968
$\mathrm{~B}: \mathrm{C}=2: 10$	0.121	0.410	22.3	0.998
$\mathrm{~B}: \mathrm{C}=3: 10$	0.143	0.430	23.3	0.996

Figure 5.1 PVC mold has an inner diameter of 50.8 mm with a rubber stopper on the

Figure 5.2 Core sample is cut to obtain the desired length with ZE-LG3-570A Tile Cutter.

Figure 5.3 Some specimens prepared for basic mechanical testing (a) sludge-mixed cement, and (b) bentonite-mixed cement.

Figure 5.4 Uniaxial compressive strength test with constant loading rate. The cylindrical specimen is loaded vertically using the compression machine,
(a) cement, (b) sludge-mixed cement, and (c) bentonite-mixed cement.

Figure 5.5 Specimens (a) sludge-mixed cement, and (b) bentonite-mixed cement after failure under loading with constant stress rate of $1 \mathrm{MPa} / \mathrm{s}$.

Figure 5.6 PVC mold has an inner diameter of 101.6 mm with 203.2 mm in length.

Figure 5.7 Uniaxial compressive strength test with constant loading rate.
The cylindrical specimen is loaded vertically using the compression machine, (a) $\mathrm{B}: \mathrm{C}=2: 10$, (b) $\mathrm{C}: \mathrm{W}=1: 1$, and (c) $\mathrm{S}: \mathrm{C}=3: 10$.

(c)

Figure 5.8 Specimens of 101.6 mm diameter (a) sludge-mixed cement, and (b) bentonite-mixed cement after failure under loading with constant stress rate of $1 \mathrm{MPa} / \mathrm{s}$.

Figure 5.9 Uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ mixtures with $\mathrm{W}: \mathrm{C}=$ 10:10, 8:10, 12.5:10, 40:10 at 3 days of curing.

Figure 5.10 Uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.11 Comparisons of elastic modulus between $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ mixtures.

Figure 5.12 Some sandstone specimens of 101.6 mm diameter prepared for direct shear testing.

Figure 5.13 Surface sandstone specimen prepared for direct shear testing (left) and surface sandstone model of laser scan (right).

Figure 5.14 PVC mold has an inner diameter of 101.6 mm for direct shear testing.

Figure 5.15 Laboratory arrangements for three-ring direct shear test.

Figure 5.16 Some specimens of grouting material in sandstone fracture after failure under shearing between grout and fracture.

Figure 5.17 Shearing resistance between cement grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.18 Shearing resistance between $\mathrm{S}: \mathrm{C}=1: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.19 Shearing resistance between $S: C=3: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.20 Shearing resistance between $S: C=5: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.21 Shearing resistance between $B: C=1: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.22 Shearing resistance between $\mathrm{B}: \mathrm{C}=2: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.23 Shearing resistance between $\mathrm{B}: \mathrm{C}=3: 10$ mixture grout and fracture with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 5.24 Normal stress and peak shear stress.

CHAPTER VI

HYDRAULIC PROPERTIES TESTING

6.1 Introduction

This chapter describes the methods and results of laboratory tests to determinate the permeability of grouting materials in artificial fractures from Phu Kradung sandstone. The permeability of the mixture is an important factor to show the hydraulic potential, otherwise the ability to reduce permeability of fractures in sandstone. Hydraulic properties testing in this chapter is divided into three tasks: 1) grout permeability tests 2) fracture permeability tests, and 3) permeability test of grouting materials in rock fractures. The rock samples are prepared as described in Chapter III.

6.2 Permeability of grouting materials

The objective of the grout permeability tests is to determine the water permeability of grouting material specimen using constant head flow tests. The permeability of grouting material is the a factor to be used to determinate the most suitable mixing ratios for grouting in rock. These tasks describe method for grout permeability testing in the laboratory. Proportions of $\mathrm{S}: \mathrm{C}$ mixtures are $0: 10,3: 10$, $5: 10$ and $\mathrm{B}: \mathrm{C}$ mixtures are $1: 10,2: 10,3: 10$ with $\mathrm{W}: \mathrm{C}$ ratio of $10: 10$ by weight. Results of both mixtures are compared.

6.2.1 Test methods

The procedure for determining the grout permeability is similar to the ASTM C938 and C39 (ASTM 2010a, 2010c). Proportions of S:C mixtures are 0:10, 3:10, $5: 10$ and $B: C$ mixtures are $1: 10,2: 10,3: 10$ with $\mathrm{W}: \mathrm{C}$ ratio of $10: 10$ by weight. These tests are conducted at $3,7,14$ and 28 days of curing. The mold has an inner diameter of 101.6 mm with a length of 152.4 mm . The prepared specimen is sealed between two acrylic platens with the aid of O-ring rubber and epoxy coating (Figures 6.1 and 6.2). Inlet ports is installed at the end of the mold and connected to a water pressure tube. Nitrogen compressed pressure gas about 13.8 kPa . Air bubbles are bled out before measuring the permeability. Outlet ports is installed at another end and connected to a high precision pipette for measuring the outflow (Figures 6.3 and 6.4). The intrinsic permeability (k) is calculated from the flow rate based on the Darcy's law (Freeze and Cherry, 1979; Indraratna and Ranjith 2001).

6.2.2 Test results

The results of comparison of $\mathrm{S}: \mathrm{C}$ mixtures, $\mathrm{B}: \mathrm{C}$ mixtures, and C are presented on Figure 6.5. Table 6.1 summarizes the results of permeability testing of grouting material results at $3,7,14$ and 28 days of curing.

6.3 Permeability of rock fractures

The objective of this task is to assess the permeability of rock fractures under varying normal stresses. The fracture permeability is used to compare with the permeability of grouting materials for both sludge and bentonte mixtures. Constant head flow tests are performed. The normal stresses are different. Five specimens are
prepared and tested. The rock samples in $152.4 \times 152.4 \times 152.4 \mathrm{~mm}^{3}$ prismatic blocks are prepared as described in Chapter III (Figures 6.6 and 6.7).

6.3.1 Test methods

The constant head flow tests are performed. The normal stresses are ranging from 1,2,3 and 4 MPa . Five specimens are prepared and tested. The injection hole at the center of the upper block is 12 mm in diameter and 101.6 mm in depth. The tests are conducted by injecting water. Injecting water conducted the tests into the center hole of the rectangular block specimen. The laboratory arrangement of the constant head flow test is shown in Figure 6.8. Water volume and time are recorded that tend to decrease exponentially with the normal stress. The permeability results (k) are plotted as a function of the normal stress $\left(\sigma_{\mathrm{n}}\right)$ in Figure 8. The equivalent hydraulic aperture (e_{h}) for radial flow, hydraulic conductivity between smooth and parallel plates (K), and intrinsic permeability (k) are calculated by (Tsang, 1992; Indraratna and Ranjith, 2001) :

$$
\begin{align*}
& \mathrm{e}_{\mathrm{h}}=\left\{[(6 \mu \mathrm{q}) /(\pi \Delta \mathrm{P})] \ln \left(\mathrm{r} / \mathrm{r}_{0}\right)\right\}^{1 / 3} \tag{4.7}\\
& \mathrm{~K}=\gamma_{\mathrm{w}} \mathrm{e}_{\mathrm{h}}{ }^{2} / 12 \mu \tag{4.8}\\
& \mathrm{k}=\mathrm{e}_{\mathrm{h}}{ }^{2} / 12 \tag{4.9}
\end{align*}
$$

where μ is the dynamic viscosity of the water $\left(\mathrm{N} \cdot \mathrm{s} / \mathrm{cm}^{2}\right), \mathrm{q}$ is water flow rate through the specimen $\left(\mathrm{cm}^{2} / \mathrm{s}\right), \Delta \mathrm{P}$ is injecting water pressure into the center hole of rectangular
blocks of the specimen, r is radius of flow path $(m), r_{0}$ is radius of the radius injection hole (m). γ_{w} is unit weight of water $\left(\mathrm{N} / \mathrm{m}^{2}\right)$.

6.3.2 Test results

Table 6.2 lists the result of permeability of rock fractures under normal stresses ranging from 1, 2, 3 and 4 MPa . Figure 6.9 is shown relationship of intrinsic permeability (k), hydraulic conductivity (K), and aperture $\left(\mathrm{e}_{\mathrm{h}}\right)$ as a function of normal stress $\left(\sigma_{n}\right)$ for fracture in Phu Kradung sandstone. The results show that the intrinsic permeability of the fractures is less than $1.4 \times 10^{-9} \mathrm{~m}^{2}$.

6.4 Permeability of grouting materials in rock fractures

The objective of permeability test of grouting materials in rock fractures is to determine the permeability of sludge-mixed cement and bentonite-mixed cement in artificial fractures from Phu Kradung sandstone. Six mixture proportions of S:C and B:C selected and prepared are similar Chapter IV. The grouting materials are used to fill the fractures. The constant normal stresses are $0.25,0.5,1.0$ and 1.25 MPa .

6.4.1 Test methods

The testing method is similar to that described above this task. The grouting materials are injected into the fractures. The fractrue apertures are 2,10 , and 20 mm . The grouting materials are cured for 3 days. Figures 6.10 to 6.11 give the laboratory arrangement. Constant head flow tests is performed. The constant head is ranging between 13.8 and 551.7 kPa . The constant normal stresses are $0.25,0.5,1.0$ and 1.25 MPa . The results show that the normal stress can reduce the permeability of grouting materials in fractured sandstone. The intrinsic permeability (k) is calculated from the measured flow rate (Q) as follows: (Indraratna and Ranjith, 2001)

$$
\begin{align*}
& \mathrm{K}=\mathrm{Q} \ln (2 \mathrm{~mL} / \mathrm{D}) / 2 \pi \mathrm{LH}_{\mathrm{c}} \tag{4.10}\\
& \mathrm{k}=\mathrm{K} \mu / \gamma_{\mathrm{w}} \tag{4.11}
\end{align*}
$$

where K is hydraulic conductivity, Q is flow rate of water flow through the mixture, m is square root of the ratio between the conductivity perpendicular and parallel to the hole (here, m is equal to 1), L is the thickness of grouting material in fracture apertures, D is diameter of the injection hole at the center of the upper block, H_{c} is the constant head used for the test, μ is dynamic viscosity $\left(891 \times 10^{-6} \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{s})\right)$ at temperature of $25^{\circ} \mathrm{C}, \gamma_{\mathrm{w}}$ is unit weight of water $\left(997.13 \mathrm{~kg} / \mathrm{m}^{3}\right)$.

6.4.2 Test results

The results of permeability of grouting material in rock fractures aperture 2,10 , and 20 mm are summarized in Tables $6.3-6.5$. Intrinsic permeability (k), hydraulic conductivity (K), and aperture $\left(e_{h}\right)$ as a function of normal stress $\left(\sigma_{n}\right)$ for fracture aperture 2, 10, and 20 mm are shown in Figures $6.12-6.14$.

Table 6.1 Summary of permeability testing of grouting material results at 3, 7, 14 and 28 days of curing.

Curing Time (days)	Intrinsic Permeability ($\times 10^{-18} \mathrm{~m}^{\mathbf{2}}$)						
	Pure cement	$\begin{gathered} \text { S:C } \\ =1: 10 \end{gathered}$	$\begin{gathered} \text { S:C } \\ =3: 10 \end{gathered}$	$\begin{gathered} \text { S:C } \\ =5: 10 \end{gathered}$	$\begin{gathered} \text { B:C } \\ =1: 10 \end{gathered}$	$\begin{gathered} \text { B:C } \\ =2: 10 \end{gathered}$	$\begin{gathered} \text { B:C } \\ =3: 10 \end{gathered}$
3	8,930.0	8,250.0	2,930.0	2,210.0	2,370.0	868.0	317.0
7	965.0	3,720.0	643.0	349.0	431.0	265.0	67.6
14	74.1	681.0	115.0	11.6	414.0	228.0	49.0
28	0.441	249.0	62.0	6.8	356.0	208.0	41.3

Table 6.2 Summary of permeability of rock fractures results.

Sample No.	Normal stress (MPa)	$\begin{gathered} \mathrm{K} \\ \left(10^{-3} \mathrm{~m} / \mathrm{s}\right) \end{gathered}$	$\begin{gathered} k \\ \left(10^{-9} \mathrm{~m}^{2}\right) \end{gathered}$	$\begin{gathered} \mathbf{e}_{\mathbf{h}} \\ (\mu \mathrm{m}) \end{gathered}$
1	1	0.111 ± 0.02	0.099 ± 0.02	34.44 ± 2.53
	2	0.090 ± 0.02	0.080 ± 0.02	30.81 ± 3.91
	3	0.074 ± 0.02	0.074 ± 0.02	27.92 ± 4.12
	4	0.062 ± 0.02	0.062 ± 0.02	25.42 ± 4.36
2	1	0.637 ± 0.02	0.569 ± 0.01	82.64 ± 1.05
	2	0.509 ± 0.05	0.455 ± 0.05	73.82 ± 3.59
	3	0.412 ± 0.01	0.369 ± 0.00	66.50 ± 0.36
	4	0.304 ± 0.00	0.271 ± 0.00	57.06 ± 0.05
3	1	1.167 ± 0.52	1.043 ± 0.47	109.54 ± 25.34
	2	0.914 ± 0.39	0.817 ± 0.35	97.03 ± 21.90
	3	0.733 ± 0.30	0.655 ± 0.26	87.04 ± 18.66
	4	0.607 ± 0.28	0.543 ± 0.25	78.90 ± 18.89
4	1	1.571 ± 0.46	1.403 ± 0.41	128.55 ± 19.88
	2	1.141 ± 0.23	1.019 ± 0.20	110.16 ± 11.03
	3	0.899 ± 0.47	0.803 ± 0.42	95.60 ± 25.01
	4	0.662 ± 0.27	0.592 ± 0.24	82.86 ± 17.06
5	1	0.791 ± 0.11	0.706 ± 0.01	91.90 ± 6.33
	2	0.602 ± 0.14	0.538 ± 0.13	79.91 ± 9.27
	3	0.513 ± 0.08	0.485 ± 0.07	74.00 ± 5.68
	4	0.397 ± 0.05	0.355 ± 0.04	65.20 ± 3.63

Table 6.3 Summary of permeability of grouting material in rock fractures aperture 2 mm .

Binder	Normal stress (MPa)	$\begin{gathered} \mathrm{K} \\ \left(10^{-9} \mathrm{~m} / \mathrm{s}\right) \end{gathered}$	$\left.\stackrel{\mathbf{k}}{\left(10^{-15}\right.} \mathrm{m}^{2}\right)$	$\begin{gathered} \mathbf{e}_{\mathbf{h}} \\ (\mu \mathbf{m}) \end{gathered}$
C	0.25	11.94 ± 0.48	1.07 ± 0.04	1.24 ± 0.02
	0.50	9.06 ± 0.52	0.81 ± 0.05	1.08 ± 0.03
	0.75	7.06 ± 0.53	0.63 ± 0.05	0.95 ± 0.04
	1.00	5.44 ± 0.39	0.49 ± 0.04	0.84 ± 0.03
	1.25	4.05 ± 0.36	0.36 ± 0.03	0.72 ± 0.03
$\begin{gathered} \mathrm{S}: \mathrm{C} \\ =1: 10 \end{gathered}$	0.25	39.02 ± 5.17	3.49 ± 0.46	2.24 ± 0.15
	0.50	28.98 ± 2.71	2.59 ± 0.24	1.93 ± 0.09
	0.75	22.48 ± 2.51	2.01 ± 0.22	1.70 ± 0.09
	1.00	16.99 ± 1.04	1.52 ± 0.09	1.48 ± 0.05
	1.25	12.60 ± 1.28	1.13 ± 0.11	1.27 ± 0.06
$\begin{gathered} \mathrm{S}: \mathrm{C} \\ =3: 10 \end{gathered}$	0.25	64.44 ± 8.61	5.76 ± 0.77	2.88 ± 0.19
	0.50	45.66 ± 3.64	4.08 ± 0.32	2.42 ± 0.10
	0.75	34.37 ± 1.85	3.07 ± 0.17	2.10 ± 0.06
	1.00	26.05 ± 2.67	2.33 ± 0.24	1.83 ± 0.09
	1.25	19.51 ± 1.55	1.74 ± 0.14	1.58 ± 0.06
$\begin{gathered} \text { S:C } \\ =5: 10 \end{gathered}$	0.25	16.70 ± 0.90	1.49 ± 0.08	1.47 ± 0.04
	0.50	12.28 ± 0.43	1.10 ± 0.04	1.26 ± 0.02
	0.75	8.70 ± 0.66	0.78 ± 0.06	1.06 ± 0.04
	1.00	6.84 ± 0.90	0.61 ± 0.08	0.94 ± 0.06
	1.25	4.97 ± 0.18	0.44 ± 0.02	0.80 ± 0.01

Table 6.3 Summary of permeability of grouting material in rock fractures aperture 2 mm (continued).

Binder	Normal stress (MPa)	$\begin{gathered} \mathrm{K} \\ \left(10^{-9} \mathrm{~m} / \mathrm{s}\right) \end{gathered}$	$\stackrel{\mathrm{k}}{\left(10^{-15} \mathrm{~m}^{2}\right)}$	$\begin{gathered} \mathbf{e}_{\mathrm{h}} \\ (\mu \mathrm{~m}) \end{gathered}$
$\begin{gathered} \text { B:C } \\ =1: 10 \end{gathered}$	0.25	191.03 ± 23.65	17.07 ± 2.11	4.95 ± 0.30
	0.50	129.69 ± 7.87	11.59 ± 0.70	4.08 ± 0.12
	0.75	88.27 ± 15.57	7.89 ± 1.39	3.36 ± 0.31
	1.00	62.70 ± 4.33	5.60 ± 0.39	2.84 ± 0.10
	1.25	44.08 ± 10.42	3.94 ± 0.93	2.37 ± 0.29
$\begin{gathered} \text { B:C } \\ =2: 10 \end{gathered}$	0.25	277.04 ± 38.01	24.75 ± 3.40	5.96 ± 0.41
	0.50	191.30 ± 26.97	17.09 ± 2.41	4.95 ± 0.36
	0.75	128.01 ± 15.11	11.44 ± 1.35	4.05 ± 0.24
	1.00	83.42 ± 9.32	7.45 ± 0.83	3.27 ± 0.19
	1.25	51.78 ± 3.82	4.63 ± 0.34	2.58 ± 0.10
$\begin{gathered} \text { B:C } \\ =3: 10 \end{gathered}$	0.25	141.51 ± 10.42	12.65 ± 0.93	4.27 ± 0.16
	0.50	103.12 ± 11.08	9.21 ± 0.99	3.64 ± 0.20
	0.75	72.68 ± 9.42	6.49 ± 0.84	3.05 ± 0.20
	1.00	52.59 ± 4.72	4.70 ± 0.42	2.60 ± 0.12
	1.25	36.70 ± 2.06	3.28 ± 0.18	2.17 ± 0.06

Table 6.4 Summary of permeability of grouting material in rock fractures aperture 10 mm .

Binder	Normal stress (MPa)	$\begin{gathered} \mathrm{K} \\ \left(10^{-9} \mathrm{~m} / \mathrm{s}\right) \end{gathered}$	$\stackrel{\mathrm{k}}{\left(10^{-15} \mathrm{~m}^{2}\right)}$	$\begin{gathered} \mathrm{e}_{\mathrm{h}} \\ (\mu \mathrm{~m}) \end{gathered}$
C	0.25	38.94 ± 1.75	3.48 ± 0.16	2.24 ± 0.05
	0.50	25.08 ± 0.97	2.24 ± 0.09	1.80 ± 0.03
	0.75	16.89 ± 1.61	1.51 ± 0.14	1.47 ± 0.07
	1.00	10.69 ± 1.28	0.95 ± 0.11	1.17 ± 0.07
	1.25	6.79 ± 0.89	0.61 ± 0.08	0.93 ± 0.06
$\begin{gathered} \mathrm{S}: \mathrm{C} \\ =1: 10 \end{gathered}$	0.25	29.45 ± 0.38	2.63 ± 0.03	1.95 ± 0.01
	0.50	19.43 ± 0.75	1.74 ± 0.07	1.58 ± 0.03
	0.75	13.21 ± 1.03	1.18 ± 0.09	1.30 ± 0.05
	1.00	8.87 ± 0.65	0.79 ± 0.06	1.07 ± 0.04
	1.25	5.98 ± 0.49	0.53 ± 0.04	0.88 ± 0.04
$\begin{gathered} \text { S:C } \\ =3: 10 \end{gathered}$	0.25	3.83 ± 0.46	0.34 ± 0.04	0.70 ± 0.04
	0.50	2.77 ± 0.24	0.25 ± 0.02	0.60 ± 0.03
	0.75	1.89 ± 0.25	0.17 ± 0.02	0.49 ± 0.03
	1.00	1.19 ± 0.09	0.11 ± 0.01	0.39 ± 0.01
	1.25	0.81 ± 0.09	0.07 ± 0.01	0.32 ± 0.02
$\begin{gathered} \mathrm{S}: \mathrm{C} \\ =5: 10 \end{gathered}$	0.25	25.37 ± 0.73	2.27 ± 0.06	1.81 ± 0.03
	0.50	16.81 ± 0.57	1.50 ± 0.05	1.47 ± 0.03
	0.75	10.82 ± 0.45	0.97 ± 0.04	1.18 ± 0.02
	1.00	7.68 ± 0.52	0.69 ± 0.05	0.99 ± 0.03
	1.25	5.24 ± 0.32	0.47 ± 0.03	0.82 ± 0.03

Table 6.4 Summary of permeability of grouting material in rock fractures aperture 10 mm (continued).

Binder	Normal stress (MPa)	K $\left(10^{-9} \mathrm{~m} / \mathrm{s}\right)$	k $\left(10^{-15} \mathrm{~m}^{2}\right)$	e_{h} $(\mu \mathrm{m})$
B:C $=1: 10$	0.25	2.12 ± 0.10	0.19 ± 0.01	0.52 ± 0.01
	0.50	1.46 ± 0.04	0.13 ± 0.00	0.43 ± 0.01
	0.75	1.01 ± 0.04	0.09 ± 0.00	0.36 ± 0.01
	1.00	0.69 ± 0.02	0.06 ± 0.00	0.30 ± 0.00
	1.25	0.48 ± 0.01	0.04 ± 0.00	0.25 ± 0.00
	0.25	9.78 ± 0.27	0.87 ± 0.02	1.12 ± 0.02
	0.50	6.34 ± 0.45	0.57 ± 0.04	0.90 ± 0.03
	1.00	2.90 ± 0.14	0.26 ± 0.01	0.61 ± 0.01
B:C $=3: 10$	1.25	2.10 ± 0.06	0.19 ± 0.00	0.52 ± 0.01
	0.25	18.93 ± 0.84	1.69 ± 0.08	1.56 ± 0.03
	0.50	12.69 ± 0.59	1.13 ± 0.05	1.28 ± 0.03
	0.75	8.60 ± 0.14	0.77 ± 0.01	1.05 ± 0.01
	1.00	5.88 ± 0.57	0.53 ± 0.05	0.87 ± 0.04
	1.25	3.91 ± 0.25	0.35 ± 0.02	0.71 ± 0.02

Table 6.5 Summary of permeability of grouting material in rock fractures aperture 20 mm .

Binder	Normal stress (MPa)	$\begin{gathered} \mathrm{K} \\ \left(10^{-9} \mathrm{~m} / \mathrm{s}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{k} \\ \left(10^{-15} \mathrm{~m}^{2}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{e}_{\mathrm{h}} \\ (\mu \mathrm{~m}) \\ \hline \end{gathered}$
C	0.25	148.68 ± 28.60	13.29 ± 2.56	4.36 ± 0.43
	0.50	90.45 ± 14.07	8.08 ± 1.26	3.40 ± 0.26
	0.75	57.10 ± 9.01	5.10 ± 0.81	2.71 ± 0.21
	1.00	33.09 ± 6.42	2.96 ± 0.57	2.06 ± 0.20
	1.25	20.75 ± 2.34	1.85 ± 0.21	1.63 ± 0.09
$\begin{gathered} \mathrm{S}: \mathrm{C} \\ =1: 10 \end{gathered}$	0.25	108.50 ± 18.42	9.70 ± 1.65	3.73 ± 0.32
	0.50	60.90 ± 5.01	5.44 ± 0.45	2.80 ± 0.11
	0.75	40.20 ± 4.65	3.59 ± 0.42	2.27 ± 0.13
	1.00	23.97 ± 0.72	2.14 ± 0.06	1.76 ± 0.03
	1.25	15.22 ± 1.39	1.36 ± 0.12	1.40 ± 0.06
$\begin{gathered} \text { S:C } \\ =3: 10 \end{gathered}$	0.25	39.28 ± 1.37	3.51 ± 0.12	2.25 ± 0.04
	0.50	24.16 ± 1.64	2.16 ± 0.15	1.76 ± 0.06
	0.75	16.61 ± 1.02	1.48 ± 0.09	1.46 ± 0.04
	1.00	12.04 ± 1.13	1.08 ± 0.10	1.24 ± 0.06
	1.25	9.00 ± 0.85	0.80 ± 0.08	1.08 ± 0.05
$\begin{gathered} \mathrm{S}: \mathrm{C} \\ =5: 10 \end{gathered}$	0.25	16.60 ± 2.60	1.48 ± 0.23	1.46 ± 0.12
	0.50	11.30 ± 1.65	1.01 ± 0.15	1.20 ± 0.09
	0.75	8.15 ± 1.14	0.73 ± 0.10	1.02 ± 0.07
	1.00	6.50 ± 0.49	0.58 ± 0.04	0.91 ± 0.03
	1.25	4.87 ± 0.04	0.44 ± 0.00	0.79 ± 0.00

Table 6.5 Summary of permeability of grouting material in rock fractures aperture 20 mm (continued).

Binder	Normal stress (MPa)	$\begin{gathered} \mathrm{K} \\ \left(10^{-9} \mathrm{~m} / \mathrm{s}\right) \end{gathered}$	$\stackrel{\mathrm{k}}{\left(10^{-15} \mathrm{~m}^{2}\right)}$	$\begin{gathered} \mathrm{e}_{\mathrm{h}} \\ (\mu \mathrm{~m}) \end{gathered}$
$\begin{gathered} \begin{array}{c} \mathrm{B}: \mathrm{C} \\ =1: 10 \end{array} \end{gathered}$	0.25	9.42 ± 1.18	0.84 ± 0.11	1.10 ± 0.07
	0.50	6.95 ± 0.60	0.62 ± 0.05	0.94 ± 0.04
	0.75	5.33 ± 0.51	0.48 ± 0.05	0.83 ± 0.04
	1.00	4.04 ± 0.38	0.36 ± 0.03	0.72 ± 0.03
	1.25	3.24 ± 0.38	0.29 ± 0.03	0.64 ± 0.04
$\begin{gathered} \text { B:C } \\ =2: 10 \end{gathered}$	0.25	73.26 ± 11.81	6.55 ± 1.06	3.06 ± 0.25
	0.50	42.97 ± 8.21	3.84 ± 0.73	2.34 ± 0.22
	0.75	28.37 ± 8.14	2.54 ± 0.73	1.90 ± 0.28
	1.00	17.73 ± 2.51	1.58 ± 0.22	1.51 ± 0.11
	1.25	12.34 ± 0.55	1.10 ± 0.05	1.26 ± 0.03
$\begin{gathered} \text { B:C } \\ =3: 10 \end{gathered}$	0.25	7.05 ± 0.60	0.63 ± 0.05	0.95 ± 0.04
	0.50	4.94 ± 0.31	0.44 ± 0.03	0.80 ± 0.03
	0.75	3.85 ± 0.58	0.34 ± 0.05	0.70 ± 0.05
	1.00	3.10 ± 0.48	0.28 ± 0.04	0.63 ± 0.05
	1.25	2.43 ± 0.23	0.22 ± 0.02	0.56 ± 0.03

Figure 6.1 PVC mold has an inner diameter of 101.6 mm for permeability testing of
grouting materials.

Figure 6.2 PVC mold has sealed between two acrylic platens with the aid of O-ring rubber and epoxy coating for permeability testing of grouting materials.

Figure 6.3 Diagram of laboratory arrangement for permeability testing of grouting materials.

Figure 6.4 Laboratory arrangements for permeability testing of grouting materials.

Figure 6.5 Intrinsic permeability as a function of time for pure cement (C), B:C, and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 6.6 Some sandstone specimens of $152.4 \times 152.4 \times 152.4 \mathrm{~mm}$ prepared for permeability testing of rock fractures.

Figure 6.7 Fracture surface in sandstone specimen prepared for permeability testing of rock fractures (left) and surface sandstone model from laser scan (right).

Figure 6.8 Laboratory arrangement for permeability testing of fractures.

Figure 6.9 Intrinsic permeability (k), hydraulic conductivity (K), and aperture $\left(e_{h}\right)$ as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture in Phu Kradung sandstone.

Figure 6.10 Diagram of laboratory arrangement for permeability testing of grouting materials in rock fracture.

Figure 6.11 Permeability testing of grouting materials in rock fracture.

Figure 6.12 Intrinsic permeability (k), hydraulic conductivity (K), and aperture $\left(e_{h}\right)$ as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture aperture 2 mm .

Figure 6.13 Intrinsic permeability (k), hydraulic conductivity (K), and aperture $\left(e_{h}\right)$ as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture aperture 10 mm .

Figure 6.14 Intrinsic permeability (k), hydraulic conductivity (K), and aperture $\left(e_{h}\right)$ as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture aperture 20 mm .

CHAPTER VII

DISCUSSIONS

7.1 Viscosity and density of mixtures

The basic properties of the mixtures slurry are initially designed to select the appropriate proportions of sludge-to-cement ratios. The sludge-mixed cement ratios $(\mathrm{S}: \mathrm{C})$ of $0: 10,1: 10,2: 10,3: 10,4: 10,5: 10,6: 10,8: 10$ and $10: 10$ by weight are prepared with water-cement ratios (W:C) of $0.8: 1,1: 1$ and $1.25: 1$. The bentonitecement ratios (B:C) are $0: 10,1: 10,2: 10,3: 10,4: 10$, and $5: 10$ by weight with $W: C$ of 10:10 and 40:10. Mixing of all grouts is by using a blade paddle mixer as suggested by ASTM C938 (ASTM 2010a). Viscosity measurement follows, as much as practical, the ASTM D2196 (ASTM 2010d). The results are shown in Figure 4.12. The suitable mixing ratios for the $S: C$ are $1: 10,3: 10,5: 10$ and for the $B: C$ are 1:10, $2: 10,3: 10$ with the $\mathrm{W}: \mathrm{C}$ of $1: 1$ by weight. These proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$.

Two parameters controlled the workability of mixtures. The first parameter, a constant water to cement ratio (W:C) of 8:10, 10:10 and 12.5:10 are used. The second parameter, the viscosity of mixture is increased by adjusting the quantity of mixing sludge. Table 4.3 shows the test results, the viscosity of the mixture slurry in different proportions. The effect of various ratios of W:C used in the mixture proportions are shown in Figure 4.12. The proportion of cement decreased with slurry viscosity increase exponentially as $\mathrm{B}: \mathrm{C}$ or $\mathrm{S}: \mathrm{C}$ more than 0.5 . The proportion of water increase
with the viscosity of the slurry mixture decreases. Comparing curves of viscosities between $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ mixtures shows that are corresponding tend. For $\mathrm{B}: \mathrm{C}$ mixture, the proportion of $\mathrm{W}: \mathrm{C}$ is not less than 1.0 because the mixtures is sticky and semisolid condition. Bentonite expands when wet, absorbing as much as several times its dry mass in water. While sludge is used for the $\mathrm{S}: \mathrm{C}$ mixture, it is largely ranging for increasing and decreasing the quantity of water in proportion. The slurry of S:C mixture can be tested the viscosity with the highest compressive strengths.

Proportion of the mixtures mentioned above, the water to cement ratio of 10:10 is used that does not sticky and can grout in fractures. Mixture of cement proportions ($\mathrm{S}: \mathrm{C}, \mathrm{B}: \mathrm{C}$) be more than $5: 10$ is used to make the grouting material has high viscosity and can flow in fractures effectively. The proportions of mixtures are comparable to Garvin and Hayles (1999). They are the B:C proportion of 0.33. This study uses the $\mathrm{S}: \mathrm{C}$ mixtures of $1: 10,2: 10$ and $3: 10$, and the $\mathrm{B}: \mathrm{C}$ mixtures of $1: 10$, 3:10 and 5:10.

7.2 Mechanical properties testing

7.2.1 Uniaxial compressive strength testing

The uniaxial compressive strength, elastic modulus, and Poisson's ratio of the grouting materials are determined. The results show that the suitable mixing ratios for the $S: C$ are 1:10, 3:10, 5:10 and for the B:C are 1:10, 2:10, 3:10 with the $\mathrm{W}: \mathrm{C}$ of $1: 1$ by weight (Tables 5.3 and 5.4). These proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$ and the highest compressive strength. Preparation of these samples follows, as much as practical, the ASTM standards (D7012, C938, C39). All specimens are cured for 3 days before testing. During the test, the axial deformation
and lateral deformation are monitored. The maximum loaded at the failure is recorded. The compressive strength $\left(\sigma_{\mathrm{C}}\right)$, Poisson's ratio (v), elastic modulus (E) are determined. The results of the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ indicate that the chemical reaction between cement and water with the large cast are better than the small cast.

Figure 5.10 shows uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ ratios. The results show that the maximum uniaxial compressive strength of the S:C and $\mathrm{B}: \mathrm{C}$ are similar to $\mathrm{W}: \mathrm{C}=10: 10$. Larger mold allows a better chemical reaction between cement and bentonite or cement and sludge that small mold. Figure 5.11 shows the elasticity modulus of the mixtures selected. The elastic modulus is in the range between 200 MPa to 280 MPa . In particular, water portion tend to decrease with increasing uniaxial compressive strength but is not more than 3 MPa . Then the slurry viscosity is increasing which is not as beneficial as the grouting material used to fill in rock fracture. When water portion tends to increase, $\mathrm{W}: \mathrm{C}>1: 1$, with the uniaxial compressive strength is decreasing. The results of this study show that the initial W:C $=1: 1$ is suitable to apply for this research.

7.2.2 Shearing resistance between grout and fracture

Figure 5.24 shows the relationship between the function of the shear stresses and normal stresses. Table 5.7 lists the shear strength parameters calibrated from direct shear tests using Coulomb's criteria. The results show these friction angles $\left(\phi_{\mathrm{p}}\right)$ from six proportions of mixtures are very similar and cohesions (c_{p}) are differing only slightly.

7.3 Hydraulic properties testing

7.3.1 Permeability of grouting materials

Figure 6.5 shows the results of $\mathrm{S}: \mathrm{C}$ mixtures and $\mathrm{B}: \mathrm{C}$ mixtures for grout permeability tests. The results indicated that intrinsic permeability tends to rapidly decrease at 7 days curing time and it starts gradually decreasing after 14 to 28 days curing time. The intrinsic permeabilities of all mixtures are in the range of 10^{-17} to $10^{-15} \mathrm{~m}^{2}$. The mixture with the $\mathrm{S}: \mathrm{C}$ of $5: 10$ by weight gives the lowest permeability. Table 6.1 summarizes the results of permeability testing of grouting material results at $3,7,14$ and 28 days of curing.

7.3.2 Permeability of rock fractures

Hydraulic aperture (e_{h}) and permeability coefficient (K) and the physical permeability (k) are plotted as function of the normal stress of fracture in Figure 6.9. Result shows that permeabilities of five fracture sandstones are comparable. Fracture permeabilites are decreased with the normal stresses on fracture aperture increases. This tested concluded that sandstone surface is close fracture with the aperture and the fracture permeability had very small value (less than value of grouting material in this study). The close fracture does not affect the geo-structural engineering. Therefore, it is not required grouting material to reduce the fracture permeability.

7.3.3 Permeability of grouting materials in rock fractures

Figures 6.12 through 6.14 show fracture permeability and intrinsic permeability for sixty-three samples. Those parameters are similar where the corresponding results in tasks 6.2 and 6.3. It is found that the proportions of $\mathrm{S}: \mathrm{C}$ mixtures and $\mathrm{B}: \mathrm{C}$ mixtures used here are similar ranges. This means that the $\mathrm{S}: \mathrm{C}$ mixtures have hydraulic properties equivalent to those of the $\mathrm{B}: \mathrm{C}$ mixtures under the most suitable mixing ratios for grouting in rock fracture.

CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDIES

8.1 Conclusions

The sludge is classified as elastic silt with over 90% of its particles smaller than 0.047 mm . This studied, aim to determine the minimum slurry viscosity and appropriate strength of the grouting materials. Grouting materials in the study are contained sludge (S), cement (C), and water (W) for S:C mixtures and bentonite (B), cement and water for B:C mixtures. The mechanical and hydraulic tests of mixtures are determined to select the appropriate proportions of sludge-to-cement and bentonite-to-cement ratios for grouting material in rock fractures. The results show that the suitable mixing ratios for sludge-to-cement (S:C) are 1:10, 3:10 and 5:10, and for bentonite-to-cement $(\mathrm{B}: \mathrm{C})$ are $1: 10,2: 10$ and $3: 10$, with water-cement ratio $(\mathrm{W}: \mathrm{C})$ of $1: 1$ by weight that those strengths are about 2 MPa . For the sludge these proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$ and the highest compressive strength. For S:C of 3:10, the compressive strength and elastic modulus are 1.22 MPa and 224 MPa which are similar to those of the B:C. The direct shear tested, results show that the shear strengths at the interface between the grout and sandstone fractures varying from 0.22 to 0.90 MPa under normal stresses ranging from 0.25 to 1.25 MPa (Table 8.1 - 8.2).

Permeability of the grouting materials measured from the one-dimensional flow test with constant head is from 10^{-17} to $10^{-15} \mathrm{~m}^{2}$ and decreases with curing time. The mixture with the $\mathrm{S}: \mathrm{C}$ of $5: 10$ by weight gives the lowest permeability. The permeability of the grouts measured by radial flow test in fractures with apertures of 2, 10 and 20 mm ranges from 10^{-15} to $10^{-14} \mathrm{~m}^{2}$ under the normal stresses ranging from 0.25 to 1.25 MPa (Table 8.3). The permeability for all grout mixtures decrease by increase normal stresses. The S:C mixtures have the mechanical and hydraulic properties equivalent to those of the $\mathrm{B}: \mathrm{C}$ mixtures which shows that the sludge can be used as a substituted material to mix with cement for rock fracture grouting purpose. Such applications can also minimize the disposal cost of the sludge and reduce the environmental impact due to the landfill construction.

The sludge can be used as a substitute material for bentonite to be mixed with cement and water to grout in rock fractures. Properties of the liquid mixtures (viscosity and density) and properties of the solid mixtures (mechanical and hydraulic properties) for both sludge and bentonite are closely similar. These studies is conducted to compare the estimated economic cost of the liquid mixture per cubic meter in rock fracture. Result is given in Table 8.4 for economic calculation. Sludge preparation due to the application is uncomplicated process. Therefore, the cost required is only the electric energy for drying and grinding the sludge. The electric power is only about 326 Thai Baht per sludge $1,000 \mathrm{~kg}$. Comparison between S:C proportion and $\mathrm{B}: \mathrm{C}$ proportion at $1: 10$ to save costs is equal to $650-23=627$ Thai Baht (per one cubic meter liquid mixture).

The results of laboratory studies aim at determining appropriate grout mixes proportion from sludge-mixed cement for reducing permeability in saturated fractured
rock under various stresses in the laboratory and to compare the results with the bentonite-mixed cement in terms of the mechanical and hydraulic properties. Three mixtures of $\mathrm{S}: \mathrm{C}$ are 1:10, 3:10 and 5:10 that are closely similar in terms of the mechanical and hydraulic properties. Those are some important differences in their viscosity. The minimum and maximum viscosities of $S: C$ are $1: 10$ and $5: 10$ by weight. Recommended applications for sludge-mixed cement grout in rock fracture are summarized in Table 8.5.

8.2 Recommendations for future studies

More grout mixtures are needed long-term performance and under in-situ condition. The sludge can be obtained from both Bang Khen and Mahasawat Water Treatment Plants. They should be collected from sludge lagoon in various seasons. Testing time and curing time should be longer (months or years) for long-term testing. The mechanical and hydraulic behavior of the grout in rock fractures is very complicated and is affected by numerous factors. One should investigate the factors affecting such behaviors, such as variations of the mineralogy, admixture content, temperature, humidity and inclusions, etc. Sludge from other plants may be needed to compare the results. The concept of sludge-mixed cement grout in rock fractures may be improved by using cyclic loading test for earthquake.

Table 8.1 Mixture ratios with $\mathrm{W}: \mathrm{C}=1: 1$.

Types		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0_{0}^{000} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\tilde{0}} \\ & \dot{\ddot{U}} 000 \\ & 000 \end{aligned}$	$\underset{\sim}{\infty}$		$\begin{aligned} & \stackrel{0}{0} \\ & \vdots \\ & \vdots \\ & i \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$		
Cement	-	391	391	0	693.7	470	1.47	0.43
Bentonite	1:10	371	371	37	765.8	560	1.37	2.19
	2:10	352	352	70	729.8	480	1.52	7.31
	3:10	336	336	101	743.5	520	1.42	22.88
Sludge	1:10	367	367	37	772.8	510	1.51	0.56
	3:10	326	326	98	772.7	500	1.53	1.06
	5:10	294	294	147	764.5	490	1.56	2.63

Table 8.2 Summary of mechanical property results of mixture ratios with $\mathrm{W}: \mathrm{C}=1: 1$.

Types				$\begin{gathered} \text { Elastic Modulus } \\ \text { (MPa) } \end{gathered}$		\mathcal{E}	寿
Cement	-	0.83	0.85 ± 0.0	212	0.18	0.563	14.7
Bentonite	1:10	1.35	1.05 ± 0.1	193	0.17	0.306	23.0
	2:10	1.38	1.83 ± 0.0	275	0.14	0.121	22.3
	3:10	1.33	1.77 ± 0.1	228	0.16	0.143	23.3
Sludge	1:10	1.91	0.79 ± 0.1	190	0.15	0.275	23.6
	3:10	1.81	1.22 ± 0.1	224	0.21	0.213	23.5
	5:10	1.79	1.10 ± 0.3	261	0.16	0.255	23.2

Table 8.3 Summary of hydraulic property results of mixture ratios with $\mathrm{W}: \mathrm{C}=1: 1$.

Types	$\begin{gathered} \text { Mixing } \\ \text { Ratio } \\ \text { B:C or } \\ \text { S:C } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Cylindrical } \\ \text { shape } \\ \text { specimen } \\ \mathrm{k}\left(\times 10^{-17} \mathrm{~m}^{2}\right) \\ \hline \end{gathered}$	In fracture $\mathrm{k}\left(\times 10^{-17} \mathrm{~m}^{2}\right)$ at $\sigma_{\mathrm{n}}=0.25 \mathrm{MPa}$		
			Aperture 2 mm	Aperture 10 mm	Aperture $20 \mathrm{~mm}$
Cement	-	893	107	348	1329
Bentonite	1:10	237	1707	19	84
	2:10	86.8	2475	87	655
	3:10	31.7	1265	169	63
Sludge	1:10	825	349	263	970
	3:10	293	576	34	351
	5:10	221	149	227	148

Table 8.4 Estimated quantities of mixture proportions and cost for grout in rock fracture by fractured volume of $1 \mathrm{~m}^{3}$.

Types	Mixing Ratio B:C or S:C	*Fractured Volume $1 \mathrm{~m}^{3}$							
					Slurry weight (kg)		Cost (Baht)		
							$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & U \end{aligned}$		
Cement		735	735	0	1470	1	1,838	-	-
Bentonite	1:10	652	652	65	1369	1	1,630	-	650
	2:10	691	691	138	1520	1	1,728	-	1,380
	3:10	617	617	185	1419	1	1,543	-	1,850
Sludge	1:10	719	719	72	1510	1	1,798	23	-
	3:10	665	665	200	1530	1	1,663	65	-
	5:10	624	624	312	1560	1	1,560	102	-

*The preparation cost of $1,000 \mathrm{~kg}$ sludge is limit to 326 Baht (exclude shipping charges).

Table 8.5 Recommended applications for sludge-mixed cement grout in rock fracture.

Types	Mixing Ratio	Recommended applications
Sludge	$3: 10$	Suitable for grout in rock fracture that is narrow aperture (less than 5 mm). The mixture slurry is low viscosity that easily flowed in rock fracture.
	$3: 10$	Suitable for grout in rock fracture that moderate aperture (5 mm to 20 mm). This mixture slurry is high compressive strength after curing for enhancement of the strength of the rock mass.
	$5: 10$	Suitable for grout in rock fracture that large aperture (larger than 20 mm). The mixture slurry is high viscosity, but there are advantages to use the highest proportion of sludge.

REFERENCES

Akgün, H. (2010). Geotechnical characterization and performance assessment of bentonite/sand mixtures for underground waste repository sealing. Applied Clay Science. 49: 394-399.

Akgün, H., Daemen, J. J. K. (1999). Design implications of analytical and laboratory studies of permanent abandonment plugs. Canadian Geotechnical. 36: 2138.

Akgün, H., Koçkar, M. K., Aktürk, Ö. (2006). Evaluation of a compacted bentonite/sand seal for underground waste repository isolation. Environmental Geology. 50, 331-337.

Akgüna, H., and Daemen, J. J. K. (2000). Influence of degree of saturation on the borehole sealing performance of an expansive cement grout. Cement and Concrete Research. 30:281-289.

Akkrachattrarat, N., Suanprom, P., Buaboocha J. and Fuenkajorn, K. (2009). Flow testing of sandstone fractures under normal and shear stresses. In Proceedings of the Second Thailand Symposium on Rock Mechanics, March 12-13, 2009, Chonburi, Published by Geomechanics Research Unit, Suranaree University of Technology, Nakhon Ratchasima, pp. 319-334.

ASTM C114-11b. Standard Test Methods for Chemical Analysis of Hydraulic Cement. In Annual Book of ASTM Standards, 04.01, American Society for Testing and Materials, Philadelphia.

ASTM C150/C150M-09. Standard Specification for Portland Cement. In Annual Book of ASTM Standards, 04.01. American Society for Testing and Materials, Philadelphia.

ASTM C192-07. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. In Annual Book of ASTM Standards, 04.02, American Society for Testing and Materials, Philadelphia.

ASTM C20-00. Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water. In Annual Book of ASTM Standards, 15.01. American Society for Testing and Materials, Philadelphia.

ASTM C33/C33M-11. Standard Specification for Concrete Aggregates. In Annual Book of ASTM Standards, 04.02. American Society for Testing and Materials, Philadelphia.

ASTM C39/C39M-10. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. In Annual Book of ASTM Standards, 04.01, American Society for Testing and Materials, Philadelphia.

ASTM C91-05. Standard Specification for Masonry Cement. In Annual Book of ASTM Standards, 04.01, American Society for Testing and Materials, Philadelphia.

ASTM C938-10. Standard Practice for Proportioning Grout Mixtures for PreplacedAggregate Concrete. In Annual Book of ASTM Standards. 04.02, American Society for Testing and Materials, Philadelphia.

ASTM D2196-10. Standard Test Methods for Rheological Properties of NonNewtonian Materials by Rotational (Brookfield type) Viscometer. In Annual Book of ASTM Standards, 06.01, American Society for Testing and Materials, Philadelphia.

ASTM D2487-11. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). In Annual Book of ASTM Standards, 04.08, American Society for Testing and Materials, Philadelphia.

ASTM D422-07. Standard Test Method for Particle-Size Analysis of Soils. Annual Book of ASTM Standards, 04.08, American Society for Testing and Materials, Philadelphia.

ASTM D4221-11. Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer. In Annual Book of ASTM Standards. 04.08, American Society for Testing and Materials, Philadelphia.

ASTM D4318-10. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. In Annual Book of ASTM Standards, 04.08, American Society for Testing and Materials, Philadelphia.

ASTM D4543-08. Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances. In Annual Book of ASTM Standards, 04.01, American Society for Testing and Materials, Philadelphia.

ASTM D4832-10. Standard Test Method for Preparation and Testing of Controlled Low Strength Material (CLSM) Test Cylinders. In Annual Book of ASTM Standards, 04.02, American Society for Testing and Materials, Philadelphia.

ASTM D5607-95. Standard test method for performing laboratory direct shear strength test of rock specimens under constant normal force. In Annual Book of ASTM Standards, 04.08, American Society for Testing and Materials, Philadelphia.

ASTM D698-07e1. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 $400 \mathrm{ft}-\mathrm{lbf} / \mathrm{ft}^{3}(600 \mathrm{kN}-$ $\left.\mathrm{m} / \mathrm{m}^{3}\right)$). In Annual Book of ASTM Standards, 04.08 , American Society for Testing and Materials, Philadelphia.

ASTM D7012-10. Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures. In Annual Book of ASTM Standards, 04.09, American Society for Testing and Materials, Philadelphia.

ASTM D854-10. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. In Annual Book of ASTM Standards. 04.08, American Society for Testing and Materials, Philadelphia.

Baik, M. H., Cho, W. J., and Hahn, P. S. (2007). Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite. Engineering Geology. 91: 229-239.

Bandis, S. C., Barton, N. R., and Christianson, M. (1985). Application of a New Numerical Model of Joint Behavior to Rock Mechanics Problems. In Proceeding of the International Symposium on Fundamentals of Rock Joints, Bjorkliden.

Bandis, S. C., Lumsden, A. C., and Barton, N. R. (1983). Fundamentals of Rock Joint Deformation. International Journal of Rock Mechanics and Mining Sciences \& Geomechanics. 20: 249-268.

Barton, N. R. (1973). Review of a new shear strength criterion for rock joints. Engineering Geology 7: 287-332.

Barton, N., and Bakhtar, K. (1983). Rock Joint Description and Modeling of the Hydrothermomechanical Design of Nuclear Waste Repositories (Contact Report, Submitted to CANMET). Mining Research Laboratory, Ottawa.

Barton, N., Bandis, S. and Bakhtar, K. (1985). Strength, Deformation and Conductivity Coupling of Rock Joints. Int. J. Rock Mech. Min. Sci. Geomech. 22(3): 121-140.

Bates, R., and Jackson, J. A. (eds.). (1980). Glossary of Geology (2nd ed.). Falls Church, Va.: American Geological Institute.

Bishop, A. W. (1995). The use of the slip circle in the stability analysis of earth slope. Geotechnique. 5: 7-17.

Bunjongsiri, K. and Bunjongsiri, J. (2005). A study of quantity of heavy metal in bricks produce by clay mix with sludge from community wastewater treatment. In Proceedings of National Convention on Civil Engineering 2006 (NCCE11), 2 - 4 May 2005, Pattaya, Chonburi.

Butron, C., Axelsson, M. and Gustafson, G. (2009). Silica sol for rock grouting: laboratory testing of strength, fracture behavior and hydraulic conductivity. Tunnelling and Underground Space Technology. 24: 603-607.

Butron, C., Gustafson, G., Fransson, A., and Funehag, J. (2010). Drip sealing of tunnels in hard rock: A new concept for the design and evaluation of permeation grouting. Tunnelling and Underground Space Technology. 25: 114-121.

Castelbaum, D. and Shackelford, C. D. (2009). Hydraulic Conductivity of Bentonite Slurry Mixed Sands. Geotechnical and Geoenvironmental Engineering 135(12): 1941-1956.

Chapius, R.P., 1990. Sand-bentonite liners: predicting permeability from laboratory tests. Canadian Geotechnical Journal. 27: 47-57.

Chegbeleh, L. P., Nishigaki, M., Akudago, J. A. and Katayama, T. (2009). Experimental study on ethanol/bentonite slurry injection into synthetic rock fractures: Application to seepage control. Applied Clay Science. 45: 232-238.

Coulon, H., Lajudie, A., Debrabant, P., Atabek, R., Jorda, M., Andre-Jehan, R. (1987). Choice of French clays as engineered barrier components for waste disposal. In: Bates, J.K., Seefeldt, W.B. (Eds.), In Proceedings of Scientific Basis for Nuclear Waste Management X, Materials Research Society Symposium, Boston, MA, December 1-4, 1986: Materials Research Society, Pittsburgh, PA, 84, pp. 813-824.

Daemen, J.J.K., Ran, C. (1996). Bentonite as a Waste Isolation Pilot Plant Shaft Sealing Material. Contractor Report SAND96-1968. Sandia National Laboratories, Albuquerque, NM.

Delaleuxa, F., Pya, X., Olivesa, R. and Dominguezb, A. (2012). Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity. Applied Thermal Engineering. 33-34:92-99.

Detoumay, E. (1980). Hydraulic Conductivity of Closed Rock Fractures: An Experimental and Analytical Study. In Proceeding of the 13th Canadian Rock Mechanics Symposium. (pp 168-173). Toronto: (n.p.).

Dixon, D.A., Gray, M.N., Thomas, A.W. (1985). A study of the compaction properties of potential clay-sand buffer mixtures for use in nuclear fuel waste disposal. Engineering Geology. 21: 247-255.

Einarson, D.S., Abel, J.F. (1990). Tunnel bulkheads for acid mine drainage. In Proceedings of International Symposium on Unique Underground Structures, Denver, Colorado, Vol. II, Chapter 71.

Eriksson, M. (2002). Grouting field experiment at the Äspö hard rock laboratory. Tunnelling and Underground Space Technology. 17: 287-293

Fransson, A. (2001). Characterisation of a fractured rock mass for a grouting field Test. Tunnelling and Underground Space Technology. 16: 331-339.

Fransson, A., Tsang, C. F., Rutqvist, J., and Gustafson, G. (2007a). A new parameter to assess hydromechanical effects in single-hole hydraulic testing and grouting. International Journal of Rock Mechanics and Mining Sciences. 44:1011-1021.

Fransson, A., Tsang, C. F., Rutqvist, J., and Gustafson, G. (2007b). Effects of the injection grout Silica sol on bentonite. International Journal of Rock Mechanics and Mining Sciences. 47: 887-893.

Freeze, R. A., and Cherry, J. A. (1979). Groundwater. Prentice Hall, Inc. Upper Saddle River, USA, 604p.

Fuenkajorn, K. (2007). Design process for sealing of boreholes in rock mass. In Proceedings of the First Thailand Symposium on Rock Mechanics, September, 13-14, Khao Yai, Thailand, Published by Geomechanics Research Unit, Suranaree University of Technology, Nakhon Ratchasima, Thailand, pp. 245-252.

Fuenkajorn, K., Daemen, J.J.K. (Eds.), 1996. Sealing of Boreholes and Underground Excavations in Rock. Chapman and Hall, London.

Funehag, J., and Fransson, A. (2006). Sealing narrow fractures with a Newtonian fluid: Model prediction for grouting verified by field study. Tunnelling and Underground Space Technology. 21: 492-498.

Gailing, Z., Kaiyu, Z., Yue, G. and Wenxue, W. (2011). Comparative experimental investigation of chemical grouting into a fracture with flowing and static water. Mining Science and Technology. 21: 201-205.

Gangi, A. F. (1978). Variation of Whole and Fractured Porous Rocks Permeability with Confining Pressure. International Journal of Rock Mechanics and Mining Sciences \& Geomechanics. 15: 249-257.

Garvin, S. L. and Hayles, C. S. (1999). The chemical compatibility of cementbentonite cut-off wall material. Construction and Building Materials. 13: 329-341.

Gleason, M. H., Daniel, D. E. and Eykhole, G. R. (1997). Calcium and sodium bentonite for hydraulic containment aplications. Journal of Geotechnical and Geoenvironmental Engineering. pp. 438-445.

Gnirk, P., 1988. State-of-the-art evaluation of repository sealing materials and techniques. In: Apted, M.J., Westerman, R.E. (Eds.), Scientific Basis for Nuclear Waste Management XI. In Proceedings of Materials Research Society Symposium, Boston, MA, November 30-December 3, 112. Materials Research Society, Pittsburgh, PA, pp. 219-231.

Gothall, R. and Stille, H. (2009). Fracture dilation during grouting. Tunnelling and Underground Space Technology. 24: 126-135.

Gothall, R., and Stille. H. (2010). Fracture - fracture interaction during grouting. Tunnelling and Underground space Technology. 25: 199-204.

Greer, W. B. and Crouthamel, D. R. (1996). In-situ Hydraulic Performance of Cement Borehole Seals. In Fuenkajorn, K. and Daemen, J. J. K. (eds). Sealing of Boreholes and Underground Excavations in Rock (pp. 157-183). Chapman\&Hall.

Hadsanan, P., Lertpocasombut, K. and Chatveera, B. (2006). Mechanical properties and durability of cement mortar containing dry sludge ash from Bang Khen water supply plant. In Proceedings of National Convention on Civil Engineering 2006 (NCCE11), 20-22 April 2006, Phuket.

Hoek, E. and Bray, J. W. (1981). Rock Slope Engineering. Revised 3rd ed. IMM, London, 358p.

Hoffman, C., (2004). Nuclear Waste Repository: Long-term Storage. Popular Science, Tampa, FL. April.

Holmbee, M., Wold, S. and Petterson, T. (2011). Effects of the injection grout silica sol on bentonite. Physics and Chemistry of the Earth. 36: 1580-1589

Hong, C. S., Shackelford, C. D. and Malusis, M. A. (2012). "Consolidation and Hydraulic Conductivity of Zeolite-Amended Soil-Bentonite Backfills" J. Geotech. Geoenviron. Eng. 138(1): 15-25.

Huang, W. H. (1997). Properties of cement-fly ash grout admixed with bentonite, silica fume, or organic fiber. Cement and Concrete Research. 27(3): 395406.

Huang, Z., Chen, M. and Chen, X. (2003). A developed technology for wet-ground fine cement slurry with its applications. Cement and Concrete Research. 33: 729-732.

Hvorlsev, M. S. (1951). Time lag and soil permeability in groundwater measurements. U.S. Corps of Engineers Waterways Experiment Station, Bulletin No. 36, 50p. IAEA, 1990. Sealing of underground repositories for radioactive wastes. In Gray, M., Gera, F., Wiley, J.R., Dlouhy, Z., Squires, D. (Eds.), Technical Reports Series No. 319, International Atomic Energy Agency, Vienna, Unipub, Lanham, MD.

Indraratna, B., and Ranjith, P. (2001). Hydromechanical aspects and unsaturated flow in joints rock, A. A. Balkema, Lisse, 83-154.

Jaeger, J. C., and Cook, N. G. W. (1979). Fundamentals of Rock Mechanics (3rd ed.). London: Chapman \& Hall.

Jaeger, J.C. (1959). The frictional properties of joints in rocks. Geofis pura appl. 43: 148-158.

Jones, F. O. (1975). A Laboratory Study of the Effects of Confining Pressure on Fracture Flow and Storage Capacity in Carbonate Rocks. Journal of Petroleum Technology. 21: 21-27.

Joshi, K., Kechavarzi, C., Sutherland, K., Albert, M. Y. Soga, K. and Tedd, P. (2010). "Laboratory and In Situ Tests for Long-Term Hydraulic Conductivity of a Cement-Bentonite Cutoff Wall." J. Geotech. Geoenviron. Eng. 136(4): 562572.

Kanchanamai, P. (2003). The utilization of sludge frome Bang Khen water treatment plant in construction industry. A thesis submitted in partial fulfilment of the requirements for the degree of master of engineering in the faculty of graduate studies, Kasetsart University.

Karamalidis, A. K. and Voudrias, E. A. (2007). Cement-based stabilization / solidification of oil refinery sludge: Leaching behavior of alkanes and PAHs. Journal of Hazardous Materials. 148:122-135.

Kashir, M., and Yanful, E. K. (2000). Compatibility of Slurry Wall Backfill Soils With Acid Mine Dranage. Advances in Environmental Research. 4: 251268.

Katsioti, M., Katsiotis, N., Rouni, G., Bakirtzis, D and Loizidou, M. (2008). The effect of bentonite/cement mortar for the stabilization/solidification of sewage sludge containing heavy metals. Cement \& Concrete Composites. 30: 10131019.

Kenney, T.C., Van Veen, W.A., Swallow, M.A., Sungaila, M.A., 1992. Hydraulic conductivity of compacted bentonite-sand mixtures. Canadian Geotechnical Journal. 29: 364-374.

Kjartanson, B.H., Chandler, N.A., Wan, A.W.L., 1996. In situ performance of a clay based barrier. In Fuenkajorn, K., Daemen, J.J.K. (Eds.), Sealing of Boreholes and Underground Excavations in Rock. Chapman and Hall, London, pp. 96-125.

Koch, D. (2002). Bentonites as a basic material for technical base liners and site encapsulation cut-off walls. Applied Clay Science. 21: 1-11

Komine, H., (2004). Simplified evaluation on hydraulic conductivities of sandbentonite mixture backfill. Applied Clay Science. 26: 13-19.

Kongthong, R. and Lertpocasombut, K. (2006). A study of sludge from water treatment plant on dye adsorption. In Proceedings of National Convention on Civil Engineering 2006 (NCCE11), 20-22 April 2006, Phuket.

Kuo, W. and Huang J. (2010). Microstructure and properties of cement mortars containing organo-modified reservoir sludge. Construction and Building Materials. 24: 2022-2029.

Kuo, W., Huang J. and Tan., T. (2007). Organo-modified reservoir sludge as fine aggregates in cement mortars. Construction and Building Materials. 21: 609-615.

Laothong, K. (2003). The Utilization of Sludge Cake from Water Treatment Processes of Wang Noi Power Plant. Master of Engineering (Environmental Engineering), Major Field Environmental Engineering, Department of Environmental Engineering, Kasetsart University, 99 pp.

Lee, J.-M. and Shackelford, C. D. (2005). Impact of Bentonite Quality on Hydraulic Conductivity of Geosynthetic Clay Liners. Journal of Geotechnical and Geoenvironmental Engineering. 131(1): 64-77.

Malusis, M. A., Barben, E. J. and Evans, J. C. (2009). "Hydraulic conductivity and compressibility of soil-bentonite backfill amended with activated carbon." J. Geotech. Geoenviron. Eng. 135(5): 664-672.

Masumoto, K., Sugita, Y., Fujita, T., Martino, J. B., Kozak, E. T. and Dixon, D. A. (2007). A clay grouting technique for granitic rock adjacent to clay bulkhead. Physics and Chemistry of the Earth. 32:691-700.

Metcalfe, R., Walker, C. (2004). International Workshop on Bentonite Cement Interaction in Repository Environments. NUMO Technical Report.

National Research Council. (1996). Rock Fractures and Fluid Flow: Contemporary Understanding and Applications. Washington, D.C.: National Academy Press.

Navarro, F. C. (2010). Suggested guuidelines for sampling natural stones for laboratorial tests. Global Stone Congress 2010, (pp. 1-5).

Nelson, R. (1975). Fracture Permeability in Porous Reservoirs: Experimental and Field Approach. Ph.D. dissertation, Department of Geology, Texas A\&M University.

Obcheoy, J., Aracheeploha, S. and Fuenkajorn, K. (2011). Fracture permeability under normal and shear stresses. Rock Mechanics, Fuenkajorn \& Phien-wej (eds), In Proceedings of the Third Thailand Symposium on Rock Mechanics, March, 10-11, Cha-Am, Thailand, Published by Geomechanics Research Unit, Suranaree University of Technology, Nakhon Ratchasima, Thailand, pp. 133-140.

Opdyke, S. M. and Evans, J. C. (2012). Slag-Cement-Bentonite Slurry Walls. J. Geotech. Geoenviron. Eng. 131(6): 673-681.

Ouyang, S., Daemen, J.J.K., (1996). Performance of bentonite and bentonite/crushed rock borehole seals. In Fuenkajorn, K., Daemen, J.J.K. (Eds.), Sealing of Boreholes and Underground Excavations in Rock. Chapman and Hall, London, (pp. 65-95).

Owaidat, L. M., Andromalos, K. B., and Sisley, J. L. (1999). Construction of a Soil-Cement-Bentonite Slurry Wall for a Levee Strengthening Program. In Association of State Dam Safety Officials Annual Conference, 10-12 October 1999, St. Louis, Missouri.

Pettman, E.R., (1984). Tunnel plugs in recent H.E.C. Practice. In 5th Australian Tunnelling Conference, Sydney. (pp. 207-212)

Philip, L. K. (2001). An investigation into contaminant transport processes through single-phase cement-bentonite slurry walls. Engineering Geology. 60: 209221.

Picandet, V., Rangeard, D., Perrot, A. and Lecompte, T. (2011). Permeability measurement of fresh cement paste. Cement and Concrete Research. 41:330-338.

Poonsawat, C. and Lertpocasombut, K. (2006). Study on the properties of sludge from water supply plant as raw material for clay plan roofing tile. In National Convention on Civil Engineering 2006 (NCCE11), 20-22 April 2006, Phuket.

Pusch, R. (1978). Small-scale bentonite injection test on rock. KBS Report 75, Stockholm.

Pusch, R. (1983). Borehole sealing for underground waste storage. ASCE Journal of Geotechnical Engineering. 109: 113-119.

Pusch, R. (1994). Waste disposal in rock. Developments in Geotechnical Engineering 76, Elsevier, Amsterdam.

Rahmani, H. (2004). Estimation of grout distribution in a fractured rock by numerical modeling. A thesis submitted in partial fulfilment of the requirements for the degree of master of applied science in the faculty of graduate studies (Civil Engineering), University of Tehran.

Ranjith, P. G. and Viete, D. R. (2011). Applicability of the 'cubic law' for nonDarcian fracture flow. Petroleum Science and Engineering. In Press, Accepted Manuscript, Available online 7 August 2011.

Rutqvist, J. (1995). Determination of Hydraulic Normal Stiffness of Fractures in Hard Rock from Well Testing. Rock Mech. Min. Sci. \& Geomech. 32(5): 513-523.

Ryan, C. R., and Day, S. R. (2002). Soil-Cement-Bentonite Slurry Wall. International Deep Foundation Congress, GSP No. 116, American Society of Civil Engineers, Orlando, FL.

Şahmaran, M. Özkan, N. Keskin, S. B., Uzal, B., Yaman, İ. Ö. and Erdem, T. K. (2008). Evaluation of natural zeolite as a viscosity-modifying agent for cement-based grouts. Cement and Concrete Research. 38:930-937.

Saiyouri, N., Bouasker, M. and Khelidj,. A. (2008). Gas permeability measurement on injected soils with cement grout. Cement and Concrete Research. 38:95103.

Sa-ngiumsak, N. and Cheerarot, R. (2008). The study of properties of artificial aggregates made from water supply sludge. In National Convention on Civil Engineering 2006 (NCCE11), 14-16 Mayl 2008, Pattaya, Chonburi.

Saric-Coric, M. Khayat, K. H. and Tagnit-Hamou, A. (2003). Performance characteristics of cement grouts made with various combinations of highrange water reducer and cellulose-based viscosity modifier. Cement and Concrete Research. 33:1999-2008.

Sivapullaiah, P.V., Sridharan, A., Stalin, V.K. (2000). Hydraulic conductivity of bentonite-sand mixtures. Canadian Geotechnical Journal. 37, 406-413.

Smith, L. C., Mase, C. W. and Schwartz, F. W. (1987). Estimation of Fracture Using Hydraulic and Tracer Tests. 28th U.S. In Symposium on Rock Mechanics, University of Arizona, Tucson, June 29th to July 1st, (pp. 453-463).

Snow, D. T. (1968). Anisotropic Permeability of Fractured Media. Water Resources Research. 5(6): 1273-1289.

Sonsakul, P., Fuenkajorn, K. (2013). evelopment of Three-Ring Compaction and Direct Shear Test Mold for Soils with Oversized Particles. Research and Development Journal of The Engineering institute of Thailand. 24(2): 1-7.

Stampinoa, P. G., Zamporia, L., Dotelli, G., Melonib, P., Sorac, I. N. and Pelosatoc, R. (2009). Use of admixtures in organic-contaminated cement-clay pastes. Journal of Hazardous Materials. 161:862-870. 120

Suanprom, P. Obcheoy, J. and Fuenkajorn, K. (2009). Permeability of Rock Fractures under Shear Stresses. EIT-JSCE Joint International Symposium Geotechnical Infrastructure Asset Management, Bangkok, Thailand.

Suriyachat, D., Vichitamornpun, P. and Ruengsumrej, W. (2004). Water treatment sludge utilization. Technical Report No. 16/2547. department of primary industries and mines, Bangkok.

Svermova, L. Sonebi, M. and Barto, P. J. M. (2003). Influence of mix proportions on rheology of cement grouts containing limestone powder. Cement \& Concrete Composites. 25:737-749.

Svermova, L., Sonebi, M., Bartos, P.J.M., 2003. Influence of mix proportions on rheology of cement grouts containing limestone powder. Cement $\&$ Concrete Composites. 25, 737-749.

Terzaghi, K. (1936). The Shearing Resistance of Saturated Soils. (pp.402-407). In Proceedings of the International Conference on Foundation Engineering, Graduate School of Engineering, Harvard University. Boston: Spaulding Moss.

Trakoolngam, K. (2009). Determination of the mechanical-hydraulic coupled behavior of the Phu Thok sandstone: A dual-porosity approach. Rock Mechanics, Fuenkajorn \& Phien-wej (eds), In Proceedings of the Second Thailand Symposium on Rock Mechanics, March 12-13, 2009, Chonburi, Published by Geomechanics Research Unit, Suranaree University of Technology, Nakhon Ratchasima, Thailand (pp. 219-234).

Tsang, Y. W. (1992). Usage of equivalent apertures for rock fractures as derived from hydraulic and tracer tests. J. Water Resour. Res. 28(5): 1451-1455.

US Nuclear Regulatory Commission. (1983). Disposal of high-level radioactive wastes in geologic repositories. Final rule 10 CFR 60. Federal Register, Vol. 48, No. 120, June 30, Washington, D.C.

US Nuclear Regulatory Commission. (1985). Disposal of high-level radioactive wastes in geologic repositories, Final rule, unsaturated zone amendment. Federal Register, Vol. 50, No. 140, July 22, Washington, D.C.

USDOE/WIPP. (1995). Waste isolation pilot plant sealing system design report. DOE/WIPP-95-3117. U.S. Department of Energy,Waste Isolation Pilot Plant, Carlsbad, NM.

USEPA. (1995). Environmental radiation protection standards for management and disposal of spent nuclear fuel, high-level and transuranic radioactive wastes. CFR 40, Part 191, Washington, D.C.

Varol, A., and Dalgic, S. (2006). Grouting applications in the Istanbul metro, Turkey. Tunnelling and Underground Space Technology. 21: 602-612

Vitipanit, S. and Rianbupa, S. (2004). A Study for Development an Appropriate Material in Construction by Using Sand Mixed with Bentonite. Research and Development Institute, Royal Irrigation Department.

Wang, M. C. and Tseng, W. (1993). Permeability behavior of a water treatment sludge. J Geotech. Engrg. 119: 1672-1677.

Wang, M. C., Hull, J. Q., Jao, M., Dempsey, B. A. and Cornwell, D. A. (1992). Engineering behavior of water treatment sludge. J. Environ. Eng. 118: 848864.

Witherspoon, P. A., Wang, J. S. Y., Iwai, K., and Gale, J. E. (1980). Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6): 1016-1024.

Xinghua, W. and Quqing, G. (1997). Study of a New Cheap Grouting Material: ClayHardening Grout. Tunnelling and Underground Space Technology. 12(4): 497-502.

Yan, S., Sagoe-Crentsil, K. and Shapiro, G. (2011). Reuse of de-inking sludge from wastepaper recycling in cement mortar products. Journal of Environmental Management. 92: 2085-2090.

Yong, R. N., Boonsinsuk, P., Wong, G. (1986). Formulation of backfill material for a nuclear fuel waste disposal vault. Canadian Geotechnical Journal. 23: 216228.

APPENDIX A

PUBLICATION

List of Publications

Wetchasat, K., and Fuenkajorn, K., (2012). Mechanical and Hydraulic Performance of Sludge-Mixed Cement Grout in Rock Fractures. In Proceedings of the seventh Asian Rock Mechanics Symposium, 15-19 October 2012, Seoul, Korea, pp. 1477-1485.

Wetchasat, K. and Fuenkajorn, K., (2013). Laboratory Assessment of Mechanical and Hydraulic Performance of Sludge-Mixed Cement Grout in Rock Fractures. In Proceedings of the Fourth Thailand Symposium on Rock Mechanics, January 24-25, 2013, Wang Nam Keaw, Nakhon Ratchasima, Thailand, Published by Geomechanics Research Unit, Suranaree University of Technology, Nakhon Ratchasima, pp. 259-268.

Wetchasat, K. and Fuenkajorn, K. Mechanical and Hydraulic Performance of Sludge-Mixed Cement Grout in Rock Fractures. Research and Development J. EIT. (Accepted 20 December 2013).

Wetchasat, K. and Fuenkajorn, K., Mechanical and Hydraulic Performance of Sludge-Mixed Cement Grout in Rock Fractures. Songklanakarin. J. Sci. Technol. (Accepted 24 March 2014).

Mechanical and Hydraulic Performance of Sludge-Mixed Cement Grout in Rock Fractures

K. Wetchasat ${ }^{a^{*}}$ and K. Fuenkajorn, Ph.D., P.E. ${ }^{\text {b }}$
${ }^{a}$ Engineer level 6, Metropolitan Waterworks Authority, Bangkok, Thailand
${ }^{b}$ Associate Professor, Suranaree University of Technology, Nakhon Ratchasima, Thailand
*Corresponding Author's E-mail: aek@mwa.co.th

Abstract

The objective of this study is to assess the performance of sludge mixed with the commercial grade Portland cement type I for use in minimizing permeability of fractures in rock. The fractures are artificially made in 3 rectangular blocks of sandstone by applying a line load to induce a splitting tensile crack. The water treatment sludge tested comprises over 80% of quartz with grain sizes less than $75 \mu \mathrm{~m}$. The results indicate that the mixing ratios of sludge:cement ($\mathrm{S}: \mathrm{C}$) of $1: 10,3: 10,5: 10$ are suitable with water:cement ratio (W:C) of $1: 1$ by weight. For $\mathrm{S}: \mathrm{C}=3: 10$, the compressive strength and elastic modulus are 1.22 MPa and 224 MPa which are similar to those of bentonite mixed with cement The shear strengths between the grouts and fractures surfaces are from 0.22 to 0.90 MPa under normal stresses from 0.25 to 1.25 MPa . The $\mathrm{S}: \mathrm{C}$ ratio of $5: 10$ gives the lowest permeability. The permeability of grouted fractures with apertures of 2,10 and 20 mm range from 10^{-16} to $10^{-14} \mathrm{~m}^{2}$ and decrease with curing time.

Keywords: Rock fracture, Grouting, Permeability, Sludge, Cement

1. INTRODUCTION

The increasing amount of the water treatment sludge from the Metropolitan Waterworks Authority of Thailand (MWA) has called for a permanent solution to dispose of the sludge from the Bang khen Water Treatment Plants. The MWA report (2007-2009) indicates that the plant produces sludge with the maximum capacity of $3.2 \times 10^{6} \mathrm{~m}^{3}$ per day. The sludge has been collected from the water treatment process. The increasing rate of the sludge is about $247 \times 10^{3} \mathrm{~kg}$ per day. One of the solutions is to apply the sludge to minimizing groundwater circulation in rock mass. Groundwater in rock mass is one of the key factors governing the mechanical stability of slope embankments, underground mines, tunnels, and dam foundation. A common solution practiced internationally in the construction industry is to use bentonite mixed with cement as a grouting material to reduce permeability in fractured rock mass (Akgün and Daemen, 1999; Fuenkajorn and Daemen, 1996). Knowledge and experimental evidences about the permeability of the sludge-mixed cement in fractured rock under varied stress conditions have been rare. The objectives of this study are to assess the performance of sludge mixed with the commercial grade Portland cement for reducing permeability in saturated fractured rock under various stresses in the laboratory and to compare the results with those of the bentonite-mixed cement in terms of the mechanical and hydraulic performance.

2. GROUTS PREPARATION

The grouting materials used in this study are (1) sludge with particle sizes less than $75 \mu \mathrm{~m}$, (2) commercial grade bentonite, and (3) commercial grade Portland cement type I for mixing with the sludge and bentonite. The fractures in sandstone collcted from Phu Kradung formation are artificially made by applying a line load to induce a splitting tensile crack. Two shapes of the sandstone samples are $152.4 \times 152.4 \times 152.4 \mathrm{~mm}^{3}$ blocks and 100 mm diameter cylinder with 100 mm in length. Bentonite is from America colloid company

Sludge and bentonite are tested for the Atterberg's limits, specific gravity, and particle size distribution. The equipment and test procedure follow the ASTM standards (D422, D854). The results are summarized in Table 1. Figure 1 shows the particle size distributions of the sludge used here.

3. BASIC MECHANICAL PROPERTIES OF GROUTING MATERIALS

The basic mechanical properties of the mixtures are determined to select the appropriate proportions of sludge-to-cement ratios. The sludge-mixed cement ratios (S:C) of $0: 10,1: 10,2: 10,3: 10$, $4: 10,5: 10,6: 10,8: 10$ and $10: 10$ by weight are prepared with water-cement ratios (W:C) of $0.8: 1,1: 1$ and $1.25: 1$. The bentonite-mixes cement ratios (B:C) are $0: 10,1: 10,2: 10,3: 10,4: 10$, and $5: 10$ by weight with water-cement ratios (W:C) of 1:1, 4:1. Mixing of all grouts is accomplished using a blade paddle mixer as suggested by ASTM C938. The mixtures are placed in a 54 mm PVC mold. They are cured under water at room temperature (ASTM C192). Viscosity measurement follows, as much as practical, the ASTMD2196. The results are shown in Figure 2.

The procedure for determining the grout permeability is similar to the ASTM standards (C938, C39). The water flow tests are conducted at $3,7,14$ and 28 days of curing. The mold has an inner diameter of 101.6 mm with a length of 152.4 mm . The prepared specimen is sealed between two acrylic platens with the aid of O-ring rubber and epoxy coating. Inlet port is installed at the end of the mold and connected to a water pressure tube compressed by nitrogen gas at about 13.8 kPa . Air bubbles are bled out before measuring the permeability. Outlet port is installed at the other end and connected to a high precision pipet for measuring the outflow. The coefficient of permeability is computed from the flow rate based on the Darcy's law. The results are presented in Figure 3.

Figure 1. Grain size distribution of water treatment sludge

Table 1. Atterberg's limits and specific gravity of sludge and bentonite				
Atterberg Limits	Bentonite (\%)			SUT 1
ACC^{2}	SUT 1	TU^{3}		
Liquid limit	357	478	55	69
Plastic limit	44	28	22	42
Plasticity index	313	449	23	28
Specific gravity	-	-	2.56	-

${ }^{1}$ SUT $=$ Suranaree University of Technology Laboratory,
${ }^{2}$ ACC $=$ American Colloid Company Technical Data,
${ }^{3} \mathrm{TU}=$ Tummasart University Laboratory (after Hadsanan et al., 2006)

Figure 2. Dynamic viscosity of $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ for different $\mathrm{W}: \mathrm{C}$ ratio

Figure 3. Intrinsic permeability as a function of time for pure cement $(\mathrm{C}), \mathrm{B}: \mathrm{C}$, and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$

Table 2. Mechanical properties of grouting materials

Type	Mix ratio	Number of Samples	Average density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Poisson Ratio v	$\sigma_{\mathrm{c}}(\mathrm{MPa})$	$\mathrm{E}(\mathrm{MPa})$
C	$0: 10$	5	0.83 ± 0.01	0.18	1.40 ± 0.27	212
B:C	$1: 10$	5	1.35 ± 0.04	0.17	1.59 ± 0.28	193
B:C	$2: 10$	5	1.38 ± 0.04	0.14	2.09 ± 0.26	275
B:C	$3: 10$	5	1.33 ± 0.02	0.16	1.92 ± 0.05	228
S:C	$1: 10$	5	1.91 ± 0.06	0.15	1.35 ± 0.06	190
S:C	$3: 10$	5	1.81 ± 0.07	0.21	1.77 ± 0.21	224
S:C	$5: 10$	5	1.79 ± 0.06	0.16	1.52 ± 0.19	261

4. UNIAXIAL COMPRESSIVE STRENGTH OF GROUTING MATERIALS

The uniaxial compressive strength, elastic modulus, and Poisson's ratio of the grouting materials are determined. The results indicate that the suitable mixing ratios for the $\mathrm{S}: \mathrm{C}$ are 1:10, 3:10, 5:10 and
for the B:C are $1: 10,2: 10,3: 10$ with the $W: C$ of $1: 1$ by weight. These proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$ and the highest compressive strength. Preparation of these samples follows, as much as practical, the ASTM standards (D7012, C938, C39). All specimens are cured for 3 days before testing. During the test, the axial deformation and lateral deformation are monitored. The maximum load at the failure is recorded. The compressive strength (σ_{C}), Poisson's ratio (v), elastic modulus (E) are determined. The results of the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ indicate that the chemical reaction between cement and water with the large cast are better than the small cast. Figure 4 shows the uniaxial compressive strength for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$. The uniaxial compressive strength and elastic modulus for the specimens with the diameter of 101.6 mm are summarized in Table 2. The maximum compressive strengths for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ are similar.

5. SHEARING RESISTANCE BETWEEN GROUT AND FRACTURE

The maximum shear strength of grouting material in sandstone fracture are determined by direct shear testing. The test procedure is similar to the ASTM standard (D5607). Three-ring shear test equipment is used. All specimens are cured for three days before testing. Laboratory arrangement for the three-ring shear test equipment is shown in Figure 5. The constant normal stresses used are $0.25,0.5,0.75,1.0$ and 1.25 MPa . The shear stress is applied while the shear displacement and dilation are monitored for every 0.2 mm of shear displacement. The failure modes are recorded. The test results are presented in forms of the shear strength as a function of normal stress (Figure 6). The angles of internal friction and cohesion for all mixtures are similar.

6. PERMEABILITY TESTING OF FRACTURES

The objective of this task is to assess the permeability of rock fractures under varying normal stresses. The fracture permeability is used to compare with the permeability of grouting materials for both sludge and bentonte mixtures. Constant head flow tests are performed. The normal stresses are ranging from 1 to 4 MPa . The experimental procedure is similar to Obcheoy et al. (2011). Five specimens are preapred and tested. The injection hole at the center of the upper block is 12 mm in diameter and 101.6 mm in depth. The tests are conducted by injecting water into the center hole of the rectangular block specimen. The laboratory arrangement of the constant head flow test is shown in Figure 7. Water volume and time are recorded. Both tend to decrease exponentially with the normal stress. The permeability results (k) are plotted as a function of the normal stress $\left(\sigma_{n}\right)$ in Figure 8. The equivalent hydraulic aperture (c_{h}) for radial flow, hydraulic conductivity between smooth and parallel plates (K), and intrinsic permeability (k) are calculated by (Tsang, 1992; Indraratna and Ranjith, 2001) :

$$
\begin{gather*}
\mathrm{e}_{\mathrm{h}}=\left\{[(6 \mu \mathrm{q}) /(\pi \Delta \mathrm{P})] \ln \left(\mathrm{r} / \mathrm{r}_{0}\right)\right\}^{1 / 3} \tag{1}\\
\mathrm{~K}=\gamma_{\mathrm{w}} \mathrm{e}_{\mathrm{h}}^{2} / 12 \mu \tag{2}\\
\mathrm{k}=\mathrm{e}_{\mathrm{h}}^{2} / 12 \tag{3}
\end{gather*}
$$

where μ is the dynamic viscosity of the water $\left(\mathrm{N} \cdot \mathrm{s} / \mathrm{cm}^{2}\right), \mathrm{q}$ is water flow rate through the specimen $\left(\mathrm{cm}^{2} / \mathrm{s}\right), \Delta P$ is injecting water pressure into the center hole of rectangular blocks of the specimen, r is radius of flow path $(\mathrm{m}), \mathrm{r}_{0}$ is radius of the radius injection hole $(\mathrm{m}) . \gamma_{\mathrm{w}}$ is unit weight of water $\left(\mathrm{N} / \mathrm{m}^{2}\right)$. The results indicate that the intrinsic permeability of the fractures is less than $1.4 \times 10^{-9} \mathrm{~m}^{2}$.

7. PERMEABILITY OF GROUTING MATERIALS IN ROCK FRACTURES

The permeability of sludge- and bentonite-mixed cement in artificial fractures is experimentally determined. The testing method is similar to that described above. The grouting materials are injected into the fractures. The fractrue apertures are 2,10 , and 20 mm . The grouting materials are cured for 3 days. Figure 9 gives the laboratory arrangement. Constant head flow tests is performed. The constant
head is ranging between 13.8 and 551.7 kPa . The constant normal stresses are $0.25,0.5,1.0$ and 1.25 MPa . The results indicate that the normal stress can reduce the permeability of grouting materials in fractured sandstone. The intrinsic permeability (k) is calculated from the measured flow rate (Q) as follows: (Indraratna and Ranjith, 2001)

$$
\begin{gather*}
\mathrm{K}=\mathrm{Q} \ln (2 \mathrm{~mL} / \mathrm{D}) / 2 \pi \mathrm{LH}_{\mathrm{c}} \tag{4}\\
\mathrm{k}=\mathrm{K} \mu / \gamma_{\mathrm{w}} \tag{5}
\end{gather*}
$$

Figure 4. Uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$

Figure 5. Laboratory arrangement for three-ring direct shear test

Figure 6. Normal stress and peak shear stress

Figure 7. Laboratory arrangement for permeability testing of fractures

Figure 8. Intrinsic permeability (k) as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture in Phu Kradung sandstone

Figure 9. Permeability testing of grouting materials in rock fracture aperture 20 mm
where K is hydraulic conductivit, Q is flow rate of water flow through the mixture, m is square root of the ratio between the conduuctivity perpendicular and parallel to the hole (in this case, m is equal to 1), L is the thickness of grouting material in fracture apertures, D is diameter of the injection hole at the center of the upper block, H_{c} is the constant head used for the test, μ is dynamic viscosity $\left(891 \times 10^{-6} \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{s})\right.$) at temperature of $25^{\circ} \mathrm{C}, \gamma_{\mathrm{w}}$ is unit weight of water $\left(997.13 \mathrm{~kg} / \mathrm{m}^{3}\right)$. Figure 10 shows the intrinsic permeability of grouting materials in fracture apertures in twenty-one samples.

8. DISCUSSIONS AND CONCLUSIONS

The sludge is classified as elastic silt with over 90% of its particles smaller than 0.047 mm . This study aims to determine the minimum slurry viscosity and appropriate strength of the grouting materials. The results indicate that the suitable mixing ratios for sludge-to-cement ($\mathrm{S}: \mathrm{C}$) are 1:10, 3:10 and $5: 10$, and for bentonite-to-cement ($\mathrm{B}: \mathrm{C}$) are $1: 10,2: 10$ and $3: 10$, with water-cement ratio (W:C) of $1: 1$ by weight. For the sludge these proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$ and the highest compressive strength. For $\mathrm{S}: \mathrm{C}$ of $3: 10$, the compressive strength and elastic modulus are 1.22 MPa and 224 MPa which are similar to those of the B:C. The direct shear test results indicate that the shear strengths at the interface between the grout and sandstone fractures varying from 0.22 to 0.90 MPa under normal stresses ranging from 0.25 to 1.25 MPa . Permeability of the grouting materials measured from the one-dimensional flow test with constant head is from 10^{-17} to $10^{-15} \mathrm{~m}^{2}$ and decreases with curing time. The mixture with the $\mathrm{S}: \mathrm{C}$ of $5: 10$ by weight gives the lowest permeability. The permeability of the grouts measured by radial flow test in fractures with apertures of 2,10 and 20 mm ranges from 10^{-16} to $10^{-14} \mathrm{~m}^{2}$. The $\mathrm{S}: \mathrm{C}$ mixtures have the mechanical and hydraulic properties equivalent to those of the B:C mixtures which indicates that the sludge can be used as a substituted material to mix with cement for rock fracture grouting purpose. Such applications can also minimize the disposal cost of the sludge and reduce the environmental impact due to the landfill construction.

ACKNOWLEDGEMENT

This research is funded by Metropolitan Waterworks Authority of Thailand for fiscal year 2011. Permission to publish this paper is gratefully acknowledged.

(c)

Figure 10. Intrinsic permeability (k) as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture apertures (a) 2 mm (b) 10 mm and (c) 20 mm in Phu Kradung sandstones

REFERENCES

Akgün, H., Daemen, J.J.K., 1999, Design implications of analytical and laboratory studies of permanent abandonment plugs, Canadian Geotechnical Journal, 36: 21-38.
ASTM, 2007, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, C192, Anmual Book of ASTM Standards 04.02, American Society for Testing and Materials, Philadelphia.
ASTM, 2010, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, C39, Anmual Book of ASTM Standards 04.01, American Society for Testing and Materials, Philadelphia.

ASTM, 2010, Standard Practice for Proportioning Grout Mixtures for Preplaced-Aggregate Concrete, C938, Annual Book of ASTM Standards 04.02, American Society for Testing and Materials, Philadelphia.
ASTM, 2010, Standard Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational (Brookfield type) Viscometer, D2196, Anmual Book of ASTM Standard, 06.01, American Society for Testing and Materials, Philadelphia.
ASTM, 2007, Standard Test Method for Particle-Size Analysis of Soils, D422, Annual Book of ASTM Standards 04.08, American Society for Testing and Materials, Philadelphia.
ASTM, 2008, Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens Under Constant Normal Force, D5607, Annual Book of ASTM Standards 04.08, American Society for Testing and Materials, Philadelphia.
ASTM, 2010, Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, D7012, Annual Book of ASTM Standard 04.09, American Society for Testing and Materials, Philadelphia
ASTM, 2010, Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, D854, Annual Book of ASTM Standards 04.08, American Society for Testing and Materials, Philadelphia.
Fuenkajorn, K., Daemen, J.J.K. (Eds.), 1996, Sealing of Boreholes and Underground Excavations in Rock, Chapman and Hall, London.
Hadsanan, P., Lertpocasombut, K., Chatveera, B., 2006, Mechanical properties and durability of cement mortar containing dry sludge ash from Bang Khen water supply plant, National Convention on Civil Engineering 2006 (NCCE11), 20-22 April 2006, Phuket.
Indraratna, B., Ranjith, P., 2001, Hydromechanical Aspects and Unsaturated Flow in Joints Rock, Lisse: A. A. Balkema.
Obcheoy, J., Aracheeploha, S., Fuenkajorn, K., 2011, Fracture permeability under normal and shear stresses, Rock Mechanics, Fuenkajorn \& Phien-wej (eds), Geomechanics Research Unit, Suranaree University of Technology, Thailand, 133-140.
Tsang, Y. W., 1992, Usage of Equivalent Apertures for Rock Fractures as Derived From Hydraulic and Tracer Tests, Water Resour. Res., 28(5): 1451-1455.

Laboratory assessment of mechanical and hydraulic performance of sludge-mixed cement grout in rock fractures

K. Wetchasat \& K. Fuenkajorn
Geomechanics Research Unit, Suranaree University of Technology, Thailand

Keywords: Fracture, grouting, permeability, sludge
ABSTRACT: The objective of this study is to assess the performance of sludge mixed with the commercial grade Portland cement type I for use in reducing permeability of fractures in sandstone. The fractures are artificially made in Phu Kradung sandstone by applying a line load to induce a splitting tensile crack in $0.15 \times 0.15 \times 0.15 \mathrm{~m}$ prismatic blocks. The Bang Khen water treatment sludge is used. More than 80% of the sludge is quartz with grain size less than $75 \mu \mathrm{~m}$. This study aims at determining the minimum slurry viscosity and appropriate strength of the grouting materials. The results indicate that the suitable mixing ratios for sludge:cement (S:C) are 1:10, 3:10, 5:10 with water-cement ratio (W:C) of $1: 1$ by weight. These proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$. For $\mathrm{S}: \mathrm{C}=3: 10$, the compressive strength and elastic modulus are 1.22 MPa and 224 MPa which are similar to those of bentonite mixed with cement. The shear strength of grouted fractures varies from 0.22 to 0.90 MPa under normal stresses ranging from 0.25 to 1.25 MPa . Permeability of grouting materials is from 10^{-17} to $10^{-15} \mathrm{~m}^{2}$ and decreases with curing time. The S:C ratio of 5:10 gives the lowest permeability. Permeabilities of grouted fractures with apertures of 2,10 and 20 mm range from 10^{-16} to $10^{-14} \mathrm{~m}^{2}$.

1 INTRODUCTION

The increasing amount of the water treatment sludge from the Metropolitan Waterworks Authority of Thailand (MWA) has called for a permanent solution to dispose of the sludge from the Bang khen Water Treatment Plants. The MWA report (2007-2009) indicates that the plant produces sludge with the maximum capacity of $3.2 \times 10^{6} \mathrm{~m}^{3}$ per day. The sludge has been collected from the water treatment process. The increasing rate of the sludge is about $247 \times 10^{3} \mathrm{~kg}$ per day. One of the solutions is to apply the sludge to minimizing groundwater circulation in rock mass. Groundwater in rock mass is one of the key factors governing the mechanical stability of slope embankments, underground mines, tunnels, and dam foundation. A common solution practiced internationally in the construction industry is to use bentonite mixed with cement as a grouting material to reduce permeability in fractured rock mass (Akgün \& Daemen, 1999; Fuenkajorn \& Daemen, 1996). Knowledge and experimental evidences about the permeability of the sludge-mixed cement in fractured rock under varied stress conditions have been rare. The objectives of this study are to assess the performance of
sludge mixed with the commercial grade Portland cement for reducing permeability in saturated fractured rock under various stresses in the laboratory and to compare the results with those of the bentonite-mixed cement in terms of the mechanical and hydraulic performance.

2 GROUTS PREPARATION

The grouting materials used in this study are (1) sludge with particle sizes less than $75 \mu \mathrm{~m}$, (2) commercial grade bentonite, and (3) commercial grade Portland cement type I for mixing with the sludge and bentonite. The fractures in sandstone collected from Phu Kradung formation are artificially made by applying a line load to induce a splitting tensile crack. Two shapes of the sandstone samples are $152.4 \times 152.4 \times 152.4 \mathrm{~mm}^{3}$ blocks and 100 mm diameter cylinder with 100 mm in length. Bentonite is from America colloid company.

Sludge and bentonite are tested for the Atterberg's limits, specific gravity, and particle size distribution. The equipment and test procedure follow the ASTM standards (D422, D854). The results are summarized in Table 1. Figure 1 shows the particle size distributions of the sludge used here.

Table 1. Atterberg's limits and specific gravity of sludge and bentonite.

Atterberg Limits	Bentonite (\%) $^{\text {(\%) }}$		Sludge (\%)	
	SUT $^{\text {1 }}$	ACC $^{\mathbf{3}}$	SUT 1	TU 3
Liquid limit	357	478	55	69
Plastic limit	44	28	22	42
Plasticity index	313	449	23	28
Specific gravity	-	-	2.56	-

${ }^{1}$ SUT $=$ Suranaree University of Technology Laboratory,
${ }^{2}$ ACC $=$ American Colloid Company Technical Data,
${ }^{3} \mathrm{TU}=$ Tummasart University Laboratory (after Hadsanan et al., 2006)

Figure 1. Grain size distribution of water treatment sludge.

3 BASIC MECHANICAL PROPERTIES OF GROUTING MATERIALS

The basic mechanical properties of the mixtures are determined to select the appropriate proportions of sludge-to-cement ratios. The sludge-mixed cement ratios (S:C) of 0:10, 1:10, $2: 10,3: 10,4: 10,5: 10,6: 10,8: 10$ and $10: 10$ by weight are prepared with water-cement ratios (W:C) of $0.8: 1,1: 1$ and $1.25: 1$. The bentonite-mixes cement ratios (B:C) are $0: 10,1: 10,2: 10$, $3: 10,4: 10$, and $5: 10$ by weight with water-cement ratios (W:C) of $1: 1,4: 1$. Mixing of all grouts is accomplished using a blade paddle mixer as suggested by ASTM C938. The mixtures are placed in a 54 mm PVC mold. They are cured under water at room temperature (ASTM C192). Viscosity measurement follows, as much as practical, the ASTM D2196. The results are shown in Figure 2.

The procedure for determining the grout permeability is similar to the ASTM standards (C938, C39). The water flow tests are conducted at $3,7,14$ and 28 days of curing. The mold has an inner diameter of 101.6 mm with a length of 152.4 mm . The prepared specimen is sealed between two acrylic platens with the aid of O-ring rubber and epoxy coating. Inlet port is installed at the end of the mold and connected to a water pressure tube compressed by nitrogen gas at about 13.8 kPa . Air bubbles are bled out before measuring the permeability. Outlet port is installed at the other end and connected to a high precision pipet for measuring the outflow. The coefficient of permeability is computed from the flow rate based on the Darcy's law. The results are presented in Figure 3.

4 UNIAXIAL COMPRESSIVE STRENGTH OF GROUTING MATERIALS

The uniaxial compressive strength, elastic modulus, and Poisson's ratio of the grouting materials are determined. The results indicate that the suitable mixing ratios for the $\mathrm{S}: \mathrm{C}$ are $1: 10,3: 10,5: 10$ and for the $B: C$ are $1: 10,2: 10,3: 10$ with the $\mathrm{W}: \mathrm{C}$ of $1: 1$ by weight. These proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$ and the highest compressive strength. Preparation of these samples follows, as much as practical, the ASTM standards (D7012, C938, C39). All specimens are cured for 3 days before testing. During the test, the axial deformation and lateral deformation are monitored. The maximum load at the failure is recorded. The compressive strength (σ_{C}), Poisson's ratio (v), elastic modulus (E) are determined. The results of the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ indicate that the chemical reaction between cement and water with the large cast are better than the small cast. Figure 4 shows the uniaxial compressive strength for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$. The uniaxial compressive strength and elastic modulus for the specimens with the diameter of 101.6 mm are summarized in Table 2. The maximum compressive strengths for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ are similar.

5 SHEARING RESISTANCE BETWEEN GROUT AND FRACTURE

The maximum shear strength of grouting material in sandstone fracture are determined by direct shear testing. The test procedure is similar to the ASTM standard (D5607). Three-ring shear test equipment is used. All specimens are cured for three days before testing. Laboratory arrangement for the three-ring shear test equipment is shown in Figure 5. The constant normal stresses used are $0.25,0.5,0.75,1.0$ and 1.25 MPa . The shear stress is applied while the shear displacement and dilation are monitored for every 0.2 mm of shear displacement. The failure modes are recorded. The test results are presented in forms of the shear strength as a function of normal stress (Figure 6). The angles of internal friction and cohesion for all mixtures are similar.

Laboratory assessment of mechanical and hydraulic performance of sludge-mixed cement grout in rock fractures

Figure 2. Dynamic viscosity of $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ for different $\mathrm{W}: \mathrm{C}$ ratio.

Figure 3. Intrinsic permeability as a function of time for pure cement (C), B:C and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 4. Uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$.

Table 2. Mechanical properties of grouting materials.

Type	Mix ratio	Number of Samples	Average density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Poisson Ratio v	$\sigma_{\mathrm{c}}(\mathrm{MPa})$	E (MPa)
C	$0: 10$	5	0.83 ± 0.01	0.18	1.40 ± 0.27	212
$\mathrm{~B}: \mathrm{C}$	$1: 10$	5	1.35 ± 0.04	0.17	1.59 ± 0.28	193
$\mathrm{~B}: \mathrm{C}$	$2: 10$	5	1.38 ± 0.04	0.14	2.09 ± 0.26	275
$\mathrm{~B}: \mathrm{C}$	$3: 10$	5	1.33 ± 0.02	0.16	1.92 ± 0.05	228
$\mathrm{~S}: \mathrm{C}$	$1: 10$	5	1.91 ± 0.06	0.15	1.35 ± 0.06	190
$\mathrm{~S}: \mathrm{C}$	$3: 10$	5	1.81 ± 0.07	0.21	1.77 ± 0.21	224
$\mathrm{~S}: \mathrm{C}$	$5: 10$	5	1.79 ± 0.06	0.16	1.52 ± 0.19	261

Figure 5. Laboratory arrangement for three-ring direct shear test.

Figure 6. Normal stress and peak shear stress.

6 PERMEABILITY TESTING OF FRACTURES

The objective of this task is to assess the permeability of rock fractures under varying normal stresses. The fracture permeability is used to compare with the permeability of grouting materials for both sludge and bentonte mixtures. Constant head flow tests are performed. The normal stresses are ranging from 1 to 4 MPa . The experimental procedure is similar to Obcheoy et al. (2011). Five specimens are prepared and tested. The injection hole at the center of the upper block is 12 mm in diameter and 101.6 mm in depth. The tests are conducted by injecting water into the center hole of the rectangular block specimen. The laboratory arrangement of the constant head flow test is shown in Figure 7. Water volume and time are recorded. Both tend to decrease exponentially with the normal stress. The permeability results (k) are plotted as a function of the normal stress $\left(\sigma_{\mathrm{n}}\right)$ in Figure 8. The equivalent hydraulic aperture $\left(\mathrm{e}_{\mathrm{n}}\right)$ for radial flow, hydraulic conductivity between smooth and parallel plates (K), and intrinsic permeability (k) are calculated by (Tsang, 1992; Indraratna \& Ranjith, 2001):
$e_{h}=\left\{[(6 \mu \mathrm{q}) /(\pi \Delta \mathrm{P})] \ln \left(\mathrm{r} / \mathrm{r}_{0}\right)\right\}^{1 / 3}$
$\mathrm{K}=\gamma_{\mathrm{w}} \mathrm{eh}^{2} / 12 \mu$
$\mathrm{k}=\mathrm{e}_{\mathrm{h}}{ }^{2} / 12$

Figure 7. Laboratory arrangement for permeability testing of fractures.

Figure 8. Intrinsic permeability (k) as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture in Phu Kradung sandstone.
where μ is the dynamic viscosity of the water $\left(\mathbb{N} \cdot \mathrm{s} / \mathrm{cm}^{2}\right)$, q is water flow rate through the specimen $\left(\mathrm{cm}^{2} / \mathrm{s}\right), \Delta \mathrm{P}$ is injecting water pressure into the center hole of rectangular blocks of the specimen, r is radius of flow path $(\mathrm{m}), \mathrm{r}_{0}$ is radius of the radius injection hole $(\mathrm{m}) . \gamma_{\mathrm{w}}$ is unit weight of water $\left(\mathrm{N} / \mathrm{m}^{2}\right)$. The results indicate that the intrinsic permeability of the fractures is less than $1.4 \times 10^{-9} \mathrm{~m}^{2}$.

7 PERMEABILITY OF GROUTING MATERIALS IN ROCK FRACTURES

The permeability of sludge- and bentonite-mixed cements in artificial fractures is experimentally determined. The testing method is similar to that described above. The grouting materials are injected into the fractures. The fracture apertures are 2,10 , and 20 mm . The grouting materials are cured for 3 days. Figure 9 gives the laboratory arrangement. Constant head flow tests is performed. The constant head is ranging between 13.8 and 551.7 kPa . The constant normal stresses are $0.25,0.5,1.0$ and 1.25 MPa . The results indicate that the normal stress can reduce the permeability of grouting materials in fractured sandstone. The intrinsic permeability (k) is calculated from the measured flow rate (Q) as follows: (Indraratna \& Ranjith, 2001)
$\mathrm{K}=\mathrm{Q} \ln (2 \mathrm{~mL} / \mathrm{D}) / 2 \pi \mathrm{LH}_{\mathrm{c}}$
$\mathrm{k}=\mathrm{K} \mu / \gamma_{\mathrm{w}}$
where K is hydraulic conductivity, Q is flow rate of water flow through the mixture, m is square root of the ratio between the conductivity perpendicular and parallel to the hole (in this case, m is equal to 1), L is the thickness of grouting material in fracture apertures, D is diameter of the injection hole at the center of the upper block, H_{c} is the constant head used for the test, μ is dynamic viscosity $\left(891 \times 10^{-6} \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{s})\right.$) at temperature of $25^{\circ} \mathrm{C}, \gamma_{\mathrm{w}}$ is unit weight of water ($997.13 \mathrm{~kg} / \mathrm{m}^{3}$). Figure 10 shows the intrinsic permeability of grouting materials in fracture apertures in twenty-one samples.

Figure 9. Permeability testing of grouting materials in rock fracture aperture 20 mm .

Laboratory assessment of mechanical and hydraulic performance of sludge-mixed cement grout in rock fractures

(c)

Figure 10. Intrinsic permeability (k) as a function of normal stress $\left(\sigma_{\mathrm{n}}\right)$ for fracture apertures (a) 2 mm (b) 10 mm and (c) 20 mm in Phu Kradung sandstones.

8 DISCUSSIONS AND CONCLUSIONS

The sludge is classified as elastic silt with over 90% of its particles smaller than 0.047 mm . This study aims to determine the minimum slurry viscosity and appropriate strength of the grouting materials. The results indicate that the suitable mixing ratios for sludge-to-cement ($\mathrm{S}: \mathrm{C}$) are $1: 10,3: 10$ and 5:10, and for bentonite-to-cement (B:C) are 1:10, 2:10 and 3:10, with water-cement ratio (W:C) of $1: 1$ by weight. For the sludge these proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$ and the highest compressive strength. For $\mathrm{S}: \mathrm{C}$ of $3: 10$, the compressive strength and elastic modulus are 1.22 MPa and 224 MPa which are similar to those of the $\mathrm{B}: \mathrm{C}$. The direct shear test results indicate that the shear strengths at the interface between the grout and sandstone fractures varying from 0.22 to 0.90 MPa under normal stresses ranging from 0.25 to 1.25 MPa . Permeability of the grouting materials measured from the one-dimensional flow test with constant head is from 10^{-17} to $10^{-15} \mathrm{~m}^{2}$ and decreases with curing time. The mixture with the $\mathrm{S}: \mathrm{C}$ of $5: 10$ by weight gives the lowest permeability. The permeability of the grouts measured by radial flow test in fractures with apertures of 2,10 and 20 mm ranges from 10^{-16} to $10^{-14} \mathrm{~m}^{2}$. The $\mathrm{S}: \mathrm{C}$ mixtures have the mechanical and hydraulic properties equivalent to those of the $\mathrm{B}: \mathrm{C}$ mixtures which indicates that the sludge can be used as a substituted material to mix with cement for rock fracture grouting purpose. Such applications can also minimize the disposal cost of the sludge and reduce the environmental impact due to the landfill construction.

ACKNOWLEDGEMENT

This research is funded by Metropolitan Waterworks Authority of Thailand for fiscal year 2011. Permission to publish this paper is gratefully acknowledged.

REFERENCES

Akgün, H. \& Daemen, J.J.K. 1999. Design implications of analytical and laboratory studies of permanent abandonment plugs. Canadian Geotechnical Journal. 36: 21-38.
ASTM Standard C192-07. 2007. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. Annual Book of ASTM Standards, American Society for Testing and Materials, Weat Conshohocken, PA.
ASTM Standard C39-10. 2010. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. Annual Book of ASTM Standards, American Society for Testing and Materials, Weat Conshohocken, PA.
ASTM Standard C938-10. 2010. Standard Practice for Proportioning Grout Mixtures for Preplaced-Aggregate Concrete. Anmual Book of ASTM Standards, American Society for Testing and Materials, Weat Conshohocken, PA.
ASTM Standard D2196-10. 2010. Standard Test Methods for Rheological Properties of NonNewtonian Materials by Rotational (Brookfield type) Viscometer. Annual Book of ASTM Standard, American Society for Testing and Materials, Weat Conshohocken, PA.
ASTM Standard D422-07. 2007. Standard Test Method for Particle-Size Analysis of Soils. Annual Book of ASTM Standards, American Society for Testing and Materials, Weat Conshohocken, PA.
ASTM Standard D5607-08. 2008. Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens Under Constant Normal Force. Annual Book of ASTM Standards, American Society for Testing and Materials, Weat Conshohocken, PA.

ASTM Standard D7012-10. 2010. Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures. Annual Book of ASTM Standard, American Society for Testing and Materials, Weat Conshohocken, PA.
ASTM Standard D854-10. 2010. Standard Test Methods for Specific Gravity of Soil Solids by Water Pyenometer. Annual Book of ASTM Standards, American Society for Testing and Materials, Weat Conshohocken, PA.
Fuenkajorn, K. \& Daemen, J.J.K. 1996. Sealing of Boreholes and Underground Excavations in Rock. Chapman and Hall, London.
Hadsanan, P., Lertpocasombut, K. \& Chatveera, B. 2006. Mechanical properties and durability of cement mortar containing dry sludge ash from Bang Khen water supply plant. In Proceedings of National Convention on Civil Engineering 2006 (NCCE11). April 20-22, Phuket.
Indraratna, B., \& Ranjith, P. 2001. Hydromechanical Aspects and Unsaturated Flow in Joints Rock. A. A. Balkema, Lisse.
Obcheoy, J., Aracheeploha, S. \& Fuenkajorn, K. 2011. Fracture permeability under normal and shear stresses. Rock Mechanics. Fuenkajorn \& Phien-wej (eds), Geomechanics Research Unit, Suranaree University of Technology, Thailand, pp. 133-140.
Tsang, Y. W. 1992. Usage of Equivalent Apertures for Rock Fractures as Derived From Hydraulic and Tracer Tests. Water Resour. Res. 28(5): 1451-1455.

ศักยภาพเชิงกลศาสตร์และะชิงชลศาสตร์ของส่วนผสมตะกอนดินกับซีเมนต์ในรอยแตกของหิน MECHANICAL AND HYDRAULIC PERFORMANCE OF SLUDGE-MIXED CEMENT GROUT IN

ROCK FRACTURES

ตมกริช เวชสัสล์่ และ กิตติเทพ เพื่องขจร
Khomkrit Wetchasat ${ }^{1}$ and Kittitep Fuenkajorn สาขาวิษเทคโนโลยีธรณี สำนักวิชาวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี อำเภอเมืองนครราชสีมา จังหวัคนครราชสีมา 30000
โทร: 0-4422-4758, โทร สาร: 0-4422-4448
E-Mail: ${ }^{1}$ d5340248@g.sut.ac.th

บทคัดย่อ

วัตถุประสงค์ของการศึกยานี้คือเพื่อประเมินศักยภาพของ ตะกอนคินผสมกับปูนซีเมนต์ปอร์ตแลนด์ประเภท 1 เพื่อใช้ลค ความซึมผ่านของน้ำในรอยแตกของหินทราย รอยแตกลูกทำขึ้น โดยแรงกดในแนวเส้นบนตัวอย่างหินทรายพุดภูกระดึงเพื่อให้ หินแตกออกจากกันด้วยแรงตึง ตัวอย่างหินมีงนาด $15 \times 15 \times 15$ ซม. ตะกอนจากโรงงานกำจัดตะกอนบางเขนถูกนำมาทตสอบ คุญสมบัติเชิงกายภาพและเชิงเคมี มีการหาค่าความหนืดคของ ส่วนผสมเหลวที่น้อยที่สุดแต่ให้ค่ากำลังกดในแกนเตียวที่ เหมาะสม ผลทดสอบระบุว่าสัดส่วนที่เหมาะสมของตะกอน ต่อซีเมนต์ ($\mathrm{S}: \mathrm{C}$) เท่ากับ $1: 10,3: 10,5: 10$ และเบนทอไนต์ต่อ ซีเมนต์ (B:C) เท่ากับ $1: 10,2: 10,3: 10$ ใช้ปริมาญน้ำต่อซีเมนต์ เท่ากับ $1: 1$ เนื่องจาก ให้ค่าความหนืคของส่วนผสมเหลวไม่เกิน $5 \mathrm{~Pa} \cdot \mathrm{~s}$ และให้ค่ากำลังกคสูงสุค ส้คส่วนของ $\mathrm{S}: \mathrm{C}$ เท่ากับ $3: 10$ จะให้ค่ากำลังกดเท่ากับ 1.77 MPa และค่าสัมประสิทธิ์ความ ยืดหยุ่นเท่ากับ 224 MPa ซึ่งต่ำกว่าค่าจาก $\mathrm{B}: \mathrm{C}$ เล็กน้อย ค่ากำลัง เฉื้อนระหว่างผิวรอยแตกกับส่วนผสมทั้ง 6 สัดส่วน มีค่า ใกล้เคียงกันคืออยู่ไนช่วง 0.36 ถึง 0.90 MPa ภายใด้ความเค้นตั้ง จากจาก 0.25 ถึง 1.25 MPa ค่าความซึมผ่านของทุกส่วนผสมจะ ลดลงในเชิงเวลาซึ่งให้ค่าอยู่ไนช่วง 10^{-17} ถึง 10^{-15} ตร.ม. สัคส่วนของ $\mathrm{S}: \mathrm{C}$ เท่ากับ $5: 10$ ให้ค่ความซึมผ่านตำสุคค่าความ ซึมผ่านของรอยแเตกประชิดภายใต้ความเค้นตั้งฉากที่ผันแปร จาก 1 ถึง 4 MPa อยู่ในช่วง 10^{-8} ถึง 10^{-10} ตร.ม. และของ ส่วนผสมที่อยู่ในรอยแตกมีระ ยะ การเปิดเผยอเท่ากับ $0.2,1.0$ และ 2.0 ซม. มีค่าใกล้เคียงกันคือประมาณ 10^{-15} ตร.ม.

Abstract

The objective of this study is to assess the performance of sludge mixed with the commercial grade Portland cement type I for use in reducing permeability of fractures in sandstone. The fractures are artificially made in Phu Kradueng sandstone by applying a line load to induce a splitting tensile crack in $15 \times 15 \times 15 \mathrm{~cm}$ prismatic blocks. The Bang Khen water treatment sludge is used. The physical and chemical properties of the sludge are examined. This research emphasizes on determining the minimum slurry viscosity and appropriate strength of the grouting materials. The results indicate that the suitable mixing ratios for sludge:cement (S:C) are 1:10, 3:10, $5: 10$ and for bentonite:cement (B:C) are 1:10, 2:10, $3: 10$ with water-cement ratio of 1:1 by weight. These proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$ and the highest compressive strength. For $\mathrm{S}: \mathrm{C}=3: 10$, the compressive strength and elastic modulus are 1.77 MPa and 224 MPa which are similar to those of bentonite mixed with cement. The shear strength of grouted fractures varies from 0.36 to 0.90 MPa under normal stresses ranging from 0.25 to 1.25 MPa . Permeability of grouting materials are from 10^{-17} to $10^{-15} \mathrm{~m}^{2}$ and decrease with curing time. S:C of $5: 10$ give the lowest permeability. Fracture permeability under normal stress of 1 to 4 MPa ranges from 10^{-8} to $10^{-10} \mathrm{~m}^{2}$. Permeabilities of grouted fractures with aperture of $0.2,1.0$ and 2.0 cm are about $10^{-15} \mathrm{~m}^{2}$.

1. บทนำ

บัจจุบันโรงงานผลิตน้ำบางเขนมีการผลิตและจ่ายน้ำใน ปริมาณที่สูงขึ้นวันละประมาณ 3.6 ล้าน ลบ.ม. มีตะกอนที่ ต้องทำการกำจัดเฉลี่ย 247 ตันต่อวัน [1] และยังไม่สามารถนำ ตะกอนไปประยุกต์ใช้ประโยชน์ได้เท่าที่ควร ซึ่งในแต่ละปี จะต้องเสียค่าใพ้จ่ายในการกำจ้ดตะกอนเป็่นจำนวน 38 ล้านบาท และด้วยพื้นที่ที่ใช้เป็นบ่อกักตะกอนและบ่อตากตะกอนมีอยู่ อย่างจำกัด ไม่สามารถขยายออกไปได้ การประปานครหลวง จึงได้ก่อสร้างโรงงานกำจัดตะกอนบางเขน โคยใช้วสธร รีครอง เพื่อแยกกากตะกอนหมาด และน้ำที่ผ่านการบำบัดแล้วกลับมา ใช้ประ โยชน์ใหม่ ดังนั้นผู้วิจัยจึงมีแนวคิดที่จะนำตะกอนดิน จากระบบผลิตน้ำประปามาใช้เป็นวัสดุทตแทนใน ภาคอุตสาหกรรมก่อสร้างด้วยการ ใช้เป็นวัสคุอุด (Grouting Materia1) โดยผสมกับซีเมนต์เพื่อลดความซึมผ่านของรอย แตกในมวลหินบริเวณรอบๆ โครงสร้างวิศวกรรม เช่น อุโมงค์ที่อยู่ใต้ระดับน้ำบาตาล ฐานรากของเขื่อนที่ตั้งอยู่บน มวลหินที่มีรอยแตกและการรุกล้ำของน้ำเค็มเข้าสู่ชั้นน้ำ บาดาลบริเวณชายผึ่งทะเล อีกทั้งยังช่วยลคการ ใช้วัสดุอุดที่ ผลิตจากทรัพยากรธรรมชาติและยังเป็นการลดวัสตุเหลือทิ้งที่ ระบายออกสู่สิ่งแวตล้อม

วัตถุประสงค์ของการศึกษานี้คือเพื่อทำการศึกษาศักยภาพ ของตะกอนดินประปาผสมกับปูนซีเมนต์ปอร์ตแลนด์ใน ห้องปฏิบัติการ เพื่อนำมาประยุกต์ใช้อุดรอยแตกในมวลหิน เพื่อลดค่าความซึมผ่าน

2. งานวิจัยที่เกี่ยวข้อง

มีผู้วิจัยห สายท่าน [2] ได้ศึกยาคุณสมบัติเบื้องต้นของ องค์ประกอบเชิงเคมีและเชิงกลศาสตร์ของตะกอนดินจาก โรงงานผลิตน้ำบางเขน โดยเสนอแนะให้ใช้ตะกอนดิน ประปาเป็นวัตถุดิบในอุตสาหกรรมเซรามิก เช่น ถ้วยชาม เครื่องประดับ มวลรวมประดิษฐ์ กระเบื้อง อิฐมอญ และ บล็้อกประสานดิน เป็นต้น นอกจากนี้ยังมีผู้ว้จัยท่านอื่นอีก หลายท่าน [3] ได้ศึกษาคุณสมบัติการคูดซับตะกอนประปา เพื่อลคสีของน้ำเสียที่ผ่านการบำบัดแล้วจากอุตสาหกรรม ฟอกย้อม

การศึกษาความซึมผ่านในรอยแตกเดี่ยว [4] มีปัจจัยหลัก ที่ควบคุมการไหลและค่าความซึมผ่าน คือ ความเปิดเผยอ ความขรุะระของผิวรอยแตก ทิศทางการวางตัว ความเค้นตั้ง ฉากและความเค้นเอือน นอกจากนี้มีการทดสอบการไหลเพื่อ คำนวนค่าเหนี่ยานำชลศาสตร์ในรอยแตกหินภายใต้ความเค้น ตั้งฉากและแนวเฉือนโดยใช้ตัวอย่างหินทราย $[5-7]$

ส่วนการศึกษาการลดค่าความซึมผ่านของรอยแตกในหิน เช่น งานจุดเจาะอุโมงค์ งานเหมื่องแร่ งานกำแพงทึบน้ำใต้คิน งานทิ้งกากกัมมันตรังสี ผู้วิจัยหลายท่านได้ศึกยาทดสอบใน ห้องปฏิบ้ติการและภาคสนามโดยใช้ซีเมนต์ ตินเบนทอไนต์ คิน หรือขี้เถ้าลอยมาเป็น ส่วนผสมวัสตุอุตในสัคส่วนที่ เหมาะสมเพื่อให้คุณสมบัติเชิงกลศาสตร์และชลศาสตร์อยู่ใน เกณฑ์ตีและมีความหนืคน้อย ผลวิจัยระบุว่าสามารถสคความ ซึมผ่านได้ $[8-13]$

3. ระเบียบวิธีวิจัยและผลการศึกษา

วัสคุหลักที่ใซ้ในการศึกษานี้คื้อ 1) ตะกอนดินจากโรงกำจัด ตะกอนบางเขนที่ถูกคัดขนาคเม็คตินเล็กกว่า 0.075 มม. 2) ติน เบนทอไนต์ 3) ซีเมนต์ปอร์ตแลนด์ และ 4) ทินที่มีรอยแตก โดยมีพี้นที่ของรอยแตกไม่ต่ำกว่า 152.4×152.4 มม. จำนวน 60 ต้วอย่างสำหรับการทดสอบความซึ่มผ่านและเส้นผ่าน ศูนย์กลาง 10 ซม. ยาว 10 ซม. ประมาณ 40 ตัวอย่างสำหรับ การทดสอบกำลังเฉือนของวัสดุอุดกับรอยแตกหืน ใน การศึกษานี้เลือกใช้ทินทรายพุดภูกระดึง ซึ่งเป็นหินที่มีความ ซึมผ่านต่ำ เป็นเนื้อเดียวกัน และจ้คเตรียมรอยแตกได้ง่าย

3.1 การทดสอบคุณสมบัติกายภาพ

ตะกอนตินประปาและดินเบนทอไนต์ถูกทตสอบคุณสมบัติ กายภาพเกี่ยวกับค่าขีดจำกัดของ Atterberg ค่าความถ่วงจำเพาะ การกระจายอนุภาค ตามมาตรฐาน ASTM (D422, D854) เพื่อ ใช้เป็นข้อมูลสื้นฐูาน

ผลการทดสอบคุณสมบัติกายภาพของตะกอนและเบนทอ ไนต์สามารถสรุปในตารางที่ 1 และผลการทดสอบการกระจาย อนุภาคของตะกอนคินประปาเปรียบเทียบกับผลการทตสอบ ของกรมอุตสาหกรรมและการเหมืองแร่แสดงในรูปที่ 1

ตารางที่ 1 ค่าขีคจำกัดของ Atterberg และค่าความถ่วงจำเพาะ ของตะกอนดินประปาและดินเบนทอไนต์

Atterberg Limits	Bentonite content $(\%)$		Sludge content (\%)	
	SUT *	US [14]	SUT* *	KU [15]
	357	478	55	69
Plastic limit	44	28	22	42
Plasticity index	313	449	23	28
Specific gravity	-	-	2.56	-

* Suranaree University of Technology Laboratory

รูปที่ 1 การกระจายอนุภาคของตะกอนคินประปา

3.2 การทดสอบคุณสมบัติพื้นฐานของส่วนผสม

การทดสอบคุณสมบัติพื้นฐานของส่วนผสมเพื่อกำหนดวีธีและ สัดส่วนที่เหมาะสมเพื่อนำไปใช้ในการทดสอบเชิงกลศาสตร์ และเชิงชลศาสตร์ โดยใช้เกณฑ์ความหนืค กำลังกคสูงสุดและ ความซึมผ่าน ประกอบด้วย 3 กลุ่ม คือ 1) การทคสอบความ หนืค 2) การทดสอบกำลังกดในแกนเดียวเบื้องต้น และ 3) การ ทดสอบความซึมผ่านของส่วนผสม

การจัดเตรียมส่วนผสมตะกอนดินประปากับซีเมนต์ $(\mathrm{S}: \mathrm{C})$ และส่วนผสมของดินเบนทอไนต์กับซีเมนต์ $(\mathrm{B}: \mathrm{C})$ มีค่า ตั้งแต่ 0:10, 1:10, 2:10, 3:10, 4:10, 5:10, 6:10, 7:10, 8:10, 9:10 ถึง $10: 10$ แปรผันกับสัดส่วนน้ำต่อซีเมนต์ ($\mathrm{W}: \mathrm{C}$) ตั้งแต่ $4: 10$, $8: 10,10: 10$ ถึง $12.5: 10$ ชั่งวัสดุทั้งสี่ชนิดตามสัดส่วนที่กำหนด

ผสมให้เข้ากันด้วยเคื่องผสม โดยใช้ความเร็วไม่เกิน 275 รอบ ต่อนาที

การทดสอบความหนืคเริ่มจากนำส่วนผสมที่ได้จัดเตรียม ไปทคสอบด้วยเครื่องวัดความหนืดพร้อมหาค่าความหนาแน่น และความถ่วงจำเหาะ (ASTM D2196) ของส่วนผสมเหลว ขณะที่ขังไม่เข็งตัว

ผลการทดสอบความหนืดของส่วนผสมในสัดส่วนที่ ต่างกันแสคงในรูปที่ 2 ซึ่งระบุว่า เมื่อสัดส่วนของซีเมนต์ลคลง ส่วนผสมจะมีความหนืดเพิ่มขึ้นเป็นทวีคูณ โดยเฉพาะอย่างยิ่ง เมื่อ $\mathrm{B}: \mathrm{C}$ หรือ $\mathrm{S}: \mathrm{C}$ มากกว่า 0.5 นอกจากนั้นมื่อเพิ่มปริมาณน้ำ จะทำให้ความหนืคของส่วนผสมมีค่าลคลง ซึ่งสอดคล้องกัน ทั้งส่วนผสมที่ใช้กับเบนทอ ไนต์และตะกอนดินประปา สำหรับส่วนผสมที่ใช้ดินเบนทอ ไนต์ สัดส่วนของน้ำต่อ ซีเมนต์ (W:C) ต้องไม่น้อยกว่า 1.0 เนื่องจากจะทำให้ส่วนผสม เหนียว เกาะตัวกันแน่น และหมดสภาพความเป็นของเหลว ทั้งนี้เกิจจากคินเบนทอไนต์มีความสามารถในการดุคซึมน้ำได้ มาก และจับตัวกันเป็นก้อน ในขณะที่ส่วนผสมที่ใช้ตะกอน ดินประปาสามารถเพิ่มและลดปริมาณของน้ำได้ในสัดส่วนที่ กว้างกว่า และชังคงตัวเป็นของเหลวที่สามารถนำมาทดสอบ ความหนืดและค่ากำลังกดสูงสุดได้

การทดสอบกำลังกดในแกนเดียวเบื้องต้นส่วนผสมของ ตัวอย่าแแท่งรูปทรงกระบอกขนาคเส้นผ่านศูนย์กลาง 5.08 ซม. สัดส่วนความยาวต่อเส้นผ่านศูนย์กลาง (LD ratio) ประมาณ $2.0-2.5$ ที่ถูกบ่มมาแล้ว 3 วัน ต้วอย่างแท่งถูกกดในแนวแกน ด้วยโครงกคทคสอบที่อัตรา $1 \mathrm{MPa} / \mathrm{s}$ จนกระทั่งตัวอย่างวิบิติ

ผลการทคสอบกำลังกดในแกนเดียวบื้้องต้นแสดงในรูป ที่ 3 ซึ่งระบุว่าค่ากำลังกดสูงสุดมีค่าใกล้เคียงกัน โดยเฉพาะเมื่อ ใช้ $\mathrm{W}: C=1: 1$ ืื่อลดสัคส่วนของน้ำลงจะทำให้ค่ากำลังกด สงขึ้น แต่ไม่เกิน 3 MPa และจะทำให้ส่วนผสมเหลวมีความ หนืคเพิ่มมากขึ้น ซึ่งอาจจะไม่เป็นผลดีต่อการนำไปเป็นวัสคุ อุดในรอยแตกของหิน แต่เมื่อเพิ่มปริมาณน้ำมากขึ้นที่ $\mathrm{W}: \mathrm{C}>1: 1$ ค่ากำสังกคจะลดลงอย่างมาก ดังนั้นผลการทดสอบ นี้สามารถสรุปในเบื้องต้นได้ว่า $\mathrm{W}: \mathrm{C}=1: 1$ จะมีความ เหมาะสมที่สุด

รูปที่ 3 ค่ากำลังกตตูสงสุตของ BB C และ S C ที่อัตราส่านต่างๆ

การทดสอบคาามซีมม่านของส่านผสมทำหลังจากนำ ส่วนผสมที่ไต้จัดเตีรมหห่อลงในท่อ PVC ขนาตเส้นผ่าน ศูนยิกลํางสง 10.16 ซม. สูง 15.24 ซม. ในการทตสอบนี้ไต้ทำการ ทตสอบตามมาตรฐูาน ASTM (C938. C39) ซึ่งมีการหาค่า ความชีมม่านในช่างเวสาของเารบ่มที่ต่างกัน คือ 3,7,14 และ
 หนา 1.5 ซม. ที่ปลายบนและล่างของแบบหล่อ PVC ที่ทุด ถึ่งกลางของแผ่นอะคริจิกมีรูี่ที่อกับหมุดยื้ทท่อแรงตันสูงเส้น ผ่านศูนย์กลาง 6.35 มม. แผ่นต้านล่างต่อเข้ากับบั๊มน้ำและแผ่น ต้านบนจะต่อเข้ากับหลอตวัตปริมาตรน้ำปิเปตต์ ในขณะ ทดสอบจะทำการอัดน้ำต้วยคามามตันคงที่เท่ากับ 13.8 kPa โดย ใช้าล์วปรับคามมตันที่ส่านบนของถังกัาฆไนโตรเจนและไล่ ฟองอากาศออกให้ก่อนการตรวขวัดคาามมี่มผ่านสามารถทำ

ไต้โตยขับเวลาการไหลของน้ำในเชิงปริมาตรที่หลอตวัต ปริมาตรน้ำปิเปตต์ คามมซี่มผ่านของตัวอย่างส่านผสมสามารด คำนวญได้วากสมการ (2) [4]

$$
\begin{gather*}
K=\frac{Q}{i A} \tag{1}\\
k=\frac{K \cdot \mu}{\gamma_{w}} \tag{2}
\end{gather*}
$$

โตยที่ K คือ ค่าเหนี่ยานำชลศาสตร์ของน้ำ (Hydraulic conductivity) Q คือ ปริมาตรของน้ำที่ไหลต่อช่างเวลาที่ ตราจวัตทากเหลอตวัดปริมาตรน้ำปีเปีตต์ C คือ Hydraulic gradient A คือ พื้นที่หน้าตัตของตัวอย่าง K คือค่าคามามืม่าน ทางกายกาพ (Intrinsic permeability) γ_{v} คือความหนาแน่น โตยมาลของน้ำ และ μ คือคาามหนืดของน้ำ ใใช้ที่อุณหภูมิ $25^{\circ} \mathrm{C}$)

ผลการทตสอบค่าคามมซื่มผ่านของทุกส่านผสมจะลตสง ในเชิงเาลาแสสดงในรูปที่ 4

3.3 การทตสอบกำลังกตในแกนเดียว

การทตสอบกำลังกดในแถนเดียามีวัตถุประสงค์เพ่อมาค่ากำลัง กดสูงสุด ค่าสัมประสิทธิ์คามมยืดหหุ่นน และอัตร เส่าน Poisson ของส่่วนผสมที่ได้ค้ดสรรมาขากกาารทตสอบเบื้องต้นในห้าข้อ 3.2 ดังนี้ S:C เท่ากับ 1:10. 3:10. 5:10. B:C เท่าเั้บ 1:10. 2:10. 3:10 และซีเมนต์ล้าน ทุกส่านผสมกำหนต $W: C$ เท่ากับ $1: 1$ การจัดเตรรมมตัวอยางแและำรหตสอบไต้ตำเนินการตาม มาตรงูาน ASTM (D7012. C938. C39) และทำการบ่มมป็นนาวา 3 วันก่อนนำมาหตสอบ โตยตัวอย่างถูกกตในแนวแกนด้วย เคร่ํำงกดทตสอบที่อัตรา 1 MPa ใ ในขแะเดียากันไต้มีการ ตราจวัตการเปลี่ยนรูปร่างในแนวแกนและแนวเส้นผ่าน ศูนย์กลาง ต้วยมาตรวัตที่มีความละะอียด ± 0.01 มม. ซึ่ง ตำเนินการจนกระทั่งตัวอย่างเกิดการงิบัติ ผลี่ได้นำเสนอใน ความสัมพันธ์ระหว่างค่าคามมเค้นกับคามเมเรียดในแนาแกน และแนวสส้นผ่านศูนย์กลาง

รูปที่ 5 แสดงกราฟไปรยบเตียบค่ากำลังงดตที่ได้จากตัวอยาง ส่วนผสมมที่มีเส้นผ่านศูนย์กลาง 10.16 ซม. และ 5.08 ซม. ซึ่งระบุ ว่าส่านผสมที่มีแบบหล่อขนาตใหญุ่สามารถหำปฏิกิริยาหงเคมี ระหว่างซีเมนต์กับตินเบนทอไนต์ หรือซีเมนต์กับตะกอนติน ประปปไไต้ตีกา่าส่านผสมที่ได้จากก!บบหล่อขนาดเลี๋ก

ค่ากำลังทตในแกนเดียว $\left(\sigma_{c}\right)$ และะุุมสมมัติกาามยืหหยุ่น (E) ของส่วนผสมที่มีเส้นผ่านศูนย์กลาง 101.6 มม. ไต้แสตงไว้ ในตารงงที่ 2 ซึ่งสลการทตสอบแสตงให้เหีนว่าค่ากำลังกด สูงสุตของส่านผสมที่ใช้ดินเปนหอไนต์!ละที่ใช้ตะกอนติน ประปมีีค่าใกล้เีคงงงกัน โตยส่วนผสมทั้งสองชนิดมีค่ากำลังกด สูงสุดอยู่ที่ประมาแ 2 MPa

3.4 การทตสอบกำลังเนือนของส่วนผสมกับรอยแตกทิน

วัตถุประสงค์ของการทตสอบกำลังเดือนของส่านผสมกับรอย แตกหินเพื่อหาค่ากำลังเฉือนสูงสุดที่เเิดขึ้นบริเวณรอยต่อ ระหว่งงิาของส่่านผสมกับผิวของรอย!ตกในหิน ซึ่งเป็น ปังจัยกำหนตคามสามารดในการต้านแรงเฉือนของส่านผสม ที่สัตส่านต่างๆ ต่อแรงที่มากระทำในแนวขนานกับรอยแตก

การทตสอบได้ใช้สัตส่านของส่วนผสมที่คัตเลือกมาขากผล แารหดสอบวิธีการผสมแและกรบบ่มไต้ตำเนินการตามห้วข้อ 3.2

การทตสอบกำลังเอือนของส่านผสมกับรอย!ตกของหิน จะใช้ชุปกกธ์ทตตสอบกำลังเดือนแบบสามวงแหวน โดยนำ ตัวอย์างหินที่มีวสตุดุดในรอย!แตทที่บ่มมาแล้า 3 วัน ประกอบ เข้ากับชุดตตสอบในรูปที่ $6[16]$ การทตสอบไต้ใช้คามมเค้น ในแนวตั้งฉาก 5 ระตับตั้งเต่ $0.25,0.50,0.75,1.00$ ถึ่ง 1.25 MPa ระห่างทำเารทหตสอบวะมีการบันที๋ทค่าแรงเดือนและ ปริมาแแารเคลื่อนตังในแนวเฉือนอย่างต่อเนื่อง พร้อมทั้ง สั้งเทตลักษแะำรวิบิติของต้าอย่าง ผลการทตสอบได้น้ำสนอ ในรูปของคามมสัมพันธ์ระหว่างค่าคามามค้นในแนวตั้งและ แนาเฉือน

ผลการคำนวแค่าคงที่ของกฎ Coulonb แสตงในตารงที่ 3 คามมสัมผันธ์ระหว่างค่ากำลังเเฉือนในหงก์ชันของคามมเค้น ในแนวตั้งฉาก (รูปที่ 7) ซึ่งผลที่ได้ระบุว่าส่านผสมที่เลือกมา ทั้ง 6 สัตส่วน มีค่มุมมสสียดทาน $\left(\varphi_{p}\right)$ ใnล้เคียงงกันมากก!ละมีค่า

3.5 การทตสอบความซึมผ่านในรอยแตกของทิน

ค่าคามมซี่มผ่านในรอย!ตกของหินเพื่อให้เป็นข้อมูลพื้นฐูาน ในการเปรียบเทียบขีดคามมสามารดของส่านผสมในระตับ ต่งๆๆ ทตสอบคามามืืมผ่านในรอยแเตกภายใด้คามมเค้นกดตี่ตั้ง ฉากกับรอยแตกในระตับต่างๆ กัน คือ 1.2 .3 และ 4 MPa วำนวน 5 ตัวอย่าง ตัวอย่างหินส่านบนถูกเจาะเป็นรูกลมมน ทิศทางตั้งฉากกับระนาบการวางตัวของชั้นหิน มีเส้นผ่าน ศูนย์กลางา 12 มม. ลีก 10.16 ซมม. อยู่ที่ทุดกี่งกลางเพื่อใช้เป็น ทางส่งแรงตันน้ำข้าสู่งอยแตก ตัวอย่างถูกกดทตสอบโตยใช้ เคร่องตตสอบ รูปที่ 8 ระหว่างการทตสอบไต้มีการบันที๋กค่า ปริมาตรน้ำและะาลาผลที่ไต้น้ำเสนอในรูปไเผนภูมิระหา่างค่า ความเค้นตั้งฉาก $\left(\sigma_{\mathrm{n}}\right)$ กับค่าคามามเปิดเผยอชลศาสตร์ $\left(\mathrm{e}_{\mathrm{h}}\right)$ ค่า เหนี่ยานำชลศาสตร์ (K) และค่าคามมซืมม่านในรอยแตกเดี่ยา (k) ป็็นตามสมการ (3) ถึ่ (5) [6]

$$
\begin{equation*}
\mathrm{e}_{\mathrm{h}}=\left(\frac{1}{3}\right)\left\{\left\{\frac{(6 \mu \mathrm{q})}{\pi \Delta \mathrm{P}} \ln \left(\frac{\mathrm{r}}{\mathrm{r}_{0}}\right)\right\}\right. \tag{3}
\end{equation*}
$$

ตารางที่ 2 ผลการทดสอบแรงกดในแกนเดียว

Typc	Mix ratio	$\sigma_{c}(\mathrm{MPa})$	V	$\mathrm{E}(\mathrm{MPa})$
C	$0: 10$	1.40	0.18	212
B:C	$1: 10$	1.59	0.17	193
B:C	$2: 10$	2.09	0.14	275
B:C	$3: 10$	1.92	0.16	228
S:C	$1: 10$	1.35	0.15	190
S:C	$3: 10$	1.77	0.21	224
S:C	$5: 10$	1.52	0.16	261

ตารางที่ 3 ค่าคงที่ตามกฎการแตกของ Coulomb

Sample No.	$c_{p}(\mathrm{MPa})$	tanh $_{p}$	$\phi_{p}\left({ }^{\circ}\right)$	R^{2}
C	0.563	0.263	14.7	0.962
$\mathrm{~S}: \mathrm{C}=1: 10$	0.275	0.436	23.6	0.985
$\mathrm{~S}: \mathrm{C}=3: 10$	0.213	0.435	23.5	0.988
$\mathrm{~S}: \mathrm{C}=5: 10$	0.255	0.428	23.2	0.985
$\mathrm{~B}: \mathrm{C}=1: 10$	0.306	0.424	23.0	0.968
$\mathrm{~B}: \mathrm{C}=2: 10$	0.121	0.410	22.3	0.998
$\mathrm{~B}: \mathrm{C}=3: 10$	0.143	0.430	23.3	0.996

รูปที่ 8 (a) ตัวอย่างรอยแตกหิน (b) การทดสอบความซึมผ่าน
ของรอยแตก

$$
\begin{gather*}
\mathrm{K}=\gamma_{\mathrm{w}} \frac{\mathrm{e}_{\mathrm{h}}{ }^{2}}{12 \mu} \tag{4}\\
\mathrm{k}=\frac{\mathrm{e}_{\mathrm{h}}{ }^{2}}{12} \tag{5}
\end{gather*}
$$

โดยที่ e_{L} คือระยะะปิดดเผยอาชิงไใตตรอลิกของรอยเแตก $\gamma_{\text {ค }}$ คือ ความหนาแน่นโตยมวลของน้ำ μ คือคาามหนืดเชิงพลศาสตร์ r0 คือรัศมีของรูที่ดุดกกึ่งกลางของตัวอย่างรอย!ตก r คือระยะ จากทุดกกึ่งกลางของรอย!ตกถึ่งขอบนอก g คืออัตราใหลเชิง ปริมาตรที่วัดไต้าากการทตสอบ และ $\Delta \mathrm{P}$ คือค่าความดันของ น้ำที่อัตขข้ไปดี่รู่าลางของตัาอย่างหิน

ผลที่!ต้ขากการทตสอบความชืมม่านในรอยเต่าของหิน ตัวอยางที่ 1 ถึ่ง 5 ที่ระตับคามมเค้นตั้งฉากตั้งแต่ 1 ถึง 4 MPa แสตงในรูปที่ 9 ระบุว่ามีค่าความซีมผ่านในรอยแตกเดี่ยาน้อย กา่า 1.4×10^{-9} ตร.ม.
. 6 การทตสอบความซึมต่านของส่ววผผสมในรอยแตกทิน ค่าคามมซื่มผ่านของส่่านผสมเป็นปัจจัยสำคับูี่ทะบ่งบอกถึ่ง การไใหลซื่มของน้ำในรอยแตกของหินไต้มากหรือน้อย ำร ทดสอบความซื่มผ่านจะมีวัสตุตุตอยู่กายในรอยแตกที่มีการเปิด เสยอ 0.2 .1 .0 และ 2.0 ซม. ที่าวลบ่ม 3 วัน ตัวอย่างหินและวิวิธ ทตสอบขะมีลักษณะตามหัวข้อ 3.2 แผนภูมิแสตงลักษนะการ ทดสอบและการััทตตีรมมอุปกรี่แสตงตามรูปที่ 11 และ 12

ตัวอย่างหินทั้ง 21 ตัวอย่างถูกให้แรงตันน้ำคงที่ในขนะ ทตสอบ ซึ่งอยู่ในช่วง 13.8 ถึง 551.7 kPa โตยาารทตสอบเริ่ม จากคาามเค้นกดส่านผสมในรอยแตกาากน้อยไปมากกล่าวคือ จาก $0.25 .0 .50 .0 .75,1.00$ และ 1.25 MPa ในแต่ละระตับคาม เค้นกตบนส่านผสมในรอยแตก ค่าเหนี่ยานำชสศาสตร์เและค่า คามมี่มผ่านของส่านผสมในรอยแตกสามารกคำนวแไต้จาก สมมาร (6) และ (7) [4] ตังนี้

$$
\begin{gather*}
\mathrm{K}=\frac{\mathrm{Q}}{2 \pi \mathrm{LH}} \ln \left(\frac{2 \mathrm{~mL}}{\mathrm{D}}\right) \tag{6}\\
\mathrm{k}=\frac{\mathrm{K} \mu}{\gamma_{\mathrm{w}}} \tag{7}
\end{gather*}
$$

โตยที่ Q คืออัตราการไหลเชิงปริมาตรของน้ำที่ไหลผ่าน ส่วนผสม (หลังจากหักลบน้ำที่ไหลผ่านรอยต่อระหว่าง ส่วนผสมกับผิวหินแล้ว) m คือรากที่สองของสัตส่านระหว่าง ค่าเหนี่ยานำการไหลในแนวขนานกับรอยเตกกัับแนวตั้งฉาก

กับรอยแตก กรีนีนี้มีค่าคงที่เท่ากับ 1 ส่าน L คือคามมหนาของ ส่วนผสมในรอยแตก (0.2 .1 .0 และ 2.0 ซม.) D คือเส้นผ่าน ศูนย์กลางของรูเจาะที่งุดกี่งกลางของตัวอย่าง H_{c} คือแรงตันเมื่อ เตียบกับคามามููของนน้ำ ซึ่งมีค่าคงที่

รูปที่ 10 แผนภูมิแสตงลักษณะการทตสอบคามมซี่มผ่านของ ส่วนผสมในรอย!เตกในหินที่มีการเปิดเผยอ

รูปที่ 12 ตารััตเตีรียมุุปกรั์ที่เช้ทดสอบคามมมี่มผ่านของ ส่วนผสมในรอยเตตทที่เปิดเผยอ

รูปที่ 12 ระบุว่าค่าคามมซืมผ่านเชิงกายกาพของส่วนผสม ในรอย!ตกทินทั้ง 21 ตัวอยางมีค่าสอดคล้องกับผลที่ทดสอบ ได้ในหัวข้อ 3.5

รูปที่ 12 ค่าคามมชีมม่านวัสตุดุดในรอย!เตกหินที่มีค่าเปิดเผยอ
(a) 0.2 ซม. (b) 1.0 ซม. แลละ (c) 2.0 ซม.

7. สรุปผลการศึกษา

ตะกอนตินประปาผสมกับปูนซีเมนต์ปอร์ตแลนต์มีุักยภาผ เพื่อนำมาปประยุกต์!ช้อุดรอย!ตกในมวลหินเพื่อลดค่าคามมซื่ม ผ่านแทนวัสตุอุดเเนทอไนต์กับซีเมนต์ โดยกำหนตชนิดของ วัสตุดุดที่นำมาใช้ในการคึกษบาประกอบต้วยตะกอนดินประปา จากโรงกำขัดตะะอนขางเขน ปู่นซีเมนต์ตรานกอินหรี่ยาาก บริษัทปูนซีเมนต์นครหลวง จำกัด และตินเบนทอไนต์ของ บริษัท American Colloid Company

การทตสอบส่านผสมที่หลากหลายระหว่างตะกอนติน ซีเมนต์ และน้ำและระหว่างตินเบนทอไนต์ ซีเมนต์ และน้ำ เพื่อให้ได้มาซึ่งสัตส่านที่เหมาะสมและเลือกใช้อุดรอยแตตกใน หิน กล่าคคือ จะต้อมมีคุณสมบัติเชิงกลศาสตร์เเละชลศาสตร์อยู่ ในเกณฑ์ตีและมีคาามหนืดน้อย ในขั้นตตนนี้ไต้มีการคัดเลือก สัตส่าน $\mathrm{S}: \mathrm{C}$ เท่ากับ 1:10. 3:10 และ 5:10 และสัตส่าน $\mathrm{B}: \mathrm{C}$ เท่ากับ 1:10. 2:10 และ 3:10 โตตทั้ง 6 สัตส่านจะใช้ไริมาแน้ำ ต่อซีเมนต์เท่ากับ $1: 1$ เนื่องงากทะให้ค่ากำลังทดสูงประมาแ 2 MPa ในขขะที่มีค่าคาามหนืดของส่านผสมเหลวไม่เกิน $5 \mathrm{~Pa} \cdot \mathrm{~s}$ ผลการทตสอบสมบัติเชิงกลศาสตร์ระมุ่าส่านผสมตะกอนติน กับชีเมนต์ที่ตัตราส่วน $3: 10$ จะให้ค่ากำกังกดสูงสุุตเท่ากับ 1.77 MPa และค่าสัมประสิทติ้คามมยืดมุุ่นเท่ากับบ 224 MPa ซึ่งขะต่ำ กา่าค่าที่ไต้าากส่านผสมมระหว่างตินิบนทอไนต์กับขีเมนต์เพียง รอยละ 10 ค่ากำลังเฉือนระห่างผิารอยแตกกับส่านผสมทั้ง 6 สัตส่าน มีค่าใลล้คียงกันคืออยู่ในช่าง 0.36 ถึ่ง 0.90 MPa ซึ่ง ขึ้นกับค่าคามมเค้นกดที่ใหืบนตัวอย่างหิน

ผลการทตสอบความมื้มผ่านของส่านผสมระบุ่าค่าค่าคาม ซี่มผ่นของทุกส่วนผสมจะะลตลงในเชิงเวลา โตยเฉผาะอย่าง ชิ่งในช่าง 7 วันแรก จากนั้นค่าคาามซืมม่านจะมีค่าค่อนข้าง คงที่หลังจากบบ่มได้ 14 ถึ่ 28 วัน หลังขากถูกบ่มมาแล้า ส่านผสมมุกสัตส่านจะมีค่าความซี่มผ่านเชิงกายภาผผันแปรร อยู่ในช่วง 10^{-17} ถึ่ง 10^{-15} ตร.ม. ผลการทตสอบความซืมม่าน ของรอยแตกประชิตระบุาที่กายใต้คามมเค้นตั้งฉากที่ผันแปร จากี่ 1 ถื่ง 4 MPa มีค่าความซีมผ่านอยุ่ในช่าง 10^{-8} ถึ 10^{-10} ตร.ม. ผลการทดสอบความซื่มผ่านของส่านผสมตี่อยู่ในรอย แตเมีระยะการเปิดเผยอเท่ากับ $0.2,1.0$ และ 2.0 ซม. มีค่า คามมซื้มผ่านใกล้เคียงกันนคือประะมาน 10^{-15} ตร.ม. ซึ่งหมายถึ่ง ภายใด้การศสมในสัตส่่วนที่เหมาะสมส่งผลให้ ตะกอนติน ประปามีศักยกาพเชิงชลศาสตร์ทัตเทียมกับส่านผสมที่ใช้ ตินเบนทอไนต์

8. กิตติกรรมประกาศ

 สุรนารี จากการส่งเสริมการศึกษาระตับอุตมศีกษา และ มหาวิทยาลัยงิจัยแห่งชาติ จึงขอขอบพระคุณอย่างสุดตื้งที่ อนุญฺาตให้เผยเหร่บทคาามนี้

เอกสารอ้างอิง

[1] คมกริช เวชสัสถ์, สุทิิรักบ์ บูชากุล, ปาริฉัตร ปั้นทอง และ สุรเดช เหรัมพกุล, "การออกแบบและก่่วสร้างระบบกำจัด ตะกอนโดยใช้วัธรรดกรองโรงงานผลิตน้ำขางเขน" การประชุม วิชาการิศวคกรรม โย๓าแห่งชาติ ศรั้งที่ 15 , อุบลราชธานี่, 2553. [2] นพปฎลล เสงี่ยมศักดิ้ และเรืองรุชดิ์ ชีร โรจนี่, "การศึกษา คุญสมบัติมวสรวมประดิษจ์ที่ทำทาจกตะกอนน้ำปประปา" การ ประชุมวิชกาาริศวกกรรมโยยาแห่งชาติ ศรั้งที่ 13 , พักยา, 2551 . [3] ฤชากร คงทอง และกฤติยากร เลิศโภคะสมบัติ, "การศึกษา ตะกอนสลัคจ์จากโรงผลิตน้ำประปาในการดูศซับสีย้อง" การ ประชุมวิชาการวิศวกรรมโยยาแห่งชาติ ครั้งที่ 11 , ภูก็์ต, 2549. [4] B. Indraratna, and P. Ranjith, "Hydromechanical Aspects and Unsaturated Flow in Joints Rock" Lisse: A.A. Balkema, 2001.
[5] J. Obcheoy, S. Aracheeploha, and K. Fuenkajorn, "Fracture permeability under normal and shear stresses" Rock Mechanics, Fuenkajorn \& Phien-wej (eds), Geomechanics Research Unit, Suranaree University of Technology, Thailand, 2011, pp. 133-140.
[6] N. Akkrachattrarat, P. Suanprom, J. Buaboocha, and K. Fuenkajorn, "Flow testing of sandstone fractures under normal and shear stresses" Rock Mechanics, Fuenkajorn \& Phien-wej (eds), Geomechanics Research Unit, Suranaree University of Technology, Thailand, 2009, pp. 319-334.
[7] P. Suanprom, J. Obcheoy, and K. Fuenkajorn, "Permeability
of Rock Fractures under Shear Stresses" EIT-JSCE Joint International Symposium Geotechnical Infrastructure Asset Management, Bangkok, Thailand, 2009.
[8] A. Fransson, "Characterisation of a fractured rock mass
for a grouting field Test" Tunnelling and Underground Space Technology, 2001, Vol. 16, pp. 331-339.
[9] R. Gothall, and H. Stille, "Fracture - fracture interaction during grouting" Tunnelling and Underground space

Technology, 2001, Vol 25, pp. 199-204.
[10] A. Fransson, C.F. Tsang, J. Rutqvist, and G. Gustafson, "Effects of the injection grout Silica sol on bentonite" International Journal of Rock Mechanics and Mining Sciences, 2007, Vol. 47, pp. 887-893.
[11] K. Fuenkajorn, "Design process for sealing of boreholes in rock mass" Rock Mechanics, Fuenkajorn \& Phien-wej (eds), Geomechanics Research Unit, Suranaree University of Technology, Thailand, 2007, pp. 245-252.
[12] J. Funehag, and A. Fransson, "Sealing narrow fractures with a Newtonian fluid: Model prediction for grouting verified by field study" Tunnelling and Underground Space Technology, 2006, Vol. 21, pp. 492-498.
[13] A. Varol, and S. Dalgic, "Grouting applications in the Istanbul metro, Turkey" Tunnelling and Underground Space Technology, 2006, Vol. 21, pp. 602-612.
[14] D. Castelbaum, and C.D. Shackelford, "Hydraulic Conductivity of Bentonite Slurry Mixed Sands" Geotechnical and Geoenvironmental Engineering, 2009, Vol. 135, No. 12, pp. 1941-1956.
[15] P. Kanchanamai, "The utilization of sludge from Bang Khen water treatment plant in construction industry" A thesis submitted in partial fulfilment of the requirements for the degree of master of engineering in the faculty of graduate studies, Kasetsart University, 2003.
[16] กิตติเทพ เฟื่องขจร, "การประดิบธู์แบบหล่อทคสอบการ บคอัดแสะกำลังเฉือนแบบสามวงแหวน" รายงานวิวัย รหัส โครงการ $3-1 / 54$ กองทุนนวัตกรรมและสิ่งประคิษขู์ สมเด็จ พระเทพรัตนราชสุดาฯ สยามบรมราชกุมารี่, มหาวิทยาลัย เทคโนโลยีสุรนารี, นครราชสีมา, 2554,53 หน้า.
[17] J.C. Jaeger, "The frictional properties of joints in rocks" Geofis pura appl., 1959, Vol. 43, pp. 148-158.

Decision Letter (SJST-2013-0170.R1)

From: proespichaya.k@psu.ac.th
To: aek@live.in, d5340248@g.sut.ac.th
CC:
Subject: Songklanakarin Journal of Science and Technology - Decision on Manuscript ID SJST-20130170.R1

Body: 24-Mar-2014
Dear Mr. Wetchasat:
It is a pleasure to accept your manuscript entitled "Mechanical and Hydraulic Performance of Sludge-Mixed Cement Grout in Rock Fractures" in its current form for publication in the Songklanakarin Journal of Science and Technology.

Thank you for your fine contribution. On behalf of the Editors of the Songklanakarin Journal of Science and Technology, we look forward to your continued contributions to the Journal.

Sincerely,
Prof. Proespichaya Kanatharana
Editor in Chief, Songklanakarin Journal of Science and Technology
proespichaya.k@psu.ac.th

Reviewer(s)' Comments to Author:

Date Sent: 24-Mar-2014

Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

Mechanical and Hydraulic Performance of Sludge-Mixed Cement Grout in Rock Fractures

Journal:	Songklanakarin Journal of Science and Technology
Manuscript ID:	SJST-2013-0170.R1
Manuscript Type:	Original Article
Date Submitted by the Author:	23-Mar-2014
Complete List of Authors:	Wetchasat, Khomkrit; Maintenance Division, Phaya Thai Branch Office, Metropolitan Waterworks Authority; Institute of Engineering, School of Geotechnology
Keyword:	Engineering and Industrial Research

SCHOLARONE*
Manuscripts

Page 1 of 23 Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

Reviewer: 1

Q1. Page 6 line 8: "conductivit" should be "conductivity"

A1. Corrected.

Q2. The English word describing activities in the past should be in past tense.

A2. Corrected.

Reviewer: 2

Comments to the Author None

Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat
 Mechanical and Hydraulic Performance of Sludge-Mixed Cement Grout in Rock Fractures
 Khomkrit Wetchasat*
 Kittitep Fuenkajorn
 School of Geotechnology, Institute of Engineering, Suranaree University of Technology University Avenue, Muang District, Nakhon Ratchasima 30000, THALLAND Tel.: 66-44-224-443, Fax.: 66-44-224-448, *E-mail: d5340248@g.sut.ac.th

Page 2 of 23

Abstract

The objective is to assess the performance of sludge mixed with the commercial grade Portland cement type I for use in minimizing permeability of fractures in rock. The fractures were artificially made by applying a line load to sandstone block specimens. The sludge comprises over 80% of quartz with grain sizes less than $75 \mu \mathrm{~m}$. The results indicate that the mixing ratios of sludge:cement ($\mathrm{S}: \mathrm{C}$) of $1: 10,3: 10,5: 10$ with water:cement ratio of $1: 1$ by weight are suitable for fracture grouting. For $\mathrm{S}: \mathrm{C}=3: 10$, the compressive strength and elastic modulus are 1.22 MPa and 224 MPa which are comparable to those of bentonite mixed with cement. The shear strengths between the grouts and fractures surfaces are from 0.22 to 0.90 MPa. The S:C ratio of 5:10 gives the lowest permeability. The permeability of grouted fractures with apertures of 2,10 and 20 mm range from 10^{-16} to $10^{-14} \mathrm{~m}^{2}$ and decrease with curing time.

Keywords: rock fracture, grouting, permeability, sludge, cement

1 INTRODUCTION

The increasing amount of the water treatment sludge from the Metropolitan Waterworks Authority of Thailand (MWA) has called for a permanent solution to dispose of the sludge from the Bang khen Water Treatment Plants. The MWA report (2007-2009) indicates that the plant produces sludge with the maximum capacity of $3.2 \times 10^{6} \mathrm{~m}^{3}$ per day. The sludge has been collected from the water treatment process. The increasing rate of the sludge is about $247 \times 10^{3} \mathrm{~kg}$ per day. One of the solutions is to apply the sludge to minimize groundwater

Page 3 of 23

Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

circulation in rock mass. Groundwater in rock mass is one of the key factors governing the mechanical stability of slope embankments, underground mines, tunnels, and dam foundation. A common solution practiced internationally in the construction industry is to use bentonite mixed with cement as a grouting material to reduce permeability in fractured rock mass (Akgün and Daemen, 1999; Papp, 1996). Knowledge and experimental evidences about the permeability of the sludge-mixed cement in fractured rock under varied stress conditions have been rare. The objectives of this study are to assess the performance of sludge mixed with the commercial grade Portland cement for reducing permeability in saturated fractured rock under various stresses in the laboratory and to compare the results with those of the bentonite-mixed cement in terms of the mechanical and hydraulic performance.

2 GROUTS PREPARATION

The grouting materials used in this study are (1) sludge with particle sizes less than 75 $\mu \mathrm{m}$, (2) commercial grade bentonite, and (3) commercial grade Portland cement type I for mixing with the sludge and bentonite. The fractures in sandstone collected from Phu Kradung formation were artificially made by applying a line load to induce a splitting tensile crack Two shapes of the sandstone samples are $152.4 \times 152.4 \times 152.4 \mathrm{~mm}^{3}$ blocks and 100 mm diameter cylinder with 100 mm in length. Bentonite is from American Colloid Company.

Sludge and bentonite were tested for the Atterberg's limits, specific gravity, and particle size distribution. The equipment and test procedure follow the ASTM standards (D422, D854). The results are summarized in Table 1. Figure 1 shows the particle size distributions of the sludge used here.

3 BASIC MECHANICAL PROPERTIES OF GROUTING MATERIALS

The basic mechanical properties of the mixtures were determined to select the appropriate proportions of sludge-to-cement ratios. The sludge-mixed cement ratios $(\mathrm{S}: \mathrm{C})$ of $0: 10,1: 10,2: 10,3: 10,4: 10,5: 10,6: 10,8: 10$ and $10: 10$ by weight were prepared with watercement ratios $(\mathrm{W}: \mathrm{C})$ of $0.8: 1,1: 1$ and $1.25: 1$. The bentonite-mixes cement ratios $(\mathrm{B}: \mathrm{C})$ are $0: 10,1: 10,2: 10,3: 10,4: 10$, and $5: 10$ by weight with water-cement ratios (W:C) of 1:1, 4:1. Mixing of all grouts was accomplished using a blade paddle mixer as suggested by ASTM standard (C938). The mixtures were placed in a 54 mm PVC mold. They were cured under water at room temperature (ASTM C192). Viscosity measurement follows, as much as practical, the ASTM standard (D2196). The results are shown in Figure 2.

The procedure for determining the grout permeability is similar to the ASTM standard (C938, C39). The water flow tests were conducted at 3, 7, 14 and 28 days of curing. The mold has an inner diameter of 101.6 mm with a length of 152.4 mm . The prepared specimen was sealed between two acrylic platens with the aid of O-ring rubber and epoxy coating. Inlet port was installed at the end of the mold and connected to a water pressure tube compressed by nitrogen gas at about 13.8 kPa . Air bubbles were bled out before measuring the permeability. Outlet port was installed at the other end and connected to a high precision pipette for measuring the outflow. The coefficient of permeability is computed from the flow rate based on the Darcy's law. The results are presented in Figure 3.

4 UNIAXIAL COMPRESSIVE STRENGTH OF GROUTING MATERIALS

The uniaxial compressive strength, elastic modulus, and Poisson's ratio of the grouting materials were determined. The results indicate that the suitable mixing ratios for the $\mathrm{S}: \mathrm{C}$ are $1: 10,3: 10,5: 10$ and for the $B: C$ are $1: 10,2: 10,3: 10$ with the $W: C$ of $1: 1$ by weight. These proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$ and the highest compressive strength. Preparation of these samples follows, as much as practical, the ASTM standard (C938, C39,

Page 5 of 23

Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

D7012). All specimens were cured for 3 days before testing. During the test, the axial deformation and lateral deformation were monitored. The maximum load at the failure was recorded. The compressive strength $\left(\sigma_{C}\right)$, Poisson's ratio (v), and elastic modulus (E) are determined. The results of the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ mixtures indicate that the chemical reaction between cement and water with the large casts were better than the small ones. Figure 4 shows the uniaxial compressive strength for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$. The uniaxial compressive strength and elastic modulus for the specimens with the diameter of 101.6 mm are summarized in Table 2. The maximum compressive strengths for the $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ are similar.

5 SHEARING RESISTANCE BETWEEN GROUT AND FRACTURE

The maximum shear strengths of grouting material in sandstone fractures were determined by direct shear testing. The test procedure is similar to the ASTM standard (D5607). Three-ring shear test equipment was used. All specimens were cured for three days before testing. Laboratory arrangement for the three-ring shear test equipment is shown in Figure 5. The constant normal stresses used were $0.25,0.5,0.75,1.0$ and 1.25 MPa . The shear stress was applied while the shear displacement and dilation were monitored for every 0.2 mm of shear displacement. The failure modes were recorded. The test results are presented in the forms of the shear strength as a function of normal stress in Figure 6. The angles of internal friction and cohesion for all mixtures are similar.

6 PERMEABILITY TESTING OF FRACTURES

The objective of this task is to assess the permeability of rock fractures under varying normal stresses. The fracture permeability is used to compare with the permeability of grouting materials for both sludge and bentonte mixtures. Constant head flow tests were performed. The
normal stresses are from 1 to 4 MPa . The experimental procedure is similar to Obcheoy et al. (2011). Five specimens were prepared and tested. The injection hole at the center of the upper block is 12 mm in diameter and 101.6 mm in depth. The tests were conducted by injecting water into the center hole of the rectangular block specimen. The laboratory arrangement of the constant head flow test is shown in Figure 7. Water volume and time were recorded. Both tend to decrease exponentially with the normal stress. The permeability results (k) are plotted as a function of the normal stress $\left(\sigma_{n}\right)$ in Figure 8. The equivalent hydraulic aperture $\left(e_{h}\right)$ for the radial flow, hydraulic conductivity between smooth and parallel plates (K), and intrinsic permeability (k) are calculated by (Tsang, 1992; Indraratna and Ranjith, 2001) :
$\mathrm{e}_{\mathrm{h}}=\left\{\frac{6 \mathrm{qq}}{\pi \Delta \mathrm{P}} \ln \left(\frac{\mathrm{r}}{\mathrm{r}_{0}}\right)\right\}^{\frac{1}{3}}$
$\mathrm{K}=\gamma_{\mathrm{w}} \frac{\mathrm{e}_{\mathrm{h}}{ }^{2}}{12 \mu}$
$\mathrm{k}=\frac{\mathrm{e}_{\mathrm{h}}{ }^{2}}{12}$
where μ is the dynamic viscosity of the water $\left(\mathrm{N} \cdot \mathrm{s} / \mathrm{cm}^{2}\right)$, q is water flow rate through the specimen $\left(\mathrm{cm}^{2} / \mathrm{s}\right), \Delta \mathrm{P}$ is injecting water pressure into the center hole of rectangular blocks of the specimen, r is radius of flow path $(\mathrm{m}), \mathrm{r}_{0}$ is radius of the radius injection hole $(\mathrm{m}) . \gamma_{\mathrm{w}}$ is unit weight of water $\left(\mathrm{N} / \mathrm{m}^{2}\right)$. The results indicate that the intrinsic permeability of the fractures is less than $1.4 \times 10^{-9} \mathrm{~m}^{2}$.

7 PERMEABILITY OF GROUTING MATERIALS IN ROCK FRACTURES

The permeability of sludge- and bentonite-mixed cement in artificial fractures was determined. The testing method is similar to that described above. The grouting materials were injected into the fractures. The fracture apertures are 2,10 , and 20 mm . The grouting

Page 7 of 23

Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat
materials were cured for 3 days. Figure 9 shows the laboratory arrangement. Constant head flow tests was performed. The constant head ranges between 13.8 and 551.7 kPa . The constant normal stresses are $0.25,0.5,1.0$ and 1.25 MPa . The results indicate that the normal stress could reduce the permeability of grouting materials in sandstone fractures. The intrinsic permeability (k) is calculated from the measured flow rate (Q) as follows (Indraratna and Ranjith, 2001) :
$\mathrm{K}=\frac{\mathrm{Q}}{2 \pi \mathrm{LH}_{\mathrm{c}}} \ln \left(\frac{2 \mathrm{~mL}}{\mathrm{D}}\right)$
$k=\frac{K \mu}{\gamma_{w}}$
where K is hydraulic conductivity, Q is flow rate of water flow through the mixture, m is square root of the ratio between the conductivity perpendicular and parallel to the hole (in this case, m is equal to 1), L is the thickness of grouting material in fracture apertures, D is diameter of the injection hole at the center of the upper block, H_{c} is the constant head used for the test, μ is dynamic viscosity $\left(891 \times 10^{-6} \mathrm{~kg} /(\mathrm{m} \cdot \mathrm{s})\right)$ at temperature of $25^{\circ} \mathrm{C}, \gamma_{\mathrm{w}}$ is unit weight of water $\left(997.13 \mathrm{~kg} / \mathrm{m}^{3}\right)$. Figure 10 shows the intrinsic permeability of grouting materials in fracture apertures for twenty-one samples.

8 DISCUSSIONS AND CONCLUSIONS

The sludge is classified as elastic silt with over 90% of its particles smaller than 0.047 mm . This study aims to determine the minimum slurry viscosity and appropriate strength of the grouting materials. The results indicate that the suitable mixing ratios for sludge-tocement $(\mathrm{S}: \mathrm{C})$ are $1: 10,3: 10$ and $5: 10$, and for bentonite-to-cement $(\mathrm{B}: \mathrm{C})$ are 1:10, 2:10 and 3:10, with water-cement ratio (W:C) of $1: 1$ by weight. For the sludge these proportions yield the lowest slurry viscosity of $5 \mathrm{~Pa} \cdot \mathrm{~s}$ and the highest compressive strength. For $\mathrm{S}: \mathrm{C}$ of $3: 10$, the compressive strength and elastic modulus are 1.22 MPa and 224 MPa which are similar to
those of the B:C. The direct shear test results indicate that the shear strengths at the interface between the grout and sandstone fractures varying from 0.22 to 0.90 MPa under normal stresses ranging from 0.25 to 1.25 MPa . Permeability of the grouting materials measured from the one-dimensional flow test with constant head is from 10^{-17} to $10^{-15} \mathrm{~m}^{2}$ and decreases with curing time. The mixture with the $S: C$ of $5: 10$ by weight gives the lowest permeability. The permeability of the grouts measured by radial flow test in fractures with apertures of 2 , 10 and 20 mm ranges from 10^{-16} to $10^{-14} \mathrm{~m}^{2}$. The $\mathrm{S}: \mathrm{C}$ mixtures have the mechanical and hydraulic properties equivalent to those of the $\mathrm{B}: \mathrm{C}$ mixtures which indicates that the sludge can be used as a substituted material to mix with cement for rock fracture grouting purpose. Such applications can also minimize the disposal cost of the sludge and reduce the environmental impact due to the landfill construction.

ACKNOWLEDGEMENTS

This study is funded by Suranaree University of Technology and by the Higher Education Promotion and National Research University of Thailand. Permission to publish this paper is gratefully acknowledged.

REFERENCES

Akgün H. and Daemen J.J.K. 1999. Design implications of analytical and laboratory studies of permanent abandonment plugs. Canadian Geotechnical J. 36, 21-38. ASTM standard C192 2013. Practice for Making and Curing Concrete Test Specimens in the Laboratory, Section four, Vol. 04.02, ASTM International, West Conshohocken, PA, DOI: 10.1520/C0192_C0192M, www.astm.org.

Page 9 of 23

Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

ASTM standard C39 2012. Test Method for Compressive Strength of Cylindrical Concrete Specimens, Section four, Vol. 04.01, ASTM International, West Conshohocken, PA, DOI: 10.1520/C0039_C0039M-12A, www.astm.org.

ASTM standard C938 2010. Practice for Proportioning Grout Mixtures for PreplacedAggregate Concrete, Section four, Vol. 04.02, ASTM International, West Conshohocken, PA, DOI: 10.1520/C0938-10, www.astm.org.

ASTM standard D2196 2010. Test Methods for Rheological Properties of Non-Newtonian Materials by Rotational (Brookfield type) Viscometer, Section Six, Vol. 06.01, ASTM International, West Conshohocken, PA, DOI: 10.1520/D2196-10, www.astm.org.

ASTM standard D422 2007. Test Method for Particle-Size Analysis of Soils, Section four, Vol. 04.08, ASTM International, West Conshohocken, PA, DOI: 10.1520/D042263R07, www.astm.org.

ASTM standard D5607 2008. Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens Under Constant Normal Force, Section four, Vol. 04.08, ASTM International, West Conshohocken, PA, DOI: 10.1520/D5607-08, www.astm.org.

ASTM standard D7012 2010. Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, Section four, Vol. 04.09, ASTM International, West Conshohocken, PA, DOI: 10.1520/D7012-10, www.astm.org.

ASTM standard D854 2010. Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, Section four, Vol. 04.08, ASTM International, West Conshohocken, PA, DOI: 10.1520/D0854-10, www.astm.org.

Indraratna, B. and Ranjith, P. 2001. Hydromechanical Aspects and Unsaturated Flow in Joints Rock, A.A. Balkema, Lisse, pp. 1-39.

Obcheoy J., Aracheeploha S., Fuenkajorn K. 2011. Fracture permeability under normal and shear stresses, In Rock Mechanics, K. Fuenkajorn and N. Phien-wej, editor. Geomechanics Research Unit, Suranaree University of Technology, Thailand, pp 133-140.

Papp J.E. 1996. Sodium bentonite as a borehole sealant. In Sealing of Boreholes and Underground Excavations in Rock, K. Fuenkajorn and J.J.K. Daemen, editor. Chapman and Hall, London, pp 280-297.

Tsang Y.W. 1992. Usage of Equivalent Apertures for Rock Fractures as Derived From Hydraulic and Tracer Tests. Water Res. 28(5), 1451-5.

Page 11 of 23
 Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

LIST OF FIGURES

Figure 1. Grain size distribution of water treatment sludge.

Figure 2. Dynamic viscosity of $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ for different $\mathrm{W}: \mathrm{C}$ ratio.
Figure 3. Intrinsic permeability as a function of time for pure cement (C), B:C, and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$.

Figure 4. Uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$.
Figure 5. Laboratory arrangement for three-ring direct shear test.
Figure 6. Normal stress and peak shear stress.
Figure 7. Laboratory arrangement for permeability testing of fractures.

Figure 8. Intrinsic permeability (k) as a function of normal stress (on) for fracture in Phu Kradung sandstone.

Figure 9. Permeability testing of grouting materials in rock fracture aperture 20 mm .
Figure 10. Intrinsic permeability (k) as a function of normal stress (σ) for fracture apertures (a) 2 mm (b) 10 mm and (c) 20 mm in Phu Kradung sandstones.

Page 13 of 23 Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

Figure 2. Dynamic viscosity of $\mathrm{S}: \mathrm{C}$ and $\mathrm{B}: \mathrm{C}$ for different $\mathrm{W}: \mathrm{C}$ ratio.

Page 15 of 23

Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

Figure 4. Uniaxial compressive strengths for $\mathrm{B}: \mathrm{C}$ and $\mathrm{S}: \mathrm{C}$ with $\mathrm{W}: \mathrm{C}=1: 1$.
For Proof Read only

Page 17 of 23 Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

For Proof Read only

Page 19 of 23 Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

```
For Proof Read only
```


Page 21 of 23 Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

Figure 10. Intrinsic permeability (k) as a function of normal stress ($\sigma \mathrm{n}$) for fracture apertures (a) 2 mm (b) 10 mm and (c) 20 mm in Phu Kradung sandstones.

List of Tables

Table 1 Atterberg's limits and specific gravity of sludge and bentonite.

Atterberg Limits	Bentonite (\%)		Sludge (\%)	
	SUT *	ACC $^{* *}$	SUT *	TU $^{* * *}$
Liquid limit	357	478	55	69
Plastic limit	44	28	22	42
Plasticity index	313	449	23	28
Specific gravity	-	-	2.56	-

"SUT = Suranaree University of Technology Laboratory,
${ }^{* *}$ ACC $=$ American Colloid Company Technical Data
${ }^{* * *} \mathrm{TU}=$ Tummasart University Laboratory.
Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat

Page 23 of 23	Songklanakarin Journal of Science and Technology SJST-2013-0170.R1 Wetchasat						
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Table 2 Mechanical properties of grouting materials.						
$\begin{aligned} & 5 \\ & 6 \\ & 7 \end{aligned}$	Type	Mix ratio	Number of Samples	Average density $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	Poisson Ratio v	$\sigma_{c}(\mathrm{MPa})$	E (MPa)
8	C	0:10	5	0.83 ± 0.01	0.18	1.40 ± 0.27	212
9 10	B:C	1:10	5	1.35 ± 0.04	0.17	1.59 ± 0.28	193
11	B:C	2:10	5	1.38 ± 0.04	0.14	2.09 ± 0.26	275
12 13	B:C	3:10	5	1.33 ± 0.02	0.16	1.92 ± 0.05	228
14	$\mathrm{S}: \mathrm{C}$	1:10	5	1.91 ± 0.06	0.15	1.35 ± 0.06	190
15	S:C	3:10	5	1.81 ± 0.07	0.21	1.77 ± 0.21	224
17	S:C	5:10	5	1.79 ± 0.06	0.16	1.52 ± 0.19	261

BIOGRAPHY

Mr. Khomkrit Wetchasat was born on the $3^{\text {rd }}$ of March 1977 in Chaiyaphum province. He earned his Bachelor's Degree in Civil Engineering in 1998 and Master's Degree in Geotechnology in 2002. Both degrees are from the Suranaree University of Technology (SUT). He continued with his Doctor of Philosophy Program in Geotechnology, Institute of Engineering at SUT with the major in Geological Engineering. In 1999-2002, he served in position of assistant civil engineer at the Chaiyaphum Provincial Public Works Office, and a teaching and research assistant at SUT. Since 2003, he has been working full-time as an engineer at the Metropolitan Waterworks Authority. Here, his responsibility is on the water treatment, and sludge waste disposal. Moreover, he has a part-time lecturer at SUT, Rajamangala University of Technology Suvarnabhumi, Rajamangala University of Technology Krungthep, Rajamangala University of Technology Thanyaburi, and Ramkhamhaeng University teaching Geological Engineering, Geology for Engineers, Soil Mechanics, Mechanics of Materisals, Surveying, Water Supply Engineering and Building Sanitation. He earned his registered Professional Engineer with proficiency in Civil Engineering (Reg. No. 8851) and Environmental Engineering (Reg. No. 211). His expertise is in the areas of soil and rock mechanics, nuclear waste disposal, sludge utilization and water loss management.

[^0]: วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต สาขาวิชาเทคโนโลยีธรณี มหาวิทยาลัยเทคโนโลยีสุรนารี

 ปีการศึกษา 2556

