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CHAPTER I

INTRODUCTION

Financial derivatives are a kind of risk management instrument. A deriva-

tive’s value depends on the price changes in some of the underlying assets. Many

forms of financial derivatives instruments exist in the financial markets. Among

them, the three most fundamental financial derivatives instruments are: forward

contracts, futures, and options. If the underlying assets are stocks, bonds, foreign

exchange rates and commodities etc., then the corresponding risk management

instruments are: stock futures (options), bond futures (options), currency futures

(options) and commodity futures (options) etc. In risk management of the under-

lying assets using financial derivatives, the basic strategy is hedging, i.e., the trader

holds two positions of equal amounts but opposite directions, one in the underly-

ing markets, and the other in the derivatives markets, simultaneously. This risk

management strategy is based on the following reasoning: it is believed that un-

der normal circumstances, prices of underlying assets and their derivatives change

roughly in the same direction with basically the same magnitude; hence losses in

the underlying assets (derivatives) markets can be offset by gains in the deriva-

tives (underlying assets) markets; therefore losses can be prevented or reduced by

combining the risks due to the price changes. The subject of this thesis is the

pricing of financial derivatives and risk management by hedging.
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1.1 Introduction to the Option Pricing Problem

An option is an agreement that the holder can buy from, or sell to, the

seller of the option at a specified future time a certain amount of an underlying

asset at a specified price. But the holder is under no obligation to exercise the

contract. The holder of an option has the right, but not the obligation, to carry

out the agreement according to the terms specified in the agreement. In an option

contract, the specified price is called the exercise price or strike price, the specified

date is called the expiration date or maturity date and the action to perform the

buying or selling of the asset according to the option contract is called exercise.

According to buying or selling an asset, options have the following types:

• call option is a contract to buy at a specified future time a certain amount

of an underlying asset at a specified price.

• put option is a contract to sell at a specified future time a certain amount of

an underlying asset at a specified price.

According to terms on exercise in the contract, options have the following types:

• European options can be exercised only on the expiration date.

• American options can be exercised on or prior to the expiration date.

Denote by K and T the strike price and expiration date respectively; then an

option’s payoff (value) C(T, S) at expiration date is:

(ST −K)+ = max(ST −K, 0) (call option)

(K − ST )+ = max(K − ST , 0) (put option)

 

 

 

 

 

 

 

 



3

where ST denotes the price of the underlying asset at the expiration date t = T . An

option is a contingent claim. Take a call option as example. If ST , the underlying

asset’s price at expiration date, is higher than the strike price K, then the holder

of the option can exercise the rights to buy the asset at the strike price K (to gain

profits). Otherwise, the option is a worthless. That is

C(T, ST ) =

 ST −K if ST > K

0 otherwise.

In the case of ST > K, the option is called ”in the money”. It is said to be ”out

of the money” if ST < K. If ST = K, it is ”at the money”. Similarly, the payoff

function is (K − ST )+ for a European put option.

The price paid for a contingent claim is called the premium. When the

option is traded on an organized market, the premium is quoted by the market.

Otherwise, the problem is to price the option. Also, even if the option is traded on

an organized market, it can be interesting to detect some possible abnormalities

in the market.

Taking into account the premium , the total gain of the option holder at

its expiration date is

[ Total gain ] = [ Gain of the option at expiration ] - [ Premium ]

i.e.,

Total gain = (ST −K)+ − premium (call option)

Total gain = (K − ST )+ − premium (put option)

As a derived security, the price of an option varies with the price of its underlying

asset. Since the underlying asset is a risky asset, its price is a random variable.
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Therefore the price of any option derived from it is also random. However, once

the price of the underlying asset is set, the price of its derived security (option) is

also determined, i.e., if the price of an underlying asset at time t is St, the price

of the option is Ct, then there exists a function C(t, S) such that

Ct = C(t, St)

where C(t, S) is a deterministic function of two variables. Our task is to determine

this function by establishing a model of partial differential equations.

CT , an option’s value at expiration date, is already set, which is the option’s

payoff:

CT =

 (ST −K)+ (call option)

(K − ST )+ (put option)

The problem of option pricing :

1. To find C = C(t, S), (0 < S <∞, 0 < t < T ), such that

C(T, S) =

 (ST −K)+ (call option)

(K − ST )+ (put option)

In particular, if a stock’s price at the option’s initial date t = 0 is S0, we

want to know how much to pay for the premium.

2. How do we model the underlying asset on a stock price?
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1.2 Random Walk of Asset Prices

In the research on option pricing, the dynamics of the asset price is usually

represented by its relative change, dSt

St
, called return. The most common model,

geometric Brownian motion model (GBM), says that the return of the asset price

is made up of two parts as

dSt

St

= µdt+ σdWt (1.1)

where µ, known as the drift, marks the average rate of growth, and σ is called

volatility that keeps the information of the standard deviation of the return. The

first part µdt reflects a predictable, deterministic and anticipated return which is

similar to the return of the investment in banks. The second part σdWt simulates

the random change in the asset price in response to external effects, such as uncer-

tain events. The quantity dWt contains the information of the randomness of the

asset price and is known as Wiener process or Brownian motion. It is a random

variable which follows a normal distribution, with mean zero and variance dt. This

means that dWt can be written as dWt = φ
√
dt. Here φ is a random variable with

a standardized normal distribution. Its probability density function is given by

f(φ) =
1√
2π
e−

1
2
φ2dφ

for −∞ < φ <∞.

Equation (1.1) is known as Black-Scholes model or diffusion model.

By using Itô’s formula (for details see Section 2.6), equation (1.1) implies

that

St = S0exp

(
(µ− 1

2
σ2)t+ σWt

)
. (1.2)
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1.3 Outline of the Thesis

To attain the major objective, we give a brief outline of how we intend to

proceed and what each chapter contains. The thesis is organized as follows.

In Chapter II, we introduce some notation, terminology and some mathe-

matical tools which are used in the main theorems.

In Chapter III, we consider the problem of finding a closed-form formula

for a European call option where the underlying asset follows jump-diffusion and

the stochastic volatility follows mean reverting process with jump. This formula

will be useful for option pricing rather than an estimation of it as appeared in

Eraker’s work (2003).

In Chapter IV, we consider the problem of finding a closed-form formula for

a European call option where the asset price follows mean reverting jump-diffusion

and the stochastic volatility has jumps. We briefly discuss model descriptions for

option pricing. Deriving a formula for a characteristic function is presented. A

closed-form formula for a European call option in terms of characteristic functions

is presented.

The conclusion of the thesis is presented in the last chapter.

 

 

 

 

 

 

 

 



CHAPTER II

PRELIMINARIES

2.1 The Black-Scholes Model

In 1973, Black and Scholes tackled the problem of pricing and hedging a

European option on a non-dividend paying stock. We briefly explain the main

result. Firstly, we make the following assumptions.

• There is no arbitrage opportunity.

• The risk free interest rate is deterministic and equal to r > 0.

• The transactions do not incur any fees or costs (i.e. frictionless market).

• The underlying security does not pay a dividend.

• Under the real world measure the stock price process follows geometric Brow-

nian motion (1.1).

Suppose that the above assumptions hold. Standard derivative pricing theory

offers two ways for computing the fair value C(t, St) of a European call option at

time t ≤ T. Under the partial differential equation (PDE) approach the function

C(t, S) is computed by solving the PDE,

∂C

∂t
+

1

2
σ2s2∂

2C

∂s2
+ rs

∂C

∂s
− rC = 0, for t ∈ [0, T ] . (2.1)

This is the famous Black-Scholes PDE of European call option.
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In order to obtain a unique solution for the Black-Scholes PDE we must con-

sider final and boundary conditions. We will restrict our attention to a European

call option, C(t, s). At maturity, t = T , a call option is worth:

C(T, s) = max(ST −K, 0)

where K is the exercise price. So this will serve as the final condition.

The asset price boundary conditions are applied at s = 0 and also as s→∞.

If s = 0 then ds is also zero and therefore s can never change. This implies

at s = 0 we have:

C(t, 0) = 0.

Obviously, if the asset price increase without bound as s → ∞ , the value of the

option becomes that of the asset:

C(t, s) ≈ s, s→∞.

The European call option C(t, St) is computed by solving the final boundary value

problem: 

∂C
∂t

+ 1
2
σ2s2 ∂2C

∂s2 + rs∂C
∂s
−rC = 0, for t ∈ [0, T ]

C(t, 0) = 0

C(t, s) ≈ s, s→∞

C(T, s) = max(ST−K, 0).

(2.2)

Alternatively, the value C(t, St) can be computed as the expectation of the dis-

counted payoff under the risk-neutral measure Q, the so-called risk-neutral pricing

approach. Under Q, the process St satisfies the stochastic differential equation

(SDE)

dSt

St

= rdt+ σdW̃t (2.3)

for a standard Brownian motion W̃t. In particular, the drift µ in equation (1.1)

has been replaced by risk-free interest rate r. The risk-neutral pricing rule now
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states that

C(t, St) = EQ

[
e−r(T−t) max (ST −K, 0) |Ft

]
(2.4)

where EQ denotes expectation with respect to Q.

To obtain the analytical formula for the option price, we compute this

expectation which is in fact the computation of an integral.

C(t, St) = EQ

[
e−r(T−t) max (ST −K, 0) |Ft

]
= e−r(T−t)

∞∫
K

(ST −K)fST
(s)ds, (2.5)

where fST
(·) is the probability density function of ST under the risk-neutral prob-

ability.

The solution of PDE (2.2), or the risk-neutral value of stock price obtained

from equation (2.5), is given by

C(t, St; r, σ, T,K) = StΦ(d1)−Ke−r(T−t)Φ(d2), (2.6)

where

d1 =
lnSt− lnK +

(
r + 1

2
σ2
)
(T−t)

σ
√
T−t

d2 = d1−σ
√
T−t

and Φ is the cumulative distribution function for the standard normal distribution.

The equation (2.6) is known as Black-Scholes formula for a European call option.

Similarly, the price for a European put option is:

P (t, St; r, σ, T,K) = Ke−r(T−t)Φ(−d2)− StΦ(−d1).
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2.2 Characteristic Functions of a Random Variable

The characteristic function of a random variable is the Fourier transform

of its distribution. Many probabilistic properties of random variables correspond

to analytical properties of their characteristic functions, making this concept very

useful for studying random variables.

Definition 2.1. (A Characteristic function)

The characteristic function of the <d-valued random variable X is the function

ψX : <d → < defined by

ψX(t) = E[eitX ] = E [cos(tX)] + iE [sin(tX)] . (2.7)

Let FX be the distribution function of X. Then

ψX(t) = E(eitX) =

∫ +∞

−∞
eitxdF (x)

so that ψ is the Fourier transform of F .

The characteristic function of a random variable determines the probability

distribution: two variables with the same characteristic function are identically

distributed. A characteristic function is always continuous and verifies

ψX(0) = 1

|ψX(t)| ≤ 1

ψaX+b(t) = eitbψX(at).
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Normal Distribution

The normal distribution, N(µ, σ2) is (one of) the most important distributions.

As seen before, its characteristic function is given by:

ψ(z;µ, σ2) = eiµz− 1
2
σ2z2

and the density function is:

f(x;µ, σ2) =
1

σ
√

2π
e−

1
2

(x−µ)2

σ2 .

The normal, by definition, is symmetric around its mean, has a skewness equal to

0 and a kurtosis equal to 3.

Example 2.1. (Poisson Characteristic Function)

For a Poisson distribution P (λ), we can define the probability mass and charac-

teristic function as:

f(k) := P (X = k) =
e−λλk

k!

ψX(z) = e−λ(1−eiz).

2.3 Arbitrage and Martingales

In the theory of option pricing, one fundamental and essential concept is

arbitrage. Formally speaking, it states that there is never any opportunity to make

an instantaneous risk-free profit. More correctly, such opportunities cannot exist

for a significant length of time before prices move to eliminate them. Almost all

financial theories assume the existence of risk-free investments that give a guar-

anteed return with no chance of default, e.g. a government bond or a deposit in

a bank. The greatest risk-free return that one can make on a portfolio of assets

is the same as the return if the equivalent amount of cash were placed in a bank.

In the definition of arbitrage, the key words are instantaneous and risk-free. This
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means, by investing in equities, one can probably beat the bank, but this cannot

be certain, if one wants a greater return, one must accept a greater risk. In the

binomial model, if r is the spot rate and the stock price process can be represented

as

S0 = s

S1 = sZ

where Z is a stochastic variable defined as Z = u with probability pu

Z = d with probability pd

where u > d and pu + pd = 1, then free of arbitrage results in

d ≤ (1 + r) ≤ u.

The arbitrage theory leads to the definition of the risk-neutral measure, or mar-

tingale measure: a probability measure Q is called martingale if the following

condition holds

S0 =
1

1 + r
EQ[S1].

The risk-neutral measure is the basis of the valuation in this thesis.

The principle of risk-neutral valuation just replaces the drift of the historical

(real) asset process with the risk-free interest rate. For a better comparison, we

recall both processes.

Historical asset process:

dSt

St

= µdt+ σdWt

Risk-neutral asset process:

dSt

St

= rdt+ σdWt
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An implication of the risk-neutral process is that the discounted asset price is a

martingale. We will briefly show there exists an equivalent martingale measure

between the historical asset process and its risk-neutral counterpart. In other

words, the risk-neutral valuation implies an equivalent martingale measure. We

first define a martingale and an equivalent martingale measure in more details.

Definition 2.2. A stochastic process Xt is a martingale based on a filtration F =

(Ft)t≥0 if it satisfies the following three conditions

1. Xt is Ft− measurable.

2. E[Xt|Ft] <∞.

3. E[Xs|Ft] = Xt, s ≥ t.

A stochastic process is always associated with a measure that characterizes

the distribution law of increments. We denote P and Q as the measures for the

historical and the risk-neutral processes respectively. In fact, the measure Q of a

risk-neutral process with respect to the measure P for any event is always contin-

uous, this relation establishes an equivalence between two measures. Generally,

given a measurable space (Ω,Σ), two measures P and Q are equivalent, if

P (A) > 0 ⇒ Q(A) > 0, ∀A ∈ Σ

and

P (A) = 0 ⇒ Q(A) = 0.

Using two equivalent measures, we could define a Radon-Nikodym deriva-

tive,

M =
dQ

dP
,
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which enables us to change a measure to another. It follows immediately

EP [XM ] =

∫
Ω

XMdP

=

∫
Ω

XdQ

= EQ[X].

The Girsanov theorem gives us some concrete instructions to change the

measures for an Itô process.

Theorem 2.1. (The Girsanov theorem)

Given a measurable space (Ω, F, P ), and an Itô process Xt,

dXt = a(Xt, t)dt+ b(Xt, t)dWt.

Denote Mt as a (an exponential) martingale under the measure P ,

Mt = exp

(
−1

2

∫ t

0

γ2(u)du+

∫ t

0

γ(u)dWM(u)

)
with

EP [Mt] = 1.

Additionally, W and WM are correlated with dWdWM = ρdt. Then we have the

following results:

1. Mt defines a Radon-Nikodym derivative

Mt =
dP ∗

dP
(t)

2. If we define

dW ∗
t = dWt − γt(dWtdWMt) = dWt − ργtdt,

it is then a new Brownian motion in (Ω, F, P ∗).
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3. The Itô process Xt may take a new form under P ∗,

Xt = a(Xt, t)dt+ b(Xt, t)dW
∗
t

= a(Xt, t)dt+ b(Xt, t)[dWt − ργtdt]

= [a(Xt, t)− ργtb(Xt, t)]dt+ b(Xt, t)dWt.

We apply the Girsanov theorem to verify the equivalent measures between

the historical stock process and the risk-neutral stock process. To this end, we

construct a Radon-Nikodym derivative Mt as follows

Mt =
dQ

dP
(t)

= exp

(
−1

2

∫ t

0

γ2du+

∫ t

0

γdWu

)
with

γ =
µ− r

σ
.

Thus we have Wt = WM(t). The term γ may be interpreted as an excess

return measured in volatility. Therefore under the measureQ the Brownian motion

W ∗
t is equal to

dW ∗
t = dWt − γdt

= dWt −
µ− r

σ
dt,

we obtain

dSt

St

= µdt+ σ[dWt −
µ− r

σ
dt]

= rdt+ σdWt

that is identical to the risk-neutral process. In this sense, the measure Q is called

the risk-neutral measure, and is equivalent to the historical statistical measure P .
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2.4 The Shortcomings of the Black-Scholes Model

Since the Black-Scholes model uses the geometric Brownian motion, there

are shortcomings of this model, such as

(1) the asymmetric leptokurtic features, that is, the return distribution is skewed

to the left, and has a higher peak and two heavier tails than those of the

normal distribution

(2) the volatility smile, that is, the implied volatility is not a constant as assumed

in Black-Scholes model

(3) the large random fluctuations such as crashes and rallies.

Therefore, many financial engineering studies have been undertaken to modify

and improve the Black-Scholes formula to explain some or all of the above three

empirical phenomena. The supporting details will be discussed later in the thesis.

We note that the tail of the distribution is where the extreme values occur.

Empirical distributions for stock prices and returns have found that extreme values

are more likely than would be predicted by the normal distribution. This means

that, between periods where the market exhibits relatively modest changes in

prices and returns, there will be periods where there are changes that are much

higher (crashes and booms) than predicted by the normal distribution. This is not

only of concern to financial theorists, but also to practitioners. However, heavy

or fat tails can help explain larger price fluctuations for stocks over short time

periods than can be explained by changes in fundamental economic variable.
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2.4.1 Implied Volatility

It is possible to deduce the implied volatility of call (or put) options by

solving the reverse Black-Scholes equation, that is, find the volatility that would

equal the Black-Scholes price to the market price of the option. This is a good

way to see how derivatives markets perceive the underlying volatility.

More precisely, using Black-Scholes option pricing, call options C are a

function of C(t, St) where t is the time at which C is being priced, T is the

expiration date, r is the risk free rate of return, and K is the strike price. Note that

all the independent variables are observable except σ. Since the quoted option price

Cobs is observable, using the Black-Scholes formula we can therefore calculate or

imply the volatility that is consistent with the quoted options prices and observed

variables. We can therefore define implied volatility I by:

CBS(t, S; r, I, T,K) = Cobs,

where CBS is the option price calculated by the Black-Scholes equation (2.6).

Implied volatility surfaces are graphs plotting I for each call option strike

K and expiration T. Theoretically options whose underlying asset is governed by

geometric Brownian motion should have a flat implied volatility surface, since

volatility is a constant; however in practice the implied volatility surface is not flat

and I varies with K and T.

Implied volatility plotted against strike prices from empirical data tends to

vary in a ”u-shaped” relationship, known as the volatility smile, with the lowest

value normally at S = K (called ”at the money” options). The opposite graph

shape to a volatility smile is known as a volatility frown due to its shape. The

smile curve has become a prominent feature since the 1987 October crash (see for

instance Bates (2000)).
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2.4.2 Jump-Diffusion

Some authors try to explain the volatility smile and the leptokurticity by

changing the underlying stock distribution from a diffusion process to a jump-

diffusion process. For jump-diffusion models, the normal evolution of price is

given by a diffusion process, punctuated by jumps at random intervals. Here the

jumps represent rare events crashes and large drawdowns. Such an evolution can

be represented by modeling the price as a Lévy process with a nonzero Gaussian

component and a jump part, which is a compound Poisson process with finitely

many jumps in every time interval. Merton (1976) was first to actually introduce

jumps in the stock distribution. The Merton jump-diffusion model with Gaussian

jumps (known as an exponential Lévy model introduced by Merton (1976)) is given

by

St = S0exp

(
µt+ σWt +

Nt∑
n=1

Yn

)
where (Nt)t≥0 is a Poisson process with intensity λ, and independent jumps

Yn ∼ N(m, δ2). The Poisson process and the jumps are assumed to be inde-

pendent of the Brownian motion. The use of the Poisson process is economically

motivated by two assumptions: the number of crashes in non overlapping time

interval should be independent and the chance of occurrence of one crash should

be roughly proportional to the length of the time interval.

In analogy to the Black-Scholes model, the parameter µ stands in the Mer-

ton model for the expected stock return and σ is the volatility of regular shocks to

the shock return. The jumps component can be interpreted as a model for crashes.

The parameter λ is the expected number of crashes per year, m and δ2 determine

the distribution of a single jump. Kou (2002), suggests that the distribution of

jump size is an asymmetric exponential with a density of the form f

f(y) = pη1e
−η1y1{y≥0} + qη2e

η2y1{y<0}, η1 > 1, η2 > 0
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where p, q ≥ 0, p + q = 1, represent the probabilities of upward and downward

jumps. The requirement η1 > 1 is needed to ensure that E[Y ] <∞ and E[St] <∞;

it essentially means that the average upward jump cannot exceed 100%, which is

quite reasonable. For notational simplicity and in order to get analytical solu-

tions for various option pricing problems, the drift µ and the volatility σ are

assumed to be constants, and the Brownian motion and jumps are assumed to be

one-dimensional. Ramezani and Zeng (2002) independently propose the double

exponential jump-diffusion model from an econometric viewpoint as a way of im-

proving the empirical fit of Mertons normal jump-diffusion model to stock price

data.

2.5 Stochastic Volatility

In this section we present the literature review of stochastic volatility and

extensions of the stochastic volatility model.

2.5.1 The Volatility Problem

Although the Black-Scholes formula is successful in explaining stock option

prices (Black and Scholes (1973)) and Merton (1976), it does have known biases

(Rubinstein (1895)). Its performance does not work on foreign currency options

(Melino (1990) and Turnbull (1991)). The Black-Scholes model assumes that stock

return is normally distributed and the volatility of the return is constant. Derman

and Kani (1994), Dupire (1994) and Rubinstein (1994) were the first to model

volatility as a deterministic function of time and stock price. The deterministic

volatility can be fitted to observed option prices to obtain an implied price process

for the underlying asset. Dumas et al. (1998) study S&P 500 options, they

conclude that deterministic volatility is unreliable and not useful for valuation
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and risk management.

2.5.2 Historical Volatility

Let S1, S2, ..., SN be a sequence of empirical asset price data and Ri be the

log return observed on a given time. We have

Ri = ln

(
Si+1

Si

)
.

The mean return R is calculated by

R =
1

N

∑N

i=1
Ri.

To estimate the historical volatility σ̂ we calculate the annualized standard devi-

ation of the log returns;

σ̂ =

√
252

N − 1

∑N

i=1
(Ri −R)2

where N is the number of observations. The factor 252 is determined by the

approximately 252 business days in a year. We can consider more or less than one

year for a historical volatility. Parkinson instead of daily closing prices, considered

the high and the low prices of the underlying asset an that day and used

Ri = ln

(
Shigh

i+1

Slow
i

)
.

The volatility would then be

σparkinson =

√
1

4 ln 2

252

N − 1

∑N

i=1
(Ri −R)2.

2.5.3 Stochastic Volatility Models

The Black-Scholes model assumes that the volatility is constant over a given

time interval and unaffected by the changes in the stock price.
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Several different stochastic processes have been suggested for the volatility,

i.e.,

• Ornstein− Uhlenbeck(OU) process:

dσt = −ασtdt+ βdW v
t .

The OU process has a closed - form solution

σt = σ0e
−αt + β

∫ t

0

e−α(t−s)dW v
s .

• Cox Ingersoll Ross (CIR) process: The volatility of the underlying asset

return vt = σ2
t satisfies the following:

dvt = (ω − θvt)dt+ ξ
√
vtW

v
t

with ω = β2, θ = 2α, and ξ = 2β.

• The GARCH process:

dvt = (ω − θvt)dt+ ξvtdW
v
t .

• The 3/2 process:

dvt = (ωv2
t − θvt)dt+ ξv

3/2
t dW v

t .

The Heston Model

Heston (1993) proposed a stochastic volatility model that allowed volatility

to vary in time. Assume that the asset price follows the diffusion

dSt

St

= µdt+
√
vtdW

S
t

where µ is the rate of return of the asset, vt is the volatility of asset returns, W S
t

is Brownian motion corresponding to the asset price St. The volatility process

follows mean reverting process:

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t
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where κ is rate of reversion, θ is long run mean, σ is volatility of volatility and W v
t

is Brownian motion corresponding to the volatility vt. W
v
t has correlation ρ with

W S
t that is

dW S
t dW

v
t = ρdt.

If 2κθ > 0, the process is larger than zero (see Cox, Ingersoll and Ross

(1985) or Feller (1951)). If ρ > 0, the volatility will increase as the asset return

increases. This make the right tail and squeezes the left tail so that the distribution

has a fat right tail. There is evidence that the correlation between asset return

and implied volatility is negative, which is known as the leverage effect. That

is, ρ affects the skewness of the distribution. A phenomenon known as volatility

clustering means that large price variations are more likely to be followed by large

price variations and vice versa. The mean reversion parameter κ can be represented

by the degree of volatility clustering. The advantage of the Heston model is the

closed form solution for European call options.

2.5.4 A Stochastic Volatility Model with Jump: the Bates

Model

Bates (1996) extended the Heston stochastic volatility model by adding

proportional log normal jump to the underlying asset model. Bates model has the

following form:

dSt = St

(
µdt+

√
vtdW

S
t

)
+ St−dZt, (2.8)

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t , (2.9)

where St, vt, κ, θ, σ,W
S
t ,W

v
t are defined in Heston model. St− means the value of

the process before the jump is used on the left-hand side of the formula. Zt is a

compound Poisson process with intensity λ and log normal distribution of jump
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size such that if k is its jump size then

ln(1 + k) ∼ N(ln(1 + k)− 1

2
δ2, δ2), (2.10)

where k is the mean of the jump size. The parameter µ = r − λk under the risk-

neutral probability. Assume the log asset price Lt = lnSt. Applying Itô’s lemma,

we obtain

dLt = (r − λk − 1

2
vt)dt+

√
vtdW

S
t + dZ̃t, (2.11)

where Z̃t is a compound Poisson process with intensity λ and normal distribution

of jump sizes. This model can also be viewed as a generalization of the Merton

jump-diffusion model allowing for stochastic volatility and generalization of He-

ston model allowing for jump in underlying asset. Jumps in the log-price have

to be normal in this model. One can replace the normal distribution by any

other distribution for the jump size, provided that the characteristic function is

computable.

2.6 Itô Stochastic Calculus

This section provides a brief exposition of all definitions and tools used for

readers familiar with stochastic calculus.

A stochastic process is a sequence of random variables X = (Xt)t≥0 on

some probability space (Ω, F, P ). Note that, by abuse of the standard notation,

whenever we write t ≥ 0 that means t ∈ [0, T ]. A stochastic process X induces a

probability transition function of the form

P [Xt+1 = st+1|Xt = st, ..., X0 = s0].

That is the probability that the state at future time t + 1 is st+1, given that the

states at past times t, ..., 0 were st, ..., s0, respectively.
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A Markov process is a stochastic process such that for all t, for all

s0, ..., st, st+1,

P [Xt+1 = st+1|Xt = st, ..., X0 = s0] = P [Xt+1 = st+1|Xt = st].

This equation is the Markov property, sometimes called the memoryless property ;

it implies that probability transition to future state, such as st+1 depends only on

the present state st, but are independent of the remote past, st−1, ..., s0.

A stochastic process is called a Gaussian process, if Xt ∼ N(µt, σ
2
t ) for all

t. A Gaussian process is fully characterized by its mean and covariance function.

2.6.1 Standard Brownian Motion

A standard Brownian motion process or a Wiener process (Wt)t≥0 is a

stochastic process on [0,∞) defined on a probability space (Ω, F, P ) such that:

1. It starts at zero, i.e., W0 = 0.

2. It has stationary, independent increments, i.e.,

Wt+u −Wt, ∀u > 0

are stationary and independent.

3. For every t > 0,Wt has a normal N(0, t) distribution.

4. It has continuous sample paths: no jumps.

Stationary increments of the condition mean that the distributions of increments

Wt+u−Wt do not depend on the time t, but they depend on the time-distance u of

two observations. For example, if one models a log stock price logSt as a Brownian

motion(with drift) process

St = S0exp

(
(µ− 1

2
σ2)t+ σWt

)
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the distribution of increment in 2009 for the next one year log(S2009+1)− log(S2009)

is the same as in 2020, log(S2020+1)− log(S2020):

log(S2009+1)− log(S2009) d log(S2020+1)− log(S2020).

Recall that the conditional probability of the event A given B is assuming

P (B) > 0:

P (A|B) =
P (A ∩B)

P (B)
.

If A and B are independent events:

P (A|B) = P (A).

The property of independent increments means that when modeling a log stock

price logSt as a Brownian motion (with drift) process, the probability distribution

of a log stock price in year 2010 is not affected by whatever happens in year 2009

in the stock price (such as stock price crash):

P (log(S2010+1)− log(S2010)|log(S2009+1)− log(S2009))

= P (log(S2010+1)− log(S2010)) .

The Brownian motion (Wiener process) has three properties which make

it of fundamental importance to the theory of stochastic process: it is Gaussian,

a Markov process, and a martingale. Let W = (Wt(ω))t≥0 denote a Brownian

motion, in which t is the time and each ω is a particle; then Wt(ω) represents the

position of that particle at time t. One can show that except on a set of probability

zero, every sample path ( Wt(ω) as a function of t for fixed ω) is continuous but

of unbounded variation on every compact time set.
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Proposition 2.2. (Property of Brownian motion)

1. Martingale property: Brownian motion is one of the simplest example of a

martingale. We have, for all 0 ≤ s ≤ t,

E[Wt|Fs] = E[Wt|Ws] = Ws.

2. Path property: Brownian motion has continuous paths, i.e., W = (Wt)t≥0 is

a continuous function of t. However, the paths of Brownian motion are very

erratic. Moreover, the paths of Brownian motion are of infinite variation,

i.e., their variation is infinite on every interval. Another property , we have

that

P

(
sup
t≥0

Wt = +∞ and inf
t≥0

Wt = −∞
)

= 1.

This means that the Brownian path will keep oscillating between positive and

negative values.

3. Scaling Property: for every c 6= 0, W̃ =
(
W̃t = cWt/c2

)
t≥0

is also Brownian

motion.

2.6.2 Itô Integral

Since the sample paths are of unbounded variation on every compact set,

they cannot be differentiable in the Stieltjes integral sense. Although Stieltjes

integration with respect to the paths of the Brownian motion is not possible,

the differential dW does have an intuitive interpretation. Engineers think of dW

as white noise, and using generalized functions, one can define the quantity dW

rigorously. Wiener gave meaning to dW in his definition of what is called the

Wiener integral, but in such integrals the integrands are functions of time only

(certain functions). It was Itô (1944) who first defined an integral for random
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integrands with respect to the Brownian motion. Itô used his integral to represent

a large class of diffusions as solutions of stochastic differential equations (SDE).

In 1953, Doob extended Itô’s work on integration by using martingales instead of

Brownian motion. The integral was so constructed that integration with respect

to a martingale yields a martingale.

The best known extension of the Itô integral is the semimartingale integral.

If all the paths of an adapted process are right continuous and of finite variation

on compact time sets, we call the process a VF process . If V is a V F process and

H is a bounded predictable process (H is Ft −measurable) then, for each fixed

ω, we denote by
∫ t

0
Hs(ω)dVs(ω) the Lebesgue-Stieltjes integral.

A stochastic process is a local martingale if certain integrability conditions

in the definition of a martingale are relaxed. A stochastic process X is a semi-

martingale if X can be written in the form

X = L+ V

where L is a local martingale and V is a V F process. IfH is a bounded, predictable

process, one can the define
∫ t

0
HsdXs by∫ t

0

HsdXs =

∫ t

0

HsdLs +

∫ t

0

HsdVs

We will refer to this stochastic integral as the semimartingale integral. In

fact the semimartingale form the largest class of processes for which the Itô integral

formula can be defined.

2.6.3 Poisson and Compound Poisson Process

Definition 2.3. Let (τi)i≥1 be a sequence of independent exponential random vari-

ables with parameter λ and Tn =
n∑

i=0

τi. The process (Nt)t≥0 defined by

Nt =
∑
n≥1

1t≥Tn (2.12)
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is called a Poisson process with intensity λ.

The Poisson process is therefore defined as a counting process: it counts the

number of random times (Tn) which occur between 0 and t, where (Tn− Tn−1)n≥1

is an independent and identically distributed(i.i.d.) sequence of exponential vari-

ables.

Proposition 2.3. Let (Nt)t≥0 be a Poisson process.

1. For any t > 0, Nt is almost surely finite.

2. For any ω, the sample path t→ Nt(ω) is piecewise constant and increase by

jumps of size 1.

3. The sample path t > 0, Nt are right continuous with left limits (cadlag).

4. For any t > 0, Nt− = Nt with probability 1.

5. Nt is continuous in probability:

∀t > 0, Ns
P→

s→t
Nt. (2.13)

6. For any t > 0, Nt follows a Poisson distribution with parameter λt:

∀n ∈ N, P (Nt = n) = eλt (λt)
n

n!
. (2.14)

7. The characteristic function of Nt is given by

E[eiuNt ] = expλt(eiu − 1), ∀u ∈ <. (2.15)

8. Nt has independent increments: for any t1 < · · · < tn,

Ntn −Ntn−1 , ..., Nt2 −Nt1 , Nt1

are independent random variables.
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9. The increments of N are homogeneous: for any t > s,

Nt −Ns

has the same distribution as Nt−s.

10. Nt has the Markov property: for any t > s,

E[f(Nt)|Nu, u ≤ s] = E[f(Nt)|Ns]. (2.16)

Proof. See Cont (2004).

Definition 2.4. (Compound Poisson process)

A compound Poisson process with intensity λ > 0 and jump size distribution f is

a stochastic process Xt defined as

Xt =
Nt∑
i=1

Yi

where jumps sizes Yi are i.i.d. with distribution f and Nt is a Poisson process with

intensity λ, independent from (Yi)i>1.

The following properties of a compound Poisson process are deduced from

the definition:

1. The sample paths of X are cadlag piecewise constant functions.

2. The jump times (Ti)i>1 have the same law as the jump times of the Poisson

process Nt: they can be expressed as partial sums of independent exponential

random variables with parameter λ.

3. The jump sizes (Yi)i>1 are independent and identically distributed with law

f .
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The Poisson process itself can be seen as a compound Poisson process on

< such that Yi = 1. This explains the origin of term ”compound Poisson” in the

definition.

Definition 2.5. (Lévy Process)

A cadlag stochastic process (Xt)t>0 on (Ω, F, P ) with values in <d such that X0 = 0

is called a Lévy process if it possesses the following properties:

1. Independent increments: for every increasing sequence of times t0, ..., tn, the

random variables Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1 are independent.

2. Stationary increments: the law of Xt+h −Xt does not depend on t.

3. Stochastic continuity: ∀ε > 0, lim
h→0

P (|Xt+h −Xt| ≥ ε) = 0.

Proposition 2.4. (Xt)t≥0 is compound Poisson process if and only if it is a Lévy

process and its sample paths are piecewise constant functions.

Proof. see Cont (2004).

Definition 2.6. (Poisson random measure)

Let (Ω, F, P ) be a probability space, E ⊂ <d and µ a given (positive) Radon measure

µ on a measurable space (E, E). A Poisson random measure on E with intensity

measure µ is an integer valued random measure:

M : Ω× E → N

(ω,A) 7→M(ω,A),

such that

1. For (almost all) ω ∈ Ω, M(ω, ·) is an integer-valued Radon measure on E:

for any bounded measurable A ⊂ E, M(A) <∞ is an integer valued random

variable.
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2. For each measurable set A ⊂ E, M(·, A) = M(A) is a Poisson random

variable with parameter µ(A):

∀k ∈ N, P (M(A) = k) = e−µ(A) (µ(A))k

k!
.

3. For disjoint measurable sets A1, ..., An ∈ E, the variables M(A1), ...,M(An)

are independent.

Cont (2004) proved that for any Radon measure µ on E ⊂ <d, there exists

a Poisson random measure M on E with intensity µ. Consequently, any Poisson

random measure on E can be represented as a counting measure associated with

a random sequence of points in E, i.e., there exists (Tn(ω))n≥1, such that

∀A ∈ E , M(ω,A) =
∑
n≥1

1A(Tn(ω)) = # {n ≥ 1, Tn(ω) ∈ A} . (2.17)

Define a random variable Tn =
n∑

i=1

τi where (τi)i≥1 is a sequence of independent

exponential random variables with parameter λ. Moreover, by equation (2.17),

the Poisson process may be expressed in terms of the Poisson random measure M

in the following:

Nt(ω) = M(ω, [0, t]) =

∫
[0,t]

M(ω, ds)

where ds is the Lebesgue area element on [0, t].

For every compound Poisson process (Xt)t≥0 on <d with intensity λ and

jump size distribution f , its jump measure

JX(B) = #{(t,Xt −Xt−) ∈ B}

is a Poisson random measure on <d × [0,∞) with intensity measure

µ(dx× dt) = ν(dx)dt = λf(dx)dt
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where B is a measurable subset of <d × [0,∞] and ν is Lévy measure of the

compound Poisson process. This implies that every compound Poisson process

can be represented in the following form:

Xt =
∑

s∈[0,t]

∆Xs =

∫
<d×[0,t]

xJX(dx× ds)

where JX is a Poisson random measure with intensity measure ν(dx)dt. Let E be

a measurable subset on <. For a measurable function f : [0, t]×E → <d, one can

construct an integral with respect to the Poisson random measure M , given by

the random variable∫
E×[0,T ]

f(y, t)M(·, dydt) =
∑
n≥1

f(Yn(·), Tn(·)).

2.6.4 The Itô Formula and its Extensions

We now review Itô’s formula and its extensions.

Lemma 2.5. (Itô’s formula)

Assume that the process X = (Xt)t≥0 has stochastic differential equation given by

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

where µ(t,Xt) and σ(t,Xt) are adapted processes, and let f be a C1,2- function.

Defined the process Yt = f(t,Xt). Then Y has a stochastic differential given by

df(t,Xt) =

{
∂f

∂t
+ µ

∂f

∂x
+
σ2

2

∂2f

∂x2

}
dt+ σ

∂f

∂x
dWt. (2.18)

Note that the term µ∂f
∂x

, for example, is shorthand notation for

µ (t,Xt)
∂f

∂x
(t,Xt) ,

and correspondingly for the other terms.

 

 

 

 

 

 

 

 



33

In fact Itô’s formula provides a derivative chain rule for stochastic functions,

clarifying the relationship between a stochastic process and a function of that

stochastic process. Itô’s formula has many extensions. The following Itô’ formulas

are the key step in establishing the main theorem of our thesis (for the proof see

Cont (2004)).

Lemma 2.6. (Itô’s formula for jump-diffusion processes)

Let X = (Xt)t≥0 be a diffusion process with jumps, defined as the sum of a drift

term, a Brownian stochastic integral and a compound Poisson process given by

Xt = X0 +

∫ t

0

µ (s,Xs)ds+

∫ t

0

σ (s,Xs)dWs +
Nt∑
i=1

∆Xi,

where µ(s,Xs) and σ(s,Xs) are continuous non anticipating processes with

E

[∫ T

0

σ2 (t,Xt) dt

]
<∞.

Then, for any C1,2- function, f : [0, T ]×< → <, the process Yt = f(t,Xt) can be

represented as:

f(t,Xt)− f(0, X0) =

∫ t

0

[
∂f

∂s
(s,Xs) + µ(s,Xs)

∂f

∂x
(s,Xs)

]
ds

+
1

2

∫ t

0

σ2(s,Xs)
∂2f

∂x2
(t,Xt)ds

+

∫ t

0

σ (s,Xs)
∂f

∂x
(s,Xs)dWs

+
∑

{n≥1,Tn≤t}

[f(XTn− + ∆Xn)− f(XTn−)]

In differential notation

df(t,Xt) =

{
∂f

∂t
(t,Xt) + µ(t,Xt)

∂f

∂x
(t,Xt) +

σ2(t,Xt)

2

∂2f

∂x2
(t,Xt)

}
dt

+ σ(t,Xt)
∂f

∂x
(t,Xt)dWt + f(t,Xt− + ∆Xt)− f(t,Xt−).

Note that a non anticipating process is also called an adapted process :

(Xt)t∈[0,T ] is said to be Ft-adapted, if the random variable Xt is Ft-measurable.
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Theorem 2.7. (Feynman-Kac Theorem)

Let a, b and g be smooth, bounded functions. Let X solve the stochastic differential

equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt

and let

u(x, t) = E[g(XT )|Xt = x].

Then u is a solution of

ut + aux +
1

2
b2uxx = 0

u(x, T ) = g(x)

for t < T .

 

 

 

 

 

 

 

 



CHAPTER III

OPTION PRICING UNDER STOCHASTIC

VOLATILITY WITH JUMP

In this Chapter, we would like to consider the problem of finding a closed-

form formula for a European call option where the underlying asset and volatility

follow the Bates model by adding jumps in volatility. This formula will be useful

for option pricing rather than an estimation of it as appeared in Eraker’s work

(2003).

3.1 Introduction

Eraker, Johannes and Polson (2003) extend Bates’ work by incorporating

jumps in volatility, and their model is given by

dSt = St

(
µdt+

√
vtdW

S
t

)
+ St−YtdN

S
t (3.1)

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t + ZtdN

v
t . (3.2)

Eraker et al. (2003) develop a likelihood-based estimation strategy and

provide estimates of parameters, spot volatility, jump times, and jump sizes using

S&P 500 and Nasdaq 100 index returns. Moreover, they examine the volatility

structure of the S&P and Nasdaq indices and indicate that models with jumps in

volatility are preferred over those without jumps in volatility. But they did not

provide a closed-form formula for the price of a European call option.
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3.2 Description of the Model

It is assumed that a risk-neutral probability measure exists. The asset price

St under this measure follows a jump-diffusion process, and the volatility follows a

pure mean reverting and square root diffusion process with jump, i.e., our models

are governed by the following dynamics:

dSt = St

(
(r − λSm)dt+

√
vtdW

S
t

)
+ St−YtdN

S
t (3.3)

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t + ZtdN

v
t (3.4)

where St, vt, κ, θ, σ,W
S
t and W v

t are defined as in the Bates model, r is the risk-

free interest rate, NS
t and N v

t are independent Poisson processes with constant

intensities λS and λv respectively. Yt is the proportional jump size of the asset

price with density φY (y) and E[Yt] := m < ∞ and Zt is the jump size of the

volatility with density φZ(z). Moreover, we assume that the jump processes NS
t

and N v
t are independent of standard Brownian motions W S

t and W v
t .

3.3 Partial Integro-Differential Equations

Consider the process
−→
Xt =

(
X

(1)
t , X

(2)
t

)
where X

(1)
t and X

(2)
t are processes

in < and satisfy the following equations:

dX
(1)
t = f1(X

(1)
t , X

(2)
t , t)dt+ g1(X

(1)
t , X

(2)
t , t)dW

(1)
t +X

(1)
t− YtdN

(1)
t (3.5)

dX
(2)
t = f2(X

(1)
t , X

(2)
t , t)dt+ g2(X

(1)
t , X

(2)
t , t)dW

(2)
t + ZtdN

(2)
t (3.6)

where f1, g1, f2 and g2 are all continuously differentiable, W S
t and W v

t are stan-

dard Brownian motions with Corr[dW
(1)
t , dW

(2)
t ] = ρ, NS

t and N v
t are independent

Poisson processes with constant intensities λ(1) and λ(2) respectively.
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Since every compound Poisson process can be represented as an integral

form of a Poisson random measure (Cont (2004)) then the last term on the right

hand side of equation (3.5) and equation (3.6) can be written as follows:

t∫
0

X
(1)
s−YsdN

(1)
s =

N
(1)
t∑

n=1

X
(1)
n−Yn =

t∫
0

∫
<

X
(1)
s− qJQ(ds dq)

t∫
0

ZsdN
(2)
s =

N
(2)
t∑

n=1

Zn =

t∫
0

∫
<

rJR(ds dr)

where Yn are i.i.d. random variables with density φY (y) and JQ is a Poisson

random measure of the process Qt =
N

(1)
t∑

n=1

Yn with intensity measure λ(1)φY (dq)dt,

Zn are i.i.d. random variables with density φZ(z) and JR is a Poisson random

measure of the process Rt =
N

(2)
t∑

n=1

Zn with intensity measure λ(2)φZ(dr)dt.

Let U(x1, x2) be a bounded real-valued function and twice continuously

differentiable with respect to x1 and x2 and

u(x1, x2, t) = E
[
U(X

(1)
T , X

(2)
T )|X(1)

t = x1, X
(2)
t = x2

]
. (3.7)

By the two dimensional Dynkin’s formula (Hanson (2007)), u is a solution of the

partial integro-differential equation (PIDE)

0 =
∂u(x1, x2, t)

∂t
+ Āu(x1, x2, t)

+λ(1)

∫
<

[u(x1 + y, x2, t)− u(x1, x2, t)]φY (y)dy

+λ(2)

∫
<

[u(x1, x2 + z, t)− u(x1, x2, t)]φZ(z)dz

subject to the final condition u(x1, x2, T ) = U(x1, x2). The notation Ā is defined

by

Āu(x1, x2, t) = f1
∂u(x1, x2, t)

∂x1

+ f2
∂u(x1, x2, t)

∂x2

+
1

2
g2
1

∂2u(x1, x2, t)

∂x2
1

+ρg1g2
∂2u(x1, x2, t)

∂x1∂x2

+
1

2
g2
2

∂2u(x1, x2, t)

∂x2
2

. (3.8)
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3.4 A Closed-Form Formula for European Call Options

Let C denote the price at time t of a European style call option on the current

price of the underlying asset St with strike price K and expiration time T .

The terminal payoff of a European call option on the underlying stock St

with strike price K is

max(ST −K, 0).

This means that the holder will exercise his right only if ST > K and then

his gain is ST −K. Otherwise, if ST ≤ K, then the holder will buy the underlying

asset from the market and the value of the option is zero.

Assuming the risk-free interest rate r is constant over the lifetime of the op-

tion, the price of the European call at time t is equal to the discounted conditional

expected payoff

C(St, vt, t;K,T ) = e−r(T−t)EM[max(ST −K, 0)|St, vt]

= e−r(T−t)

 ∞∫
K

STPM(ST |St, vt)dST −K

∞∫
K

PM(ST |St, vt)dST


= St

 1

er(T−t)St

∞∫
K

STPM(ST |St, vt)dST

−Ke−r(T−t)

∞∫
K

PM(ST |St, vt)dST

= St

 1

EM[ST |St, vt]

∞∫
K

STPM(ST |St, vt)dST

−Ke−r(T−t)

∞∫
K

PM(ST |St, vt)dST

= StP1(St, vt, t;K,T )−Ke−r(T−t)P2(St, vt, t;K,T ) (3.9)

where EM is the expectation with respect to the risk-neutral probability measure

M, PM(ST |St, vt) is the corresponding conditional density given (St, vt) and

P1(St, vt, t;K,T ) =

 ∞∫
K

STPM(ST |St, vt)dST

 /EM[ST |St, vt].
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Note that P1 is the risk-neutral probability that ST > K (since the integrand is

nonnegative and the integral over (0,∞) is one), and finally that

P2(St, vt, t;K,T ) =

 ∞∫
K

PM(ST |St, vt)dST

 = Pr ob(ST > K|St, vt)

is the risk-neutral in-the-money probability. Moreover,

EM[ST |St, vt] = er(T−t)St

for t ≥ 0.

Assume that the asset price St and the volatility vt satisfy equations (3.3)

and (3.4) respectively. We would like to compute the price of a European call

option with strike price K and maturity T . To do this, we make a change of

variable from St to Lt = lnSt, i.e., where St satisfies equation (3.3) and its inverse

St = eLt . Denote k = lnK the logarithm of the strike price. By the jump-diffusion

chain rule, lnSt satisfies the SDE

d lnSt = (r − λSm− vt

2
)dt+

√
vtdW

S
t + ln(1 + Yt)dN

S
t . (3.10)

Applying the two-dimensional Dynkin’s formula for the price dynamics (3.10) and

volatility vt in equation (3.4), we obtain that the value of a European-style option,

as a function of the stock log return Lt denoted by

C̃(Lt, vt, t; k, T ) ≡ C(eLt , vt, t; e
k, T )

= C(eln St , vt, t; e
ln K , T )

= C(St, vt, t;K,T ),

i.e.,

C̃(l, v, t; k, T ) = e−r(T−t)EM
[
max(eLT −K, 0)|Lt = l, vt = v

]
,
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and satisfies the following PIDE:

0 =
∂C̃

∂t
+ Ā[C̃](l, v, t; k, T )

+λS

∫
<

[C̃(l + y, v, t; k, T )− C̃(l, v, t; k, T )]φY (y)dy

+λv

∫
<

[C̃(l, v + z, t; k, T )− C̃(l, v, t; k, T )]φZ(z)dz.

(3.11)

Here the operator Ā as in (3.8) is defined by

Ā[C̃](l, v, t; k, T ) = (r − λSm− 1

2
v)
∂C̃

∂l
+ κ(θ − v)

∂C̃

∂v

+
1

2
v
∂2C̃

∂l2
+ ρσv

∂2C̃

∂l∂v

+
1

2
σ2v

∂2C̃

∂v2
− rC̃.

In the current state variable, the last line of equation (3.9) becomes

C̃(l, v, t; k, T ) = elP̃1(l, v, t; k, T )− ek−r(T−t)P̃2(l, v, t; k, T ) (3.12)

where P̃j(l, v, t; k, T ) := Pj(e
l, v, t; ek, T ) , j = 1, 2.

The following lemma shows the relationship between P̃1 and P̃2 in the option

value of equation (3.12).

Lemma 3.1. The functions P̃1 and P̃2 in the option value of the equation (3.12)

satisfy the following PIDEs

0 =
∂P̃1

∂t
+A[P̃1](l, v, t; k, T ) + v

∂P̃1

∂l
+ ρσv

∂P̃1

∂v
+ (r − λSm)P̃1

+λS

∫
<

[(ey − 1)P̃1(l + y, v, t : k, T )]φY (y)dy,

and subject to the boundary condition at expiration time t = T ;

P̃1(l, v, T ; k, T ) = 1l>k. (3.13)
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Moreover, P̃2 satisfies the equation

0 =
∂P̃2

∂t
+A[P̃2](l, v, t; k, T ) + rP̃2,

and subject to the boundary condition at expiration time t = T ;

P̃2(l, v, T ; k, T ) = 1l>k. (3.14)

The operator A is defined by

A[f ](l, v, t; k, T ) := (r − λSm− 1

2
v)
∂f

∂l
+ κ(θ − v)

∂f

∂v

+
1

2
v
∂2f

∂l2
+ ρσv

∂2f

∂l∂v
+

1

2
σ2v

∂2f

∂v2
− rf

+λS

∫
<

[f(l + y, v, t; k, T )− f(l, v, t; k, T )]φY (y)dy

+λv

∫
<

[f(l, v + z, t; k, T )− f(l, v, t; k, T )]φZ(z)dz.

(3.15)

Note that 1l>k = 1 if l > k and otherwise 11>k = 0.

Proof. We plan to substitute equation (3.12) into equation (3.11). Firstly, we

compute

∂C̃

∂t
= el∂P̃1

∂t
− ek−r(T−t)∂P̃2

∂t
− rek−r(T−t)P̃2

∂C̃

∂l
= el∂P̃1

∂l
+ elP̃1 − ek−r(T−t)∂P̃2

∂l
∂C̃

∂v
= el∂P̃1

∂v
− ek−r(T−t)∂P̃2

∂v
∂2C̃

∂l2
= el∂

2P̃1

∂l2
+ 2el∂P̃1

∂l
+ elP̃1 − ek−r(T−t)∂

2P̃2

∂l2

∂2C̃

∂l∂v
= el∂

2P̃1

∂l∂v
+ el∂P̃1

∂v
− ek−r(T−t)∂

2P̃2

∂l∂v
∂2C̃

∂v2
= el∂

2P̃1

∂v2
− ek−r(T−t)∂

2P̃2

∂v2
,
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C̃(l + y, v, t; k, T )− C̃(l, v, t; k, T )

=
[
e(l+y)P̃1(l + y, v, t; k, T )− ek−r(T−t)P̃2(l + y, v, t; k, T )

]
−
[
elP̃1(l, v, t; k, T )− ek−r(T−t)P̃2(l, v, t; k, T )

]
= el

[
eyP̃1(l + y, v, t; k, T )− P̃1(l + y, v, t; k, T )

]
+
[
elP̃1(l + y, v, t; k, T )− elP̃1(l, v, t; k, T )

]
− ek−r(T−t)

[
P̃2(l + y, v, t; k, T )− P̃2(l, v, t; k, T )

]
= el(ey − 1)P̃1(l + y, v, t; k, T ) + el

[
P̃1(l + y, v, t; k, T )− P̃1(l, v, t; k, T )

]
− ek−r(T−t)

[
P̃2(l + y, v, t; k, T )− P̃2(l, v, t; k, T )

]
and

C̃(l, v + z, t; k, T )− C̃(l, v, t; k, T )

=
[
elP̃1(l, v + z, t; k, T )− ek−r(T−t)P̃2(l, v + z, t; k, T )

]
−
[
elP̃1(l, v, t; k, T )− ek−r(T−t)P̃2(l, v, t; k, T )

]
= el

[
P̃1(l, v + z, t; k, T )− P̃1(l, v, t; k, T )

]
− ek−r(T−t)

[
P̃2(l, v + z, t; k, T )− P̃2(l, v, t; k, T )

]
.

We substitute all terms above into equation (3.11) and separate it by assumed

independent terms of P̃1 and P̃2. This gives two PIDEs for the risk-neutralized

probability for P̃j(l, v, t; k, T ), j = 1, 2 :

0 =
∂P̃1

∂t
+

(
r − λSm− 1

2
v

)(
∂P̃1

∂l
+ P̃1

)

+κ(θ − v)
∂P̃1

∂v
+

1

2
v

(
∂2P̃1

∂l2
+ 2

∂P̃1

∂l
+ P̃1

)

+ρσv

(
∂2P̃1

∂l∂v
+
∂P̃1

∂v

)
+

1

2
σ2v

∂2P̃1

∂v2
− rP̃1

+λS

∫
<

[(ey − 1)P̃1(l + y, v, t; k, T ) + P̃1(l + y, v, t; k, T )

−P̃1(l, v, t; k, T )]φY (y)dy

+λv

∫
<

[P̃1(l, v + z, t; k, T )− P̃1(l, v, t; k, T )]φZ(z)dz (3.16)

subject to the boundary condition at the expiration time t = T according to
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equation (3.13).

By using the notation in equation (3.15), PIDE (3.16) becomes

0 =
∂P̃1

∂t
+A[P̃1](l, v, t; k, T ) + v

∂P̃1

∂l
+ ρσv

∂P̃1

∂v
+ (r − λSm)P̃1

+λS

∫
<

[(ey − 1)P̃1(l + y, v, t; k.T ]φY (y)dy

:=
∂P̃1

∂t
+A1[P̃1](l, v, t; k, T ).

For P̃2(l, v, t; k, T ) :

0 =
∂P̃2

∂t
+ rP̃2 +

(
r − λSm− 1

2
v

)
∂P̃2

∂l
+ κ(θ − v)

∂P̃2

∂v

+
1

2
v
∂2P̃2

∂l2
+ ρσv

∂2P̃2

∂l∂v
+

1

2
σ2v

∂2P̃2

∂v2
− rP̃2

+λS

∫
<

[P̃2(l + y, v, t; k, T )− P̃2(l, v, t; k, T )]φY (y)dy

+λv

∫
<

[P̃2(l, v + z, t; k, T )− P̃2(l, v, t; k, T )]φZ(z)dz (3.17)

subject to the boundary condition at the expiration time t = T according to

equation (3.14).

Again, by using the notation in equation (3.15), PIDE (3.17) becomes

0 =
∂P̃2

∂t
+A[P̃2](l, v, t; k, T ) + rP̃2

:=
∂P̃2

∂t
+A2[P̃2](l, v, t; k, T ).

The proof of Lemma is now completed.

For j = 1, 2 the characteristic functions for P̃j(l, v, t; k, T ), with respect to

the variable k are defined by

fj(l, v, t;x, T ) := −
∞∫

−∞

eixkdP̃j(l, v, t; k, T ),
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with a minus sign to account for the negativity of the measure dP̃j.

Note that fj also satisfies similar PIDEs

∂fj

∂t
+Aj[fj](l, v, t; k, T ) = 0, (3.18)

with the respective boundary conditions

fj(l, v, T ;x, T ) = −
∞∫

−∞

eixkdP̃j(l, v, T ; k, T )

= −
∞∫

−∞

eixk(−δ(k − l)dk)

= eixl

since

dP̃j(l, v, T ; k, T ) = d1l>k

= dH(l − k)

= −δ(k − l)dk.

The following lemma shows how to calculate the functions P̃1 and P̃2 as they

appeared in Lemma 3.1.

Lemma 3.2. The functions P̃1 and P̃2 can be calculated by the inverse Fourier

transforms of the characteristic function, i.e.,

Pj(l, v, t; k, T ) =
1

2
+

1

π

+∞∫
0+

Re

[
e−ixkfj(l, v, t;x, T )

ix

]
dx

for j = 1, 2 with Re[·] denoting the real component of a complex number.

By letting τ = T − t.

(i) The characteristic function f1 is given by

f1(l, v, t;x, t+ τ) = exp(g1(τ) + vh1(τ) + ixl),
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where

h1(τ) =
(η2

1 −∆2
1)(e

∆1τ − 1)

σ2(η1 + ∆1 − (η1 −∆1)e∆1τ )

g1(τ) = ((r − λSm)ix− λSm)τ

−κθ
σ2

(
2 ln

(
1− (∆1 + η1)(1− e−∆1τ )

2∆1

)
+ (∆1 + η1)τ

)
+λSτ

∞∫
−∞

(e(ix+1)y − 1)φY (y)dy + λvτ

∞∫
−∞

(ezh1(τ) − 1)φZ(z)dz

η1 = ρσ(ix+ 1)− κ

∆1 =
√
η2

1 − σ2ix(ix+ 1).

(ii) The characteristic function f2 is given by

f2(l, v, t;x, t+ τ) = exp(g2(τ) + vh2(τ) + ixl + rτ),

where

h2(τ) =
(η2

2 −∆2
2)(e

∆2τ − 1)

σ2(η2 + ∆2 − (η2 −∆2)e∆2τ )

g2(τ) = ((r − λSm)ix− r)τ

−κθ
σ2

(
2 ln

(
1− (∆2 + η2)(1− e−∆2τ )

2∆2

)
+ (∆2 + η2)τ

)
+λSτ

∞∫
−∞

(eixy − 1)φY (y)dy + λvτ

∞∫
−∞

(ezh2(τ) − 1)φZ(z)dz

η2 = iρσx− κ

∆2 =
√
η2

2 − σ2ix(ix− 1).

Proof. (i) To solve for the characteristic function explicitly, letting τ = T − t be

the time-to-go, we conjecture that the function f1 is given by

f1(l, v, t;x, t+ τ) = exp(g1(τ) + vh1(τ) + ixl), (3.19)

and the boundary condition

g1(0) = 0 = h1(0).
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This conjecture exploits the linearity of the coefficient in PIDE (3.18).

Note that the characteristic function f1 always exists.

In order to substitute (3.19) into (3.18), firstly, we compute

∂f1

∂t
= (−g′1(τ)− vh′1(τ))f1

∂f1

∂l
= ixf1

∂f1

∂v
= h1(τ)f1

∂2f1

∂l2
= −x2f1

∂2f1

∂l∂v
= ixh1(τ)f1

∂2f1

∂v2
= h2

1(τ)f1

f1(l + y, v, t;x, t+ τ)− f1(l, v, t;x, t+ τ) = (eixy − 1)f1(l, v, t;x, t+ τ)

f1(l, v + z, t;x, t+ τ)− f1(l, v, t;x, t+ τ) = (ezh1(τ) − 1)f1(l, v, t;x, t+ τ)

and

(ey − 1)f1(l + y, v, t;x, t+ τ) = (ey − 1)eg1(τ)+vh1(τ)+ix(l+y)

= (ey − 1)eixyf1(l, v, t;x, t+ τ).

Substituting all the above terms into equation (3.18) and after canceling the com-

mon factor of f1, we get a simplified form as follows:

0 = −g′1(τ)− vh′1(τ) + (r − λSm+
1

2
v)ix

+(κ(θ − v) + ρσv)h1(τ)−
1

2
vx2 + ρσvixh1(τ) +

1

2
σ2vh2

1(τ)− λSm

+λS

∫
<

(e(ix+1)y − 1)φY (y)dy + λv

∫
<

(ezh1(τ) − 1)φZ(z)dz.

By separating the order v and ordering the remaining terms, we can reduce it to

two ordinary differential equation (ODEs),

h′1(τ) =
1

2
σ2h2

1(τ) + (ρσ(1 + ix)− κ)h1(τ) +
1

2
ix− 1

2
x2 (3.20)
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and

g′1(τ) = κθh1(τ) + (r − λSm)ix− λSm

+λS

∞∫
−∞

(e(ix+1)y − 1)φY (y)dy + λv

∞∫
−∞

(ezh1(τ) − 1)φZ(z)dz. (3.21)

Let η1 = ρσ(ix+ 1)− κ and substitute it into equation (3.20). We get

h′1(τ) =
1

2
σ2h2

1 + η1h1 +
1

2
ix− 1

2
x2

=
1

2
σ2

(
h2

1 +
2η1

σ2
h1 +

1

σ2
ix(ix+ 1)

)
=

1

2
σ2

(
h1 +

2η1 +
√

4η2
1 − 4σ2ix(ix+ 1)

2σ2

)

×

(
h1 +

2η1 −
√

4η2
1 − 4σ2ix(ix+ 1)

2σ2

)

=
1

2
σ2

(
h1 +

η1 + ∆1

σ2

)(
h1 +

η1 −∆1

σ2

)
,

where ∆1 =
√
η2

1 − σ2ix(ix+ 1).

By the method of variable separation, we have

2dh1(
h1 + η1+∆1

σ2

) (
h1 + η1−∆1

σ2

) = σ2dτ.

Using partial fractions, we get

1

∆1

(
1

h1 + η1−∆1

σ2

− 1

h1 + η1+∆1

σ2

)
dh1 = dτ.

Integrating both sides, we obtain

ln

(
h1 + η1−∆1

σ2

h1 + η1+∆1

σ2

)
= ∆1τ + C.

Using boundary condition h1(τ = 0) = 0, we get

C = ln

(
η1 −∆1

η1 + ∆1

)
.

Solving for h1, we obtain

h1(τ) =
(η2

1 −∆2
1)(e

∆1τ − 1)

σ2(η1 + ∆1 − (η1 −∆1)e∆1τ )
.
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In order to solve g1(τ) explicitly, we substitute h1(τ) into equation (3.21) and

integrate with respect to τ on both sides. Then we get

g1(τ) = ((r − λSm)ix− λSm)τ

−κθ
σ2

(
2 ln

(
1− (∆1 + η1)(1− e−∆1τ )

2∆1

)
+ (∆1 + η1)τ

)
+λSτ

∞∫
−∞

(e(ix+1)y − 1)φY (y)dy + λvτ

∞∫
−∞

(ezh1(τ) − 1)φZ(z)dz.

(ii). The details of the proof are similar to case (i). Hence, we have

f2(l, v, t;x, t+ τ) = exp(g2(τ) + vh2(τ) + ixl + rτ)

where g2(τ), h2(τ), η2 and ∆2 are as given in the Lemma.

We can thus evaluate the characteristic functions in explicit form. However,

we are interested in the risk-neutral probabilities P̃j, j = 1, 2. These can be inverted

from the characteristic functions by performing the following integration

P̃j(l, v, t; k, T ) =
1

2
+

1

π

+∞∫
0+

Re

[
e−ixkfj(l, v, t;x, T )

ix

]
dx (3.22)

for j = 1, 2.

To verify equation (3.22), firstly we note that

EM
[
eix(ln St−ln K)| lnSt = Lt, vt = v

]
= EM

[
eix(Lt−k)|Lt = l, vt = v

]
=

∞∫
−∞

eix(l−k)dP̃j(l, v, t; k, T )

= e−ixk

∞∫
−∞

eixldP̃j(l, v, t; k, T )

= e−ixk

∞∫
−∞

eixk(−δ(l − k)dk)

= e−ixkfj(l, v, t;x, T ).
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Then

1
2

+ 1
π

+∞∫
0+

Re
[

e−ixkfj(l,v,t;x,T )

ix

]
dx

= 1
2

+ 1
π

+∞∫
0+

Re
[

EM[eix(ln St−ln K)| ln St=Lt,vt=v]
ix

]
dx

= EM[1
2

+ 1
π

+∞∫
0+

Re
[

eix(l−k)

ix

]
dx|Lt = l, vt = v]

= EM[1
2

+ 1
π

+∞∫
0+

sin(x(l−k))
x

dx|Lt = l, vt = v]

= EM[1
2

+ sgn(l − k) 1
π

+∞∫
0+

sin x
x
dx|Lt = l, vt = v]

= EM[1
2

+ 1
2
sgn(l − k)|Lt = l, vt = v]

= EM[1l≥k|Lt = l, vt = v],

where we have used the Dirichlet formula
+∞∫
−∞

sin x
x
dx = 1 and the function is defined

as sgn(x) = 1 if x > 0, 0 if x = 0 and -1 if x < 0.

In summary, we have just proved the following main theorem.

Theorem 3.3. The value of a European call option of (3.3) is

C̃(l, v, t; k, T ) = elP̃1(l, v, t; k, T )− ek−r(T−t)P̃2(l, v, t; k, T )

where P̃1 and P̃2 are given in Lemma 3.2.
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  Simulation Example 

 
 Let us consider the SET50 index.  Figure 3.1 shows the daily prices of the data 

set consisting of the closing prices (Baht) of the SET50 index between January 4, 

2011 and December 30, 2011. The empirical data set for these index prices were 

obtained from http://www.set.or.th 
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Figure 3.1   The daily price of SET50 index between January  4, 2011 and December       

                    30, 2011. 
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Figure 3.2   Log returns on the prices of SET50 index between January  4,  2011 and  

        December 30, 2011. 
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The statistics of SET50 index and log returns are given in Table 3.1. 

 
 

Table 3.1  Statistics of SET50 index data set. 

 

 Asset prices Log returns 

Sample size 244 243 

Mean 717.8971 -0.000023479 

Standard deviation 39.38177 0.006808314 

Skewness -0.27213 0.039240447 

Kurtosis 0.041693 2.428396942 

Maximum 801.44 0.028318255 

Minimum 592.57 -0.02539156 
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Figure 3.3  The historical volatility of SET50 index between  January  4, 2011 and  

       December 30, 2011. 

 

  This Figure show that historic volatility in not constant over time. 
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The model parameters are 0 727.9S  , 1.5  , -0.000023479r  , 0 = 0.006808314v , 

0.04  , = 0.2 , 0.8  , 3S  , 0.01v  .  After working 500 simulations and 

=224N ,  we choose the smallest ARPE's sample path and shows the price simulation 

as compared to the empirical data of SET50 index close price in Figure 3.4. 

 

Figure 3.4  The price behavior of SET50 index between  January  4, 2011 and 

December 30, 2011, as compared with a simulated from jump - diffusion and 

stochastic volatility with jump model. (solid line:=empirical data, dash 

line:=simulation data)  with 244N   and  ARPE=0.0374. 

For comparative purpose, we compute the Average Relative Percentage Error 

(ARPE). By definition 

1

1
100

N
k k

k k

X Y
ARPE

N X


   

where N  is the number of prices,  
1k k

X X


  is the market price and  
1k k

Y Y


 is 

the model price. 
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We present a numerical comparison between closed form solution and a Monte Carlo 

simulation option pricing. We apply the two techniques for the pricing of a European 

call option : 0 100S  , 1.3  , 0.05r  , 0 = 0.034v , 0.04  , = 0.2 , 0.7  , 

3S  , 0.02v  .  

 

Table 3.2  European call option price (with jump in volatility). 

Strike price Closed form solution Monte Carlo 

80 41.3645 40.7864 

85 39.600 38.983 

90 37.9592 38.569 

95 36.4298 37.451 

105 33.7072 32.890 

110 32.4131 32.887 

115 31.2371 31.678 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER IV

MEAN REVERTING PROCESS

4.1 Introduction

Empirical evidence on mean reversion in financial assets has been produced

by Cecchetti et al. (1990) and Bessembinder et al. (1995), respectively. It has been

documented that currency exchange rates also exhibit mean reversion. Jorion and

Sweeney (1996) show how the real exchange rates revert to their mean levels and

Sweeney (2006) provides empirical evidence of mean reversion in G-10 nominal

exchange rates. Mean reversion also appears in some stock prices as evidenced by

Poterba and Summers (1988).

In this chapter, we consider the problem of finding a closed-form formula for

a European call option where the asset price follows mean reverting jump-diffusion

and the stochastic volatility has jumps.

The rest of this chapter is organized as follows. In section 4.2, we briefly

discuss model descriptions for option pricing. Deriving a formula for a charac-

teristic function is presented in Section 4.3. Finally, a closed-form formula for a

European call option in terms of characteristic functions is presented.

4.2 Model Descriptions

It is assumed that a risk-neutral probability measure M exists. The asset

price St under this measure follows a mean reverting jump-diffusion process, and

the volatility vt follows mean reverting with jump, i.e. our models are governed
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by the following dynamics:

dSt = b

(
a− lnSt −

λSm

b

)
Stdt+

√
vtStdW

S
t + St−YtdN

S
t (4.1)

dvt = κ(θ − vt)dt+ σ
√
vtdW

v
t + ZtdN

v
t (4.2)

where St, vt, κ, θ, σ,W
S
t and W v

t are defined as Bates model, a ∈ < is the mean of

long-term asset price return, b > 0 is the rate at which the asset price return reverts

toward its long-term mean, NS
t and N v

t are independent Poisson processes with

constant intensities λS and λv respectively. Yt and Zt are proportional jump sizes

of the asset price (4.1) and the jump size of the volatility process (4.2) respectively.

Suppose that Yt and Zt are independent and identically distributed sequences with

densities φYt(y) := φY (y), φZt(z) := φZ(z) and E[Yt] := m < ∞. Moreover, we

assume that the jump processes NS
t and N v

t are independent of standard Brownian

motions W S
t and W v

t .

Assume that the asset price St and the volatility vt satisfy equations (4.1)

and (4.2) respectively. Let Lt = lnSt, by the jump-diffusion chain rule, lnSt

satisfies the SDE

dLt = b

(
a− Lt −

λSm

b
− vt

2b

)
dt+

√
vtdW

S
t + ln(1 + Yt)dN

S
t . (4.3)

4.3 Characteristic Function of Asset Price

We denote the characteristic function for LT = lnST as

f(x : t, l, v) = EM[eixLT |Lt = l, vt = v] (4.4)

where 0 ≤ t ≤ T and i =
√
−1. Here Lt is the mean reverting asset price process

with jumps specified by (4.3) and vt is the volatility process specified by (4.2).

The generalized Feynman-Kac theorem (Hanson (2007)) implies that f(x : t, l, v)
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solves the following partial integro-differential equation (PIDE):

0 =
∂f

∂t
+ b

(
a− l − λSm

b
− v

2b

)
∂f

∂l

+κ(θ − v)
∂f

∂v
+

1

2
v
∂2f

∂l2
+ ρσv

∂2f

∂l∂v
+

1

2
σ2v

∂2f

∂v2

+λS

∫
<

[f(x; t, l + y, v)− f(x; t, l, v)]φY (y)dy

+λv

∫
<

[f(x; t, l, v + z)− f(x; t, l, v)]φZ(z)dz. (4.5)

Lemma 4.1. Suppose that Lt follows the dynamics in (4.3). Then the character-

istic function for LT can be written in the form

f(x : t, l, v) = exp[B(t, T ) + C(t, T )l +D(t, T )v + ixl], (4.6)

where

B(t, T ) = (
λSm

b
− a)ix(e−b(T−t) − 1)− θκ

∫ T

T−τ

D(s, T )ds

+(T − t)λS

∫
<

[
eixy − 1

]
φY (y)dy

+(T − t)λv

∫
<

[
ezD(t,T ) − 1

]
φZ(z)dz,

C(t, T ) = ix(e−b(T−t) − 1),

D(t, T ) = U(e−b(T−t)) +
e−κ(T−t)V (e−b(T−t))

− 1
U(1)

+ σ2

2b

∫ e−b(T−t)

1
h

κ
b
−1V (h)dh

,

U(h) =
2bh

σ2

(
√

1− p2 − pi)σx
2b

Φ(a∗, b∗, h
ζ
) + a∗

b∗ζ
Φ(a∗ + 1, b∗ + 1, h

ζ
)

Φ(a∗, b∗, h
ζ
)

,

V (h) =
Φ2(a∗, b∗, 1

ζ
)e(
√

1−ρ2)σx
b

(1−h)

Φ2(a∗, b∗, h
ζ
)

,

h = e−b(T−t),

a∗ =
b∗

2
(
√
ρ2 − 1 + ρ) + σ

4b√
ρ2 − 1

,

b∗ = 1− κ

b
,

ζ =
−b

σx
√

1− ρ2
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and Φ(·, ·, ·) is the degenerated hypergeometric function.

Proof. From (4.4), it is clear that

f(x : T, l, v) = eixl (4.7)

which is the boundary condition of PIDE (4.5). This implies that

B(T, T ) = C(T, T ) = D(T, T ) = 0. (4.8)

First of all, we compute

∂f

∂t
= (

∂B

∂t
+ l

∂C

∂t
+ v

∂D

∂t
)f

∂f

∂l
= (C + ix)f

∂f

∂v
= Df

∂2f

∂l2
= (C + ix)2f

∂2f

∂v2
= D2f

∂2f

∂l∂v
= (C + ix)Df

λS

∫
<

[f(x; t, l + y, v)− f(x; t, l, v)]φY (y)dy = (λS

∫
<

[
eixy − 1

]
φY (y)dy)f

λv

∫
<

[f(x; t, l, v + z)− f(x; t, l, v)]φZ(z)dz = (λv

∫
<

[
ezD(t,T ) − 1

]
φZ(z)dz)f.

Substituting all the above terms into equation (4.5) and using the fact that the

function f is never zero, we obtain

0 = [Bt + Ctl +Dtv] + b[a− v

2b
− λSm

b
− l][C + ix] +

1

2
v(C + ix)2

+κ(θ − v)D +
1

2
vσ2D2 + ρσv(ix+ C)D

+λS

∫
<

[eixy − 1]φY (y)dy + λv

∫
<

[ezD − 1]φZ(z)dz,
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where Bt, Ct and Dt are the partial derivatives with respect to t of functions B,C

and D respectively. Rearranging the above equation, one obtains

0 = [Bt + (ba− λSm)(C + ix) + κθD

+λS

∫
<

[eixy − 1]φY (y)dy + λv

∫
<

[ezD − 1]φZ(z)dz]

+[Ct − b(C + ix)]l

+[Dt −
1

2
(C + ix) +

1

2
(C + ix)2 − κD +

1

2
σ2D2 + ρσ(C + ix)D]v.

(4.9)

This reduces the problem to one of solving three, much simpler, ordinary differen-

tial equations:

Bt + (ba− λSm)(C + ix) + κθD + λS

∫
<

[eixy − 1]φY (y)dy

+ λv

∫
<

[ezD − 1]φZ(z)dz = 0 (4.10)

Ct − b(C + ix) = 0 (4.11)

Dt +
1

2
(C + ix)(C + ix− 1)

− κD +
1

2
σ2D2 + ρσ(C + ix)D = 0 (4.12)

subject to boundary conditions (4.8).

The solution to equation (4.11) with the boundary condition C(T, T ) = 0

is given by

C(t, T ) = ix(e−b(T−t) − 1). (4.13)

We now consider equation (4.12). Substituting (4.13) in (4.12), one gets

Dt +
1

2

[
ix+ ix(e−b(T−t) − 1)

] [
ix+ ix(e−b(T−t) − 1)− 1

]
− κD +

1

2
σ2D2

+ρσD
[
ix+ ix(e−b(T−t) − 1)

]
= 0
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and, moreover,

Dt +
1

2

[
ixe−b(T−t)

] [
ixe−b(T−t) − 1

]
− κD +

1

2
σ2D2 + ρσixDe−b(T−t) = 0.

Hence,

Dt = −1

2
σ2D2 +

[
κ− ρσixe−b(T−t)

]
D +

1

2

[
x2e−2b(T−t) + ixe−b(T−t)

]
. (4.14)

Let h = e−b(T−t) and we define a new function D̂(h(t), T ) := D(t, T ). Then

∂D(t, T )

∂t
=

∂D̂(h, T )

∂h

∂h

∂t

= be−b(T−t)∂D̂(h, T )

∂h
. (4.15)

Substituting (4.15) into (4.14), we obtain the following Riccati equation

bh
∂D̂

∂h
= −1

2
σ2D̂2 +

(
κ− ρσixe−b(T−t)

)
D̂ +

1

2

(
x2e−2b(T−t) + ixe−b(T−t)

)
.

Multiplying the above equation by 1
bh

, one gets

∂D̂

∂h
= − 1

2bh
σ2D̂2 +

(
κ

bh
− ρσix

b

)
D̂ +

1

2b

(
x2h+ ix

)
. (4.16)

We shall solve the second order ODE (4.16) together with the initial condition

D̂(1, T ) = 0. Let

D̂(h, T ) =
2bhw′(h)

σ2w(h)
(4.17)

and taking the derivative of (4.17) with respect to h, one gets

∂D̂

∂h
=

[
σ2w(h)

∂

∂h
(2bhw′(h))− 2bhw′(h)

∂

∂h
(σ2w(h))

]
1

σ4w2(h)

=
[
σ2w(h) [2bw′(h) + 2bhw′′(h)]− 2bhσ2(w′(h))2

] 1

σ4w2(h)
.

(4.18)

Substituting (4.17) and (4.18) into (4.16), we have

[
σ2w(h) [2bw′(h) + 2bhw′′(h)]− 2bhσ2(w′(h))2

] 1

σ4w2(h)
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= − σ2

2bh

(
4b2h2(w′(h))2

σ4w2(h)

)
+

(
κ

bh
− ρσxi

b

)(
2bhw′(h)

σ2w(h)

)
+

1

2b
(x2h+ ix).

Then

σ2w(h) [2bw′(h) + 2bhw′′(h)]
1

σ4w2(h)
=

(
κ

bh
− ρσxi

b

)(
2bhw′(h)

σ2w(h)

)
+

1

2b
(x2h+ix).

Multiplying the above equation by σ2w(h)
2b

, one obtains

hw′′(h) + w′(h) =

(
κ

bh
− ρσxi

b

)
hw′(h) +

σ2w(h)

4b2
(x2h+ ix)

or, equivalently,

hw′′(h)−
[
(
κ

b
− 1)− h(

ρσxi

b
)

]
w′(h)−

[
x2σ2h

4b2
+
ixσ2

4b2

]
w(h) = 0. (4.19)

The ODE (4.19) has a general solution of the form,

w(h) = e(
√

1−ρ2−ρi)σx
2b

h

[
C1Φ(a∗, b∗,

h

ζ
) + C2h

1−b∗Φ(a∗ − b∗ + 1, 2− b∗,
l

ζ
)

]
,

(4.20)

where

a∗ =
(
√
ρ2 − 1 + ρ) b∗

2
+ σ

4b√
ρ2 − 1

b∗ = 1− κ

b

and

ζ =
−b

σx
√

1− ρ2
.

Here C1 and C2 are constants to be determined from the boundary conditions.

Φ(a, b, z) is the degenerated hypergeometric function which has the following Kum-

mer’s series expansion

Φ(a, b, z) = 1 +
∞∑

k=1

(a)kz
k

(b)kk!
,

where

(a)k = a(a+ 1) · · · (a+ k − 1).
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If we let C1 = 1 and C2 = 0 in (4.20) then a particular solution for (4.19) is

w(h) = e(
√

1−ρ2−ρi)σx
2b

h

[
Φ(a∗, b∗,

h

ζ
)

]
.

Using the transformation (4.17), Wong and Lo (2009) show that a particular so-

lution for (4.16) is

U(h) =
2bh

σ2

(
√

1− ρ2 − ρi)σx
2b

Φ(a∗, b∗, h
ζ
) + a∗

b∗ζ
Φ(a∗ + 1, b∗ + 1, h

ζ
)

Φ(a∗, b∗, h
ζ
)

,

which can be used to obtain the general solution for (4.16) as follows

D̂(h) = U(h) +

Φ2(a∗,b∗, 1
ζ
)

Φ2(a∗,b∗, h
ζ
)
h

κ
b e−2(

√
1−ρ2)σx

2b
(h−1)

− 1
U(1)

+ σ2

2b

∫ h

1

Φ2(a∗,b∗, 1
ζ
)

Φ2(a∗,b∗, h
ζ
)
η

κ
b
−1e−2(

√
1−ρ2)σx

2b
(η−1)dη

. (4.21)

We now consider the final ordinary differential equation (4.10). Substituting (4.21)

and (4.13) in (4.10), we have

Bt(t, T ) = (λSm− ba)ixe−b(T−t) − κθD(t, T )

−λS

∫
<

[eixy − 1]φY (y)dy − λv

∫
<

[ezD − 1]φZ(z)dz.

Integrating both sides of the above equation and invoking the condition B(T, T ) =

0, we obtain

B(t, T ) = (
λSm

b
− a)ix(e−b(T−t) − 1)− κθ

∫ T

t

D(s, T )ds

+(T − t)λS

∫
<

[eixy − 1]φY (y)dy

+(T − t)λv

∫
<

[ezD − 1]φZ(z)dz. (4.22)

We can conclude that the characteristic function of the mean reverting

process (4.3) with stochastic volatility (4.2) is

f(x : t, l, v) = eB(t,T )+C(t,T )x+D(t,T )v+ixl,

where B(t, T ), C(t, T ) and D(t, T ) are as given in the Lemma 4.1.
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4.4 A Formula for European Option Pricing

The Fourier inversion technique illustrated in this section was first proposed

by Carr & Madan (1999). It ensures that the Fourier transform of European

option prices exists by the inclusion of an exponential damping factor. Moreover,

singularities will be removed by this damping factor. Assume that t = 0 and

we define LT = lnST and k = lnK. Moreover, we express the call price option

C(0, ST ) as a function of the log of the strike price K rather than the terminal log

asset price ST . The initial call value CT (K) is related to the risk-neutral density

qT (l) by

CT (K) = e−rTE[max(ST −K, 0)]

= e−rTE[max(elnST − elnK , 0)]

= e−rT

∫ ∞

−∞
max(el − ek, 0)qT (l)dl

= e−rT

∫ ∞

k

(el − ek)qT (l)dl

in which the expectation is taken with respect to some risk-neutral measure. Since

lim
K→0

CT (K) = lim
k→−∞

CT (ek) = S0,

we see that CT (ek) is not in L1, as CT (ek) does not tend to zero for k → −∞.

Now, consider the modified call price

cT (k) = eαkCT (ek)

where α > 0. Below we will show that under a certain assumption we have

cT (k) ∈ L1, the space of integrable functions. For now, assume that the Fourier

transform of cT (k) is well-defined:

ψT (u) =

∫ ∞

−∞
eiukcT (k)dk.
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Inverting gives

cT (k) =
1

2π

∫ ∞

−∞
e−iukψT (u)du.

or

CT (K) = e−αkcT (k)

=
e−αk

2π

∫ ∞

−∞
e−iukψT (u)du

=
e−αk

π
Re

{∫ ∞

0

e−iukψT (u)du

}
where the last equality follows from the observation that∫ ∞

−∞
e−iukψT (u)du =

∫ ∞

0

e−iukψT (u)du+

∫ 0

−∞
e−iukψT (u)du,

and where the second term on the right-hand side can be rewritten as∫ 0

−∞
e−iukψT (u)du =

∫ ∞

0

eiukψT (−u)du

=

∫ ∞

0

e−iukψT (u)du

=

∫ ∞

0

e−iukψT (−u)du

yielding the claim. Note that we have a closed-form for the Fourier transform of

cT (k):

 

 

 

 

 

 

 

 



66

ψT (u) =

∫ ∞

−∞
eiukcT (k)dk

=

∫ ∞

−∞
eiukeαkCT (k)dk

=

∫ ∞

−∞
eiuk

(∫ ∞

k

eαke−rT (el − ek)qT (l)dl

)
dk

=

∫ ∞

−∞
e−rT qT (l)

(∫ l

−∞
(el+αk − e(1+α)k)eiukdk

)
dl

=

∫ ∞

−∞
e−rT qT (l)

(∫ l

−∞
e(α+iu)k(el − ek)dk

)
dl

=

∫ ∞

−∞
e−rT qT (l)

(
el

∫ l

−∞
e(α+iu)kdk −

∫ l

−∞
e(α+iu+1)kdk

)
dl

= e−rT

∫ ∞

−∞
qT (l)

(
el

[
1

α+ iu
e(α+iu)k

]l

−∞
−
[

1

α+ iu+ 1
e(α+iu+1)k

]l

−∞

)
dl

(4.23)

Since for α > 0

lim
k→−∞

∣∣e(iu+α)k
∣∣ = lim

k→−∞

∣∣e(iu+α+1)k
∣∣ = lim

k→−∞

∣∣e(α+1)k
∣∣ = 0,

equation (4.23) reduces to

ψT (u) = e−rT

∫ ∞

−∞
qT (l)

[
e(α+1+iu)l

α+ iu
− e(α+1+iu)l

α+ iu+ 1

]
dl

= e−rT

∫ ∞

−∞

[
(α+ iu+ 1)e(α+1+iu)l − (α+ iu)e(α+1+iu)l

(α+ iu)(α+ iu+ 1)

]
qT (l)dl

= e−rT

∫ ∞

−∞

[
(α+ iu)e(α+1+iu)l + e(α+1+iu)l − (α+ iu)e(α+1+iu)l

(α+ iu)(α+ iu+ 1)

]
qT (l)dl

= e−rT

∫ ∞

−∞

[
e(α+1+iu)l

α2 + 2αiu− u2 + α+ iu

]
qT (l)dl

=
e−rT

α2 + α− u2 + i(2α+ 1)u

∫ ∞

−∞
e(α+1+iu)lqT (l)dl

=
e−rT

α2 + α− u2 + i(2α+ 1)u

∫ ∞

−∞
ei(u−(α+1)i)lqT (l)dl

=
e−rTf(l, v, t;x = u− (α+ 1)i)

α2 + α− u2 + i(2α+ 1)u

where f is the characteristic function defined in Lemma 4.1.
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Lemma 4.2. Let α > 0. The Fourier transform of cT (k) exists (i.e. cT (k) ∈ L1)

if E[Sα+1
T ] <∞.

Proof. Note that E[Sα+1
T ] <∞ implies

ψT (0) <∞, (4.24)

since

|ψT (0)| =
e−rT |f(−(α+ 1)i)|

α2 + α

=
e−rTE[Sα+1

T ]

α2 + α
,

where the last equality follows from

|f(−(α+ 1)i)| =
∣∣E[e(−(α+1)i)i log ST ]

∣∣
=

∣∣E[e(α+1) log ST ]
∣∣

= E[Sα+1
T ].

We have the equality

ψT (0) =

∫ ∞

−∞
cT (k)dk,

which follows from

ψT (v) =

∫ ∞

−∞
eiukcT (k)dk.

Combining this with (4.24) completes the proof.

Hence, the European call prices at time t = 0 with strike price k = lnK can then

be numerically obtained by using the inverse transform:

CT (k) =
e−αk

2π

∫ ∞

−∞
e−iukψT (u)du

=
e−αk

π

∫ ∞

0

e−iuk e
−rTf(l, v, t;x = u− (α+ 1)i)

α2 + α− u2 + i(2α+ 1)u
du. (4.25)

Integration (4.25) is a direct Fourier transform and lends itself to an application

of the Fast Fourier Transform (FFT), which has also been done in Carr & Madan

(1999).
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Simulation Example 

 
 Let us consider the crude oil price.  Figure 4.1 shows the daily prices of the 

data set consisting of daily closing prices ( Dollars/Barrel ) between January 2, 2008 

and December 31, 2012. The empirical data set for these prices were obtained from 

http://www.eia.gov 
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Figure 4.1   The daily price of crude oil between January 2, 2008 and December 31,  

  

         2012. 
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Figure 4.2   Log returns on the prices of crude oil between January  2,  2008 and   

                    December  31, 2012. 
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The statistics of crude oil price and log returns are given in Table 4.1. 

 
 
Table 4.1  Statistics of crude oil price data set. 

 

 Asset prices Log returns 

Sample size 1254 1253 

Mean 92.12226 0.000046068 

Standard deviation 24.44392 0.010455576 

Skewness -0.38537 0.018533709 

Kurtosis -0.77659 6.66512772 

Maximum 143.95 0.078736459 

Minimum 592.57 -0.073100493 
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We present a numerical comparison between FFT and a Monte Carlo simulation 

option pricing. We apply the two techniques for the pricing of a European call option: 

0 1.3S  , 10b  , 0.12r  , 0 = 0.18v , 4.0399a  , = 0.04 , 0.9  , 0.11S  , 

0.02v  ,  3.33  , 0.5328   

Table 4.2  European call option price FFT vs. Monte Carlo 

Strike price FFT Monte Carlo 

0.375 0.9674 0.8712 

0.456 0.8956 0.9710 

0.5548 0.8079 0.8780 

0.675 0.7014 0.7615 

0.822 0.5720 0.6243 

1 0.4239 0.4545 

1.217 0.2740 0.2546 

1.481 0.0532 0.0567 

1.802 0.0014 0.0020 

 

 

 

 

 

 

 

 

 



CHAPTER V

CONCLUSIONS

5.1 Conclusion

The aim of this thesis is to introduce an alternative model of stochastic

volatility of jump-diffusion in which the asset prices follow a jump-diffusion with

stochastic volatility. The following procedures were investigated:

1. We investigated the solution of the underlying asset by adding jumps in

stochastic volatility.

2. The underlying asset was assumed to follow a mean reverting process.

3. The mathematical formula of the European option was formulated by

inverting the characteristic function. In order to solve the characteristic function

explicitly, we proved the lemma that established a relationship between stochastic

volatility and partial differential equation in the general case. We got an explicit

formula of the characteristic function. The formula of the European option can

be expressed in terms of the probability function.

4. A simulation example shows the paths simulated by jump-diffusion with

stochastic volatility and incorporating jump in stochastic volatility.

5.2 Research Possibility

1. A stochastic process with independent, stationary increments is called

Lévy process. It represents the motion of a point whose successive displacements

are random and independent, and statistically identical over different time intervals
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of the same length. The most well known examples of Lévy processes are Brownian

motion and the Poisson process. Thus the asset price can be extended to Lévy

processes.

2. In this thesis, the interest rates are assumed to be constant over the

period of analysis. In practice, interest rates are determined by monetary policy

of a country according to its economic situation. Thus we may extent this thesis

to the case where we have a stochastic volatility for the interest rate.
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COMPUTER PROGRAM 

   

 

MATLAB CODE 

FFT for the jump-diffusion and stochastic volatility with jump Model 

 

The following MATLAB routine computes the price of a European vanilla call 

option under the dynamics of the jump diffusion and stochastic volatility with jump 

model by means of the fast Fourier transform method of Carr and Madan (1999). The 

function, the jump diffusion and stochastic volatility with jump model fast Fourier 

transform takes the the jump diffusion and stochastic volatility with jump model 

parameters (KAPPA, THETA, SIGMAv, RHO, V0, LAMBDAJ, MUS, SIGMAS, 

MUV, r, T, S0, K, a1, b1) as inputs, as well as the risk-free rate of return (r), the 

maturity of the option (T), the spot price of the underlying (S0) and the strike price of 

the option (K). It outputs a single option price for the call option as well as the strike 

price on the FFT strike grid that is closest to K. It is simple to extend the code to 

output option prices for a range of strikes. 

function [svjjfft strike] = SVJJFFT(KAPPA, THETA, SIGMAv, RHO, V0, 

LAMBDAJ, MUS, SIGMAS, MUV, r, T, S0, K, a1, b1) 

alpha = 0.75; 

N = 2^12; 

a = 600; %Upper limit of integration 

eta = a/N; %Grid spacing for integration 

lambda = (2*pi) / (N*eta); %Width of intervals btw successive strikes 

b = N*lambda / 2; 

if S0 >= K %For ITM and ATM options 

u = (0:(N-1)) * eta; %Integration grid 
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v = u - (alpha + 1) * 1i;         

%Characteristic Function Variables 

%Diffusion Variables 

ALPHA = -0.5*(v.^2 + 1i*v); 

BETA = KAPPA - RHO*SIGMAv*1i*v; 

GAMMA = (SIGMAv^2)/2; 

d = sqrt(BETA.^2 - 4*ALPHA*GAMMA); 

rpos = (BETA + d)/(SIGMAv^2); 

rneg = (BETA - d)/(SIGMAv^2); 

g = rneg./rpos; 

D = rneg .* ((1 - exp(-d*T)) ./ (1 - g.*exp(-d*T))); 

C = KAPPA * (rneg*T - (2/(SIGMAv^2)) * log((1 - g.*exp(-d*T)) ./ (1 - g))); 

%Jump Variables 

MUJ = exp(MUS + 0.5*SIGMAS^2) / (1 - RHOJ*MUV) - 1; 

c = 1 - RHOJ*MUV*1i*v; 

nu = ( (BETA + d) ./ ((BETA + d).*c - 2*MUV*ALPHA) ) * T + ( 

(4*MUV*ALPHA)  ./ ((d.*c).^2 - (2*MUV*ALPHA - BETA.*c) ... 

.^2) ) .* log( 1 - ( ((d-BETA).*c + 2*MUV*ALPHA) ./ (2*d.*c) ).*(1 - exp(-d*T)) ); 

P = -T*(1 + MUJ*1i*v) + exp( MUS*1i*v + 0.5*(SIGMAS^2)*(1i*v).^2 ).*nu; 

%Characteristic Function and Fourier Transform 

CharFun = exp(C*THETA + D*V0 + P*LAMBDAJ + 1i*v*(log(S0) + (r-q)*T)); 

FourierTrans = (exp(-r*T) * CharFun) ./ ((alpha + 1i*u) .* (alpha + 1i*u + 1)); 

SWeightings = (1/3) * (3 + (-1).^(1:N) - [1 zeros(1,N-1)]); 

%Include Simpson's weightings 

FFT = exp(1i*b*u) .* FourierTrans * eta .* SWeightings; 

%FFT Routine 

FFT = real(fft(FFT)); %Call MATLAB FFT routine 

%Call Price Calculation 

strikes = -b + lambda*(0:N-1); %Log-strike price grid 
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svjjfft = (exp(-strikes*alpha)/pi) .* FFT; %Include dampening factor 

position = (log(K) + b) / lambda + 1; %Strike position on grid 

svjjfft = (1-(position-floor(position))) * svjjfft(floor(position)) + (position-

floor(position)) ...* svjjfft(floor(position)+1); 

%Interpolated FFT call price 

elseif S0 < K %For OTM options 

u = (0:(N-1)) * eta; %Integration grid 

v1 = u - 1i*alpha; 

v2 = u + 1i*alpha; 

w1 = u - 1i*alpha - 1i; 

w2 = u + 1i*alpha - 1i; 

%Characteristic Function 1 Variables 

%Diffusion Variables 

ALPHA1 = -0.5*(w1.^2 + 1i*w1); 

BETA1 = KAPPA - RHO*SIGMAv*1i*w1; 

GAMMA1 = (SIGMAv^2)/2; 

d1 = sqrt(BETA1.^2 - 4*ALPHA1*GAMMA1); 

rpos1 = (BETA1 + d1)/(SIGMAv^2); 

rneg1 = (BETA1 - d1)/(SIGMAv^2); 

g1 = rneg1./rpos1; 

D1 = rneg1 .* ((1 - exp(-d1*T)) ./ (1 - g1.*exp(-d1*T))); 

C1 = KAPPA * (rneg1*T - (2/(SIGMAv^2)) * log((1 - g1.*exp(-d1*T))./ (1 - g1))); 

%Jump Variables 

MUJ1 = exp(MUS + 0.5*SIGMAS^2) / (1 - RHOJ*MUV) - 1; 

c1 = 1 - RHOJ*MUV*1i*w1; 

nu1 = ( (BETA1 + d1) ./ ((BETA1 + d1).*c1 - 2*MUV*ALPHA1) ) * T + ... 

( (4*MUV*ALPHA1) ./ ((d1.*c1).^2 - (2*MUV*ALPHA1 - BETA1.*c1) ... 

.^2) ) .* log( 1 - ( ((d1-BETA1).*c1 + 2*MUV*ALPHA1) ./ (2*d1.*c1) ) .* (1 - 

exp(-d1*T)) ); 
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P1 = -T*(1 + MUJ1*1i*w1) + exp( MUS*1i*w1 + 0.5*(SIGMAS^2)*(1i*w1).^2 

).*nu1; 

CharFun1 = exp(C1*THETA + D1*V0 + P1*LAMBDAJ + 1i*w1*(log(S0) + (r-

q)*T)); 

%Characteristic Function 2 Variables 

ALPHA2 = -0.5*(w2.^2 + 1i*w2); 

BETA2 = KAPPA - RHO*SIGMAv*1i*w2; 

GAMMA2 = (SIGMAv^2)/2; 

d2 = sqrt(BETA2.^2 - 4*ALPHA2*GAMMA2); 

rpos2 = (BETA2 + d2)/(SIGMAv^2); 

rneg2 = (BETA2 - d2)/(SIGMAv^2); 

g2 = rneg2./rpos2; 

D2 = rneg2 .* ((1 - exp(-d2*T)) ./ (1 - g2.*exp(-d2*T))); 

C2 = KAPPA * (rneg2*T - (2/(SIGMAv^2)) * log((1 - g2.*exp(-d2*T)) ./ (1 - g2))); 

%Jump Variables 

MUJ2 = exp(MUS + 0.5*SIGMAS^2) / (1 - RHOJ*MUV) - 1; 

c2 = 1 - RHOJ*MUV*1i*w2; 

nu2 = ( (BETA2 + d2) ./ ((BETA2 + d2).*c2 - 2*MUV*ALPHA2) ) * T + ... 

( (4*MUV*ALPHA2) ./ ((d2.*c2).^2 - (2*MUV*ALPHA2 - BETA2.*c2) ... 

.^2) ) .* log( 1 - ( ((d2-BETA2).*c2 + 2*MUV*ALPHA2) ./ (2*d2.*c2) ) .* (1 - 

exp(-d2*T)) ); 

P2 = -T*(1 + MUJ2*1i*w2) + exp( MUS*1i*w2 + 0.5*(SIGMAS^2)*(1i*w2).^2 

).*nu2; 

CharFun2 = exp(C2*THETA + D2*V0 + P2*LAMBDAJ + 1i*w2*(log(S0) + (r-

q)*T)); 

%Characteristic Function and Fourier Transform 

zeta1 = exp(-r*T) * ((1./(1 + 1i*v1)) - exp(r*T)./(1i*v1) - CharFun1./(v1.^2 - 

1i*v1)); 
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zeta2 = exp(-r*T) * ((1./(1 + 1i*v2)) - exp(r*T)./(1i*v2) - CharFun2./(v2.^2 - 

1i*v2)); 

FourierTrans = (zeta1 - zeta2) / 2; 

SWeightings = (1/3) * (3 + (-1).^(1:N) - [1 zeros(1,N-1)]); 

%Include Simpson's weightings 

FFT = exp(1i*b*u) .* FourierTrans * eta .* SWeightings; 

%FFT Routine 

FFT = real(fft(FFT)); %Call MATLAB FFT routine 

%Call Price Calculation 

strikes = -b + lambda*(0:N-1); %Log-strike price grid 

svjjfft = (1 ./ (pi*sinh(alpha*strikes))) .* FFT; 

%Include dampening factor 

position = (log(K) + b) / lambda + 1; %Strike position on grid 

svjjfft = (1-(position-floor(position))) * svjjfft(floor(position)) + (position-

floor(position)) ...* svjjfft(floor(position)+1); 

%Interpolated FFT call price 

end 

strikes = -b + lambda*(0:N-1); 

strike = exp(strikes(round(position))); %Strike price on strike grid 

%closest to required strike 
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