
  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

วทิยานิพนธ์นีเ้ป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวทิยาศาสตรดุษฎบีัณฑิต 

สาขาวชิาคณติศาสตร์ประยุกต 

 

วทิยานิพนธ์นีเ้ป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวทิยาศาสตรดุษฎบีัณฑิต 

สาขาวชิาคณติศาสตร์ประยุกต์ 

มหาวทิยาลัยเทคโนโลยสุีรนารี 

ปีการศึกษา 2554 

 

นางสาววริษา  นาคพมิพ์ 

 

การท าสมการเชิงอนุพนัธ์สามัญอนัดบัสองและอนัดบัสาม

ให้เป็นเชิงเส้นโดยการแปลงแบบทั่วไปของซันด์แมน 

 



LINEARIZATION OF SECOND-ORDER AND

THIRD-ORDER ORDINARY DIFFERENTIAL

EQUATIONS BY GENERALIZED SUNDMAN

TRANSFORMATIONS

Warisa Nakpim

A Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy in Applied Mathematics

Suranaree University of Technology

Academic Year 2011



(Prof. Dr. Sukit Limpijumnong) (Assoc. Prof. Dr. Prapun Manyum)

Vice Rector for Academic Affairs Dean of Institute of Science

LINEARIZATION OF SECOND-ORDER AND THIRD-

ORDER ORDINARY DIFFERENTIAL EQUATIONS BY

GENERALIZED SUNDMAN TRANSFORMATIONS

Suranaree University of Technology has approved this thesis submitted in

partial fulfillment of the requirements for the Degree of Doctor of Philosophy.

Thesis Examining Committee

(Assoc. Prof. Dr. Prapasri Asawakun)

Chairperson

(Prof. Dr. Sergey Meleshko)

Member (Thesis Advisor)

(Assoc. Prof. Dr. Anatoli Loutsiouk)

Member

(Assoc. Prof. Dr. Nikolay Moshkin)

Member

(Asst. Prof. Dr. Eckart Schulz)

Member

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

วริษา  นาคพิมพ ์: การท าสมการเชิงอนุพนัธ์สามญัอนัดบัสองและอนัดบัสามใหเ้ป็นเชิงเส้นโดย  

การแปลงแบบทัว่ไปของซนัดแ์มน (LINEARIZATION OF SECOND-ORDER AND THIRD-

ORDER ORDINARY DIFFERENTIAL EQUATIONS BY GENERALIZED SUNDMAN 

TRANSFORMATIONS) อาจารยท่ี์ปรึกษา : ศาสตราจารย ์ดร.เซอเก  เมเลชโก, 72 หนา้. 

            

 วทิยานิพนธ์ฉบบัน้ี   ศึกษาปัญหาการท าให้เป็นเชิงเส้นของสมการเชิงอนุพนัธ์สามญัอนัดบัสอง

และอนัดบัสามโดยการแปลงแบบทัว่ไปของซนัด์แมน   ในส่วนแรกมีการประยกุตใ์ชก้ารแปลงแบบทัว่ไป

ของซนัดแ์มนส าหรับสมการเชิงอนุพนัธ์สามญัอนัดบัสอง ผลลพัธ์ของส่วนน้ียนืยนัวา่ผลการศึกษาปัญหา

ของ Duarte Moreira and Santos ท่ีใชส้มการเชิงเส้นในรูปแบบของลาแกร์ (Laguerre form) ยงัไม่สมบูรณ์ 

และมีตวัอยา่งท่ีแสดงวา่ รูปแบบของลาแกร์ (Laguerre form) ไม่เพียงพอส าหรับปัญหาการท าใหเ้ป็นเชิง

เส้นโดยการแปลงแบบทัว่ไปของซนัดแ์มน นัน่คือ ส าหรับปัญหาการท าให้เป็นเชิงเส้นของสมการเชิง

อนุพนัธ์สามญัอนัดบัสอง ตอ้งศึกษารูปแบบทัว่ไปของสมการเชิงเส้นในรูป '' 'u u u      แทน

สมการเชิงเส้นในรูปแบบของลาแกร์ (Laguerre form) ในส่วนท่ีสองไดน้ าเกณฑข์องการท าใหเ้ป็นเชิงเส้น

โดยการแปลงแบบทัว่ไปของซนัดแ์มนมาประยกุตใ์ชก้บัสมการเชิงอนุพนัธ์สามญัอนัดบัสาม ทั้งน้ีได้

ท าการศึกษาและน าเสนอเง่ือนไขท่ีจ าเป็นและเพียงพอส าหรับการท าให้เป็นเชิงเส้นในรูป ''' 0u u    

 

สาขาวชิาคณิตศาสตร์   

ปีการศึกษา 2554   

ลายมือช่ือนกัศึกษา____________________________ 

ลายมือช่ืออาจารยท่ี์ปรึกษา______________________ 

 
 

 

 

 

 

 

 



WARISA NAKPIM : LINEARIZATION OF SECOND-ORDER AND

THIRD-ORDER ORDINARY DIFFERENTIAL EQUATIONS BY GEN-

ERALIZED SUNDMAN TRANSFORMATIONS. THESIS ADVISOR :

PROF. SERGEY MELESHKO, Ph.D. 72 PP.

LINEARIZATION PROBLEM / GENERALIZED SUNDMAN TRANSFORMA-

TIONS / NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

This thesis is devoted to the study of the linearization problem of second-

order and third-order ordinary differential equations via generalized Sundman

transformations. The first problem considered in the thesis is related with the

application of generalized Sundman transformations to second-order ordinary dif-

ferential equations. The results obtained demonstrate that the solution given by

Duarte, Moreira and Santos using the Laguerre form is not complete. We also give

examples which show that the Laguerre form is not sufficient for the linearization

problem via generalized Sundman transformations. The equation u′′+βu′+αu = γ

should be used as the canonical linear equation for the linearization problem in-

stead of the Laguerre form. The second part of the thesis applies generalized

Sundman transformations to third-order ordinary differential equations. Neces-

sary and sufficient conditions for a third-order ordinary differential equation to be

linearizable into a linear equation u′′′ + αu = 0 are obtained.

School of Mathematics Student’s Signature

Academic Year 2011 Advisor’s Signature

 

 

 

 

 

 



ACKNOWLEDGEMENTS

This thesis could not have been completed without the help of my advisor,

Prof. Dr. Sergey Meleshko. I wish to thank him especially for his continuous

support throughout my Ph.D studies and research, for his patient help, his many

useful suggestions and his great efforts to explain things clearly and simply.

I would like to express my sincere gratitude to the Thesis Committee: Assoc.

Prof. Dr. Prapasri Asawakun, Asst. Prof. Dr. Eckart Schulz, and Assoc. Prof.

Dr. Nikolay Moshkin for their careful reading, insightful comments, and difficult

questions. I deeply appreciate their teaching and helping me during the course of

my studies at Suranaree University of Technology.

I am grateful to the external member of the Thesis Committee, Assoc. Prof.

Dr. Anatoli Loutsiouk, for his valuable discussions and comments. Also, I want to

thank Prof. Nagiza Samatova and Assoc. Prof. Dr. Anatoli Melechko who gave me

the opportunity to work with them and their Ph.D students at the Department of

Computer Science, College of Engineering, North Carolina State University, USA.

I would like to acknowledge the financial support for this research through

the Royal Golden Jubilee Ph.D. (RGJ-Ph.D.) Program of the Thailand Research

Fund (TRF).

I cordially thank Dr. Supaporn Suksern for her valuable advice and friendly

help.

Lastly, and most importantly, I am deeply grateful to my parents, Mr.

Somsak and Mrs. Kusuma Nakpim, for support, understanding and greatest love.

Warisa Nakpim

 

 

 

 

 

 



CONTENTS

Page

ABSTRACT IN THAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

ABSTRACT IN ENGLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . II

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . III

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

CHAPTER

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Historical review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Results obtained in the thesis . . . . . . . . . . . . . . . . . . . . . 4

II PRELIMINARY BACKGROUND . . . . . . . . . . . . . . . . 7

2.1 Point transformations . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 The mapping of a function by a point transformation . . . . 7

2.2 Tangent transformations . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Contact transformations . . . . . . . . . . . . . . . . . . . . 9

2.2.2 The mapping of a function by a contact transformation . . 9

2.3 Generalized Sundman transformations . . . . . . . . . . . . . . . . 10

2.3.1 The mapping of a function by a generalized Sundman trans-

formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 The equivalence problem . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 The Inverse function theorem . . . . . . . . . . . . . . . . . . . . . 12

2.6 Compatibility theory . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6.1 The Cartan approach . . . . . . . . . . . . . . . . . . . . . . 13

 

 

 

 

 

 



V

CONTENTS (Continued)

Page

2.6.2 The Riquier approach . . . . . . . . . . . . . . . . . . . . . . 13

2.6.3 Completely integrable systems . . . . . . . . . . . . . . . . . 14

2.7 Laguerre canonical form . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 The method of solving the linearization problem . . . . . . . . . . . 15

III LINEARIZATION OF SECOND-ORDER ORDINARY DIF-

FERENTIAL EQUATIONS BY GENERALIZED SUNDMAN

TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Necessary conditions for linearization . . . . . . . . . . . . . . . . . 18

3.2 Sufficient conditions for linearization . . . . . . . . . . . . . . . . . 20

3.2.1 Case λ3 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Case λ5 6= 0 . . . . . . . . . . . . . . . . . . . . . . . 22

Case λ5 = 0 . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Case λ3 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Case λ6 6= 0. . . . . . . . . . . . . . . . . . . . . . . 24

Case λ6 = 0. . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

IV LINEARIZATION OF THIRD-ORDER ORDINARY DIF-

FERENTIAL EQUATIONS BY GENERALIZED SUNDMAN

TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Necessary conditions for linearization . . . . . . . . . . . . . . . . . 33

4.2 Sufficient conditions for linearization . . . . . . . . . . . . . . . . . 34

4.2.1 Case λ6 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Case λ12 = 0 . . . . . . . . . . . . . . . . . . . . . . . 38

 

 

 

 

 

 



VI

CONTENTS (Continued)

Page

Case λ12 6= 0 . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.2 Case λ6 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Case λ13 = 0 . . . . . . . . . . . . . . . . . . . . . . . 39

Case λ13 6= 0 . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

V CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

APPENDICES

APPENDIX A REMARK TO POINT AND CONTACT TRANS-

FORMATIONS . . . . . . . . . . . . . . . . . . . . . . 53

Point transformations . . . . . . . . . . . . . . . . . . 53

Contact transformations . . . . . . . . . . . . . . . . 54

APPENDIX B THE LIE LINEARIZATION TEST . . . . . . . . . . . 57

Case ϕy 6= 0 . . . . . . . . . . . . . . . . . . . . . . . 59

Case ϕy = 0 . . . . . . . . . . . . . . . . . . . . . . . 60

APPENDIX C A LINEARIZATION PROBLEM OF SECOND-

ORDER ODEs UNDER CONTACT TRANSFORMA-

TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

APPENDIX D A PARTICULAR LINEARIZATION PROBLEM OF

SECOND-ORDER ODEs UNDER GENERALIZED

SUNDMAN TRANSFORMATIONS . . . . . . . . . . 64

 

 

 

 

 

 



VII

CONTENTS (Continued)

Page

Case S1 = 0 . . . . . . . . . . . . . . . . . . . . . . . 66

Case S1 6= 0 . . . . . . . . . . . . . . . . . . . . . . . 66

APPENDIX E THE APPLICATION OF GENERALIZED SUND-

MAN TRANSFORMATIONS . . . . . . . . . . . . . . 68

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

 

 

 

 

 

 



CHAPTER I

INTRODUCTION

The basic problem in the modeling of physical phenomena is to find so-

lutions of differential equations. In general, these equations are very difficult to

solve explicitly. Many solution methods make use of a change of variables that

transforms a given differential equation into another equation with known prop-

erties. Since the class of linear equations is considered to be the simplest class

of equations, there arises the question whether a given differential equation can

be transformed into a linear equation. This problem is called the linearization

problem.

Transformations used for solving the linearization problem considered in

the literature employ point transformations, contact transformations, reduction of

order, differentiation, differential substitutions and generalized Sundman transfor-

mations.

1.1 Historical review

The problem of linearizing a second-order ordinary differential equation via

point transformations was solved by Lie (1883). He showed that any linearizable

second-order equation can be at most cubic in the first-order derivative, and pro-

vided a linearization test in terms of its coefficients. Lie’s approach has also been

applied to third-order and fourth-order ordinary differential equations: In 1997,

Grebot studied the linearization of third-order ordinary differential equations by

means of a restricted class of point transformations, namely t = ϕ (x) , u = ψ (x, y).
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Complete criteria for linearization by means of point transformations were obtained

in (Ibragimov and Meleshko, 2005). The linearization of fourth-order ordinary dif-

ferential equations via point transformations was discussed by Ibragimov, Meleshko

and Suksern (2008). Two distinctly different classes for linearization are provided.

Another approach was developed by Cartan (1924). He used differential

geometry for solving the linearization problem. In 1940, Chern obtained conditions

for a third-order ordinary differential equation to be equivalent to the equations

u′′′ = 0 and u′′′ + u = 0 by using Cartan’s approach.

Lie (1883) also noted that all second-order ordinary differential equations

can be mapped into each other by means of contact transformations. Hence, the

solution of the linearization problem via contact transformations is trivial. Lin-

earization of third-order ordinary differential equations with respect to contact

transformations was studied by Neut and Petitot (2002). Ibragimov and Meleshko

(2005) presented the explicit form of the linearization criteria. In 2005, Dridi

and Neut solved a particular linearization problem for a fourth-order ordinary dif-

ferential equation. They found conditions for a fourth-order ordinary differential

equation to be equivalent to u(4) = 0 under contact transformations. Complete cri-

teria for fourth-order ordinary differential equations to be linearizable via contact

transformations were given by Suksern, Meleshko and Ibragimov (2009).

The generalized Sundman transformation takes an intermediate place be-

tween point and contact transformations. Since it is weaker than contact trans-

formations it can be applied to the linearization problem of second-order ordinary

differential equations. The generalized Sundman transformation was earlier con-

sidered for second-order ordinary differential equations by Duarte, Moreira and

Santos (1994) using the Laguerre form. The generalized Sundman transformation

was also applied in Euler, Wolf, Leach and Euler (2003) for obtaining necessary and
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sufficient conditions for a third-order ordinary differential equation to be equivalent

to the equation u′′′ = 0. Some applications of generalized Sundman transforma-

tions to ordinary differential equations were considered in Berkovich (2001) and

earlier papers, which are summarized in Berkovich (2002).

Sundman symmetries were first introduced in Euler, Wolf, Leach and Euler

(2003). They discovered that all third-order ordinary differential equations that

can be linearized to the equation

u′′′ = 0

by the generalized Sundman transformation

u(t) = F (x, y), dt = G(x, y)dx, (FyG 6= 0)

admit the symmetry

F (x̃, ỹ) = F−1(x, y), G(x̃, ỹ)dx̃ = F−3/2(x, y)G(x, y)dx

called a Sundman symmetry transformation. In 2004, Euler and Euler investigated

the Sundman symmetries of second-order autonomous equations

u′′ + a2(u)(u′)2 + a1(u)u′ + a0(u) = 0

where a0, a1 and a2 are differentiable functions. Moreover, they found the Sundman

symmetries of third-order autonomous equations

u′′′ + a5(u)(u′′)2 + a4(u)u′u′′ + a3(u)(u′)3 + a2(u)(u′)2 + a1(u)u′ + a0(u) = 0

where aj (j=0,1,...,5) are differentiable functions.

There are other approaches for solving the linearization problem of ordinary

differential equations. Ibragimov and Meleshko (2007) gave criteria for a second-

order ordinary differential equation to be linearizable by increasing the order of the
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equation using either differentiation of the equation or the Ricatti substitution. A

new algorithm for linearization of a third-order ordinary differential equation was

presented by Meleshko (2006). The algorithm consists of the composition of two

operations: first reducing the order of the equation, and then applying the Lie lin-

earization test to the obtained second-order ordinary differential equation. There

are several papers dealing with the increase of the order of an ordinary differential

equation (Ferapontov and Svirshchevskii, 2007; Andriopoulos and Leach, 2007) or

using a combination of reduction and increase of the order (Abraham-Shrauner,

1993).

Many applications of group analysis employ the use of Lie point symmetries.

For ordinary differential equations which are invariant under Lie point symmetries,

the order of the ordinary differential equation can be reduced by using the known

order-reduction processes. In 2001, Muriel and Romero introduced a new class of

symmetries and gave a reduction process for ordinary differential equations, using

the invariance of the equations under these symmetries.

1.2 Results obtained in the thesis

The studies considered in the thesis are related with the application of the

generalized Sundman transformation to the linearization problem of second-order

and third-order ordinary differential equations.

The first study presented in the thesis demonstrates that the equation

u′′ = 0 does not define the class of all equations which are linearizable by the

generalized Sundman transformation. Thus, the linearization problem considered

by Duarte, Moreira and Santos (1994) via the generalized Sundman transforma-

tion is not completely studied. The examples in this thesis show that in contrast

to point transformations, for the linearization problem via generalized Sundman
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transformations one needs to use the general form of a linear second-order ordinary

differential equation instead of the Laguerre form.

The second part of the thesis is devoted to applying generalized Sundman

transformations to third-order ordinary differential equations. We have obtained

necessary and sufficient conditions which allow the most general third-order ordi-

nary differential equation to be mapped into the form,

u′′′ + αu = 0, (1.1)

where α 6= 0 is constant. Note that according to the Laguerre theorem, one of the

canonical forms of a linear third-order ordinary differential equation is (1.1). If

α′(t) 6= 0, then equation (1.1) is mapped by the generalized Sundman transforma-

tion into a functional equation, which is not a differential equation.

The thesis is organized as follows. In chapter II, we introduce the back-

ground knowledge of point transformations, contact transformations, generalized

Sundman transformations and the main tools for the solving linearization prob-

lem, which are necessary for our study. In chapter III, we demonstrate that the

solution of the linearization problem via generalized Sundman transformations of

second-order ordinary differential equations given by Duarte, Moreira and Santos

(1994) only gives particular criteria for linearizable equations. Complete analysis

of compatibility of the arising equations is given for the case Fx = 0. We also give

examples which show that the Laguerre form is not sufficient for the linearization

problem via the generalized Sundman transformation. In chapter IV, necessary

and sufficient conditions which allow the most general third-order ordinary dif-

ferential equation y′′′ = f(x, y, y′, y′′) to be transformed to u′′′ + αu = 0 under a

generalized Sundman transformation

u = F (x, y), dt = G(x, y)dx, (FyG 6= 0),
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are obtained. Here α 6= 0 is constant. The conclusion of the thesis is presented in

the last chapter.

For solving the problem in the thesis, we have to solve the compatibility

problem, considering an overdetermined system of partial differential equations.

Compatibility analysis requires cumbersome symbolic calculations: prolongations

of a system, substitution of complicated expressions, and matrix calculations.

These operations consist of a large amount of analytical calculations. For this

purpose it is necessary to use a computer system for symbolic calculations. Hence,

the REDUCE system (Hearn, 1987) was used. REDUCE is a system for carrying

out algebraic operations accurately, no matter how complicated the expressions

become.

 

 

 

 

 

 



CHAPTER II

PRELIMINARY BACKGROUND

The generalized Sundman transformation can be considered as one of the

methods for solving ordinary differential equations. In this thesis, we apply the

generalized Sundman transformation to second-order and third-order ordinary dif-

ferential equations. Let us consider the main tools used in the thesis for solving

the linearization problem.

2.1 Point transformations

Definition 2.1. A transformation

t = ϕ(x, y),

u = ψ(x, y)

(2.1)

is called a point transformation. Here it is assumed that ϕxψy − ϕyψx 6= 0.

2.1.1 The mapping of a function by a point transformation

Assume that y0(x) is a given function. To obtain the transformed function

u0(t), start with the equation

t = ϕ(x, y0(x)).

Using Inverse Function Theorem, we can express x as x = α(t). Substituting x

into the function ψ(x, y0(x)), we get the transformed function

u0(t) = ψ(α(t), y0(α(t))).
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Conversely, we have to change u0(t) to y0(x). Applying the Inverse Function

Theorem to point transformations (2.1), we obtain

x = ϕ̃(t, u),

y = ψ̃(t, u).

(2.2)

Let u0(t) be a given function of t. The first equation of (2.2) becomes

x = ϕ̃(t, u0(t)).

Using the Inverse Function Theorem, we find t = H(x). Substituting t into the

function ψ̃(t, u0(t)), the transformed function y0(x) = ψ̃(H(x), u0(H(x))) is ob-

tained.

2.2 Tangent transformations

Let us consider the transformations of the independent, dependent variables

and their derivatives

x̄ = f(x, u, p), ū = φ(x, u, p), p̄ = ψ(x, u, p). (2.3)

Here p is the vector of derivatives of the function u with respect to x: pk =

u(k), (k = 1, 2, . . . , s).

Definition 2.2. A transformation (2.3) is called a tangent transformation if it

preserves the tangent conditions

dū− p̄1dx̄ = 0, dp̄k − p̄k+1dx̄ = 0.

Contact transformations are a special case of tangent transformations, for

which the transformation of the independent, dependent variables and the first

order partial derivatives are defined through the independent, dependent variables

and the first order partial derivatives:
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2.2.1 Contact transformations

Definition 2.3. A transformation

t = ϕ(x, y, y′),

u = ψ(x, y, y′),

s = g(x, y, y′)

(2.4)

is called a contact transformation if it obeys the contact condition

s = u′ =
du

dt
.

Let us explain how contact transformations map one function into another.

2.2.2 The mapping of a function by a contact transforma-

tion

Let y0(x) be a given function. The transformed function u0(t) is found from

the equations

t = ϕ (x, y0(x), y′0(x)) ,

u = ψ (x, y0(x), y′0(x)) .

Using the Inverse Function Theorem, the first equation gives x = τ(t). Substituting

x into the second equation, we obtain the transformed function

u0(t) = ψ (τ(t), y0(τ(t)), y′0(τ(t))) .

It is assumed that Dxϕ 6= 0. The derivative is

u′0(t) =
Dxψ

Dxϕ
(τ(t), y0(τ(t)), y′0(τ(t)), y′′0(τ(t))) ,

where

Dx =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ y′′′

∂

∂y′′
+ · · ·
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is the total derivative with respect to x.

The contact conditions require that

g(x, y, y′) =
Dxψ

Dxϕ
(x, y, y′, y′′) =

ψx + y′ψy + y′′ψy′

ϕx + y′ϕy + y′′ϕy′
. (2.5)

Thus equation (2.5) can be represented in the form

(g(ϕx + y′ϕy)− (ψx + y′ψy)) + y′′(gϕy′ − ψy′) = 0.

Since the contact condition is satisfied for any y′′, we obtain

g(ϕx + y′ϕy) = ψx + y′ψy,

gϕy′ = ψy′ .

(2.6)

2.3 Generalized Sundman transformations

Definition 2.4. A non-point transformation

u = F (x, y),

dt = G(x, y)dx

(2.7)

where FyG 6= 0 is called a generalized Sundman transformation.

2.3.1 The mapping of a function by a generalized Sund-

man transformation

Let us explain how a generalized Sundman transformation maps one func-

tion into another.

Assume that y0(x) is a given function. Integrating the second equation of

(2.7), we obtain t = Q(x), where

Q(x) = t0 +

x∫
x0

G(s, y0(s)) ds
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with some initial conditions t0 and x0. Using the inverse function theorem, we find

x = Q−1(t). Substituting x into the function F (x, y0(x)), we get the transformed

function

u0(t) = F
(
Q−1(t), y0(Q

−1(t))
)
.

Conversely, let u0(t) be a given function of t. Using the inverse function

theorem we solve the equation

u0(t) = F (x, y)

with respect to y: y = φ (x, t). Solving the ordinary differential equation

dt

dx
= G(x, φ(x, t)),

we find t = H(x). The function H(x) can be written as an action of a functional

H = L(u0). Substituting t = H(x) into the function φ(x, t), the transformed

function y0(x) = φ(x,H(x)) is obtained.

Notice that for the case Gy = 0 the action of the functional L does not

depend on the function u0(t). In this case the generalized Sundman transformation

becomes a point transformation. Conversely, since for a point transformation the

value dt in the generalized Sundman transformation is the total differential of

t, then the compatibility condition for dt to be a total differential leads to the

equation Gy = 0. Hence, the generalized Sundman transformation is a point

transformation if and only if Gy = 0.

Formulae (2.7) also allows us to obtain the derivatives of u0(t) through the

derivatives of the function y0(x), and vice versa.

Hence, using transformation (2.7), we can relate the solutions of two dif-

ferential equations Q(x, y, y′, . . . , y(n)) = 0 and P (t, u, u′, . . . , u(n)) = 0. Therefore

the knowledge of the general solution of one of them gives the general solution of
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the other equation, up to solving one ordinary differential equation of first-order

and finding two inverse functions.

2.4 The equivalence problem

Definition 2.5. Two equations are called equivalent if there exists an invertible

transformation such that one of the equations is transformed into the other.

Definition 2.6. The problem of finding all equations which are equivalent to a

given equation is called the equivalence problem. If the given equation is a linear

equation, then the equivalence problem is called the linearization problem.

2.5 The Inverse function theorem

Theorem 2.7. (Inverse Function Theorem). Let f : Rn → Rn be continuously

differentiable on some open set containing a, and suppose detJf(a) 6= 0, where J is

the Jacobian matrix. Then there is some open set V containing a and an open set

W containing f(a) such that f : V −→ W has a continuous inverse f−1 : W −→ V

which is differentiable for all y ∈ W .

2.6 Compatibility theory

There are two approaches for studying compatibility. These approaches are

related to the works of E. Cartan and C. H. Riquier. In this thesis the Riquier

approach is used.
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2.6.1 The Cartan approach

The Cartan approach is based on the calculus of exterior differential forms.

The problem of the compatibility of a system of partial differential equations is

then reduced to the problem of the compatibility of a system of exterior differen-

tial forms. Cartan studied the formal algebraic properties of systems of exterior

forms. For their description he introduced special integer numbers, called charac-

ters. With the help of the characters he formulated a criterion for a given system

of partial differential equations to be involutive.

2.6.2 The Riquier approach

The Riquier approach has a different theory of establishing the involution.

This method can be found in (Kuranashi, 1967) and (Pommaret, 1978). The main

advantage is that there is no necessity to reduce the system of partial differential

equations being studied to exterior differential forms. The calculations in the

Riquier approach are shorter than in the Cartan approach. The main operations

of the study of compatibility in the Riquier approach are prolongations of a systems

of a partial differential equations and the study of the ranks of some matrices.

Remark 2.1. In the thesis, the problem of obtaining sufficient condition

of linearization is to analyse compatibility of the overdetermined system. Analysis

of the compatibility of this system consists of comparing mixed derivatives.

Remark 2.2. Roughly writing, a system is involutive if it does not produce

new equations using differentiation and their linear combinations.
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2.6.3 Completely integrable systems

One class of overdetermined systems, for which the problem of compatibility

is solved, is the class of completely integrable systems.

Definition 2.8. A system

∂zi

∂aj
= f ij(a, z), (i = 1, 2, ..., N ; j = 1, 2, ..., r) (2.8)

is called completely integrable if it has a solution for any initial values a0, z0 in

some open domain D.

Theorem 2.9. A system of the type (2.8) is completely integrable if and only if

all of the mixed derivatives equalities

∂f ij
∂aβ

+
N∑
γ=1

fγβ
∂f ij
∂zγ

=
∂f iβ
∂aj

+
N∑
γ=1

fγj
∂f iβ
∂zγ

, (i = 1, 2, ..., N ; β, j = 1, 2, ..., r) (2.9)

are identically satisfied with respect to the variables (a, z) ∈ D.

Corollary 2.10. If in an overdetermined system of partial differential equations

all derivatives of order n are defined and comparison of all mixed derivatives of

order n + 1 does not produce new equations of order less or equal to n, then this

system is compatible.

2.7 Laguerre canonical form

According to the Laguerre theorem, in any linear ordinary differential equa-

tion the two terms of orders next below the highest can be simultaneously removed

by a point transformation.

Theorem 2.11. (Laguerre). Any linear kth-order ordinary differential equation

y(k) +
k−1∑
i=0

ai(x)y(i) = 0, k ≥ 3
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can be transformed by a point transformation to an equation of the form

y(k) +
k−3∑
i=0

ai(x)y(i) = 0.

Notice that the Laguerre forms of second-order and third-order ordinary

differential equations are the linear equations y′′ = 0 and y′′′+a0y = 0, respectively.

2.8 The method of solving the linearization problem

One of the classical methods for solving ordinary differential equations is

the Lie classical method. The first linearization problem for ordinary differential

equations was solved by Lie (1883). He showed that any second-order ordinary

differential equation y′′ = F (x, y, y′) obtained from a linear equation u′′ = 0 by a

change of the independent and dependent variables,

t = ϕ (x, y) , u = ψ (x, y) , (2.10)

is cubic in the first-order derivative:

y′′ + a (x, y) y′3 + b (x, y) y′2 + c (x, y) y′ + d (x, y) = 0, (2.11)

where

a = ∆−1 (ϕyψyy − ϕyyψy) ,

b = ∆−1 (ϕxψyy − ϕyyψx + 2 (ϕyψxy − ϕxyψy)) ,

c = ∆−1 (ϕyψxx − ϕxxψy + 2 (ϕxψxy − ϕxyψx)) ,

d = ∆−1 (ϕxψxx − ϕxxψx) .

Here the Jacobian of the change of variables is

∆ = ϕxψy − ϕyψx 6= 0.
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Moreover, a second-order ordinary differential equation is linearizable if and only

if it has the form (2.11) with the coefficients satisfying the conditions

H = 3axx − 2bxy + cyy − 3axc+ 3ayd+ 2bxb− 3cxa− cyb+ 6dya = 0,

K = bxx − 2cxy + 3dyy − 6axd+ bxc+ 3byd− 2cya− 3dxa+ 3dyb = 0.

For ordinary differential equations of higher order, the necessary form of an

equation to be linearizable by point transformations is ∗

y(i) + y(i−1)[A1y
′ + A0] + ... = 0,

or

y(i) + y(i−1)
1

y′ + r
[−y′′ i(i+ 1)

2
+ F2y

′ 2 + F1y
′ + F0] + ... = 0,

where i ≥ 3 is the order of the equation, Fj = Fj(x, y), Aj = Aj(x, y), and ...

denotes terms involving derivatives of order less than i− 1.

The linearization problem for second-order ordinary differential equations

via generalized Sundman transformations was investigated in Duarte, Moreira and

Santos (1994). They obtained that any second-order linearizable ordinary differ-

ential equation which can be mapped into the equation u′′ = 0 via a generalized

Sundman transformation has to be of the form

y′′ + λ2(x, y)y′2 + λ1(x, y)y′ + λ0(x, y) = 0. (2.12)

Using the functions

λ3 = λ1y − 2λ2x, λ4 = 2λ0yy − 2λ1xy + 2λ0λ2y − λ1yλ1 + 2λ0yλ2 + 2λ2xx,

they showed that equation (2.12) can be mapped into the equation u′′ = 0 via a

generalized Sundman transformation provided that the coefficients λi(x, y), (i =

0, 1, 2) satisfy the conditions:

∗A proof for third-order ODEs can be found in (Meleshko, 2005), a proof for the general case

is given in (Ibragimov, Meleshko and Suksern, 2008).
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(a) if λ3 = 0, then λ4 = 0;

(b) if λ3 6= 0, then λ4 6= 0 and the following equations have to be satisfied

λ24 + 2λ3xλ4 − 2λ23λ1x + 4λ23λ0y + 4λ23λ0λ2 − 2λ3λ4x − λ23λ21 = 0,

λ3yλ4 + λ23λ1y − 2λ23λ2x − λ3λ4y = 0.

Generalized Sundman transformations were also applied in Euler, Wolf,

Leach and Euler (2003) by using the well-known method for obtaining necessary

and sufficient conditions for a third-order ordinary differential equation to be equiv-

alent to the equation u′′′ = 0.

 

 

 

 

 

 



CHAPTER III

LINEARIZATION OF SECOND-ORDER

ORDINARY DIFFERENTIAL EQUATIONS

BY GENERALIZED SUNDMAN

TRANSFORMATIONS

In this chapter, generalized Sundman transformations are applied to a

second-order ordinary differential equation. Because of the nature of generalized

Sundman transformations, the composition of a point transformation with a gen-

eralized Sundman transformation is not necessarily a generalized Sundman trans-

formation. This means that for the linearization problem via generalized Sundman

transformations, it is not sufficient to use the Laguerre form. The calculations in

this chapter demonstrate that the solution given by Duarte, Moreira and Santos

(1994) is only a particular linearizability criterion.

3.1 Necessary conditions for linearization

We start with obtaining necessary conditions for the linearization problem.

First, we find the general form of a second-order ordinary differential equa-

tion

y′′ = H (x, y, y′) ,
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which can be mapped via a generalized Sundman transformation

u = F (x, y),

dt = G(x, y)dx
(3.1)

into the linear equation

u′′ + βu′ + αu = γ, (3.2)

where α(t), β(t) and γ(t) are some functions and FyG 6= 0. Notice that the Laguerre

form of a linear second-order ordinary differential equation corresponds to α =

0, β = 0 and γ = 0.

The function u and its derivatives u′ and u′′ are defined by the first formula

(3.1) and its derivatives with respect to x:

u′G = Fx + Fyy
′,

u′′G2 + u′(Gx +Gyy
′) = Fyy

′′ + 2Fxyy
′ + Fyyy

′2 + Fxx.

(3.3)

The independent variable t is defined by the functional L(u). As noted above, if

Gy 6= 0, then the action of the functional L depends on the function u. Hence, if

one of the coefficients in (3.2) is not constant and Gy 6= 0, then the substitution of t

into equation (3.2) gives a functional equation. Since the case Gy = 0 reduces the

generalized Sundman transformation to a point transformation, the generalized

Sundman transformation maps equation (3.2) into a differential equation only for

constant coefficients α, β and γ.

Finding the derivatives u′, u′′ from (3.3), and substituting them into (3.2)

with constant coefficients, we have the following equation

y′′ + λ2(x, y)y′2 + λ1(x, y)y′ + λ0(x, y) = 0, (3.4)

 

 

 

 

 

 



20

where the coefficients λi(x, y) (i = 0, 1, 2) are related to the functions F and G:

λ2 = (FyyG− FyGy)/K, (3.5)

λ1 = (2FxyG− FxGy − FyGx + FyβG
2)/K, (3.6)

λ0 = (FxxG− FxGx + FxβG
2 + αFG3 −G3γ)/K, (3.7)

and K = GFy 6= 0.

Equation (3.4) presents the necessary form of a second-order ordinary differ-

ential equation which can be mapped into a linear equation (3.2) via a generalized

Sundman transformation.

3.2 Sufficient conditions for linearization

For obtaining sufficient conditions, we have to solve the compatibility prob-

lem, considering (3.5)-(3.7) as an overdetermined system of partial differential

equations for the functions F and G with the given coefficients λi(x, y), (i = 0, 1, 2).

Notice that the compatibility conditions (3.5)-(3.7) for the particular case α =

0, β = 0 and γ = 0 were obtained in Duarte, Moreira and Santos (1994). This

case corresponds to the Laguerre form of a linear second-order ordinary differen-

tial equation. It is shown here that for the linearization problem via generalized

Sundman transformations it is not sufficient to use the Laguerre form.

The compatibility analysis depends on the value of Fx. A complete study

of all cases is cumbersome. Here a complete solution is given for the case where

Fx = 0.

Remark 3.1. The motivation of this chapter is to show that for generalized

Sundman transformations, in contrast to point or contact transformations, one

has to use equation (3.2) as the goal for linearization. The complete study of

compatibility of equations (3.5)-(3.7) was not the objective of this research.
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Solving equations (3.5)-(3.7) with respect to Fyy, β and γ, we find

Fyy = (GyFy + FyGλ2)/G, (3.8)

β = (Gx +Gλ1)/G
2, (3.9)

γ = (−Fyλ0 + αFG2)/G2. (3.10)

Since Fx = 0, then differentiating Fyy with respect to x, we obtain

GGxy −GxGy + λ2xG
2 = 0. (3.11)

Differentiating (3.9) and (3.10) with respect to x and y, we get the following

equations

Gxx = (2G2
x +GxGλ1 − λ1xG2)/G, (3.12)

Gxy = Gλ3 −Gyλ1, (3.13)

2Gxλ0 − λ0xG = 0, (3.14)

α = (−Gyλ0 +G(λ0y + λ0λ2))/G
3, (3.15)

where

λ3 = λ1y − 2λ2x.

Substituting (3.13) into (3.11), it becomes

GxGy +GyGλ1 −G2(λ2x + λ3) = 0. (3.16)

Comparing the mixed derivatives (Gxy)x = (Gxx)y, we find the equation

Gxλ3 −G(λ2xx + λ2xλ1 + λ3x) = 0. (3.17)

Differentiating α with respect to x and y, we have

2Gx(λ0y +λ0λ2)+Gy(λ0x+2λ0λ1)−G(λ0xy +λ0xλ2 +4λ2xλ0 +2λ0λ3) = 0, (3.18)

2GGyyλ0 − 6G2
yλ0 + 2GyG(3λ0y + 2λ0λ2)−G2(λ4 + 2λ5 − λ1λ3) = 0, (3.19)
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where

λ4 = 2λ0yy − 2λ1xy + 2λ0λ2y − λ1yλ1 + 2λ0yλ2 + 2λ2xx,

λ5 = λ2xx + λ2xλ1 + λ3x + λ1λ3.

Further analysis of the compatibility depends on λ3.

3.2.1 Case λ3 6= 0

From equation (3.17), we find

Gx = G(λ2xx + λ2xλ1 + λ3x)/λ3. (3.20)

Substituting Gx into equations (3.14), (3.16), (3.12) and (3.13), we obtain the

equations

λ0x = 2λ0(−λ1λ3 + λ5)/λ3, (3.21)

λ2xxy = −λ2xyλ1 − λ3xy − 2λ22x − 2λ2xλ3 − λ3yλ1 + (λ3yλ5)λ
−1
3 , (3.22)

λ2xxx = −λ3xx− λ1xλ2x− λ1xλ3 + λ2xλ
2
1 + λ21λ3− 2λ1λ5 + λ−13 λ5(λ3x + λ5), (3.23)

Gyλ5 −Gλ3(λ2x + λ3) = 0. (3.24)

Case λ5 6= 0

Equation (3.24) gives

Gy = Gλ3(λ2x + λ3)/λ5. (3.25)

Substituting Gy into equations (3.13), (3.18) and (3.19) and comparing the mixed

derivatives (Gx)y = (Gy)x, we get

λ3λ5(6λ0yλ2x + 2λ2xyλ0 + 4λ2xλ0λ2 + 2λ3yλ0 + 4λ0λ2λ3 + λ1λ5)

−λ23(6λ22xλ0 + 12λ2xλ0λ3 − 6λ0yλ5 + 6λ0λ
2
3)− λ4λ25 − 2λ35 = 0.

(3.26)
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Case λ5 = 0

Equations (3.21), (3.24), (3.22), (3.23), (3.18) and (3.19) become

λ0x = −2λ0λ1, (3.27)

λ2x = −λ3, (3.28)

2GGyyλ0 − 6G2
yλ0 + 2GyG(3λ0y + 2λ0λ2)−G2(λ4 − λ1λ3) = 0. (3.29)

If λ0 6= 0, then equation (3.29) defines

Gyy = (6G2
yλ0 − 2GyG(3λ0y + 2λ0λ2) +G2(λ4 − λ1λ3))/(2Gλ0). (3.30)

In this case, (Gyy)x = (Gxy)y and (Gx)yy = (Gyy)x are satisfied. Hence, there are

no other compatibility conditions. Thus, if λ3 6= 0 , λ5 = 0 and λ0 6= 0, then

conditions (3.27) and (3.28) are sufficient for equation (3.4) to be linearizable by

a generalized Sundman transformation.

If λ0 = 0, there are no other conditions.

Remark 3.2. If λ5 = 0, equations (3.21), (3.22), (3.23), (3.24) and (3.26)

become conditions (3.27) and (3.28) respectively.

Thus, sufficient conditions for equation (3.4) in the case λ3 6= 0 to be lin-

earizable by generalized Sundman transformation are (3.21), (3.22), (3.23) and

(3.26).

3.2.2 Case λ3 = 0

Notice that the particular case λ3 = 0 and λ4 = 0 was studied in Duarte,

Moreira and Santos (1994). Here the case λ3 = 0 and λ4 6= 0 is considered.

Equation (3.19) for λ3 = 0 becomes

2GGyyλ0 − 6G2
yλ0 + 2GyG(3λ0y + 2λ0λ2)−G2λ4 = 0. (3.31)
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The assumption λ0 = 0 leads to the contradiction that λ4 = 0. Hence, we

have to assume that λ0 6= 0.

Equations (3.17), (3.14) and (3.18) become

λ2xx = −λ2xλ1, (3.32)

Gx = (Gλ0x)/(2λ0), (3.33)

Gyλ0λ6 −G(λ6yλ0 − λ0yλ6) = 0, (3.34)

where

λ6 = λ0x + 2λ0λ1.

Substituting Gx into equations (3.13) and (3.12), we get

λ6y = (λ0yλ6 + 2λ2xλ
2
0)/λ0, (3.35)

λ6x = (3λ6(λ6 − 2λ0λ1))/(2λ0). (3.36)

Case λ6 6= 0.

From equations (3.34), we find

Gy = G(−λ0yλ6 + λ6yλ0)/(λ0λ6).

Substituting Gy into equations (3.13) and (3.31), and comparing the mixed deriva-

tives (Gx)y = (Gy)x, we obtain

λ4x = (−24λ22xλ
3
0 − 4λ0λ1λ4λ6 + λ4λ

2
6)/(2λ0λ6). (3.37)

Case λ6 = 0.

In this case equation (3.34) is satisfied. We need to check the only condition

(Gyy)x = (Gx)yy, which is

λ4x = −2λ1λ4, (3.38)
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Equation (3.35) becomes

λ2x = 0. (3.39)

Remark 3.3. If λ6 = 0, equations (3.35) becomes condition (3.39).

All obtained results can be summarized to a theorem.

Theorem 3.1. Sufficient conditions for equation (3.4) to be linearizable via a

generalized Sundman transformation with Fx = 0 are as follows.

(a) If λ3 6= 0, then the conditions are (3.21), (3.22), (3.23) and (3.26).

(b) If λ3 = 0, λ6 6= 0, then the conditions are (3.32), (3.35), (3.36) and (3.37).

(c) If λ3 = 0, λ6 = 0, then the conditions are (3.32), (3.35), (3.36) and (3.38).

Remark 3.4. These conditions extend the criteria obtained in Duarte,

Moreira and Santos (1994).

3.3 Examples

Here, we will give examples demonstrating the obtained results. The equa-

tions in the examples are not linearizable by point transformations and also do not

satisfy the conditions of Duarte, Moreira and Santos (1994).

Example 3.1. Consider the nonlinear ordinary differential equation

y′′ + (1/y)y′2 + yy′ + 1/2 = 0. (3.40)

Since this equation does not satisfy the Lie criteria (Lie, 1883) for linearization it

is not linearizable by point transformations. Equation (3.40) is of the form (3.4)

with coefficients

λ2 = 1/y , λ1 = y , λ0 = 1/2. (3.41)
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It is straightforward to check that the coefficients (3.41) obey the conditions (3.21),

(3.22), (3.23) and (3.26). Thus, equation (3.40) is linearizable via generalized

Sundman transformation.

For finding the functions F and G we have to solve equations (3.8), (3.20)

and (3.25), which become

Fx = 0 , Fyy = (2Fy)/y , Gx = 0 , Gy = G/y.

We take the simplest solution, F = y3 and G = y, which satisfies (3.8),

(3.20) and (3.25). We obtain the transformation

u = y3, dt = ydx. (3.42)

Equations (3.9), (3.10) and (3.15) give

β = 1 , γ = −3/2 , α = 0.

Hence equation (3.40) is mapped by the transformation (3.42) into the linear equa-

tion

u′′ + u′ + 3/2 = 0. (3.43)

The general solution of equation (3.43) is

u = c1 + c2e
−t − 3t/2,

where c1, c2 are arbitrary constants. Applying the generalized Sundman transfor-

mation (3.42) to equation (3.40) we obtain that the general solution of equation

(3.40) is

y(x) = (c1 + c2e
−φ(x) − 3φ(x)/2)1/3,

where the function t = φ(x) is a solution of the equation

dt

dx
= (c1 + c2e

−t − 3t/2)1/3.
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For example, if c1 = c2 = 0, then we obtain the particular solution of equation

(3.40)

y = (−x)1/2.

Example 3.2. Consider the nonlinear ordinary differential equation

y′′ + xy′2 + yy′ + 1/e2xy = 0. (3.44)

Equation (3.44) is of the form (3.4) with coefficients

λ2 = x , λ1 = y , λ0 = 1/e2xy. (3.45)

One easily checks that the coefficients (3.45) do not satisfy the conditions of lin-

earizability by point transformations, but they obey the conditions (3.27) and

(3.28). Thus, equation (3.44) is linearizable via a generalized Sundman transfor-

mation.

For finding the functions F and G we have to solve equations (3.8), (3.20)

and (3.30), which become

Fx = 0 , Fyy = (GyFy + FyGx)/G ,

Gx = −yG , Gyy = (3G2
y + 4GyGx+ 2G2x2)/G.

We take the simplest solution, F = y and G = e−xy, which satisfies (3.8),

(3.20) and (3.30). The linearizing generalized Sundman transformation is

u = y, dt = e−xydx. (3.46)

Equations (3.9), (3.10) and (3.15) give

β = 0 , γ = −1 , α = 0.

Hence equation (3.44) is mapped by the transformation (3.46) into the linear equa-

tion

u′′ + 1 = 0. (3.47)
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The general solution of equation (3.47) is

u = −t2/2 + c1t+ c2,

where c1, c2 are arbitrary constants. Applying the generalized Sundman transfor-

mation (3.46) to equation (3.44) we obtain that the general solution of equation

(3.44) is

y(x) = −φ(x)2/2 + c1φ(x) + c2,

where the function t = φ(x) is a solution of the equation

dt

dx
= e−x(−t

2/2+c1t+c2).

Example 3.3. Consider the nonlinear second-order ordinary differential

equation

y′′ + µ3y
k3y′2 + µ2y

k2y′ + µ1y
k1 = 0, (3.48)

where k1, k2, k3, µ1, µ2 and µ3 6= 0 are arbitrary constants. The Lie criteria (Lie,

1883) show that the nonlinear equation (3.48) is linearizable by a point transfor-

mation if and only if µ1 = 0 and µ2 = 0.

From equation (3.48), the coefficients are

λ0 = µ1y
k1 , λ1 = µ2y

k2 , λ2 = µ3y
k3 , λ3 = µ2k2y

k2/y,

λ4 = 2µ1y
(k1+k3)+1(k1µ3 + k3µ1) + 2µ1y

k1(k21 − k1)− k2µ2
2y

2k2+1/y2,

λ5 = k2µ
2
2y

2k2/y.

(3.49)

If µ2 6= 0 and µ1 = 0, then λ3 6= 0 and λ5 6= 0. We can check that the

coefficients obey the conditions (3.21), (3.22), (3.23) and (3.26). Thus, equation

y′′ + µ3y
k3y′2 + µ2y

k2y′ = 0 (3.50)

is linearizable by a generalized Sundman transformation.
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For finding the functions F and G we have to solve equations (3.8), (3.20)

and (3.25), which become

Fx = 0 , Fyy = Fy(µ3y
k3+1 + k2)/y , Gx = 0 , Gy = Gk2/y.

For example, if k2 = k3, we take the simplest solution, F = 1
µ3
e
µ3y

k2+1

k2+1 and

G = yk2 , and the generalized Sundman transformation becomes

u =
1

µ3

e
µ3y

k2+1

k2+1 , dt = yk2dx. (3.51)

Equations (3.9), (3.10) and (3.15) give

β = µ2, γ = 0, α = 0.

Hence equation (3.50) is mapped by the transformation (3.51) into the linear equa-

tion

u′′ + µ2u
′ = 0. (3.52)

If µ3 = 0, then equation (3.48) is

y′′ + µ2y
k2y′ + µ1y

k1 = 0, (3.53)

where µ2 6= 0. The Lie criteria (Lie, 1883) show that the nonlinear equation

(3.53) is linearizable by a point transformation if and only if k1 = 3, k2 = 1 and

µ1 = (µ2/3)2. In the particular case, k1 = 3, k2 = 1, µ1 = 1 and µ2 = 3, we have

the equation

y′′ + 3yy′ + y3 = 0. (3.54)

Equation (3.54) arises in many areas. Some of these are the analysis of the fusion of

pellets, the theory of univalent functions, the stability of gaseous spheres, operator

Yang-Baxter equations, motion of a free particle in a space of constant curvature,

the stationary reduction of the second member of the Burgers hierarchy (Karasu

and Leach, 2009).
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Remark 3.5. Equation (3.54) is linearizable by a point transformation

and by a generalized Sundman transformation into the equations u′′ = 0 and

u′′ + 3u′ + 2u = 0, respectively.

Without loss of the generality∗, we can assume that µ2 = 1. Hence, equation

(3.53) becomes

y′′ + yk2y′ + µ1y
k1 = 0. (3.55)

For this equation the coefficients are

λ0 = µ1y
k1 , λ1 = yk2 , λ2 = 0, λ3 = k2y

k2−1,

λ4 = µ1k1(k1 − 1)yk1−2 − k2y2k2−1, λ5 = k2y
2k2+1.

If k2 = 0, then λ5 = 0 and equation (3.55) is linearizable by a generalized

Sundman transformation.

If k2 6= 0, then λ5 6= 0 and conditions (3.21), (3.22), (3.23), (3.26) are

reduced to

µ1(2k2 + 1− k1)(k2 − k1) = 0. (3.56)

If conditions (3.56) are satisfied, then equation (3.55) is linearizable by a general-

ized Sundman transformation. Notice that in the case µ1(k2 − k1) = 0, equation

(3.55) is trivially integrated by using the substitution y′ = H(y). A nontrivial case

is k1 = 2k2 + 1. In this case the functions F and G are solutions of the compatible

overdetermined system of equations

Fx = 0, Fyy = k2Fy/y, Gx = 0, Gy = k2G/y. (3.57)

The general solution of equations (3.57) depends on the value of the constant k2.

For example, if k2 6= −1, then a particular solution of system (3.57) is

F = yk2+1, G = yk2 .

∗For example, scaling of the independent variable: x = µ2x.
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Thus, the generalized Sundman transform reduces equation (3.55) into the linear

equation

u′′ + u′ + (µ1(k2 + 1))u = 0. (3.58)

Remark 3.6. Since equations (3.40), (3.48) and (3.53) are autonomous,

their order can be reduced by the substitution y′ = f(y). It is worth to note that

for equations (3.48) and (3.53) the difficulties in using the generalized Sundman

transformation are similar to solving the original equation by this reduction.

 

 

 

 

 

 



CHAPTER IV

LINEARIZATION OF THIRD-ORDER

ORDINARY DIFFERENTIAL EQUATIONS

BY GENERALIZED SUNDMAN

TRANSFORMATIONS

In this chapter we focus on the necessary and sufficient conditions which

allow the most general third-order ordinary differential equation

y′′′ = f(x, y, y′, y′′) (4.1)

to be mapped into the equation

u′′′ + αu = 0, (4.2)

where α 6= 0 is constant. The linerization is considered with respect to the gener-

alized Sundman transformation

u = F (x, y),

dt = G(x, y)dx
(4.3)

where FyG 6= 0.

Recall that the linearization problem via generalized Sundman transfor-

mations for third-order ordinary differential equations has been investigated by

Euler, Wolf, Leach and Euler (2003). They found conditions for all equations (4.1)

which are equivalent to a linear equation u′′′ = 0. This means that they only

gave a particular criterion for applying the generalized Sundman transformation
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for the linearization problem. The main motivation of the study in this chapter

is to extend the equivalence classes of linearizable third-order ordinary differential

equations.

4.1 Necessary conditions for linearization

This section is devoted to finding a representation of a third-order ordinary

differential equation (4.1) which can be obtained from a linear equation (4.2) by

applying a generalized Sundman transformation.

The function u and its derivatives u′ and u′′ are defined by the first formula

(4.3) and its derivatives with respect to x:

u′G = Fx + Fyy
′,

u′′G2 + u′(Gx +Gyy
′) = Fyy

′′ + 2Fxyy
′ + Fyyy

′2 + Fxx,

u′′′G3 + 3Gu′′(Gx +Gyy
′) + u′(Gyy

′′ + 2Gxyy
′ +Gyyy

′2 +Gxx)

= Fyy
′′′ + 3Fyyy

′y′′ + 3Fxyy
′′ + 3Fxyyy

′2 + 3Fxxyy
′ + FyyyFxxxy

′3.

(4.4)

Finding the derivatives u′, u′′, u′′′ from (4.4) and substituting them into (4.2), we

obtain the following equation

y′′′ + λ5(x, y)y′′ + λ4(x, y)y′y′′ + λ3(x, y)y′3 + λ2(x, y)y′2

+λ1(x, y)y′ + λ0(x, y) = 0,
(4.5)
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where the coefficients λi(x, y), (i = 0, 1, ..., 5) are related to the functions F and G:

λ5 = (3FxyG− FxGy − 3FyGx)/(FyG), (4.6)

λ4 = (3FyyG− 4FyGy)/(FyG), (4.7)

λ3 = (FyyyG
2 − 3FyyGyG− FyGyyG+ 3FyG

2
y)/(FyG

2), (4.8)

λ2 = (3FxyyG
2 − 6FxyGyG− FxGyyG+ 3FxG

2
y − 3FyyGxG (4.9)

−2FyGxyG+ 6FyGxGy)/(FyG
2),

λ1 = (−6FxyGxG+ 3FxxyG
2 − 3FxxGyG− 2FxGxyG+ 6FxGxGy (4.10)

−FyGxxG+ 3FyG
2
x)/(FyG

2),

λ0 = (FxxxG
2 − 3FxxGxG− FxGxxG+ 3FxG

2
x + FG5α)/(FyG

2). (4.11)

Equation (4.5) presents the necessary form of a third-order ordinary differ-

ential equation which can be mapped to a linear equation (4.2) via a generalized

Sundman transformation.

Notice that if α = 0, then equations (4.6)-(4.11) coincide with the corre-

sponding equations of Euler, Wolf, Leach and Euler (2003).

4.2 Sufficient conditions for linearization

For obtaining sufficient conditions we have to solve the compatibility prob-

lem by considering equations (4.6)-(4.11) as an overdetermined system of par-

tial differential equations for the functions F and G with the given coefficients

λi(x, y), (i = 0, 1, ..., 5). Complete criteria for third-order ordinary differential

equations to be linearizable to equation (4.2) via the generalized Sundman trans-

formation are obtained here.
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From equations (4.6)-(4.11), we can find the derivatives of F and G:

Fxy = (FxGy + 3FyGx + FyGλ5)/(3G), (4.12)

Fyy = (Fy(4Gy + 4λ4G))/(3G), (4.13)

Fxxx = (3FxxGxG+ FxGxxG− 3FxG
2
x − FG5α + λ0FyG

2)/(G2), (4.14)

Gyy = (FyyyG
2 − λ3FyG2 − 3FyyGyG+ 3FyG

2
y)/(FyG), (4.15)

Gxy = (3FxyyG
2 − λ2FyG2 − 6FxyGyG− FxGyyG+ 3FxG

2
y (4.16)

−3FyyGxG+ 6FyGxGy)/(2FyG),

Gxx = (3FxxyG
2 − λ1FyG2 − 6FxGxG− 3FxxGyG (4.17)

−2FxGxyG+ 6FxGxGy + 3FyG
2
x)/(FyG).

The right hand sides of equations (4.12)-(4.17) can be written through the first-

order derivatives of the functions F , G and the derivative Fxx. For example, after

substituting Fyyy, found by differentiating (4.13) with respect to y, into (4.15)

we find the expression of the derivative Gyy through first-order derivatives of the

functions F and G. Later we refer to equations (4.12)-(4.17) as expressions of the

derivatives presented in the left hand sides through the first-order derivatives of

the functions F , G and the derivative Fxx.

Comparing the mixed derivatives

(Fxy)y = (Fyy)x, (Fxxx)y = (Fxy)xx,

(Gxy)x = (Gxx)y, (Gxy)y = (Gyy)x,
(4.18)

new equations for the functions, F and G, are obtained. One of these equations is

Fxλ6 + Fyλ7 = 0, (4.19)

where

λ6 = −3λ4y + 9λ3 − λ24,

λ7 = −3λ4x + 6λ5y − 3λ2 + λ4λ5.

Further analysis of the compatibility depends on the value of λ6.
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4.2.1 Case λ6 6= 0

Assuming that λ6 6= 0, equation (4.19) gives

Fx = −Fyλ7/λ6. (4.20)

Substituting Fx into (4.12) and (4.14), we obtain the following equations

Gx = (−3Gyλ6λ7 +G(3λ6yλ7 − 3λ7yλ6 − λ4λ6λ7 − λ5λ26))/(3λ26), (4.21)

α = (Fyλ8)/(9FG
3λ46), (4.22)

where

λ8 = 9λ26(λ7xxλ6 − λ6xxλ7) + (3λ5x + 2λ25)λ
3
6λ7 + 3λ5yλ

2
6λ

2
7

+3λ6x(6λ6xλ6λ7 + 3λ6yλ
2
7 − 6λ7xλ

2
6 − 3λ7yλ6λ7 − λ4λ6λ27 − 3λ5λ

2
6λ7)

−3λ6y(3λ7xλ6λ7 + λ5λ6λ
2
7) + 3λ7x(λ4λ

2
6λ7 + 3λ5λ

3
6) + λ26(3λ7yλ5λ7

+9λ0λ
2
6 − 3λ2λ

2
7 + 2λ4λ5λ

2
7).

Since the case α = 0 was studied in Euler, Wolf, Leach and Euler (2003), further

study is considered for α 6= 0. From equation (4.22) we get that λ8 6= 0.

Substituting Gx into (4.16) and (4.17), we obtain the conditions

9λ2yλ6 − 27λ3yλ6 + 15λ5yλ4λ6 + 3λ6yλ6 − 6λ6yλ7 + 9λ7yλ6 − 12λ2λ4λ6

−9λ3λ5λ6 + 5λ24λ5λ6 + 4λ4λ6λ7 − λ5λ26 = 0,
(4.23)

−18λ5xyλ
2
6 − λ26(18λ1y − 36λ2y + 12λ5xλ4 + 24λ5yλ5 + 12λ7x − 24λ2λ5

+8λ4λ
2
5 + 9λ5λ7) + 9λ5y(2λ6yλ7 − 2λ7yλ6 + λ4λ6λ7)− 6λ6y(3λ2λ7

−λ4λ5λ7) + 3λ6λ7y(6λ2 − 2λ4λ5λ7) + λ6λ7(−6λ2λ4λ6λ7

−9λ3λ5 + 3λ24λ5 + 2λ4 + 9λ2y − 27λ3x + 9λ6x) = 0.

(4.24)

Differentiating α with respect to x and y, we obtain

−4λ6xλ6λ8 − 6λ6yλ7λ8 + 2λ7yλ6λ8 + λ8xλ
2
6 + λ8yλ6λ7

+λ8λ6(λ4λ7 + λ5λ6) = 0,
(4.25)
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Fy = −5GyFλ6λ8 + FG(−12λ6yλ8 + 3λ8yλ6 + λ4λ6λ8)/(3Gλ6λ8). (4.26)

Substituting Fy into (4.20), we get

Fx = 5GyFλ6λ7λ8 + FGλ7(12λ6yλ8 − 3λ8yλ6 − λ4λ6λ8)/(3Gλ26λ8). (4.27)

Because the derivatives, Fxy and Fyy, have been found from equations (4.12) and

(4.13), we need to consider the equations

(Fx)y − Fxy = 0,

(Fy)y − Fyy = 0.

These equations become

35λ26λ8(
Gy

G
)2 − 14λ10λ6(

Gy

G
)− λ9 = 0, (4.28)

9λ7yyλ
2
6 − 9λ6yyλ6λ7 + 18λ26yλ7 + λ36(−6λ5y + 9λ2 − 3λ4λ5λ

3
6 − 2λ7)

+λ26(3λ7yλ4 + 9λ3λ7 − λ24λ7)− 3λ6yλ6(6λ7y + λ4λ7) = 0,
(4.29)

where

λ9 = 36λ6yyλ6λ8 − 9λ8yyλ
2
6 − 180λ26yλ8

+12λ6y(6λ8yλ6 + λ4λ6λ8) + λ26(−3λ8yλ4 − 9λ3λ8 + λ24λ8)− 6λ36λ8,

λ10 = (3λ8y + λ4λ8)λ6 − 12λ6yλ8.

Equation (4.28) leads to the condition that 7λ210 + 5λ8λ9 ≥ 0.

Differentiating (4.28) with respect to x and y, we obtain

70λ36λ8(3λ10λ2 − λ10λ4λ5 − 3λ5yλ10) + 15λ26λ8(λ9x + λ5λ9)

−10λ8λ9(9λ6xλ6 + 6λ6yλ7 − 6λ7yλ6 − 2λ4λ6λ7) + (9λ10λ9 + λ11)λ7 = 0,
(4.30)

18Gyλ6λ12 −Gλ11 = 0, (4.31)

where

λ11 = −90λ6yλ8λ9 + 15λ9yλ6λ8 − 70λ10λ
3
6λ8 − 9λ10λ9 − 5λ4λ6λ8λ9,

λ12 = 7λ210 + 5λ8λ9.

Further study depends on λ12.
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Case λ12 = 0

From equation (4.31) we have the condition

λ11 = 0. (4.32)

Thus we have shown that, if λ6 6= 0 and λ12 = 0, then conditions (4.23), (4.24),

(4.25) and (4.32) are sufficient for equation (4.5) to be linearizable by a generalized

Sundman transformation. These conditions guarantee that the overdetermined

system of equations (4.21), (4.26), (4.27) and (4.28) for the functions F and G is

compatible.

Case λ12 6= 0

From equation (4.31) we find

Gy = Gλ11/(18λ6λ12). (4.33)

Substituting Gy into (4.15), (4.16), (4.28), (4.21), (4.26) and (4.27), we get

27λ11yλ12λ6 − 27λ12yλ11λ6 − 27λ6yλ11λ12 − λ211

−9λ11λ12λ4λ6 + 162λ212λ
3
6 = 0,

(4.34)

λ11xλ12λ
2
6 + λ11yλ12λ6λ7 − λ12xλ11λ26 − λ12yλ11λ6λ7

+18λ5yλ
2
12λ

3
6 − λ6xλ11λ12λ6 − 2λ6yλ11λ12λ7 + λ7yλ11λ12λ6

−18λ212λ2λ
3
6 + 6λ212λ4λ5λ

3
6 − 6λ212λ

3
6λ7 = 0,

(4.35)

3528λ11λ12λ
3
6(λ10λ12 − 7λ310) + 756λ11λ12λ6(14λ10yλ10λ9 − λ12yλ9)

+7λ11λ12λ9(1080λ6yλ12 − 7560λ6yλ
2
10 + 324λ10λ9 + 41λ11)

−245λ210λ
2
11λ9 − 1620λ212λ

3
9 = 0,

(4.36)

Gx = G(18λ6yλ12λ7 − 18λ7yλ12λ6 − λ11λ7 − 6λ12λ4λ6λ7

−6λ12λ5λ
2
6)/(18λ12λ

2
6),

(4.37)
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Fx = Fλ7(−126λ310 − 90λ10λ8λ9 + 5λ11λ8)/(54λ26λ8λ12), (4.38)

Fy = F (126λ310 + 90λ10λ8λ9 − 5λ11λ8)/(54λ6λ8λ12). (4.39)

Thus we have shown that, if λ6 6= 0 and λ12 6= 0, then conditions (4.23),

(4.24), (4.25), (4.34), (4.35) and (4.36) are sufficient for equation (4.5) to be lin-

earizable by a generalized Sundman transformation. These conditions guarantee

that the overdetermined system of equations (4.33), (4.37), (4.38) and (4.39) for

the functions F and G is compatible.

4.2.2 Case λ6 = 0

Since Fy 6= 0, from (4.19), we get

λ7 = 0. (4.40)

From the last two equations of (4.18), we obtain

−3λ13(FxGy − FyGx) + FyG(−9λ1y − 3λ13x + 9λ2x − 3λ5xλ4 − λ13λ5

+3λ2λ5 − λ4λ25) = 0,
(4.41)

9λ2y − 27λ3x + 15λ5yλ4 − 12λ2λ4 − 9λ3λ5 + 5λ24λ5 = 0, (4.42)

where

λ13 = 3λ5y − 3λ2 + λ4λ5.

Case λ13 = 0

Equation (4.41) gives the condition

−9λ1y + 9λ2x − 3λ5xλ4 + 3λ2λ5 − λ4λ25 = 0. (4.43)

Thus we have shown that, if λ6 = 0 and λ13 = 0, then conditions (4.40), (4.42) and

(4.43) are sufficient for equation (4.5) to be linearizable by a generalized Sundman
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transformation. These conditions guarantee that the overdetermined system of

equations (4.12)-(4.17) for the functions F and G is compatible.

Case λ13 6= 0

From equation (4.41) we find

Gx = (3FxGyλ13 + FyG(9λ1y + 3λ13x − 9λ2x + 3λ5xλ4 + λ13λ5

−3λ2λ5 + λ4λ
2
5))/(3Fyλ13).

(4.44)

Substituting Gx into (4.16) and (4.17), we obtain the following equations

−27λ1yy + 9λ1yλ4 − 18λ13xλ4 − 27λ2xλ4 + 81λ3xx + 54λ3xλ5 + 9λ5xλ
2
4

−16λ213 − 24λ13λ2 + 2λ13λ4λ5 − 9λ2λ4λ5 + 3λ24λ
2
5 = 0,

(4.45)

Fx = Fyλ14/3λ
3
13, (4.46)

where

λ14 = 18λ13(3λ1xy + λ13xx − 3λ2xx + λ5xxλ4)

+18λ1y(9λ2x − 6λ13x − 3λ5yλ4 − λ13λ5 + 3λ2λ5 − λ4λ25)

+12λ13x(9λ2x − 3λ5yλ4 + 3λ2λ5 − λ4λ25) + 18λ2x(3λ5xλ4 − 3λ2λ5 + λ4λ
2
5)

−3λ5x(3λ5xλ
2
4 − 9λ213 − 6λ2λ4λ5 + 2λ24λ

2
5)− 9λ1λ

2
13 + 6λ213λ

2
5 + 12λ13λ2λ

2
5

−4λ13λ4λ
3
5 − 9λ22λ

2
5 + 6λ2λ4λ

3
5 − 6λ1xλ13λ5 − 81λ21y − 27λ213x − λ24λ45.

Substituting Fx into (4.12) and (4.14) we find that

α = (Fyλ15)/(81FG3λ513),

where

λ15 = 9λ13(9λ13xxλ14 − 3λ14xxλ13)− 27λ1y(9λ13xλ14 − 3λ14xλ13 − λ13λ14λ5)

−9λ13x(45λ14 − 21λ14xλ13 − 27λ2xλ14 + 9λ5xλ14λ4 − 4λ13λ14λ5 − 9λ14λ2λ5

+3λ14λ4λ
2
5)− 9λ13λ14x(9λ2x − 3λ5xλ4 + λ13λ5 + 3λ2λ5 − λ4λ25)

−3λ13λ14(9λ2xλ5 + 3λ5xλ13 − 3λ5xλ4λ5 + 3λ2λ
2
5 − λ4λ35) + 81λ0λ

5
13 + λ214.
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By virtue of the condition α 6= 0, we have that λ15 6= 0.

Differentiating α with respect to x and y, we obtain the equations

−3λ213λ15(18λ1y + 21λ13x − 18λ2xλ15 + 6λ5xλ4 − 6λ2λ5 + 2λ4λ
2
5)

+3λ313(3λ15x − λ15λ5)− λ14(3λ15y − 4λ15λ4) = 0,
(4.47)

Gy = −3FyGλ15 + FG(3λ15y − 4λ15λ4)/5Fλ15. (4.48)

Substituting Gy into (4.15) and (4.16), we get

Fy = βFλ16/(3λ15), (4.49)

where β2 = 1 and

λ216 = (−45λ15yyλ15 + 63λ215y − 33λ15yλ15λ4 + 180λ215λ3 − 8λ215λ
2
4)/7.

Substituting Fy into (4.12) and (4.13), we find the conditions

−5λ213λ15λ16(9λ1y + 8λ13y − 9λ2x + 3λ5xλ4 + λ13λ5 − 3λ2λ5 + λ4λ
2
5)

−3λ15yλ14λ16 + 5λ16xλ
3
13λ15 + λ14λ16(4λ15λ4 + λ16) = 0,

(4.50)

−27λ15yλ16 + 15λ16yλ15 + 11λ15λ16λ4 + 9λ216 = 0. (4.51)

Thus we have shown that, if λ6 = 0 and λ13 6= 0, conditions (4.40), (4.42), (4.45),

(4.47), (4.50) and (4.51) are sufficient for equation (4.5) to be linearizable by a

generalized Sundman transformation. These conditions guarantee that the overde-

termined system of equations (4.44), (4.46), (4.48) and (4.49) for the functions F

and G is compatible.

Combining all results obtained, the following theorem is proven.

Theorem 4.1. Sufficient conditions for equation (4.5) to be linearizable to equa-

tion (4.2) by a generalized Sundman transformation are following.
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(a) If λ6 6= 0 and λ12 = 0, then these conditions are (4.23), (4.24), (4.25) and

(4.32).

(b) If λ6 6= 0 and λ12 6= 0, then these conditions are (4.23), (4.24), (4.25), (4.34),

(4.35) and (4.36).

(c) If λ6 = 0, λ13 = 0, then these conditions are (4.40), (4.42) and (4.43).

(d) If λ6 = 0, λ13 6= 0, then these conditions are (4.40), (4.42), (4.45), (4.47),

(4.50) and (4.51).

4.3 Example

Here, we give examples demonstrating the obtained results.

Example 4.1.

Consider the nonlinear third-order ordinary differential equation

y′′′ − 4

y
y′y′′ +

3

y2
y′3 + y4 = 0. (4.52)

It is an equation of the form (4.5) with the coefficients

λ0 = y4 , λ1 = 0 , λ2 = 0 , λ3 = 3
y2
, λ4 = −4

y
, λ5 = 0.

Notice that

λ6 = −y−2 6= 0,

λ12 = (81(−1440y10 + 827y8 − 48384y4 + 145152))/y22 6= 0.

One easily checks that these coefficients obey conditions (b) of the theorem.

Thus equation (4.52) is linearizable via a generalized Sundman transformation.

For the functions F and G we have to solve equations (4.33), (4.37), (4.38) and

(4.39), which become

Gy = G/y, Gx = 0,
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Fx = 0, Fy = F/y.

We take its simplest solution, F = y and G = y, which satisfies (4.33),

(4.37), (4.38) and (4.39). We obtain the transformation

u = y, dt = ydx. (4.53)

Since λ8 = 9/y4, equation (4.22) gives

α = 1.

Hence equation (4.52) is mapped by the transformation (4.53) into the linear equa-

tion

u′′′ + u = 0. (4.54)

The general solution of equation (4.54) has the form

u = c1e
−t + e

t
2 (c2 cos(

√
3

2
t) + c3 sin(

√
3

2
t)),

where c1, c2 and c3 are arbitrary constants. Applying the generalized Sundman

transformation (4.53) to equation (4.52), we obtain that the general solution of

equation (4.52) is

y(x) = c1e
−φ(x) + e

φ(x)
2 (c2 cos(

√
3

2
φ(x)) + c3 sin(

√
3

2
φ(x))),

where the function t = φ(x) is a solution of the equation

dt

dx
= c1e

−t + e
t
2 (c2 cos(

√
3

2
t) + c3 sin(

√
3

2
t)).

For example, if c2 = c3 = 0 and c1 6= 0, then we obtain the particular solutions of

equation (4.52):

y =
1

x+ c0
,

where c0 is constant.

 

 

 

 

 

 



CHAPTER V

CONCLUSIONS

This thesis is devoted to the study of the linearization problem of second-

order and third-order ordinary differential equations via the generalized Sundman

transformation.

5.1 Problems

It is known that all second-order ordinary differential equations can be

mapped to another by means of contact transformations. Comparing with the

set of contact transformations, the set of generalized Sundman transformation is

weaker: not every second-order ordinary differential equation can be transformed

to the linear equation. Hence, it is interesting to study how generalized Sundman

transformations can be applied to the linearization problem of second-order as well

as higher-order ordinary differential equations.

Since the composition of a point transformation and a generalized Sundman

transformation is not necessarily a generalized Sundman transformation, then the

Laguerre form does not define the class of all linearizable equations by the gen-

eralized Sundman transformation. The first problem studied in the thesis was to

demonstrate that the equation

u′′ + βu′ + αu = γ, (5.1)

should be used as the canonical linear equation for the linearization problem via

generalized Sundman transformations instead of the Laguerre form usually used.
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Here α, β and γ are constants.

The second problem in the thesis deals with the application of the gen-

eralized Sundman transformations to third-order ordinary differential equations.

We investigated the necessary and sufficient conditions for a third-order ordinary

differential equation to be linearizable by a generalized Sundman transformation

into the more general linear equation

u′′′ + αu = 0, (5.2)

where α 6= 0 is constant.

5.2 Results

The results obtained in the thesis are separated into two parts.

In the first part, the application of the generalized Sundman transformation

for the linearization problem of second-order ordinary differential equations was

analyzed. The general form of second-order ordinary differential equations that are

linearizable via generalized Sundman transformations to linear equations is (3.4).

Theorem 3.1 provides sufficient conditions for linearization. In particular, our

examples, which consist of equations are not linearizable by point transformations,

show that for a linearization problem via the generalized Sundman transformation

one needs to use the general form of a linear second-order ordinary differential

equation instead of the Laguerre form. The results obtained in this part warn

that a researcher has to be careful when using the well-known method for the

linearization problem.

The second part deals with the linearization of third-order ordinary differ-

ential equations by the generalized Sundman transformation. The general form of

third-order ordinary differential equations that are linearizable to a linear equa-
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tion via generalized Sundman transformations is (4.5). Conditions which guarantee

that equations (4.5) can be linearized by a generalized Sundman transformation

are provided by Theorem 4.1.
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APPENDIX A

REMARK TO POINT AND CONTACT

TRANSFORMATIONS

Let us explain how to transform the derivatives in point and contact trans-

formations.

Point transformations

Let y(x) be a given function. First of all, we have to change y(x) to u(t) by

using point transformations

t = ϕ(x, y), u = ψ(x, y). (A.1)

The transformed function u(t) is found from equation

t = ϕ (x, y (x)) .

Using Inverse Function Theorem, we find x = α (t) . Thus, we obtain

u (t) = ψ (α (t) , y (α (t))) .

The first-order derivative is transformed by the formula

u′ (t) =
du

dt
=
∂ψ

∂x

dα

dt
+
∂ψ

∂y

dy

dx

dα

dt
= (ψx + y′ψy)

dα

dt
. (A.2)

Since t = ϕ (α (t) , y (α (t))) then

dt

dt
=

∂ϕ

∂x

dα

dt
+
∂ϕ

∂y

dy

dx

dα

dt

1 = (ϕx + y′ϕy)
dα

dt
dα

dt
=

1

(ϕx + y′ϕy)
. (A.3)
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Substituting equation (A.3) into equation (A.2), we get

u′ (t) =
ψx + y′ψy
ϕx + y′ϕy

=
Dxψ

Dxϕ
= ψ1 (x, y (x) , y′ (x)) .

Notice that Dx = ∂
∂x

+ y′ ∂
∂y

+ y′′ ∂
∂y′

+ · · · is the total derivative with respect to x.

Next, we find the transformation of the second-order derivative. Consider

u′′ (t) =
d2u

dt2

=
∂ψ1

∂x

dα

dt
+
∂ψ1

∂y

dy

dx

dα

dt
+
∂ψ1

∂y′
dy′

dx

dα

dt

=
(
ψ1x + y′ψ1y + y′′ψ1y′

) dα
dt

=
ψ1x + y′ψ1y + y′′ψ1y′

ϕx + y′ϕy

=
Dxψ1

Dxϕ

= ψ2 (x, y (x) , y′ (x) , y′′ (x)) .

In general, we can write

u(k+1)(t) =
dk+1u

dtk+1
=
Dxψk
Dxϕ

= ψk+1(x, y, y
′, y′′, y′′′, ..., y(k+1)), (k = 0, 1, 2, ...).

Notice that ψ0 = ψ.

Contact transformations

Recall that the contact transformations

t = ϕ(x, y, y′), u = ψ(x, y, y′), s = g(x, y, y′)

satisfy the condition s = u′ = du
dt
.

Let y(x) be a given function. The transformed function u(t) is found from

the equations

t = ϕ (x, y (x) , y′ (x)) ,

u = ψ (x, y (x) , y′ (x)) .
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By virtue of the Inverse Function Theorem, the first equation gives x = τ(t), and

then

u (t) = ψ (τ (t) , y (τ (t)) , y′ (τ (t))) .

The first-order derivative is transformed by the formula

u′ (t) =
du

dt

=
∂ψ

∂x

dτ

dt
+
∂ψ

∂y

dy

dx

dτ

dt
+
∂ψ

∂y′
dy′

dx

dτ

dt

= (ψx + y′ψy + y′′ψy′)
dτ

dt
. (A.4)

Since t = ϕ (τ (t) , y (τ (t)) , y′ (τ (t))) then

dt

dt
=

∂ϕ

∂x

dτ

dt
+
∂ϕ

∂y

dy

dx

dτ

dt
+
∂ϕ

∂y′
dy′

dx

dτ

dt

1 = (ϕx + y′ϕy + y′′ϕy′)
dτ

dt
dτ

dt
=

1

(ϕx + y′ϕy + y′′ϕy′)
. (A.5)

Substituting equation (A.5) into equation (A.4), we obtain

u′(t) =
ψx + y′ψy + y′′ψy′

ϕx + y′ϕy + y′′ϕy′
=
Dxψ

Dxϕ
(τ (t) , y (τ (t)) , y′ (τ (t)) , y′′(τ(t))) .

The contact condition requires

g (x, y, y′) =
Dxψ

Dxϕ
(x, y, y′, y′′) . (A.6)

Thus, the second-order derivative is transformed by the formula

u′′ (t) =
d2u

dt2

=
∂g

∂x

dτ

dt
+
∂g

∂y

dy

dx

dτ

dt
+
∂g

∂y′
dy′

dx

dτ

dt

= (gx + y′gy + y′′gy′)
dτ

dt

=
gx + y′gy + y′′gy′

ϕx + y′ϕy + y′′ϕy′

=
Dxg

Dxϕ

= g1(x, y, y
′, y′′).
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In general, we can write

u(k+1)(t) =
d(k+1)u

dt(k+1)
=
Dxg(k−1)
Dxϕ

= gk(x, y, y
′, y′′, y′′′, ..., y(k+1)), (k = 1, 2, ...).

Notice that g0 = g.

 

 

 

 

 

 



APPENDIX B

THE LIE LINEARIZATION TEST

Since the method used in the thesis is similar to the Lie method, let us

describe Lie’s method in detail.

Lie found necessary and sufficient conditions for a second-order ordinary

differential equation

y′′ = f(x, y, y′)

to be linearizable by a change of the independent and dependent variables

t = ϕ(x, y), u = ψ(x, y)

into the simplest linear form of a second-order ordinary differential equation

u′′ = 0.

One starts with obtaining necessary conditions for the linearization problem.

One begins with the general form of a second-order ordinary differential equation

y′′ = F (x, y, y′) .

The derivatives are changed as follows

du
dt

= ψ1 = Dxψ
Dxϕ

= ψx+y′ψy
ϕx+y′ϕy

,

d2u
dt2

= ψ2 = Dxψ1

Dxϕ
=

ψ1x+y′ψ1y+y′′ψ1y′

ϕx+y′ϕy

= 1
(ϕx+y′ϕy)3

[y′′(ϕxψy − ϕyψx) + y′3(ϕyψyy − ϕyyψy)

+y′2(ϕxψyy − ϕyyψx + 2(ϕyψxy − ϕxyψy))

+y′(ϕyψxx − ϕxxψy + 2(ϕxψxy − ϕxyψx)) + ϕxψxx − ϕxxψx],

(B.1)
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where

Dx =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ y′′′

∂

∂y′′
+ · · ·

is the total derivative with respect to x. Finding the derivatives u′ and u′′ from

(B.1), and substituting them into u′′ = 0, one obtains the following equation

y′′ + a (x, y) y′3 + b (x, y) y′2 + c (x, y) y′ + d (x, y) = 0, (B.2)

where

a = ∆−1 (ϕyψyy − ϕyyψy) , (B.3)

b = ∆−1 (ϕxψyy − ϕyyψx + 2 (ϕyψxy − ϕxyψy)) , (B.4)

c = ∆−1 (ϕyψxx − ϕxxψy + 2 (ϕxψxy − ϕxyψx)) , (B.5)

d = ∆−1 (ϕxψxx − ϕxxψx) , (B.6)

and ∆ = ϕxψy − ϕyψx 6= 0 is the Jacobian of the change of variables.

Equation (B.2) presents the necessary form of a second-order ordinary dif-

ferential equation which can be mapped to a linear equation u′′ = 0 via a point

transformation.

For obtaining sufficient conditions, one has to solve the compatibility prob-

lem, considering equations (B.3)-(B.6) as an overdetermined system of partial dif-

ferential equations for the functions ϕ and ψ with given coefficients a(x, y), b(x, y),

c(x, y) and d(x, y). Let us analyze the compatibility of this system.
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Case ϕy 6= 0

From equations (B.3)-(B.6), one obtains the derivatives

ψyy = (ϕyyψy − a∆)/ϕy,

ψxy = (2ϕxyϕyψy − aϕx∆− ϕyy∆ + bϕy∆)/(2ϕ2
y),

ψxx = (2ϕxyϕyψx − ϕxϕyyψx − ϕ2
xψxa+ ϕxϕyψxb+ ϕ2

y(ψyd− ψxc))/ϕ2
y,

ϕxx = (2ϕxyϕxϕy − ϕ3
xa− ϕ2

xϕyy + ϕ2
xϕyb− ϕxϕ2

yc+ ϕ3
yd)/ϕ2

y.

The first three equations define all second-order derivatives of the function ψ.

Comparing the mixed derivatives

(ψxy)y = (ψyy)x, (ψxy)x = (ψxx)y,

one finds the following equations

ϕyyy = (3ϕ2
xa

2 − 2ϕxϕy(ay + ba) + 6ϕxϕyya+ ϕ2
y(2by − 4ax + 4ca− b2)

−6ϕyϕxya+ 3ϕ2
yy)/(2ϕy),

ϕxyy = (3ϕ3
xa

2 + 3ϕxϕ
2
y(−2ax + 2ac− b2) + 6ϕxϕyϕyyb− 3ϕxϕ

2
yy

+2ϕ3
y(2cy − bx + 3ad)− 6ϕ2

yϕxyb+ 12ϕyϕxyϕyy)/(6ϕ
2
y).

Forming the mixed derivatives

(ϕxyy)y = (ϕyyy)x, (ϕxx)yy = (ϕxyy)x,

one gets the conditions

6dya− 3cxa+ cyy − cyb− 2bxy + 2bxb+ 3axx − 3axc+ 3ayd = 0,

−3dxa+ 3dyy + 3dyb− 2cxy − 2cyc+ bxx + bxc+ 3byd− 6axd = 0.
(B.7)

Thus, it follows that if ϕy 6= 0, then conditions (B.7) guarantee that the equation

(B.2) can be linearized by a point transformation.
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Case ϕy = 0

From equations (B.3)-(B.6), one obtains

a = 0, (B.8)

ψyy = ψyb, ψxy = (ψyϕxx + ψyϕxc))/(2ϕx),

ψxx = (ϕxxψx + ϕxψyd)/ϕx.

Comparing the mixed derivatives

(ψxy)y = (ψyy)x, (ψxy)x = (ψxx)y,

one gets the following conditions

cy = 2bx,

dyy − bxx − bxc+ dyb+ byd = 0.

(B.9)

Thus, it follows that if ϕy = 0, then the conditions (B.8) and (B.9) guarantee that

the equation (B.2) can be linearized by a point transformation.

Notice that (B.9) is a particular case of (B.7) assuming that a = 0.

 

 

 

 

 

 



APPENDIX C

A LINEARIZATION PROBLEM OF

SECOND-ORDER ODEs UNDER CONTACT

TRANSFORMATIONS

Recall that the contact transformations

t = ϕ(x, y, y′), u = ψ(x, y, y′), s = g(x, y, y′)

satisfy the conditions

g (ϕx + y′ϕy) = ψx + y′ψy,

gϕy′ = ψy′ .

(C.1)

Lie showed that all second-order ordinary differential equations

y′′ = f(x, y, y′)

can be mapped into

u′′ = 0

with respect to contact transformations. Let us consider it in detail.

Since u′′ = Dg
Dϕ

, one needs to find functions ϕ(x, y, y′), ψ(x, y, y′) and

g(x, y, y′) which satisfy (C.1) and the equation Dg = 0, which is

gx + y′gy + fgy′ = 0. (C.2)

Notice that the Jacobian of the transformation is

M= (ψy − gϕy) gy′ (ϕx + y′ϕy + fϕy′) 6= 0.
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Without loss of generality it is assumed that f 6= 0.

Assume that g(x, y, y′) is some solution of (C.2) such that gy′ 6= 0. Since

f 6= 0, then

gx + y′gy 6= 0.

Let us denote

α = ψ − ϕg.

The conditions (C.1) become

(αx + ϕxg − ϕgx) + y′(αy + ϕyg + ϕgy)− gϕx − gϕyy′ = 0,

gϕy′ − (αy′ + ϕgy′ + gϕy′) = 0.

One obtains that

αx + y′αy − ϕfgy′ = 0,

αy′ + ϕgy′ = 0.
(C.3)

The second equation of (C.3) becomes

αy′ = −ϕgy′ .

Substituting αy′ into the first equation of (C.3), the function α(x, y, y′) has to

satisfy the equation

αx + y′αy + fαy′ = 0. (C.4)

Notice that the requirement ∆ 6= 0 leads to

αygy′ − αy′gy 6= 0. (C.5)

Since gy′ 6= 0, then for solving equation (C.4) one can change the independent

variables (x, y, y′) into (x, y, g).

Let y′ = h (x, y, g) , α = H (x, y, g) . Thus, one gets

αx = Hx +Hggx, αy = Hy +Hggy, αy′ = Hggy′ .
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Substituting αx, αy and αy′ into equation (C.4), one obtains

Hx + hHy = 0. (C.6)

From the condition (C.5) and gy′ 6= 0, one gets

Hy 6= 0.

Finding any solution H(x, y, g) of equation (C.6) satisfying this condition one finds

a contact transformation mapping the equation y′′ = f(x, y, y′) into the equation

u′′ = 0.

 

 

 

 

 

 



APPENDIX D

A PARTICULAR LINEARIZATION

PROBLEM OF SECOND-ORDER ODEs

UNDER GENERALIZED SUNDMAN

TRANSFORMATIONS

In 1994, Duarte, Moreira and Santos solved a particular linearization prob-

lem of second-order ordinary differential equation Sundman transformation. Let

us analyze the solution of their problem.

One starts with obtaining necessary conditions for a second-order ordinary

differential equation

y′′ = F (x, y, y′) , (D.1)

which can be mapped via the generalized Sundman transformation

u = F (x, y),

dt = G(x, y)dx
(D.2)

to the equation

u′′ = 0.

The function u and its derivatives u′ and u′′ are defined by the first formula (D.2)

and its derivatives with respect to x:

u′G = Fx + Fyy
′,

u′′G2 + u′(Gx +Gyy
′) = Fyy

′′ + 2Fxyy
′ + Fyyy

′2 + Fxx.

(D.3)
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Finding the derivatives u′, u′′ from (D.3), and substituting them into u′′ = 0, one

has the following equation

y′′ + λ2(x, y)y′2 + λ1(x, y)y′ + λ0(x, y) = 0, (D.4)

where the functions λi are related to the functions F and G:

λ2 = (FyyG− FyGy)/K, (D.5)

λ1 = (2FxyG− FxGy − FyGx)/K, (D.6)

λ0 = (FxxG− FxGx)/K, (D.7)

with K = GFy 6= 0.

Equation (D.4) presents the necessary form of a second-order ordinary dif-

ferential equation which can be mapped to a linear equation u′′ = 0 via the gener-

alized Sundman transformation.

For obtaining sufficient conditions, one has to solve the compatibility prob-

lem, considering equations (D.5)-(D.7) as an overdetermined system of partial dif-

ferential equations for the functions F and G with given coefficients λi(x, y), (i =

0, 1, 2). These conditions are obtained as follows.

From equations (D.5)-(D.7), one can find the derivatives of F :

Fyy = (Fy(Gy +Gλ2))/G, (D.8)

Fxy = (FxGy + FyGx + FyGλ1)/(2G), (D.9)

Fxx = (FxGx + FyGλ0)/G. (D.10)

Comparing the mixed derivatives

(Fxy)y = (Fyy)x, (Fxx)y = (Fxy)x, (D.11)

one obtains the derivatives of G

Gxy = (−3FxG
2
y − 2FxGyGλ2 + 2FxGGyy + 3FyGxGy + FyGyGλ1

+2FyG2(λ1y − 2λ2x))/(2FyG),
(D.12)
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Gxx = (−3F 2
xG

2
y − 2F 2

xGyGλ2 + 2F 2
xGGyy + 2FxFyG

2(λ1y − 2λ2x) + 3F 2
yG

2
x+

2F 2
yGyGλ0 + F 2

yG
2(4λ0y − 2λ1x + 4λ0λ2 − λ21))/(2F 2

yG).

(D.13)

Comparing the mixed derivatives (Gxy)x = (Gxx)y, one gets the equation

FxGyS1 − FyGxS1 − FyGS2 = 0, (D.14)

where

S1 = λ1y − 2λ2x,

S2 = 2λ0yy − 2λ1xy + 2λ0λ2y − λ1yλ1 + 2λ0yλ2 + 2λ2xx.

Case S1 = 0

Equation (D.14) becomes

S2 = 0. (D.15)

Thus, we have shown that if S1 = 0, then the condition (D.15) is sufficient for

equation (D.4) to be linearizable by a generalized Sundman transformation.

Case S1 6= 0

From equation (D.14), one can find

Gx = (FxGyS1 − FyGS2)/(FyS1).

Substituting Gx into (D.12) and (D.13), one obtains conditions

−S1yS2 + S2yS1 + S3
1 = 0,

4λ0yS
2
1 − 2λ1xS

2
1 − 2S1xS2 + 2S2xS1 + 4λ0λ2S

2
1 − λ21S2

1 + S2
2 = 0.

(D.16)

Thus, we have shown that if S1 6= 0, then the condition (D.16) are sufficient for

equation (D.4) to be linearizable by a generalized Sundman transformation.
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Let us observe that the second-order ordinary differential equations

y′′ + (1/y)y′2 + yy′ + 1/2 = 0,

y′′ + xy′2 + yy′ + 1/e2xy = 0.

can be linearized via generalized Sundman transformations as shown in chapter III.

One can check that the coefficients of these equations do not obey the conditions of

Duarte, Moreira and Santos (1994). Thus, the result obtained in the thesis extend

the linearization conditions obtained in Duarte, Moreira and Santos (1994) to the

general form of a linear second-order ordinary differential equation.

 

 

 

 

 

 



APPENDIX E

THE APPLICATION OF GENERALIZED

SUNDMAN TRANSFORMATIONS

In 2010, Muriel and Romero showed that the class of nonlinear second-order

equations

y′′ = M(x, y, y′) (E.1)

that are linearizable by means of generalized Sundman transformations into the

Laguerre form of a linear second-order ordinary differential equation

u′′ = 0

is identified as the class of equations admitting first integrals that are polynomials

of first degree in the first-order derivative.

Recall that Duarte, Moreira and Santos (1994) studied the linearization

problem of second-order ordinary differential equations via a generalized Sundman

transformation

u = F (x, y),

dt = G(x, y)dx
(E.2)

where FyG 6= 0. They obtained that any second-order ordinary differential equa-

tion which can be mapped into the equation u′′ = 0 via such a transformation has

to be of the form

y′′ + λ2(x, y)y′2 + λ1(x, y)y′ + λ0(x, y) = 0, (E.3)
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where the functions λi are related to the functions F and G:

λ2 = (FyyG− FyGy)/(FyG) = (
Fy
G

)y(
Fy
G

)−1, (E.4)

λ1 = (2FxyG− FxGy − FyGx)/(FyG) = [(
Fx
G

)y + (
Fy
G

)x](
Fy
G

)−1, (E.5)

λ0 = (FxxG− FxGx)/(FyG) = (
Fx
G

)x(
Fy
G

)−1. (E.6)

Using the functions

S1 = λ1y − 2λ2x, S2 = 2λ0yy − 2λ1xy + 2λ0λ2y − λ1yλ1 + 2λ0yλ2 + 2λ2xx,

they showed that equation (E.3) can be mapped into the equation u′′ = 0 via a

generalized Sundman transformation if the coefficients λi(x, y), (i = 0, 1, 2) satisfy

the conditions:

(a) if S1 = 0, then S2 = 0;

(b) if S1 6= 0, then S2 6= 0 and the following equations have to be satisfied

−S1yS2 + S2yS1 + S3
1 = 0,

4λ0yS
2
1 − 2λ1xS

2
1 − 2S1xS2 + 2S2xS1 + 4λ0λ2S

2
1 − λ21S2

1 + S2
2 = 0.

In their paper, the authors showed that if a second-order ordinary differen-

tial equation which has the form (E.3) is linearizable via a generalized Sundman

transformation into the equation u′′ = 0, then equation (E.3) admits a first integral

of the form

ω(x, y, y′) = A(x, y)y′ +B(x, y). (E.7)

If a linearizing generalized Sundman transformation (E.2) is known, then a first

integral (E.7) is defined by

A(x, y) =
Fy
G
, B(x, y) =

Fx
G
. (E.8)

It is clear that

A(y′′ + λ2(x, y)y′2 + λ1(x, y)y′ + λ0(x, y)) = Dx(ω(x, y, y′)),
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where

D =
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ y′′′

∂

∂y′′
+ · · ·

is the total derivative operator. Therefore ω, defined by (E.7), is a first integral of

(E.3) and A = ωy′ = Fy
G

is an integrating factor of equation (E.3).

Conversely, let us suppose that (E.1) has a first integral of the form

ω(x, y, y′) = A(x, y)y′ +B(x, y).

Then

M(x, y, y′) = −Ay
A
y′2 − By + Ax

A
y′ − Bx

A
(E.9)

and hence (E.1) must be of the form (E.3). To prove that this case (E.3) is

linearizable by the generalized Sundman transformation (E.2), one first tries to

find a function F such that

BFy − AFx = 0.

This is a first-order linear partial differential equation whose characteristic equation

is

y′ = −B
A
. (E.10)

If I(x, y) = K, K ∈ R, is any solution of (E.10) then one chooses F to be any

non-constant function of the form

F (x, y) = ϕ(I(x, y)). (E.11)

Then G is uniquely determined by

G(x, y) =
Fy
A
. (E.12)

or

G(x, y) =
Fx
B
, (E.13)
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if B 6= 0.

The results can be summarized as a theorem:

Theorem

The ordinary differential equation (E.1) is linearizable by a generalized

Sundman transformation to Laguerre form if and only if (E.1) admits a first inte-

gral of the form ω(x, y, y′) = A(x, y)y′ + B(x, y). In this case, (E.1) has the form

(E.3). If a linearizing generalized Sundman transformation (E.2) is known then

a first integral ω = Ay′ + B of (E.3) is defined by (E.8). Conversely, if a first

integral ω = Ay′ + B of (E.3) is known then a linearizing generalized Sundman

transformation can be determined by (E.11)-(E.13), where I(x, y) is a first integral

of (E.10).
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