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CHAPTER I

INTRODUCTION

The purpose of this thesis is to study extensions of the multidimensional

Heisenberg group and their unitary representations. Before going into further

details, we need to introduce the basic concepts, and review some of the literature

on this topic.

1.1 Extensions of the Heisenberg group

1.1.1 Background

One way in which groups can naturally be enlarged originates with group

actions. Let (M,+) be a given group on which a second group (H, ·) acts by

automorphisms αh. The Cartesian product

M ×H = { (m,h) : m ∈ M, h ∈ H }

of the two groups can be given a group structure different from the usual product

group operation by setting

(m,h)(m̃, h̃) = (m+ αh(m̃), hh̃).

This new group is called the semi-direct product of the two groups and denoted

by M oα H. One easily verifies that M is isomorphic to the normal subgroup

{(m, e) : m ∈ M} of M oα H, while H is isomorphic to both, the subgroup

{(0, h) : h ∈ H)} of M oα H, and to the quotient (M oα H)/M . When the two

 

 

 

 

 

 

 

 



2

component groups are topological groups and the action α is continuous, then the

semi-direct product will again be a topological group in the product topology.

A simple example of this construction is the affine group. The general linear

group GLn(R) naturally acts on Rn by matrix multiplication,

αh(m) = hm (m ∈ Rn, h ∈ GLn(R)),

and the semi-direct product RnoαGLn(R) is then isomorphic to the group formed

by translations and linear transformations in Euclidean space, namely the affine

group Aff(n,R).

In this thesis, we consider semi-direct products involving the Heisenberg

group. Recall that the matrix J =
[

0 −In
In 0

]
determines a skew-symmetric and

bilinear form on R2n, the symplectic form, by

Jw, w̃K = wTJ w̃ (w, w̃ ∈ R2n). (1.1)

The Heisenberg group is the set

Hn =
{
(w, z) : w ∈ R2n, z ∈ R

}
endowed with the topology of R2n+1 and the group operation

(w, z)(w̃, z̃) =
(
w + w̃, z + z̃ +

1

2
Jw, w̃K).

It plays a fundamental role in quantum mechanics (Folland, 1989) and signal pro-

cessing (Gröchenig, 2000).

Now it is known (Folland, 1989) that every automorphism of the Heisenberg

group is composed of automorphisms of four basic types: an inner automorphism,

inversion, a dilation and a symplectic automorphism. The first two types of auto-

morphisms are not of interest here, because inner automorphisms keep the elements

 

 

 

 

 

 

 

 



3

in the phase space W = {(w, 0) ∈ Hn : w ∈ R2n} fixed, and inversion is of finite

order two. Dilations of the Heisenberg group are automorphisms of the form

αλ(w, z) = (λw, λ2z)

for some nonzero real number λ, while symplectic automorphisms are determined

by symplectic matrices: Recall here that the symplectic group Sp(n,R) is the set

of all invertible matrices preserving the symplectic form (1.1),

Sp(n,R) =
{
A ∈ GL2n(R) : JAw,Aw̃K = Jw, w̃K ∀ w, w̃ ∈ R2n

}
.

Each of its elements naturally defines an automorphism αA of Hn by

αA(w, z) = (Aw, z)

fixing the elements of the center Z = {(0, z) : z ∈ R} of Hn. The corresponding

semi-direct product Hn oα Sp(n,R) has been studied by Cordero et al. (2006).

Our interest centers around automorphisms which are composed of dilations

and automorphisms of symplectic type, but which leave the two components

X = {((x, 0), 0) : x ∈ Rn} and Y = {((0, y), 0) : y ∈ Rn}

of the phase space W = {(w, 0) : w ∈ R2n} invariant. This invariance condition

restricts the symplectic automorphisms to those determined by symplectic matrices

of the form

A =

A 0

0 [A−1]T

 (A ∈ GLn(R)),

and makes it possible to work with the polarized Heisenberg group Hn
pol, which has

a representation as the matrix group

Hn
pol =

h(x, y, z) =


1 yT z

0 In x

0 0 1

 : x, y ∈ Rn, z ∈ R

 ⊂ GLn+2(R).

 

 

 

 

 

 

 

 



4

In fact, the two Heisenberg groups are isomorphic via the map

Ψ : (w, z) ∈ Hn 7→ h(x, y, z + 1
2
yTx) ∈ Hn

pol (w = [ xy ] , x, y ∈ Rn) .

Now consider the closed subgroup of GLn+2(R) of the form

D0 =

 d(λ,A) :=


λ2 0 0

0 λA 0

0 0 1

 : λ ∈ R\{0}, A ∈ GLn(R)

 .

Direct computation shows that an automorphism αA ◦αλ of Hn is carried by Ψ to

the automorphism of Hn
pol determined by conjugation with d(λ,A),

Ψ((αA ◦ αλ)(w, z)) = d(λ,A)Ψ(w, z)d(λ,A)−1.

It is thus natural to consider semidirect products of the form

Hn
pol oα D

for closed subgroups D of D0. It is more convenient to reparametrize elements of

D0 in the form

D0 =

 d(a,A) :=


a 0 0

0 A 0

0 0 1

 : a > 0, A ∈ GLn(R)

 ;

then the semi-direct products can be represented as matrix groups

Hn
pol oD ∼=

{
h(x, y, z)d(a,A) : h(x, y, z) ∈ Hn

pol, d(a,A) ∈ D
}
⊂ GLn+2(R).

(1.2)

When D = { d(1, A) : A ∈ GLn(R) } ∼= GLn(R), this semi-direct product

is called the affine-Weyl-Heisenberg group which has been extensively studied by

several authors (Ali, Antoine and Gazeau, 2000; Hogan and Lakey, 1995; Kalisa

and Torrésani, 1993; and Torrésani, 1991).
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The case n = 1 (so that A is a scalar) and D = {d(Ap, A) : A > 0} ≃ R+ for

fixed p has already been studied in Schulz and Taylor (1999), where the semi-direct

products were classified up to isomorphism. It was further noticed that they are

isomorphic to subgroups of the affine group Aff(2,R),

H1
pol oD ∼= R2 oH (1.3)

where H is a closed subgroup of GL2(R), and R2 and H are identified with the

groups of matrices,

R2 ∼= {h(x, 0, z) : x, z ∈ R } ⊂ GL3(R)

and

H ∼= {h(0, y, 0)d(Ap, A) : A > 0 } ⊂ GL3(R),

respectively. Namngam (2010) has considered the case of arbitrary n, where the

groups D are one-parameter groups

D = {d(ept, eBt) : t ∈ R} (1.4)

for some fixed number p and B ∈ Mn(R), and has classified the semi-direct prod-

ucts up to isomorphism with regards to the choice of p and B.

1.1.2 The first objective

The main purpose of this thesis is to continue the study and classification

of semi-direct products Hn
pol oα D in higher dimensions. We will consider groups

D which are d-parameter groups, that is, groups which are of the form

D =
{
d(ep1t1+...pdtd , et1B1+···+tdBd) : (t1, . . . , td) ∈ Rd

}
. (1.5)

for fixed real numbers pk and commuting matrices Bk, and which are isomorphic

to Rd. Using Lie algebra techniques, we will prove some results towards their

classification, and in case d = 2 we can give a complete theorem on classification.
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1.2 Affine subgroups of the symplectic group

1.2.1 Background

In Cordero et al. (2006) and also in Czaja and King (2012, 2013), two

subgroups of the symplectic group Sp(n+1,R), denoted (CDS)n+1 and (TDS)n+1

were shown to be isomorphic to subgroups of the affine group Aff(n+1,R), and it

was shown that their metaplectic representations and wavelet representations have

equivalent subrepresentations. Later it was demonstrated by Namngam (2010)

that these two groups belong to the class of groups of the form (1.2), where D is a

one-parameter group of form (1.4) with B of particularly simple form. De Mari and

De Vito (2013) and Namngam (2010) generalized the ad-hoc techniques of Cordero

et al. (2006) to identify general classes of subgroups of the symplectic group which

are isomorphic to subgroups of the affine group, and to obtain connections between

their metaplectic and wavelet representations.

1.2.2 The second objective

The secondary purpose of this thesis is to apply the techniques of De Mari

and De Vito (2013) and Namngan (2010) to show that the semi-direct products

Hn
pol oα D considered here, with D as in (1.5), follow this pattern. We show that

they are isomorphic to subgroups of the symplectic group Sp(n + 1,R) as well as

the affine group Aff(n + 1,R), and study connections between their metaplectic

and wavelet representations.
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1.3 Organization

This thesis is organized as follows. In Chapter II, we introduce the notation

and review the main concepts and theorems used throughout, mainly covering

topics from the theory of locally compact groups and Lie algebras. In Chapter

III, we apply Lie algebra techniques to prove some theorems on the classification

of the extended groups. In the special case of 2-paramter groups, we provide

an explicit list of all equivalence classes of extended groups in dimensions n =

1, 2, 3. Chapter IV is used to showing that the extended groups are isomorphic

to subgroups of both, the symplectic group and the affine group, and to studying

their metaplectic and affine representations. Chapter V concludes by summarizing

the results achieved.

 

 

 

 

 

 

 

 



CHAPTER II

BASIC BACKGROUND

Throughout this thesis, we assume that the reader is familiar with the

fundamental concepts from topology, algebra, measure theory, and Hilbert spaces.

In this chapter, we document definitions and facts of the lesser known concepts

used, mainly covering topics related to topological groups and their representations,

semi-direct products of such groups, and matrix groups and their Lie algebras.

Details and proofs can be found in standard textbooks such as Baker (2001),

Folland (1989, 1995, 1999), and Jacobson (1962).

2.1 Topological concepts

2.1.1 Simply connected spaces

Throughout this section, we let X and Y be topological spaces.

Definition 2.1. Let f0, f1 : X → Y be continuous functions. Then f0 is homotopic

to f1 if there exists a continuous function F : [0, 1]×X → Y such that

F (0, x) = f0(x) and F (1, x) = f1(x) ∀x ∈ X.

The function F is called a homotopy from f0 to f1.

Remark 2.2. For (t, x) ∈ [0, 1] × X, we may regard t as measuring time. Then

ft(x) := F (t, x) is a 1-parameter family of functions maps X → Y . At time t = 0,

we have the function f0. At time t = 1, we have function f1. As time increase

from 0 to 1, the function f0 is deformed continuously to the function f1.
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Definition 2.3. Let x0, x1 ∈ X. A path from x0 to x1 (with origin at x0 and end

at x1) is a continuous function ρ : [0, 1] → X such that

ρ(0) = x0 and ρ(1) = x1.

In case x0 = x1 the origin and end points coincide, and the path ρ is called a loop

with basepoint x0.

Definition 2.4. A space X is path connected if, for any given pair of points

x0, x1 ∈ X, there exists a path with origin at x0 and end at x1.

Example 2.5. We provide a couple of simple examples.

(1) The Euclidean space Rn is path connected. In fact, every pair x0, x1 of points

in Rn can be connected by a path which constitutes a line segment,

ρ(t) = (1− t)x0 + tx1.

(2) The unit circle

S1 = {z = eiθ ∈ C : 0 ≤ θ < 2π}

and endowed with the relative topology is path connected. In fact, let x0 =

eiθ0 and x1 = eiθ1 be any pair of points in S1. Then

ρ(t) = ei[(1−t)θ0+tθ1]

will be a path in S1 from x0 to x1.

Definition 2.6. Two paths in X, ρ and σ from x0 to x1 are homotopic if there

exists a continuous function F : [0, 1]× [0, 1] → X such that

F (0, w) = ρ(w) and F (1, w) = σ(w) ∀w ∈ [0, 1]

F (t, 0) = x0 and F (t, 1) = x1 ∀t ∈ [0, 1]
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Remark 2.7. The homotopy of paths in definition 2.6 is really a homotopy in

the usual sense equipped with the additional requirement that the origin and end

points are fixed throughout the homotopy.

Example 2.8. Let x0, x1 be two points in Rn. Then any two paths ρ and σ from

x0 to x1 are homotopic. In fact, the map

F (t, w) = (1− t)ρ(w) + tσ(w)

satisfies all the conditions of Definition 2.6.

Definition 2.9. A space X is called simply connected if it is path connected and

every loop in X is homotopic to a constant path.

Remark 2.10. Intuitively, any loop in a simply connected space can be shrunk

continuously to a point contained in that loop.

Example 2.11. By example 2.8, Rn is simply connected. On the other hand,

the unit circle S1 is not simply connected: Intuitively, the loop ρ(t) = e2iπt with

basepoint 1 can not be shrunk continuously in S1 to the point 1.

2.2 Locally compact groups

Definition 2.12. A topological group G is a group endowed with a topology so

that the group operations are continuous, that is, (when the group is written

multiplicatively)

(1) the multiplication map (x, y) 7→ xy is continuous from G×G to G, and

(2) the inversion map x 7→ x−1 is continuous from G to G.

Definition 2.13. A topological group G is called locally compact if it is a locally

compact Hausdorff space in its topology.
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Example 2.14. The groups (Rn,+) and (R+, ·) are locally compact, but non-

compact groups in the usual topology. Here, R+ denotes the set of positive real

numbers. The unit circle S1 is a compact group under the multiplication of complex

numbers. When S1 is considered as a topological group, it is usually denoted by

Π.

Remark 2.15. In the realm of topological groups, the word isomorphism means

an algebraic isomorphism which is also a homeomorphism.

Example 2.16. Let k = C or R. The set of all n×n matrices whose entries are in k

is denoted by Mn(k). It is a vector space under the operations of matrix addition

and scalar multiplication. Moreover, Mn(k) is a topological space as Mn(k) is

isomorphic to kn2 and thus inherits the topology of kn2 . In fact, this isomorphism

makes Mn(k) a locally compact group under matrix addition, which is isomorphic

to the group kn2 .

Next, we consider the subset GLn(k) = {a ∈ Mn(k) : det a ̸= 0} which is a

group under matrix multiplication, called the general linear group. As the deter-

minant det : Mn(k) → k is a continuous function, then GLn(k) = det−1(k\{0}) is

open in Mn(k), hence GLn(k) is a locally compact group.

2.2.1 Continuous group actions

Definition 2.17. Let G be a group with identity element e, and X a set. A (left)

group action of G on X is a binary operator α : G×X → X satisfying

(1) αe(x) = x ∀x ∈ X, and “Identity”

(2) αg(αg̃(x)) = αgg̃(x) ∀g, g̃ ∈ G, ∀x ∈ X. “Associativity”

where αg(x) := α(g, x) for (g, x) ∈ G × X. The triplet (X,G, α) is called a

transformation group, X is called a (left) G-set, and we say G acts on X (on the
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left) by α .

When G is a topological group and X a topological space, then one requires

in addition that the map α be continuous. In this case, X is called a G-space.

When both G and X are topological groups, one also requires that G acts

on X by automorphisms of X, that is, for each g ∈ G, the map αg : X 7→ X is an

automorphism of X.

Example 2.18. Here are a few of simple examples of topological groups acting on

topological groups.

(1) Let G be any topological group, and X = G. Then G acts on itself by left

translation,

αg(x) = gx ∀(g, x) ∈ G×G.

(2) Let G be any topological group, and N a closed normal subgroup. Then G

acts on X = N by conjugation,

αg(n) = gng−1 ∀(g, n) ∈ G×N.

(3) Let X = (R,+) and G = (R+, ·). Then R+ acts on R by multiplication,

αa(x) = ax ∀(a, x) ∈ R+ × R.

(4) More generally, let X = kn and G = GLn(k). Then GLn(k) acts (continu-

ously) on kn by multiplication,

αa(x) = ax ∀(a, x) ∈ GLn(k)× kn.

(5) Let Sym(n,R) = {m ∈ Mn(R) : m = mT} denote the set of all symmetric

n× n matrices. Clearly, Sym(n,R) is a closed linear subspace of Mn(R) and

 

 

 

 

 

 

 

 



13

hence a locally compact group. We observe that GLn(R) acts continuously

on X = Sym(n,R) by

αa(m) = [a−1]Tma−1 ∀(a,m) ∈ GLn(R)× Sym(n,R).

We note that in the last two examples, the space X is not only a group, but a

vector space, and the action α of G is by vector space automorphisms of X. We

will refer to these two examples in later chapters.

2.2.2 Group extensions and semi-direct products

In mathematics, the word extension usually means that we enlarge a given

object to a larger object in the same category. For example, extending a map

usually means enlarging its domain.

In the theory of groups, however, the meaning is usually different:

Definition 2.19. Let G,N and D be groups. Then G is called an extension of D

by N , if the following conditions are satisfied:

(1) N is a normal subgroup of G, and

(2) D is isomorphic to the quotient group G/N .

Note that D need not be a subgroup of G.

Remark 2.20. One may define a group extensions in a slightly more general way,

in the sense that N need only be isomorphic to a normal subgroup of G.

Remark 2.21. When dealing with topological groups, we of course require N to

be a closed subgroup of G, and D to be homeomorphic to the quotient space D/N .

Next, we wish to define the external semi-direct product of two groups and

show that this is one particular way of obtaining group extensions. However, we

first recall the concept of an inner semi-direct product.
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Definition 2.22. Let G be a group with identity element e, and N and D sub-

groups of G. Then G is called the inner semi-direct product of N by D, denoted

by G = N oD, if

(1) N is a normal subgroup of G,

(2) G = ND, and

(3) N ∩D = {e} .

Remark 2.23. From (2) and (3) it follows that every element in G has a unique

representation as g = nd with n ∈ N and d ∈ D. In addition, D is isomorphic to

the quotient G/N . Thus, G is an extension of D by N , with the added property

that D is a subgroup of G.

Remark 2.24. Given an inner semi-direct product G of N by D, let α denote the

action of D on N by conjugation,

αd(n) = dnd−1, n ∈ N, d ∈ D.

Then for all g = nd and g̃ = ñd̃ in G we have

gg̃ = (nd)(ñd̃) = ndñd−1dd̃ = (nαd(ñ)) (dd̃). (2.1)

The following well-known theorem shows a converse of this: If D is a group

acting on another group N , then both groups can be embedded in a larger group

G which is the semi-direct product of N by D, with group operation satisfying

(2.1). Its proof uses only standard tools of the algebra of groups.

Theorem 2.25. Let N and D be multiplicative groups with identity elements eN

and eD, respectively, and let α be an action of D on N by automorphisms. Set

G := N ×D.
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Then G is a group under group operation defined by

(n, d)(ñ, d̃) = (nαd(ñ), dd̃).

The identity element of G is

(eN , eD),

and the inverse of each element (n, d) is

(
αd−1(n−1), d−1

)
.

Furthermore,

(i) N ′ := N × {eD} is a normal subgroup of G, and isomorphic to N

(ii) D′ := {eN} ×D is a subgroup of G, and isomorphic to D

(iii) G = N ′D′

(iv) N ′ ∩D′ = {(eN , eD)}

That is, the group G can be represented as the inner semi-direct product of H ′ by

D′. We therefore denote this new group by

G = N oα D,

called the semi-direct product of N by D with respect to α.

Remark 2.26. We make the following comments.

(1) If N and D are locally compact groups, and α is a continuous action of D

on N by automorphisms, then the semi-direct product N oαD will again be

a locally compact group with respect to the product topology on N ×D. In

addition, N and D will be (isomorphic to) closed subgroups of N oα D.
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(2) If N and D are closed subgroups of GLn(R), and D acts on N by conjugation,

αd(n) = dnd−1 (n ∈ N, d ∈ D),

then the semi-direct product N oα D is isomorphic to the subgroup of

GLn(R),

{nd : n ∈ N, d ∈ D}.

(3) In this thesis, the group N is usually abelian, with group operation written

as addition. Then the group operations in the semi-direct product become

(n, d)(ñ, d̃) = (n+ αd(ñ), dd̃).

and

(n, d)−1 =
(
−αd−1(n), d−1

)
.

Remark 2.27. Suppose G = N oαD is the semi-direct product of N by D. Then

G is an extension of D by N . In fact, by the above construction of the semi-direct

product, it is left to show that D′ is isomorphic to the quotient group G/N ′. By

the second isomorphism theorem, we have

D′ ∼= D′/(eN , eD) = D′/(D′ ∩N ′) ∼= D′N ′/N ′ = N ′D′/N ′ = G/N ′

where N ′, D′ are as defined in Theorem 2.25.

We now have two notions: extension of D by N and semi-direct product of

N by D. Since the group extensions in this thesis arise from semi-direct products,

we will use the terminology extension of N by D to mean the semi-direct product

of N by D, which is different from the meaning of group extension as given in

Definition 2.19, but in line with the common understanding of the word extension.
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2.2.3 Group representations

Since the structure of operators on Hilbert spaces is well understood, it

is often useful to represent a given topological group in the form of a group of

operators on a Hilbert space, in order to study its properties.

Definition 2.28. A (unitary) representation of a locally compact group G is a map

π from G into the group U(Hπ) of unitary operators on some non-zero Hilbert space

Hπ satisfying

(1) π is a homomorphism, that is,

π(xy) = π(x)π(y) and π(x−1) = π(x)−1 = π(x)∗

for all x, y ∈ G, and where π(x)∗ denotes the adjoint operator of π(x).

(2) π is continuous when U(Hπ) carries the strong operator topology, that is,

the map x 7→ π(x)u is continuous from G to Hπ, for all vectors u ∈ Hπ.

Definition 2.29. Let π be a representation of a locally compact group G on a

Hilbert space Hπ. A closed subspace K of Hπ is called π-invariant, if

π(x)K ⊂ K ∀ x ∈ G.

Remark 2.30. Using the above definition, it is not difficult to show that if K is

a closed π-invariant subspace, then its orthogonal complement,

K⊥ := {u ∈ Hπ : u⊥K},

is also π-invariant.

Then the restrictions of π to K and K⊥, respectively, are again representa-

tions of G; we have split π into subrepresentations.
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Definition 2.31. Two representations π1, π2 of a locally compact group G are

(unitarily) equivalent if there exists a unitary operator U : Hπ1 → Hπ2 with

π2(x) = Uπ1(x)U−1

for all x ∈ G. We write π1 ≃ π2.

Unitary equivalence essentially means that the Hilbert spaces Hπ1 and Hπ2

are isomorphic and, up to this isomorphism, π1(x) and π2(x) are the same unitary

operators.

Instead of splitting representations, one can also combine them to form new

representations:

Definition 2.32. Let {πi}i∈I be a family of representations of a locally compact

group G, and H = ⊕
i∈I

Hπi
denote the direct sum of the underlying Hilbert spaces.

The direct sum of the representations {πi}i∈I is the representation π of G on H

defined by

π(x)(v) =
∑
i∈I

πi(x)vi (v =
∑
i∈I

vi, vi ∈ Hπi
, i ∈ I).

We write π = ⊕
i∈I

πi.

2.3 Lie algebras

Definition 2.33. An algebra g is a vector space over a field k endowed with a

bilinear map (a, b) 7→ ab on g, that is,

a(αb+ βc) = αab+ βac and (αb+ βc)a = αba+ βca

for all α, β ∈ k, a, b, c ∈ g. An algebra g is called associative if

a(bc) = (ab)c

for all a, b, c ∈ g.
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Example 2.34. We provide some well-known associative algebras.

(1) The space Mn(k) with matrix multiplication as bilinear map.

(2) More generally, the space of all endomorphism of a vector space V , End(V ),

with the composition of operators as bilinear map.

Definition 2.35. A subalgebra h of an algebra g is a vector subspace of g that

closed under the binary operation, that is, ab ∈ h for all a, b ∈ h.

Definition 2.36. A Lie algebra g is an algebra whose bilinear map (usually de-

noted (a, b) 7→ [a, b] and called the Lie bracket) satisfies the additional conditions

(L1) [a, a] = 0, and “Alternating property”

(L2) [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 “Jacobi identity”

for all a, b, c ∈ g.

Remark 2.37. Applying (L1) and bilinearity to [a+b, a+b], we immediately obtain

that (L1) implies “anticommutativity” of the Lie bracket; (L1′): [a, b] = −[b, a].

Conversely, (L1′) will imply (L1) when the characteristic of the field k is not 2.

Hence, if we consider Lie algebras over the fields R or C, then conditions (L1) and

(L1′) are equivalent.

Example 2.38. The following examples are Lie algebras.

(1) Any vector space g with trivial bracket [a, b] = 0. This is called an abelian

Lie algebra.

(2) The three-dimensional Euclidean space R3 with the Lie bracket given by the

cross product of vectors.
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(3) Any associative algebra with the Lie bracket given by

[a, b] := ab− ba

becomes a Lie algebra. In fact, property (L1) is obvious. As for (L2) we

calculate

[a, bc] = abc− bca = (ab− ba)c+ b(ac− ca) = [a, b]c+ b[a, c],

and this implies

[a, [b, c]] = [a, bc− cb] = [a, bc]− [a, cb]

= ([a, b]c+ b[a, c])− ([a, c]b+ c[a, b])

= [[a, b], c] + [b, [a, c]].

Applying (L1′), the Jacobi identity follows.

In particular, Mn(R) and Mn(C) are Lie algebras.

Lie algebras have a rich structure and have been studied in great detail. We

only introduce the few structural properties needed in the next chapter.

Definition 2.39. Let A, B be subsets of a Lie algebra g. Then [A,B] denotes the

vector subspace of g,

[A,B] := span
{
[a, b] : a ∈ A, b ∈ B

}
.

It is clear that if A and B are vector subspaces of g, then

[A,B] =
{
[a, b] : a ∈ A, b ∈ B

}
.

Definition 2.40. Let h be a vector subspace of a Lie algebra g. Then

(1) h is called a (Lie) subalgebra of g, if [h, h] ⊆ h.

(2) h is called an ideal of g, if [h, g] ⊆ h.
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Remark 2.41. Any subalgebra h of a Lie algebra g is a Lie algebra with the

induced Lie bracket.

Definition 2.42. Let g be a Lie algebra.

(1) Then [g, g] is a subalgebra of g, called the derived algebra.

(2) The center of g is the subalgebra

Z(g) = {z ∈ g : [z, x] = 0 for all x ∈ g} .

Remark 2.43. Obviously, the derived algebra [g, g] and the center Z(g) of a Lie

algebra g are ideals of g.

Definition 2.44. Let g be a Lie algebra. Then the sequence {gk}∞k=0 of subalgebras

g0 = g, g1 = [g, g0], g2 = [g, g1], . . . . . . gk+1 = [g, gk], . . . . . .

is called its lower central series. The Lie algebra g is called (k-step) nilpotent if

there exists a k so that gk = {0}, while gk−1 ̸= {0}.

For example, a nontrivial Lie algebra g is 1-step nilpotent if and only if it

is abelian.

Remark 2.45. A subalgebra h of a Lie algebra g is called nilpotent, if it is nilpotent

as a Lie algebra in its own right. Since the sum of two ideals in g is again an ideal,

and the sum of nilpotent ideals is again nilpotent, every Lie algebra contains a

largest nilpotent ideal n called the nilradical of g, which is unique.

Definition 2.46. A linear map Φ : g → g̃ between Lie algebras over the same

field k is called a Lie algebra homomorphism, if Φ preserves the Lie bracket, i.e.,

Φ([a, b]) = [Φ(a),Φ(b)] ∀a, b ∈ g.

If in addition, Φ is a bijection, then it is called a Lie algebra isomorphism, and g

and g̃ are said to be isomorphic Lie algebras.
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Let n be in ideal of the Lie algebra g. Then in particular, n is a linear

subspace, hence the collection of cosets h = {a+n : a ∈ g} is again a vector space,

usually denoted h = g/n. We now have:

Proposition 2.47. [a+ n, b+ n] := [a, b] + n (a, b ∈ g)

well defines a Lie bracket on h, and the quotient map Φ : g → h is a Lie algebra

homomorphism.

The usual isomorphism theorems apply. For example:

Proposition 2.48. Let Φ : g 7→ g̃ be an isomorphism of Lie algebras, and n an

ideal of g. Then ñ = Φ(n) is an ideal of g̃, and Φ̂ : a + n 7→ Φ(a) + ñ defines an

isomorphism between the quotient algebras h = g/n and h̃ = g̃/ñ.

2.4 Matrix groups

A closed subgroup G of GLn(k) is called a matrix group. Note that every

closed subgroup of a matrix group is also a matrix group.

2.4.1 The tangent space of a matrix group as a Lie algebra

Every matrix group has an associated Lie algebra, its tangent space at the

identity:

Definition 2.49. Let G be a matrix group. A differentiable curve in G is a

function γ : (a, b) ⊆ R → G such that the derivative γ′(t) exists for each t ∈ (a, b).

Here γ′(t) is defined as an element of Mn(k) by

γ′(t) = lim
s→t

1

s− t
(γ(t)− γ(s)) ,

provided this limit exists.
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A related notion is the following:

Definition 2.50. A d-parameter group in a matrix group G is a continuous ho-

momorphism γ : Rd → G.

Definition 2.51. Let G be a matrix group, The tangent space of G at A ∈ G is

defined by

TAG = {γ′(0) ∈ Mn(k) : γ is a differentiable curve inGwith γ(0) = A} .

Theorem 2.52. Let G be a matrix group and I ∈ G the identity matrix. Then

TIG is a subalgebra of the Lie algebra Mn(k). This Lie algebra is called the Lie

algebra of G, denoted by g.

In general, nonisomorphic matrix groups may have isomorphic Lie algebras.

This is, however, not the case for simply connected groups:

Theorem 2.53. Let G and H be simply connected matrix groups with Lie algebras

g and h respectively. Then G and H are isomorphic if and only if g and h are

isomorphic.

2.4.2 The matrix exponential

Definition 2.54. Given A ∈ Mn(k), the matrix exponential of A is defined by the

matrix-valued series

eA =
∞∑
k=0

1

k!
Ak

which converges for all A ∈ Mn(k).

Definition 2.55. The logarithm of A is defined by the matrix-valued series

log(A) =
∞∑
k=1

(−1)k−1

k
(A− I)k

which converges and hence is defined for ∥A− I∥ < 1.
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Theorem 2.56. Let A,B ∈ Mn(k).

(1) If A and B commute, then eA+B = eAeB.

(2) In particular, eA ∈ GLn(k), and
(
eA
)−1

= e−A.

(3) det
(
eA
)
= etr(A).

(4) The maps A 7→ eA and A 7→ log(A) are continuous.

Proposition 2.57. Let A ∈ Mn(k). Then γ(t) = etA (t ∈ R) is a differentiable

curve in GLn(R), and

γ′(t) = γ(t)A (t ∈ R).

Proof. First let t = 0. By definition of the derivative and the exponential,

lim
s→0

γ(s)− γ(0)

s− 0
= lim

s→0

1

s

[
∞∑
k=0

1

k!
(sA)k − In

]
= lim

s→0

∞∑
k=1

1

k!
sk−1Ak = A

as for s ̸= 0,∥∥∥∥∥
∞∑
k=1

1

k!
sk−1Ak − A

∥∥∥∥∥ =

∥∥∥∥∥
∞∑
k=2

1

k!
sk−1Ak

∥∥∥∥∥ ≤
∞∑
k=2

1

k!
|s|k−1∥A∥k = 1

|s|

∞∑
k=2

1

k!
|s|k∥A∥k

=
e|s| ∥A∥ − 1

|s|
− ∥A∥ → 0 as s → 0

in the operator norm. That is, γ is differentiable at 0, and γ′(0) = A = γ(0)A.

Next let t be arbitrary. As γ is a group homomorphism, then by the above,

lim
s→t

γ(s)− γ(t)

s− t
= lim

s→t

esA − etA

s− t
= etA lim

s→t

e(s−t)A − In
s− t

= etA lim
u→0

γ(u)− γ(0)

u− 0
= γ(t)A

which proves the assertion.

The next theorem generalizes Proposition 2.57 and is fundamental in the

connection between Lie algebras and Lie groups. Although it can be stated in

more general terms, the following simplified version will suffice.
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Theorem 2.58. There exists an open neighborhood U of 0 in Mn(k), k = R or C,

which is being mapped homeomorphically by the exponential map exp : A 7→ eA

onto an open neighborhood V of the identity I in GLn(k). Its inverse map is given

by the logarithm log. Furthermore, if η : (a, b) → U is a differentiable curve in

U , then γ : (a, b) → V given by γ(t) = eη(t) is a differentiable curve in V , with

γ′(t) = eη(t)η′(t) for t ∈ (a, b). Conversely, every differentiable curve in V is of such

a form.

 

 

 

 

 

 

 

 



CHAPTER III

CLASSIFICATION OF EXTENSIONS OF THE

HEISENBERG GROUP

In this chapter, we first extend the multidimensional polarized Heisenberg

group by d-parameter groups of dilations. We then strive to classify the extended

groups, up to isomorphism, by using Lie algebra techniques.

3.1 Preliminaries

We begin by reviewing the Heisenberg groups and their Lie algebras in

greater detail than was done in the Introduction.

3.1.1 The Heisenberg group

Let In denote the n × n identity matrix, and let J denote the 2n × 2n

skew-symmetric matrix

J :=

 0 −In

In 0

 . (3.1)

As any matrix does, J determines a bilinear form J· , ·K on R2n by

Jw, w̃K = wTJ w̃

for w, w̃ ∈ R2n. This form is, however, not an inner product: In fact it is

(1) skew-symmetric: Since J is a skew-symmetric matrix, J T = −J , then for

all w, w̃ ∈ R2n,

Jw, w̃K = wTJ w̃ = w̃TJ Tw = −w̃TJw = −Jw̃, wK.
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(2) totally isotropic. By skew-symmetry, Jw, w̃K = −Jw, w̃K, we have

Jw,wK = 0

for all w ∈ R2n.

(3) non-degenerate. For every nonzero w ∈ R2n there clearly exists w̃ ∈ R2n so

that

Jw, w̃K ̸= 0.

The Heisenberg group is the set

Hn =
{
(w, z) : w ∈ R2n, z ∈ R

}
endowed with the topology of R2n+1 and the group operation

(w, z)(w̃, z̃) =
(
w + w̃, z + z̃ +

1

2
Jw, w̃K).

The Heisenberg group has three main components. Decomposing the underlying

set R2n+1 as Rn × Rn × R, then the three components are

X = {(x, 0, 0) : x ∈ Rn}, Y = {(0, y, 0) : y ∈ Rn}, Z = {(0, 0, z) : z ∈ R}.

They are closed abelian subgroups of Hn, and Z is its center. Furthermore, the

closed abelian subgroup

W = {(w, 0) : w ∈ R2n} = {(x, y, 0) : x, y ∈ Rn},

is called the phase space.

It is not difficult to verify that Hn, as a topological group, is isomorphic to

a matrix group,

Hn ∼=

 ho(w, z) =


1 wTJ 2z

0 I2n w

0 0 1

 : w ∈ R2n, z ∈ R

 ⊂ GL2n+2. (3.2)
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As outlined in the Introduction, since we will consider automorphisms leaving the

subgroups X and Y invariant, it is better to split elements w of the phase space

as w = (x, y) and work with the polarized Heisenberg group Hn
pol,

Hn
pol =

{
(x, y, z) : x, y ∈ Rn, z ∈ R

}
which has the group operation

(x, y, z)(x̃, ỹ, z̃) =
(
x+ x̃, y + ỹ, z + z̃ + yT x̃

)
and the simpler representation as a matrix group

Hn
pol =

h(x, y, z) =


1 yT z

0 In x

0 0 1

 : x, y ∈ Rn, z ∈ R

 ⊂ GLn+2(R). (3.3)

The two Heisenberg groups are isomorphic via the map

Ψ : (w, z) ∈ Hn 7→ h(x, y, z + 1
2
yTx) ∈ Hn

pol (w = [ xy ], x, y ∈ Rn).

3.1.2 The Heisenberg algebra

Recall that the Lie algebra of a matrix group G is defined as the tangent

space of G at the identity. By standard computation (see for example the compu-

tations in Section 3.3.1 below), the Lie algebra hn of the Heisenberg group Hn in

(3.2) is the 2n+ 1 dimensional matrix subalgebra of M2n+2(R),

hn =




0 wTJ 2z

0 0 w

0 0 0

 : w ∈ R2n, z ∈ R

 = UW ⊕ UZ

where

UW = {Ww : w ∈ R2n}, UZ = {Zz : z ∈ R}
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with

Ww =


0 wTJ 0

0 0 w

0 0 0

 , Zz =


0 0 2z

0 0 0

0 0 0

 .

The Lie brackets are given by

[Ww, Zz] = 0 and [Ww,Ww̃] = ZJw,w̃K. (3.4)

Similarly, the Lie algebra hnpol of the polarized Heisenberg group Hn
pol in (3.3)

is the 2n+ 1 dimensional matrix subalgebra of Mn+2(R),

hnpol =




0 yT z

0 0 x

0 0 0

 : x, y ∈ Rn, z ∈ R

 = VX ⊕ VY ⊕ VZ

where

VX = {Xx : x ∈ Rn}, VY = {Yy : y ∈ Rn}, VZ = {Zz : z ∈ R}

with

Xx =


0 0 0

0 0 x

0 0 0

 , Yy =


0 yT 0

0 0 0

0 0 0

 , Zz =


0 0 z

0 0 0

0 0 0

 .

The Lie brackets are given by

[Xx, Xx̃] = [Yy, Yỹ] = [Xx, Zz] = [Yy, Zz] = 0 and [Yy, Xx] = ZyT x.

Let us combine the two subspaces VX and VY to

VW = VX ⊕ VY =

 Ww =


0 yT 0

0 0 x

0 0 0

 : w = (x, y), x, y ∈ Rn

 .
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Then the above Lie brackets become

[Ww,Ww̃] = [Xx + Yy, Xx̃ + Yỹ] = [Yy, Xx̃]− [Yỹ, Xx]

= ZyT x̃ − ZỹT x = ZyT x̃−ỹT x = ZJw,w̃K
[Ww, Zz] = [Xx + Yy, Zz] = [Xx, Zz] + [Yy, Zz] = 0.

(3.5)

Comparing (3.4) and (3.5) we observe that the linear isomorphism Φ : hn →

hnpol given by Ww ∈ UW 7→ Ww ∈ VW and Zz ∈ UZ 7→ Zz ∈ VZ preserves Lie

brackets, that is, is an isomorphism of Lie algebras. This was of course expected,

as isomorphic matrix groups have isomorphic Lie algebras. For this reason, we

need not distinguish between the two Lie algebras, and simply denote them by hn.

The Lie algebra hn is easily seen to be isomorphic to the Lie algebra R2n+1

generated by the basis elements x1, . . . , xn, y1, . . . , yn, z with Lie brackets

[xi, z] = [yi, z] = 0 and [yi, xj] = δi,jz,

for all i, j = 1, . . . , n. This algebra is called the Heisenberg algebra. Thus, hn and

hnpol are merely two realizations of the Heisenberg algebra.

We note that the Heisenberg algebra is 2-step nilpotent.

Remark 3.1. The construction of the Heisenberg group and Heisenberg algebra

can be done in reverse: Some authors, for example, Folland (1989), first define

the Heisenberg algebra as above, and then exponentiate the Lie algebra using the

Baker-Campbell-Hausdorff formula to get a Lie group called the Heisenberg group.
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3.2 Extensions of the Heisenberg group

3.2.1 The groups Gp,B

Fix d ∈ N. For given fixed numbers p1, . . . , pd ∈ R and fixed commuting

matrices B1, . . . , Bd ∈ Mn(R), let us set

VB := span(B1, . . . , Bd) ⊂ Mn(R)

and

p := (p1, . . . , pd) and B := (B1, . . . , Bd).

We also set

Dp,B =

d(t) :=


ept 0 0

0 eBt 0

0 0 1

 : t ∈ Rd


where pt and Bt denote “scalar” products

pt = p1t1 + · · ·+ pdtd ∈ R and Bt = B1t1 + · · ·+Bdtd ∈ VB

for t = (t1, . . . , td)
T ∈ Rd. Then Dp,B is an abelian (not necessarily closed) sub-

group of GLn+2(R). Conjugation by elements of Dp,B naturally defines a continu-

ous action α of Rd on Hn
pol by

αt

(
h(x, y, z)

)
:= d(t) h(x, y, z) d(t)−1

=


ept 0 0

0 eBt 0

0 0 1




1 yT z

0 In x

0 0 1




e−pt 0 0

0 e−Bt 0

0 0 1



=


1 eptyT e−Bt eptz

0 In eBtx

0 0 1

 ,

(3.6)

that is,

αt

(
h(x, y, z)

)
= h

(
eBtx, ept[e−Bt]Ty, eptz

)
. (3.7)
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We can thus form the semidirect product

Gp,B := Hn
pol oα Rd.

The group operation is given by

(h(x, y, z), t)
(
h(x̃, ỹ, z̃), t̃

)
=
(
h(x, y, z)αt (h(x̃, ỹ, z̃)) , t+ t̃

)
=
(
h(x+ eBtx̃, y + ept[e−Bt]T ỹ, z + eptz̃ + yT eBtx), t+ t̃

)
.

Alternatively, we may represent elements of Gp,B as quadruples g(t, x, y, z); in this

case the group operation becomes

g(t, x, y, z)g(t̃, x̃, ỹ, z̃) = g(t+ t̃, x+ eBtx̃, y+ ept[e−Bt]T ỹ, z+ eptz̃+ yT eBtx̃). (3.8)

3.2.2 The groups Gp,B as closed subgroups of GLn+2(R)

It is not difficult to verify that each group Gp,B is isomorphic as a topological

group to the closed subgroup of GLd+n+2(R),

G
(1)
p,B :=

 g̃(t, x, y, z) =


[

ept yTeBt z

0 eBt x

0 0 1

]
0

0

[
et1 0 ... 0
0 et2 ... 0

...
0 0 ... etd

]
 :

t ∈ Rd

t = (t1, . . . , td)
T

x, y ∈ Rn

z ∈ R

 .

(3.9)

This representation of Gp,B is not very useful. Since Hn
pol is a subgroup of

GLn+2(R), we wish to represent Gp,B as a subgroup of the same. For this we

need to identify Dp,B with Rd, and make sure that Dp,B is a matrix group, that

is, is closed in GLn+2(R). This is possible under some mild assumptions on the

matrices B1, . . . , Bd. The main ingredient is the proof of Lemma 11 in Bruna et

al. (2011) which shows the following:

Lemma 3.2. Let A1, . . . , Ad be m×m commuting matrices such that
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(A1) A1, . . . , Ad are linearly independent, and

(A2) no nonzero element of VA := span(A1, . . . , Ad) is similar to a skew-symmetric

matrix.

Then the exponential map exp : A 7→ eA is an isomorphism and homeomorphism

of the additive group VA onto a closed subgroup of GLm(R).

Let us now set

Mk =


pk 0 0

0 Bk 0

0 0 0

 , (k = 1, . . . , d), (3.10)

and also

VM = span(M1, . . . ,Md)

so that

Dp,B =
{
eMt : M = (M1, . . .Md), t ∈ Rd

}
.

Now assume that the matrices M1, . . . ,Md satisfy the conditions (A1)–(A2). (This

certainly is the case if B1, . . . , Bd themselves satisfy (A1)–(A2). When pk = δj,k,

this is the case if and only if B1, . . . , Bj−1, Bj+1, . . . , Bd satisfy (A1)–(A2).) In

particular, dim(VM) = d. Applying Lemma 3.2 to the matrices M1, . . . ,Md shows

that the map t 7→ d(t) is an isomorphism and homeomorphism of Rd onto Dp,B

and that Dp,B is closed in GLn+2(R), and hence by (3.6) and Remark 2.26,

Gp,B
∼= G

(2)
p,B :=

 g(t, x, y, z) =


ept yT eBt z

0 eBt x

0 0 1

 :

t ∈ Rd

x, y ∈ Rn

z ∈ R

 . (3.11)

3.3 Classification of the groups Gp,B

Observe that each group Gp,B = Hn
pol o Rd is the topological product of

two simply connected groups, and hence is simply connected. It follows that the
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isomorphic matrix groups G
(1)
p,B

∼= Gp,B are simply connected. Thus, in order to

classify the groups Gp,B, by Theorem 2.53, it suffices to classify their Lie algebras

g
(1)
p,B.

On the other hand, under the additional assumptions (A1)–(A2), the matrix

groups Gp,B are isomorphic to the groups G
(2)
p,B, so in order to classify the groups

Gp,B satisfying (A1)–(A2), it suffices to classify the Lie algebras g
(2)
p,B of G(2)

p,B.

Suppose first that (A1)–(A2) hold. Since isomorphic matrix groups have

isomorphic Lie algebras, it follows that g
(1)
p,B

∼= g
(2)
p,B. This fact can easily be estab-

lished directly, by computing the two Lie algebras. Of course we prefer to work

with g
(2)
p,B, as it is a subalgebra of Mn+2(R), and its elements have a simpler matrix

representation than those of g(1)p,B ⊂ Md+n+2(R).

Since the motivation of this work was to study the groups G
(2)
p,B, we will

work with the Lie algebras g(2)p,B in what follows. This is not a restriction, however.

First of all, the Lie algebras g
(1)
p,B can be computed and analyzed in a similar way

as we will do below with g
(2)
p,B. Secondly, one can show that even when condition

(A2) is not satisfied, the Lie algebras g
(1)
p,B are isomorphic to Lie subalgebras of

Mn+2(R) of the form g
(2)
p,B discussed below. The computations are not difficult, but

we omit them for brevity. We therefore will simply use the symbol gp,B to denote

g
(2)
p,B.

In fact, since Gp,B = Hn
poloRd is the semi-direct product of two Lie groups,

it is a Lie group in it own right, and its Lie algebra is the semi-direct product of

their Lie algebras. We therefore could avoid working with Lie algebras in the form

of concrete matrix algebras altogether. As in this thesis we have introduced Lie

groups and their Lie algebras in the context of matrix groups only, we prefer to go

the route of computing the Lie algebras as tangent spaces of matrix groups.
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3.3.1 The Lie algebras gp,B

We now compute the Lie algebras gp,B = g
(2)
p,B of G

(2)
p,B. As noted above,

one can show that the Lie algebra of every group Gp,B is of this form, by applying

similar computations to G
(1)
p,B, provided that condition (A1) of Lemma 3.2 applies

to the family of matrices M1, . . . ,Md.

Proposition 3.3. The Lie algebra gp,B of G(2)
p,B coincides with the set of matrices

L :=




pt yT z

0 Bt x

0 0 0

 : t ∈ Rd, x, y ∈ Rn, z ∈ R

 . (3.12)

Proof. First we note that, since for fixed t, the map yT 7→ yT eBt is one-to-one, the

group G
(2)
p,B can be identified, as a subset of Mn+2(R), with the set of matrices

Mp,B =




ept yT z

0 eBt x

0 0 1

 : t ∈ Rd, x, y ∈ Rn, z ∈ R

 .

Since the topological structure of Gp,B is that of a topological subspace of Mn+2(R),

we may choose this representation of G
(2)
p,B to obtain the tangent space at the

identity matrix.

First we show that L ⊂ gp,B. For this, let

l0 =


pt0 yT0 z0

0 Bt0 x0

0 0 0

 ∈ L

be given. Define a map γ : R → Mp,B by

γ(s) =


es(pt0) syT0 sz0

0 es(Bt0) sx0

0 0 1
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for each s ∈ R. Using Proposition 2.57 one quickly verifies that each entry is

differentiable with respect to s, and in fact,

d

ds
es(pt0)∣∣s=0

= (pt0)e
s(pt0)∣∣s=0

= pt0

d

ds
sx0
∣∣s=0

= x0
∣∣s=0

= x0

d

ds
syT0
∣∣s=0

= yT0
∣∣s=0

= yT0

d

ds
sz0∣∣s=0

= z0∣∣s=0
= z0

d

ds
es(Bt0)∣∣s=0

= es(Bt0)(Bt0)∣∣s=0
= Bt0.

Hence, γ(s) is differentiable, and γ′(0) = l0. Since γ(0) = In+2, it follows that

lo ∈ gp,B. This shows that L ⊂ gp,B.

Conversely, Let X ∈ gp,B be given. Then

X = γ′(0) ∃ a differentiable curve γ : (−ϵ, ϵ) ⊂ R → Mp,B with γ(0) = In+2.

We can decompose γ into its components,

γ(s) =


γ1(s) γ3(s)

T γ5(s)

0 γ2(s) γ4(s)

0 0 1

 , (s ∈ (−ϵ, ϵ))

for some differentiable maps

γ1 : (−ϵ, ϵ) → R+, γ2 : (−ϵ, ϵ) → {A ∈ GLn : A = eBo ∃Bo ∈ VB},

γ3, γ4 : (−ϵ, ϵ) → Rn, γ5 : (−ϵ, ϵ) → R,

with γ1(0) = 1, γ2(0) = In and γi(0) = 0 for i = 3, . . . , 5. Now as γ is differentiable

on (−ϵ, ϵ), then so are all of its components γi. The important observation is that

γ1 and γ2 can be expressed as exponentials of differentiable paths. In fact, since

γ1 and γ2 are differentiable, then

γ̃(s) =


γ1(s) 0 0

0 γ2(s) 0

0 0 1
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defines a differentiable curve (−ϵ, ϵ) → Dp,B with γ̃(0) = In+2. Reducing ϵ if

necessary, by Theorem 2.58 we may assume that there exists a differentiable curve

γ̂(s) : (−ϵ, ϵ) → VM ⊂ Mn+2(R), with eγ̂(s) = γ(s) and γ̂(0) = 0. Expressed in

component form,

γ̂(s) =


γ̂1(s) 0 0

0 γ̂2(s) 0

0 0 0


and eγ̂i(s) = γi(s), i = 1, 2. Since VM is a finite dimensional vector space, derivatives

of curves in VM are again elements of VM , so that there exists t0 ∈ Rd with

γ̂′(0) = Mt0 =


pt0 0 0

0 Bt0 0

0 0 0

 .

Note that since γ̂ is differentiable, so are its components γ̂1 and γ̂2, and γ̂′
1(0) = pt0

and γ̂′
2(0) = Bt0. Differentiating componentwise and applying the chain rule in

Theorem 2.58, we obtain

X = γ′(0) =


γ′
1(0)

[
γT
3

]′
(0) γ′

5(0)

0 γ′
2(0) γ′

4(0)

0 0 0

 =


(
eγ̂1
)′
(0) [γT

3 ]
′(0) γ′

5(0)

0
(
eγ̂2
)′
(0) γ′

4(0)

0 0 0



=


eγ̂1(0)γ̂′

1(0) [γ′
3(0)]

T γ′
5(0)

0 eγ̂2(0)γ̂′
2(0) γ′

4(0)

0 0 0

 =


pt0 [γ′

3(0)]
T γ′

5(0)

0 Bt0 γ′
4(0)

0 0 0

 ∈ L.

This shows that gp,B ⊂ L, and thus proves the assertion.

We see immediately that each Lie algebra gp,B decomposes into the direct

sum VM ⊕VH where VH = hn is the Heisenberg Lie algebra, and VM the abelian Lie

algebra spanned by the matrices Mk. Thus, under assumption that M1, . . . ,Md be
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linearly independent (which holds as (A1) is satisfied) we have the decomposition

gp,B = VM ⊕ VH = VM1 ⊕ · · · ⊕ VMd︸ ︷︷ ︸
VM

⊕
VW︷ ︸︸ ︷

VX ⊕ VY ⊕VZ︸ ︷︷ ︸
VH

,

where

VMk
= {tkMk : tk ∈ R} (k = 1, . . . , d),

VX = {Xx : x ∈ Rn}, VY = {Yy : y ∈ Rn}, VZ = {Zz : z ∈ R},

with

Xx =


0 0 0

0 0 x

0 0 0

 , Yy =


0 yT 0

0 0 0

0 0 0

 , Zz =


0 0 z

0 0 0

0 0 0

 ,

and gp,B has dimension d + 2n + 1. The only possibly nonzero Lie brackets are

determined by

[Mk, Xx] = XBkx, [Mk, Yy] = Y(pkI−BT
k )y,

[Mk, Zz] = Zpkz, [Yy, Xx] = ZyT x,

(3.13)

k = 1, . . . , d. For the purpose of classifying this type of Lie algebras, the matrices

Mk need not satisfy condition (A2). Observe that VH is an ideal of the nilradical.

As shown with the Heisenberg algebra, it will be convenient to denote el-

ements Xx + Yy of VW by Ww, where w = [ xy ]. In this notation, some of the Lie

brackets in (3.13) become

[Ww,Ww̃] = [Xx + Yy, Xx̃ + Yỹ] = ZyT x̃+ỹT x = ZJw,w̃K,
and also

[Mk,Ww] = [Mk, Xx] + [Mk, Yy] = XBkx + Y(pkIn−BT
k )y = WCkw (3.14)

with

Ck =

Bk 0

0 pkIn −BT
k

 ∈ M2n(R). (3.15)
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The following lemma characterizes the automorphisms of the Heisenberg

subalgebra VH = hn. We note that a similar characterization can be found in

Folland (1989).

Lemma 3.4. Let a triple (λ, u, S) be given, where λ > 0, u ∈ R2n, and S ∈

GL2n(R) satisfies STJ S = ±J . Then

Φ(Ww) = WλSw + ZuTw and

Φ(Zz) = Z±λ2z (Ww ∈ VW , Zz ∈ VZ)

(3.16)

defines an automorphism of the Heisenberg algebra hn. Conversely, every auto-

morphism of hn is of this form.

Proof. It is clear that the linear map Φ defined by (3.16) constitutes a linear

automorphism of hn. Moreover, by assumption on S, we have for all w, w̃ ∈ R2n,

[Φ(Ww),Φ(Ww̃)] = [WλSw + ZuTw,WλSw̃ + ZuT w̃] = ZJλSw,λSw̃K
= Z±λ2Jw,w̃K = Φ

(
ZJw,w̃K) = Φ([Ww,Ww̃]) ,

(3.17)

and it follows that Φ preserves the Lie brackets.

Conversely, let Φ be a Lie algebra automorphism of hn. In light of the

decomposition hn = VW ⊕ VZ and since Φ leaves the center VZ invariant, Φ has a

matrix representation

Φ ↔

a11 0

a21 a22


where a11 ∈ GL2n(R) and a22 ̸= 0. Computing as in (3.17) we have for all w, w̃ ∈

R2n,

Za22Jw,w̃K = Φ
(
ZJw,w̃K) = Φ( [Ww,Ww̃] ) = [Φ(Ww),Φ(Ww̃)]

= [Wa11w + Za21w,Wa11w̃ + Za21w̃] = ZJa11w,a11w̃K
Set λ =

√
|a22|, S = 1

λ
a11 and u = aT21. Then JSw, Sw̃K = sgn(a22)Jw, w̃K, that is

STJ S = sgn(a22)J , and the assertion follows.
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3.3.2 Classification of the Lie algebras gp,B

Let us first introduce some normalization to the class of Lie algebras gp,B.

Given two algebras gp,B and gp̃,B̃, their Heisenberg parts are identical, so we will

use the same symbol VH to denote the two. The remaining component spaces will

be denoted by VM and VM̃ , respectively. VM has a basis {M1, . . . ,Md} while VM̃

has a basis {M̃1, . . . , M̃d} as determined in (3.10).

Theorem 3.5. If any of the following properties hold, then two Lie algebras gp,B

and gp̃,B̃ are isomorphic:

1. p̃ = p and there exists S ∈ Sp(n,R) so that

C̃k = SCkS
−1 (k = 1, . . . , d),

with Ck and C̃k given as in (3.15).

2. p̃ = p and there exists V ∈ GLn(R) so that

B̃k = V BkV
−1 (k = 1, . . . , d).

3. Each M̃i is a linear combination of M1, . . . ,Md,

M̃i =
d∑

k=1

aikMk

with det(A) ̸= 0 where A = [aik].

4. There exists α ̸= 0 so that M̃k = αMk for all k = 1, . . . , d.

Proof. 1. Define a linear isomorphism Φ : gp,B → gp̃,B̃ by

Φ(Mk) = M̃k, Φ(Ww) = WSw, Φ(Zz) = Zz.
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In light of Lemma 3.4 one only needs to verify that Lie brackets involving

the matrices Mk are preserved. This is indeed the case, as by (3.14),

[Φ(Mk),Φ(Ww)] = [M̃k,WSw] = WC̃kSw

= WSCkw = Φ(WCkw) = Φ ([Mk,Ww])

and, by (3.13),

[Φ(Mk),Φ(Zz)] = [M̃k, Zz] = Zp̃kz = Zpkz = Φ([Mk, Zz]) .

for all k = 1, . . . , d.

2. Simply apply the above to

S =

V 0

0 (V −1)
T

 .

3. This is merely a change of basis of the subalgebra VM , and hence both Lie

algebras coincide.

4. This is a particular change of basis, choosing aik = αδi,k.

Replacing the matrices M1, . . . ,Md (and consequently B1, . . . , Bd) with ap-

propriate linear combinations, by Theorem 3.5, we may from here on assume that

p1 ∈ {0, 1} and pk = 0 for k > 2. After this normalization of the basis of VM , we

aim to give a partial converse of Theorem 3.5.

Remark 3.6. If two normalized Lie algebras gp,B, and gp̃,B̃ are isomorphic, then

p1 = p̃1 (i.e. p = p̃). In fact, if Φ : gp,B → gp̃,B̃ is a Lie algebra isomorphism, then

Φ maps center onto center. Since every Lie algebra gp,B has trivial center when

p1 = 1, and center VZ when p1 = 0, it immediately follows that p1 = p̃1.
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This remark shows that the normalized Lie algebras gp,B need only be clas-

sified with respect to the various choices of B.

Theorem 3.7. Let Φ : gp,B → gp,B̃ be an isomorphism of normalized Lie algebras

mapping VH onto VH . Then there exists S ∈ Sp(n,R) so that, after replacing the

matrices M̃1, . . . , M̃d with suitable linear combinations,

C̃k = SCkS
−1, k = 1, . . . d, (3.18)

with Ck and C̃k given as in (3.15).

Proof. Suppose that Φ : VH → VH . Then in light of Lemma 3.4, Φ has the matrix

representation

Φ ↔


E11 0 0

E21 E22 0

E31 E32 E33

 , (3.19)

corresponding to the decomposition gp,B = VM ⊕ VW ⊕ VZ . Note that composing

Φ with the automorphism Ψ of gp,B̃ given by the matrix

Ψ ↔


Id 0 0

0 λJ 0

0 0 −λ2

 , resp. Ψ ↔


Id 0 0

0 λI2n 0

0 0 λ2

 ,

depending on the sign of E33, where λ = |E33|−1/2, we may assume that E33 = 1.

After a suitable change of basis in VM̃ , which affects the first column of

matrix (3.19) only, we may assume that E11 = Id. It is important to observe that

this change of basis can be done without changing the values of pk. This is clear

when p1 = 0. On the other hand, suppose that p1 = 1. Now if E11 = [eik], then

Φ(Mk) =
∑

i eikM̃i +Hk for some Hk ∈ VH and it follows that for all z ∈ R,

[Φ(Mk),Φ(Zz)] =
[(∑

i eikM̃i

)
+Hk, ZE33z

]
=
∑
i

eik

[
M̃i, ZE33z

]
=
∑
i

eikZpiE33z = e1kZE33z

(3.20)
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while also

[Φ(Mk),Φ(Zz)] = Φ ([Mk, Zz]) = Φ(Zpkz) = Φ(δ1,kZz) = δ1,kZE33z. (3.21)

Comparing these two equations we obtain that

e1k = δ1,k =

1 if k = 1

0 if k ̸= 1.

This shows that the change of basis can be done by replacing each M̃k with M̃k +

Ñk for some Ñk ∈ span(M̃2, . . . M̃m), and thus preserving the values of pk. The

isomorphism Φ now has the form

Φ ↔


Im 0 0

E21 E22 0

E31 E32 1


with E22 ∈ GL2n(R).

It is easy to verify that a linear isomorphism determined by such a matrix

preserves the Lie brackets if and only if

JE22w,E22w̃K = Jw, w̃K (3.22)

C̃k = E22CkE
−1
22 (3.23)

C̃kE
(j)
21 = C̃jE

(k)
21

pkE
(j)
31 + JE(k)

21 , E
(j)
21 K = pjE

(k)
31

JE(k)
21 , wK = E32E

−1
22 w

for all j, k = 1, . . . , d and w, w̃ ∈ R2n, with E
(k)
21 and E

(k)
31 denoting the k-th columns

of the matrices E21 and E31, respectively. These identities remain valid if we modify

Φ so that E21 = E31 = E32 = 0, that is

Φ ↔


Id 0 0

0 E22 0

0 0 1

 . (3.24)
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Choosing S = E22, the identities (3.22) and (3.23) now yield the assertion.

Definition 3.8. Matrices A1, . . . , Ad ∈ Mn(R) are said to be linearly nilindepen-

dent, if no nontrivial linear combination is nilpotent.

Clearly, linear nilindependence implies linear independence. In case of a

normalized Lie algebra gp,B we thus have:

1. When p1 = 0 then M1, . . . ,Md are linearly nilindependent iff B1, . . . , Bm are

linearly nilindependent.

2. When p1 = 1 then M1, . . . ,Md are linearly nilindependent iff B2, . . . , Bm are

linearly nilindependent.

The next result shows that nilindependence guarantees that VH is mapped

to VH . It can also be obtained from the classification of the Lie algebras whose

nilradical is the Heisenberg algebra, given by Rubin and Winternitz (1993).

Corollary 3.9. Let Φ : gp,B → gp,B̃ be an isomorphism of normalized Lie algebras.

If M1, . . . ,Md are linearly nilindependent, then there exists S ∈ Sp(n,R) so that,

after replacing the matrices M̃1, . . . , M̃d with a suitable basis of VM̃ ,

C̃k = SCkS
−1, k = 1, . . . , d.

Proof. Since VH is a nilpotent ideal, it is contained in the nilradical of the algebras

gp,B and gp,B̃. Now by non-nilpotency of all nonzero elements of VM , the nilradical

of gp,B coincides with VH , and hence has dimension 2n+ 1. Since Φ is an isomor-

phism between the nilradicals, then the nilradical of gp,B̃ has the same dimension,

and hence must coincide with VH as well. Thus, Theorem 3.7 applies.

Next, we make the relationship between the matrices Bk and B̃k more pre-

cise. First some remarks and observations:
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We will make use of a result by Bruna et al. (2011), which generalizes the

well known theorem on the real Jordan normal form of a single matrix to collections

of commuting matrices.

Theorem 3.10. Let l ∈ N and B1, . . . , Bd ∈ Mn(R) be commuting matrices. Then

there exist S ∈ GLn(R), mr ∈ N and Kr ∈ {R,C} (for r = 1, . . . ℓ) so that

ℓ∑
r=1

mr · dimR Kr = n

and, for k = 1, . . . , d,

SBkS
−1 =



Bk,1 0 0 . . . 0

0 Bk,2 0 . . . 0

0 0 Bk,3 . . . 0

... ... . . . ...

0 0 0 . . . Bk,ℓ


, (3.25)

with blocks

Bk,r ∈ Kr · Imr +N (mr,Kr). (3.26)

Here, N (m,K) denotes the set of all properly upper triangular m × m matrices,

and Im the identity matrix in Mm(K). The entries of a block Bk,r are real numbers

in case Kr = R, and else are 2× 2-blocks of the form
[

α β
−β α

]
corresponding to the

natural embedding α + iβ 7→
[

α β
−β α

]
of C in R2.

Remark 3.11. The proof of this theorem in Bruna et al. (2011) shows the follow-

ing: For each k, let Λk denote the set of eigenvalues of Bk. Here a conjugate pair

of complex eigenvalues is considered as one single eigenvalue with imaginary part

ℑ(λ) > 0. Set

Λ = Λ1 × Λ2 × · · · × Λm.
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Then for each r, 1 ≤ r ≤ m, there exists a unique

λ(r) = (λ
(r)
1 , λ

(r)
2 , . . . , λ(r)

m ) ∈ Λ

so that

Bk,r = λ
(r)
k · Imr +Nk,r, Nk,r ∈ N (dr,K).

We set

ΛB = {λ(r) : 1 ≤ r ≤ ℓ} ⊆ Λ,

the joint spectrum of the matrices Bk. Note that the mapping r 7→ λ(r) need not

be one-to-one, as different blocks may have the same joint eigenvalues.

Remark 3.12. Suppose matrices B1, . . . , Bd in blockdiagonal form as in Theorem

3.10 generate a Lie algebra gp,B. Fix r, 1 ≤ r ≤ ℓ, and replace the r-th block Bk,r

of each matrix with pkIs − BT
k,r where s = dimR K · mr is the size of the block.

(For ease of notation, we will simply write pk − BT
k,r.) The resulting matrices will

possess the same block structure, and after a suitable change of the basis vectors

of the r-th block, will again have upper triangular blocks as in the Theorem. We

will call this process of replacing each Bk,r (k = 1, . . . , d) with pk−BT
k,r a flip of the

r-th blocks. Obviously, such a flip will replace the eigenvalue λ
(r)
k of Bk belonging

to the r-th block with pk−λ
(r)
k , for 1 ≤ k ≤ d. (The complex conjugate is required

here by our agreement that ℑ(λ(r)
k ) > 0 for all complex eigenvalues λ

(r)
k .)

We next introduce a particular class of symplectic matrices.

Remark 3.13. Let K, M be matrices of sizes r× r, L and N be matrices of sizes
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s× s, and O and P of sizes q × q. Set

C =



K 0 0 0 0 0

0 L 0 0 0 0

0 0 O 0 0 0

0 0 0 M 0 0

0 0 0 0 N 0

0 0 0 0 0 P


and Jr,s,q =



Ir 0 0 0 0 0

0 0 0 0 −Is 0

0 0 0 0 0 Iq

0 0 0 Ir 0 0

0 Is 0 0 0 0

0 0 0 0 0 Iq


.

Then Jr,s,q is a symplectic matrix, Jr,s,q ∈ Sp(r + s+ q,R), and

Jr,s,qCJ −1
r,s,q =



K 0 0 0 0 0

0 N 0 0 0 0

0 0 O 0 0 0

0 0 0 M 0 0

0 0 0 0 L 0

0 0 0 0 0 P


.

That is, conjugation by Jr,s,q exchanges the blocks N and L.

Theorem 3.14. Consider two isomorphic Lie algebras gp,B and gp,B̃, where a basis

of VM̃ has been chosen so that (3.18) holds.

1. If every joint eigenvalue λ = (λ1, . . . , λd) ∈ ΛB has at least one component

λk whose real part satisfies ℜ(λk) ̸= pk/2, then there exist matrices

Dk =

Ek 0

0 Fk

 , D̃k =

Ẽk 0

0 F̃k

 and Ao, U, V ∈ GLn(R)

so that for each k = 1, . . . , d,

(a) D̃k ≃ Dk by means of Ad(Ao),

(b) Bk ≃

Ek 0

0 pk − F T
k

 by means of Ad(U), and
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(c) B̃k ≃

Ẽk 0

0 pk − F̃ T
k

 by means of Ad(V ).

(The blocks Ek and Ẽk need not be of same size.)

2. If in addition, for all joint eigenvalues λ ∈ ΛB the ”conjugate” λc = p− λ is

not contained in ΛB, and the same is true for the joint eigenvalues λ ∈ ΛB̃,

then there exist matrices

Dk =

Ek 0

0 Fk

 and U,W ∈ GLn(R)

so that for each k = 1, . . . , d,

(a) Bk ≃ Dk by means of Ad(U), and

(b) B̃k ≃

Ek 0

0 pk − F T
k

 by means of Ad(W ).

Proof. By Theorem 3.10, there exist invertible matrices U and V so that

U−1BkU =


Bk,1 . . . 0

... . . . ...

0 . . . Bk,ℓ

 and V −1B̃kV =


B̃k,1 . . . 0

... . . . ...

0 . . . B̃k,ℓ̃

 (3.27)

for k = 1, . . . , d, and the blocks Bk,r and B̃k,r̃ have the upper-triangular form (3.26).

Merging blocks belonging to the same joint eigenvalue (which effectively is first a

switching of blocks followed by a merging of some adjacent blocks, and affects the

matrices U and V ), we may assume that the maps r ∈ {1, . . . , ℓ} 7→ λ ∈ ΛB and

r ∈ {1, . . . , ℓ̃} 7→ λ ∈ ΛB̃ are one-to-one. Applying Theorem 3.5, part 2 and its

proof with the matrices U and V , we may thus assume from here on that Bk and

B̃k are in this block-diagonal form.

We split the joint spectrum ΛB into three subsets as follows. First let

Λ0
B = {λ = (λ1, . . . , λd) ∈ ΛB : ℜ(λk) = pk/2 for all k = 1, . . . , d} .
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The remaining elements of λB have the property that there exists a first k = ko so

that ℜ(λko) ̸= pko/2. We set

Λ+
B = {λ ∈ ΛB : ℜ(λko) > pko/2}

Λ−
B = {λ ∈ ΛB : ℜ(λko) < pko/2} .

Note that any of these subsets may be empty. By exchanging the blocks in (3.27)

(which can be effected by changing the diagonalizing matrices U and V used earlier)

we may assume that the surjection r ∈ {1, . . . ℓ} 7→ λ(r) ∈ ΛB has the following

property: There exist ℓ1, ℓ2 so that

λ(r) ∈ Λ+
B when 1 ≤ r ≤ ℓ1

λ(r) ∈ Λ−
B when ℓ1 < r ≤ ℓ2

λ(r) ∈ λ0
B when ℓ2 < r ≤ ℓ

Thus,

Bk =


Ek 0 0

0 Lk 0

0 0 Ok


where

Ek =


Bk,1 . . . 0

... . . . ...
0 . . . Bk,ℓ1

 , Lk =


Bk,ℓ1+1 . . . 0

... . . . ...
0 . . . Bk,ℓ2

 , Ok =


Bk,ℓ2+1 . . . 0

... . . . ...
0 . . . Bk,ℓ

 .

The matrices Ek, Lk and Ok are of sizes

nE =

ℓ1∑
r=1

mr · dimR Kr, nL =

ℓ2∑
r=ℓ1+1

mr · dimRKr, nO =
ℓ∑

r=ℓ2+1

mr · dimR Kr,

respectively, where zero is a permitted value.
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Next we flip the blocks Lk and replace the matrices Bk by

B̄k =


Ek 0 0

0 pk − LT
k 0

0 0 Ok

 =

Hk 0

0 Ok

 , (k = 1, . . . , d).

Each B̄k is a block-diagonal matrix with either upper or lower triangular blocks,

which have the same sizes and positions as the blocks of Bk. If ΛB̄ denotes the

joint spectrum of the matrices B̄k, then,

Λ−
B̄
= ∅, Λ+

B̄
= Λ+

B ∪ {λc = p− λ : λ ∈ Λ−
B}, Λ0

B̄ = Λ0
B. (3.28)

Thus, the blocks inside Hk have joint eigenvalues λ ∈ Λ+
B̄

, while those in Ok have

joint eigenvalues λ ∈ Λ0
B̄

. It may happen that a “conjugate” pair of joint eigen-

values λ(r1) ∈ Λ+
B and λ(r2) = λ(r1)

c ∈ Λ−
B combine to a single joint eigenvalue

of B̄1, . . . , B̄d; in this case, we will merge all blocks in the B̄k belonging to this

new joint eigenvalue to one single block. This does, however, not happen under

the additional assumption in part 2 of this theorem, that only one of the two is a

joint eigenvalue, as then the union in (3.28) is disjoint. Furthermore, this joining

of blocks can be achieved by first conjugating each B̄k with an invertible matrix

of the form

Q =

Qo 0

0 InO


with Qo ∈ GLnE+nL

(R), which results in making blocks to be joint adjacent, and

then merging these adjacent blocks to a single block. After the joining of blocks,

the matrices B̄k (we still use the same symbol to avoid symbol overload), then

B̄k = Q

Hk 0

0 Ok

Q−1

will consist of fewer but larger blocks than the matrices Bk; if ℓ̄ denotes the number

of blocks of the B̄k after joining, then ℓ̄ ≤ ℓ. This merging of blocks does not
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modify the spectral sets (3.28), but ensures that the map r ∈ {1, . . . , ℓ̄} 7→ ΛB̄ is

still one-to-one.

We now show that gp,B and gp,B̄ are isomorphic. Observe that

C̄k =

B̄k 0

0 pk − B̄k
T



=

Q 0

0 [Q−1]
T




Hk 0 0 0

0 Ok 0 0

0 0 pk −HT
k 0

0 0 0 pk −OT
k


Q−1 0

0 QT



=

Q 0

0 [Q−1]
T





Ek 0 0 0 0 0

0 pk − LT
k 0 0 0 0

0 0 Ok 0 0 0

0 0 0 pk − ET
k 0 0

0 0 0 0 Lk 0

0 0 0 0 0 pk −OT
k



Q−1 0

0 QT



= T



Ek 0 0 0 0 0

0 Lk 0 0 0 0

0 0 Ok 0 0 0

0 0 0 pk − ET
k 0 0

0 0 0 0 pk − LT
k 0

0 0 0 0 0 pk −OT
k


T−1

= T

Bk 0

0 pk −BT
k

T−1 = TCkT
−1
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where

T =

Q 0

0 [Q−1]
T

JnE ,nL,nO
∈ Sp(n,R).

Hence by Theorem 3.5, part 1, gp,B and gp,B̄ are isomorphic.

We do the same construction with the matrices B̃k to obtain matrices ¯̃Bk

and symplectic matrices T̃ so that

¯̃Ck =

 ¯̃Bk 0

0 pk − ¯̃B
T

k

 = T̃

B̃k 0

0 pk − B̃T
k

 T̃−1 = T̃ C̃kT̃
−1

resulting in isomorphic algebras gp,B̃ and g
p, ¯̃B

. Composing the isomorphism gp,B 7→

gp,B̃ determined by S ∈ Sp(n,R) in (3.18) with the isomorphisms determined by

T and T̃ we now obtain a Lie algebra isomorphism Φ : gp,B̄ → g
p, ¯̃B

implemented

by G = T̃ ST−1 ∈ Sp(n,R):

¯̃Ck = T̃ C̃kT̃
−1 = T̃ SCkS

−1T̃−1 = T̃ ST−1C̄kTS
−1T̃−1 = GC̄kG

−1 (3.29)

for k = 1, . . . , d.

Now the matrices C̄k are block-diagonal with triangular blocks which arise

as follows: Each block B̄k,r belonging to an eigenvalue λ
(r)
k of B̄k gives rise to two

blocks, one in the top-left corner of C̄k with eigenvalue λ
(r)
k , and one in the bottom

right corner of C̄k with eigenvalue pk − λ
(r)
k . It follows that the joint spectrum ΛC̄

of the matrices C̄k has the following form: Λ+
C̄
= Λ+

B̄
, Λ−

C̄
= {λc = p− λ̄ : λ ∈ Λ+

B̄
},

and Λ0
C̄

= Λ0
B̄

. The last two identities hold as every complex conjugate pair of

eigenvalues has been identified to a single eigenvalue with positive imaginary part.

Now blocks of C̄k belonging to λ ∈ Λ+
C̄

lie in the upper-left corner of C̄k, while

those belonging to λ ∈ Λ−
C̄

lie in the lower-right corner of C̄k. Each λ ∈ Λ0
C̄

gives

rise to two blocks of C̄k, one in each corner.

The same arguments apply similarly to the matrix ¯̃Ck. Since the families

of block diagonal matrices {C̄k}dk=1 and { ¯̃Ck}dk=1 are similar via the map Ad(G)
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in (3.29), they have the same joint spectrum, ΛC̄ = Λ ¯̃C
, and the same block sizes

belonging to each joint eigenvalue. It follows that ΛB̄ = Λ ¯̃B
, and that this similarity

carries a block in C̄k, corresponding to a joint eigenvalue λ(r) ∈ Λ+
C̄
= Λ+

B̄
, to a

block in ¯̃Ck corresponding to the same joint eigenvalue λ(r̃) ∈ Λ+
¯̃C
= Λ+

¯̃B
, and hence

must carry Hk onto H̃k (and similarly pk −HT
k onto pk − H̃T

k ), and each block in

Hk onto a block in H̃k. In addition, Λ+
C̄
= Λ+

¯̃C
so that Λ+

B̄
= Λ+

¯̃B
. Thus, G is of the

form

G =



A 0 0 0

0 B 0 C

0 0 [A−1]
T

0

0 D 0 E


, A ∈ GLnH

(R),

B C

D E

 ∈ Sp(nO,R),

where nH = nE + nL.

Now suppose as stated in the assumption of the theorem, that Λ0
B = ∅, so

that Λ0
B̄
= ∅, B̄k = QHkQ

−1, ¯̃Bk = Q̃H̃kQ̃
−1 and G is of the form

G =

A 0

0 [A−1]
T

 .

Then by (3.29),

¯̃Ck =

 ¯̃Bk 0

0 pk − ¯̃Bk

 =

A 0

0 [A−1]
T


B̄k 0

0 pk − B̄k


A−1 0

0 AT


from which we obtain

¯̃Bk = AB̄kA
−1,

that is,

Q̃

Ẽk 0

0 pk − L̃T
k

 Q̃−1 = AQ

Ek 0

0 pk − LT
k

Q−1A−1.
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Setting Fk = pk−LT
k and F̃k = pk−L̃T

k and Ao = Q̃−1AQ, the assertion (a) follows.

In addition, as

Bk =

Ek 0

0 Lk

 =

Ek 0

0 pk − F T
k

 ,

and similarly for B̃k. then assertions (b) and (c) follow.

We observe that Ad(A) switches blocks. In fact, let

ϕ : r 7→ r̃

be the bijection which identifies the joint spectra Λ+
C̄
= Λ+

B̄
= ΛB̄ and Λ+

¯̃C
= Λ+

¯̃B
=

Λ ¯̃B
, that is, λ̃(ϕ(r)) = λ(r) for λ(r) ∈ ΛB̄ and λ̃(r̃) ∈ Λ ¯̃B

. Correspondingly, Ad(A)

maps the r-th block of B̄k to the r̃ = ϕ(r)-th block of ¯̃Bk. The corresponding

decompositions Rn = ⊕rVr and Rn = ⊕r̃Vr̃ give a decomposition of A into block

form, A = [ar̃r], where ar̃r ̸= 0 ⇔ r̃ = ϕ(r). Each row and each column of A

contains exactly one nonzero entry which is a square matrix. In addition, A−1 =

[brr̃] where brr̃ ̸= 0 ⇔ r̃ = ϕ(r), in which case brr̃ = a−1
r̃r . Furthermore, (A−1)T =

[cr̃r] where cr̃r ̸= 0 ⇔ r̃ = ϕ(r), in which case cr̃r = bTrr̃ = (a−1
r̃r )

T .

Finally, suppose in addition that the “conjugate” λc of any joint eigenvalue

λ ∈ ΛB, respectively λ ∈ ΛB̃, is not a joint eigenvalue. Then there is an exact

one-to-one correspondence between the (merged) blocks of Bk and those of B̄k,

and similarly between those of B̃k and ¯̃Bk, and in particular, Q = Q̃ = In. Since

B̄k and ¯̃Bk have the same number of blocks of equal size, it follows that so do Bk

and B̃k; in particular, ℓ = ℓ̃. Now (3.29) gives

C̃k = T̃−1GTCkT
−1G−1T̃ = (T̃−1GT )Ck(T̃

−1GT )−1.

where T = JnE ,nL,0 and T̃ = JnẼ ,nL̃,0
We analyze the action of Ad(T̃−1GT ). Begin

with an arbitrary block Bk,r of any Bk. This block results in precisely two blocks
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of Ck,

E
(u)
k,r = Bk,r and E

(l)
k,r = pk −BT

k,r

located in the upper-left and lower-right corners of Ck, respectively, both at po-

sition r in each corner. Applying Ad(T ) either keeps these two blocks in place,

or exchanges them. The two resulting blocks F
(u)
k,r and F

(l)
k,r in the r-th position of

each corner are thus either

F
(u)
k,r = E

(u)
k,r , F

(l)
k,r = E

(l)
k,r, or F

(u)
k,r = E

(l)
k,r, F

(l)
k,r = E

(u)
k,r .

Next applying Ad(G) switches positions of these blocks within the same corners,

moving them to position r̃ = ϕ(r),

G
(u)
k,r̃ = ar̃rF

(u)
k,r a

−1
r̃r , G

(l)
k,r̃ = (a−1

r̃r )
TF

(l)
k,ra

T
r̃r.

Applying Ad(T̃ ) at last again either keeps these blocks in place, or switches them

between corners, to obtain blocks of C̃k of the form

H
(u)
k,r̃ = G

(u)
k,r̃ , H

(l)
k,r̃ = G

(l)
k,r̃, or H

(u)
k,r̃ = G

(l)
k,r̃, H

(l)
k,r̃ = G

(u)
k,r̃ .

Analyzing the left-upper blocks B̃k,r̃ = H
(u)
k,r̃ of C̃k, there are now four possibilities:

(1) (never switched between corners)

B̃k,r̃ = ar̃rE
(u)
k,r a

−1
r̃r = ar̃rBk,ra

−1
r̃r ,

(2) (Ad(T ) and Ad(T̃ ) switched between corners)

B̃k,r̃ = (a−1
r̃r )

TE
(u)
k,r a

T
r̃r = (a−1

r̃r )
TBk,ra

T
r̃r,

(3) (only Ad(T ) switched between corners)

B̃k,r̃ = ar̃rE
(l)
k,ra

−1
r̃r = ar̃r

(
pk −BT

k,r

)
a−1
r̃r ,

(4) (only Ad(T̃ ) switched between corners)

B̃k,r̃ = (a−1
r̃r )

TE
(l)
k,ra

T
r̃r = (a−1

r̃r )
T
(
pk −BT

k,r

)
aTr̃r,
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where r̃ = ϕ(r) throughout. After reordering the indices r and r̃ we may assume

that r̃ = ϕ(r) = r, and (1) and (2) occur for r ≤ ℓ1 while (3) and (4) occur

for ℓ1 < r ≤ ℓ. (this reordering affects the matrices U and V only.) Setting

Ek = diag(Bk,1, . . . , Bk,ℓ1) and Fk = diag(Bk,ℓ1+1, . . . , Bk,ℓ), it follows that

Bk =

Ek 0

0 Fk


and there exists a block-diagonal matrix A1 so that

B̃k = diag(B̃k,1, . . . B̃k,ℓ) = A1

Ek 0

0 pk − F T
k

A−1
1 .

Setting W = V A1, the second assertion follows.

3.3.3 Classification of the Lie algebras gp,B generated by

pairs of commuting matrices

We now show that when d = 2, the nilindependence requirement of Corol-

lary 3.9 may be removed. Given two commuting nonzero matrices B1, B2 ∈ Mn(R),

let M1,M2 be as above, with p1 ∈ {0, 1} and p2 = 0. When p1 = 0 we need to

impose the requirement that B1 and B2 be linearly independent, in order for (A1)

to hold.

We next investigate properties of Lie algebra isomorphisms between two

normalized Lie algebras gp,B and gp,B̃. Every isomorphism Φ : gp,B → gp,B̃ can be

represented in matrix form as

Φ ↔



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


, (3.30)
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by using the decomposition gp,B = VM1 ⊕VM2 ⊕VW ⊕VZ . Our goal is to show that

a13 = a23 = a14 = a24 = 0, which guarantees that Φ maps VH onto VH . We begin

with the following observation.

Lemma 3.15. Let Φ : gp,B → gp,B̃ be a Lie algebra isomorphism which has the

matrix representation

Φ ↔



a11 0 0 0

0 a22 a23 0

a31 a32 a33 0

a41 a42 a43 a44


. (3.31)

Then a23 = 0.

Proof. Since Φ maps the ideal VZ onto VZ , it factors to a Lie algebra isomorphism

Φ̂ : h = gp,B/VZ ≃ VM1 ⊕ VM2 ⊕ VW → h̃ = gp,B̃/VZ ≃ VM̃1
⊕ VM̃2

⊕ VW whose

matrix representation is

Φ̂ ↔


a11 0 0

0 a22 a23

a31 a32 a33

 .

Let us set k = VM2 ⊕ VW , an ideal in h of dimension 2n + 1, and similarly, k̃ =

VM̃2
⊕ VW . Then Φ̂ maps k onto k̃, and VW is an abelian ideal of codimension one

in k, respectively k̃.

We claim that VW is the unique such ideal. For suppose that J is another

abelian ideal of codimension one in k. Let U1, . . . , U2n be a basis of J . Then each

Ui is of the form

Ui = αiM2 +Wwi
, αi ∈ R, i = 1, . . . , 2n.

If αi = 0 for all i, the claim is proved, otherwise we may assume, without loss of

generality, that α1 = 1 and αi = 0 for all i ≥ 2. Now since B2 ̸= 0, there exist
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xo, yo ∈ Rn so that

[U1, Xxo ] = [M2, Xxo ] = XB2xo ̸= 0

[U1, Yyo ] = [M2, Yyo ] = Y−BT
2 yo ̸= 0.

Since J is abelian, it follows that Xxo , Yyo /∈ J , contradicting the assumption that

codim(J) = 1. This proves the claim.

From the claim it follows immediately that Φ̂ maps VW onto VW , and hence

that a23 = 0.

Theorem 3.16. Let Φ : gp,B → gp,B̃ be a Lie algebra isomorphism of normalized

Lie algebras. Then Φ maps VH onto VH .

Proof. We consider five distinct possibilities: p1 = 1 and B2 is nilpotent, p1 = 1

and B2 is not nilpotent, p1 = 0 and none of B1 and B2 is nilpotent, p1 = 0

and exactly one of B1 and B2 is nilpotent, and p1 = 0 and both, B1 and B2 are

nilpotent.

As will be seen below, in each of the five cases, gp,B will have a differ-

ent algebraic structure. Thus, two Lie algebras which are isomorphic via some

isomorphism Φ must both belong to the same of the five cases.

• Case 1: p1 = 1 and B2 is not nilpotent

Here, gp,B has nilradical VH which is of dimension 2n+1. Since Φ maps nilradical

to nilradical, it follows that gp,B̃ has nilradical of dimension 2n+1 as well, which

thus must coincide with VH . That is, Φ maps VH onto VH .

• Case 2: p1 = 1 and B2 is nilpotent

Here, gp,B has nilradical VM2 ⊕ VH of dimension 2n + 2. Since p1 = 1, and the

nilradical of gp,B̃ has dimension 2n + 2 as well, gp,B̃ must belong to case 2. It
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follows that B̃2 is nilpotent and the nilradical of gp,B̃ is VM̃2
⊕ VH . In addition,

as Φ maps the center VZ of the nilradical onto the center VZ of the nilradical,

it follows that Φ has matrix form

Φ ↔



a11 0 0 0

a21 a22 a23 0

a31 a32 a33 0

a41 a42 a43 a44


. (3.32)

Replacing M̃1 with a suitable linear combination M̃1 + βM̃2, we may assume

that a21 = 0. Applying Lemma 3.15 it follows that a23 = 0, that is, Φ maps VH

onto VH .

• Case 3: p1 = 0 and none of B1, B2 is nilpotent

Simply apply the argument of case 1.

• Case 4: p1 = 0 and one of B1, B2 is nilpotent

Without loss of generality, we may assume that B2 is nilpotent, but B1 is not.

Then gp,B has nilradical VM2 ⊕ VH of dimension 2n + 2. Since p1 = 0 and the

nilradical of gp,B̃ has dimensions 2n + 2, the latter algebra must again belong

to case 4, so that replacing B̃1 and B̃2 by suitable linear combinations,gp,B̃ will

have nilradical VM̃2
⊕VH . The remainder of the argument follows that of case 2.

• Case 5: p1 = 0 and both, B1 and B2 are nilpotent

Here, gp,B is itself nilpotent with center VZ . Hence gp,B̃ is also nilpotent and

belongs to case 5. Since Φ maps center to center, it has the form (3.30) with

a14 = a24 = a34 = 0. We begin by considering the induced isomorphism
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Φ̂ : h = gp,B/VZ → h̃ = gp,B̃/VZ ,

Φ̂ ↔


a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Since VW is an ideal of codimension two in h, then Ĩ := Φ̂(VW ) will be an

abelian ideal of codimension two in h̃, that is, of dimension 2n.

We claim that Ĩ = VW . Suppose to the contrary that Ĩ ̸= VW . Denoting

by Po the projection of h̃ onto VM̃ = VM̃1
⊕VM̃2

and setting Vo = Po(Ĩ), we then

obtain that dim(Vo) ∈ {1, 2}.

◦ Subcase 5a: dim(Vo) = 1. Then elements of Ĩ are of the form

A = αM̃o +Ww, α ∈ R, Ww ∈ VW

for some fixed nonzero M̃o = diag(0, B̃o, 0) ∈ VM̃ . Fix one such A with α = 1.

Then there exist xo, yo ∈ Rn so that

[A,Xxo ] = [M̃o, Xxo ] = XB̃oxo
̸= 0 and

[A, Yyo ] = [M̃o, Yyo ] = Y−B̃T
o yo

̸= 0.

Since Ĩ has codimension two in h̃, it follows that h̃ = Ĩ⊕ < Xxo , Yyo > where

< Xxo , Yyo > denotes span(Xxo , Yyo). In fact, suppose αXxo + βYyo ∈ Ĩ for

some scalars α, β . Then

0 = [A,αXxo + βYyo ] = α[A,Xxo ] + β[A, Yyo ] = αXB̃oxo
+ βY−B̃T

o yo
,

which implies that α = β = 0. Now as < Xxo , Yyo >⊆ VW we have

Vo = Po(Ĩ) = Po(Ĩ⊕ < Xxo , Yyo >) = Po(h) = VM̃

contradicting the fact that Vo has dimension one.
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◦ Subcase 5b: dim(Vo) = 2.

Then Vo = VM̃ . Note that by nilpotency of B̃1 and B̃2, all linear combinations

αB̃1 + βB̃2 are again nilpotent and thus have nontrivial null spaces.

⋄ Subcase 5b-1: there exists B̃o = αB̃1+βB̃2 whose null space has dimension

≤ n− 2.

Set M̃o = αM̃1 + βM̃2 and pick any A ∈ Ĩ with Po(A) = M̃o. By

choice of B̃o, there exist two elements x1, x2 ∈ Rn with [M̃o, Xx1 ] = XB̃ox1

and [M̃o, Xx2 ] = XB̃ox2
linearly independent. Also, pick y1 ∈ Rn with

[M̃o, Yy1 ] = Y−B̃T
o y1

̸= 0. We observe that Ĩ+ < Xx1 , Xx2 , Yy1 > is a 2n+ 3

dimensional subspace of h̃. In fact, suppose αXx1 + βXx2 + γYy1 ∈ Ĩ for

some scalars α, β, γ. Then

0 =
[
M̃o, αXx1 + βXx2 + γYy1

]
= α[M̃o, Xx1 ] + β[M̃o, Xx2 ] + γ[M̃o, Yy1 ]

= αXB̃ox1
+ βXB̃ox2

+ γY−B̃T
o y1

from which it follows that α = β = γ = 0. This, however, contradicts the

fact that h̃ has dimension 2n+ 2.

⋄ Subcase 5b-2: the null spaces of all nonzero αB̃1 + βB̃2 have dimensions

n− 1.

Pick elements A1 = M̃1 +Ww1 and A2 = M̃2 +Ww2 (Ww1 ,Ww2 ∈ VW ) of

Ĩ. Since

ad(Ai)(Xx) = XB̃ix
and ad(Ai)(Yy) = Y−B̃T

i y, i = 1, 2, (3.33)

it follows that ker(ad(A1)) and ker(ad(A2)) both have codimensions of

at least 2 in h̃. In addition, since Ĩ is abelian, then Ĩ ⊆ ker(ad(A1)) ∩

ker(ad(A2)). Comparing dimensions, it follows that Ĩ = ker(ad(A1)) =

 

 

 

 

 

 

 

 



62

ker(ad(A2)). Now (3.33) shows that ker(ad(Ai)|VW
) splits into subspaces

VXo and VYo of VX , respectively VY , of codimensions one. Hence we can

decompose VX and VY as direct sums

VX = VXo⊕ < Xxo >, VY = VYo⊕ < Yyo > (3.34)

of subspaces. Here we have chosen the vectors xo and yo so that xo ⊥ Xo

and yo ⊥ Yo in Rn with respect to the usual inner product. Now since

Xo = ker(B̃i) and also Yo = ker(B̃T
i ) = range(B̃i)

⊥ (i = 1, 2), it follows

that, after expressing the common domain space as Xo⊕ < xo > and the

common range space as Yo⊕ < yo >, the matrices B̃i take the form

B̃i =

0 0

0 bi


for scalars b1 and b2, contradicting the linear independence of the two

matrices.

Thus, the claim is proved. It follows immediately that a13 = a23 = 0. Since Φ

maps center VZ onto center VZ , then also a14 = a24 = a34 = 0. That is, Φ maps

VH onto VH .

This completes the proof.

Combining Theorems 3.5, 3.7, 3.16, and Remark 3.6, we arrive at:

Corollary 3.17. Let d = 2. Then two normalized Lie algebra gp,B and gp̃,B̃ are

isomorphic iff

1. p = p̃, and

2. there exists S ∈ Sp(n,R) so that, after replacing the matrices M̃1, M̃2 with

a suitable basis of VM̃ ,

C̃k = SCkS
−1, k = 1, 2,
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with Ck and C̃k given as in (3.15).

Table 3.1 lists the equivalence classes of all Lie algebras gp,B generated by

two commuting matrices B1 and B2 in the lowest dimensions, namely for n =

1, 2, 3. Detailed explanations of this procedure for the case n = 3 are given in

the Appendix. As the cases n = 1, 2 are less difficult and are special cases of

n = 3, detailed explanations are omitted for n = 1, 2. Note that when n = 2, the

non-nilpotent cases can also be obtained from the list in Rubin and Winternitz

(1993).

Table 3.1: Equivalence classes of the Lie algebras gp,B for n = 1, 2, 3

Name B1 B2 Range of parameters Remarks

n = 1

p = 0 — — none exists

p = 1 g11,1

[
1
2

] [
1

]
n = 2

p = 0 g20,1

1 0

0 0


0 0

0 1



g20,2

1 0

0 1


0 1

0 0

 B2 is nilpotent

g20,3

1 0

0 1


 0 1

−1 0



p = 1 g21,1

 1
2

0

0 b


1 0

0 d

 b > 1
2
, 0 ≤ |d| ≤ 1

b = 1
2
, 0 ≤ d ≤ 1

g21,2

 1
2

1

0 1
2


1 d

0 1

 d ≥ 0

g21,3

 1
2

0

0 1
2


1 1

0 1



g21,4

a 0

0 a


0 1

0 0

 a ≥ 1
2

B2 is nilpotent

Continued on next page
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Table 3.1 – Continued

Name B1 B2 Range of parameters Remarks

g21,5

a 0

0 a


 c 1

−1 c

 a ≥ 1
2
, c ≥ 0

g21,6

 1
2

b

−b 1
2


1 0

0 1

 b > 0 case b = 0 is g21,1

n = 3

p = 0 g30,1


a 0 0

0 0 0

0 0 1



b 0 0

0 1 0

0 0 0


1 ≤ a ≤ b

a = 0, 1 ≤ b

a = b = 0

g30,2


1 0 0

0 0 a

0 0 0



0 0 0

0 1 1

0 0 1

 a ≥ 0

g30,3


1 0 0

0 0 1

0 0 0



0 0 0

0 1 0

0 0 1



g30,4


1 0 0

0 a 0

0 0 a



0 0 0

0 0 1

0 0 0

 a ≥ 0 B2 is nilpotent

g30,5


0 0 0

0 1 0

0 0 1



0 0 0

0 0 1

0 0 0

 B2 is nilpotent

g30,6


1 0 a

0 1 0

0 0 1



0 1 0

0 0 1

0 0 0

 a ∈ R B2 is nilpotent

g30,7


1 0 1

0 1 0

0 0 1



0 0 0

0 0 1

0 0 0

 B2 is nilpotent

g30,8


1 1 0

0 1 1

0 0 1



0 0 1

0 0 0

0 0 0

 B2 is nilpotent

g30,9


0 1 0

0 0 1

0 0 0



0 0 1

0 0 0

0 0 0

 B1, B2 are nilpotent

Continued on next page
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Table 3.1 – Continued

Name B1 B2 Range of parameters Remarks

g30,10


0 1 0

0 0 0

0 0 0



0 0 1

0 0 0

0 0 0

 B1, B2 are nilpotent

g30,11


a 0 0

0 1 0

0 0 1



b 0 0

0 0 1

0 −1 0

 a ≥ 0, b ≥ 0

g30,12


0 0 0

0 a 1

0 −1 a



1 0 0

0 0 0

0 0 0

 a ≥ 0

p = 1 g31,1


a 0 0

0 b 0

0 0 1
2



c 0 0

0 d 0

0 0 1


a ≥ b > 1

2
, c ≥ 0, d ∈ R

a > b = 1
2
, c ≥ 0, d ≥ 0

a = b = 1
2
, c ≥ d ≥ 0

g31,2


a 0 0

0 1
2

1

0 0 1
2



b 0 0

0 1 c

0 0 1


a > 1

2
, b > 0, c ∈ R

a > 1
2
, b = 0, c ≥ 0

a = 1
2
, b ≥ 0, c ≥ 0

g31,3


a 0 0

0 1
2

0

0 0 1
2



b 0 0

0 1 1

0 0 1

 a ≥ 1
2
, b ≥ 0

g31,4


a 0 0

0 b 0

0 0 b



1 0 0

0 0 1

0 0 0

 a ≥ 1
2
, b ≥ 1

2

g31,5


a 0 0

0 b 0

0 0 b



0 0 0

0 0 1

0 0 0

 a ≥ 1
2
, b ≥ 1

2
B2 is nilpotent

g31,6


1
2

0 0

0 a 1

0 0 a



1 0 0

0 0 0

0 0 0

 a ≥ 1
2

g31,7


1
2

a b

0 1
2

a

0 0 1
2



1 1 0

0 1 1

0 0 1

 a ≥ 0, b ∈ R

Continued on next page
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Table 3.1 – Continued

Name B1 B2 Range of parameters Remarks

g31,8


1
2

a 1

0 1
2

0

0 0 1
2



1 1 0

0 1 0

0 0 1

 a ∈ R

g31,9


1
2

1 0

0 1
2

1

0 0 1
2



1 0 0

0 1 0

0 0 1



g31,10


a 0 1

0 a 0

0 0 a



0 1 0

0 0 1

0 0 0

 a ≥ 1
2

B2 is nilpotent

g31,11


a 0 0

0 a 0

0 0 a



0 1 0

0 0 1

0 0 0

 a ≥ 1
2

B2 is nilpotent

g31,12


a 0 1

0 a 0

0 0 a



0 0 0

0 0 1

0 0 0

 a ∈ R B2 is nilpotent

g31,13


a 1 0

0 a 1

0 0 a



0 0 1

0 0 0

0 0 0

 a ≥ 1
2

B2 is nilpotent

g31,14


a 0 0

0 b 0

0 0 b



c 0 0

0 d 1

0 −1 d


a > 1

2
, b > 1

2
, c ∈ R, d ≥ 0

a = 1
2
, b ≥ 1

2
, c ≥ 0, d ≥ 0

a > 1
2
, b = 1

2
, c ≥ 0, d ≥ 0

g31,15


a 0 0

0 1
2

b

0 −b 1
2



c 0 0

0 1 0

0 0 1

 a ≥ 1
2
, b > 0, c ≥ 0

g31,16


1
2

0 0

0 a b

0 −b a



1 0 0

0 0 0

0 0 0

 a ≥ 1
2
, b > 0

 

 

 

 

 

 

 

 



CHAPTER IV

REPRESENTATIONS OF THE GROUPS Gp,B

In this chapter, we show that the groups Gp,B can be represented as sub-

groups of both, the symplectic group Sp(n + 1,R), as well as the affine group

Aff(n + 1). Thus, they possess both, a metaplectic and a wavelet representation.

We also show that the metaplectic representation is equivalent to a sum of two

copies of a subrepresentation of the wavelet representation.

4.1 Preliminaries

Throughout, symbols x, y will denote vectors in Euclidean space Rn written

as column vectors, while Greek symbols ξ, η will denote elements in the Euclidean

space written as row vectors. For ease of distinction, we denote the space of row

vectors by R̂n. The transpose of a vector or matrix x is denoted by xT , hence the

inner product in Rn is x · y = yTx.

4.1.1 The Fourier transform

The Fourier transform of a function f ∈ L1(Rn) is given by

f̂(ξ) =

∫
Rn

f(x)e−2iπξx dx (ξ ∈ R̂n).

By the Plancherel Theorem, the restriction of the map f 7→ f̂ to (L1 ∩ L2)(Rn)

extends uniquely to a unitary operator F : f ∈ L2(Rn) 7→ f̂ ∈ L2(R̂n) which is

also called the Fourier transform.
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4.1.2 Translation, modulation, dilation, chirp operators

The two standard unitary representations of Rn on L2(Rn) are translation

and modulation, defined by

(Txf)(y) = f(y − x) and (Exf)(y) = e2iπx
T yf(y),

and the corresponding operators on L2(R̂n) are defined similarly,

(T̂xg)(ξ) = g(ξ − xT ) and (Êxg)(ξ) = e2iπξxg(ξ),

for x, y ∈ Rn, ξ ∈ R̂n, f ∈ L2(Rn) and g ∈ L2(R̂n).

The natural representations of GLn(R) on the spaces L2(Rn) and L2(R̂n)

are given by left and right dilation, respectively,

(Saf)(y) = | det a|−1/2f(a−1y) and (Ŝag)(ξ) = | det a|1/2g(ξa),

for a ∈ GLn(R), y ∈ Rn, f ∈ L2(Rn) and g ∈ L2(R̂n). The Fourier transform

intertwines some of these representations,

Ê−x = FTxF−1, T̂x = FExF−1 and Ŝa = FSaF−1. (4.1)

The additive group Symn(R) of n × n symmetric matrices also possess a

representation on L2(Rn) by chirps, and defined by

(Umf)(q) = eiπq
Tmqf(q)

for m ∈ Symn(R), f ∈ L2(Rn) and q ∈ Rn.

4.1.3 The affine group and the wavelet representation

The affine group Aff(n,R) is the group formed by the invertible linear trans-

formations and translations in Euclidean space. It takes the form of a semi-direct

product Rn oα GLn(R), where the action α is simply matrix multiplication,

αa(x) = ax
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for x ∈ Rn, a ∈ GLn(R). Thus the group operation is

(x, a)(x̃, ã) = (x+ ax̃, aã)

for (x, a), (x̃, ã) ∈ Aff(n,R).

If H is a closed subgroup of GLn(R), then the corresponding subgroup of

the affine group can be represented as the matrix group

Rn oα H ∼=


 a x

0 1

 : x ∈ Rn, a ∈ H

 ⊂ GLn+1(R).

Since SaTxSa−1 = Tax, translation and left dilation compose to a unitary represen-

tation π of such subgroups on L2(Rn), called the wavelet representation or affine

representation, by

π(x, a) = TxSa, (x, a) ∈ Rn oα H.

Conjugating by the Fourier transform, (4.1) yields an equivalent representation π̂

on L2(R̂n) given by

π̂(x, a) = Ê−xŜa, (x, a) ∈ Rn oα H. (4.2)

We call this the wavelet representation in Fourier space.

4.1.4 The symplectic group and the metaplectic represen-

tation

Recall from the Introduction that the symplectic group Sp(n,R) is the set

of all 2n× 2n invertible matrices preserving the symplectic form,

Sp(n,R) =
{
A ∈ GL2n(R) : JAw,Aw̃K = Jw, w̃K ∀ w, w̃ ∈ R2n

}
.

(Some authors denote this group by Sp(2n,R).) For details on its structure, see

Folland (1989). The matrix J is one of its elements, and the groups Sym(n,R)
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and GLn(R) are naturally embedded in Sp(n,R) in form of the closed subgroups

N =

Nm :=

In 0

m In

 : m ∈ Sym(n,R)

 , and

L =

La :=

a 0

0 (a−1)T

 : a ∈ GLn(R)

 respectively.

(4.3)

One can show that the group Sp(n,R) is generated by L ∪N ∪ {J }.

There is a projective representation µ of Sp(n,R) on L2(Rn) called the

metaplectic representation which, for the three types of generating matrices, is

given by

µ (La) = Sa, µ (Nm) = Um, µ(−J ) = (−i)n/2 F .

The word projective here means that µ is a homomorphism of the group Sp(n,R)

into the unitary group of L2(Rn) only up to a factor of ±1:

µ(AB) = ±µ(A)µ(B) (A,B ∈ Sp(n,R)).

The problem here is the matrix J . However, when restricted to the subgroup

generated by L ∪N , µ is a group homomorphism.

4.1.5 Subgroups of the symplectic group which possess a

wavelet representation

We next consider a class of subgroups of Sp(n,R) which arise as semidirect

products of a vector group with a group of dilations. We begin with the linear

action α of GLn(R) on the vector space Sym(n,R) of Example 2.18,

αa(m) = (a−1)Tma−1
(
a ∈ GLn(R), m ∈ Sym(n,R)

)
. (4.4)

Let E be a closed subgroup GLn(R) and M an l−dimensional and E-invariant

linear subspace of Sym(n,R). Invariant means that αa(m) ∈ M for all m ∈ M and
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a ∈ E. As can be seen from (4.3), M and E are isomorphic to closed subgroups of

Sp(n,R), and the action α is implemented by conjugation under this isomorphism,

LaNmL−1
a = N(a−1)Tma−1 .

Consequently, by Remark 2.26, the semidirect product M oα E is isomorphic to a

closed subgroup of Sp(n,R),

M oα E ∼= K :=

NmLa =

 a 0

ma (a−1)T

 : m ∈ M, a ∈ E

 . (4.5)

The restriction of the metaplectic representation to K, which we simply call the

metaplectic representation of K = M oα E, is given by

µ(m, a) := µ(NmLa) = UmSa, ( (m, a) ∈ M oα E ), (4.6)

and it is a proper representation, that is, a group homomorphism.

Next we show that the groups M oα E also have a wavelet representation.

To do so, identify the vector space M with Euclidean space Rl by fixing a basis.

Since the action α is by invertible linear transformations, there exists a continuous

homomorphism φ : a 7→ ha of E onto a (not necessarily closed) subgroup H of

GLl(R) satisfying

αa(m) = ham (m ∈ Rl, a ∈ E),

which, as one easilly verifies, naturally extends to a group homomorphism φ of

M oα E onto the subgroup Rl oα H of Aff(l,R) by

φ(m, a) = (m,ha). (4.7)

(For ease of notation, we will denote these semi-direct products by M o E and

RloH.) Now composition of the homomorphism φ with the wavelet representation
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(4.2) in Fourier space yields a wavelet representation of M o E on L2(R̂l), also

denoted by π̂, and given by

π̂(m, a) = Ê−mŜha . (4.8)

4.2 The groups Gp,B are subgroups of Sp(n+1,R) and Aff(n+

1,R)

We apply the discussion in the previous section to show that the each group

Gp,B can be represented as a subgroup of the form M oE of the symplectic group,

and as a subgroup of the form Rn+1 oH of the affine group. We will impose the

assumptions (A1) and (A2) of Chapter 3, which ensures that each group Gp,B can

be represented as a matrix group of the form (3.11).

From now on, M will denote the l = n + 1 dimensional vector subspace of

Sym(n+ 1,R),

M =

m(z, x) :=

 −z −xT

−x 0

 : x ∈ Rn, z ∈ R

 . (4.9)

This parametrization reflects the identification of M with Rl = Rn+1 chosen,

m(z, x) 7→
(
z
x

)
. (4.10)

Furthermore, E = Ep,B will be the closed subgroup of GLn+1(R),

Ep,B =

a(t, y) :=

 1 0

−1
2
y In

 e−pt/2 0

0 ept/2
[
e−Bt

]T
 : t ∈ Rd, y ∈ Rn

 .

The group law in Ep,B is

a(t, y)a(t̃, ỹ) = a(t+ t̃, y + ept/2
[
e−Bt

]T
ỹ). (4.11)

Now M is invariant under the Ep,B-action (4.4), in fact

αa(t,y)(m(z, x)) = (a(t, y)−1)Tm(z, x)a(t, y)−1 = m(eptz + yT eBtx, eBtx). (4.12)
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By (4.5), the semi-direct product MoEp,B can be identified with a closed subgroup

of Sp(n+ 1,R),

MoEp,B
∼= Kp,B :=

k(t, x, y, z) =

 a(t, y) 0

m(z, x)a(t, y) [a(t, y)−1]
T

 :
z ∈ R,
t ∈ Rd,

x, y ∈ Rn


having the group law

k(t, x, y, z) k(t̃, x̃, ỹ, z̃) = k(t+ t̃, x+ eBtx̃, y + ept
[
e−Bt

]T
ỹ, z + eptz̃ + yT eBtx̃),

which is precisely the law (3.8) of Gp,B. It is now easy to see that the matrix

groups Gp,B and Kp,B are isomorphic.

Next we compute the homomorphism φ : M o Ep,B → Rn+1 oH of (4.7).

Using the identification (4.10) of M with Rn+1 and equation (4.12) we obtain that

ha(t,y)

(
z
x

)
=

(
eptz + yT eBtx

eBtx

)
,

so that

H = Hp,B =

ha(t,y) =

ept yT eBt

0 eBt

 : t ∈ Rd, y ∈ Rn

 ⊂ GLn+1(R).

We observe that by assumptions (A1)–(A2), this group is closed in GLn+1(R), and

the map φ : Ep,B → Hp,B is an isomorphism of matrix groups. Hence,

Gp,B
∼= M o Ep,B

∼= Rn+1 oHp,B =
{
(m,ha) : m ∈ Rn+1, ha ∈ Hp,B

}
∼=


ha(t,y) ( z

x )

0 1

 : z ∈ R, t ∈ Rd, x, y ∈ Rn


which is a closed subgroup of Aff(n+ 1,R).
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4.3 The symplectic and wavelet representations of the

groups Gp,B

By (4.8), the wavelet representation of Gp,B
∼= Rn+1oHp,B in Fourier space

is given by

π̂
(
g(t, x, y, z)

)
= Ê−( zx )

Ŝha(t,y)
,

that is,

[
π̂
(
g(t, x, y, z)

)
f
]
(r, ξ) = δ(t)1/2 ept/2e−2iπ(rz+ξx) f

(
rept, (ryT + ξ)eBt

)
(4.13)

for f ∈ L2(R̂n+1), r ∈ R, ξ ∈ R̂n and δ(t) = det
(
eBt
)
= etr(Bt). Clearly, R̂n+1

decomposes measurably into the two Hp,B-invariant open half spaces

O+ = {(r, ξ) : r > 0} and O− = {(r, ξ) : r < 0}.

It thus can be seen from (4.13) that L2(O+) and L2(O−) are both π̂-invariant

subspaces of L2(R̂n+1) and consequently, the wavelet representation π̂ splits into

the direct sum π̂ = π̂+⊕π̂− of the two subrepresentations π̂± obtained by restricting

π̂ to these two invariant subspaces.

Similarly, by (4.6), the metaplectic representation of the group Gp,B
∼=

M o Ep,B is given by

µ ( g(t, x, y, z) ) = Um(z,x)Sa(t,y).

Since for each vector q = ( u
v ) ∈ Rn+1, u ∈ R, v ∈ Rn we have

qTm(z, x)q = (u, vT )m(z, x) ( u
v ) = −(u2z + 2uvTx), (4.14)

it follows that

[
µ
(
g(t, x, y, z)

)
f
](u

v

)
= δ(t)1/2ept(1−n)/4e−iπ(u2z+2uvT x)f

(
ept/2u

e−pt/2
[
eBt
]T

(u
2
y + v)

)
(4.15)
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for f ∈ L2(Rn+1), with δ(t) = det
(
eBt
)
. Clearly, Rn+1 splits measurably into two

Ep,B-invariant open half spaces

U+ =

{(
u
v

)
: u > 0

}
and U− =

{(
u
v

)
: u < 0

}
.

It can be seen from (4.15) that L2(U+) and L2(U−) are both µ-invariant subspaces

of L2(Rn+1). Hence, µ splits into the direct sum µ = µ+ ⊕ µ− of the two subrep-

resentations µ± obtained by restricting µ to each of the two invariant subspaces

L2(U±).

We next obtain a connection between these representations, by employing

the techniques developed in Cordero et. al (2006), De Mari and De Vito (2013),

and Namngam and Schulz (2013).

Proposition 4.1. The subrepresentations µ+ and µ− are both equivalent to π̂+.

Proof. Observe that for each q ∈ Rn+1, the map(
z
x

)
7→ qTm(z, x)q

defines a linear functional on Rn+1. Hence there exists a unique Ψ(q) ∈ R̂n+1 so

that

qTm(z, x)q = −2Ψ(q)

(
z
x

)
for all z ∈ R, x ∈ Rn. In fact, equation (4.14) shows that

Ψ(q) = Ψ

(
u
v

)
=
(

1
2
u2, uvT

)
.

We observe that Ψ is smooth with Jacobian determinant

JΨ

(
u
v

)
= un+1

which does not vanish on the open half planes U+ and U−. Thus, the restrictions

of Ψ to these sets constitute diffeomorphisms

Ψ+ : U+ → O+ and Ψ− : U− → O+,
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respectively. Furthermore, for (r, ξ) ∈ O+ ⊂ R̂n+1 with r ∈ R, ξ ∈ R̂n we have

Ψ−1
± (r, ξ) =

 ±
√
2r

± 1√
2r
ξT

 and JΨ−1
±
(r, ξ) = ± (2r)−(n+1)/2 .

It follows that the operators

Q+ : L2(O+) → L2(U+) and Q− : L2(O+) → L2(U−)

defined by

(Q±f)(q) = |JΨ(q)|1/2 f (Ψ(q)) (f ∈ L2(O+), q ∈ U±)

constitute Hilbert space isomorphism, whose inverses are given by

(Q−1
± f)(η) =

∣∣∣JΨ−1
±
(η)
∣∣∣1/2 f (Ψ−1

± (η)
)

(f ∈ L2(U±), η ∈ O+).

We complete the proof by showing that

µ± = Q±π̂+Q
−1
± .

In fact, for all f ∈ L2(U±) and q = ( u
v ) ∈ Rn+1 we have[

Q±π̂+(t, x, y, z)Q
−1
± f
]
(q) =

∣∣∣JΨ(uv)∣∣∣1/2 [π̂+(t, x, y, z)Q
−1
± f
](
Ψ
(
u
v

))
= |u|(n+1)/2δ(t)1/2ept/2e−2iπ((u2/2)z+uvT x)

[
Q−1

± f
](

u2

2
ept,
(
u2

2
yT + uvT

)
eBt
)

= δ(t)1/2|u|(n+1)/2ept/2e−iπ(u2z+2uvT x) ∣∣±u2ept
∣∣−(n+1)/4

f

(
±
√
u2ept

± 1√
u2ept

[eBt]T
(
u2

2
y + uv

))

= δ(t)1/2ept(1−n)/4e−iπ(u2z+2uvT x)f

(
ept/2u

e−pt/2[eBt]T
(
u
2
y + v

))
which is precisely (4.15).

It now follows immediately that the metaplectic representation µ of Gp,B is

equivalent to the sum of two copies of π̂+,

µ = µ+ ⊕ µ− ≃ π̂+ ⊕ π̂+.

 

 

 

 

 

 

 

 



CHAPTER V

CONCLUSION

In this thesis, we have studied extensions of the multidimensional Heisen-

berg group Hn by groups of automorphisms. The particular feature of the automor-

phisms chosen is that, when the Heisenberg group is represented in matrix form as

the polarized Heisenberg group Hn
pol, they can be implemented by conjugation with

invertible matrices. We only considered d-parameter groups of automorphisms, as

they render the extended groups Gp,B simply connected and hence uniquely de-

termined by their Lie algebras. The objectives of the thesis were first, to at least

partially classify the extended groups up to isomorphism, and second, to show

that they can be embedded in both, the symplectic and affine groups, and to

compare their metaplectic and wavelet representations. The results achieved are

summarized below.

5.1 Classification

In order to classify the extended groups Gp,B with respect to choices of

p = (p1, . . . , pd) and B = (B1, . . . , Bd), we considered the equivalent and simpler

task of classifying their Lie algebras gp,B with the following outcome:

1. Theorem 3.5 gives sufficient conditions for two Lie algebras gp,B and gp̃,B̃ to

be isomorphic. An immediate consequence of this theorem is that every Lie

algebra gp,B is isomorphic to a Lie algebra with normalized parameters. That

is, one may assume that p1 ∈ {0, 1} and pk = 0 for k = 2, . . . , d.
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2. Theorem 3.7 gives necessary conditions for two Lie algebras to be isomor-

phic, under condition that the isomorphism between the two restricts to an

isomorphism between their Heisenberg subalgebras. This is always the case

when the matrices B1, . . . , Bd are nilindependent, as shown in Corollary 3.9.

3. Given two isomorphic normalized Lie algebras gp,B and gp,B̃, Theorem 3.14

compares the block structures of each of the pairs of matrices Bk and B̃k

(k = 1 . . . d) under some mild assumptions on the joint spectrum of the

matrices.

4. In the case of two-parameter groups of automorphisms (d = 2), we showed

in Theorem 3.16 that every isomorphism between two Lie algebras carries

Heisenberg subalgebra to Heisenberg subalgebra, so that Theorem 3.7 al-

ways applies. This together with Theorem 3.5 led to the characterization of

isomorphic Lie algebras in Corollary 3.17.

5. In the case of two-parameter groups of automorphisms (d = 2), the equiva-

lence classes of isomorphic Lie algebras were explicitly computed for the low

dimensional cases n = 1, 2, 3 as presented in Table 3.1.

5.2 Embedding in the symplectic and affine groups

We first showed that the extended groups Gp,B are isomorphic to subgroups

of the symplectic group Sp(n + 1,R). In fact, they take the form of semidirect

product subgroups of the form M oEp,B, where M is a vector group and Ep,B acts

linearly on M . This makes it possible to represent them as semidirect products

Rn+1 oHp.B, with Hp,B a closed subgroup of GLn+1(R), that is, as a subgroup of

the affine group Aff(n+ 1,R).
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We then computed the metaplectic representation µ and wavelet represen-

tation π̂ of the groups Gp,B. We showed that µ and π̂ split into sums of two

subrepresentations, µ = µ+ ⊕ µ− and π̂ = π̂+ ⊕ π̂−, and that µ is equivalent to

π̂+ ⊕ π̂+.

5.3 Further work

Both topics covered in this thesis lead to opportunities for future research.

The immediate task would be to complete the classification of the Lie alge-

bras gp,B when d > 2. This would begin with the investigation whether or under

what conditions an isomorphism between two Lie algebras will map the Heisenberg

algebra to the Heisenberg algebra, in case that the matrices Bk are not nilinde-

pendent. Once this classification has been achieved, it will be natural to look at

general groups of automorphisms, beyond d-parameter groups.

The original motivation for studying the metaplectic and wavelet represen-

tations of these groups comes from the particular example of a group M o E by

Cordero et al. (2006) who implicitly used the equivalence of the subrepresenta-

tions µ− and µ+ with π̂+ to show that the M oE is admissible for the metaplectic

representation, by employing the well known results for admissible groups for the

wavelet representation. We recall here that a group G is admissible for a represen-

tation (π,H) if there exists h ∈ H so that

∥f∥2 =
∫
G

|< f, π(g)h >|2 dg

for all f ∈ H. In Namngam (2010), it was shown that the groups Gp,B ≃ MoEp,B

are admissible for the metaplectic representation when d = 1. In the case d ≥ 2

considered in this thesis, the groups M o Ep,B can be shown to not be admissi-

ble for the metaplectic representation, because their Lie algebras are too large in
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dimension. It will therefore be of interest to find and characterize subgroups of

M o Ep,B which are admissible instead.
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APPENDIX

CLASSIFICATION OF THE LIE ALGEBRAS

gp,B GENERATED BY PAIRS OF 3× 3

COMMUTING MATRICES

In this appendix, we describe the procedure of classifiying all normalized

Lie algebras gp,B generated by two commuting 3×3 matrices, the list of which has

already been presented in the Table 3.1.

Let two commuting 3 × 3 matrices B1 and B2 be given. When p1 = 0 we

assume that the two are linearly independent, to ensure that the matrices M1 and

M2 are linearly independent. Applying Theorem 3.10, it is not difficult to see that

in some appropriate basis, the pair B1, B2 takes one of the following four forms:

Type I: Both matrices are diagonal,

B1 =


a 0 0

0 b 0

0 0 c

 , B2 =


ã 0 0

0 b̃ 0

0 0 c̃

 .

Type II: Each matrix has one 2× 2 upper triangular block,

B1 =


a 0 0

0 b c

0 0 b

 , B2 =


ã 0 0

0 b̃ c̃

0 0 b̃

 ,

but the pair is not of type I.
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Type III: Each matrix is a 3× 3 upper triangular block,

B1 =


a b c

0 a d

0 0 a

 , B2 =


ã b̃ c̃

0 ã d̃

0 0 ã

 ,

with bd̃ = b̃d, and the pair is neither of type I nor type II.

Type IV: Each matrix has a 2× 2 block with complex eigenvalues,

B1 =


a 0 0

0 b c

0 −c b

 , B2 =


ã 0 0

0 b̃ c̃

0 −c̃ b̃

 ,

but the pair is not of type I.

In addition, by normalization we may assume that p1 ∈ {0, 1} and p2 = 0.

By the various Theorems presented in Section 3.3.2, the following operations

do not change the equivalence class of the Lie algebra, and will be used throughout:

1. Change the basis of the underlying vector space R3. We will denote the basis

vectors before a change of basis by e1, e2, e3, and those after the change of

basis by f1, f2, f3.

2. Multiply a matrix Bk by a scalar. However, when p1 = 1 then only B2 can

be scaled in this manner.

3. Replace any Bk by a nontrivial linear combinations αB1 + βB2, preserving

linear independence of B1 and B2, when p1 = 0. When p1 = 1, then the only

linear combination allowed is replacing B1 with B1 + αB2 for some scalar α.

4. Replace the r-th blocks Bk,r of Bk with pkI−BT
k,r, for both k = 1, 2. (Recall

that this is called a flip of the r-th blocks).

• Case p1 = 0
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Type I matrices

Without loss of generality, we may assume that c ̸= 0. This allows scaling

B1 so that c = 1. Then replacing B2 by B2 − c̃B1 we obtain c̃ = 0.

B1 =


a 0 0

0 b 0

0 0 1

 , B2 =


ã 0 0

0 b̃ 0

0 0 0

 .

Next we may assume that b̃ ̸= 0, by exchanging the basis vectors e1 and e2 if

necessary. This permits scaling the matrix B2 to b̃ = 1, followed by replacing B1

with B1 − bB1 so that b = 0,

B1 =


a 0 0

0 0 0

0 0 1

 , B2 =


ã 0 0

0 1 0

0 0 0

 . (1)

We have obtained the algebra g30,1.

Now we consider the range of parameters a and ã. First we make a, ã

non-negative.

- If a, ã ≥ 0, there is nothing to do.

- When a, ã < 0, then we flip the e1-block, to obtain a > 0, ã > 0.

- When a ≥ 0 but ã < 0 we flip the e1, e3-block. This will render the entries

of B1 non-positive, which we remedy by scaling B1 by −1. In addition this

process replaces ã by −ã > 0 so that now the entries of both matrices are

non-negative.

- When a < 0 but ã ≥ 0 we proceed similarly, flipping the e1, e2-block.

Thus we may assume that a, ã ≥ 0.

Next, when ã < a we first exchange B1 and B2 and then exchange the two

basis vectors e2 and e3, which allows us to assume that a ≤ ã.
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Finally, we attempt to make a, ã ≥ 1.

1. If 0 < a < 1 then we divide B1 by a and subtract ãB1 from B2 to obtain

B1 =


1 0 0

0 0 0

0 0 1
a

 , B2 =


0 0 0

0 1 0

0 0 − ã
a

 .

Next we flip the e2-block and multiply B2 by −1 to obtain matrices of the

same form, but without the minus sign in B2. Thus, all nonzero entries are

≥ 1. Switching the basis vectors by f1 = e3 and f3 = e1 (if 1
a
≤ ã

a
), or

exchanging B1 and B2 and shifting the basis vectors to f1 = e3 and f2 = e1,

f3 = e2 (if 1
a
> ã

a
) and then relabeling the variables, we obtain matrices of

form (1), but with 1 ≤ a ≤ ã.

2. If a = 0 but 0 < ã < 1 then we divide B2 by ã and relabel 1
ã

to ã, and

exchange the basis vectors e1 and e2 to obtain matrices as in (1) with a = 0

and ã ≥ 1.

We are thus left with three possibilitites: 1 ≤ a ≤ ã, or a = 0, ã ≥ 1, or a = ã = 0.

Type II matrices

Here we must consider various possibilities:

1. a ̸= 0 or ã ̸= 0. Without loss of generality, we may assume that a ̸= 0. This

permits scaling B1 so that a = 1, followed by replacing B2 with B2 − ãB1,

to obtain ã = 0,

B1 =


1 0 0

0 b c

0 0 b

 , B2 =


0 0 0

0 b̃ c̃

0 0 b̃

 .

Next we consider several cases.

 

 

 

 

 

 

 

 



89

(a) b̃ ̸= 0. Here we can first scale B2 to obtain b̃ = 1, and then replace B1

by B1 − bB2 to obtain b = 0,

B1 =


1 0 0

0 0 c

0 0 0

 , B2 =


0 0 0

0 1 c̃

0 0 1

 .

i. c̃ ̸= 0. We can then scale the basis vector e3 to obtain c̃ = 1. Now

in case c < 0 we flip the (e2, e3)-block, then exchange the vectors

e2 and e3 and finally multiply B2 by −1 to obtain matrices of the

same form, but with c ≥ 0. We have obtained the algebra g30,2.

ii. c̃ = 0.

A. c ̸= 0. We scale the basis vector e3 to obtain c = 1. We now

have

B1 =


1 0 0

0 0 1

0 0 0

 , B2 =


0 0 0

0 1 0

0 0 1

 .

which is g30,3.

B. c = 0. We now have matrices of type I; this case has already

been covered above.

(b) b̃ = 0. We then have

B1 =


1 0 0

0 b c

0 0 b

 , B2 =


0 0 0

0 0 c̃

0 0 0

 .

Since c̃ ̸= 0, we can scale B2 to arrive at c̃ = 1, and then replace B1
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with B1 − cB2 to obtain c = 0.

B1 =


1 0 0

0 b 0

0 0 b

 , B2 =


0 0 0

0 0 1

0 0 0

 .

In case b < 0 we flip the (e2, e3)-blocks of both matrices, exchange the

basis vectors e2 and e3 and then multiply B2 by −1 to obtain matrices

of the above form, with b ≥ 0 always. We have thus obtained g30,4.

2. a = ã = 0. Thus,

B1 =


0 0 0

0 b c

0 0 b

 , B2 =


0 0 0

0 b̃ c̃

0 0 b̃

 .

(a) b ̸= 0 or b̃ ̸= 0. Without loss of generality, b ̸= 0. Here we scale B1 to

obtain b = 1, and then replace B2 with B2 − b̃B1 to obtain b̃ = 0. Since

c̃ ̸= 0, we can then scale the matrix B2 so that c̃ = 1.

B1 =


0 0 0

0 1 c

0 0 1

 , B2 =


0 0 0

0 0 1

0 0 0

 .

Replacing B1 with B1 − cB2 we may assume that c = 0. This is g30,5.

(b) b̃ = b̃ = 0. This is not possible as B1 and B2 must be linearly indepen-

dent.

Type III matrices

Here we must consider many possibilities.

1. a ̸= 0 or ã ̸= 0. Without loss of generality, we may assume that a ̸= 0. This

permits scaling B1 so that a = 1, and then replacing B2 with B2 − ãB1, to
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obtain ã = 0,

B1 =


1 b c

0 1 d

0 0 1

 , B2 =


0 b̃ c̃

0 0 d̃

0 0 0

 ,

with bd̃ = b̃d. Next we consider several cases:

(a) b̃ ̸= 0. Here we first scale B2 to obtain b̃ = 1, and then replace B1 with

B1 − bB2 to obtain b = 0, The condition bd̃ = b̃d now gives d = 0.

B1 =


1 0 c

0 1 0

0 0 1

 , B2 =


0 1 c̃

0 0 d̃

0 0 0

 .

i. d̃ ̸= 0. We first scale e3 so that d̃ = 1. Then we change basis to

f1 = e1, f2 = c̃e1 + e2, f3 = e3 which changes c̃ to 0, but leaves all

other entries of B1 and B2 unchanged. We have obtained g30,6.

ii. d̃ = 0. We change basis to f1 = e1, f2 = e2, f3 = e3 − c̃e2 which

gives

B1 =


1 0 c

0 1 0

0 0 1

 , B2 =


0 1 0

0 0 0

0 0 0

 .

Next we flip both matrices, multiply each by −1 and exchange basis

vectors e1 and e3 to obtain

B1 =


1 0 c

0 1 0

0 0 1

 , B2 =


0 0 0

0 0 1

0 0 0

 .

When c = 0 we have obtained g30,4 with a = 1. On the other hand,

when c ̸= 0 we scale the vector e1 so that c = 1, and we have

obtained g30,7.
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(b) b̃ = 0. The condition bd̃ = b̃d gives b = 0 or d̃ = 0.

i. d̃ = 0. We thus have

B1 =


1 b c

0 1 d

0 0 1

 , B2 =


0 0 c̃

0 0 0

0 0 0


with c̃ ̸= 0. We thus scale B2 to obtain c̃ = 1, and replace B1 with

B1 − cB2 to obtain c = 0.

A. b ̸= 0. Scaling the vector e2 we may assume that b = 1. That

is,

B1 =


1 1 0

0 1 d

0 0 1

 , B2 =


0 0 1

0 0 0

0 0 0

 .

Note that when d = 0, then after flipping, multiplying both

matrices by one, and changing basis to vectors f1 = e2, f2 = e3

and f3 = e1, we have obtained g30,7. On the other hand, when

d ̸= 0 we scale e3 to obtain d = 1 (which also scales B2), and

then rescale B2 to keep it of the above form. We have obtained

g30,8.

B. b = 0. That is,

B1 =


1 0 0

0 1 d

0 0 1

 , B2 =


0 0 1

0 0 0

0 0 0

 .

When d = 0, after exchanging basis vectors e1 and e2 we have

obtained g30,4 with a = 1. On the other hand, when d ̸= 0 we

scale e3 to obtain d = 1 (which also scales B2), and then rescale
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B2 to keep it of the above form. Exchanging basis vectors e1

and e2 we have obtained g30,7.

ii. b = 0 but d̃ ̸= 0. We can scale B2 so that d̃ = 1 and replace B1

with B1 − dB2 to obtain d = 0,

B1 =


1 0 c

0 1 0

0 0 1

 , B2 =


0 0 c̃

0 0 1

0 0 0

 .

Changing basis f1 = e1, f2 = c̃1e1 + e2, f3 = e3 we obtain matrices

of the above form, with c̃ = 0. When c = 0, we have obtained g30,4

with a = 1. On the other hand, when c ̸= 0 we scale the vector e3

to obtain c = 1 and rescale the matrix B2 to recover d̃ = 1. That

is, we have obtained g30,7.

2. a = ã = 0. We have

B1 =


0 b c

0 0 d

0 0 0

 , B2 =


0̃ b̃ c̃

0 0̃ d̃

0 0 0

 ,

with bd̃ = b̃d.

(a) b ̸= 0 or b̃ ̸= 0. Without loss of generality, we may assume that b ̸= 0.

Scaling B1 to obtain b = 1 and replacing B2 with B2− b̃B1 so that b̃ = 0,

then the condition bd̃ = b̃d gives d̃ = 0. Scaling B2 we now obtain c̃ = 1:

B1 =


0 1 c

0 0 d

0 0 0

 , B2 =


0 0 1

0 0 0

0 0 0

 .

Now replacing B1 with B1 − cB2 we obtain c = 0.
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i. d ̸= 0. Scaling the basis vector e3 we obtain d = 1. We then rescale

B2 so that it recovers the above form, and we have obtained g30,9.

ii. d = 0. This is g30,10.

(b) b = b̃ = 0. We have

B1 =


0 0 c

0 0 d

0 0 0

 , B2 =


0 0 c̃

0 0 d̃

0 0 0

 .

Since B1 and B2 are linearly independent, we can replace them with

appropriate linear combinations to change them to form

B1 =


0 0 1

0 0 0

0 0 0

 , B2 =


0 0 0

0 0 1

0 0 0

 .

Flipping both matrices, i.e. replacing Bk with −BT
k , followed with mul-

tiplication by −1, we obtain

B1 =


0 0 0

0 0 0

1 0 0

 , B2 =


0 0 0

0 0 0

0 1 0

 .

Finally, exchanging the pair of basis vectors e1 and e3, we arrive at g30,10.

Type IV matrices

Without loss of generality, c̃ ̸= 0. Thus, we may scale B2 so that c̃ = 1 and

then replace B1 with B1 − cB2 to obtain c = 0,

B1 =


a 0 0

0 b 0

0 0 b

 , B2 =


ã 0 0

0 b̃ 1

0 −1 b̃

 ,
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1. b ̸= 0. We scale B1 to obtain b = 1 and replace B2 with B2 − b̃B1 to obtain

b̃ = 0.

B1 =


a 0 0

0 1 0

0 0 1

 , B2 =


ã 0 0

0 0 1

0 −1 0

 ,

- When a, ã ≥ 0, we are done.

- When a, ã ≤ 0, then we flip the e1-block, to obtain a, ã > 0 in the first

entries.

- When a ≥ 0 but ã < 0 we flip both matrices. This will render the entries

of B1 non-positive, which we remedy by scaling B1 by −1. In addition

this process replaces ã with −ã > 0 while leaving the remaining entries

of B2 unchanged, so that we may assume that a, ã ≥ 0.

- When a < 0 but ã ≥ 0 we first flip the e1-block to obtain one of the

previous scenarios, and continue as above.

We have thus obtained the algebra g30,11.

2. b = 0. Since a ̸= 0, we can scale B1 to a = 1, and then replace B2 with

B2 − ãB1 to obtain ã = 0. Finally, when b̃ < 0 we flip the (e2, e3)-block to

ensure b̃ ≥ 0. We have thus obtained the algebra g30,12.

• Case p1 = 1

The only linear combinations permitted which involve the matrix B1 consist

of adding a multiple of B2 to B1.

Type I matrices

Without loss of generality, we may first assume that c̃ ̸= 0, which allows us

to scale B2 so that c̃ = 1. Next we add an appropriate multiple of B2 to B1 to
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obtain c = 1
2
.

B1 =


a 0 0

0 b 0

0 0 1
2

 , B2 =


ã 0 0

0 b̃ 0

0 0 1

 .

Exchanging the basis vectors e1 and e2 if necessary, we may assume that |b− 1
2
| ≤

|a− 1
2
|. Next flipping the e1 and/or e2-blocks, we can obtain that 1

2
≤ b ≤ a. When

ã < 0 then we flip the e3-block and multiply B2 by −1 to obtain B2 of the above

form with ã > 0, while B1 remains unchanged. We thus have obtained g31,1.

In the special case where b = 1
2

we can also render b̃ ≥ 0, by simply flipping

the e2-block. In addition, when a = b = 1
2

we may exchange the vectors e1 and e2

so that ã ≥ b̃ ≥ 0.

Type II matrices

Here we must consider various possibilities:

1. b̃ ̸= 0. Here we scale B2 to obtain b̃ = 1, and subtract a multiple of B2 from

B1 to obtain b = 1
2
.

B1 =


a 0 0

0 1
2

c

0 0 1
2

 , B2 =


ã 0 0

0 1 c̃

0 0 1

 . (2)

Flipping the e1-block if necessary, we may assume that a ≥ 1
2
.

In case ã < 0, then we first flip the (e2, e3)-blocks, to obtain

B1 =


a 0 0

0 1
2

0

0 −c 1
2

 , B2 =


ã 0 0

0 −1 0

0 −c̃ −1

 .
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After exchanging the vectors e2 and e3 we obtain

B1 =


a 0 0

0 1
2

−c

0 0 1
2

 , B2 =


ã 0 0

0 −1 −c̃

0 0 −1

 .

Multiplying B2 by −1, we arrive at a pair of matrices of form (2) with a ≥ 1
2
,

ã ≥ 0.

(a) c ̸= 0. We scale the vector e3 to render c = 1 in (2), and have obtained

g31,2.

In the special where ã = 0 we can render the values of c̃ non-negative:

Flip the (e2, e3)-blocks, then exchange the vectors e2 and e3 and scale

e3 by −1. This gives

B1 =


a 0 0

0 1
2

1

0 0 1
2

 , B2 =


0 0 0

0 −1 c̃

0 0 −1

 .

Now multiplying B2 by −1 will return B2 to its original form, except

that c̃ < 0 has been replaced by −c̃ > 0.

Similarly, in the special case where a = 1
2
, we may also render c̃ non-

negative: Flip both matrices, then exchange the vectors e2 and e3, mul-

tiply e3 by −1 and finally multiply B2 by −1.

(b) c = 0 and c̃ ̸= 0. We scale the vector e3 to render c̃ = 1 in (2), and have

obtained g31,3.

(c) c = c̃ = 0. This is the type I case which has already been treated.
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2. b̃ = 0. We have

B1 =


a 0 0

0 b c

0 0 b

 , B2 =


ã 0 0

0 0 c̃

0 0 0

 .

If necessary, flipping the (e2, e3)-block followed by an exchange of e2 and e3

we may assume that b ≥ 1
2
.

(a) c̃ ̸= 0. Subtracting c
c̃
B2 from B1 we obtain that c = 0. Flipping the

e1-block if necessary, we may assume that a ≥ 1
2
.

i. ã ̸= 0. We scale B2 so that ã = 1. Scaling the vector e3 we obtain

that c̃ = 1. We thus have obtained g31,4.

ii. ã = 0. We scale B2 so that c̃ = 1 and have obtained g31,5.

(b) c̃ = 0 and c ̸= 0. Then ã ̸= 0, so we can scale B2 so that ã = 1. We

subtract a multiple of B2 from B1 to obtain a = 1
2
. Finally, we scale

the vector e3 so that c = 1. We have obtained g31,6.

(c) c̃ = c = 0. This is the type I case, which has already been covered.

Type III matrices

As a reminder, here

B1 =


a b c

0 a d

0 0 a

 , B2 =


ã b̃ c̃

0 ã d̃

0 0 ã

 (3)

with bd̃ = b̃d.

1. ã ̸= 0. Here we scale B2 to obtain ã = 1, and subtract an appropriate
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multiple of B2 from B1 to obtain a = 1
2
:

B1 =


1
2

b c

0 1
2

d

0 0 1
2

 , B2 =


1 b̃ c̃

0 1 d̃

0 0 1

 .

(a) b̃ ̸= 0. We scale the basis vector e2 so that b̃ = 1. Now setting f1 = e1,

f2 = e2 and f3 = e3 − c̃e2 we obtain that c̃ = 0.

i. d̃ ̸= 0. Next we scale the basis vector e3 so that d̃ = 1. Now the

condition bd̃ = b̃d gives us b = d:

B1 =


1
2

b c

0 1
2

b

0 0 1
2

 , B2 =


1 1 0

0 1 1

0 0 1

 .

When b < 0 we flip both matrices and exchange the vectors e1 and

e3, followed by multiplying B2 by −1. This will return B1, B2 to

the above form, now with b ≥ 0. We have obtained g31,7.

ii. d̃ = 0. The condition bd̃ = b̃d gives d = 0.

B1 =


1
2

b c

0 1
2

0

0 0 1
2

 , B2 =


1 1 0

0 1 0

0 0 1

 .

When c = 0 this is the type II case. We may thus suppose that

c ̸= 0. Scaling the vector e3 we obtain c = 1. We have obtained

g31,8.

(b) b̃ = 0. The condition bd̃ = b̃d gives b = 0 or d̃ = 0.

i. d̃ = 0. Then

B1 =


1
2

b c

0 1
2

d

0 0 1
2

 , B2 =


1 0 c̃

0 1 0

0 0 1

 .
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A. c̃ = 0. Then B2 = I3.

– If b = c = d = 0, this is the type I case.

– If b = c = 0 but d ̸= 0, this is the type II case.

– If c = d = 0 but b ̸= 0, this is the type II case.

– If b = d = 0 but c ̸= 0, this is the type II case.

We may thus assume that at most one of b, c, d equals zero, and

must consider three possibilities:

– When b ̸= 0 and d ̸= 0, we scale the basis vectors e2 and e3

to obtain b = d = 1. We then replace e3 with e3− ce2 to obtain

c = 0. We have obtained g31,9.

– When b ̸= 0 but d = 0, then c ̸= 0. Scaling the basis vectors

e2 and e3 we obtain b = c = 1.

B1 =


1
2

1 1

0 1
2

0

0 0 1
2

 , B2 =


1 0 0

0 1 0

0 0 1

 . (4)

Now changing basis by f1 = e1, f2 = 1
2
(e2 + e3) and f3 =

1
2
(e2 − e3) we arrive at

B1 =


1
2

1 0

0 1
2

0

0 0 1
2

 , B2 =


1 0 0

0 1 0

0 0 1

 .

which is a type II scenario.

– When d ̸= 0 but b = 0, then c ̸= 0.

B1 =


1
2

0 1

0 1
2

1

0 0 1
2

 , B2 =


1 0 0

0 1 0

0 0 1

 .
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Flipping both matrices, exchanging the basis vectors e1 and e3,

multiplying B2 as well as e2 and e3 by −1, we arrive at (4)

which is a type II scenario.

ii. b = 0, but d̃ ̸= 0.

B1 =


1
2

0 c

0 1
2

d

0 0 1
2

 , B2 =


1 0 c̃

0 1 d̃

0 0 1

 .

We flip both matrices and then exchange vectors e1 and e3 to obtain

matrices of the form

B1 =


1
2

b c

0 1
2

0

0 0 1
2

 , B2 =


1 b̃ c̃

0 1 0

0 0 1

 .

with b̃ ̸= 0. This is the scenario b̃ ̸= 0, d̃ = 0 already discussed

above.

2. ã = 0 in (3). When a < 1
2

we flip both matrices and exchange basis vectors

e1 and e3 to obtain matrices of the form (3) with a ≥ 1
2

and ã = 0.

(a) b̃ ̸= 0 and d̃ ̸= 0. Here we can scale the vectors e2 and e3 to obtain

b̃ = d̃ = 1. Replacing e3 with e3 − c̃e2 we then have c̃ = 0:

B1 =


a b c

0 a d

0 0 a

 , B2 =


0 1 0

0 0 1

0 0 0

 .

Subtracting dB2 from B1 we obtain d = 0. The condition bd̃ = b̃d now
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gives b = 0.

B1 =


a 0 c

0 a 0

0 0 a

 , B2 =


0 1 0

0 0 1

0 0 0

 .

i. c ̸= 0. We scale the basis vectors e2 and e3 by 1
c

and then multiply

B2 by c to obtain the same matrices, but with c = 1. We thus have

obtained g31,10.

ii. c = 0. We have obtained g31,11.

(b) b̃ = 0 but d̃ ̸= 0. We scale e3 to obtain d̃ = 1.

B1 =


a b c

0 a d

0 0 a

 , B2 =


0 0 c̃

0 0 1

0 0 0

 . (5)

Changing basis to f1 = e1, f2 = c̃e1 + e2, f3 = e3 we obtain matrices of

the same form, with c̃ = 0. We can now subtract dB2 from B1 to obtain

d = 0. The condition bd̃ = b̃d now gives b = 0.

B1 =


a 0 c

0 a 0

0 0 a

 , B2 =


0 0 0

0 0 1

0 0 0

 .

i. c ̸= 0. Replacing the vector e3 with 1
c
e3 and then multiplying B2

by c we arrive at matrices of the same form, with c = 1. We have

obtained g31,12, subcase a ≥ 1
2
.

ii. c = 0. This is a type II scenario.

(c) b̃ ̸= 0 but d̃ = 0. We scale e2 to obtain b̃ = 1.

B1 =


a b c

0 a d

0 0 a

 , B2 =


0 1 c̃

0 0 0

0 0 0

 .
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We now flip both matrices, followed by exchanging the vectors e1 and

e3 and multiplication of B2 by −1 to obtain the scenario (5), but with

a ≤ 1
2
. Proceeding similarly, we either obtain g31,12 , subcase a ≤ 1

2
, or

a type II scenario.

(d) b̃ = d̃ = 0. Since c̃ ̸= 0 we can scale B2 to obtain c̃ = 1. Now subtracting

cB2 from B2 we arrive at c = 0,

B1 =


a b 0

0 a d

0 0 a

 , B2 =


0 0 1

0 0 0

0 0 0

 .

i. b ̸= 0 and d ̸= 0. Scaling the vectors e2 and e3 and scaling B2 with

appropriate factors, we arrive at the above matrices with b = d = 1.

We have obtained g31,13.

ii. b = 0 but d ̸= 0. Scaling the vector e3 and also the matrix B2

we obtain d = 1. Exchanging vectors e1 and e2 we arrive at g31,12,

subcase a ≥ 1
2
.

iii. b ̸= 0 but d = 0. Flipping the two matrices, exchanging vectors

e1 and e3, and multiplying B2 by −1 we arrive at the scenario

b = 0, d ̸= 0 but with a ≤ 1
2
. This is g31,12, subcase a ≤ 1

2
.

iv. b = d = 0. This is a type II scenario.

Type IV matrices

As a reminder,

B1 =


a 0 0

0 b c

0 −c b

 , B2 =


ã 0 0

0 b̃ c̃

0 −c̃ b̃

 ,

with either c ̸= 0 or c̃ ̸= 0.
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1. c̃ ̸= 0. We scale B2 so that c̃ = 1. Then we subtract cB2 from B1 so that

c = 0.

B1 =


a 0 0

0 b 0

0 0 b

 , B2 =


ã 0 0

0 b̃ 1

0 −1 b̃

 .

Flipping the first blocks if necessary, we may always assume that a ≥ 1
2
.

Similarly, flipping the (e2, e3)-blocks if necessary, we may assume that b ≥ 1
2
.

When b̃ < 0 we exchange the vectors e2 and e3 and then multiply B2 by −1

to obtain matrices of the same form, with b̃ ≥ 0. This is g31,14.

In the special case a = 1
2

we can render ã ≥ 0 by flipping the e1-block.

Similarly, in the special case b = 1
2

we can render ã ≥ 0 as follows: When

ã < 0, multiply B2 by −1 and correct the change of signs of the other entries

of B2 by flipping the (e2, e3)-blocks and then exchanging the vectors e2 and

e3.

2. c̃ = 0. Then c ̸= 0.

(a) b̃ ̸= 0. We scale B2 so that b̃ = 1.

B1 =


a 0 0

0 b c

0 −c b

 , B2 =


ã 0 0

0 1 0

0 0 1

 .

Subtracting a multiple of B2 from B1 we obtain b = 1
2
. Flipping the

first block if necessary, we may assume that a ≥ 1
2
. When ã < 0 we may

multiply B2 by −1 and flip the (e2, e3)-blocks to obtain the same type

of matrices, but with ã ≥ 0. Finally, if c < 0 we exchange the vectors

e2 and e3 to obtain that c > 0 always. This is g31,15.
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(b) b̃ = 0. We scale B2 so that ã = 1. Subtracting a multiple of B2 from

B1 we obtain a = 1
2
.

B1 =


1
2

0 0

0 b c

0 −c b

 , B2 =


1 0 0

0 0 0

0 0 0

 .

Flipping the (e2, e3)-blocks if necessary, we obtain b ≥ 1
2
. Finally, if

c < 0 we exchange the vectors e2 and e3 to obtain that c > 0 always.

This is g31,16.

It is left to verify that no two Lie algebras in Table 3.1 are isomorphic. This

can be done mainly by studying the eigenvalues and properties of the operator

Ad(M) where M ∈ VM . Because it is a tedious process, we do not present the

details here.
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