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CHAPTER I

INTRODUCTION

Wavelets are known to have intimate connections to several other parts

of mathematics, notably phase-space analysis of signal processing, reproducing

kernel Hilbert spaces etc. Random fields have found numerous applications in

diverse areas such as image processing, signal processing, oceanography, geology,

forestry, turbulence, geography, finance and engineering. This thesis explores the

connection of wavelets with random fields in further detail. First, we continue from

the work on the continuous wavelet transform of random fields accumulated over

the last 10 years, to find the spectral representation and consider some properties

of continuous wavelet transforms of random fields. Secondly, we use the discrete

wavelet method to construct a wavelet representation of Brownian motion, which is

an example of a stochastic process with particular properties, from a wavelet basis

and then extend this construction to the higher dimensional setting of random

fields.

1.1 Continuous Wavelet Transforms and Random Fields

1.1.1 Previous Research

The continuous wavelet transform, following Daubechies (1992), Walnut

(2001) and Pinsky (2009), is a tool of analysing a square integrable function on Rd

by correlating it with a two-parameter family of functions, obtained from translat-

ing and scaling of a single analysing function, called mother wavelet function. On
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the other hand, a random field, following Childers (1998), Grimmett and Strizaker

(1998) and Ludeman (2003), is a family of random variables from a probability

space to a Borel subset of R or C usually parametized in some continuous fash-

ion by a position variable in Euclidean space. A random field in one dimensional

(time) space is usually called a stochastic process. The connection of wavelets

with stochastic processes has been exploited for over 20 years by Averkamp and

Houdre (1998), Benedetto and Frazier (1994), Combanis and Houdre (1995), Flan-

drin (1989 and 1992), Kato and Masry (1999), Paulo and Rudolf (1999), Masry

(1993), Meyer, Sellan and Taqqu (1999), Ramanathan and Zeitouni (1991) and

Tewfik and Kim (1992) etc. On the other hand, the connection of wavelets with

general random fields began to be established more recently, over the last 15 years

by Averkamp and Houdre (1998), Heneghan, Lowen and Teich (1996) and Masry

(1995 and 1998).

A random field is said to be weakly stationary if it has a constant mean

and the auto-correlation is invariant under position shifts. It is called a weakly

stationary increments random field, if the random fields composed of the incre-

ments are weakly stationary. Also, two random fields are jointly weakly stationary

if they are individually weakly stationary and the cross-correlation is position shift

invariant. One observes that the auto-correlation function of a weakly stationary

random field is a function of position shift only. For this type of random field,

a characterization of auto-correlation in the frequency domain is available as in-

troduced by Childer (1998), Grimmett and Stirzaker (1998) and Ludeman (2003).

Consequentially, one can define the power spectral density function as the gener-

alized Fourier transform of the auto-correlation function. Similarly, if two random

fields are jointly weakly stationary, then the cross-correlation function is again a

function of only shift position, and the power cross spectral density function can
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be defined by the generalized Fourier transform of the cross-correlation function.

Applying the inverse Fourier transform, one obtains the cross power spectral rep-

resentation of the cross-correlation function.

Masry (1993) showed that the wavelet transform of a stochastic process

with weakly stationary increments is a weakly stationary stochastic process whose

auto-correlation function and spectral density function can be determined. Also,

Cambanis and Houdre (1993) found a new proof that the wavelet transform of a

stationary stochastic process as well as a stochastic process with stationary in-

crements is a weakly stationary process, and then Averkamp and Houdre (1998)

extended this viewpoint to random fields and obtained that the wavelet transforms

of a random field, at different positive scaling parameters, are jointly weakly sta-

tionary random fields with zero mean. Furthermore, Masry (1998) determined the

power spectral and cross power spectral representation of these random fields.

A fractional Brownian field is an example of a process which itself is not

stationary, but whose increments are. This allows one to associate a well-defined

spectral representation to such a process. Flandrin (1989) proposed how to obtain

the spectral density function of the wavelet transform of fractional Brownian mo-

tion, which is the one dimensional case of a fractional Brownian field and Takeshi

Kato and Elias Masry (1998) gave detailed proofs of this assertion. Furthermore,

in 1996, Heneghand, Lowen and Teich considered the spectral density function of

the wavelet transform of a two-dimensional fractional Brownian field, but their

exposition is without proof.

The ergodic theorem, as presented in Viniotis (1998) for example states

that the estimate for the mean converges to the true mean in the mean square

sense. Grimmete and Stirzaker (1992) presented an ergodic theorem for weakly

stationary random processes saying that given such a process, there exists some
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random variable with same mean to which the estimate for the mean of the process

converges in the mean square sense.

1.1.2 The 1st Objective of the Thesis

In this thesis, we discuss the classification of the continuous wavelet trans-

form of three classes of d-dimensional random fields: weakly stationary random

fields, stationary increments random fields and weakly stationary increments ran-

dom fields. In each case we determine the spectral density function of the wavelet

transform via arbitrary dilation matrix of the random field. Moreover, as an exam-

ple, we obtain the spectral density function of the wavelet transform of a fractional

Brownian field in the general d-dimensional case. We further investigate the er-

godic property of the transformed random field, for both weakly stationary random

fields as well as random fields with weakly stationary increments.

1.2 Discrete Wavelet Methods and Random Fields

1.2.1 Previous Research

Brownian motion is a stochastic process having continuous sample paths

and independent increments (see also Section 3.5 and Appendix E). As shown

in Childers (1998), Grimmett and Stirzaker (1998) and Michael (2000), Brown-

ian motion is a self-similar stochastic process. Here, self-similarity of a stochastic

process is a form of statistical scale invariance. Since wavelets are also naturally

associated with scaling, there have been a number of attempts to represent Brow-

nian motion in terms of wavelets. Following Michael (2000) and Pinsky (2009),

Brownian motion can be constructed by means of the Haar wavelet.
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1.2.2 The 2nd Objective of the Thesis

In this thesis, we develop a framework for constructing the wavelet repre-

sentation of Brownian motion by a wavelet basis of L2[0, 1] different from the Haar

basis. We obtain a compactly supported wavelet function generating a represen-

tation of Brownian motion. We then extend this construction to the multidimen-

sional case, using both Haar function and arbitrary compactly supported wavelet

bases to generate a representation of a d-dimensional Brownian sheet.

1.3 Overview of the Thesis

This thesis is organized as follows. In Chapter II the basic notation is

introduced and the concepts from the continuous Fourier transform, the Fourier

transform of a measure, the continuous wavelet transform and the discrete wavelet

methods as used in this thesis are reviewed. In Chapter III, random fields and

their probabilistic properties such as the correlation and covariance function are

reviewed, special classes of random fields are introduced and the power spectral

density of some classes of random fields is reviewed. Moreover, the wavelet trans-

form of random fields is discussed. Chapter IV is devoted to the discussion of the

wavelet transform of random fields and the determination of the power spectral

density function of the wavelet transform of weakly stationary random fields, sta-

tionary increment random fields and weakly stationary increment random fields.

Also as an example, the power spectral density function of the wavelet transform

of a fractional Brownian field is presented. In chapter V, mean ergodic random

fields and the ergodic theorem for weakly stationary random fields are discussed

and connected to the continuous wavelet transform of some classes of random

fields. In Chapter VI, the discrete wavelet method is employed for obtaining a
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wavelet representation of some random fields such as Brownian motion and Brow-

nian sheet.



 

 

 

 

 

 

 

 

CHAPTER II

FOURIER ANALYSIS AND WAVELETS

In this chapter, we review the mathematical concepts used in this thesis.

We begin by discussing the Fourier transform of an integrable function, and also

functions in Schwartz space and their basic properties. We then review the Fourier

transform of a measure and Bochner’s theorem. Finally, we review the continuous

wavelet transform and the discrete wavelet method. Throughout, it is assumed

that the reader is familiar with the foundations of real analysis, such as measure

theory and function spaces.

2.1 The Continuous Fourier Transform

Throughout, Rd will denote the d-dimensional Euclidean space, and R̂d its

algebraic dual. It is well known that R̂d can be identified with Rd itself through

the usual inner product,

⟨x, ξ⟩ = x · ξ for x ∈ Rd, ξ ∈ R̂d.

In applications, Rd is often called the space domain (or time domain, if d = 1),

and R̂d the Fourier domain, or frequency domain.

In this section we begin to develop the properties of the Fourier transform

of integrable functions and of tempered distributions. Our main interest is in

the basic rules for the transform. The inverse Fourier transform and properties

involving convolution and some further operators will be studied later. Details can

be found in Folland (1999), Gasquet and Witomski (1999) and Strichartz (1994).
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2.1.1 L1-Fourier Transform

We summarize the definition and elementary properties of the L1-Fourier

transform in the following definitions and remarks.

Definition 2.1. (L1-Fourier Transform)

Let f ∈ L1(Rd). Its Fourier transform is the function

f̂(ξ) =

∫
Rd

f(x)e−iξ·x dx for ξ ∈ R̂d.

As an illustration, the Fourier transform of f(x) = e−α|x|2 (x ∈ Rd where

α > 0) is computed in Example A.1 (Appendix A).

Remark 2.1. The basic properties of the Fourier transform are as follows:

i) This integral make sense if and only if f ∈ L1(Rd), since |e−iξ·x| = 1.

ii) Consider the map F on L1(Rd) given by F(f) = f̂ . Then F is a linear,

one-to-one and norm-reducing operator of L1(Rd) into C0(Rd): ∥F(f)∥∞ ≤ ∥f∥1.

This operator is also called the Fourier transform. (We use the notation F for the

Fourier transform only where it is needed for clearity.)

The following formula is essential for introducing the inverse Fourier trans-

form.

Proposition 2.1. Let f and g be two integrable functions. Then fĝ and f̂g are

integrable functions on Rd and∫
Rd

f(t)ĝ(t) dt =

∫
Rd

f̂(x)g(x) dx

Proof. Details of the proof can be found in Gasquet and Witomski (1999), pp.156.

Definition 2.2. (L1-Inverse Fourier Transform)

Let f ∈ L1(Rd). Its inverse Fourier transform is

f̌(x) =
1

(2π)d

∫
R̂d

f(ξ)eiξ·x dξ.
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Remark 2.2. Since this definition is very similar to definition of f̂ , the basic

properties of the inverse Fourier transform follow imediately:

i) This integral make sense if and only if f ∈ L1(R̂d), since |eiξ·x| = 1.

ii) The map F−1 on L1(R̂d) given by F−1(f) = f̌ is a linear, one-to-one

and norm-reducing operator of L1(Rd) into C0(Rd): ∥F−1(f)∥∞ ≤ 1

(2π)d
∥f∥1. (We

use the notation F−1 for the inverse Fourier transform only where it is needed for

clarity.)

The Fourier transform is remarkable in that the inverse operator is obtained

very simply from F itself. In fact, it is just F−1. However, one must be cautions,

f being integrable does not imply that f̂ is integrable. One needs an additional

hypotheses on f to invert the Fourier transform f 7→ f̂ , as in the following theorem.

Theorem 2.2. If f ∈ L1(Rd) and f̂ ∈ L1(R̂d), then

f(x) = F−1(f̂)(x) =
1

(2π)d

∫
R̂d

f̂(ξ)eiξ·x dξ a.e x ∈ Rd.

Proof. Details of proof can be found in Gasquet and Witomski (1999), pp.163-

165.

One of the remarkable properties of the Fourier transform is the relation

between derivation and multiplication by a monomial as in the following theorem.

Theorem 2.3. Suppose that f ∈ R. If f is continuous, piecewise smooth and

f ′ ∈ L1(R), then

F(f ′)(ξ) = iξF(ξ). (2.1)

On the other hand, if xf(x) is integrable, then

F(xf(x))(ξ) = i[F(f)]′(ξ) (2.2)

Proof. Details of the proof can be found in Folland (1999), pp.250.
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2.1.2 The Schwartz Space and Tempered Distributions

Having presented the theory of the continuous Fourier transform for func-

tion that are integrable on Rd, we wish to extend it to generalized functions,

including functions that do not decay at infinity. If f and g are integrable func-

tions on Rd, by Proposition 2.1, one has

∫
Rd

f̂(x)g(x) dx =

∫
Rd

f(t)ĝ(t) dt. That

is, in distributional notation, ⟨f̂ , g⟩ = ⟨f, ĝ⟩. This suggests to define the Fourier

transform F̂ of a distribution F by ⟨F̂ , φ⟩ = ⟨F, φ̂⟩. There is, however, the prob-

lem that sometimes ⟨F̂ , φ⟩ makes sense, while ⟨F, φ̂⟩ may not make sense. For

most purposes, a better solution to this problem is to reduce the class of special

functions F and, correspondingly, to restrict the class of allowable functions φ.

The nicest way of doing this was discovered by Laurent Schwartz.

Definition 2.3. (Schwartz Space)

Given N ∈ N0 and multi-index α, we let

∥f∥(N,α) = sup
x∈Rd

(1 + ∥x∥)N |(Dαf)(x)|,

for f ∈ C∞(Rd). Set S(Rd) = {f ∈ C∞(Rd) : ∥f∥(N,α) < ∞, ∀N ∈ N0, ∀α ∈ ∧}

where ∧ is the set of all multi-indices.

It turns out that S(Rd) is a complex vector space, and the family of semi-

norms ∥·∥(N,α) determines a complete metric on S(Rd). We call S(Rd) the Schwartz

space, and its element are called Schwartz functions. Thus a Schwartz function is

a function f in class C∞ such that f and its derivatives vanish at infinity more

rapidly than any power of (1 + ∥x∥)N for all N ∈ N0.

Clearly, S(Rd) ⊂ Lp(Rd) for all 1 ≤ p ≤ ∞. Furthermore, the topology

in Lp(Rd) is weaker than that in S(Rd): If fn −→ f in S(Rd), then fn −→ f in

Lp(Rd).
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Theorem 2.4. The Fourier transform F : f 7−→ f̂ maps S(Rd) homeomorphically

onto S(Rd) in the topology of S(Rd) and the same is true for the inverse Fourier

transform.

Proof. Details of the proof can be found in Pathak (2001), pp.65-67.

Definition 2.4. (Tempered Distributions)

Consider the (topological) dual of S(Rd),

S ′(Rd) = {Φ : S(Rd) → C|Φ is linear and continuous}.

Elements of S ′(Rd) are called tempered distributions.

Example 2.1. In the following we present some classes of tempered distribution.

Throughout, f denotes an arbitrary element of S(Rd).

1) Let ϕ ∈ Lq(Rd), 1 ≤ q ≤ ∞. As S(Rd) ⊂ Lp(Rd), where 1
p
+ 1

q
= 1,

and the topology on Lp(Rd) is weaker than that on S(Rd), then Φ(f) = ⟨f, ϕ⟩ =∫
Rd

f(x)ϕ(x) dx defines an element Φ ∈ S ′(Rd).

2) Let ϕ : Rd → C be measurable and |ϕ(x)| ≤ C(1 + ∥x∥)M , C is a

constant, for all x ∈ Rd (such a ϕ is called slowly increasing). Then Φ(f) =

⟨f, ϕ⟩ =
∫
Rd

f(x)ϕ(x) dx defines an element Φ ∈ S ′(Rd).

3) Let µ be a finite measure on Rd.

Then Φ(f) =

∫
Rd

f(x) dµ(x) defines an element Φ ∈ S ′(Rd).

In order to extend the Fourier transform to S ′(Rd), let Φ ∈ S ′(Rd) be given.

The map f 7→ ⟨f̂ ,Φ⟩ for f belonging to S(Rd), is a continuous linear functional

on S(Rd), since the Fourier transform f 7→ f̂ is continuous on S(Rd). Thus there

exists a tempered distribution Φ̂ ∈ S ′(Rd) such that ⟨f̂ ,Φ⟩ = ⟨f, Φ̂⟩, ∀f ∈ S(Rd).

We define Φ̂ to be the Fourier transform of Φ. The reason S(Rd) is useful in

studying Fourier transforms is that f̂ ∈ S(Rd) by Theorem 2.4. Since elements of
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S ′(Rd) are considered generalized function, we call the map F : Φ ∈ S ′(Rd) 7−→

Φ̂ ∈ S ′(Rd) the generalized Fourier transform.

2.2 Convolution

We establish the existence of the convolution for integrable functions and

consider its properties, especially with relation to the Fourier transform. First, we

give the definition of the convolution of two functions.

Definition 2.5. (Convolution)

Let f, g be measurable functions on Rd. The convolution of f and g denoted f ∗ g

is defined by

(f ∗ g)(x) =
∫
Rd

f(y)g(x− y) dy.

By a change of variables, the preceding definition is equivalent to

(f ∗ g)(x) =
∫
Rd

f(x− y)g(y) dy.

Remark 2.3.

(1) Unless additional assumptions are made about f and g, the convolution

may not be defined.

(2) Suppose f, g ∈ L1(Rd). Then f ∗ g is defined a.e., f ∗ g ∈ L1(Rd) and

∥f ∗ g∥1 ≤ ∥f∥1∥g∥1.

We have the following theorem on the Fourier transform of the convolution

of two functions.

Theorem 2.5. Suppose f and g are two integrable functions. Then

F(f ∗ g) = F(f) · F(g)

F−1(F(f) · F(g)) = f ∗ g.

Proof. Details of the proof can be found in Folland (1999), pp.249 and 258.
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2.3 Operators on Lp(Rd)

We introduce operators on Lp(Rd) that will be used frequently hereafter.

Definition 2.6. (Translation, Modulation and Dilation Operator)

Let f ∈ Lp(Rd), 1 ≤ p <∞.

1) Translation by y ∈ Rd and denoted by Ty is the operator defined by

(Tyf)(x) = f(x− y) for all x ∈ Rd.

2) Modulation by ξ ∈ Rd and denoted by Mξ is the operator defined by

(Mξf)(x) = e2iπξ·xf(x) for all x ∈ Rd.

3) Dilation by A ∈Md(R) (such that detA ̸= 0) and denoted by DA is the

operator defined by

(DAf)(x) = | detA|−
p
2 f(A−1x) for all x ∈ Rd.

It is easy to verify that these are all surjective isometries.

2.4 The Fourier Transform of a Measure

We next define the Fourier transform of a finite Borel measure. Bochner’s

Theorem characterizes these transforms, and involves the notion of positive defi-

niteness. Before describing it, let us review the analogous concept for matrices.

Let A = [Aij]N×N
denote an N×N matrix with complex entries. Associated

to this matrix is a quadratic form on C, defined by ⟨Au, u⟩ =
N∑

i,j=1

Aijuiuj for a

vector u = (u1, u2, ...uN) in CN . We say the matrix is positive semi definite if the

quadratic form is always non negative, ⟨Au, u⟩ ≥ 0 for all u. Now we can define

what is meant by a positive definite function on Rd.

Definition 2.7. (Positive Definite Function)

A function φ on Rd is a positive definite function if for every finite set of {ξi}Ni=1
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in Rd and every finite set of complex numbers {cn}Nn=1 we have

N∑
m,n=1

cmcnφ(ξm − ξn) ≥ 0.

Definition 2.8. (Fourier Transform of Measure)

Let µ be a finite Borel measure on Rd. The Fourier transform of the measure µ is

the function

µ̂(ξ) =

∫
Rd

e−iξ·x dµ(x).

If µ is a probability measure then µ̂ is referred to as the characteristic func-

tion of the measure µ. The map µ 7→ µ̂ from the set of finite Borel measures is

additive, positive homogeneous and one-to-one.

The characteristic function of the measure arising from some random vari-

ables are computed in Example A.2 in Appendix A and Remark D.3 in Appendix

D.

Theorem 2.6. ( Bochner’s Theorem )

A function φ is a positive definite function on Rd if and only if there exists a

nonnegative Borel measure µ on Rd such that

φ(x) =

∫
Rd

e−ix·ξ dµ(ξ), a.e. x ∈ Rd. (2.3)

Proof. A detailed proof can be found in Appendix B.

2.5 Continuous Wavelet Transforms

In this section, we review the continuous wavelet transform in d-dimensions.

In general, the dilation-parameter in the continuous wavelet transform is a ma-

trix belonging to a closed subgroup of the group of invertible d × d matrices, as

introduced in the following.
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2.5.1 Matrix Groups

Definition 2.9. (General Linear Group)

Let Md(R) be the set of real d× d matrices. The general linear group denoted by

GLd(R) is the set of invertible elements,

GLd(R) = {A ∈Md(R)| det(A) ̸= 0} .

Remark 2.4. We can see that

1. GLd(R) is a group under matrix multiplication.

2. GLd(R) = det−1(R − {0}) is open in Md(R). In particular, GL1(R) =

R− {0}.

2.5.2 The Continuous Wavelet Transform

We are now ready to state the definition of the continuous wavelet trans-

form.

Definition 2.10. (Continuous Wavelet Transform)

LetH be a closed subgroup of GLd(R). Fix φ ∈ L2(Rd), called the mother wavelet.

For each a ∈ H, called the dilation parameter, and b ∈ Rd, called the translation

parameter, we set

φa,b = TbDaφ.

That is

φa,b(x) = TbDaφ(x) = Daφ(x− b) = | det a|−
1
2φ(a−1(x− b)) (2.4)

defines a 2-parameter family of functions in L2(Rd).

Define the wavelet transform of f ∈ L2(Rd) associated with mother wavelet φ by

the inner product

CW a
f (b) = ⟨f, φa,b⟩.



 

 

 

 

 

 

 

 

16

That is

CW a
f (b) = | det a|−

1
2

∫
Rd

f(x)φ(a−1(x− b)) dx. (2.5)

Example 2.2. Let d = 1 and H = R+ or H = {ck : k ∈ Z, for fixed c > 1}.

Then for fixed a ∈ H, b ∈ R

WCa
f (b) =

1√
a

∫
R
f(x)φ

(
x− b

a

)
dx

gives information of f(x) at scale a and location (time) determined by b.

Example 2.3. Let d = 2, H =


a 0

0 a

 : a ̸= 0


Fix φ ∈ L2(R2). For each h =

a 0

0 a

 ∈ H, b ∈ R2 , set

φa,b(x) = | deth|−
1
2φ(h−1(x− b)) = |a|−1φ


 1

a
0

0 1
a


x1 − b1

x2 − b2




= |a|−1φ

(
x1 − b1
a

,
x2 − b2
a

)
.

Thus the wavelet transform of f ∈ L2(R2) is

CW a
f (b) =

1

a

∫
R2

f(x1, x2)φ

(
x1 − b1
a

,
x2 − b2
a

)
dx1dx2.

In the case of general Rd, set H = {aId : a ̸= 0}. Then for each h ∈ H, b ∈

Rd we have

φa,b(x) = | deth|−
1
2φ(h−1(x− b)) = |a|−

d
2φ

(
x− b

a

)
.

Thus the continuous wavelet transform of f ∈ L2(Rd) is

CW a
f
(b) = |a|−

d
2

∫
Rd

f(x)φ

(
x− b

a

)
dx.
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2.6 Discrete Wavelet Methods

In the continuous wavelet transform of Example 2.2 we consider the family

φ
a,b
(x) = |a|− 1

2φ(x−b
a
), where a, b ∈ R, a ̸= 0. We would like to restrict a, b to

discrete values only. Now we choose a = a0, b = nam0 , where m,n range over Z

and a0 > 1 is fixed. This corresponds to

φm,n(x) = a
−m

2
0 φ

(
x− nam0
am0

)
= a

−m
2

0 φ
(
a−m
0 x− n

)
.

There are some questions which arise naturally: Do the discrete wavelet coefficients

⟨f, φm,n⟩ completely characterize f ∈ L2(R) ? Furthermore, can every function f

be expressed in terms of the φm,n ? In the present discrete case there is no analogue

of the resolution of the identity, so one has to attack the problem in some other

way.

2.6.1 Multiresolution Analysis on R

Daubechies (1992) opined that the first construction of smooth orthonormal

wavelet bases by Meyer seemed a bit miraculous in that the Meyer wavelets consti-

tute an orthonormal basis. This situation changed with the advent of multiresolu-

tion analysis, formulated in the fall of 1986 by Mallat and Meyer. Multiresolution

analysis provides a natural framework for the understanding of wavelet bases, and

for the construction of new examples. The construction of most wavelet bases

of square integrable functions on the interval [0, 1] derives from a multiresolution

analysis on L2(R). We therefore review the concept of multiresolution analysis, as

outlined in detail in Daubechies (1992), Meyer (1986) and Walnut (2001).

Definition 2.11. (Multiresolution Analysis on L2(R))

A multiresolution analysis (MRA) on L2(R) consists of sequence of a closed sub-

spaces Vj where j ∈ Z of L2(R), satisfying
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(M1) Vj ⊂ Vj+1 for all j ∈ Z

(M2) f ∈ Vj if and only if f(2·) ∈ Vj+1 for all j ∈ Z

(M3)
∩
j∈Z

Vj = {0}

(M4)
∪
j∈Z

Vj = L2(R), and

(M5) there exists a function φ ∈ V0 such that {φ(· − k) : k ∈ Z} is a

complete orthonormal basis for V0.

Remark 2.5.

1) The function φ whose existence is asserted in (M5) is called the scaling

function of the given multiresolution analysis.

2) Sometimes condition (M5) is relaxed by assuming that {φ(·−n) : n ∈ Z}

is a Riesz basis for V0. That is, for every f ∈ V0 there exists a unique sequence

{αn}n∈Z ∈ l2(Z) such that

f(x) =
∑
n∈Z

αnφ(x− n), (2.6)

with convergence in L2(R) and

A
∑
n∈Z

|αn|2 ≤ ∥f∥22 ≤ B
∑
n∈Z

|αn|2 (2.7)

with constants 0 < A ≤ B < ∞, independent of f . Observe that (M5) implies

that {φ(· − n) : n ∈ Z} is a Riesz basis for V0 with A = B = 1.

Remark 2.6.

1) Usually, a multiresolution analysis is defined by first identifying the

closed subspace V0 and the scaling function φ, and then setting

Vj = {f(2j·) : f ∈ V0}

so that (M2) holds.

2) Let f ∈ V0 = span{Tkφ}k∈Z. Then Tkf ∈ V0 for all k ∈ Z.
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Similarly, since Tkf ∈ V0, then f = T−k(Tkf) ∈ V0. Hence f ∈ V0 if and only if

Tkf ∈ V0 for all k ∈ Z. This property is called translation invariance, so V0 is a

translation invariant subspace of L2(R).

3) It follows from (M2) that D2−j is an isomorphism of V0 onto Vj (this is

proved in Walnut (2001)).

4) It follows from 3) , (M5) and 2) above that {φ
j,k

: φj,k(x) = 2
j
2φ(2jx −

k)}k∈Z is an orthonormal basis of Vj.

5) By 4) we have Vj = span{φ
j,k
}
k∈Z ⊂ span{φ

j,k
}
j,k∈Z, and hence the

inclusion that
∪
j∈Z

Vj ⊂ span{φ
j,k
}
j,k∈Z, so that L2(R) =

∪
j∈Z

Vj ⊂ span{φ
j,k
}
j,k∈Z,

that is

span{φ
j,k
}
j,k∈Z = L2(R). (2.8)

6) Since φ ∈ V0 ⊂ V1 and {φ
1,k
}k∈Z is an orthonormal basis of V1, we have

φ =
∑
k∈Z

< φ,φ
1,k
> φ

1,k
. (2.9)

Setting hk =< φ,φ
1,k
>=

√
2

∫
R
φ(x)φ(2x− k) dx, then we rewrite equation (2.9)

as

φ =
∑
k∈Z

hkφ1,k
(2.10)

which often is written as

φ(x) =
∑
k∈Z

√
2hkφ(2x− k),

converges in L2(R), and is called the scaling relation, and {hk}k∈Z ∈ l2(Z) is called

the scaling filter associated with φ. By Parseval’s identity∑
k∈Z

|hk|2 =
∑
k∈Z

| < φ,φ
1,k
> |2 = ∥φ∥22.

7) Equation (2.9) can be formulated for every f ∈ V1,

f =
∑
k∈Z

⟨f, φ1,k⟩φ1,k
.



 

 

 

 

 

 

 

 

20

Definition 2.12. (Orthogonal Projection)

Let H be a Hilbert space, V a closed subspace of H. Then for each x ∈ H, there

exists unique element y ∈ V such that ∥x− y∥ = inf
z∈V

∥x− z∥, we define this point

as Px = y. If x ∈ V then Px = x. The mapping P is called the orthogonal

projection of H onto V .

Now suppose that we have a multiresolution analysis {Vj}j∈Z with scaling

function φ. Let Pj denote the orthogonal projection of L2(R) onto Vj, j ∈ Z, then

Pjf = f for f ∈ Vj, and Pjg = 0 for g ∈ V ⊥
j . The projections Pj are called the

approximation operators.

Note that if H is a Hilbert space, V a closed subspace of H and {en}n∈J

an orthonormal basis for V , then for each x ∈ H, the projection of H onto V is

given by

Px =
∑
n∈J

⟨x, en⟩en.

According to Remark 2.6 (4), {φ
j,k
}k∈Z is an orthonormal basis for Vj. Thus, the

approximation operators Pjf ∈ Vj are given by

Pjf =
∑
k∈Z

⟨f, φ
j,k
⟩φ

j,k
(2.11)

for all f ∈ Vj. Let Wj denote the orthogonal complement of Vj in Vj+1 then

Vj+1 = Vj ⊕ Wj. The orthogonal projection Qj of L2(R) onto Wj is called the

detail operator. By straightforward computation, we have Qj = Pj+1 −Pj so that

for f ∈ L2(Rd),

lim
j→∞

∥f − Pjf∥2 = 0 and lim
j→−∞

Pjf = 0, (2.12)

details of the proof are given in Walnut (2001), pp.171 - 173. By these and a

telescoping technique it follows that, for each f ∈ L2(R),

f =
∑
j∈Z

Qjf.
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Start with some closed subspace Vl of L
2(R) then L2(R) = Vl ⊕ V ⊥

l .

As Vl+1 = Vl ⊕Wl then

L2(R) = Vl+1 ⊕ V ⊥
l+1 = Vl ⊕Wl ⊕ V ⊥

l+1.

Continuing by induction we have, for all m > 1,

L2(R) = Vl ⊕Wl ⊕Wl+1 ⊕ ...⊕ Vl+m ⊕ V ⊥
l+m+1.

Given n > 0 choose l = −n,m = 2n

L2(R) = V−n ⊕W−n ⊕W−n+1 ⊕ ...⊕Wn−1 ⊕Wn ⊕ V ⊥
n+1.

From 2.12 it follows, letting n→ ∞ that

L2(R) = ⊕j∈ZWj.

Beginning with the scaling filter {hk}k∈Z we define a sequence {gk} ∈ l2(Z) by

gk = (−1)kh1−k, called the wavelet filter, and define an associated function ψ ∈ W1

called mother wavelet, by

ψ =
∑
k∈Z

gkφ1,k
. (2.13)

We have an important theorem, a detailed proof of which is given in Walnut

(2001).

Theorem 2.7. Let φ be a scaling function of a MRA {Vj}j∈Z on L2(R) and ψ the

associated wavelet. Then

1) {Tkψ}k∈Z is an orthonormal basis of W0.

2) {ψ
j,k

: ψ
j,k
(x) = 2

j
2ψ(2jx− k)}k∈Z is an orthonormal basis of Wj.

3) {ψ
j,k
}j,k∈Z is an orthonormal (wavelet) basis of L2(R).

Remark 2.7.

1) From Theorem 2.7 (2) we have that the detail operators Qjf ∈ Wj are
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given by

Qjf =
∑
k∈Z

⟨f, ψ
j,k
⟩ψ

j,k
. (2.14)

2) From relation (2.10), applying the operator D
2−(j−1)

Tm we have

D
2−(j−1)

Tmφ =
∑
k∈Z

hkD
2−(j−1)

Tmφ1,k
=
∑
k∈Z

hkD
2−(j−1)

D
2−1T2m+kφ

=
∑
k∈Z

hkD
2−j
T2m+kφ =

∑
k∈Z

h
k−2m

D
2−j
Tkφ.

So that

φ
j−1,m

=
∑
k∈Z

h
k−2m

φ
j,k
. (2.15)

Next, ψ =
∑
k∈Z

g
k
φ

1,k
gives in the same way that

ψ
j−1,m

=
∑
k∈Z

g
k−2m

φ
j,k
. (2.16)

Since Vj(R) = Vj−1⊕Wj−1, we can see that for f ∈ Vj, Pjf = Pj−1f +Qj−1f thus

by the relations (2.11) and (2.14)

∑
k∈Z

⟨f, φ
j,k
⟩φ

j,k
=
∑
m∈Z

⟨f, φ
j−1,m

⟩φ
j−1,m

+
∑
m∈Z

⟨f, ψ
j−1,m

⟩ψ
j−1,m

.

Then by equation (2.15) and (2.16) we have

∑
k∈Z

⟨f, φ
j,k
⟩φ

j,k
=
∑
m∈Z

[
⟨f, φ

j−1,m
⟩
∑
k∈Z

h
k−2m

φ
j,k

]
+
∑
m∈Z

[
⟨f, ψ

j−1,m
⟩
∑
k∈Z

g
k−2m

φ
j,k

]

=
∑
m∈Z

∑
k∈Z

[
⟨f, φ

j−1,m
⟩h

k−2m
+ ⟨f, ψ

j−1,m
⟩g

k−2m

]
φ

j,k

=
∑
k∈Z

(∑
m∈Z

[
⟨f, φ

j−1,m
⟩h

k−2m
+ ⟨f, ψ

j−1,m
⟩g

k−2m

])
φ

j,k
.

Since {φ
j,k
}k∈Z is orthonormal, the coefficients on both sides must be identical.

Then, for each k ∈ Z and f ∈ Vj,

⟨f, φ
j,k
⟩ =

∑
m∈Z

[
⟨f, φ

j−1,m
⟩h

k−2m
+ ⟨f, ψ

j−1,m
⟩g

k−2m

]
= ⟨f,

∑
m∈Z

[
h

k−2m
φ

j−1,m
+ g

k−2m
ψ

j−1,m

]
⟩.
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Hence we have

φ
j,k

=
∑
m∈Z

[
h

k−2m
φ

j−1,m
+ g

k−2m
ψ

j−1,m

]
.

In particular, if j = 1, k = 0 we get

φ1,0 =
∑
m∈Z

[
h−2mφ0,m + g−2m

ψ0,m

]
,

that is
√
2φ(2x) =

∑
m∈Z

[
h−2mφ(x−m) + g−2m

ψ(x−m)
]
. (2.17)

If j = 1, k = 1 we get

φ1,1 =
∑
m∈Z

[
h1−2mφ0,m + g

1−2m
ψ0,m

]
,

that is
√
2φ(2x− 1) =

∑
m∈Z

[
h1−2mφ(x−m) + g

1−2m
ψ(x−m)

]
. (2.18)

2.6.2 Wavelet Bases with Compact Support

In this subsection we are mainly interested in constructing a wavelet basis

consisting of compactly supported wavelets which is important for the construc-

tion of wavelet bases on the interval, in the next subsection.

Recall equations (2.9) and (2.10) defining the scaling filter {hm}m∈Z asso-

ciated with the scaling function φ. If this sequence has finite length, hm = 0 for

m < 0 or m > 2N − 1, N ∈ Z+, then the corresponding basis wavelet has

compact support. This can be checked from the recursive definition of the ηl, see

more details of this recursive relation in Meyer (1987) and Daubechies (1988),

φ(x) = lim
l→∞

ηl(x)

ηl(x) =
√
2
∑
m∈Z

hmηl−1(2x−m), η0 = χ[− 1
2
, 1
2
).
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Consider η1 =
√
2
∑
m∈Z

hmη0(2x−m). Recall that hm ̸= 0 only for 0 ≤ m ≤ 2N−1,

and supp(η0) ⊂ [−1
2
, 1
2
]. If x ∈ supp(η1), therefore, then −1

2
≤ 2x − m <

1

2
for

all 0 ≤ m ≤ 2N − 1. In particular, −1

2
≤ 2x <

1

2
+ (2N − 1) or equivalently,

−1

4
≤ x < N − 1

4
.

Continue by induction. We obtain, when x ∈ supp(η2), then −1

4
≤ 2x − m ≤

N − 1

4
for all 0 ≤ m ≤ 2N − 1 and hence −1

4
≤ 2x ≤ (N − 1

4
) + (2N − 1) or

−1

8
≤ x ≤ 3N

2
− 5

8
.

Continuing, when x ∈ supp(ηl) we have

− 1

2l+1
≤ x ≤ 1

2l+1
+

2l − 1

2l
(2N − 1).

Let l → ∞, as φ(x) = lim
l→∞

ηl(x) we obtain that supp(φ) ⊂ [0, 2N − 1)

Therefore in this case, we can rewrite equation (2.10) as the following equa-

tion

φ(
x

2
) =

2N−1∑
m=0

√
2hmφ(x−m), h0h2N−1

̸= 0.

Then the associated wavelet ψ has the same support (by a simple translation) and

we can rewrite equation (2.13) by

ψ(
x

2
) =

2N−1∑
m=0

√
2gmφ(x−m), g0g2N−1

̸= 0.

Recall that equations (2.17) and (2.18) can be written as

√
2φ(2x) =

0∑
m=−N+1

[
h−2mφ(x−m) + g−2m

ψ(x−m)
]
,

and
√
2φ(2x− 1) =

0∑
m=−N+1

[
h1−2mφ(x−m) + g

1−2m
ψ(x−m)

]
.

Hence

√
2φ(2x) = h0φ(x) + g0ψ(x)︸ ︷︷ ︸

m=0

+h2φ(x+ 1) + g2ψ(x+ 1)︸ ︷︷ ︸
m=−1

+ ...+ h2N−2φ(x+N − 1) + g2N−2ψ(x+N − 1)︸ ︷︷ ︸
m=−N+1

.
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That is

√
2φ(2x) = h0φ(x) + h2φ(x+ 1) + ...+ h2N−2φ(x+N − 1)

+ g0ψ(x) + g2ψ(x+ 1) + ...+ g2N−2ψ(x+N − 1), (2.19)

and similarly,

√
2φ(2x− 1) = h1φ(x) + g1ψ(x)︸ ︷︷ ︸

m=0

+h3φ(x+ 1) + g3ψ(x+ 1)︸ ︷︷ ︸
m=−1

+ ...+ h2N−1φ(x+N − 1) + g2N−1ψ(x+N − 1)︸ ︷︷ ︸
m=−N+1

.

That is

√
2φ(2x− 1) = h1φ(x) + h3φ(x+ 1) + ...+ h2N−1φ(x+N − 1)

+ g1ψ(x) + g3ψ(x+ 1) + ...+ g2N−1ψ(x+N − 1). (2.20)

2.6.3 Wavelet Bases of L2[0, 1] and L2([0, 1]d)

Throughout this section, we let j0 ∈ Z be such that 2j0 ≥ 4N − 4 and

{Vj(R)}∞j=1 be a multiresolution analysis on L2(R) with scaling function φ and

associated wavelet ψ such that the scaling filter associated with φ, {hm}m∈Z, has

finite length, hm = 0 for m < 0 or m > 2N−1. Hence suppφ, suppψ ⊂ [0, 2N−1].

Now set

Vj([0, 1]) = span{φj,k

∣∣
[0,1]

: φj,k ∈ Vj(R)}

and

vj([0, 1]) = span{φj,k : suppφj,k ⊂ [0, 1]}.

Since φ is a function of compact support, it is obvious that Vj([0, 1]) is finite

dimensional. Note that the collection of function φj,k

∣∣
[0,1]

which do not vanish on

[0, 1] may not be orthogonal on [0, 1]. Our goal is to show that this system is

linearly independent, and thus can be made orthonormal by the Gram-Schmidt
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method. We now proceed to present elementary lemmas which will be useful in

the analysis of functions defined on the interval.

Definition 2.13. (Multiresolution Analysis on L2([0, 1]))

Let {Vj(R)}∞j=1 be a multiresolution analysis on L2(R). A sequence {Vj}j≥j0 of

closed subspaces of L2([0, 1]) is called a multiresolution analysis on L2([0, 1]) as-

sociated with {Vj(R)} if

i) ∀j ≥ j0, vj([0, 1]) ⊂ Vj ⊂ Vj([0, 1])

ii) ∀j ≥ j0, Vj ⊂ Vj+1.

Lemma 2.8. If f(x) =
∑
k∈Z

ckφ(x − k) where ck =

∫ ∞

−∞
f(x)φ(x− k) dx, is a

function in V0(R) such that f(x) = 0 for x ≤ 0, then ck = 0 for k ≤ −1.

Proof. See Appendix C.

For each j, denote by S(j) the range of all translation parameters k so

that the support of φj,k(x) = 2
j
2φ(2jx − k) intersects the interval (0, 1), that is,

φj,k

∣∣
[0,1]

̸= 0. Since suppφj,k = [2−jk, 2−j(k + 2N − 1)] it follows that

S(j) = [−2N + 2, 2j − 1] ∩ Z. (2.21)

The set S(j) can be divided into three disjoint subsets S1(j), S2(j) and S3(j),

according to whether the interior of the support of φj,k contains 0, the support of

φj,k is complete contained in [0, 1], or the support of φj,k contains 1, respectively.

By (2.21) it follow that

S1(j) = Z∩ [−2N+2,−1], and in fact, supp(φ
j,k
) ⊂ (−∞, 2N−2

2j
] ⊂ (−∞, 1

2
]

for k ∈ S1(j),

S2(j) = Z ∩ [0, 2j − 2N + 1], and in fact, supp(φ
j,k
) ⊂ [0, 1] for k ∈ S2(j),

S3(j) = Z∩ [2j − 2N +2, 2j − 1], and in fact, supp(φ
j,k
) ⊂ [1− 2N−2

2j
,∞) ⊂

[1
2
,∞) for k ∈ S3(j).
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It is shown in Appendix C that for j ≥ j0 and any function f(x) =
∑
k∈Z

ckφ(2
jx−k)

in Vj(R), f(x) = 0 for 0 ≤ x ≤ 1 implies that ck = 0 for−2N+2 ≤ k ≤ 2j−1. This

implies that {φ(2jx− k) : k ∈ S(j)} is a linearly independent system. Moreover,

we can show in Appendix C that there exist constants C2 ≥ C1 > 0 such that for

any sequence αj,k, k ∈ S(j) of coefficients,

C1

 ∑
k∈S(j)

|a
j,k
|2
 1

2

≤

∥∥∥∥∥∥
∑

k∈S(j)

a
j,k
φ

j,k
(x)

∥∥∥∥∥∥
L2[0,1]

≤ C2

 ∑
k∈S(j)

|a
j,k
|2
 1

2

.

This will establish the following fundamental theorem.

Theorem 2.9. For j ≥ j0, the functions φ
j,k

∣∣
[0,1]

, k ∈ S(j) = [−2N + 2, 2j − 1],

form a Riesz basis of the space Vj([0, 1]).

Proof. See Appendix C.

Note that, we have the following orthogonality relations for elements of the

collection {φ
j,k

∣∣
[0,1]

}k∈S(j).

1) If k ∈ S1(j) and l ∈ S2(j) we have as suppφj,k
⊂ (−∞, 1

2
] and suppφ

j,l
⊂

[0, 1], ∫ 1

0

φ
j,k
(x)φ

j,l
(x) dx = 2j

∫ ∞

−∞
φ(2jx− k)φ(2jx− l) dx = 0

since {φ0,m}m∈Z is orthonormal in V0.

2) If k ∈ S2(j) and l ∈ S3(j) we have suppφ
j,k

⊂ [0, 1] and suppφ
j,l

⊂

[1
2
,∞), and similarly to 1), ∫ 1

0

φ
j,k
(x)φj,l(x) dx = 0

3) If k ∈ S1(j) and l ∈ S3(j) we have as suppφj,k
⊂ (−∞, 1

2
] and suppφ

j,l
⊂

[1
2
,∞), that φj,kφj,k = 0 a.e., and hence∫ 1

0

φ
j,k
(x)φ

j,l
(x) dx = 0.
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4) If k ∈ S2(j) and l ∈ S2(j) we have

∫ 1

0

φ
j,k
(x)φj,l(x) dx = δk,l by orthog-

onality and since suppφj,k, suppφj,l ⊂ [0, 1], k ∈ S2(j).

In order to transform the basis φ
j,k

∣∣
[0,1]

, k ∈ S(j) to an orthonormal ba-

sis it is thus only necessary to make the function in φ
j,k

∣∣
[0,1]

, k ∈ S1(j) mutually

orthonormal and similarly, to render the function in φ
j,k

∣∣
[0,1]

, k ∈ S3(j) mutu-

ally orthonormal. At the first for φ
j,k

∣∣
[0,1]

, k ∈ S(j), we apply Gram-Schmidt

to these functions one thus obtains, in lieu of φ
j,k
(x)
∣∣
[0,1]

, k ∈ S1(j), new func-

tions 2
j
2φα

−2N+2(2
jx), ..., 2

j
2φα

−1(2
jx), near the boundary 0. Now, for functions

φj,k

∣∣
[0,1]

, k ∈ S3(j), we reflect and translate by 1 to the right to obtain functions

near the boundary 1. Next, we thus apply Gram-Schmidt to these functions.

One thus obtains, in lieu of φj,k(x), k ∈ S3(j), new functions 2
j
2φβ

2j−2N+2
(2j(1 −

x)), ..., 2
j
2φβ

2j−1
(2j(1 − x)), near the boundary 1. Hence we have the following

proposition.

Proposition 2.10. The collection of function

2
j
2φα

−2N+2(2
jx), ..., 2

j
2φα

−1(2
jx),

2
j
2φ(2jx− k)

∣∣
[0,1]

, 0 ≤ k ≤ 2j − 2N + 1

and 2
j
2φβ

2j−2N+2
(2j(1− x)), ..., 2

j
2φβ

2j−1
(2j(1− x)),

is an orthonormal basis of Vj[0, 1]

It is easy to see that the space Vj contains the orthonormal system φj,k|[0,1], 0 ≤

k ≤ 2j−2N+1, and we add boundaries functions near 0 and 1 from the collections

2
j
2φα

−2N+2(2
jx), ..., 2

j
2φα

−1(2
jx) and 2

j
2φβ

2j−2N+2
(2j(1 − x)), ..., 2

j
2φβ

2j−1
(2j(1 − x)),

respectively.

The construction of an orthonormal wavelet basis on [0, 1] follows thus the

classical scheme of multiresolution analysis. One has a nested sequence Vj[0, 1] of

subspaces of L2[0, 1], j ≥ j0. The union of the Vj[0, 1] is dense in L2[0, 1] just as

the union of the Vj(R) is dense in L2(R). One denotes by Wj[0, 1] the orthogonal
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complement of Vj+1[0, 1] in Vj[0, 1], that is

Wj[0, 1] = (Vj+1[0, 1]) ∩ (Vj[0, 1])
⊥ .

Observe that Wj[0, 1] is not the space of restrictions of functions in Wj to [0, 1]

thus the next lemma will be useful in what follows.

Now set Vj[0,∞) = span{φ
j,k

∣∣
[0,∞)

: φ
j,k

∈ Vj(R)}. In the following we

establish the second goal of this section, which is to construct a wavelet basis of

the space Wj([0, 1]). For this purpose, we need some lemmas.

Lemma 2.11. The functions ψ(x − k)
∣∣
[0,∞)

,−2N + 2 ≤ k ≤ −N + 1, belong to

V0[0,∞).

Proof. See Appendix C.

The following lemma is an almost immediate consequence of the previous

lemma by changing variables.

Lemma 2.12. The functions ψ(2jx−k)|[0,1],−2N +2 ≤ k ≤ −N or 2j −N +1 ≤

k ≤ 2j − 1, belong to Vj[0, 1].

Proof. See Appendix C.

Applying Theorem 2.9 and Lemma 2.12, we reach the following important

theorem.

Theorem 2.13. For each j ≥ j0 a basis of Vj+1[0, 1] is formed by {φj,k|[0,1],−2N+

2 ≤ k ≤ 2j − 1} ∪ {ψj,k|[0,1],−N + 1 ≤ k ≤ 2j −N}.

Proof. See Appendix C.

We now show that each ψj,k|[0,1],−N + 1 ≤ k ≤ 2j − N is orthogonal to

φj,k|[0,1],−2N + 2 ≤ k ≤ 2j − 1 so that ψj,k|[0,1],−N + 1 ≤ k ≤ 2j − N forms
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elements of the space Wj([0, 1]).

Lemma 2.12 tells us that the restrictions of the ψ
j,k

to [0, 1] belong to Vj[0, 1]

if −2N + 2 ≤ k ≤ −N or 2j −N + 1 ≤ k ≤ 2j − 1. When −N + 1 ≤ k ≤ −1 or

2j − 2N + 2 ≤ k ≤ 2j − N , the restrictions of the functions ψ
j,k

certainly don’t

belong to Vj[0, 1], but are not orthogonal to Vj[0, 1] either.

In any case, one has

L2[0, 1] = Vj0 [0, 1]⊕Wj0 [0, 1]⊕Wj0+1[0, 1]⊕ ... (2.22)

We already have an orthonormal basis of Vj0 [0, 1] by Proposition 2.10.

Now, let −N + 1 ≤ k ≤ 2j −N.

We distinguish the cases −N+1 ≤ k ≤ −1, 0 ≤ k ≤ 2j−2N+1, and 2j−2N+2 ≤

k ≤ 2j −N as follows.

Case I: If −N + 1 ≤ k ≤ −1, then supp(ψ
j,k

∣∣
[0,1]

) ⊂ [−1
4
, 1
2
]. We have

i) ψ
j,k

∣∣
[0,1]

are orthogonal to φ
j,l

∣∣
[0,1]

, 0 ≤ l ≤ 2j − 1, in fact supp(φ
j,l

∣∣
[0,1]

) ⊂

[0, 5
4
] so that supp(ψ

j,k
φj,l

∣∣
[0,1]

) ⊂ [0, 1
2
] and hence∫ 1

0

ψ
j,k
(x)φ

j,l
(x) dx =

∫ ∞

−∞
ψ

j,k
(x)φ

j,l
(x) dx = 0

as φ
j,l

∈ Vj(R) and ψj,l
∈ Wj(R).

ii) Similarly, ψ
j,k

∣∣
[0,1]

are orthogonal to ψ
j,l

∣∣
[0,1]

, 0 ≤ l ≤ 2j − N , in fact

supp(ψ
j,l

∣∣
[0,1]

) ⊂ [0, 1] so that supp(ψ
j,k
ψj,l

∣∣
[0,1]

) ⊂ [0, 1
2
] and hence∫ 1

0

ψ
j,k
(x)ψ

j,l
(x) dx =

∫ ∞

−∞
ψ

j,k
(x)ψ

j,l
(x) dx = 0

as ψ
j,l

and ψ
j,l

belong to Wj(R) and k ̸= l.

iii) What the functions ψ
j,k

still look is orthogonality to the N−1 functions

2
j
2φα

−2N+2(2
jx), ..., 2

j
2φα

−1(2
jx)
∣∣
[0,1]

. Since these N − 1 functions form an orthogo-

nal sequence, the corrections which make the ψ
j,l
,−N+ ≤ k ≤ −1 orthogonal to

Vj[0, 1] are obvious, by Gram-Schmidt process. One thus obtains N − 1 functions



 

 

 

 

 

 

 

 

31

2
j
2h−N+1(2

jx), ..., 2
j
2h−1(2

jx) where h−N+1, ..., h−1 are independent of j.

By i) and iii) we have that ψ
j,k

∣∣
[0,1]

are orthogonal to Vj[0, 1] and ii) says that

ψj,k

∣∣
[0,1]

for 0 ≤ k ≤ 2j −N , are mutually orthogonal it suffices to make the func-

tions 2
j
2h−N+1(2

jx), ..., 2
j
2h−1(2

jx) mutually orthogonal, by means of the Gram-

Schmidt process, to obtain the N−1 wavelets clustered at 0 namely 2
j
2ψα

−N+1(2
jx),

..., 2
j
2ψα

−1(2
jx)

Case II: If 0 ≤ k ≤ 2j − 2N + 1, suppψ
j,k

⊂ [0, 1], then obviously ψ
j,k

∣∣
[0,1]

belong

to the orthogonal complement of Vj[0, 1] in Vj+1[0, 1], and moreover ψ
j,k

∣∣
[0,1]

are

orthogonal already.

Case III: If 2j − 2N + 2 ≤ k ≤ 2j −N , suppψ
j,k

⊂ [1
2
, 5
4
]. Then we have

i) ψ
j,k

∣∣
[0,1]

are orthogonal to φ
j,l

∣∣
[0,1]

,−2N + 2 ≤ l ≤ 2j − 2N + 1, in fact

suppφ
j,l

∣∣
[0,1]

⊂ [−1
2
, 1] so that suppψj,kφj,l

∣∣
[0,1]

⊂ [1
2
, 1] and hence∫ 1

0

ψ
j,k
(x)φ

j,l
(x) dx =

∫ ∞

−∞
ψ

j,k
(x)φ

j,l
(x) dx = 0

as φ
j,l

∈ Vj(R) and ψj,l
∈ Wj(R).

ii) Similarly, ψ
j,k

∣∣
[0,1]

are orthogonal to ψ
j,l

∣∣
[0,1]

,−2N +2 ≤ l ≤ 2j −2N +1,

in fact suppψj,kψj,l

∣∣
[0,1]

⊂ [1
2
, 1] and hence∫ 1

0

ψ
j,k
(x)ψ

j,l
(x) dx =

∫ ∞

−∞
ψ

j,k
(x)ψ

j,l
(x) dx = 0

as ψ
j,l

and ψ
j,l

belong to Wj(R) and k ̸= l.

iii) What the functions ψ
j,k

∣∣
[0,1]

still look is orthogonality to the N−1 func-

tions 2
j
2φβ

2j−2N+2
(2j(1 − x)), ..., 2

j
2φβ

2j−1
(2j(1 − x)). Since these N − 1 functions

form an orthogonal sequence, the corrections which make the ψ
j,k

∣∣
[0,1]

orthogonal

to Vj[0, 1] are obvious, by Gram-Schmidt process. One thus obtainsN−1 functions

2
j
2 h̃2j−2N+2(2

j(1−x)), ..., 2 j
2 h̃2j−1(2

j(1−x)) where h̃2j−2N+2, ..., h̃2j−1 are indepen-

dent of j.

By i) and iii) we have that ψ
j,k

∣∣
[0,1]

are orthogonal to Vj[0, 1], and ii) says
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that ψj,k

∣∣
[0,1]

for −N + 1 ≤ l ≤ 2j − 2N + 1, are mutually orthogonal it suffices

to make the function in 2
j
2 h̃2j−2N+2(2

j(1− x)), ..., 2
j
2 h̃2j−1(2

j(1− x)) mutually or-

thogonal, by means of the Gram-Schmidt process, to obtain the N − 1 wavelets

clustered at 1, namely 2
j
2ψβ

2j−2N+2
(2j(1− x)), ..., 2

j
2ψβ

2j−N
(2j(1− x)).

We have obtained the following theorem concluding the construction of a wavelet

basis of L2[0, 1].

Theorem 2.14. Let Vj(R) be multiresolution analysis on R with scaling function

φ and associated wavelet ψ. Let j0 ∈ Z be such that 2j0 ≥ 4N − 4. The following

collection

2
j0
2 φα

−2N+2(2
j0x), ..., 2

j0
2 φα

−1(2
j0x),

φ
j0,k

(x)
∣∣
[0,1]

, 0 ≤ k ≤ 2j0 − 2N + 1,

2
j0
2 φβ

2j0−2N+2
(2j0(1− x)), ..., 2

j0
2 φβ

2j0−1
(2j0(1− x))

2
j
2ψα

−N+1(2
jx), ..., 2

j
2ψα

−1(2
jx),

ψ
j,k
(x)
∣∣
[0,1]

, 0 ≤ k ≤ 2j − 2N + 1,

2
j
2ψβ

2j−2N+2
(2j(1− x)), ..., 2

j
2ψβ

2j−N
(2j(1− x)), j ≥ j0

is an orthonormal basis of L2[0, 1].

Remark 2.8. Recall the construction of the boundary wavelets using the Gram-

Schmidt process. This construction gives, for j ≥ j0 and x ∈ [0, 1],

2
j
2ψα

−N+1
(2jx) = C−N+1ψj,−N+1

(xi)

2
j
2ψα

−N+2
(2jx) = C1

−N+2ψj,−N+2(x) + C2
−N+1ψj,−N+1

(x)

...

2
j
2ψα

−1(2
jx) = C1

−1ψj,−1(x) + C2
−2ψj,−2(x) + ...+ CN−1

−N+1ψj,−N+1(x)
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and

2
j
2ψβ

2j−2N+2
(2j(1− x)) = C2j−2N+2ψj,2j−2N+2

(xi)

2
j
2ψβ

2j−2N+3
(2j(1− x)) = C1

2j−2N+3ψj,2j−2N+3(x) + C2
2j−2N+2ψj,2j−2N+2

(x)

...

2
j
2ψβ

2j−N
(2j(1− x)) = C1

2j−Nψj,2j−N(x) + C2
2j−N−1ψj,2j−N−1(x) + ...

+ CN−1
2j−2N+2

ψj,2j−2N+2(x)

Remark 2.9. If {fj}j∈J is an orthonormal basis of L2(I), then

(1) elementary tensors, {fj ⊗ fj̃}j,j̃∈J = {fjfj̃}j,j̃∈J form an orthonormal

basis of L2(I)⊗ L2(I) ∼= L2(I2).

(2) From (1) and induction we obtain that, for any multi-index set Jd =

{(ji, ..., jd) : ji ∈ J}, the collection {
d∏

i=1

fji}(j1,...,jd)∈Jd is an orthonormal basis of

L2(Id).



 

 

 

 

 

 

 

 

CHAPTER III

RANDOM FIELDS

In this chapter, we introduce random fields and related notation. We also

review the concept of correlation function and covariance function of random fields

at different sample paths and then discuss some special classes of random fields

with continuous sample paths. Furthermore, we review the power spectral density

function of a random field. For further details, see Childers (1997) and Grimmett

and Stirzaker (1992). Finally, we discuss the wavelet transform of random fields,

additional details can be found in Cambanis and Houdre (1995).

3.1 Random Fields

A random fieldX(t, ω) is a function of two variables t and ω where t is called

the coordinate position (or time for t ∈ R+) variable in standard terminology, and

ω is the outcome variable which has several meanings according to the application

under cosideration.

Definition 3.1. (Random Field)

Let (Ω,F , P ) be a probability (sample) space, T a parameter set and S a Borel

subset of R or C. A family {Xt}t∈T where Xt : Ω → S is an F -measurable random

variable for all t ∈ T , is called a random field.

If T = R or T = [0,∞), the random field is usually called a stochastic

process or random process. The term random field is usually used to stress that

the dimension of the coordinate space is higher than one.
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In this thesis we consider random fields whose coordinate space is T = Rd,

that is Xt is a real or complex random variable for any t ∈ Rd, and require that

X(t, ω) is measurable on Rd × Ω.

Remark 3.1. We can look at a random field in different ways.

(1) Fix t ∈ T . Then the map ω 7−→ Xt(ω) is a random variable, as in

the definition, it is a function on the sample space. Thus, a random field is an

ensemble of random variables over some coordinate space T .

(2) Fix ω ∈ Ω. Then the map t 7−→ Xt(ω) is a deterministic function from

T to S, usually called the sample path of X at ω.

Definition 3.2. (Expected Value, Variance and Covariance Values)

Let (Ω,F , P ) be a probability space and X,Y real or complex random variables.

The expected value of X ∈ L1(Ω) is defined by

E[X] =

∫
Ω

X(ω) dP (ω)

The variance of X ∈ L2(Ω) is defined by

Var[X] = E[|X − E[X]|2] =
∫
Ω

|X(ω)− E[X]|2 dP (ω) = E[|X|2]− |E[X]|2.

The covariance of X, Y ∈ L2(Ω) is defined by

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])].

Variance and covariance possess the following properties:

1) Cov[X, Y ] = E[XY ]− E[X]E[Y ]

2) Cov[X, Y ] = Cov[Y,X]

3) Cov[aX + bY, Z] = aCov[X,Z] + bCov[Y, Z] for all scalars a, b

4) Var[X + Y ] = Var[X] + Var[Y ] + 2ReCov[X,Y ].
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Definition 3.3. (Second Order Random Field)

A random field {Xt}t∈Rd is said to be a second order random field if E[|Xt|2] <∞

for all t ∈ Rd.

Definition 3.4. (Distribution Function)

Let (Ω,F , P ) be a probability space, and X a vector valued random variable,

X : Ω → Rd. Set µ
X
(A) = P{ω ∈ Ω : X(ω) ∈ A} = P (X−1(A)) for A ∈ B(Rd).

Then µ
X
is a probability measure on B(Rd), and∫

Rd

h dµ
X
=

∫
Ω

h ◦X dP (ω) for all h : Rd −→ R (3.1)

whenever one of these integrals is defined. µ
X
is called the distribution of X. More

details can be found in Capiński and Marek (2004).

Define

F
X
(λ) = µ

X
((−∞, λ])

= µ
X
((−∞, λ1]× ...× (−∞, λd]) for all λ = (λ1, ..., λd) ∈ Rd.

Then F
X
: Rd −→ [0, 1] is called the distribution function of X.

Definition 3.5. (Density Function)

Let (Ω,F , P ) be a probability space, and X : Ω −→ Rd a random variable with

distribution µ
X
. Suppose that µ

X
is absolutely continuous with respect to the

Lebesgue measure λ. Then by Radon Nikodym’s theorem, there exists a nonneg-

ative integrable function f
X
such that

µ
X
(A) =

∫
A

f
X
(x) dλ(x) for all A ∈ B(Rd). (3.2)

If F
X
is the distribution function of X, we have for t = (t1, t2, ..., td) ∈ Rd,

F
X
(t) =

∫
(−∞,t1]

...

∫
(−∞,td]

f
X
(x1, ..., xd) dλ(x1)...dλ(xd),



 

 

 

 

 

 

 

 

37

and f = f
X
is called the (joint) density function of µ

X
. One can show that there

is a one-to-one correspondence between distribution functions F
X
and distribution

measures µ
X
.

Example 3.1. (Normal Distribution)

Let us start with parameters m ∈ R and s > 0, and consider the density function

f : R −→ R+ defined by

f(t) =
1√
2πs

e−
(t−m)2

2s2 .

Set F (t) =

∫ t

−∞
f(x) dx; then F is a distribution function, and determines a

distribution µ by µ(−∞, t] = F (t). Using (3.1) and (3.2) one obtains that any

random variable X whose distribution function is of this type will have mean m

and variance s2; we therefore call µ the normal or Gaussian distribution with mean

m and variance s2, and write ”X is N(m, s2)”.

Definition 3.6. (Identically Distributed)

Let X and Y be random variables on probability spaces (Ω,F , P ) and (Ω̃, F̃ , P̃ ),

respectively. If µ
X

= µ
Y
, then X and Y are said to be identically distributed,

written X
d
= Y .

There are various ways of interpreting the statement Xn → X as n → ∞,

some can be found in the next definition.

Definition 3.7. (Modes of Convergence of Random Variables)

Let X1, X2, ... and X be random variables on some probability space (Ω,F , P ).

We say that:

(a) Xn converges to X almost surely, written as Xn
a.s.→ X,

if {ω ∈ Ω : Xn(ω) → X(ω) as n→ ∞} is an event whose probability is one.

(b) Xn converges to X in rth mean, where r ≥ 1, written as Xn
r→ X,

if E[|X|r], E[|Xn|r] <∞ for all n and E[|Xn −X|r] → 0 as n→ ∞.
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Remark 3.2. Minkowski’s inequality states that

∥X∥r = (E[|X|r])
1
r

defines a norm on the collection of random variables with finite rth mean, for any

value of r ≥ 1. Of most use are the values r = 1 and r = 2.

If Xn
1→ X we say that Xn converges to X in mean,

and

if Xn
2→ X we say that Xn converges to X in mean square.

Definition 3.8. (Independent Random Variables)

A collection of random variables {Xn}Nn=1 on a probability space (Ω,F , P ) is called

independent, if for any k, 1 ≤ k ≤ N , and any choice of Borel sets Bn1 , ..., Bnk

P
(
X−1

n1
(Bn1) ∩ ... ∩X−1

nk
(Bnk

)
)
= P

(
X−1

n1
(Bn1)

)
...P

(
X−1

nk
(Bnk

)
)
.

Remark 3.3. Let X1, X2 be two independent vector valued random variables

on (Ω,F , P ), say X1 : Ω −→ Rd, X2 : Ω −→ Rl. Consider the product of

the measurable spaces (Rd,B(Rd)) and (Rl,B(Rl)), denoted by (Rd ×Rl,B(Rd)⊗

B(Rl)). Next, consider X : Ω → Rd+l given by X(ω) = (X1(ω), X2(ω)). It is easy

to see that X is a random variable, that is B(Rd)⊗B(Rl) = B(Rd+l)-measurable.

Let µ
X1
, µ

X2
, µ

X
denote the distributions of X1, X2 and X respectively.

Then X1 and X2 are independent

if and only if P (X−1
1 (B1) ∩X−1

2 (B2)) = P (X−1
1 (B1))P (X

−1
2 (B2))

if and only if P (X−1(B1 ×B2)) = P (X−1
1 (B1))P (X

−1
2 (B2))

if and only if µ
X
(B1 ×B2) = µ

X1
(B1)µX2

(B2),

for all B1 ∈ B(Rd), B2 ∈ B(Rl). That is, X1 and X2 are independent if and only if

µX = µX1 × µX2 .

Next, let f(x) : Rd −→ R, g(y) : Rl −→ R be Borel functions and consider

the Borel function f(x)g(y) : Rd+l → R. Suppose that either f ≥ 0, g ≥ 0
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or f(X1), g(X2) ∈ L1(Ω). Then we can see that f(X1)g(X2) ≥ 0, respectively

f(X1)g(X2) ∈ L1(Ω). In fact, by Tonelli’s Theorem and (3.1),

E[|f(X1)g(X2)|] =
∫
Rd×Rl

|f(x1)g(x2)| dµX1
×µX2

(x1, x2)

=

∫
Rd

∫
Rl

|f(x1)||g(x2)| dµX1
(x1)dµX2

(x2)

= E[|f(X1)|]E[|g(X2)|].

which shows that f(X1)g(X2) ∈ L1(Ω) provided that f(X1), g(x2) ∈ L1(Ω). Then

we have have by Fubini’s Theorem, in a similar way,

E[f(X1)g(X2)] =

∫
Rd

∫
Rl

f(x1)g(x2) dµX1
(x1) dµX2

(x2) = E[f(X1)]E[g(X2)].

We summarize as following result:

Theorem 3.1. Let X1 and X2 be independent random variables on (Ω,F , P ), f

and g Borel functions. If f ≥ 0, g ≥ 0 or f(X1), g(X2) ∈ L1(Ω), then f(X)g(Y ) ≥

0, respectively f(X)g(Y ) ∈ L1(Ω) and E[f(X1)g(X2)] = E[f(X1)]E[g(X2)].

The following result is an immediate consequence of the above theorem by

choosing f(x1) = x1 and g(x2) = x2.

Corollary 3.2. Let X1, X2 be independent random variables Xi : Ω → R such

that X1, X2 ∈ L1(Ω). Then X1X2 ∈ L1(Ω) and E[X1X2] = E[X1]E[X2].

3.2 The Correlation and Covariance Functions

In many applications of random fields, it is necessary to consider the rela-

tionships between sample paths starting at different positions. To obtain useful

tools for analysing a pair of random variables, we recall that the correlation and

the covariance of a pair of random variables is random at different positions t

and t + τ . To use this information to understand a pair of random variables, we
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therefore work with the correlation and covariance of the random variables Xt and

Xt+τ .

Definition 3.9. (Auto-correlation and Auto-covariance Functions)

Let {Xt}t∈Rd be a random field such that Xt ∈ L2(Ω) for all t ∈ Rd.

The auto-correlation of Xt is defined by

R
X
(t, t+ τ) = E[XtXt+τ ] for t, τ ∈ Rd. (3.3)

The auto-covariance of Xt is defined by

C
X
(t, t+ τ) = E[(Xt − E[Xt]) (Xt+τ − E[Xt+τ ])] for t, τ ∈ Rd. (3.4)

The auto-correlation and auto-covariance functions of a random field are

related to each other in the following way

C
X
(t, t+ τ) = R

X
(t, t+ τ)− E[Xt]E[Xt+τ ]. (3.5)

This property can be easily derived from equations (3.3) and (3.4). We can see

that for a zero mean random field, the auto-covariance function coincides with the

auto-correlation function.

So far we have considered the relationship between two sample paths of the

same random field at different positions. We now address a similar relationship

between two sample paths of different random field at different positions.

Definition 3.10. (The Cross-Correlation Function)

Let {Xt}t∈Rd and {Yt}t∈Rd be random fields such that Xt, Yt ∈ L2(Ω) for all t ∈ Rd.

The cross-correlation function of Xt and Yt is defined by

R
XY

(t, t+ τ) = E[XtYt+τ ]. (3.6)

The cross-covariance is defined as

C
XY

(t, t+ τ) = E
[
(Xt − E[Xt]) (Yt+τ − E[Yt+τ ])

]
. (3.7)
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The cross-correlation and cross-covariance functions of two random fields

are related to each other in the following way, see Childers (1999) for example.

C
XY

(t, t+ τ) = R
XY

(t, t+ τ)− E[Xt]E[Yt+τ ]. (3.8)

This property can be easily derived from equations (3.6) and (3.7).

3.3 Classification of Random Fields

The mean and correlation functions can provide information about the spa-

tial structure of a random field. In this section we examine three particular classes

of stationary random fields with continuous sample paths.

Definition 3.11. (Strongly Stationary Random Field)

A random field {Xt}t∈Rd is called strongly (or narrow sense or first-order) station-

ary if the families of random variables {Xt1 , Xt2 , ..., Xtn} and {Xt1+h, ..., Xtn+h}

for all n ∈ N for all t1, t2, ..., tn ∈ Rd and h ∈ Rd, have the same joint distribution.

In particular, mean, variance, auto-correlation etc. are independent of t.

This motivates the following definition:

Definition 3.12. (Weakly Stationary Random Field)

A random field {Xt}t∈Rd is called weakly (or wide sense or second order) stationary

if E[Xt] = m, where m is a constant for all t ∈ Rd and

R
X
(t, t+ τ) = R

X
(τ) for all t, τ ∈ Rd. (3.9)

All strongly stationary random fields are also weakly stationary, provided

the mean and auto-correlation functions exist. We say that if a random field is not

weakly stationary, then it is non-stationary. The following definition introduces

interesting examples of non-stationary random fields.
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Definition 3.13. (Strongly / Weakly Stationary Increments)

A random field {Xt}t∈Rd is said to have strongly stationary increments if the

probability distribution of any increment ∆X(t;h) = Xt+h−Xt depends only on h

for all h ∈ Rd , to possess weakly stationary increments if for all t, E[∆X(t;h)]

depends on h only, and R∆X(t;h1)∆X(t+τ ;h2) = E[(Xt+h1 − Xt)(Xt+τ+h2 − Xt+τ )]

depends only on h1, h2 and τ , for all h1, h2, τ ∈ Rd.

For example, a fractional Brownian field {BH
t }t∈Rd with Hurst index 0 <

H < 1 (for a precise definition, see section 3.5) is a random field with zero mean

and autocorrelation

R
BH
t

(t, t+ τ) =
VH
2

[
∥t∥2H + ∥t+ τ∥2H − ∥τ∥2H

]
(3.10)

where VH = E[(BH
1 )2]. We can see that the fractional Brownian field is not a

stationary random field because the auto-correlation function R
BH
t

(t, t+τ) depends

not only on ∥τ∥ alone. We can however, show that a fractional Brownian field is a

stationary increments random field, see more details in Appendix F. In a similar

way, one defines:

Definition 3.14. (Jointly Strongly Stationary Random Field)

Two random fields, {Xt}t∈Rd and {Yt}t∈Rd , are jointly strongly stationary if the

families {Xt1 , Xt2 , ..., Xtn} and {Yt1+h, Yt2+h, ..., Ytn+h}, for all n ∈ N, t1, t2, ..., tn ∈

Rd and h ∈ Rd, have the same joint distribution.

Note that if two random fields are jointly strongly stationary, then each is

individually strongly stationary.

Definition 3.15. (Jointly Weakly Stationary Random Field)

Two random fields, {Xt}t∈Rd and {Yt}t∈Rd , are jointly weakly stationary if they

satisfy the following relationships:
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(1) Both Xt and Yt are individually weakly stationary with identical means.

(2) R
XY

(t, t+ τ) = R
XY

(τ) for all t ∈ Rd and τ ∈ Rd.

One can establish that if two random fields are jointly strongly stationary,

then they are jointly weakly stationary. But, the converse is not true. Also

by definition, if two random fields are jointly weakly stationary, then they are

individually weakly stationary. However, the converse is not true in general.

3.4 The Power Spectral Density Function

The class of weakly stationary random fields is important as the autocor-

relation function R
X
(t, t + τ) is simply a function of the position difference τ ,

R
X
(t, t+ τ) = R

X
(τ). Next we remark on properties of the auto-correlation func-

tion R
X
(τ) of a weakly stationary random field which will be required later, for

an application of Bochner’s Theorem.

Remark 3.4. Let {Xt}t∈Rd be a weakly stationary random field. The following

properties can be shown to be true :

(a) R
X
(−τ) = R

X
(τ). Simply apply definition 3.9 and equation (3.3) and

change the variable t to t− τ .

(b) |R
X
(τ)| ≤ R

X
(0) = E[|Xt|2]. In fact, using Hölder’s inequalityE[|XY |]2

≤ E[|X|2]E[|Y |2], we have |R
X
(τ)|2 ≤ E[|XtXt+τ |]2 ≤ E[|X|2t ]E[|Xt+τ |2] = R2

X
(0).

(c) By equation (3.5) we have R
X
(τ) = C

X
(τ) + |E[Xt]|2.

(d) R
X
(τ) is a positive definite function. In fact, for {zi}ni=1 ⊂ C,

n∑
j,k=1

zjzkRX
(τk − τj) =

n∑
j,k=1

zjzkE[XtXt+τk−τj ] =
n∑

j,k=1

zjzkE[Xt+τjXt+τk ]

=
n∑

j,k=1

zjzk

(
Cov[Xt+τj , Xt+τk ] + E[Xt+τj ]E[Xt+τk ]

)
,
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that is

n∑
j,k=1

zjzkRX
(τk − τj) =

n∑
j,k=1

Cov[zjXt+τj , zkXt+τk ] +
n∑

j,k=1

zjzkE[Xt+τj ]E[Xt+τk ]

= Cov[
n∑

j=1

zjXt+τj ,
n∑

k=1

zkXt+τk ] +

∣∣∣∣∣
n∑

j=1

zjE[Xt+τj ]

∣∣∣∣∣
2

≥ 0.

Let {Xt}t∈Rd be a weakly stationary random field. By Remark 3.4 (b) and

(d), we may apply Bochner’s Theorem (Theorem 2.6), to obtain

R
X
(τ) =

∫
Rd

e−iτ ·λ dF
X
(λ) a.e. (3.11)

for some bounded Borel measure F
X
(λ), which is called spectral measure. Now

if the measure FX is absolutely continuous with regards to the Lebesgue mea-

sure, then we define the power spectral density S
X
(λ) as the generalized Fourier

transform as follows.

Definition 3.16. Let {Xt}t∈Rd be a weakly stationary random field with auto-

correlation function RX(τ). The power spectral density function SX(λ) is defined

by the generalised inverse Fourier transform and its generalized Fourier transform

as follows,

S
X
(λ) =

1

(2π)d

∫
Rd

eiτ ·λR
X
(τ) dτ. (3.12)

and

R
X
(τ) =

∫
Rd

e−iτ ·λS
X
(λ) dλ (3.13)

Thus, by (3.11) the power spectral density function is in fact a finite Borel

measure. However, if R
X
is integrable, then S

X
is a continuous, non-negative func-

tion.

The power spectral density function is known by several names, includ-

ing energy spectrum, spectral density, spectrum, and perhaps most commonly as

simply the power spectrum.
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Remark 3.5. The definition of the power spectral density function as above

is known as the Winner-Khintchine Theorem or the Einstein-Wiener-Khintchine

Theorem. We shall refer to this method of calculating the spectral density function

as the correlation method.

An alternative definition for the power spectral density function is arrived

at by noting the following. Assuming that the Fourier transform of the sample

paths of a random variable Xt exists over a range [−T, T ]d, then we have the

random variable

FT [Xt](ξ) =

∫
[−T,T ]d

X(t)e−iξ·t dt

where FT denotes the Fourier transform over the range [−T, T ]d.

The magnitude squared of this random variable is

|FT [Xt](ξ)|2 = FT [Xt](ξ)FT [Xt](ξ)

=

∫
[−T,T ]d

Xt1e
−iξ·t1 dt1

∫
[−T,T ]d

Xt2e
iξ·t2 dt2

=

∫
[−T,T ]d

∫
[−T,T ]d

Xt1Xt2e
iξ·(t2−t1) dt1dt2.

If we take the expectation and divide by (4πT )d, we have by Fubini’s Theorem

1

(4T )d
E
[
|FT [Xt](ξ)|2

]
=

1

(4πT )d
E

[∫
[−T,T ]d

∫
[−T,T ]d

Xt1Xt2e
iξ·(t2−t1) dt1dt2

]
=

1

(4πT )d

∫
[−T,T ]d

∫
[−T,T ]d

E
[
Xt1Xt2

]
eiξ·(t2−t1) dt1dt2

=
1

(4πT )d

∫
[−T,T ]d

∫
[−T,T ]d

R
X
(t2 − t1)e

iξ·(t2−t1) dt1dt2.

For each k = 1, 2, ..., d, if we let τ k = tk2 − tk1 and uk = tk1 + tk2,

then dtk1 dt
k
2 = (Jk)−1du dτ where Jk is the Jacobian which is

|Jk| =

∣∣∣∣∣∣∣
∂uk

∂tk1

∂uk

∂tk2

∂τk

∂tk1

∂τk

∂tk2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 1

−1 1

∣∣∣∣∣∣∣ = 2.
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Then we have

1

(4πT )d
E
[
|FT [Xt](ξ)|2

]
=

1

(4πT )d

∫
[−2T,2T ]d

(
1

2

)d ∫ 2T−|τ1|

−(2T−|τ1|)
...

∫ 2T−|τd|

−(2T−|τd|)
R

X
(τ)eiξ·τ du dτ

=
1

(8πT )d

∫
[−2T,2T ]d

R
X
(τ)eiξ·τ

d∏
i=1

∫ 2T−|τ i|

−(2T−|τ i|)
1 dui dτ

=
1

(8πT )d

∫
[−2T,2T ]d

R
X
(τ)eiξ·τ

d∏
i=1

(4T − 2|τ i|) dτ

=
1

(8πT )d

∫
[−2T,2T ]d

(4T )d
d∏

i=1

(1− |τ i|
2T

)R
X
(τ)eiξ·τ dτ

=
1

(2π)d

∫
[−2T,2T ]d

d∏
i=1

(1− |τ i|
2T

)R
X
(τ)eiξ·τ dτ.

If we take the limit as T goes to infinity, as for each i we have |τ i| ≤ 2T so that

0 ≤ 1− |τ i|
2T

≤ 1, then we have by the Dominated Convergence Theorem,

lim
T→∞

1

(4πT )d
E
[
|FT [Xt](ξ)|2

]
=

1

(2π)d

∫
Rd

R
X
(τ)eiξ·τ dτ = S

X
(ξ)

provided that the auto-correlation function R
X
(τ) is integrable and hence we are

led to an alternative definition for the power spectral density function, namely:

Definition 3.17. (Alternative Definition of the Power Spectral Density Function)

The power spectral density function can be defined as

S
X
(λ) = lim

T→∞

1

(4πT )d
E
[
|FT [Xt](λ)|2

]
This method of calculating the power spectral density function is called the direct

method and is equivalent to the correlation method.

Let {Xt}t∈Rd and {Yt}t∈Rd be jointly weakly stationary random fields. We

can now introduce the power cross spectral density Function in a similar way.

For every value of the argument τ , similar to Remark 3.4, the cross-correlation

function R
XY

(τ) has the following properties:
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(a) R
XY

(τ) = R
Y X

(−τ)

(b) |R
XY

(τ)| ≤ 1
2
[R

XX
(0) +R

Y Y
(0)]

(c) |R
XY

(τ)|2 ≤ R
XX

(0)R
Y Y

(0).

The power spectral density function for the auto-correlation has been defined. In

a similar manner we define the cross-spectral density function.

Definition 3.18. (The Power Cross Spectral Density Function)

If Xt and Yt are jointly weakly stationary random fields with respectively auto-

correlation R
X
(τ) and R

Y
(τ) and cross-correlation R

XY
(τ), then power cross spec-

tral density function is defined as the generalized Fourier transform of the cross-

correlation; that is

S
XY

(λ) =
1

(2π)d

∫
Rd

eiτ ·λR
XY

(τ) dτ

and

R
XY

(τ) =

∫
Rd

e−iτ ·λS
XY

(λ) dλ.

The term power cross-spectral density is often abbreviated to cross-spectral den-

sity.

Some properties of the cross-spectral density are:

(1) The cross-spectral density, S
XY

(λ), is not necessarily real, since R
XY

(τ)

is not necessarily even.

(2) S
XY

(λ) = S
Y X

(−λ) , S
XY

(λ) = S
XY

(−λ).

Indeed, since R
XY

(τ) = R
Y X

(−τ) we have

S
XY

(λ) =

∫
Rd

R
Y X

(−τ)e−iλ·τ dτ =τ 7→−τ

∫
Rd

R
Y X

(τ)e−i(−λ)·τ dτ = S
Y X

(−λ).

It is also true that

S
XY

(λ) =

∫
Rd

R
XY

(τ)eiλ·τ dτ = S
XY

(−λ)

and hence S
XY

(λ) = S
XY

(−λ) which is known as Hermitian symmetry.
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3.5 Fractional Brownian Field and Fractional Brownian

Sheet

In this section, we present the definition of fractional Brownian field. Fur-

ther definitions, details and important properties on Brownian fields can be found

in Appendix F, and on Brownian motion in Appendix E. Moreover, we review the

definition of a fractional Brownian sheet, in particular, a Brownian sheet which

we will use in our main results of Section 6.2 and 6.3.

Definition 3.19. (Fractional Brownian Field)

For a given real value H ∈ (0, 1), a fractional Brownian field {BH
t }t∈Rd with

Hurst index H is a Gaussian random field (see Appendix D) with zero mean and

covariance function given by

Cov[BH
s , B

H
t ] =

VH
2

(
∥s∥2H + ∥t∥2H − ∥s− t∥2H

)
(3.14)

where VH = E[(BH
1 )2], for s, t ∈ Rd.

In case d = 1, {BH
t }t∈R is called fractional Brownian motion. In case d = 1 and

H = 1
2
, {B

1
2
t }t∈R is Brownian motion provided that sample paths are continuous,

as in the next definition.

Definition 3.20. (Brownian Motion)

A stochastic process {Bt}t≥0 is called Brownian motion, if

(B1) the sample paths are continuous, that is for each ω ∈ Ω, t 7−→ Bt(ω)

is continuous,

(B2) the increments of Bt are independent, that is for any finite set of times

0 < t1 < t2 < ... < tn the random variables Bt1 , Bt2 −Bt1 , ..., Btn −Btn−1 are inde-

pendent,

(B3) for any 0 ≤ s < t <∞, the increment Bt −Bs has Gaussian distribu-
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tion with zero mean and variance t− s, that is Bt −Bs is N(0, t− s).

If in addition, B0 = 0 then {Bt}t≥0 is called standard Brownian motion.

Remark 3.6. If {Bt}t≥0 is a standard Brownian motion, then it is a Gaussian

process with zero mean and Cov[Bs, Bt] = min(s, t); see further details in Theorem

E.1 and for a converse, see Lemma E.2 in Appendix E.

Definition 3.21. (Fractional Brownian Sheet)

For a given vector H = (H1, H2, ..., Hd) ∈ (0, 1)d, a fractional Brownian sheet

{BH
t }t∈Rd with Hurst index H is a real-valued, Gaussian field with zero mean and

covariance function given by

Cov[BH
s , B

H
t ] =

d∏
i=1

1

2

(
|si|2Hi + |ti|2Hi − |si − ti|2Hi

)
(3.15)

where s = (s1, ....sd), t = (t1, ..., td) ∈ Rd.

Remark 3.7. In case Hi =
1
2
for all i, {BH

t }t∈Rd is called a Brownian sheet and

we have

Cov[Bs, Bt] =
d∏

i=1

1

2
(|si|+ |ti| − |si − ti|) .

Moreover, for {BH
t }t∈[0,∞)d in case Hi =

1
2
for all i, we can see that

Cov[Bs, Bt] =
d∏

i=1

min(si, ti).

3.6 Wavelet Transform of Random Fields

Let H be a matrix group and φ a real or complex valued mother wavelet

function. For each a ∈ H and b ∈ Rd, following the Definition 2.10, the continuous

wavelet transform of a second order random field {Xt(ω)}t∈Rd is defined by

CW a
X
(b, ω) = | det a|−

1
2

∫
Rd

Xu(ω)φ(a−1(u− b)) du (3.16)

provided this integral exists with probability one.
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Remark 3.8. We can see that, if {Xt}t∈Rd such that E[|Xt|] is bounded, then the

integral (3.16) exists with probability one. Indeed, formally

E[|CW a
X
(b, ω)|] = E

[∣∣∣∣∫
Rd

| det a|−
1
2Xu(ω)φ(a−1(u− b)) du

∣∣∣∣]
≤ | det a|−

1
2E

[∫
Rd

|Xu(ω)|
∣∣∣φ(a−1(u− b))

∣∣∣ du] (3.17)

By Fubini’s Theorem we have

E[|CW a
X
(b, ω)|] ≤ | det a|−

1
2

∫
Rd

E [|Xu(ω)|]
∣∣∣φ(a−1(u− b))

∣∣∣ du.
Since {Xt}t∈Rd has constant mean we get that

E[|CW a
X
(b, ω)|] ≤ | det a|

1
2E [|Xu(ω)|] ∥φ∥1 <∞.

Next, consider

E
[
|CW a

X
(b, ω)|2

]
= E

[
|CW a

X
(b, ω)CW a

X
(b, ω)|

]
≤ E

[∫
Rd

∫
Rd

| det a|−1|Xξ(ω)Xη(ω)||φ(a−1(ξ − b))φ(a−1(η − b))| dξ dη
]
.

Since E||Xt|2] < ∞ (as {Xt}t∈Rd is a second order random field), we have by

Hölder’s inequality,

E
[
|CW a

X
(b, ω)|2

]
≤ | det a|−1

∫
Rd

∫
Rd

E[|Xξ(ω)Xη(ω)|]|φ(a−1(ξ − b))φ(a−1(η − b))| dξ dη

≤ | det a|−1

∫
Rd

∫
Rd

(
E[|Xξ|2]

) 1
2
(
E[|Xη|2]

) 1
2 |φ(a−1(ξ − b))φ(a−1(η − b))| dξ dη

= | det a|−1

∫
Rd

(
E[|Xξ|2]

) 1
2 |φ(a−1(ξ − b))| dξ

∫
Rd

(
E[|Xη|2]

) 1
2 |φ(a−1(η − b))| dη

= | det a|−1

∣∣∣∣∫
Rd

(
E[|Xξ|2]

) 1
2 |φ(a−1(ξ − b))| dξ

∣∣∣∣2 .
We have E

[
|CW a

X
(b, ω)|2

]
<∞ under each of the following conditions:

(C1) If E[

∫
Rd

|Xt(ω)|2 dt] < ∞ and φ ∈ L2(Rd), then by the Cauchy-
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Schwartz inequality;

E
[
|CW a

X
(b, ω)|2

]
≤ | det a|−1

[∫
Rd

(
E[|Xξ|2]

) 1
2 |φ(a−1(ξ − b))| dξ

]2
≤ | det a|−1

∫
Rd

E[|Xξ|2] dξ
∫
Rd

|φ(a−1(ξ − b))|2 dξ

= | det a|−1E

[∫
Rd

|Xξ|2 dξ
] ∫

Rd

|φ(a−1(ξ − b))|2 dξ <∞.

(C2) If E[|Xt|2] ≤ M for some M < ∞ and all t, i.e. Xt is bounded in

square mean, and φ ∈ L1(Rd) we have

E
[
|CW a

X
(b, ω)|2

]
≤ | det a|−1

[∫
Rd

(
E[|Xξ|2]

) 1
2 |φ(a−1(ξ − b))| dξ

]2
≤ | det a|−1

[∫
Rd

(M)
1
2 |φ(a−1(ξ − b))| dξ

]2
= | det a|M∥φ∥21 <∞.

(C3) If E[|Xt|2] is bounded on compact subsets of Rd and φ has compact

support and is integrable, we have

E[|CW a
X
(b, ω)|2] ≤ | det a|−1

[∫
Rd

(
E[|Xξ|2]

) 1
2 |φ(a−1(ξ − b))| dξ

]2
<∞.

(C4) If E[|Xt|2] ≤ M
[
+∥t∥2

]θ
for some θ > 0 and

[
1 + ∥t∥2

] θ
2 φ(x) ∈

L1(R), then modify (C2) we also have E
[
|CW a

X
(b, ω)|2

]
<∞.

In all three cases, as 3.17 is finite, for all a and b, the wavelet transform 3.16 is

defined.

Remark 3.9. The continuous wavelet transform of a random field {Xt(ω)}t∈Rd

is a new random (position-scale) field {CW a
X
(b, ω)}a∈H,b∈Rd provided the path in-

tegral is defined with probability one. The continuous wavelet transform at scale

a ∈ H is the random (position) field {CW a
X
(b, ω)}b∈Rd which is the a-section of the

wavelet transform {CW a
X
(b, ω)}a∈H,b∈Rd . As such the output {CW a

X(b)}b∈Rd inher-

its certain features of the input Xt and here we focus primarily on how features of
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the input Xt may yield appropriate properties of the output, at fixed scale or at

different scales.

In this thesis, we assume throughout that condition (C2), (C3) or (C4) is

satisfied, so that E[|CW a
X
(b, ω)|2] < M < ∞ for all b. Then for fixed a ∈ H, the

auto-correlation of {CW a
X
(b, ω)}b∈Rd exists and is given by

R
CWa

X
(τ) = E

[
CW a

X
(b)CW a

X
(b+ τ)

]
(3.18)

and for fixed a1, a2 ∈ H, the cross-correlation of {CW a1
X
(b)}b∈Rd and {CW a2

X
(b)}b∈Rd

exists, and is given by

R
CW

a1
X

CW
a2
X

(τ) = E
[
CW a1

X
(b)CW a2

X
(b+ τ)

]
. (3.19)

This assumption will allow us to apply Fubini’s Theorem when computing

E[CW a
X(b)], as

E[|CW a
X(b)|] ≤ E

[∫
Rd

| det a|−
1
2 |Xu||φ(a−1(u− b))| du

]
≤M | det a|

1
2∥φ∥1 for some constant M. (3.20)



 

 

 

 

 

 

 

 

CHAPTER IV

POWER SPECTRAL REPRESENTATION OF

THE WAVELET TRANSFORM OF A

RANDOM FIELD

Let a second order random field with desired properties, such as square

integrable sample paths, and bounded and continuous auto-correlation function

be given. The power spectral density function is usually defined for weakly (also

strongly) stationary random fields. It turns out that the continuous wavelet trans-

forms of weakly stationary, strongly stationary increments and weakly stationary

increments random field are weakly stationary random fields. It is thus natural to

ask how the power spectral density functions of these wavelet transform random

fields look like. These wavelet transform deal with an integrable mother wavelet

function φ via scaling parameter a in a matrix group H and translation parameter

b ∈ Rd.

In this chapter, the spectral density function of the continuous wavelet

transform of a random field is discussed. The first section deals with weakly sta-

tionary random fields, random fields with strongly stationary increments are dis-

cussed in the second section, and random fields with weakly stationary increments

are discussed in the fourth section. Moreover, the third section gives an exam-

ple of the power spectral density function of the wavelet transform of a particular

strongly stationary increments random field, namely of a fractional Brownian field.
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4.1 The Spectral Representation of the Wavelet Transform

of a Weakly Stationary Random Field

Let {Xt}t∈Rd be a weakly stationary random field. Then the auto-correlation

function R
X
(τ) is a positive definite function, hence by Bochner’s Theorem it has

the spectral representation

R
X
(τ) =

∫
Rd

e−iτ ·λ dF
X
(λ) a.e. (4.1)

where F
X
(λ) is a finite Borel measure on Rd.

The spectral representation for the wavelet transform of a weakly stationary

random field with scalar scaling parameter was determined by Elias Masry in 1998.

That is, the matrix group is of the simple form H = {aId : a > 0}. It was found

that for fixed scaling parameter a > 0, the spectral representation of the weakly

stationary random field {CW a
X
(b)}b∈Rd is

R
CWa

X
(τ) = ad

∫
Rd

e−iτ ·λ|φ̂(aλ)|2 dF
X
(λ) (4.2)

and for a1, a2 > 0, the cross-spectral representation is

R
CW

a1
X

CW
a2
X

(τ) = (a1a2)
d
2

∫
Rd

e−iτ ·λφ̂(a1λ)φ̂(a2λ) dFX
(λ). (4.3)

We now determine the spectral density function of the wavelet transform of a

weakly stationary random field with arbitrary dilation matrix.

Theorem 4.1. Let H be a matrix group and a, a1, a2 ∈ H. If {Xt}t∈Rd is a weakly

stationary random field, then the random fields {CW a1
X (t)}t∈Rd and {CW a2

X (t)}t∈Rd

are jointly weakly stationary with constant mean | deta| 12E [X0] φ̂(0). Moreover, the

cross-correlation function has the spectral representation

R
CW

a1
X

CW
a2
X

(τ) = | det a1a2|
1
2

∫
Rd

e−iτ ·λφ̂(aT1 λ)φ̂(a
T
2 λ) dFX(λ). (4.4)
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In particular, the auto-correlation function has the spectral representation

R
CWa

X
(τ) = | det a|

∫
Rd

e−iτ ·λ|φ̂(aTλ)|2 dFX(λ). (4.5)

Proof. Consider for each a ∈ H, we have by Fubini’ theorem (see inequality (3.20))

E[CW a
X(t)] = E

[∫
Rd

| det a|−
1
2Xuφ (a−1(u− t)) du

]
= | deta|−

1
2

∫
Rd

E [Xu]φ (a−1(u− t)) du

= | deta|
1
2E [X0]

∫
Rd

φ (u) du

= | deta|
1
2E [X0] φ̂(0)

where we have used the fact that {Xt}t∈Rd has constant mean, E[Xu] = E[X0]

for all u ∈ Rd, and φ ∈ L1(Rd). This shows that {CW a
X(t)}t∈Rd has constant

mean. Note that if {Xt}t∈Rd is a zero mean random field or the mother wavelet

function φ satisfies the condition φ̂(0) = 0, then we obtain a zero mean random

field {CW a
X(t)}t∈Rd .

Furthermore, for each a1, a2 ∈ H, we have by Fubini’ theorem (see inequality

(3.20))

R
CW

a1
X

CW
a2
X

(t, t+τ)

= E

[
|deta1a2|−

1
2

∫
Rd

Xξφ
(
a

−1

1 (ξ−t)
)
dξ

∫
Rd

Xηφ
(
a

−1

2 (η−t−τ)
)
dη

]
= | deta1a2|−

1
2

∫
Rd

∫
Rd

E
[
XξXη

]
φ
(
a

−1

1 (ξ−t)
)
φ
(
a

−1

2 (η−t−τ)
)
dξ dη.

Since E[XξXη] = R
X
(η − ξ), using equation (4.1) we have

R
CW

a1
X

CW
a2
X

(t, t+τ)

= | deta1a2|−
1
2

∫
Rd

∫
Rd

∫
Rd

e−i(η−ξ)·λ dF
X
(λ) φ

(
a−1
1 (ξ−t)

)
φ
(
a−1
2 (η−t−τ)

)
dξ dη

= | deta1a2|−
1
2

∫
Rd

∫
Rd

eiξ·λ φ
(
a−1
1 (ξ − t)

)
dξ

∫
Rd

e−iη·λφ
(
a−1
2 (η − t− τ)

)
dη

dF
X
(λ).
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Changing variables, ξ 7→ a1ξ + t, η 7→ a2η + (t+ τ) it follows that

R
CW

a1
X

CW
a2
X

(t, t+τ)

= | deta1a2|
1
2

∫
Rd

∫
Rd

ei(a1ξ)·λeit·λφ (ξ) dξ

∫
Rd

e−i(a2η)·λe−it·λe−iτ ·λφ (η) dη dF
X
(λ)

= | deta1a2|
1
2

∫
Rd

e−iτ ·λ
∫
Rd

eiξ·(a
T
1 λ)φ (ξ) dξ

∫
Rd

e−iη·(aT2 λ)φ (η) dη dF
X
(λ)

= | det a1a2|
1
2

∫
Rd

e−iτ ·λφ̂ (aT1 λ)φ̂
(
aT2 λ

)
dF

X
(λ).

If a1 = a2 = a, we have

R
CWa

X
(t, t+ τ) = | det a|

∫
Rd

e−iτ ·λ|φ̂(aTλ)|2 dFX(λ).

We can see that the cross-correlation function R
CW

a1
X

CW
a2
X

(t, t+τ) , and the auto-

correlation function R
CWa

X
(t, t + τ) depend on position translation τ only, hence

we denote them by R
CW

a1
X

CW
a2
X

(τ) and R
CWa

X
(τ), respectively. It follows that the

random fields {CW a1
X
(t)}t∈Rd and {CW a2

X
(t)}t∈Rd are jointly weakly stationary, and

the cross power spectral representation of R
CW

a1
X

CW
a2
X

(τ) and the power spectral

representation of R
CWa

X
(τ) are given as above.

Remark 4.1. By Definition 3.18, the cross power spectral density function is

arrived at as follows∫
Rd

e−iτ ·λS
CW

a1
X

CW
a2
X

(λ) dλ = | det a1a2|
1
2

∫
Rd

e−iτ ·λφ̂ (aT1 λ)φ̂
(
aT2 λ

)
dF

X
(λ)

= | det a1a2|
1
2

∫
Rd

e−iτ ·λφ̂ (aT1 λ)φ̂
(
aT2 λ

)
S

X
(λ) dλ,

and the power spectral density function is arrived as∫
Rd

e−iτ ·λS
CWa

X
(λ) dλ = | det a|

∫
Rd

e−iτ ·λ|φ̂(aTλ)|2 dFX(λ)

= | det a|
∫
Rd

e−iτ ·λ|φ̂(aTλ)|2 S
X
(λ) dλ.
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4.2 The Spectral Representation of the Wavelet Transform

of a Strongly Stationary Increments Random Field

Let {Xt}t∈Rd be a stationary increments random field with zero mean. For

d = 1, its auto-correlation function has the spectral representation, as outlined in

Dzhaparide (2005),

R
X
(t, s) =

∫
R
(eiλt − 1)(e−iλs − 1) dF

X
(λ) s, t ∈ R (4.6)

where dF
X
(λ) is a Borel measure on R which satisfies

∫
R

|λ|2

1 + |λ|2
dF

X
(λ).

In the special case of fractional Brownian motion {BH
t }t∈R, the representation of

its auto-correlation function is

R
BH

(t, s) = C2
H

∫
R
(eiλt − 1)(e−iλs − 1)

dλ

|λ|2H+1
, s, t ∈ R, (4.7)

for some positive constant C2
H .

Malyarenko (2005), see Dzhaparide (2005), treats the multidimensional case; the

auto-correlation of a stationary increments random field has the spectral represen-

tation

R
X
(t, s) =

∫
Rd

(eiλ·t − 1)(e−iλ·s − 1) dF
X
(λ), s, t ∈ Rd (4.8)

where dF
X
(λ) is a Borel measure on Rd which satisfies

∫
Rd

∥λ∥2

1 + ∥λ∥2
dF

X
(λ).

For a fractional Brownian field {BH
t }t∈Rd the representation of its auto-correlation

function is

R
BH

(t, s) = C2
H

∫
Rd

(eiλ·t − 1)(e−iλ·s − 1)
dλ

∥λ∥2H+d
, s, t ∈ Rd, (4.9)

for some positive constant C2
H .

We have the following theorem for the continuous wavelet transform of a strongly

stationary increments random field, assuming that the integrable mother wavelet

function φ satisfies φ̂(0) = 0 and condition (C3) in Remark 3.8 holds.
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Theorem 4.2. Let {Xt}t∈Rd be a stationary increments random field with zero

mean. Let H be a matrix group and a, a1, a2 ∈ H. Then {CW a1
X (t)}t∈Rd and

{CW a2
X (t)}t∈Rd are jointly weakly stationary random fields with zero mean. More-

over, the cross-correlation has the spectral representations as

R
CW

a1
X

CW
a2
X

(τ) = | det a1a2|
1
2

∫
Rd

e−iτ ·λφ̂(aT1 λ)φ̂(a
T
2 λ) dFX(λ)

where dF
X
(λ) is a Borel measure on Rd which satisfies

∫
Rd

∥λ∥2

1 + ∥λ∥2
dF

X
(λ).

In particular, the auto-correlation function has the spectral representations as

R
CWa

X
(τ) = | det a|

∫
Rd

e−iτ ·λ|φ̂(aTλ)|2 dFX(λ).

Proof. For each scaling parameter a ∈ H, we have by Fubini’ theorem (see 3.20)

E[CW a
X
(t)] = E

[∫
Rd

| det a|−
1
2Xuφ (a−1(u− t)) du

]
= | det a|−

1
2

∫
Rd

E [Xu]φ (a−1(u− t)) du.

Since E[Xt] = 0 for all t ∈ Rd it follows that E[CW a
X
(t)] = 0.

Furthermore, for each a1, a2 ∈ H,

R
CW

a1
X

CW
a2
X

(t, t+τ)

= E

[
| det a1a2|−

1
2

∫
Rd

Xξφ
(
a−1
1 (ξ − t)

)
dξ

∫
Rd

Xηφ
(
a−1
2 (η − t− τ)

)
dη

]
= | det a1a2|−

1
2

∫
Rd

∫
Rd

E
[
XξXη

]
φ
(
a−1
1 (ξ − t)

)
φ
(
a−1
2 (η − t− τ)

)
dξ dη.

Applying the representation of R
X
(ξ, η) by equation (4.8) we have

R
CW

a1
X

CW
a2
X

(t, t+τ) = | det a1a2|−
1
2

∫
Rd

∫
Rd

(∫
Rd

(eiλ·ξ − 1)(e−iλ·η − 1) dF
X
(λ)

)
φ
(
a−1
1 (ξ − t)

)
φ
(
a−1
2 (η − t− τ)

)
dξ dη

= | det a1a2|−
1
2

∫
Rd

∫
Rd

(eiλ·ξ − 1)φ
(
a−1
1 (ξ − t)

)
dξ∫

Rd

(e−iλ·η − 1)φ
(
a−1
2 (η − t− τ)

)
dη dF

X
(λ).
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Since φ̂(0) = 0 we have

∫
Rd

φ(a−1
1 (ξ − t)) dξ = 0 and

∫
Rd

φ(a−1
2 (η − t− τ)) dη = 0

so that

R
CW

a1
X

CW
a2
X

(t, t+τ) =| deta1a2|−
1
2

∫
Rd

∫
Rd

eiξ·λ φ
(
a−1
1 (ξ−t)

)
dξ

∫
Rd

e−iη·λ

φ
(
a−1
2 (η− t−τ)

)
dη dF

X
(λ).

Continuing as in the proof of Theorem 4.1, we arrive at the assertion.

In the special case of fractional Brownian field, the spectral density can be

computed, details are given in the next section.

4.3 The Spectral Representation of the Wavelet Transform

of a Fractional Brownian Field

Let {BH
t }t∈R be fractional Brownian motion with Hurst index 0 < H < 1.

In 1998, Takeshi Kato and Elias Masry computed the formula of the power spectral

density function of the wavelet transform of fractional Brownian motion as

S
CWa

BH
(λ) =

aVHΓ(2H + 1) sin(πH)|φ̂(−aλ)|2

2H|λ|2H+1
(4.10)

where VH = E[(BH
1 )2]. In this thesis we present the simple computation of the

spectral density function of a fractional Brownian field by the representation (4.9)

for the d-dimensional case, in cases d = 1 this has been done in Masry by a different

method.

Let {BH
t }t∈Rd be fractional Brownian motion with Hurst index 0 < H < 1.

Computing the spectral density function by representation (4.9), we obtain the

following theorem.

Theorem 4.3. Let φ be an integrable mother wavelet function with sup
∥λ∥<ϵ

|φ̂(λ)|
∥λ∥ d

2
+H

≤

M for some ϵ > 0 and 0 < M < ∞ and condition (C3) in Remark 3.8 holds. Let
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H be a matrix group and a, a1, a2 ∈ H. Then the random fields {CW a1
BH (t)}t∈Rd

and {CW a2
BH (t)}t∈Rd are jointly weakly stationary with zero mean. Moreover, the

cross-correlation function has the power spectral representation

R
CW

a1
X

CW
a2
X

(τ) = | deta1a2|
1
2C2

H

∫
Rd

e−iτ ·λφ̂(aT1 λ)φ̂(a
T
2 λ)

dλ

∥λ∥2H+d
. (4.11)

where dF
X
(λ) is a Borel measure on Rd which satisfies

∫
Rd

∥λ∥2

1 + ∥λ∥2
dF

X
(λ). In

particular, the auto-correlation function has the power spectral representation

R
CWa

BH
(τ) = | deta|C2

H

∫
Rd

e−iτ ·λ|φ̂(aTλ)|2 dλ

∥λ∥2H+d
. (4.12)

The cross power spectral density function is

S
CW

a1
X

CW
a2
X

(λ) =
| deta1a2|

1
2C2

Hφ̂(a
T
1 λ)φ̂(a

T
2 λ)

∥λ∥2H+d
(4.13)

and the power spectral density function is

S
CWa

X
(λ) =

| det a|C2
H |φ̂(aTλ)|2

∥λ∥2H+d
. (4.14)

Proof. Since E[BH
t ] = 0 for all t ∈ Rd we have

E[CW a
BH (t)] = | deta|−

1
2

∫
Rd

E
[
BH

s

]
φ (a−1(s− t)) ds = 0.

The quantity of interest are the auto-correlation and cross-correlation of the ran-

dom field {CW a
BH (t)}t∈Rd for fixed scaling parameter a ∈ H. Now we will consider

the cross-correlation

R
CW

a1
BH

CW
a2
BH

(t, t+ τ) = E
[
CW a1

BH (t)CW
a2
BH (t+ τ)

]
= E

[
| deta1a2|−

1
2

∫
Rd

BH
ξ φ
(
a−1
1 (ξ−t)

)
dξ

∫
Rd

BH
η φ
(
a−1
2 (η−t−τ)

)
dη

]
.

Applying equation (4.9),

R
CW

a1
BH

CW
a2
BH

(t, t+ τ) = C2
H | deta1a2|−

1
2

∫
Rd

∫
Rd

∫
Rd

(eiλ·ξ − 1)(e−iλ·η − 1)
dλ

∥λ∥2H+d

φ(a−1
1 (ξ − t))φ(a−1

2 (η − t− τ)) dξ dη
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and using Fubini’s Theorem,

R
CW

a1
BH

CW
a2
BH

(t, t+ τ) = C2
H | deta1a2|−

1
2

∫
Rd

∫
Rd

(eiλ·ξ−1)φ(a−1
1 (ξ − t)) dξ∫

Rd

(e−iλ·η−1)φ(a−1
2 (η − t− τ)) dη

dλ

∥λ∥2H+d
.

Since φ̂(0) = 0 we have

∫
Rd

φ(a−1
1 (ξ − t)) dξ = 0 and

∫
Rd

φ(a−1
2 (η− t− τ)) dη = 0,

and the above simplifies to

R
CW

a1
BH

CW
a2
BH

(τ) = C2
H | deta1a2|−

1
2

∫
Rd

∫
Rd

eiλ·ξφ(a−1
1 (ξ − t)) dξ∫

Rd

e−iλ·ηφ(a−1
2 (η − t− τ)) dη

dλ

∥λ∥2H+d
.

Changing variables ξ 7−→ a1ξ + t and η 7−→ a2η + t + τ we have by definition of

the Fourier transform

R
CW

a1
BH

CW
a2
BH

(τ)

= C2
H | deta1a2|

1
2

∫
Rd

∫
Rd

eiλ·(a1ξ+t)φ(ξ) dξ

∫
Rd

e−iλ·(a2η+t+τ)φ(η) dη
dλ

∥λ∥2H+d

= C2
H | deta1a2|

1
2

∫
Rd

e−iλ·τ
∫
Rd

eiξ·a
T
1 λφ(ξ) dξ

∫
Rd

e−iη·aT2 λφ(η) dη
dλ

∥λ∥2H+d

= C2
H | deta1a2|

1
2

∫
Rd

e−iλ·τ φ̂(aT1 λ)φ̂(a
T
2 λ)

dλ

∥λ∥2H+d
.

We now claim that the function g(λ) =
|φ̂(λ)|2

∥λ∥2H+d
is integrable for 0 < H < 1. By

assumption, there exist ϵ > 0 and M > 0 so that and sup
∥λ∥<ϵ

|φ̂(λ)|
∥λ∥ d

2
+H

≤ M . We

split ∫
Rd

|g(λ)| dλ =

∫
∥λ∥≤ϵ

|g(λ)| dλ +

∫
∥λ∥>ϵ

|g(λ)| dλ.

Then we have∫
∥λ∥≤ϵ

|g(λ)| dλ =

∫
∥λ∥≤ϵ

|φ̂(λ)|2

∥λ∥2H+d
dλ ≤

∫
∥λ∥≤ϵ

M2 dλ <∞.

For the second integral, we have as φ ∈ L1(R) and |φ̂(λ)| ≤ ∥φ∥L1 by Remark 2.1

(ii),
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∫
∥λ∥>ϵ

|g(λ)| dλ =

∫
∥λ∥>ϵ

|φ̂(λ)|2

∥λ∥2H+d
dλ ≤

∫
∥λ∥>ϵ

∥φ∥2L1

∥λ∥2H+d
dλ

= ∥φ∥2L1

∫
∥λ∥>ϵ

1

∥λ∥2H+d
dλ <∞.

Hence g(λ) =
|φ̂(λ)|2

∥λ∥2H+d
is integrable for 0 < H < 1. We can see that, if a

is any invertible matrix, then b∥λ∥ ≤ ∥aλ∥ ≤ c∥λ∥ for all λ ̸= 0 and some

constants b, c, hence
|φ̂(aλ)|2

∥λ∥2H+d
is also integrable. By Cauchy-Schwartz, h(λ) =

| det a1a2|
1
2C2

H

φ̂(aT1 λ)φ̂(a
T
2 λ)

∥λ∥2H+d
is integrable for 0 < H < 1. It follows thatR

CW
a1
BH

CW
a2
BH

is the Fourier transform of h(λ), hence h(λ) is the cross-power spectral density

function of the random field {CW a1
BH (t)}t∈Rd and {CW a2

BH (t)}t∈Rd and is given by

S
CW

a1
BH

CW
a2
BH

(λ) = C2
H | deta1 deta2|

1
2
φ̂(aT1 λ)φ̂(a

T
2 λ)

∥λ∥2H+d
.

If a1 = a2 = a, we have

R
CWa

BH
(τ) = | deta|C2

H

∫
Rd

e−iλ·τ |φ̂(aTλ)|2 dλ

∥λ∥2H+d
.

thus the spectral density function, S
CWa

BH
(λ) equals

S
CWa

BH
(λ) = | deta|C2

H

|φ̂(aTλ)|2

∥λ∥2H+d
.

4.4 The Spectral Representation of the Wavelet Transform

of Weakly Stationary Increments Random Field

Let {Xt}t∈Rd be a weakly stationary increments random field with zero

mean. The auto-correlation function of its increments R
∆X(t,τ1)∆X(s,τ2)

= E[(Xt+τ1−

Xt)(Xs+τ2 −Xs)] admits the spectral representation (Yaglom, 1962)

R
∆X(t,τ1)∆X(s,τ2)

=

∫
Rd/{0}

ei(t−s)λ(1− eiτ1·λ)(1− e−iτ2·λ) dF
X
(λ) + (Aτ1) · τ2 (4.15)
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where dF
X
(λ) is a measure on Rd/{0} satisfying

∫
Rd/{0}

∥λ∥2

1 + ∥λ∥2
dF

X
(λ) < ∞

and A is a positive definite Hermitian matrix. The term (Aτ1) · τ2 represents the

contribution to the integral at λ = 0. Assume that condition (C4) in Remark 3.8

holds, we have the following theorem.

Theorem 4.4. Let H be a matrix group and a, a1, a2 ∈ H. Let φ be an integrable

mother wavelet function which has zero first moments, that is

∫
Rd

uiφ(u) du = 0 for

all i = 1, 2, ..., d, and φ̂(0) = 0. If {Xt}t∈Rd has weakly stationary increments and

zero mean, then the random fields {CW a1
X (t)}t∈Rd and {CW a2

X (t)}t∈Rd are jointly

weakly stationary with zero mean, and the auto-correlation and cross-correlation

have the power spectral representations and cross power spectral representations

R
CWa

X
(t, t+ τ) = | det a|

∫
Rd

e−iτ ·λ|φ̂(aTλ)|2 dFX(λ) (4.16)

R
CW

a1
X

CW
a2
X

(t, t+ τ) = | det a1a2|
1
2

∫
Rd

e−iτ ·λφ̂(aT1 λ)φ̂(a
T
2 λ) dFX(λ), (4.17)

respectively, where dF
X
(λ) is a measure on Rd/{0} satisfying∫

Rd/{0}

∥λ∥2

1 + ∥λ∥2
dF

X
(λ) <∞.

Proof. As in the previous proofs, E[Xu] = 0 for all u ∈ Rd yields E[CW a
X(t)] = 0

and for a1, a2 ∈ H we have

R
CW

a1
X

CW
a2
X

(t, t+ τ) = | det a1a2|−
1
2

∫
Rd

∫
Rd

E
[
XξXη

]
φ
(
a−1
1 (ξ − t)

)
φ
(
a−1
2 (η − t− τ)

)
dξ dη.

Changing variables ξ 7→ a1ξ + t and η 7→ a2η + t+ τ ,

R
CW

a1
X

CW
a2
X

(t, t+ τ) = | det a1a2|
1
2

∫
Rd

∫
Rd

E
[
Xa1ξ+tXa2η+t+τ

]
φ (ξ)φ (η) dξ dη.
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Since φ̂(0) = 0, we add zero value terms as follows,

R
CW

a1
X

CW
a2
X

(t, t+ τ) = | det a1a2|
1
2

∫
Rd

∫
Rd

E
[
Xa1ξ+tXa2η+t+τ

]
φ (ξ)φ (η) dξ dη

− | det a1a2|
1
2

∫
Rd

E
[
XtXa2η+t+τ

] ∫
Rd

φ (ξ) dξ φ (η) dη

− | det a1a2|
1
2

∫
Rd

E
[
Xa1ξ+tXt+τ

] ∫
Rd

φ (η) dη φ (ξ) dξ

+ | det a1a2|
1
2E
[
XtXt+τ

] ∫
Rd

φ (ξ) dξ

∫
Rd

φ (η) dη

= | det a1a2|
1
2

∫
Rd

∫
Rd

E
[
(Xa1ξ+t−Xt)(Xa2η+t+τ−Xt+τ )

]
φ (ξ)φ (η) dξ dη.

Applying the power spectral representation of R
∆X(t,τ1)∆X(s,τ2)

as in equation (4.15),

t = t, s = t+ τ, τ1 = a1ξ, τ2 = a2η.

R
CW

a1
X

CW
a2
X

(t, t+ τ)

= | det a1a2|
1
2

∫
Rd

∫
Rd

∫
Rd/{0}

e−iτ ·λ(1−eia1ξ·λ)(1−e−ia2η·λ)dF
X
(λ)φ (ξ)φ (η) dξ dη

+ | det a1a2|
1
2

∫
Rd

∫
Rd

(Aa1ξ) · (a2η)φ (ξ)φ (η) dξ dη

= | det a1a2|
1
2

∫
Rd/{0}

e−iτ ·λ
∫
Rd

(1−eia1ξ·λ)φ (ξ) dξ

∫
Rd

(1−e−ia2η·λ)φ (η) dη dF
X
(λ)

+ | det a1a2|
1
2

∫
Rd

∫
Rd

(
d∑

i=1

d∑
j=1

ãijξjηi

)
φ (ξ)φ (η) dξ dη where [ãij] = aT2Aa1.

Note that the use of Fubini’s theorem is justified by the estimation of integral and∫
Rd/{0}

∥λ∥2

1 + ∥λ∥2
dF

X
(λ) < ∞. Since φ̂(0) = 0 and φ has zero first moments, we

can reduce the above equation

R
CW

a1
X

CW
a2
X

(t, t+ τ)

= | det a1a2|
1
2

∫
Rd/{0}

e−iτ ·λ
∫
Rd

eiξ·a
T
1 λφ (ξ) dξ

∫
Rd

e−iη·aT2 λφ (η) dη dF
X
(λ)

= | det a1a2|
1
2

∫
Rd/{0}

e−iτ ·λφ̂(aT1 λ) φ̂(a
T
2 λ) dFX

(λ).

If a1 = a2 = a, we have

R
CWa

X
(τ) = | det a|

∫
Rd

e−iτ ·λ|φ̂(aTλ)|2 dFX(λ).
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We can see that the cross-correlation function R
CW

a1
X

CW
a2
X

(t, t+τ) , and the auto-

correlation function R
CWa

X
(t, t + τ) depend on position translation τ only, hence

we denote them by R
CW

a1
X

CW
a2
X

(τ) and R
CWa

X
(τ), respectively. It follows that ran-

dom fields {CW a1
X
(t)}t∈Rd and {CW a2

X
(t)}t∈Rd are jointly weakly stationary, and

the cross power spectral representation of R
CW

a1
X

CW
a2
X

(τ) and the power spectral

representation of R
CWa

X
(τ) are given as above.



 

 

 

 

 

 

 

 

CHAPTER V

ERGODICITY PROPERTIES

Ergodicity is very useful and widely used. However, ergodic theorems were

stated in the past under a variety of conditions regarding the random field to

which they applied; earlier versions were preoccupied with stationary or weakly

stationary random fields only, as it was thought for a while that stationarity was

needed for ergodicity. The first section gives the basic concept of the ergodicity.

Details can be found in Childers (1997), Grimmett and Stirzaker (1998), Papoulis

and Unnikrishno (2002) and Yannis (1998). The ergodic theorem for weakly sta-

tionary random fields is introduced and proven in the second section. Finally,

we will show how ergodicity properties are connected to the continuous wavelet

transform.

5.1 Mean Ergodic Random Fields

Let {Xt}t∈Rd be a random field. There are several conventions for denoting

position (time) averages. One convention uses the one-sided average, which is

expressed for continuous random processes as

⟨Xt⟩ = lim
T→∞

1

T d

∫
[0,T ]d

Xt dt.

Another convention is called the two-sided average, which is denoted as

⟨Xt⟩ = lim
T→∞

1

(2T )d

∫
[−T,T ]d

Xt dt.

The two-sided convention appears more common, especially for theoretical defini-

tions. Ergodic in the mean or in short mean ergodic says that the estimate for
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the mean converges to the true mean in the mean square sense as per following

definition.

Definition 5.1. (Mean Ergodic Field)

A random field {Xt}t∈Rd with constant mean m is mean ergodic if

lim
T→∞

1

(2T )d

∫
[−T,T ]d

Xt dt = m (5.1)

in the mean square sense.

The following theorems provide conditions for mean ergodicity and suggests

an alternative definition for mean ergodicity of weakly stationary random fields.

Theorem 5.1. Let {Xt}t∈Rd be a weakly stationary random field with constant

mean m and auto-covariance function C
X
(τ). A necessary and sufficient condition

for {Xt}t∈Rd to be mean ergodic is

lim
T→∞

1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(
1− |τ i|

2T

)
C

X
(τ) dτ = 0. (5.2)

Proof. Let T > 0. For simplicity, let as define

⟨X⟩T =
1

(2T )d

∫
[−T,T ]d

Xt dt.

Then, as E[|Xt|2] is a constant and E[|Xt|] ≤M we can use Fubini’s theorem,

E[⟨X⟩T ] =
1

(2T )d

∫
[−T,T ]d

E[Xt] dt =
m

(2T )d

∫
[−T,T ]d

1 dt = m

and

var[⟨X⟩T ] = E[|⟨X⟩T −m|2]

=
1

(2T )2d
E

[(∫
[−T,T ]d

(Xt − E[Xt]) dt

)(∫
[−T,T ]d

(Xs − E[Xs]) ds

)]

=
1

(2T )2d

∫
[−T,T ]d

∫
[−T,T ]d

E[(Xt − E[Xt])(Xs − E[Xs])] dt ds

=
1

(2T )2d

∫
[−T,T ]d

∫
[−T,T ]d

C
X
(s− t) dt ds.
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For each i = 1, 2, ..., d, if we let τi = si − ti and ui = si + ti,

then dti dsi = |Ji|−1dui dτi where |Ji| is the Jacobian which is

|J i| =

∣∣∣∣∣∣∣
∂ui

∂ti

∂ui

∂si

∂τi
∂ti

∂τi
∂si

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 1

−1 1

∣∣∣∣∣∣∣ = 2.

Then we have

var[⟨X⟩T ] =
1

(2T )d

∫
[−2T,2T ]d

∫ 2T−|τ1|

−(2T−|τ1|)

∫ 2T−|τ2|

−(2T−|τ2|)
...

∫ 2T−|τd|

−(2T−|τd|)
C

X
(τ)(

1

2
)d du dτ

=
1

2d(2T )2d

∫
[−2T,2T ]d

C
X
(τ)

d∏
i=1

∫ 2T−|τi|

−(2T−|τi|)
1 dui dτ

=
1

2d(2T )2d

∫
[−2T,2T ]d

C
X
(τ)

d∏
i=1

(4T − 2|τi|) dτ

=
1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(1− |τi|
2T

)C
X
(τ) dτ.

The condition 5.2 of the theorem is thus equivalent to var[⟨X⟩T ] → 0, that is, to

mean ergodicity.

Because of this theorem, an alternative definition of mean ergodicity for a

weakly stationary random field is then given.

Definition 5.2. (Alternative Definition of Mean Ergodicity)

A weakly stationary random field {Xt}t∈Rd with constant mean is ergodic in the

mean if and only if

lim
T→∞

1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(1− |τ i|
2T

)C
X
(τ) dτ = 0. (5.3)

Remark 5.1. If {Xt}t∈Rd is a weakly stationary random field with zero mean, then

the auto-covariance C
X
(τ) coincides with the auto-correlation function R

X
(τ) and

hence {Xt}t∈Rd is mean ergodic if and only if

lim
T→∞

1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(1− |τ i|
2T

)R
X
(τ) dτ = 0. (5.4)



 

 

 

 

 

 

 

 

69

5.2 Ergodic Theorems for Weakly Stationary Random Fields

Ergodic theorems relate functionals calculated along individual sample paths,

say the position (time) average, to functionals calculated over the whole distribu-

tion, say the expectation. The basic idea is that the two should be close and they

should get closer the longer the trajectory we use, because in some sense any one

sample path, carried far enough, is representative of the whole distribution.

Since there are many different kinds of functionals, and many different

modes of convergence, there are many different kinds of ergodic theorems. The

classical ergodic theorems say that position (time) averages converge either in

the p-th mean, or almost surely, both implying convergence in distribution or in

probability. The traditional centrepiece of the ergodic theorems is Birkhoff’s ”in-

dividual” ergodic theorem, asserting a.s. convergence and in mean convergence,

details of this theorem and its proof can be found in Grimmett and Stirzaker

(1998). By contrast, the L2 or mean square ergodic theorem, attributed to Von

Neumann is already in our grasp, and holds for weakly stationary random fields.

We will see its proof in the next theorem.

Remark 5.2. Recall that, the norm ∥ . ∥2 of a complex-valued random variable Z

is defined by

∥Z∥2 =
(
E[|Z|2]

) 1
2 . (5.5)

For a second order random field {Yt}t∈Rd ,

∥
∫
[−n,n]d

Yt dt∥2 ≤
(
E

[[ ∫
[−n,n]d

|Yt| dt
]2]) 1

2

=

(
E

[∫
[−n,n]d

|Yt| dt
∫
[−n,n]d

|Ys| ds
]) 1

2

≤
(
E

[∫
[−n,n]d

∫
[−n,n]d

|Yt||Ys| dt ds
]) 1

2
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∥
∫
[−n,n]d

Yt dt∥2 ≤
(∫

[−n,n]d

∫
[−n,n]d

E [|YtYs|] dt ds
) 1

2

≤
(∫

[−n,n]d

∫
[−n,n]d

(
E
[
|Yt|2

]
E
[
|Ys|2

]) 1
2 dt ds

) 1
2

as E[|XY |] ≤
√
E[|X|2]E[|Y |2]

=

(∫
[−n,n]d

∫
[−n,n]d

(E
[
|Yt|2

]
)
1
2 (E

[
|Ys|2

]
)
1
2 dt ds

) 1
2

=

(∫
[−n,n]d

∥Yt∥2 dt
∫
[−n,n]d

∥Ys∥2 ds
) 1

2

=

∫
[−n,n]d

∥Yt∥2 dt.

Theorem 5.2. (Ergodic Theorem for Weakly Stationary Random Fields)

If {Xt}t∈Rd is a weakly stationary random field, then there exists a random variable

Y such that E[Y ] = E[X0] and

lim
T→∞

1

(2T )d

∫
[−T,T ]d

Xt dt = Y (5.6)

in the square mean.

Proof. We wish to show that for ⟨X⟩n =
1

(2n)d

∫
[−n,n]d

Xt dt,

∥⟨X⟩n − ⟨X⟩m∥2 −→ 0 as n,m→ ∞.

Set

µn = inf
λ
∥
∫
[−n,n]d

λ(t)Xt dt∥2 (5.7)

where the infinitum is calculated over all functions λ(t) ≥ 0 with

∫
[−n,n]d

λ(t) dt =

1. For 0 < n1 ≤ n2,

µn1
= inf

λ(t)
∥
∫
[−n1,n1]d

λ(t)Xt dt∥2 ≥ inf
λ(t)

∥
∫
[−n2,n2]d

λ(t)Xt dt∥2 = µn2

so that

µ := lim
n→∞

µn = inf
n
µn (5.8)
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exists as µn is decreasing and µn ≥ 0 for all n. In particular, ∥⟨X⟩n∥2 ≥ µ for all

n > 0. If m < n then

∥⟨X⟩n + ⟨X⟩m∥2

= ∥ 1

(2n)d

∫
[−n,n]d

Xt dt+
1

(2m)d

∫
[−m,m]d

Xt dt∥2

= ∥ 1

(2n)d

∫
[−n,n]d\[−m,m]d

Xt dt+
1

(2n)d

∫
[−m,m]d

Xt dt+
1

(2m)d

∫
[−m,m]d

Xt dt∥2

= 2∥
∫
[−n,n]d\[−m,m]d

1

2(2n)d
Xt dt+

∫
[−m,m]d

1

2

(
1

(2n)d
+

1

(2m)d

)
Xt dt∥2

= 2∥
∫
[−n,n]d

λ(t)Xt dt∥2

where

λ(t) =


1
2

(
1

(2m)d
+ 1

(2n)d

)
if t ∈ [−m,m]d

1
2(2n)d

if t ∈ [−n, n]d \ [−m,m]d,

and∫
[−n,n]d

λ(t) dt =

∫
[−m,m]d

1

2

(
1

(2n)d
+

1

(2m)d

)
dt+

∫
[−n,n]d\[−m,m]d

1

2(2n)d
dt

=
(2m)d

2

(
1

(2n)d
+

1

(2m)d

)
+

1

2(2n)d
[
(2n)d − (2m)d

]
= 1.

Thus, as µn ≥ inf
n
µn = µ we have

∥⟨X⟩n + ⟨X⟩m∥2 ≥ 2 inf
λ(t)

∥
∫
[−n,n]d

λ(t)Xt dt∥2 = 2µn ≥ 2 inf
n
µn = 2µ. (5.9)

Consider

∥⟨X⟩n − ⟨X⟩m∥22 + ∥⟨X⟩n + ⟨X⟩m∥22 = E[|⟨X⟩n − ⟨X⟩m|2] + E[|⟨X⟩n + ⟨X⟩m|2]

= 2E[|⟨X⟩n|2] + 2E[|⟨X⟩m|2]

= 2∥⟨X⟩n∥22 + 2∥⟨X⟩m∥22.

Then

∥⟨X⟩n−⟨X⟩m∥22 = 2∥⟨X⟩n∥22 + 2∥⟨X⟩m∥22 − ∥⟨X⟩n+⟨X⟩m∥22.
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By inequality (5.9) we have

∥⟨X⟩n−⟨X⟩m∥22 ≤ 2∥⟨X⟩n∥22 + 2∥⟨X⟩m∥22 − 4µ2

≤ 2
∣∣∥⟨X⟩n∥22 − µ2

∣∣+ 2
∣∣∥⟨X⟩m∥22 − µ2

∣∣ . (5.10)

Now we claim that ∥⟨X⟩n∥2 −→ µ as n→ ∞.

Choose any ϵ > 0 and pick T and λ such that

∥
∫
[−T,T ]d

λ(t)Xt dt∥2 ≤ µ+ ϵ (5.11)

where λ(t) ≥ 0 and

∫
[−T,T ]d

λ(t) dt = 1.

Define the moving average

Yk =

∫
[−T,T ]d

λ(t)Xt+k dt. (5.12)

It is not difficult to see that {Yk}k∈Rd has constant mean as {Xt}t∈Rd has constant

mean. And for all k ∈ Rd,

∥Yk∥22 = E

[∣∣∣∣∫
[−T,T ]d

λ(t)Xt+k dt

∣∣∣∣2
]

= E

[∫
[−T,T ]d

λ(t)Xt+k dt

∫
[−T,T ]d

λ(s)Xs+k ds

]
=

∫
[−T,T ]d

∫
[−T,T ]d

λ(t)λ(s)E[Xt+kXs+k] dt ds

=

∫
[−T,T ]d

∫
[−T,T ]d

λ(t)λ(s)R
X
(t+ k, s+ k) dt ds

=

∫
[−T,T ]d

∫
[−T,T ]d

λ(t)λ(s)R
X
(t, s) dt ds as weakly stationary of {Xt}

=

∫
[−T,T ]d

∫
[−T,T ]d

λ(t)λ(s)E[XtXs] dt ds

= E

[∣∣∣∣∫
[−T,T ]d

λ(t)Xt+k dt

∣∣∣∣2
]

= ∥Y0∥22

We shall show that

∥⟨Y ⟩n − ⟨X⟩n∥2 −→ 0 as n→ ∞ (5.13)
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where ⟨Y ⟩n =
1

(2n)d

∫
[−n,n]d

Yt dt.

Note first that by Remark 5.2 and ∥Yt∥2 = ∥Y0∥2 for all t, and then use Equations

(5.11) and (5.12) we have

∥⟨Y ⟩n∥2 ≤
1

(2n)d

∫
[−n,n]d

∥Yt∥2 dt

=
1

(2n)d
∥Y0∥2

∫
[−n,n]d

1 dt = ∥Y0∥2

= ∥
∫
[−T,T ]d

λ(t)Xt dt∥2 ≤ µ+ ϵ for all n.

Now, by definition of ⟨.⟩n and Yt we have

⟨Y ⟩n =
1

(2n)d

∫
[−n,n]d

Yt dt =
1

(2n)d

∫
[−n,n]d

∫
[−T,T ]d

λ(s)Xs+t ds dt.

By Fubini’s Theorem and the change variable of t to t− s we have

⟨Y ⟩n =
1

(2n)d

∫
[−T,T ]d

λ(s)

∫
[−n,n]d

Xs+t dt ds

=
1

(2n)d

∫
[−T,T ]d

λ(s)

∫
∏d

i=1[−n+si,n+si]

Xt dt ds =

∫
[−T,T ]d

λ(s)⟨X⟩s,n ds

where ⟨X⟩s,n =
1

(2n)d

∫
∏d

i=1[−n+si,n+si]

Xt dt.

Now use the fact that ⟨X⟩0,n =
1

(2n)d

∫
[−n,n]d

Xt dt = ⟨X⟩n, and the triangle

inequality to deduce that

∥⟨Y ⟩n − ⟨X⟩n∥2 = ∥
∫
[−T,T ]d

λ(s)⟨X⟩s,n ds− ⟨X⟩0,n∥2

= ∥
∫
[−T,T ]d

λ(s)⟨X⟩s,n ds−
∫
[−T,T ]d

λ(s) ds⟨X⟩0,n∥2

= ∥
∫
[−T,T ]d

λ(s) (⟨X⟩s,n − ⟨X⟩0,n) ds∥2

≤
∫
[−T,T ]d

λ(s)∥⟨X⟩s,n − ⟨X⟩0,n∥2 ds

computing as in Remark 5.2. Consider

∥⟨X⟩s,n − ⟨X⟩0,n∥2 =
1

(2n)d
∥
∫
∏d

i=1[−n+si,n+si]

Xt dt−
∫
[−n,n]d

Xt dt∥2
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=
1

(2n)d
∥
∫
∏d

i=1[−n+si,n+si]\[−n,n]d
Xt dt+

∫
(
∏d

i=1[−n+si,n+si])∩[−n,n]d
Xt dt

−
∫
[−n,n]d∩(

∏d
i=1[−n+si,n+si])

Xt dt−
∫
[−n,n]d\(

∏d
i=1[−n+si,n+si])

Xt dt∥2

=
1

(2n)d
∥
∫
(
∏d

i=1[−n+si,n+si])\[−n,n]d
Xt dt−

∫
[−n,n]d\(

∏d
i=1[−n+si,n+si])

Xt dt∥2

≤ 1

(2n)d

(
∥
∫
(
∏d

i=1[−n+si,n+si])\[−n,n]d
Xt dt∥2 + ∥

∫
[−n,n]d\(

∏d
i=1[−n+si,n+si])

Xt dt∥2

)

≤ 1

(2n)d

(∫
(
∏d

i=1[−n+si,n+si])\[−n,n]d
∥Xt∥2 dt+

∫
[−n,n]d\(

∏d
i=1[−n+si,n+si])

∥Xt∥2 dt

)

computing as in remark 5.2. As {Xt}t∈Rd is a weakly stationary random field,

∥Xt∥2 = ∥X0∥2 for all t ∈ Rd, and we get that

∥⟨X⟩s,n − ⟨X⟩0,n∥2

≤ ∥X0∥2
(2n)d

[∫
(
∏d

i=1[−n+si,n+si])\[−n,n]d
1 dt+

∫
[−n,n]d\(

∏d
i=1[−n+si,n+si])

1 dt

]
.

Directly computing the integrals we obtain that

∥⟨X⟩s,n − ⟨X⟩0,n∥2 ≤
∥X0∥2
(2n)d

[
2

d∏
i=1

|si|+ 2
d∑

i=1

|si|
∏
j ̸=i

|2n− |sj||

]
.

Thus

∥⟨Y ⟩n − ⟨X⟩n∥2 ≤
∫
[−T,T ]d

λ(s)
∥X0∥
(2n)d

[
2

d∏
i=1

|si|+ 2
d∑

i=1

|si|
∏
j ̸=i

|2n− |sj||

]
ds

=
∥X0∥
(2n)d

∫
[−T,T ]d

λ(s)

[
2

d∏
i=1

|si|+ 2
d∑

i=1

|si|
∏
j ̸=i

|2n− |sj||

]
ds

≤ ∥X0∥
(2n)d

∫
[−T,T ]d

λ(s)

[
2

d∏
i=1

T + 2
d∑

i=1

T
∏
j ̸=i

|2n+ T |

]
ds

=
∥X0∥
(2n)d

[
2T d + 2T

d∑
i=1

|2n+ T |d−1

]∫
[−T,T ]d

λ(s) ds

=
2∥X0∥2T d

(2n)d
+

2dT∥X0∥2|2n+ T |d−1

(2n)d
.

Let n → ∞ to deduce that ∥⟨Y ⟩n − ⟨X⟩n∥2 −→ 0 as n → ∞ holds. Use
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∥⟨Y ⟩n∥2 ≤ µ+ ϵ to obtain

µ ≤ ∥⟨X⟩n∥2 ≤ ∥⟨X⟩n − ⟨Y ⟩n∥2 + ∥⟨Y ⟩n∥2 ≤ ∥⟨X⟩n − ⟨Y ⟩n∥2 + µ+ ϵ

→ µ+ ϵ as n→ ∞.

But ϵ was arbitrary, hence the claim holds. Thus by inequality (5.10), {⟨X⟩n}n≥0 is

a Cauchy in the square mean. Since L2(Ω) is complete, there exists a square inte-

grable random variable Y such that ⟨X⟩n
2→ Y . Moreover, by the same argument

from inequality (5.10) we have ∥⟨X⟩T1−⟨X⟩T2∥22 ≤ 2
∥∥⟨X⟩T1∥22−µ2

∣∣+2
∣∣∥⟨X⟩T2∥22−

µ2
∣∣ for all positive real number T1 and T2 so that ∥⟨X⟩T1 − ⟨X⟩T2∥22 → 0 as

T1, T2 → ∞. Now for T ∈ R+, there exist n ∈ N such that T ≤ n < T + 1 and

then we have

∥⟨X⟩T − Y ∥2 ≤ ∥⟨X⟩T − ⟨X⟩n∥2 + ∥⟨X⟩n − Y ∥2.

Thus ∥⟨X⟩T − Y ∥2 → 0 as T → ∞. Hence ⟨X⟩T
2→ Y , we have that ⟨X⟩T

1→ Y

which implies that E[⟨X⟩T ] → E[Y ]. However, E[⟨X⟩T ] = E[X0], whence E[Y ] =

E[X0].

Corollary 5.3. If {Xt}t∈Rd is a weakly stationary random field with zero mean

and auto-correlation function R
X
(τ), then the limit variable

Y = lim
T→∞

1

(2T )d

∫
[−T,T ]d

Xt dt (5.14)

satisfies

E[Y ] = 0, E[|Y |2] ≤ 2dR
X
(0) (5.15)

Proof. Consider ⟨X⟩T =
1

(2T )d

∫
[−T,T ]d

Xt dt. By the proof of Theorem 5.2, there

exists a random variable Y such that ⟨X⟩T → Y in mean square, so thatE[⟨X⟩T ] →

E[Y ]. But E[⟨X⟩T ] = E[X1] = 0 for all T , thus it follows that E[Y ] = 0. Since
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⟨X⟩T → Y in square mean, then E[|⟨X⟩T |2] → E[|Y |2]. Now

E[|⟨X⟩T ]|2] = E
[
⟨X⟩T ⟨X⟩T

]
= E

[(
1

(2T )d

∫
[−T,T ]d

Xt dt

)(
1

(2T )d

∫
[−T,T ]

Xs ds

)]
=

1

(2T )2d

∫
[−T,T ]d

∫
[−T,T ]d

E[XtXs] dt ds

=
1

(2T )2d

∫
[−T,T ]d

∫
[−T,T ]d

R
X
(s− t) dt ds

For each i = 1, 2, ..., d, if we let τi = si−ti and ui = si+ti, then dti dsi = |Ji|−1du dτ

where |Ji| is the Jacobian which is

|Ji| =

∣∣∣∣∣∣∣
∂ui

∂ti

∂ui

∂si

∂τi
∂ti

∂τi
∂si

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
1 1

−1 1

∣∣∣∣∣∣∣ = 2.

Then we have

E[|⟨X⟩T ]|2] =
1

2d(2T )2d

∫
[−2T,2T ]d

∫
∏d

i=1[−2T+|τi|,2T−|τi|]
R

X
(τ) du dτ

=
1

2d(2T )2d

∫
[−2T,2T ]d

d∏
i=1

(4T − 2|τi|)RX
(τ) dτ

=
1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(
1− |τi|

2T

)
R

X
(τ) dτ.

Since −2T ≤ τi ≤ 2T then |1− τi
2T
| ≤ 1 so that we obtain that

E[|Y |2] = lim
T→∞

E[|⟨X⟩T |2] = lim
T→∞

1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(
1− |τi|

2T

)
R

X
(τ) dτ

≤ lim
T→∞

1

(2T )d

∫
[−2T,2T ]d

R
X
(τ) dτ

≤ lim
T→∞

1

(2T )d

∫
[−2T,2T ]d

R
X
(0) dτ

= lim
T→∞

1

(2T )d
[RX(0)(4T )

d]

= 2dRX(0).
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5.3 Ergodic Properties of the Wavelet Transform

By the previous theorem, if {Xt}t∈Rd is a weakly stationary random field it

follows immediately that there exists a random variable Y such that

lim
T→∞

1

(2T )d

∫
[−T,T ]d

Xt dt = Y. (5.16)

In this section will show that if {Xt}t∈Rd is a random field with either stationary

increments or weakly stationary increments, then we have an ergodic theorem and

hence ergodic properties for the wavelet transform. Now we consider the following

assumption:

Assumption A

1) The random field {Xt}t∈Rd is weakly stationary with zero mean.

2) The mother wavelet function φ is in L1(Rd) ∩ L2(Rd).

or

1’) The random field {Xt}t∈Rd is weakly stationary.

2’) The mother wavelet function φ is in L1(Rd) ∩ L2(Rd) and φ̂(0) = 0.

Assumption B

1) The random field {Xt}t∈Rd has strongly stationary increments and zero

mean.

2) The mother wavelet function φ is in L1(Rd) ∩ L2(Rd) and φ̂(0) = 0.

Assumption C

1) The random field {Xt}t∈Rd has weakly stationary increments and zero

mean.

2) The mother wavelet function φ is in L1(Rd)∩L2(Rd) such that φ̂(0) = 0

and all first moment are zero.

Theorem 5.4. Let H be a matrix group and a ∈ H. If either of assumption A,

Assumption B or Assumption C is satisfied then there exists a random variable Y
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depending on a such that

lim
T→∞

1

(2T )d

∫
[−T,T ]d

CW a
X(t) dt = Y (5.17)

in the mean square sense with E[Y ] = 0 and

E[|Y |2] ≤ 2dR
CWa

X
(0). (5.18)

Proof. By Theorems 4.1, 4.2 and 4.4 for fixed a ∈ H, the random field {CW a
X
(t)}t∈Rd

is weakly stationary with zero mean and auto-correlation R
CWa

X
(τ). Hence by

Corollary 5.3, there exists a random variable Y such that

lim
T→∞

1

(2T )d

∫
[−T,T ]d

CW a
X(t) dt = Y (5.19)

satisfying E[Y ] = 0 and

E[|Y |2] = 2dR
CWa

X
(0). (5.20)

Theorem 5.5. Let H be a matrix group, a ∈ H. If assumption A is satisfied

and random field {Xt}t∈Rd, with nonnegative real value auto-correlation function,

is ergodic in mean, then {CWX(t, a)}t∈Rd is also ergodic in mean.

Proof. Since {Xt}t∈Rd is a weakly stationary random field, the auto-correlation

function R
X
(τ) is a positive definite function and hence it has a power spectral

representation, by Bochner’s Theorem, which is given by equation (4.1) in Sec-

tion 4.1. Since {Xt}t∈Rd is a weakly stationary random field, then by Theorem

4.1, {CW a
X
(t)}t∈Rd is weakly stationary with zero mean and the auto-correlation

function R
CWa

X
(τ) has the power spectral representation given by equation (4.5)

in Section 4.1. As {Xt}t∈Rd is a mean ergodic and weakly stationary random field

with zero mean, by Remark 5.1

lim
T→∞

1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(
1− |τ i|

2T

)
R

X
(τ) dτ = 0. (5.21)



 

 

 

 

 

 

 

 

79

Now, using equation (4.5) in Section 4.1, remark 2.1 (ii) and then equation (4.1)

in Section 4.1 consecutively, we have∣∣∣∣∣ 1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(
1− |τ i|

2T

)
R

CWa
X
(τ) dτ

∣∣∣∣∣
≤ 1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(
1− |τ i|

2T

)
| deta|

∣∣∣∣∫
Rd

e−iτ ·λ|φ̂(aTλ)|2 dF
X
(λ)

∣∣∣∣ dτ
≤

| deta|∥φ∥2L1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(
1− |τ i|

2T

) ∣∣∣∣∫
Rd

e−iτ ·λ dF
X
(λ)

∣∣∣∣ dτ
= | deta|∥φ∥2L1

1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(
1− |τ i|

2T

)
|R

X
(τ)| dτ.

Thus by equation (5.21) we have

lim
T→∞

1

(2T )d

∫
[−2T,2T ]d

d∏
i=1

(
1− |τ i|

2T

)
R

CWa
X
(τ) dτ = 0

so that by Remark 5.1 {CW a
X
(t)}t∈Rd is mean ergodic.



 

 

 

 

 

 

 

 

CHAPTER VI

WAVELET REPRESENTATION OF RANDOM

FIELDS

We will establish the existence of Brownian motion and Brownian sheets by

providing an explicit series expansion. The calculations we make with this series

are quite basic, but still require some facts about function spaces. In this chapter

we begin in the first section with reviewing the construction of the Haar wavelet

representation of Brownian motion, and then in the following section we develop a

framework for constructing the Haar wavelet representation of a Brownian sheet.

Finally, we construct the wavelet representation of a Brownian sheet in finite

dimension via arbitrary compactly supported wavelet functions. In the particular

one dimensional case, we construct a wavelet representation of Brownian motion

via a compactly supported wavelet basis of L2[0, 1].

Remark 6.1. We first review the important properties of a complete orthonormal

basis of a Hilbert space, as well as Parseval’s identity.

(1) If {ϕn ∈ L2[0, 1] : n ∈ I} is a complete orthonormal basis of L2[0, 1],

then for all f ∈ L2[0, 1] we have the representation

f =
∑
n∈I

⟨f, ϕn⟩ϕn.

Furthermore, by Parseval’s identity we have for all f, g ∈ L2[0, 1],∫ 1

0

f(x)g(x) dx = ⟨f, g⟩ =
∑
n∈I

⟨f, ϕn⟩⟨g, ϕn⟩.
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Next, if f(x) = χ[0,s](x) and g(x) = χ[0,t](x) for s, t ∈ [0, 1] we get that

∑
n∈I

∫ s

0

ϕn(x) dx

∫ t

0

ϕn(y) dy =
∑
n∈I

⟨χ[0,s], ϕn⟩⟨χ[0,t], ϕn⟩ = ⟨χ[0,s], χ[0,t]⟩,

that is

∑
n∈I

∫ s

0

ϕn(x) dx

∫ t

0

ϕn(y) dy =

∫ 1

0

χ[0,s](x)χ[0,t](x) dx

=


∫ s

0

1 dx if s ≤ t∫ t

0

1 dx if t ≤ s

=


s if s ≤ t

t if t ≤ s

= min(s, t).

(2) We apply this idea to the d-dimensional case. If {ϕn ∈ L2([0, 1]d) :

n ∈ I} is an orthonormal basis of L2([0, 1]d), then for f(x) = χ∏d
i=1

[0,si]
(x) and

g(x) = χ∏d
i=1

[0,ti]
(x), x = (x1, ..., xd) ∈ [0, 1]d, we get that

∑
n∈I

∫
∏d

i=1[0,si]

ϕn(x) dx

∫
∏d

i=1[0,ti]

ϕn(x) dx = ⟨χ∏d
i=1[0,si]

, χ∏d
i=1[0,ti]

⟩L2([0,1]d)

=

∫
[0,1]d

χ∏d
i=1[0,si]

(x)χ∏d
i=1[0,ti]

(x) dx

=

∫
[0,1]d

d∏
i=1

χ[0,si](xi)χ[0,ti](xi) dxi

=
d∏

i=1

∫
[0,1]

χ[0,si](xi)χ[0,ti](xi) dxi

=
d∏

i=1

min(si, ti).

6.1 Haar Wavelet Representation of Brownian Motion

Consider the Haar function H : R → R given by H(t) = χ[0, 1
2
)(t)−χ[ 1

2
,1)(t).

Let n ∈ N be arbitrary. Then n can be written uniquely in the form n = 2j + k

for j = 0, 1, 2, ... and k = 0, 1, ..., 2j − 1. We define

Hn(t) = 2
j
2H(2jt− k) for n = 2j + k, where j = 0, 1, 2, ... and k = 0, 1, ..., 2j − 1,
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and H0(t) = 1. One can show that {Hn : n ∈ N∪{0} } is a complete orthonormal

sequence for L2[0, 1]. Details of the proof can be found in Daubechies (1992),

pp.10-13, and Walnut (2001), pp.115-123.

Remark 6.2. Since n = 2j + k for j = 0, 1, 2, .... and k = 0, 1, ..., 2j − 1 , we can

represent {Hn} as a doubly indexed sequence, indexed by j and k. For each j, the

function H2j+k is simply a translation of H2j by k, and the functions H2j+k have

disjoint supports for different k, so that for all x ∈ [0, 1], H2j+k(x) ̸= 0 for at most

one k.

Next, consider the triangle function T : R → R given by

T (t) = 2tχ[0, 1
2
) + 2(1− t)χ[ 1

2
,1).

Then for n = 2j + k with j = 0, 1, 2, ..., and k = 0, 1, ..., 2j − 1 we set Tn(t) =

T (2jt− k) and we also set T0(t) = t.

Remark 6.3.

1) 0 ≤ Tn(t) ≤ 1 for all t ∈ [0, 1] and all n.

2)

∫ t

0

H(x) dx =
1

2
T (t) for all t ∈ [0, 1].

3) For n = 2j + k with j = 0, 1, 2, ..., and k = 0, 1, ..., 2j − 1 by note 2) we

have ∫ t

0

Hn(x) dx = λnTn(t) where λ0 = 1, λn = 2−
j
2
−1.

Proof. 1) Since 0 ≤ T (t) ≤ 1, we have 0 ≤ Tn(t) = T (2jt−k) ≤ 1 where n = 2j+k

for j = 0, 1, 2, ..., and k = 0, 1, ..., 2j − 1.

2) Let t ∈ R. Obviously we have∫ t

0

H(x) dx = tχ[0, 1
2
) + (1− t)χ[ 1

2
,1) =

1

2
T (t).
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3) Let n = 2j + k with j = 0, 1, 2, ..., and k = 0, 1, ..., 2j − 1. Then∫ t

0

Hn(x) dx = 2
j
2

∫ t

0

H(2jx− k) dx

= 2
j
2

∫ 2jt−k

−k

H(x)2−j dx as x 7→ 2−j(x+ k)

= 2−
j
2

[∫ 2jt−k

0

H(x) dx+

∫ 0

−k

H(x) dx

]

= 2−
j
2
−1T (2jt− k)

= 2−
j
2
−1Tn(t).

Remark 6.4. Since n = 2j + k for j = 0, 1, 2, ..., and k = 0, 1, ..., 2j − 1 we can

represent {Tn} as a doubly indexed sequence indexed by j and k. For each j, the

T2j+k are simply translations of T2j by k, also the T2j+k have disjoint supports, so

that for all x ∈ [0, 1], T2j+k(x) ̸= 0 for at most one k, and hence by remark 6.3

1), 0 ≤
2j−1∑
k=0

T (2jx− k) ≤ 1 for all x ∈ [0, 1].

Theorem 6.1. (Steele, 2000) If {Zn} is a sequence of independent Gaussian vari-

ables with mean 0 and variance 1, then the series defined by

Xt(ω) =
∞∑
n=0

λnZn(ω)Tn(t) (6.1)

converges uniformly on [0, 1] with probability one. Moreover, the process {Xt}t∈[0,1]

defined by the limit is a standard Brownian motion.

Proof. (I) First we verify Uniform convergence with probability one. For each

n ∈ N there exists a unique j ≥ 0 such that n ∈ [2j, 2j+1). Then lnn < ln 2j+1 =

(j + 1) ln 2 < j + 1. Then by Lemma G.2 in Appendix G, there exist a random

variable C such that |Zn| ≤ C
√
lnn < C

√
j + 1 a.e. ω for all n ≥ 2.
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Let J ∈ N and M = 2J . We have

∞∑
n=M

λn|Zn(ω)|Tn(t) ≤ C
∞∑

n=M

λn
√
lnnTn(t) a.e. ω

≤ C
∞∑
j=J

2j−1∑
k=0

2−
j
2
−1
√
j + 1T2j+k(t) a.e. ω

= C

∞∑
j=J

2−
j
2
−1
√
j + 1

2j−1∑
k=0

T2j+k(t) a.e. ω.

By Remark 6.4 we have
2j−1∑
k=0

T2j+k(t) ≤ 1, so that

∞∑
n=M

λn|Zn(ω)|Tn(t) ≤ C
∞∑
j=J

2−
j
2
−1
√
j + 1 <∞ a.e. ω. (6.2)

We can see that, if J → ∞ then by Equation (6.2),
∞∑

n=M

λn|Zn(ω)|Tn(t) → 0 uni-

formly on [0, 1] a.e. ω, so that
N∑

n=0

λn|Zn(ω)|Tn(t) is a uniformly Cauchy sequence,

and hence it is uniformly convergent. Thus
∞∑
n=0

λnZn(ω)Tn(t) is uniformly and

absolutely convergent a.e. ω. It follows that the sample paths of {Xt}t∈[0,1] are

continuous with probability one.

(II) Next we calculate the covariance functions, consider

E[XsXt] = E

[
∞∑
n=0

λnZn(ω)Tn(s)
∞∑

m=0

λmZm(ω)Tm(t)

]

=
∞∑
n=0

∞∑
m=0

λnλmE [Zn(ω)Zm(ω)]Tn(s)Tm(t).

Since {Zn}n≥0 are independent, have mean 0 and variance 1, we have by corollary

3.2,

E[XsXt] =
∞∑
n=0

λ2nTn(s)Tn(t) =
∞∑
n=0

[λnTn(s)] · [λnTn(t)]

=
∞∑
n=0

∫ s

0

Hn(u) du

∫ t

0

Hn(v) dv.
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By Remark 6.1 (1) and as {Hn}n≥0 is a complete orthonormal basis of L2([0, 1])

we obtain that

E[XsXt] = min(s, t).

Since E[Xt] = E[
∞∑
n=0

λnZn(ω)Tn(t)] =
∞∑
n=0

λnE[Zn(ω)]Tn(t) = 0, we have

Cov(Xs, Xt) = E[XsXt]− E[Xs]E[Xt] = E[XsXt] = min(s, t).

(III) Now we verify that {Xt}t∈[0,1] is a Gaussian process.

Let t = {t1, t2, ..., tm : ti < tj, i < j} be any choice of finite sequence with core-

sponding vector X = {Xt1 , ..., Xtm}. Consider for s = (s1, ..., sm) ∈ [0, 1]m

E[eis
TX ] = E

[
exp

(
i

m∑
j=1

sjXtj

)]
= E[exp(i

m∑
j=1

sj

∞∑
n=0

λnZnTn(tj))]

= E[exp(i
∞∑
n=0

λnZn

m∑
j=1

sjTn(tj))].

Since {Zn} are independent processes we have by Theorem 3.1,

E[eis
TX ] =

∞∏
n=0

E[exp(iλnZn

m∑
j=1

sjTn(tj))].

As each Zn is Gaussian, we have by remark D.3,

E[eis
TX ] =

∞∏
n=0

exp

(
i(

m∑
j=1

sjTn(tj))E[λnZn]−
1

2
(

m∑
j=1

sjTn(tj))
2(Var(λnZn))

)
.

As E[cX] = cE[X],Var(cX) = c2Var(X) and {Zn} has zero mean and variance 1

we have

E[eis
TX ] =

∞∏
n=0

exp

(
−1

2
λ2n(

m∑
j=1

sjTn(tj))
2

)
= exp

(
−1

2

∞∑
n=0

λ2n(
m∑
j=1

sjTn(tj))
2

)

= exp

(
−1

2

∞∑
n=0

λ2n

m∑
j=1

m∑
k=1

sjskTn(tj)Tn(tk)

)

= exp

(
−1

2

m∑
j=1

m∑
k=1

sjsk

∞∑
n=0

λnTn(tj)λnTn(tk)

)

= exp

(
−1

2

m∑
j=1

m∑
k=1

sjsk

∞∑
n=0

∫ tj

0

Hn(u) du

∫ tk

0

Hn(v) dv

)
.
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By the calculation in part (II) we have

E[eis
TX ] = exp

(
−1

2

m∑
j=1

m∑
k=1

sjskCov(tj, tk)

)

= exp

(
isTE[X]− 1

2
sTσs

)
as E[Xt] = 0 for all t

where σ = [Cov(tj, tk)]m×m. Hence, by Remark D.3 in Appendix D , X =

{Xt1 , ..., Xtm} has the multivariate Gaussian distribution. This shows that {Xt}t∈[0,1]

is a Gaussian process. (The definition of multivariate Gassian distribution and

Gaussian process can be found in Appendix D.)

Note that X0(ω) =
∞∑
n=0

λnZn(ω)Tn(0) = 0 as Tn(0) = 0 for all n.

Therefore, by (I), (I), (II) and Lemma E.2 in Appendix E, {Xt}t∈[0,1] is standard

Brownian motion on [0, 1].

6.2 Haar Wavelet Representation of a Brownian Sheet

Let x = (x1, x2, ..., xd) ∈ Rd. For each i = 1, 2, ..., d we define a doubly-

indexed family of Haar functions by dilating and translating as

H
ji,ki

(xi) = 2
ji
2 H(2jixi − ki) for ji = 0, 1, 2, ... and ki = 0, ..., 2ji − 1

(6.3)

and H−1,0(xi) ≡ 1. (6.4)

Using the notation J = {j = (j1, j2, ..., jd) : ji = −1, 0, 1, 2, ...} and Kj = {k =

(k1, k2, ..., kd) : if ji = −1 then ki = 0, else ki = 0, 1, ..., 2ji − 1}, then for

j ∈ J, k ∈ Kj we define

Hd
j,k
(x) =

d∏
i=1

H
ji,ki

(xi) for all x = (x1, ..., xd) ∈ Rd.

We know that the family {H−1,0, Hj,k ; j = 0, 1, 2, ... and k = 0, 1, ..., 2j − 1}

is a complete orthonormal basis of L2[0, 1], hence by Remark 2.9 we obtain that

{Hd
j,k

: j ∈ J, k ∈ Kj} is a complete orthonormal basis for L2([0, 1]d).
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Remark 6.5. For each i = 1, 2, ..., d if ji = 0, 1, 2, ... and ki = 0, ..., 2ji −1 we have

H(2jixi − ki) = χ
[2−jiki , 2−ji−1+2−jiki)

− χ
[2−ji−1+2−jiki , 2−ji+2−jiki)

.

We can see that for t ∈ [0, 1]d and for each j ∈ J ,

1) Hd
j,k
(x) are simply translations of Hd

j,0
(x).

2) Hd
j,k
(x) have disjoint support, that is Hd

j,k
(x) ̸= 0 for at most one k at

each level j, and hence −1 ≤
∑
k∈Kj

Hd
j,k
(x) ≤ 1.

Next, consider the triangle function T : R → R such that

T (t) = 2tχ[0, 1
2
)(t) + 2(1− t)χ[ 1

2
,1)(t).

Now for ji = 0, 1, 2, ... and k = 0, ..., 2ji − 1, we define a doubly -indexed family of

triangle functions as

T
ji,ki

(ti) = T (2jiti − ki)

and T−1,0(ti) = tiχ[0,1](ti).

For j ∈ J, k ∈ Kj we define

T d
j,k
(t) =

d∏
i=1

T
ji,ki

(ti)

Remark 6.6. Let j ∈ J, k ∈ Kj. We have the following properties.

1) As 0 ≤ T (t) ≤ 1 then also 0 ≤ T d
j,k
(t) ≤ 1 for all t ∈ [0, 1]d. Moreover, T d

j,k
(x)

are simply translations of Hd
j,0
(x) and have disjoint support, that is T d

j,k
(x) ̸= 0 for

at most one k at each level j, and hence 0 ≤
∑
k∈Kj

T d
j,k
(x) ≤ 1.

2) As T (t) = 2

∫ t

0

H(x) dx for all t ∈ [0, 1], then for each i,

Tji,ki(ti) = T (2jiti − ki) = 2

∫ 2ji ti−ki

0

H(xi) dxi.

3)

∫
∏d

i=1[0,ti]

Hd
j,k(x) dx = λjT

d
j,k
(t) for λj =

d∏
j=1

λ
ji
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where λ
ji
=


2−

ji
2
−1 if ji ̸= −1

1 if ji = −1.

In fact,

∫ t

0

H(x) dx = tχ[0, 1
2
) + (1− t)χ[ 1

2
,1) =

1

2
T (t), gives

∫
∏d

i=1[0,ti]

Hd
j,k
(x) dx =

∫
∏d

i=1[0,ti]

d∏
i=1

Hji,ki(xi) d(x1, ..., xd)

=
d∏

i=1


2

ji
2

∫
[0,ti]

H(2jixi − ki) dxi if ji ̸= −1∫
[0,ti]

1 dxi if ji = −1.

By changing variables, xi 7→ 2−ji(xi + ki), we have

∫
∏d

i=1[0,ti]

Hd
j,k
(x) dx =

d∏
i=1


2−

ji
2

∫ 2ji ti−ki

−k1

H(xi) dxi if ji ̸= −1

ti if ji = −1.

Since

∫ 0

−ki

H(xi) dxi = 0 we have

∫
∏d

i=1[0,ti]

Hd
j,k
(x) dx =

d∏
i=1


2−

ji
2

∫ 2ji ti−ki

0

H(xi) dxi if ji ̸= −1

ti if ji = −1.

By 2) we obtain that

∫
∏d

i=1[0,ti]

Hd
j,k
(x) dx =

d∏
i=1


2−

ji
2
−1T

ji,ki
(ti) if ji ̸= −1

ti if ji = −1

=

(
d∏

i=1

λji

)(
d∏

i=1

T
ji,ki

(ti)

)
where λ

ji
=


2−

ji
2
−1 if ji ̸= −1

1 if ji = −1

= λj · T d
j,k
(t) where λj =

d∏
i=1

λ
ji
≤ 1.
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Remark 6.7. Fix an integer j0 (in particular, j0 = −1), let J = {(j1, j2, ..., jd) :

ji ≥ j0 for all i} and define |j| = max
i=1,...,d

{|ji|} for j = (j1, ..., jd) ∈ J . Then∑
j∈J

|j|≥N

d∏
i=1

(ji + 1)
1
22−

ji
2 → 0 as N → ∞.

Proof. For each n ∈ N ∪ {0,−1}, let Sn = {j ∈ J : |j| = n}.

Then
∞∪

n=−1

Sn = J , |Sn| ≤ nd, and Sm ∩ Sn = ϕ if m ̸= n.

Thus

∑
j∈J

|j|≥N

d∏
i=1

(ji + 1)
1
22−

ji
2 ≤

∞∑
n=N

∑
j∈Sn

d∏
i=1

(ji + 1)
1
22−

ji
2 .

Now if j ∈ Sn, there exists k = k(n, j) such that jk = n. Separating the corre-

sponding factor out,

∑
j∈J

|j|≥N

d∏
i=1

(ji + 1)
1
22−

ji
2 ≤

∞∑
n=N

∑
j∈Sn

(n+ 1)
1
22−

n
2

d∏
i=1,

i̸=k

(ji + 1)
1
22−

ji
2

=
∞∑

n=N

(n+ 1)
1
22−

n
2

∑
j∈Sn

d∏
i=1,

i ̸=k

(
ji + 1

2ji

) 1
2

≤
∞∑

n=N

(1 + n)
1
22−

n
2

∑
j∈Sn

1 =
∞∑

n=N

(1 + n)
1
22−

n
2 |Sn|

≤
∞∑

n=N

(1 + n)
1
22−

n
2 nd → 0 as N → ∞.

This proves the remark.

Theorem 6.2. If {Z
j,k

: j ∈ J and k ∈ Kj} is a collection of independent

Gaussian variables with mean 0 and variance 1, then the series defined by

Xt(ω) =
∑
j∈J

∑
k∈Kj

Z
j,k
(ω)λjT

d
j,k
(t) (6.5)

converges uniformly and absolutely on [0, 1]d with probability one. Moreover, the

random field {Xt}t∈[0,1]d defined by the limit is a Brownian sheet with zero mean.
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Proof. (I) Verify uniform convergence with probability 1. For each i = 1, ..., d, we

have ln(2ji + ki) < ln(2ji+1) as k < 2ji , and hence ln(2ji + |ki|) < ji + 1. Then by

Lemma G.3 in Appendix G, there exist a random variable C

|Zj,k| ≤ C

(
d∑

i=1

ln(2ji + |ki|)

) 1
2

≤ C

(
d∑

i=1

(ji + 1)

) 1
2

a.e. ω.

It is easy to see that, if ji ≥ 1 for all i then

(
d∑

i=1

(ji + 1)

) 1
2

≤
d∏

i=1

√
ji + 1, so that

the above inequality becomes |Zj,k| ≤ C
d∏

i=1

√
ji + 1. Now, consider

∑
j∈J

|j|≥N

∑
k∈Kj

|Zj,k|λjT d
j,k(t) ≤

∑
j∈J

|j|≥N

∑
k∈Kj

C

d∏
i=1

√
ji + 1λjT

d
j,k(t) a.e. ω

= C
∑
j∈J

|j|≥N

d∏
i=1

λj
√
ji + 1

∑
k∈Kj

T d
j,k
(t) a.e. ω.

By definition of λ and as by Remark 6.6 (1), 0 ≤
∑
k∈Kj

T d
j,k
(t) ≤ 1, we have

∑
j∈J

|j|≥N

∑
k∈Kj

|Zj,k|λjT d
j,k(t) ≤ C

∑
j∈J

|j|≥N

d∏
i=1

2−
ji
2
−1
√
ji + 1 a.e. ω

Then by Remark 6.7,

∑
j∈J

|j|≥N

∑
k∈Kj

|Zj,k|λjT d
j,k(t) ≤

d∏
i=1

C
∑
j∈J

|j|≥N

2−
ji
2
−1
√
ji + 1 −→ 0 a.e. ω as N → ∞.

This show that
∑
j∈J

|j|≤N

∑
k∈Kj

|Zj,k|λjT d
j,k(t) is a uniformly Cauchy sequence, and hence

it converges uniformly. Thus,
∑
j∈J

∑
k∈Kj

Z
j,k
λjT

d
j,k
(t) is absolutely and uniformly

convergent a.e. ω. In particular, the paths of the random field {Xt}t∈[0,1]d are

continuous with probability one.
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(II) Next we calculate the auto-covariance function. Consider

∑
j∈J

∑
k∈Kj

E[|λjZj,k
T d

j,k
(t)|2] =

∑
j∈J

∑
k∈Kj

|λj|2E[|Zj,k
|2]|T d

j,k
(t)|2

=
∑
j∈J

|λj|2
∑
k∈Kj

|T d
j,k
(t)|2 ≤

∑
j∈J

|λj|2

=
d∏
i=

∑
j∈J

2−ji−2 <∞,

then we have by Beppo Levi theorem

E[XsXt] = E

(∑
j∈J

∑
k∈Kj

λjZj,k
T d

j,k
(s)

)
·

∑
j̃∈J

∑
k̃∈Kj̃

λj̃Zj̃,k̃
T d

j̃,k̃
(t)


=
∑
j∈J

∑
j̃∈J

∑
k∈Kj

∑
k̃∈Kj̃

λjλj̃E[Zj,kZj̃,k̃]T
d
j,k(s)T

d
j̃,k̃
(t).

Since the random variables Zj,k are independent with mean 0 and variance 1 we

have by corollary 3.2 and Remark 6.6,

E[XsXt] =
∑
j∈J

∑
k∈Kj

λ2jT
d
j,k
(s)T d

j,k
(t) =

∑
j∈J

∑
k∈Kj

∫
∏d

i=1[0,ti]

Hd
j,k
dx

∫
∏d

i=1[0,si]

Hd
j,k
dx.

By Remark 6.1 (2) and since {Hd
j,k : j ∈ J, k ∈ Kj} is a complete orthonormal

basis for L2([0, 1]d) we have

E[XsXt] =
d∏

i=1

min{si, ti}.

For t ∈ [0, 1]d, we have as E[Zj,k] = 0 for all j, k

E[Xt] = E[
∑
j∈J

∑
k∈Kj

λjZj,k
T d

j,k
(t)] =

∑
j∈J

∑
k∈Kj

λjE[Zj,k
]T d

j,k
(t) = 0.

Hence

Cov[Xt, Xs] = E[XtXs]− E[Xt]E[Xs] =
d∏

i=1

min(si, ti).

(III) Finally we verify that {Xt}t∈Rd is a Gaussian random field.

Let t = {t1, t2, ..., tm}, ti ∈ [0, 1]d be any finite sequence, and consider the vector
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X = (X
t1
, ..., X

tm
). We claim that X has the multivariate Gaussian distribution.

For each l = 1, ...,m, tl is a vector (tl1, ..., t
l
d). Furthermore let s = (s1, s2, ..., sm) ∈

Rd be arbitrary. Consider

E[eis
TX ] = E[exp(i

m∑
l=1

slX
tl
)] = E

[
exp

(
i

m∑
l=1

sl

[∑
j∈J

∑
k∈Kj

λjZj,k
T

j,k
(tl)

])]

= E

[
exp

(
i
∑
j∈J

∑
k∈Kj

λjZj,k

m∑
l=1

slTj,k
(tl)

)]

Since {Zj,k} is independent, we have by Theorem 3.1,

E[eis
TX ] = E[exp(i

m∑
l=1

slX
tl
)] =

∏
j∈J

∏
k∈Kj

E

[
exp

(
iλjZj,k

m∑
l=1

slTj,k
(tl)

)]
.

Since each Zj,k has Gaussian distribution with zero mean and variance 1 we have

E[eis
TX ] =

∏
j∈J

∏
k∈Kj

exp

i m∑
l=1

slTj,k
(tl)λjE[Zj,k

]− 1

2

[
m∑
l=1

slT
d
j,k
(tl)

]2
λ2jVar(Zj,k

)


= exp

−1

2

∑
j∈J

∑
k∈Kj

λ2j

[
m∑
l=1

slT
d
j,k
(tl)

]2
= exp

[
−1

2

∑
j∈J

∑
k∈Kj

λ2j

m∑
l=1

m∑
q=1

slsqT
d
j,k
(tl)T d

j,k
(tq)

]

= exp

[
−1

2

m∑
l=1

m∑
q=1

slsq

(∑
j∈J

∑
k∈Kj

λ2jT
d
j,k
(tl)λjT

d
j,k
(tq)

)]
.

By the calculation of (II) we have

E[eis
TX ] = exp

[
−1

2

m∑
l=1

m∑
q=1

slsqCov(X
tl
, X

tq
)

]
= exp[−1

2
sTσs]

= exp[isTE[X]− 1

2
sTσs],

where σ = [σl,q]m×m, σl,q = Cov[Xtl , Xtq ].

Hence by Remark D.3 in Appendix D, {X
t1
, ..., X

tm
} has the multivariate Gaus-

sian distribution. This shows that, {Xt}t∈[0,1]d is a Gaussian process. Therefore,

{Xt}t∈[0,1]d is a Brownian sheet (see the definition of Brownian sheet in Section

3.5).
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6.3 Compactly SupportedWavelet Representation of Brow-

nian Sheet

Let {Vj(R)}j∈Z be a multiresolution analysis on L2(R), φ the real valued

scaling function of Vj(R) satisfying φ̂(0) = 0, and ψ the associated wavelet. Sup-

pose that suppφ, suppψ ⊂ [0, 2N − 1]. Let j0 ∈ Z be such that 2j0 ≥ 4N − 4. By

Theorem 2.14, the following collection

2
j0
2 φα

−2N+2(2
j0x), ..., 2

j0
2 φα

−1(2
j0x),

φj0,k(x)
∣∣
[0,1]

, 0 ≤ k ≤ 2j0 − 2N + 1,

2
j0
2 φβ

2j0−2N+2
(2j0(1− x)), ..., 2

j0
2 φβ

2j0−1
(2j0(1− x))

2
j
2ψα

−N+1(2
jx), ..., 2

j
2ψα

−1(2
jx),

ψ
j,k

∣∣
[0,1]

, 0 ≤ k ≤ 2j − 2N + 1,

2
j
2ψβ

2j−2N+2
(2j(1− x)), ..., 2

j
2ψβ

2j−N
(2j(1− x)), j ≥ j0

is a complete orthonormal basis of L2[0, 1].

Now let x = (x1, ..., xd) ∈ [0, 1]d, j = (j1, ..., jd) ∈ Zd, ji ≥ j0, k = (k1, ..., kd) ∈ Zd.

Introduce a separate dilation index j̃0 for the scaling function, j̃0 = j0, and for

each i ∈ {1, ..., d} we define φ
(j̃0,ki) for −2N + 2 ≤ ki ≤ 2j̃0 − 1 by

φ
(j̃0,ki)(xi) =



2
j̃0
2 φα

ki
(2j̃0xi), if − 2N + 2 ≤ ki ≤ −1

φ
j̃0,ki

(xi)
∣∣
[0,1]

, if 0 ≤ ki ≤ 2j̃0 − 2N + 1

2
j̃0
2 φβ

ki
(2j̃0(1− xi)), if 2j̃0 − 2N + 2 ≤ ki ≤ 2j̃0 − 1,

and for each ji ≥ j0, define ψ(ji,ki) for −N + 1 ≤ ki ≤ 2ji −N by

ψ
(ji,ki)(xi) =



2
ji
2 ψα

ki
(2jxi), if −N + 1 ≤ ki ≤ −1

ψ
ji,ki

(xi)
∣∣
[0,1]

, if 0 ≤ ki ≤ 2ji − 2N + 1

2
ji
2 ψβ

ki
(2ji(1− xi)), if 2ji − 2N + 2 ≤ ki ≤ 2ji −N,
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and define the collections

Ci = {ϕji,ki : ϕji,ki = φ(j̃0,ki),−2N + 2 ≤ ki ≤ 2j̃0 − 1,

or ϕji,ki = ψ(ji,ki),−N + 1 ≤ ki ≤ 2ij −N, ji ≥ j0
}

for i = 1, ..., d.

We will use the notation J = {j = (j1, ..., jd) : ji = j̃0, j0, j0 + 1, ...}

and

Kj = {k = (k1, ..., kd) : −2N + 2 ≤ ki ≤ 2j̃0 − 1 if ji = j̃0

or −N + 1 ≤ ki ≤ 2ji −N if ji ̸= j̃0
}
.

For each j ∈ J and k ∈ Kj, we define

Φj,k(x) =
d∏

i=1

ϕji,ki(xi) for all x ∈ [0, 1]d and ϕji,ki ∈ Ci. (6.6)

By Remark 2.9 we obtain that {Φj,k : j ∈ J, k ∈ Kj} is a complete orthonormal

basis for L2([0, 1]d).

Lemma 6.3. For j = j̃0, j0, j0 + 1, ..., and t ∈ R,
2j−N∑

k=−N+1

∣∣∣∣∣
∫ 2jt−k

−k

ψ(x) dx

∣∣∣∣∣ ≤ M

for some constant M which does not depend on j.

Proof. Since ψ has compact support, ∥ψ∥1 <∞ and then we have

2j−N∑
k=−N+1

∣∣∣∣∣
∫ 2jt−k

−k

ψ(x) dx

∣∣∣∣∣ =
−1∑

k=−N+1

∣∣∣∣∣
∫ 2jt−k

−k

ψ(x) dx

∣∣∣∣∣+
2j−N∑
k=0

∣∣∣∣∣
∫ 2jt−k

−k

ψ(x) dx

∣∣∣∣∣
≤

−1∑
k=−N+1

∫ 2jt−k

−k

|ψ(x)| dx+
2j−N∑
k=0

∣∣∣∣∣
∫ 2jt−k

−k

ψ(x) dx

∣∣∣∣∣
≤

−1∑
k=−N+1

∫ ∞

−∞
|ψ(x)| dx+

2j−N∑
k=0

∣∣∣∣∣
∫ 2jt−k

0

ψ(x) dx

∣∣∣∣∣
= (N − 1) ∥ψ∥1 +

2j−N∑
k=0

∣∣∣∣∣
∫ 2jt−k

0

ψ(x) dx

∣∣∣∣∣ .
It remains to show that

2j−N∑
k=0

∣∣∣∣∣
∫ 2jt−k

0

ψ(x) dx

∣∣∣∣∣ < C for some constant C which

does not depend on j. Since suppψ ⊂ [0, 2N − 1] and ψ̂(0) = 0 (as φ̂(0) = 0 and
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ψ̂(ξ) = h1(
ξ
2
)φ̂( ξ

2
), details can be found in Walnut (2001) pp.185 ) then obviously,∫ t

0

ψ(x) dx =

(∫ t

0

ψ(x) dx

)
χ[0,2N−1](t).

We define F (t) =

∣∣∣∣∫ t

0

ψ(x) dx

∣∣∣∣χ[0,2N−1](t) and Fj,k(t) = F (2jt − k) for all t ∈ R.

We can see that supp(F ) ⊂ [0, 2N−1], and suppFj,k ⊂
[
k
2j
, 2N−1+k

2j

]
. Now consider

the following cases of k ∈ N ∪ {0}.

If k = l(2N − 1) where l ≥ 0 we have

suppFj,k ⊂
[
l(2N − 1)

2j
,
l(2N − 1) + 2N − 1

2j

]
=

[
l(2N − 1)

2j
,
(l + 1)(2N − 1)

2j

]
.

We can see that if l ̸= l̃ and k = l(2N − 1) and k̃ = l̃(2N − 1) then

suppFj,k ∩ suppFj,k̃ = ϕ.

If k = l(2N − 1) + 1 where l ≥ 0 we have

suppFj,k ⊂
[
l(2N − 1) + 1

2j
,
l(2N − 1) + 1 + 2N − 1

2j

]
=

[
l(2N − 1) + 1

2j
,
(l + 1)(2N − 1) + 1

2j

]
.

We can see that if l ̸= l̃ and k = l(2N − 1) + 1 and k̃ = l̃(2N − 1) + 1 then

suppFj,k ∩ suppFj,k̃ = ϕ.

Continuing until k = l(2N − 1) + 2N − 2 where l ≥ 0 we have

suppFj,k ⊂
[
l(2N − 1) + 2N − 2

2j
,
l(2N − 1) + 2N − 2 + 2N − 1

2j

]
=

[
l(2N − 1) + 2N − 2

2j
,
(l + 1)(2N − 1) + 2N − 2

2j

]
.

We can see that if l ̸= l̃ and k = l(2N − 1) and k̃ = l̃(2N − 1) then

suppFj,k ∩ suppFj,k̃ = ϕ.
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Hence

∞∑
k=0

Fj,k(t) =
∞∑
l=0

2N−2∑
n=0

Fj,l(2N−1)+n(t) =
2N−2∑
n=0

∞∑
l=0

Fj,l(2N−1)+n(t)

≤
2N−2∑
n=0

C̃ = C̃(2N − 1)

for some constant C̃, as for each t, only one term in
∞∑
l=1

Fj,l(2N−1)+n(t) is nonzero,

and hence
∥∥ ∞∑

l=1

Fj,l(2N−1)+n(t)| ≤ sup
l

∥Fj,l(2N−1)+n

∥∥
∞ ≤ ∥ψ∥1.

Thus,
2j−N∑
k=0

∣∣∣∣∣
∫ 2jt−k

0

ψ(x) dx

∣∣∣∣∣ =
∞∑
k=0

Fj,k(t) ≤ (2N − 1)C̃

so that

2j−N∑
k=−N+1

∣∣∣∣∣
∫ 2jt−k

−k

ψ(x) dx

∣∣∣∣∣ ≤ (N − 1) ∥ψ∥1 + (2N − 1)C̃ =M

for some constant M .

By a similar argument, we also obtain that
2j̃0−1∑

k=−2N+2

∣∣∣∣∣
∫ 2j̃0 t−k

−k

φ(x) dx

∣∣∣∣∣ ≤ M̃

for some constant M̃ .

Lemma 6.4. For t ∈ [0, 1],
2j−N∑

k=−N+1

∣∣∣∣∫ t

0

ϕj,k(x) dx

∣∣∣∣ ≤ C2−
j
2 for some constant C,

for all j = j̃0, j0, j0 + 1, ..., where Kj and ϕj,k are as defined at the beginning of

this section.

Proof. Recall to remark 2.8 the construction of the boundary wavelets using the

Gram-Schmidt process. Thus, for each k = −N + 1, ...,−1 we have

2
j
2ψα

k (2
jx) =

−1∑
l=−N+1

Ck
l ψj,l(x), (6.7)

then

−1∑
k=−N+1

∣∣∣∣∫ t

0

2
j
2ψα

l (2
jx) dx

∣∣∣∣ = −1∑
k=−N+1

∣∣∣∣∣
∫ t

0

−1∑
l=−N+1

Ck
l ψj,l(x) dx

∣∣∣∣∣
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≤
−1∑

l=−N+1

−1∑
k=−N+1

∣∣∣∣∫ t

0

Ck
l ψj,l(x) dx

∣∣∣∣
≤

−1∑
l=−N+1

∣∣∣∣∫ t

0

Clψj,l(x) dx

∣∣∣∣
where Cl = max{|Ck

l |}, (6.8)

similarly

2j−N∑
k=2j−2N+2

∣∣∣∣∫ t

0

2
j
2ψβ

k (2
j(1− x)) dx

∣∣∣∣ = 2j−N∑
l=2j−2N+2

∣∣∣∣∫ t

0

C̃lψj,l(x) dx

∣∣∣∣ , (6.9)

for some scalars Cl, C̃l.

Now consider, for each t ∈ [0, 1],

2j−N∑
k=−N+1

∣∣∣∣∫ t

0

ψ(j,k)(x) dx

∣∣∣∣ = −1∑
k=−N+1

∣∣∣∣∫ t

0

ψ(j,k)(x) dx

∣∣∣∣+ 2j−2N+1∑
k=0

∣∣∣∣∫ t

0

ψ(j,k)(x) dx

∣∣∣∣
+

2j−N∑
k=2j−2N+2

∣∣∣∣∫ t

0

ψ(j,k)(x) dx

∣∣∣∣ .
By the definition of ψ(j,k),

2j−N∑
k=−N+1

∣∣∣∣∫ t

0

ψ(j,k)(x) dx

∣∣∣∣ = −1∑
k=−N+1

∣∣∣∣∫ t

0

2
j
2ψα

k (2
jx) dx

∣∣∣∣+ 2j−2N+1∑
k=0

∣∣∣∣∫ t

0

ψj,k(x) dx

∣∣∣∣
+

2j−N∑
k=2j−2N+2

∣∣∣∣∫ t

0

2
j
2ψβ

k (2
j(1− x)) dx

∣∣∣∣ .
By (6.8) and (6.9),

2j−N∑
k=−N+1

∣∣∣∣∫ t

0

ψ(j,k)(x) dx

∣∣∣∣ ≤ −1∑
k=−N+1

∣∣∣∣∫ t

0

Ckψj,k(x) dx

∣∣∣∣+ 2j−2N+1∑
k=0

∣∣∣∣∫ t

0

ψj,k(x) dx

∣∣∣∣
+

2j−N∑
k=2j−2N+2

∣∣∣∣∫ t

0

C̃kψj,k(x) dx

∣∣∣∣
≤M

2j−N∑
k=−N+1

∣∣∣∣∫ t

0

ψj,k(x) dx

∣∣∣∣
where M = max{|Ck|, 1, |C̃k|}
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By changing variable x 7→ 2−j(x+ k) we have

2j−N∑
k=−N+1

∣∣∣∣∫ t

0

ψ(j,k)(x) dx

∣∣∣∣ ≤M
2j−N∑

k=−N+1

2−
j
2

∣∣∣∣∣
∫ 2jt−k

−k

ψ(x) dx

∣∣∣∣∣ =M2−
j
2

2j−N∑
k=−N+1

∣∣∣∣∣
∫ 2jt−k

−k

ψ(x) dx

∣∣∣∣∣ .
By Lemma 6.3, we obtain that, for some a constant M ′,

2j−N∑
k=−N+1

∣∣∣∣∫ t

0

ψ(j,k)(x) dx

∣∣∣∣ ≤MM ′2−
j
2 . (6.10)

By the same argument we obtain that,

2j̃0−1∑
k=−2N+2

∣∣∣∣∫ t

0

φ(j̃0,k)(x) dx

∣∣∣∣ ≤ M̃2−
j0
2

2j̃0−1∑
k=−2N+2

∣∣∣∣∣
∫ 2j0 t−k

−k

φ(x) dx

∣∣∣∣∣ ≤ M̃M̃ ′2−
j̃0
2 .

(6.11)

for some constant M̃ . Hence,

∑
k∈Kj

∣∣∣∣∫ t

0

ϕj,k(x) dx

∣∣∣∣ =


2j̃0−1∑
k=−2N+2

∣∣∣∣∫ t

0

φ(j̃0,k)(x) dx

∣∣∣∣ if j = j̃0

2j−N∑
k=−N+1

∣∣∣∣∫ t

0

ψj,k(x) dx

∣∣∣∣ if j ̸= j̃0

≤


M̃M̃ ′2−

j̃0
2 if j = j̃0

MM ′2−
j
2 if j ̸= j̃0

≤ C̃2−
j
2 for C̃ = max{M̃M̃ ′,MM ′}.

Remark 6.8. For each j ∈ J we have

∑
k∈Kj

∣∣∣∣∣
∫
∏d

i=1[0,ti]

Φj,k(x) dx

∣∣∣∣∣ = ∑
k∈Kj

∣∣∣∣∣
∫
∏d

i=1[0,ti]

d∏
i=1

ϕji,ki(xi) dx1...dxd

∣∣∣∣∣
=
∑
k∈Kj

d∏
i=1

∣∣∣∣∫ ti

0

ϕji,ki(xi) dxi

∣∣∣∣ = d∏
i=1

∑
k∈Kj

∣∣∣∣∫ ti

0

ϕji,ki(xi) dxi

∣∣∣∣
≤ C̃

d∏
i=1

2−
ji
2 by Lemma 6.4.
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Theorem 6.5. Let {Zj,k : j ∈ J and k ∈ Kj} be a sequence of independent

Gaussian variables with mean 0 and variance 1. Then the series defined by

Xt(ω) =
∑
j∈J

∑
k∈Kj

Zj,k(ω)

∫
∏d

i=1[0,ti]

Φj,k(x) dx, for t = (t1, ..., td) ∈ [0, 1]d, (6.12)

converges uniformly and absolutely on [0, 1]d with probability one. Moreover,

{Xt}t∈[0,1]d is a Brownian sheet with zero mean.

Proof. (i) Verify uniform convergence with probability one.

For each i = 1, ..., d, we have ln(2ji + |ki|) < ln(2ji+1) as ki < 2ji , and hence

ln(2ji + |ki|) < ji + 1. Then by Lemma G.3 in Appendix G, there exist a random

variable C such that

|Zj,k| ≤ C

(
d∑

i=1

ln(2ji + |ki|)

) 1
2

≤ C

(
d∑

i=1

(ji + 1)

) 1
2

a.e. ω

It is easy to see that, if ji ≥ j0, j̃0 ≥ 1 for all i then

(
d∑

i=1

(ji + 1)

) 1
2

≤
d∏

i=1

√
ji + 1,

so that the above inequality become |Zj,k| ≤
d∏

i=1

√
ji + 1. Now, we have for each

N ∈ N

∑
j∈J

|j|≥N

∑
k∈Kj

|Zj,k|

∣∣∣∣∣
∫
∏d

i=1[0,ti]

Φj,k(x) dx

∣∣∣∣∣ ≤ C
∑
j∈J

|j|≥N

∑
k∈Kj

[
d∏

i=1

(ji + 1)
1
2

] ∣∣∣∣∣
∫
∏d

i=1[0,ti]

Φj,k(x) dx

∣∣∣∣∣
= C

∑
j∈J

|j|≥N

[
d∏

i=1

(ji + 1)
1
2

] ∑
k∈Kj

∣∣∣∣∣
∫
∏d

i=1[0,ti]

Φj,k(x) dx

∣∣∣∣∣ .
By Remark 6.8, we obtain that

∑
j∈J

|j|≥N

∑
k∈Kj

|Zj,k|

∣∣∣∣∣
∫
∏d

i=1[0,ti]

Φj,k(x) dx

∣∣∣∣∣ ≤ CC̃
∑
j∈J

|j|≥N

d∏
i=1

(ji + 1)
1
2

d∏
i=1

2−
ji
2

= ˜̃C
∑
j∈J

|j|≥N

d∏
i=1

(ji + 1)
1
22−

ji
2 → 0 as N → ∞
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arguing as in the proof of Theorem 6.2. Thus
∑
j∈J

|j|≤N

∑
k∈Kj

|Zj,k|

∣∣∣∣∣
∫
∏d

i=1[0,ti]

Φj,k(x) dx

∣∣∣∣∣
is a uniformly Cauchy sequence and thus converges uniformly. It follows that∑
j∈J

∑
k∈Kj

Zj,k

∫
∏d

i=1[0,ti]

Φj,k(x) dx converges absolutely and uniformly a.e. ω on

[0, 1]d.

(ii) Next, we calculate the covariance function. Consider

E[XsXt] = E

(∑
j∈J

∑
k∈Kj

Zj,k

∫
∏d

i=1[0,si]

Φj,k(x) dx

)∑
j̃∈J

∑
k̃∈Kj

Zj̃,k̃

∫
∏d

i=1[0,ti]

Φj̃,k̃(x) dx


=
∑
j∈J

∑
j̃∈J

∑
k∈Kj

∑
k̃∈Kj

E
[
Zj,kZj̃,k̃

] ∫∏d
i=1[0,si]

Φj,k(x) dx

∫
∏d

i=1[0,ti]

Φj̃,k̃(x) dx.

Since {Zj,k} is independent with mean 0 and variance 1 we have by Corollary 3.2,

E[XsXt] =
∑
j∈J

∑
k∈Kj

∫
∏d

i=1[0,si]

Φj,k(x) dx

∫
∏d

i=1[0,ti]

Φj,k(x) dx.

By Remark 6.1 (2) and as {Φj,k : j ∈ J, k ∈ Kj} is a complete orthonormal basis

for L2([0, 1]d) we have

E[Xs, Xt] =
d∏

i=1

min(si, ti).

For t ∈ [0, 1]d, since E[Zj,k] = 0 for all j, k we obtain that

E[Xt] =
∑
j∈J

∑
k∈Kj

E [Zj,k]

∫
∏d

i=1[0,ti]

Φj,k(x) dx = 0.

Hence

Cov[Xt, Xs] = E[XtXs]− E[Xt]E[Xs] =
d∏

i=1

min(si, ti).

(iii) Verify that the random field is a Gaussian random field.

Let t = {t1, t2, ..., tm}, tl ∈ [0, 1]d be any choice of finite sequence with corre-

sponding vector X = (Xt1 , ..., Xtm). Claim that X has the multivariate Gaussian

distribution.
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For each l = 1, ...,m we set tl = (tl1, ..., t
l
d) and also s = (s1, ..., sm).

Consider

E[eis
TX ] = E[exp(i

m∑
l=1

slXtl)]

= E

[
exp

(
i

m∑
l=1

sl

[∑
j∈J

∑
k∈Kj

Zj,k

∫
∏d

i=1[0,t
l
i]

Φj,k(x) dx

])]

= E

[
exp

(
i
∑
j∈J

∑
k∈Kj

Zj,k

m∑
l=1

sl

∫
∏d

i=1[0,t
l
i]

Φj,k(x) dx

)]
.

Since {Zj,k} is independent , we have by Theorem 3.1

E[eis
TX ] =

∏
j∈J

∏
k∈Kj

E

[
exp

(
iZj,k

m∑
l=1

sl

∫
∏d

i=1[0,t
l
i]

Φj,k(x) dx

)]
.

Since {Zj,k} is a Gaussian random field we have

E[eis
TX ] =

∏
j∈J

∏
k∈Kj

exp

(
i

m∑
l=1

sl

∫
∏d

i=1[0,t
l
i]

Φj,k(x) dxE [Zj,k]

−1

2

(
m∑
l=1

sl

∫
∏d

i=1[0,t
l
i]

Φj,k(x) dx

)2

Var[Zj,k]

 .

Since {Zj,k} has zero mean and variance 1 we obtain that

E[eis
TX ] =

∏
j∈J

∏
k∈Kj

exp

−1

2

(
m∑
l=1

sl

∫
∏d

i=1[0,t
l
i]

Φj,k(x) dx

)2


= exp

−1

2

∑
j∈J

∑
k∈Kj

(
m∑
l=1

sl

∫
∏d

i=1[0,t
l
i]

Φj,k(x) dx

)2


= exp

(
−1

2

∑
j∈J

∑
k∈Kj

m∑
l=1

m∑
q=1

slsq

∫
∏d

i=1[0,t
l
i]

Φj,k(x) dx

∫
∏d

i=1[0,t
q
i ]

Φj,k(x) dx

)

= exp

(
−1

2

m∑
l=1

m∑
q=1

slsq

[∑
j∈J

∑
k∈Kj

∫
∏d

i=1[0,t
l
i]

Φj,k(x) dx

∫
∏d

i=1[0,t
q
i ]

Φj,k(x) dx

])
.

By the calculation of covariance function in step (ii) we get that

E[eis
TX ] = exp

(
−1

2

m∑
l=1

m∑
q=1

slsqCov[Xtl , Xtq ]

)

= exp(−1

2
sTσs) where σ = [σl,q]m×m, σl,q = Cov[Xtl , Xtq ]

= exp(isTE[X]− 1

2
sTσs) as E[Xt] = 0 for all t ∈ [0, 1]d.
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Hence by Remark D.3 in Appendix D , {Xtl , ..., Xtm} has the multivariate Gaussian

distribution. Thus {Xt}t∈[0,1]d is a Gaussian process. Therefore by (ii) and (iii),

{Xt}t∈[0,1]d is a Brownian sheet (see the definition of Brownian sheet in Section

3.5).

Remark 6.9. In the one dimensional case (d = 1), we have the collection

C = {ϕj,k : ϕj,k = φ(j̃0,k),−2N + 2 ≤ k ≤ 2j̃0 − 1,

or ϕj,k = ψ(j,k),−N + 1 ≤ k ≤ 2j −N, j ≥ j0
}

In notation J = {j̃0, j0, j0 + 1, ...} and

Kj = {k ∈ Z : −2N + 2 ≤ k ≤ 2j̃0 − 1 if ϕj,k = φ(j̃0,k) ∈ C,

or −N + 1 ≤ k ≤ 2j −N if ϕj,k = ψ(j,k) ∈ C
}

Then the collection {ϕj,k : j ∈ J, k ∈ Kj} is a complete orthonormal basis for L2([0, 1]).

Following Theorem 6.5, the series written as

Xt(ω) =
∑
j∈J

∑
k∈Kj

Zj,k(ω)

∫ t

0

ϕj,k(x) dx for t ∈ [0, 1]

converges uniformly on [0, 1] with probability one. We therefore find that the

sample paths of {Xt}t∈[0,1] are continuous with probability one. As in step (ii) of

the proof we have E[XsXt] = min(s, t), it follows that Cov[Xt, Xs] = min(s, t) for

all s, t ∈ [0, 1]. Hence, by Lemma E.2 in Appendix E, the process {Xt}t∈[0,1] is a

Brownian motion.



 

 

 

 

 

 

 

 

CHAPTER VII

CONCLUSION

In this thesis, we have discussed two main topics; how to obtain the spectral

density function of a random field which is the continuous wavelet transform of

some random field with arbitrary dilation matrix, and then use this spectral density

function to obtain the ergodic properties, and how to construct Brownian motion

and a Brownian sheet from the Haar wavelet function and more generally, from

arbitrary compactly supported wavelet functions.

In Chapter IV, we discussed the continuous wavelet transform of three

types of random fields, a weakly stationary random field, a random field with

stationary increments and a random field with weakly stationary increments, via

arbitrary dilation matrix. The wavelet transform gives new random fields, which

are weakly stationary, as well as jointly weakly stationary for different dilation

matrices. Moreover, we calculated the power spectral and cross-power spectral

density function of those continuous wavelet transforms. Starting from a weakly

stationary random field (Section 4.1), we calculated the cross-power spectral den-

sity function of the wavelet transform of such a field, by a formula involving the

product of two of Fourier transforms of the mother wavelet function, each di-

lated by one of the dilation matrices as well as the power spectral function of

the original weakly stationary random field, in Theorem 4.1. We then obtained

the cross-power spectral density function of the continuous wavelet transform of

a stationary increment random field (Section 4.2) by the formula of Theorem 4.2.

We gave some examples of a random field with stationary increments in the one
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dimensional and d-dimensional cases respectively, namely of fractional Brownian

motion and the fractional Brownian field; the finite Borel measures on R and

Rd are found in equation (4.7) and (4.9), respectively. We also determined the

cross-power spectral density function for the wavelet transform of Brownian field

in Theorem 4.3, and of fractional Brownian motion in the one dimensional case.

In the final section of Chapter IV we showed that the cross-power spectral den-

sity function of the continuous wavelet transform of a random field with weakly

stationary increments involves a formula of products of two Fourier transform of

the mother wavelet each dilated by one of the dilation matrix, and a finite Borel

measure which derives from the spectral density function of the increments of the

original random field.

In Chapter V, we then showed that the continuous wavelet transform of a

weakly stationary, strongly stationary increments or weakly stationary increments

random field satisfies the ergodic property, that is there exists a random variable

with zero mean such that the estimate for the mean of the wavelet transform con-

verges to this random variable (Equation (5.17)) in the mean square sense, and

the estimate for the mean of the auto-correlation function of wavelet transform

converges to the square mean of this random variable (Equation (5.18)). In addi-

tion, for a weakly stationary random field with zero mean, if it is ergodic in mean

then its wavelet transform is also ergodic in mean.

In Chapter VI, the discrete wavelet method was used to construct Brow-

nian motion and Brownian sheets. The main contribution of the present work is

the construction of a Brownian motion from a wavelet basis. By the tensor prod-

uct construction, the Haar wavelet of L2[0, 1] basis gave a basis of L2[0, 1]d. We

then constructed the Brownian sheet from this Haar wavelet basis of L2([0, 1]d)

in Theorem 6.2. Secondly, recently some mathematicians constructed complete
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orthonormal bases of L2([0, 1]d) via a compactly supported wavelet function, as

explained in Section 2.6 and also the proofs in Appendix C. We then used this

basis to construct a Brownian sheet in Theorem 6.5, which reduces to Brownian

motion in the one dimensional case, as shown in Remark 6.9.
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APPENDIX A

FOURIER TRANSFORM OF SOME

FUNCTIONS

Example A.1. If f(x) = e−α|x|2 , x ∈ Rd where α > 0 then f̂(ξ) =
(π
α

) d
2
e−

|ξ|2
4α .

Proof. Since f ∈ L1(Rd) we consider the L1 Fourier transform.

First let d = 1. Then,
d

dx
(e−αx2

)= −2αxe−αx2

. Theorem 2.3 (1) says that,

(f̂)′(ξ) = iF(xf)(ξ) and F(f ′)(ξ) = −iξf̂(ξ) , hence we have

(f̂)′(ξ) = iF(xe−αx2

)(ξ) = − i

2α
F
(
−2αxe−αx2

)
(ξ)

= − i

2α
F (f ′) (ξ) = − i

2α
(−iξ) ˆ(f)(ξ) = − ξ

2α
ˆ(f)(ξ)

so that we obtain the linear differential equation (f̂)′(ξ) +
ξ

2α
f̂(ξ) = 0. It follows

that

d

dξ

(
e

ξ2

4α f̂(ξ)

)
= e

ξ2

4α (f̂)′(ξ) + f̂(ξ)e
ξ2

4α (
2ξ

4α
) = e

ξ2

4α

[
(f̂)′(ξ) +

ξ

2α
f̂(ξ)

]
= 0.

Hence e
ξ2

4α f̂(ξ) is a constant (does not depend on the variable ξ). To obtain the

value of this constant, let ξ = 0. We get f̂(0) =

∫
f(x) dx =

∫
e−αx2

dx =

√
π

α
.

Thus e
ξ2

4α f̂(ξ) =

√
π

α
and then f̂(ξ) =

√
π
α
e−

ξ2

4α .

The d-dimensional case follows by Fubini’s Theorem, since |x|2 =
d∑

j=1

x2j , then

f̂(ξ) =

∫
Rd

e−α|x|2e−iξ·x dx =
d∏

j=1

∫
R
e−αx2

je−iξj ·xj dxj

=
(π
α

) d
2

d∏
j=1

e−
ξ2i
4α

=
(π
α

) d
2
e−

|ξ|2
4α .
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We next apply the result of Example A.1.

Example A.2. The Gaussian distribution with zero mean and variance parameter

σ > 0 is the Borel measure on Rd with density e−
|x|2

2σ2 . That is, it is the probability

measurem defined bym(A) =

∫
A

e−
|x|2

2σ2 dx for Borel subsets A of Rd (see also more

details in Definition 3.5 in Section 3.1). The Fourier transform m̂ of this measure

is given in Definition 2.8 of Section 2.4, and by Example A.1 we obtain that

m̂(ξ) =

∫
Rd

e−iξ·xe−
|x|2

2σ2 dx = (2πσ2)
d
2 e−

|ξ|2σ2

2 .

We will use this formula in Appendix D to obtain the characteristic function of a

Gaussian random field.



 

 

 

 

 

 

 

 

APPENDIX B

THE PROOF OF BOCHNER’S THEOREM

We begin by establishing some general properties of positive definite func-

tions.

Proposition B.1. Let φ be a positive definite function. Then

1) φ(0) ≥ 0

2) φ(−x) = φ(x) and |φ(x)| ≤ φ(0) for all x ∈ R

3) the sums, products and limits of positive definite functions are positive

definite. In addition, expφ is a positive definite function.

Proof. Suppose that φ is a positive definite function. Then for all finite sequences

of complex number {ci}Ni=1 and finite sequences {ξi}Ni=1 ⊂ Rd we have
N∑

i,j=1

cicjφ(ξi−

ξj) ≥ 0.

Then 1) setting N = 1 and c1 = 1 we get φ(0) ≥ 0,

2) Setting N = 2, ξ1 = x and ξ2 = 0 we get

|c1|2φ(0) + |c2|2φ(0) + c1c2φ(x) + c2c1φ(−x) ≥ 0.

Setting c1 = i, c2 = −1 we have 2φ(0) ≥ iφ(x) − iφ(−x), then 0 = Im(iφ(x)) −

Im(iφ(−x)) = Re(φ(x))− Re(φ(−x)), that is

Re(φ(−x)) = Re(φ(x)).

Setting c1 = 1, c2 = −1 we have 2φ(0) ≥ φ(x) + φ(−x). Hence 0 = Im(φ(x)) +

Im(φ(−x)) that is

Im(φ(−x)) = −Im(φ(x)).
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Hence φ(−x) = Re(φ(−x)) + iIm(φ(−x)) = Re(φ(x)) + iIm(φ(x)) = φ(x).

If φ(x) ̸= 0, setting c1 = −|φ(x)|
φ(x)

, c2 = 1, then |c1| = 1 and hence

2φ(0) ≥ |φ(x)|
φ(x)

φ(x) +
|φ(x)|
φ(x)

φ(−x) = |φ(x)|+ |φ(x)|
φ(x)

φ(x) = 2|φ(x)|.

Thus |φ(x)| ≤ φ(0).

3) Note that φ positive definite is equivalent to the matrix [φ(ξi − ξj)]i,j

being positive semidefinite for all choice of ξ1, ..., ξN ∈ Rd and N ∈ N. From

here it is not difficult to see that the product of two positive definite functions

is again a positive definite function. The sums and pointwise limits of positive

definite functions are obviously positive definite from the definition. Since the

exponential function of a given function is obtained by sums, products, and limits,

the exponential of a positive definite function is again positive definite.

Remark B.1. The following two properties will be used in the next proposition.

1) For fixed x ∈ Rd, the function z 7−→ φ(z)eiz·x is a positive definite

function, whenever φ is a positive definite function.

Indeed, let {ck}Nk=1 ⊂ C and {ξk}Nk=1 ⊂ Rd. We have

N∑
k,j=1

ckcje
i(ξk−ξj)·x =

N∑
k,j=1

ckcje
iξk·xe−iξj ·x =

N∑
k,j=1

cke
iξk·xcjeiξj ·x =

∣∣ N∑
k=1

cke
iξk·x
∣∣2 ≥ 0.

Thus z 7−→ eiz·x is a positive definite function and hence z 7−→ φ(z)eiz·x is a

positive definite function, as it is the product of two positive definite functions.

2) If f is an integrable even function, then f∗f is a positive definite function.

Indeed, let {ci}Ni=1 ⊂ C and {ξi}Ni=1 ⊂ Rd.

We have

N∑
i,j=1

cicj(f ∗ f)(ξi − ξj) =
N∑

i,j=1

cicj

∫
Rd

f(y)f(ξi − ξj − y) dy.

Changing the variable y 7→ ξi − y we have

N∑
i,j=1

cicj(f ∗ f)(ξi − ξj) =
N∑

i,j=1

cicj

∫
Rd

f(ξi − y)f(y − ξj) dy.
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Since f is an even function, f(y − ξj) = f(ξj − y) so that

N∑
i,j=1

cicj(f ∗ f)(ξi − ξj) =
N∑

i,j=1

cicj

∫
Rd

f(ξi − y)f(ξj − y) dy

=

∫
Rd

N∑
i,j=1

cicjf(ξi − y)f(ξj − y) dy

=

∫
Rd

∣∣∣∣∣
N∑
i=1

cif(ξi − y)

∣∣∣∣∣
2

dy ≥ 0.

Proposition B.2. The Fourier transform of a finite Borel measure m on Rd has

the following properties.

1) m̂ is a continuous function with m̂(0) = m(Rd).

2) m̂ is a positive definite function.

3) If m1, m2 are two measures, then the Fourier transform of their con-

volution is the product of their Fourier transforms. Recall that the convolution is

defined by

(m1 ∗m2)(B) =

∫
{(x,y):x+y∈B}

1 dm1(x)dm2(y),

and hence for any bounded continuous function g∫
Rd

g(z) d(m1 ∗m2)(z) =

∫
R2d

g(x+ y) dm1(x)dm2(y).

Proof. 1) Suppose that ξn → ξ as n → ∞. Now for each n ∈ N, |eiξn·x| = 1,∫
Rd

dm(x) = m(Rd) < ∞ and eiξn·x −→ eiξ·x. Then by the Dominated Conver-

gence Theorem,

m̂(ξn) =

∫
Rd

e−iξn·x dm(x) −→
∫
Rd

e−iξ·x dm(x) = m̂(ξ).

This shows that m̂ is a continuous function.

Obviously, m̂(0) =

∫
Rd

1 dm(x) = m(Rd).

2) Let {cj}nj=1 be a finite set of complex numbers and {ξj}nj=1 any corresponding

finite subset of Rd.
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Then

n∑
j,k=1

cj̄ckm̂(ξj − ξk) =
n∑

j,k=1

cj c̄k

∫
Rd

e−iξj ·xeiξk·x dm(x) =

∫
Rd

n∑
j,k=1

cje
−iξj ·xcke−iξk·x dm(x)

=

∫
Rd

∣∣∣∣∣
n∑

j=1

cje
−iξj ·x

∣∣∣∣∣
2

dm(x) ≥ 0

Hence m̂ is a positive definite function.

3) Consider

m̂1(ξ)m̂2(ξ) =

∫
R2d

e−iξ·(x+y) dm1(x) dm2(y) =

∫
Rd

e−iξ·(z) d(m1∗m2)(z) = m̂1∗m2(ξ).

Lemma B.3. If φ is a measurable positive definite function on Rd, then for every

nonnegative Lebesgue integrable function f , one has∫
Rd

∫
Rd

φ(x− y)f(x)f(y) dx dy ≥ 0. (B.1)

If the function f is even, then∫
Rd

φ(x) (f ∗ f)(x) dx ≥ 0. (B.2)

In particular, for all α > 0 we have∫
Rd

φ(x)e−α|x|2 dx ≥ 0. (B.3)

Proof. Let k ≥ 2 be arbitrary.

As φ is a positive definite function, kφ(0) +
∑
i̸=j

φ(yi − yj) ≥ 0 for any vector

y = (y1, ..., yk) ∈ (Rd)k. Clearly, the function φ̃(y) = kφ(0) +
∑
i ̸=j

φ(yi − yj) is

Lebesge measurable on (Rd)k.

By using the boundedness and measurability of φ we can integrate this inequality

with respect to the finite measure f(y1)f(y2)...f(yk) dy1 dy2 ... dyk, and as I(f) =
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∫
Rd

f(x) dx ≥ 0 we have

∫
Rkd

kφ(0)
k∏

l=1

f(yl) dy +
∑
i̸=j

∫
Rkd

φ(yi − yj)
k∏

l=1

f(yl) dy ≥ 0

kφ(0)
k∏

l=1

∫
Rd

f(yl) dyl +
∑
i̸=j

 k∏
l=1
l ̸=i,j

∫
Rd

f(yl) dyl

 ∫
Rd×Rd

φ(yi − yj)f(yi)f(yj) dyi dyj ≥ 0

kφ(0)I(f)k + I(f)k−2
∑
i̸=j

∫
Rd

∫
Rd

φ(yi − yj)f(yi)f(yj) dyi dyj ≥ 0

kφ(0)I(f)k + I(f)k−2(k)(k − 1)

∫
Rd

∫
Rd

φ(x− y)f(x)f(y) dx dy ≥ 0.

If I(f) = 0, the assertion is trivial. Thus, we may assume that I(f) ̸= 0. Dividing

by k(k − 1)I(f)k we get

φ(0)

k − 1
+ I(f)−2

∫
Rd

∫
Rd

φ(x− y)f(x)f(y) dx dy ≥ 0.

Letting k → ∞, ∫
Rd

∫
Rd

φ(x− y)f(x)f(y) dx dy ≥ 0. (B.4)

Next, assume that f is even, that is f(−y) = f(y) for all y ∈ Rd.

Then ∫
Rd

∫
Rd

φ(x− y)f(x)f(y) dx dy =

∫
Rd

∫
Rd

φ(x− y)f(x) dx f(y) dy.

Changing a variable, x 7→ x+ y, and applying Fubini’s Theorem we have∫
Rd

∫
Rd

φ(x− y)f(x)f(y) dx dy =

∫
Rd

∫
Rd

φ(x)f(x+ y) dx f(y) dy

=

∫
Rd

φ(x)

∫
Rd

f(x+ y)f(y) dy dx.

Again changing a variable, y 7→ −y, and as f is even we have∫
Rd

∫
Rd

φ(x− y)f(x)f(y) dx dy =

∫
Rd

φ(x)

∫
Rd

f(x− y)f(−y) dy dx

=

∫
Rd

φ(x)

∫
Rd

f(x− y)f(y) dy dx

=

∫
Rd

φ(x)(f ∗ f)(x) dx. (B.5)
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Thus, by equation (B.4) and (B.5),∫
Rd

φ(x)(f ∗ f)(x) dx ≥ 0. (B.6)

To prove the last assertion, we express e−α|x|2 as a convolution. Set f(x) = ce−2α|x|2

for c, α > 0. This function is Lebesgue integrable, nonnegative and even on Rd,

and f̂(ξ) = c
( π
2α

) d
2
e−

|ξ|2
8α . Thus F(f ∗ f)(ξ) =

(
f̂(ξ)

)2
= c2

( π
2α

)d
e−

|ξ|2
4α =

c2
( π
2α

) d
2

[( π
2α

) d
2
e−

|ξ|2
4α

]
. Then, by Example A.1 in Appendix A we have (f ∗

f)(x) = c2
( π
2α

) d
2
e−α|x|2 . If we let c =

( π
2α

)− d
4
, then f(x) =

(
π
2α

)− d
4 e−2α|x|2 with

c, α > 0 and hence (f ∗f)(x) = e−α|x|2 . Substituting into equation (B.6) we obtain∫
Rd

φ(x)e−α|x|2 dx ≥ 0.

Proof of Bochner’s Theorem

Proof. First, suppose that φ is an integrable positive definite function on Rd. Let

f = φ̂. Then f is bounded and continuous. We claim that f ≥ 0. Let us consider

the function

Pt(x) = (2πt)−
d
2 e−

|x|2
2t for t > 0.

As f is bounded and Pt integrable, Pt ∗ f exists. Then

(Pt ∗ f)(x) =
∫
Rd

f(y)Pt(x− y) dy = (2πt)−
d
2

∫
Rd

f(y)e−
|x−y|2

2t dy

= (2πt)−
d
2

∫
Rd

∫
Rd

φ(z)e−iz·y dz e−
|x−y|2

2t dy

= (2πt)−
d
2

∫
Rd

∫
Rd

φ(z)e−iz·y e−
|x−y|2

2t dy dz,

where Fubini’s theorem applies by integrability of φ. Changing the variable y 7→
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x− y we have

(Pt ∗ f)(x) = (2πt)−
d
2

∫
Rd

∫
Rd

φ(z)e−iz·(x−y) e−
|y|2
2t dy dz

= (2πt)−
d
2

∫
Rd

φ(z)e−iz·x
(∫

Rd

eiz·y e−
|y|2
2t dy

)
dz.

By Example A.1 we have

(Pt ∗ f)(x) = (2πt)−
d
2

∫
Rd

φ(z)e−iz·x (2tπ)
d
2 e−

t|z|2
2 dz.

By Lemma B.3 and Remark B.1 it turns out that

(Pt ∗ f)(x) =
∫
Rd

φ(z)e−iz·xe−
t|z|2
2 dz ≥ 0.

As |φ(z)eiz·xe−
t|z|2
2 | ≤ |φ(z)|, and φ is integrable, we have by the Dominated

Convergence Theorem

lim
k→∞

P 1
k
∗ f(x) =

∫
φ(z)e−iz·x lim

k→∞

(
e−

|z|2
2k

)
dz =

∫
φ(z)e−iz·x dz = f(x).

Hence f ≥ 0 as P 1
k
∗f(x) ≥ 0 for all k > 0, and the claim is proved. Next we show

that f is integrable. For each k > 0 , we have by Fubini’s Theorem∫
Rd

f(x)e−
|x|2
2k dx =

∫
Rd

∫
Rd

φ(z)e−ix·z dz e−
|x|2
2k dx as f = φ̂

=

∫
Rd

φ(z)

[∫
Rd

e−ix·z e−
|x|2
2k dx

]
dz

=

∫
Rd

φ(z)

[
(2kπ)

d
2 e−

k|z|2
2

]
dz.

Since φ is positive definite and applying Proposition B.1 (1) we have∫
Rd

f(x)e−
|x|2
2k dx ≤ φ(0) (2kπ)

d
2

∫
Rd

e−
k|z|2

2 dz.

Since

∫
Rd

e−
k|z|2

2 dz =

(
2π

k

) d
2

it follows that

∫
Rd

f(x)e−
|x|2
2k dx ≤ φ(0) (2π)d .
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Since e−
|x|2
2k ≤ 1 and lim

k→∞
e−

|x|2
2k = 1 we have by Fatou’s Lemma∫

Rd

f(x) dx ≤ lim
k→∞

∫
Rd

f(x)e−
|x|2
2k dx ≤ lim

k→∞
φ(0)(2π)d <∞.

That is f is integrable. Since f = φ̂ and f, φ are integrable functions, we have

f̌(x) = φ(x) a.e. x. That is

φ(x) =
1

(2π)d

∫
Rd

eiξ·xf(ξ) dξ a.e.

which shows that the assertion holds, with dµ(ξ) = 1
(2π)d

f(ξ)dξ. Note that the

measure µ is finite as f is an integrable function.

In the general case, suppose that φ is a Lebesgue measurable positive def-

inite function on Rd. Let ϵ > 0, and consider the function x 7−→ φ(x)e−ϵ|x|2 . We

have ∫
Rd

|φ(x)e−ϵ|x|2 | dx ≤ φ(0)

∫
Rd

e−ϵ|x|2 dx <∞

that is, x 7−→ φ(x)e−ϵ|x|2 is an integrable function. As shown in the proof of

Lemma B.3, e−ϵ|x|2 is a positive definite function. Since the product of positive

definite functions is again positive definite, then φ(x)e−ϵ|x|2 is an integrable positive

definite function, hence as shown above, coincides almost every where with a

continuous function. Hence the function φ has a continuous modification ψ. We

show that ψ is also a positive definite function. Indeed, since φ is bounded and

Pt integrable, φ ∗ Pt exists. By continuity (see Theorem 8.4 in Folland (1999))

one has ψ(x) = lim
t→0

ψ ∗ Pt(x) for each x. As ψ ∗ Pt(x) = φ ∗ Pt(x) for all x and

t > 0, in view of proposition B.1 (3), it remains to note that φ ∗ Pt is a positive

definite function. Indeed, applying the Dominated Convergence Theorem we have

φ∗Pt(x) = lim
ϵ→0

φϵ ∗Pt(x), where φϵ(x) = φ(x)e−ϵ|x|2 . We already know by the first

part that the integrable positive definite function φϵ coincides almost everywhere

with the Fourier transform of some nonnegative integrable function gϵ. Hence
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φϵ ∗ Pt is the Fourier transform of the nonnegative function gϵP̂t, i.e., is positive

definite. Therefore, ψ is a continuous positive definite function, almost everywhere

equal to φ. The remaining part of this proof requires tools of functional analysis

and can be found in Pinsky (2009).



 

 

 

 

 

 

 

 

APPENDIX C

THE PROOF OF SUBSECTION 2.6.3

The proof of Lemma 2.8

Proof. Since supp(φ) ⊂ [0, 2N − 1], the support of φ(x− k) is contained in [k, k+

2N − 1]. Now, for k ≤ −2N + 1, we have [k, k + 2N − 1] ⊂ (−∞, 0], and we get

ck =

∫ ∞

−∞
f(x)φ(x− k) dx =

∫ k+2N−1

k

f(x)φ(x− k) dx = 0

as f(x) = 0 for x ∈ [k, k + 2N − 1] ⊂ (−∞, 0].

Let p be the smallest integer k such that ck ̸= 0 (p exists as ck = 0 for k ≤ −2N+1).

Suppose to contrary that p < 0. Then p + 1 ≤ 0, and it follows that f(x) = 0

for all x ∈ [p, p + 1] ⊂ (−∞, 0]. Observe however that f(x) = cpφ(x − p) for

x ∈ [p, p + 1]. Then φ(x − p) = 0 for all x ∈ [p, p + 1], that is, φ(x) = 0 for all

x ∈ [0, 1], which contradicts the fact that supp(φ)∩ [0, 1] ̸= ∅. Hence the smallest

integer p such that cp ̸= 0 is greater than or equal to 0. Therefore, ck = 0 for

k ≤ −1.

The proof of Theorem 2.9

Proof. Keep the notation Sl(j), l = 1, 2, 3 from the paragraph below Lemma 2.8.

For each j, let us set

X
(1)
j = span{φj,k : k ∈ S1(j)}

X
(2)
j = span{φj,k : k ∈ S2(j)}

X
(3)
j = span{φj,k : k ∈ S3(j)}
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Furthermore, let us set

Y
(1)
j = span{φj,k

∣∣
[0,1]

: k ∈ S1(j)}

Y
(2)
j = span{φj,k

∣∣
[0,1]

: k ∈ S2(j)}

Y
(3)
j = span{φj,k

∣∣
[0,1]

: k ∈ S3(j)}

These are all finite dimensional spaces. Our first goal is to show that P : X
(1)
j −→

Y
(1)
j , P : X

(2)
j −→ Y

(2)
j , P : X

(3)
j −→ Y

(3)
j are one-to-one. P being linear and

surjective, it will follow that these two maps are linear isomorphisms. Clearly

P : X
(2)
j −→ Y

(2)
j is one-to-one, as supp(φj,k) ⊂ [0, 1] for all k ∈ S2(j).

Next, let f1(x) =
∑

k∈S1(j)

ckφj,k(x) ∈ X
(1)
j and suppose that Pf1 = 0. That is,

f1(x) =
−1∑

k=−2N+2

ckφj,k(x) = 0 for all x ∈ [0, 1]. (C.1)

As supp(φj,k) ⊂ [2−jk, 2−j(2N + k− 1)] and j ≥ j0, it follows that (C.1) holds for

all x ∈ [0,∞). Equivalently,

f1(2
−jx) =

−1∑
k=−2N+2

2
j
2 ckφ(x− k) = 0 for all x ≥ 0.

Let us first show that c−1 = 0.

If −2N + 2 ≤ k ≤ −2, then supp(φ(x − k)) ⊂ (−∞, 2N − 3] while for k0 = −1,

supp(φ(x − k0)) ⊂ [−1, 2N − 2]. Hence for x ∈ (2N − 3, 2N − 2) we have 0 =

f1(2
−jx) = 2

j
2 c−1φ(x− (−1)). As (2N − 3, 2N − 2)∩ supp(φ(x− (−1))) ̸= ∅, then

c−1 = 0. Thus,

f1(2
−jx) =

−2∑
k=−2N+2

2
j
2 ckφ(x− k) = 0 for all x ≥ 0.

We repeat the above argument, with k0 = −2. If −2N + 2 ≤ k ≤ −3, then

supp(φ(x−k)) ⊂ (−∞, 2N−4] while for k0 = −2, supp(φ(x−k0)) ⊂ [−2, 2N−3].

Hence for x ∈ (2N − 4, 2N − 3) we have 0 = f2(2
−jx) = 2

j
2 c−2φ(x − (−2)). As
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[2N − 4, 2N − 3] ∩ supp(φ(x− (−2))) ̸= ∅, then c−2 = 0.

Continuing this way, we obtain that ck = 0 for all −2N + 2 ≤ k ≤ −1, that is,

f1 = 0. It follows that

P : X
(1)
j −→ Y

(1)
j

is one to one.

Next let f3(x) =
∑

k∈S3(j)

ckφj,k(x) ∈ X
(3)
j and suppose that Pf3 = 0. That

is,

f3(x) =
2j−1∑

k=2j−2N+2

ckφj,k(x) = 0 for all x ∈ [0, 1]. (C.2)

As supp(φj,k) ⊂ [2−jk, 2−j(2N + k− 1)] and j ≥ j0, it follows that (C.2) holds for

all x ∈ (−∞, 1].

Set

f̃3(x) = f3(x+ 1) =
2j−1∑

k=2j−2N+2

ck2
j
2φ(2jx+ 2j − k)

= 2
j
2

−1∑
k=−2N+2

ck+2jφ(2
jx− k).

Then f3 ∈ Vj(R) and f̃3(2−jx) = 2
j
2

−1∑
k=−2N+2

ck+2jφ(x−k) = 0 for all x ∈ (−∞, 0].

By lemma 2.8 we have ck+2j = 0 for k ≤ −1, that is, ck = 0 for 2j − 2N +2 ≤ k ≤

2j − 1. This shows that

P : X
(3)
j −→ Y

(3)
j

is one to one.

Next we claim that there exist C2 > C1 > 0 so that for any j ≥ j0 and for

any sequence {aj,k}k∈S(j) of coefficients

C1

 ∑
k∈S(j)

|a
j,k
|2
 1

2

≤

∥∥∥∥∥∥
∑

k∈S(j)

a
j,k
φ

j,k
(x)

∥∥∥∥∥∥
L2[0,1]

≤ C2

 ∑
k∈S(j)

|a
j,k
|2
 1

2

. (C.3)
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Let any j ≥ j0 be fixed. Let Xj = X
(1)
j +X

(2)
j +X

(3)
j and Yj = Y

(1)
j + Y

(2)
j + Y

(3)
j .

Then as {φj,k}k∈S(j) are orthonormal, (C.3) is equivalent to

C1∥f∥L2(R) ≤ ∥Pf∥L2([0,1]) ≤ C2∥f∥L2(R) (C.4)

for f =
∑

k∈S(j)

aj,kφj,k ∈ Xj.

We first show that (C.4) holds for all f ∈ X
(1)
j . Observe that

1) X
(1)
j and Y

(1)
j are 2N − 2 dimensional vector spaces.

2) If f(x) =
−1∑

k=−2N+2

ckφj,k(x) ∈ X
(1)
j , then as supp(φj,k) ⊂ [2−jk, 2−j(2N+

k − 1)] we have that φj,k(x) = 0 for all x ≥ 2−j(2N − 2), and as j ≥ j0 then,

f(x) = 0 for all x ≥ 1. Observe that the following diagram is commutative:

X
(1)
j , ∥ · ∥L2(R)

D
2j−→ X

(1)
0 , ∥ · ∥L2(R)

P ↓ ↓ Q

Y
(1)
j , ∥ · ∥L2[0,1]

D
2j−→ Y

(1)
0 , ∥ · ∥L2[0,∞)

where X
(1)
0 = span{φ(x+ 1), ..., φ(x+ 2N − 2)}

Y
(1)
0 = span{φ(x+ 1)

∣∣
[0,∞)

, ..., φ(x+ 2N − 2)
∣∣
[0,∞)

}

Q : f 7−→ f
∣∣
[0,∞)

the restriction map

(D2jf)(x) = 2−
j
2f(2−

j
2x).

Since f1 =
−1∑

k=−2N+2

ckφj,k ∈ X
(1)
j then (D2jf1)(x) =

−1∑
k=−2N+2

ckφ(x − k) ∈ X
(1)
0 .

Thus, clearly, D2j is an isometry of X
(1)
j onto X

(1)
0 in the norm ∥ ·∥L2(R). Similarly,

D2j is an isometry of Y
(1)
j onto Y

(1)
0 , when Y

(1)
j is given ∥ · ∥L2[0,1] and Y

(1)
0 is given

∥ · ∥L2[0,∞). In fact

1) Since φj,k(x) = 0 for x ≥ 1
2
we may consider an element of Y

(1)
j as

defined on [0,∞).

2) If f̃(x) =
−1∑

k=−2N+2

ckφj,k(x)
∣∣
[0,infty)

∈ Y
(1)
j for x ≥ 0, then (D2j f̃)(x) =

−1∑
k=−2N+2

ckφ(x− k)
∣∣
[0,∞)

∈ Y
(1)
0 for x ≥ 0.
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3) ∥D2j f̃∥L2[0,∞) = ∥f̃∥L2[0,∞) = ∥f̃∥L2[0,1] as supp(f̃) ⊂ [0, 1].

Now Q maps basis vector to basis vector and is linear, hence defines an isomor-

phism between the two finite dimensional vector spaces X
(1)
0 and Y

(1)
0 . Hence there

exist C
(1)
1 , C

(1)
2 > 0 such that

C
(1)
1 ∥f1∥L2(R) ≤ ∥Qf1∥L2[0,∞) ≤ C

(1)
2 ∥f1∥L2(R)

for all f1 ∈ X
(1)
0 . As D2j , D2−j are isometries, we have

C
(1)
1 ∥f1∥L2(R) ≤ ∥Pf1∥L2[0,1] ≤ C

(1)
2 ∥f1∥L2(R)

for all f1 ∈ X
(1)
j for j ≥ j0.

A similar argument shows that there exist C
(3)
1 , C

(3)
2 > 0 such that

C
(3)
1 ∥f3∥L2(R) ≤ ∥Pf3∥L2[0,∞) ≤ C

(3)
2 ∥f3∥L2(R)

for all f3 ∈ X
(3)
j for j ≥ j0.

Observe that for f2 ∈ X
(2)
j , as supp(φj,k) ⊂ [0, 1] for all k ∈ S2(j), then supp(f) ⊂

[0, 1] and we have

∥f2∥L2(R) = ∥f2∥L2[0,1].

Next let f ∈ Xj be arbitrary, say f(x) = f1(x) + f2(x) + f3(x) where fi ∈ X
(i)
j ,

that is, fi(x) =
∑

k∈Si(j)

aj,kφj,k
(x); i = 1, 2, 3.

Now

∥f2∥L2[0,1] = ∥f2∥L2(R) =
∑

k∈S2(j)

|a
j,k
|2

=
∑

k∈S2(j)

∣∣< f, φ
j,k
>L2(Rd)

∣∣2 as {φj,k} is an orthonormal basis of Xj

=
∑

k∈S2(j)

∣∣< f, φ
j,k
>L2[0,1]

∣∣2 as supp(φj,k) ⊂ [0, 1]

≤ ∥f∥2L2[0,1] by Bessel’s inequality and since {φj,k}k∈S2(j) is

orthonormal in L2[0, 1].
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It follow that

∥f1 + f3∥L2[0,1] = ∥f − f2∥L2[0,1]

≤ ∥f∥L2[0,1] + ∥f2∥L2[0,1]

≤ ∥f∥L2[0,1] + ∥f∥L2[0,1] = 2∥f∥L2[0,1].

Now as f1 and f3 have disjoint supports then

∥f1∥2L2[0,1] + ∥f3∥2L2[0,1] = ∥f1 + f3∥2L2[0,1]

then

∥f1∥L2[0,1] ≤ ∥f1 + f3∥L2[0,1] ≤ 2∥f∥L2[0,1]

∥f3∥L2[0,1] ≤ ∥f1 + f3∥L2[0,1] ≤ 2∥f∥L2[0,1]

Thus,

∥f∥L2(R) = ∥f1 + f2 + f3∥L2(R)

≤ ∥f1∥L2(R) + ∥f2∥L2(R) + ∥f3∥L2(R)

≤ 1

C
(1)
1

∥f1∥L2[0,1] + ∥f2∥L2[0,1] +
1

C
(3)
1

∥f3∥L2[0,1]

≤ 2

C
(1)
1

∥f∥L2[0,1] + ∥f∥L2[0,1] +
2

C
(3)
1

∥f∥L2[0,1]

=

(
2

C
(1)
1

+ 1 +
2

C
(3)
1

)
∥f∥L2[0,1]

where we have used the fact that f1, f2 and f3 are mutually orthonormal in L2(Rd).

Thus, the left inequality holds with
1

C1

=
2

C
(1)
1

+1+
2

C
(3)
1

. For the right hand side,

∥f∥L2[0,1] ≤ ∥f1∥L2[0,1] + ∥f2∥L2[0,1] + ∥f3∥L2[0,1]

≤ C
(1)
2 ∥f1∥L2(R) + ∥f2∥L2(R) + C

(3)
2 ∥f3∥L2(R)

≤ C
(1)
2 ∥f∥L2(R) + ∥f∥L2(R) + C

(3)
2 ∥f∥L2(R)

=
(
C

(1)
2 + 1 + C

(3)
2

)
∥f∥L2(R)
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and the right inequality holds with C2 = C
(1)
2 + 1 + C

(3)
2 .

Hence inequality (C.3) holds.

The proof of Lemma 2.11

Proof. Below, we will replace x by x + 2N − 1 − l where l = 1, 2, ..., N − 1 in

equation (2.19) . Note that, for each l, we have for −l > 1−N , if x ≥ 0,

2(x+ 2N − 1− l) ≥ 2(0 + 2N − 1 + 1−N) = 2N,

so that by suppφ ⊂ [0, 2N − 1],

φ (2(x+ 2N − 1− l)) = 0 for all l = 1, 2, ..., N − 1. (C.5)

First, we replace x by x+ 2N − 2 in equation (2.19) and get

√
2φ(2(x+ 2N − 2))

= h0φ(x+ 2N − 2) + h2φ(x+ 2N − 1) + ...+ h2N−2φ(x+ 3N − 3)

+ g0ψ(x+ 2N − 2) + g2ψ(x+ 2N − 1) + ...+ g2N−2ψ(x+ 3N − 3).

Now, if x ≥ 0 and k ≤ 1, then x+ 2N − k ≥ 2N − 1, and as suppφ, suppψ lie in

[0, 2N − 1] we have φ(x + 2N − k) = 0 = ψ(x + 2N − k) for all k ≤ 1. Applying

(C.5), the above equation yields

ψ(x− (−2N + 2)) =
−h0
g0

φ(x− (−2N + 2)). (C.6)

Next, we replace x by x+ 2N − 3 in equation (2.19),

√
2φ(2(x+ 2N − 3))

= h0φ(x+ 2N − 3) + h2φ(x+ 2N − 2) + ...+ h2N−2φ(x+ 3N − 4)

+ g0ψ(x+ 2N − 3) + g2φ(x+ 2N − 2) + ...+ g2N−2ψ(x+ 3N − 4).

Again, suppφ, suppψ are contained in [0, 2N − 1] and we have φ(x + 2N − k) =

0 = ψ(x+ 2N − k) for x ≥ 0 and k ≤ −1, and hence by (C.5), 0 = h0φ(x+ 2N −
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3) + h2φ(x + 2N − 2) + g0ψ(x + 2N − 3) + g2ψ(x + 2N − 2). Then by equation

(C.6) we have

ψ(x− (−2N +3)) =
−h0
g0

φ(x− (−2N +3))+

(
h0g2
g20

− h2
g0

)
φ(x− (−2N +3)+1).

(C.7)

Continuing by induction, we finally replace x by x+N in equation (2.19),

√
2φ (2(x+N)) = h0φ(x+N) + h2φ(x+N + 1) + ...+ h2N−2φ(x+ 2N − 1)

+ g0ψ(x+N) + g2ψ(x+N + 1) + ...+ g2N−2ψ(x+ 2N − 1).

Then, as φ(x + 2N − 1) = 0 = ψ(x + 2N − 1) for x ≥ 0 and applying (C.5) we

have

0 = h0φ(x+N) + h2φ(x+N + 1) + ...+ h2N−4φ(x+ 2N − 2)

+ g0ψ(x+N) + g2ψ(x+N + 1) + ...+ g2N−4ψ(x+ 2N − 2).

That is,

ψ (x+N) = −h0
g0
φ (x+N)− h2

g0
φ (x+N + 1)− ...

− h2N−4

g0
φ (x+ 2N − 2)− g2

g0
ψ (x+N + 1)− ...

−
g2N−4

g0
ψ (x+ 2N − 2) ,

Applying the results of the previous induction steps, we see that each ψ(x+N +

k), 0 ≤ k ≤ N − 2 can be expressed on [0,∞) as a linear combinations of function

φ(x+N + r); k < r ≤ N − 2,

ψ(x+N + k) =
N−2∑
r=k+1

a(k)r φ(x+N + r)

for some coefficients a
(k)
r determined by the wavelet and scaling filters. That is,

each ψ(x− k)
∣∣
[0,∞)

,−2N + 2 ≤ k ≤ −N, is a linear combination

k−1∑
r=2−2N

c(k)r φ(x− r).
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We conclude that the functions ψ(x − k)
∣∣
[0,∞)

, − 2N + 2 ≤ k ≤ −N belong to

V0[0,∞). This proves the lemma.

The proof of Lemma 2.12

Proof. Part I: By Lemma 2.11, the functions ψ(x − k),−2N + 2 ≤ k ≤ −N,

when restricted to [0,∞), belong to V0[0,∞). That is, each ψ(x − k) is a linear

combination of functions φl(x) = φ(x− l) when x is restricted to [0,∞).

Replacing now x by 2jx, we have the function ψ(2jx − k),−2N + 2 ≤ k ≤ −N,

when restricted to [0,∞), belong to Vj[0,∞) and in fact, are linear combinations

of functions φj,l(x)
∣∣
[0,∞)

. Now, if we restrict x further to [0, 1] we obtain ψ(2jx−

k)
∣∣
[0,1]

and clearly, ψ(2jx − k)
∣∣
[0,1]

is a linear combination of φj,l

∣∣
[0,1]

. That is,

ψ(2jx− k),−2N + 2 ≤ k ≤ −N, when restricted to [0, 1], belong to Vj[0, 1].

Part II: By part I, the functions ψ(x− k)
∣∣
[0,1]

,−2N + 2 ≤ k ≤ −N , belong

to V0[0, 1].

Next, the same argument of Part I, we have ψ(2jx− k)
∣∣
[0,1]

for 2j −N + 1 ≤ k ≤

2j − 1.

The proof of theorem 2.13

Proof. Note that by Theorem 2.9, the functions φ
j,k

∣∣
[0,1]

,−2N + 2 ≤ k ≤ 2j − 1,

form a Riesz basis of the space Vj([0, 1]). That is, the dimension of Vj+1[0, 1] is

2j+1 + 2N − 2, and now card{φ
j,k
,−2N + 2 ≤ k ≤ 2j − 1} = 2j + 2N − 2 and

card{ψ
j,k
,−N + 1 ≤ k ≤ 2j −N} = 2j.

It remains to show that, for an arbitrary function f of V
j+1

, the restriction of f to

[0, 1] can we written as g + h where g ∈ Vj[0, 1] and

h(x) =
2j−N∑

k=−N+1

α
j,k
ψ

j,k
(x).



 

 

 

 

 

 

 

 

133

In fact, let f ∈ Vj+1[0, 1]. Then f = g+ h where g ∈ Vj[0, 1] and h ∈ Vj[0, 1]
⊥. As

such, h =
∑
k

β
j,k
ψ

j,k
. Consider the following.

If k ≤ −2N + 1, then 2jx− k ≥ −k ≥ 2N − 1. Thus ψ
j,k

∣∣
[0,1]

= 0.

If −2N + 2 ≤ k ≤ −N , then by Lemma 2.12, ψ
j,k

∣∣
[0,1]

∈ Vj[0, 1].

If k ≥ 2j, then 2jx− k ≤ 2j − k ≤ 2j < 0. Thus ψ
j,k

∣∣
[0,1]

= 0.

If 2j −N + 1 ≤ k ≤ 2j − 1, then ψ
j,k

∣∣
[0,1]

∈ Vj[0, 1].

These show that ψ(x−k)
∣∣
[0,1]

̸= 0 and does not belong to Vj[0, 1] if −N +1 ≤ k ≤

2j −N , and hence

h(x) =
2j−N∑

k=−N+1

α
j,k
ψ

j,k
(x).



 

 

 

 

 

 

 

 

APPENDIX D

GAUSSIAN RANDOM FIELD

Definition D.1. (Multivariate Gaussian Distribution)

Let V = [V1, V2, ..., Vm]
T be an m-dimensional random variable vector. We define

the mean vector of V to be the vector E[V ] = [E[V1], ..., E[Vm]]
T and the covariance

matrix V to be Σ = [σij]m×m where σij = Cov(Vi, Vj) for i, j = 1, 2, ...,m. V

is called multivariate Gaussian with mean E[V ] and covariance matrix σ if the

density function of V is given by

f(x) = (2π)−
m
2 (detσ)−

1
2 e−

1
2
(x−E[V ])T σ−1(x−E[V ]) for all x = (x1, ..., xm) ∈ Rm

Remark D.1. If V = (V1, ..., Vn) is a multivariate Gaussian with mean E[V ] and

covariance matrix σ, then one can show (see in Grimmett and Stirzaker (1998))

Y = a1V1+a2V2+ ...+anVn, for constants a1, ..., an, has the Gaussian distribution

with mean
n∑

i=1

aiE[Vi] and variance
n∑

i=1

a2iVar[Vi] + 2
∑
i<j

aiajCov[Vi, Vj].

Remark D.2. If σ = diag(σii) we get

f(x) = (2π)−
m
2

m∏
i=1

(σii)
− 1

2 e−
1
2
(x−E[V ])T σ−1(x−E[V ])

=
m∏
i=1

(2πσii)
− 1

2 exp

(
−1

2

m∑
i=1

(xi − E[Vi])
2σ−1

ii

)

=
m∏
i=1

(2πσii)
− 1

2 e
− (xi−E[Vi])

2

2σii

=
m∏
i=1

fVi
(xi)

where fX(x) = (2πρ)−
1
2 e−

(x−E[X])2

2ρ is a normal density function with mean E[X]

and variance ρ. This shows that the components in a multivariate Gaussian
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(V1, V2, ..., Vm) are independent, if it has a diagonal covariance matrix.

Definition D.2. (Characteristic Functions)

Let V be any m-dimensional vector of random variables of distribution µ, and

t = (t1, t2, ..., tm) a vector of real numbers. The characteristic function of V is

defined by the function ϕ : Rm → C given by ϕ(t) = E(eit
TV ). Note that if µ is

the distribution of V , then ϕ(t) is the inverse Fourier transform µ̌ of µ, up to a

scaling factor. In particular ϕ uniquely determines the distribution µ.

Remark D.3.

By the identity

∫
R
e−ax2

dx =

√
π

a
we have by the covariance matrix σ is

a Hermitian matrix

∫
Rd

e−xT σx dx =

√
πd

| detσ|
and for a m-dimensional multivari-

ate Gaussian distribution V with mean E[V ] and covariance matrix σ we have

characteristic function

E[eit
TV ] =

1

(2π)
m
2 | detσ| 12

∫
Rm

eit
T xe−

1
2
(x−E[V ])T σ

−1
(x−E[V ]) dx.

By a change of variables, x 7→ σx+ E[V ] we have

E[eit
TV ] =

1

(2π)
m
2 | detσ| 12

∫
Rm

eit
T (σx+E[V ])e−

1
2
(σx)T x| det σ| dx

=
| detσ| 12
(2π)

m
2

eit
TE[V ]

∫
Rm

eit
T σxe−

1
2
xT σx dx

=
| detσ| 12
(2π)

m
2

eit
TE[V ]− 1

2
tT σt

∫
Rm

e−
1
2
(x−it)T σ(x−it) dx

=
| detσ| 12
(2π)

m
2

eit
TE[V ]− 1

2
tT σt

(
π

m
2(

1
2

)m
2 | det(σ)| 12

)

= eit
TE[V ]− 1

2
tT σt.

Definition D.3. (Gaussian Random Field)

A random field {Xt}t∈Rd is called a Gaussian random field if for any m ∈ N, and

any choice of t1, ..., tm, ti ∈ Rd, the random vector {Xt1 , Xt2 , ..., Xtm}, has the

multivariate Gaussian distribution.
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Lemma D.1. Let X1, X2, ..., Xn be independent Normal Random variables with

distributions N(E[X1], σ
2
X1
), ..., N(E[Xn], σ

2
Xn

), respectively. Then the distribution

of (X1, X1 + X2, X1 + X2 + X3, ..., X1 + X2 + ... + Xn) is multivariate Gaussian

with mean (E[X1], E[X1] + E[X2], ..., E[X1] + ...+ E[Xn]) and covariance matrix

σ =



σ2
X1

σ2
X1

σ2
X1

... σ2
X1

σ2
X1

σ2
X1

+ σ2
X2

σ2
X1

+ σ2
X2

... σ2
X1

+ σ2
X2

σ2
X1

σ2
X1

+ σ2
X2

σ2
X1

+ σ2
X2

+ σ2
X3

... σ2
X1

+ σ2
X2

+ σ2
X3

...
...

...
...

σ2
X1

σ2
X1

+ σ2
X2

σ2
X1

+ σ2
X2

+ σ2
X3

... σ2
X1

+ σ2
X2

+ ...+ σ2
Xn


.

Proof. Note that E[X1 +X2] = E[X1] + E[X2]. Since Var[X1] = σ2
X1
, we have by

independence, Cov[X1, X2] = E[X1X2]− E[X1][X2] = 0, and hence Cov[X1, X1 +

X2] = Cov[X1, X1] +Cov[X2, X1] = σ2
X1
, and Var[X1+X2] = Var[X1] +Var[X2] +

2Cov[X1, X2] = σ2
X1
+σ2

X2
+2(0) = σ2

X1
+σ2

X2
. Next, set V = (X1, X1+X2)

T , E[V ] =

(E[X1], E[X1] + E[X2]), and σ =

σ2
X1

σ2
X1

σ2
X1

σ2
X1

+ σ2
X2

, consider
E[eit

TV ] = E[ei(t1X1+t2(X1+X2))] = E[ei(t1+t2)X1eit2X2 ].

Since X1 and X2 are independent we have

E[eit
TV ] = E[ei(t1+t2)X1 ]E[eit2X2 ] = e

i(t1+t2)E[X1]− (t1+t2)
2

2
σ2
X1 e

i(t2)E[X2]−
t22
2
σ2
X2

= ei(t1E[X1]+t2(E[X1]+E[X2]))e
− 1

2
[(t21+2t1t2+t22)σ

2
X1

+t22σ
2
X2

]
= eit

TE[V ]e−
1
2
tT σt.

Hence ϕ(t) = eit
TE[V ]− 1

2
tT σt is the characteristic function of V = (X1, X1 + X2),

which shows that V is bivariate Gaussian with mean (E[X1], E[X1] +E[X2]) and

covariance matrix

σ =

σ2
X1

σ2
X1

σ2
X1

σ2
X1

+ σ2
X2

 .
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Now E[X1+ ...+Xk] = E[X1]+ ...+E[Xk] for all 2 ≤ k ≤ n. For each 1 ≤ k ≤ n,

Cov[X1,

k∑
i=1

Xi] = Cov[
k∑

i=1

Xi, X1] = Var(X1) +
k∑

i=2

Cov[Xi, X1] = σ2
X1

as
k∑

i=2

Cov[Xi, X1] = 0 by independence.

Furthermore, for each 2 ≤ k ≤ n,

Cov[X1 +X2,

k∑
i=1

Xi] = Cov[X1,

k∑
i=1

Xi] + Cov[X2,

k∑
i=1

Xi]

= Cov[X1, X1] +
k∑

i=2

Cov[X1, Xi] + Cov[X2, X2]

+
k∑

i=1,i̸=2

Cov[X2, Xi]

= Var(X1) + Var(X2)

= σ2
X1

+ σ2
X2

as
k∑

i=1,i̸=j

Cov[Xi, Xj] = 0 by independence.

Continuing by induction, we get

σ =



σ2
X1

σ2
X1

σ2
X1

... σ2
X1

σ2
X1

σ2
X1

+ σ2
X2

σ2
X1

+ σ2
X2

... σ2
X1

+ σ2
X2

σ2
X1

σ2
X1

+ σ2
X2

σ2
X1

+ σ2
X2

+ σ2
X3

... σ2
X1

+ σ2
X2

+ σ2
X3

...
...

...
...

σ2
X1

σ2
X1

+ σ2
X2

σ2
X1

+ σ2
X2

+ σ2
X3

... σ2
X1

+ σ2
X2

+ ...+ σ2
Xn


Set V = (X1, X1 +X2, ..., X1 +X2 + ...+Xn)

T , then

E[V ] = (E[X1], E[X1] + E[X2], ..., E[X1] + E[X2] + ...+ E[Xn])
T .

Consider for all t = (t1, t2, ..., tn)
T

E[eit
TV ] = E[exp(i(t1X1 + t2(X1 +X2) + ...+ tn(X1 +X2 + ...+Xn))]

= E[exp(i([(t1 + t2 + ...+ tn)X1 + (t2 + t3 + ...+ tn)X2 + ...+ tnXn]).



 

 

 

 

 

 

 

 

138

By independence of the random variables X1, X2, ..., Xn and continuity of the

exponential function, we may use Theorem 3.1 to obtain that

E[eit
TV ] = E[exp(i[t1 + ...+ tn]X1)]E[exp(i[t2 + ...+ tn]X2)]...E[exp(itnXn)]

= exp

(
i(t1 + t2 + ...+ tn)E[X1]−

1

2
(t1 + t2 + ...+ tn)

2σ2
X1

)
exp

(
i(t2 + t3 + ...+ tn)E[X2]−

1

2
(t2 + t3 + ...+ tn)

2σ2
X2

)
...

exp

(
itnE[Xn]−

1

2
t2nσ

2
Xn

)
.

We can rewrite this in term of E[V ] and σ as

E[eit
TV ] = exp (i(t1E[X1] + t2(E[X1] + E[X2]) + ...+ tn(E[X1] + ...+ E[Xn])))

exp

(
−1

2
((t1 + t2 + ...+ tn)

2σ2
X1

+ (t2 + t3 + ...+ tn)
2σ2

X2
+ ...+ t2nσXn

)

)
= exp

(
itTE[V ]− 1

2
tTσt

)
.

This shows that (X1, X1 +X2, ..., X1 +X2 + ...+Xn) is multivariate Gaussian, by

remark D.3.



 

 

 

 

 

 

 

 

APPENDIX E

BROWNIAN MOTION

Theorem E.1. Standard Brownian motion is a Gaussian process with mean func-

tion zero and covariance function Cov[Xt, Xs] = min(t, s).

Proof. Let {Bt}t≥0 be a Brownian motion. Let n ∈ N and for t1 < t2 < ... < tn,

consider the vector {Bt1 , Bt2 , ..., Btn}.

By (B1), (B2) , the increments Bt−Bs are independent and Gaussian distributed

with mean 0 and variance t−s for all t > s, that is Bt1 , Bt2−Bt1 , Bt3−Bt2 , ..., Btn−

Btn−1 are independent and N(0, ti+1 − ti) for all i = 1, 2, 3, ..., n.

We now apply Lemma D.1 in Appendix D, by choosing

X1 = Bt1

X2 = Bt2 −Bt1

...

Xn = Btn −Btn−1 .

We thus obtain that

X1 +X2 = Bt2

X1 +X2 +X3 = Bt3

...

X1 +X2 + ...+Xn = Btn



 

 

 

 

 

 

 

 

140

and hence

E[X1] = E[Bt1 ] = 0 σ2
X1

= σ2
Bt1

= t1

E[X1 +X2] = E[Bt2 ] = 0 σ2
X2

= σ2
Bt2−Bt1

= t2 − t1

...
...

E[X1 +X2 + ...+Xn] = E[Btn ] = 0 σ2
Xn

= σ2
Btn−Btn−1

= tn − tn−1.

It follows from Lemma D.1, that (Bt1 , ..., Btn) is multivariate Gaussian, with

E(Bti) = 0 for all i and covariance matrix

t1 t1 ... t1

t1 t2 ... t2

t1 t2 ... t3

...
...

...

t1 t2 ... tn


=



min(t1, t1) min(t1, t2) ... min(t1, tn)

min(t2, t1) min(t2, t2) ... min(t2, tn)

min(t3, t1) min(t3, t2) ... min(t3, tn)

...
...

...

min(tn, t1) min(tn, t2) ... min(tn, tn)


.

Let s, t ∈ [0,∞). Consider

Cov(Bt, Bs) = E[(Bt − E[Bt])(Bs − E[Bs])]

= E[BtBs]− 2E[Bt]E[Bs] + E [E[Bt]E[Bs]]

= E[BtBs] as E[Bt] = 0 for all t.

Now, if t < s then Bs = Bs +Bt −Bt and hence

Cov(Bt, Bs) = E[Bt(Bs +Bt −Bt)] = E[B2
t ] + E[Bt(Bs −Bt)].

Since {Bt} has independent increments of distribution N(0, s− t), we have

Cov(Bt, Bs) = E[B2
t ] + E[Bt]E[Bs −Bt] = E[B2

t ] = t = min(t, s).

This shows that {Bt}t≥0 is a Gaussian process with mean 0 and variance min(t, s).



 

 

 

 

 

 

 

 

141

Lemma E.2. A Gaussian process {Xt}t≥0 with the property E[Xt] = 0 for all

t ≥ 0 and

Cov(Xs, Xt) = min(s, t) for all s, t ≥ 0,

has independent increments. If in addition, the process has continuous paths , then

it is a standard Brownian motion on [0,∞).

Proof. First we can see that for all s, t ≥ 0;

E[XsXt] = Cov(Xs, Xt) + E[Xs]E[Xt] = Cov(Xs, Xt) = min(s, t), (E.1)

since E[Xt] = 0 for all t ≥ 0. Then for all 0 ≤ s ≤ t, E[Xt−Xs] = E[Xt]−E[Xs] =

0 and hence

Var(Xt −Xs) = E
[
(Xt −Xs)

2
]
− E[Xt −Xs]

2 = E[(Xt −Xs)
2]

= E[X2
t ] + E[X2

s ]− 2E[XtXs] = t+ s− 2s = t− s. (E.2)

Next, consider the process of increments {Xt2 − Xt1 , Xt3 − Xt2 , ..., Xtn − Xtn−1}

for each n > 0. Note that {Xt2 −Xt1 , Xt3 −Xt2 , ..., Xtn −Xtn−1} is a multivariate

Gaussian by Remark D.1 in Appendix D. Let i < j ≤ n we have

Cov(Xti−Xti−1
, Xtj−Xtj−1

) = E[(Xti−Xti−1
)(Xtj−Xtj−1

)]

= E[XtiXtj ]−E[XtiXtj−1
]−E[Xti−1

Xtj ]+E[Xti−1
Xtj−1

]

= ti − ti − ti−1 + ti−1 by Equation (E.1)

= 0 (E.3)

This shows that Xt2 − Xt1 , Xt3 − Xt2 , ..., Xtn − Xtn−1 has a diagonal covariance

matrix, then we have by remark D.2, Xt2 − Xt1 , Xt3 − Xt2 , ..., Xtn − Xtn−1 are

independent. By equations (E.1), (E.2), (E.3), if it has continuous sample paths,

then {Xt}t∈R is a standard Brownian motion on [0,∞).



 

 

 

 

 

 

 

 

APPENDIX F

FRACTIONAL BROWNIAN FIELD

Definition F.1. (Self similarity)

A random field {Xt}t∈Rd is H-selfsimilar if for any a > 0, Xat
d
= aHXt; we call H

the exponent of self-similarity.

Lemma F.1. If {Bt}t≥0 is a standard Brownian motion then we have

1) {Bt}t∈R is a Gaussian process with zero mean and

Cov(Bs, Bt) = E[BsBt] = min(s, t) for all s, t

2) {Bt}t∈R is 1
2
-selfsimilar, and

3) {Bt}t∈R has stationary increments.

Proof. 1) See Theorem E.1 in Appendix E.

2) Let a > 0. First we show that
{
a−

1
2Bat

}
is a standard Brownian motion.

(B1) sample paths t 7→ a−
1
2Bat are continuous a.e. ω as the dilation function is

continuous.

(B2) Since the increments {Bt −Bs} are independent then a−
1
2Bat − a−

1
2Bas are

also independent as dilation is a Borel (continuous) function.

(B3) Let 0 ≤ s < t, then E[a−
1
2Bat − a−

1
2Bas] = a−

1
2E[Bat − Bas] = a−

1
2 (0) = 0

and V ar(a−
1
2Bat − a−

1
2Bas) =

(
a−

1
2

)2
V ar(Bat − Bas) = a−1(at − as) = t − s.

Thus a−
1
2Bat − a−

1
2Bas is N(0, t− s).

(B4) Let t ≥ 0 , then a−
1
2B0 = a−

1
2 (0) = 0

This shows that {Xt} =
{
a−

1
2Bat

}
t∈R

is a standard Brownian motion. In particu-

lar, the process {Xt} is N(0, t) which shows that Xt
d
= Bt, i.e. a

− 1
2Bat

d
= Bt, that
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is Bat
d
= a

1
2Bt.

3) Let h ∈ R. Then Bt+h−Bh is N(0, t) as {Bt}t∈R is a standard Brownian

motion. Since Bt is also N(0, t) , then Bt+h − Bh and Bt has normal distribution

with the same mean and variance, we get that they have the same density function.

Therefore Bt+h −Bh
d
= Bt.

Theorem F.2. A fractional Brownian motion
{
B

1
2
t

}
t≥0

which has continuous

paths and satisfies B
1
2
0 = 0 is a standard Brownian motion up to a multiplicative

constant.

Proof. Now for all s, t ≥ 0 we have E[B
1
2
t ] = 0 and

E[B
1
2
t B

1
2
s ] =

VH

2
(|t|+ |s| − |t− s|) = VH min(s, t)

then
1

VH
E[B

1
2
t B

1
2
s ] = min(s, t). By Lemma E.2 in Appendix E,

{
1
VH
B

1
2
t

}
t≥0

is a

standard Brownian motion.

Theorem F.3. Let
{
BH

t

}
t∈Rd be a fractional Brownian field. Then

1)
{
BH

t

}
t∈Rd has stationary increments.

2) If
{
BH

t

}
t∈Rd has independent increments, then H = 1

2
.

Proof. 1) Let h ∈ R, then

E
[
BH

t+h −BH
h )(BH

s+h −BH
h )
]
= E

[
(BH

t+hB
H
s+h

]
− E

[
BH

t+hB
H
h

]
− E

[
BH

h B
H
s+h

]
+ E

[
BH

h B
H
h

]
=
VH
2

(
∥t+ h∥2H + ∥s+ h∥2H − ∥t+ h− s− h∥2H

)
− VH

2

(
∥t+ h∥2H + ∥h∥2H − ∥t+ h− h∥2H

)
− VH

2

(
∥h∥2H + ∥s+ h∥2H − ∥h− s− h∥2H

)
+
VH
2

(
∥h∥2H + ∥h∥2H − ∥h− h∥2H

)
=
VH
2

(
∥t∥2H + ∥s∥2H − ∥t− s∥2H

)
= E[BH

t B
H
s ].
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NowE[BH
t+h−BH

h ] = E[BH
t+h]−E[BH

h ] = 0−0 = 0 = E[BH
t ], and Var

(
BH

t+h −BH
t

)
=

E[(BH
t+h −BH

h )2]−
(
E[BH

t+h −BH
h ]
)2

= E[(BH
t )2] = V ar[BH

t ]. Note that {BH
t+h −

BH
h } is a multivariate Gaussian by Remark D.1 in Appendix D. Then BH

t+h −BH
h

and BH
t has normal distribution with the same mean and variance, we get that

they have the same density function. Therefore BH
t+h −BH

h
d
= BH

t .

2) Suppose that {BH
t } has independent increments . Then, for s, t ∈ Rd,

0 = E[BH
s ]E[BH

t −BH
s ] = E[BH

s (BH
t −BH

s )]

= E[BH
s B

H
t ]− E[(Bh

s )
2]

=
VH
2

(
∥s∥2H + ∥t∥2H − ∥t− s∥2H − 2∥s∥2H

)
=
VH
2

(
∥t∥2H − ∥s∥2H − ∥t− s∥2H

)
.

Then ∥t∥2H −∥s∥2H −∥t− s∥2H = 0 implies ∥t∥2H −∥s∥2H = ∥t− s∥2H and hence

H = 1
2
. Indeed, if H ̸= 1

2
, set t = 2s we have (2∥s∥)2H − ∥s∥2H = ∥2s− s∥2H ,

then (22H − 1)∥s∥2H = ∥s∥2H so that 22H = 2 that is H = 1
2
which is a contradic-

tion.



 

 

 

 

 

 

 

 

APPENDIX G

BOREL CANTELLI LEMMA

Lemma G.1. (Borel-Centelli Lemma)

If {Ai}∞i=1 is any sequence of events and
∞∑
i=1

P (Ai) <∞ then

P (
∞∩

m=1

∞∪
k=m

Ak) = 0.

Proof. Since
∞∑
i=1

P (Ai) <∞ we have

P (
∞∩

m=1

∞∪
k=m

Ak) = lim
m→∞

P (
∞∪

k=m

Ak) ≤ lim
m→∞

∞∑
k=m

P (Ak)

= lim
m→∞

(
∞∑
k=1

P (Ak)−
m−1∑
k=1

P (Ak)

)
= 0.

Note that

∞∩
m=1

∞∪
k=m

Ak = {ω : ω ∈
∞∩

m=1

∞∪
k=m

Ak} = {ω : ∀m ∈ N ∃k ≥ m such that ω ∈ Ak}

= {ω : ω belongs to infinitely many Ak’s}.

Lemma G.2. If {Zn} is a sequence of Gaussian random variables with mean 0

and variance 1, then there is a random variable C such that |Zn| ≤ C
√
lnn a.s.

for n ≥ 2 and P (C <∞) = 1.

Proof. Let x ≥ 1.

Then P (|Zn| ≥ x) =
2√
2π

∫ ∞

x

e−
u2

2 du ≤
√

2

π

∫ ∞

x

ue−
u2

2 du = e−
x2

2

√
2

π
.

Hence for all α > 1 and n ≥ 2,

P
(
|Zn| ≥

√
2α lnn

)
≤ e−

(2α lnn)
2

√
2

π
= n−α

√
2

π
.
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Now
∞∑
n=2

n−α

√
2

π
< ∞ as α > 1. Then by the Borel-Cantelli Lemma (Lemma

G.1) we have P (|Zn| ≥
√
2α lnn for infinitely many n) = 0.

Setting C = sup
n≥2

|Zn|√
lnn

then consider, for some fixed α > 1

P (C=∞)=P

(
sup
n≥2

|Zn|√
lnn

=∞
)

≤ P
(
|Zn| >

√
2α lnn for infinitely many n

)
= 0.

Thus P (C <∞) = 1.

A modification of this proof yields:

Lemma G.3. Let J = {j = (j1, ..., jd) : ji ∈ N ∪ {0}} and Kj = {k = (k1, ...., kd) :

ki = −2ji + 1, ..., 2ji − 1}. If {Zj,k, j ∈ J and k ∈ Kj} is a sequence of Gaussian

N(0, 1) random variables, then there exists a random variable C such that |Z
j,k
| ≤

C

(
d∑

i=1

ln(2ji + |ki|)

) 1
2

a.s. for all j ∈ J and k ∈ KJ , and P (C <∞) = 1.

Proof. Let x ≥ 1. Then as in the proof of Lemma G.2

P
(
|Z

j,k
| ≥ x

)
≤ e−

x2

2

√
2

π
for each j ∈ J, k ∈ Kj.

Hence for each α > 1,

P

|Z
j,k
| ≥

[
2α

d∑
i=1

ln(2ji + |ki|)

] 1
2

 ≤
√

2

π
exp

(
−α

d∑
i=1

ln(2ji + |ki|)

)

=

√
2

π

d∏
i=1

exp(ln(2ji + |ki|)−α)

=

√
2

π

d∏
i=1

(2ji + |ki|)−α.

Now for each 1 ≤ i ≤ d,
∞∑

ji=0

2ji−1∑
ki=−2ji+1

(2ji + |ki|)−α <∞ as α > 1, then

∑
j∈J

∑
k∈KJ

d∏
i=i

(2ji + |ki|)−α <∞, and hence by the Borel-Cantelli Lemma we have

P

(
|Z

j,k
| ≥

[
2α

d∑
i=1

ln(2ji + |ki|)
] 1

2 for infinitely many j and k

)
= 0.
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Set C = sup
j∈J

k∈Kj

|Z
j,k
|[

d∑
i=1

ln(2ji + |ki|)

] 1
2

, then

P (C = ∞) ≤ P

 sup
j∈J

k∈Kj

|Z
j,k
| > [2α

d∑
i=1

ln(2ji + |ki|)]
1
2 for infinitely many j, k

 = 0.
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