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The continuous wavelet transform of three types of finite dimensional ran-
dom fields, namely weakly stationary random fields, random fields with stationary
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It is shown that the transformed fields by different dilation matrices are jointly
weakly stationary, and the cross-correlation function and cross power spectral den-
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The discrete wavelet method is used to construct Brownian motion and
Brownian sheets. We employ a Haar wavelet basis of L%([0,1]%) to construct a
Brownian sheet, and then extend this framework to an arbitrary compactly sup-
ported wavelet basis of L%([0,1]?) and obtain the representation of a Brownian
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CHAPTER 1

INTRODUCTION

Wavelets are known to have intimate connections to several other parts
of mathematics, notably phase-space analysis of signal processing, reproducing
kernel Hilbert spaces etc. Random fields have found numerous applications in
diverse areas such as image processing, signal processing, oceanography, geology,
forestry, turbulence, geography, finance and engineering. This thesis explores the
connection of wavelets with random fields in further detail. First, we continue from
the work on the continuous wavelet transform of random fields accumulated over
the last 10 years, to find the spectral representation and consider some properties
of continuous wavelet transforms of random fields. Secondly, we use the discrete
wavelet method to construct a wavelet representation of Brownian motion, which is
an example of a stochastic process with particular properties, from a wavelet basis

and then extend this construction to the higher dimensional setting of random

fields.

1.1 Continuous Wavelet Transforms and Random Fields

1.1.1 Previous Research

The continuous wavelet transform, following Daubechies (1992), Walnut
(2001) and Pinsky (2009), is a tool of analysing a square integrable function on R?
by correlating it with a two-parameter family of functions, obtained from translat-

ing and scaling of a single analysing function, called mother wavelet function. On



the other hand, a random field, following Childers (1998), Grimmett and Strizaker
(1998) and Ludeman (2003), is a family of random variables from a probability
space to a Borel subset of R or C usually parametized in some continuous fash-
ion by a position variable in Euclidean space. A random field in one dimensional
(time) space is usually called a stochastic process. The connection of wavelets
with stochastic processes has been exploited for over 20 years by Averkamp and
Houdre (1998), Benedetto and Frazier (1994), Combanis and Houdre (1995), Flan-
drin (1989 and 1992), Kato and Masry (1999), Paulo and Rudolf (1999), Masry
(1993), Meyer, Sellan and Taqqu (1999), Ramanathan and Zeitouni (1991) and
Tewfik and Kim (1992) etc. On the other hand, the connection of wavelets with
general random fields began to be established more recently, over the last 15 years
by Averkamp and Houdre (1998), Heneghan, Lowen and Teich (1996) and Masry
(1995 and 1998).

A random field is said to be weakly stationary if it has a constant mean
and the auto-correlation is invariant under position shifts. It is called a weakly
stationary increments random field, if the random fields composed of the incre-
ments are weakly stationary. Also, two random fields are jointly weakly stationary
if they are individually weakly stationary and the cross-correlation is position shift
invariant. One observes that the auto-correlation function of a weakly stationary
random field is a function of position shift only. For this type of random field,
a characterization of auto-correlation in the frequency domain is available as in-
troduced by Childer (1998), Grimmett and Stirzaker (1998) and Ludeman (2003).
Consequentially, one can define the power spectral density function as the gener-
alized Fourier transform of the auto-correlation function. Similarly, if two random
fields are jointly weakly stationary, then the cross-correlation function is again a

function of only shift position, and the power cross spectral density function can



be defined by the generalized Fourier transform of the cross-correlation function.
Applying the inverse Fourier transform, one obtains the cross power spectral rep-
resentation of the cross-correlation function.

Masry (1993) showed that the wavelet transform of a stochastic process
with weakly stationary increments is a weakly stationary stochastic process whose
auto-correlation function and spectral density function can be determined. Also,
Cambanis and Houdre (1993) found a new proof that the wavelet transform of a
stationary stochastic process as well as a stochastic process with stationary in-
crements is a weakly stationary process, and then Averkamp and Houdre (1998)
extended this viewpoint to random fields and obtained that the wavelet transforms
of a random field, at different positive scaling parameters, are jointly weakly sta-
tionary random fields with zero mean. Furthermore, Masry (1998) determined the
power spectral and cross power spectral representation of these random fields.

A fractional Brownian field is an example of a process which itself is not
stationary, but whose increments are. This allows one to associate a well-defined
spectral representation to such a process. Flandrin (1989) proposed how to obtain
the spectral density function of the wavelet transform of fractional Brownian mo-
tion, which is the one dimensional case of a fractional Brownian field and Takeshi
Kato and Elias Masry (1998) gave detailed proofs of this assertion. Furthermore,
in 1996, Heneghand, Lowen and Teich considered the spectral density function of
the wavelet transform of a two-dimensional fractional Brownian field, but their
exposition is without proof.

The ergodic theorem, as presented in Viniotis (1998) for example states
that the estimate for the mean converges to the true mean in the mean square
sense. Grimmete and Stirzaker (1992) presented an ergodic theorem for weakly

stationary random processes saying that given such a process, there exists some



random variable with same mean to which the estimate for the mean of the process

converges in the mean square sense.

1.1.2 The 1% Objective of the Thesis

In this thesis, we discuss the classification of the continuous wavelet trans-
form of three classes of d-dimensional random fields: weakly stationary random
fields, stationary increments random fields and weakly stationary increments ran-
dom fields. In each case we determine the spectral density function of the wavelet
transform via arbitrary dilation matrix of the random field. Moreover, as an exam-
ple, we obtain the spectral density function of the wavelet transform of a fractional
Brownian field in the general d-dimensional case. We further investigate the er-
godic property of the transformed random field, for both weakly stationary random

fields as well as random fields with weakly stationary increments.

1.2 Discrete Wavelet Methods and Random Fields

1.2.1 Previous Research

Brownian motion is a stochastic process having continuous sample paths
and independent increments (see also Section 3.5 and Appendix E). As shown
in Childers (1998), Grimmett and Stirzaker (1998) and Michael (2000), Brown-
ian motion is a self-similar stochastic process. Here, self-similarity of a stochastic
process is a form of statistical scale invariance. Since wavelets are also naturally
associated with scaling, there have been a number of attempts to represent Brow-
nian motion in terms of wavelets. Following Michael (2000) and Pinsky (2009),

Brownian motion can be constructed by means of the Haar wavelet.



1.2.2 The 2" Objective of the Thesis

In this thesis, we develop a framework for constructing the wavelet repre-
sentation of Brownian motion by a wavelet basis of L?[0, 1] different from the Haar
basis. We obtain a compactly supported wavelet function generating a represen-
tation of Brownian motion. We then extend this construction to the multidimen-
sional case, using both Haar function and arbitrary compactly supported wavelet

bases to generate a representation of a d-dimensional Brownian sheet.

1.3 Overview of the Thesis

This thesis is organized as follows. In Chapter II the basic notation is
introduced and the concepts from the continuous Fourier transform, the Fourier
transform of a measure, the continuous wavelet transform and the discrete wavelet
methods as used in this thesis are reviewed. In Chapter III, random fields and
their probabilistic properties such as the correlation and covariance function are
reviewed, special classes of random fields are introduced and the power spectral
density of some classes of random fields is reviewed. Moreover, the wavelet trans-
form of random fields is discussed. Chapter IV is devoted to the discussion of the
wavelet transform of random fields and the determination of the power spectral
density function of the wavelet transform of weakly stationary random fields, sta-
tionary increment random fields and weakly stationary increment random fields.
Also as an example, the power spectral density function of the wavelet transform
of a fractional Brownian field is presented. In chapter V, mean ergodic random
fields and the ergodic theorem for weakly stationary random fields are discussed
and connected to the continuous wavelet transform of some classes of random

fields. In Chapter VI, the discrete wavelet method is employed for obtaining a



wavelet representation of some random fields such as Brownian motion and Brow-

nian sheet.



CHAPTER 11

FOURIER ANALYSIS AND WAVELETS

In this chapter, we review the mathematical concepts used in this thesis.
We begin by discussing the Fourier transform of an integrable function, and also
functions in Schwartz space and their basic properties. We then review the Fourier
transform of a measure and Bochner’s theorem. Finally, we review the continuous
wavelet transform and the discrete wavelet method. Throughout, it is assumed
that the reader is familiar with the foundations of real analysis, such as measure

theory and function spaces.

2.1 The Continuous Fourier Transform

Throughout, R? will denote the d-dimensional Euclidean space, and RY its
algebraic dual. It is well known that R? can be identified with R? itself through

the usual inner product,
(x,6) =x-& forzeRY €€ R?,

In applications, R? is often called the space domain (or time domain, if d = 1),
and R the Fourier domain, or frequency domain.

In this section we begin to develop the properties of the Fourier transform
of integrable functions and of tempered distributions. Our main interest is in
the basic rules for the transform. The inverse Fourier transform and properties
involving convolution and some further operators will be studied later. Details can

be found in Folland (1999), Gasquet and Witomski (1999) and Strichartz (1994).



2.1.1 L!'-Fourier Transform

We summarize the definition and elementary properties of the L!-Fourier

transform in the following definitions and remarks.

Definition 2.1. (L'-Fourier Transform)

Let f € L'(R?). Tts Fourier transform is the function
f&)= [ f@e®*dx for & e R
R4

As an illustration, the Fourier transform of f(z) = e~ (2 € R? where

a > 0) is computed in Example A.1 (Appendix A).

Remark 2.1. The basic properties of the Fourier transform are as follows:

i) This integral make sense if and only if f € L'(R?), since [e 7| = 1.

ii) Consider the map F on L'(R?%) given by F(f) = f. Then F is a linear,
one-to-one and norm-reducing operator of L'(R?) into Co(RY): || F(f)llec < |If]1-
This operator is also called the Fourier transform. (We use the notation F for the

Fourier transform only where it is needed for clearity.)

The following formula is essential for introducing the inverse Fourier trans-

form.

Proposition 2.1. Let f and g be two integrable functions. Then fg and fg are

integrable functions on RY and

f®a)dt = | flx)g(w)de
R4 R
Proof. Details of the proof can be found in Gasquet and Witomski (1999), pp.156.

[]

Definition 2.2. (L!-Inverse Fourier Transform )

Let f € LY(R?). Its inverse Fourier transform is

1

i&x
G [ f(e e

f(z) =



Remark 2.2. Since this definition is very similar to definition of f , the basic
properties of the inverse Fourier transform follow imediately:

i) This integral make sense if and only if f € L'(R?), since |e®%] = 1.

ii) The map F~' on L'(R%) given by F~'(f) = f is a linear, one-to-one
and norm-reducing operator of L*(R?) into Co(R9): || F 1 (f)]lee < (2—71T)d”f“1 (We

use the notation F~! for the inverse Fourier transform only where it is needed for

clarity.)

The Fourier transform is remarkable in that the inverse operator is obtained
very simply from F itself. In fact, it is just F~!. However, one must be cautions,
f being integrable does not imply that f is integrable. One needs an additional

hypotheses on f to invert the Fourier transform f — f, asin the following theorem.

Theorem 2.2. If f € L'(RY) and f € L*(R?), then

1

) S (]6(5)6"5‘z d¢  aexeRY

flx) = FH(f)@) =

Proof. Details of proof can be found in Gasquet and Witomski (1999), pp.163-

165. [l

One of the remarkable properties of the Fourier transform is the relation

between derivation and multiplication by a monomial as in the following theorem.

Theorem 2.3. Suppose that f € R. If f is continuous, piecewise smooth and
€ L'(R), then

F(f)(E) =iEF(&). (2.1)
On the other hand, if x f(x) is integrable, then

F(af()) () = i[F(NI'E) (2:2)

Proof. Details of the proof can be found in Folland (1999), pp.250. ]
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2.1.2 The Schwartz Space and Tempered Distributions

Having presented the theory of the continuous Fourier transform for func-
tion that are integrable on R?, we wish to extend it to generalized functions,
including functions that do not decay at infinity. If f and g are integrable func-
tions on R?, by Proposition 2.1, one has f x)dr = / f(t)g(t)dt. That
is, in distributional notation, ( 1 g) = (f, > This suggests to define the Fourier
transform ' of a distribution F by (]3’ ;o) = (F,$). There is, however, the prob-
lem that sometimes (F,¢) makes sense, while (F,$) may not make sense. For
most purposes, a better solution to this problem is to reduce the class of special
functions F' and, correspondingly, to restrict the class of allowable functions .

The nicest way of doing this was discovered by Laurent Schwartz.

Definition 2.3. (Schwartz Space)
Given N € Ny and multi-index o, we let
11l vy = sup (1 + [|2[)™|(D* f)()],
z€ERA
for f € C®(RY). Set S(RY) = {f € C®°(RY) : ||fll(na) < 00, VN € Ny, Va € A}

where A is the set of all multi-indices.

It turns out that S(R?) is a complex vector space, and the family of semi-
norms ||-||(v,) determines a complete metric on S(R?). We call S(R?) the Schwartz
space, and its element are called Schwartz functions. Thus a Schwartz function is
a function f in class C*™ such that f and its derivatives vanish at infinity more
rapidly than any power of (1 + ||z]|)" for all N € Nj.

Clearly, S(R?) c LP(R?) for all 1 < p < oo. Furthermore, the topology
in LP(RY) is weaker than that in S(R?): If f, — f in S(R?), then f, — f in
LP(RY).
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Theorem 2.4. The Fourier transform F : f —— f maps S(R?) homeomorphically
onto S(R?) in the topology of S(R?) and the same is true for the inverse Fourier

transform.
Proof. Details of the proof can be found in Pathak (2001), pp.65-67. O

Definition 2.4. (Tempered Distributions)

Consider the (topological) dual of S(R?),
S'(RY) = {® : S(R?) — C|® is linear and continuous}.
Elements of §’(R?) are called tempered distributions.

Example 2.1. In the following we present some classes of tempered distribution.
Throughout, f denotes an arbitrary element of S(R).
1) Let ¢ € LY(RY), 1< ¢ < oo. As S(RY) c LP(R?), where %Jr% =1,
and the topology on LP(R?) is weaker than that on S(R?Y), then ®(f) = (f,¢) =
) f(x)p(z) dx defines an element ® € S’(R%).

’ 2) Let ¢ : R? = C be measurable and |¢(z)] < C(1 + ||z])™, C is a
constant, for all x € R? (such a ¢ is called slowly increasing). Then ®(f) =
(f,0) = ) f(2)é(z) dz defines an element ® € S'(R%).

R

3) Let i be a finite measure on R?.

Then ®(f) = [ f(z)du(z) defines an element ® € S'(RY).
Rd

In order to extend the Fourier transform to S’(RY), let ® € S’(R?) be given.
The map f — (f, ®) for f belonging to S(R%), is a continuous linear functional
on S(R%), since the Fourier transform f — f is continuous on S(R%). Thus there
exists a tempered distribution ® € S'(R%) such that (f,®) = (f,®), Vf € S(RY).
We define ® to be the Fourier transform of ®. The reason S(R?) is useful in

studying Fourier transforms is that f € S(R%) by Theorem 2.4. Since elements of
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S'(RY) are considered generalized function, we call the map F : ® € S'(RY) —

® € S'(R%) the generalized Fourier transform.

2.2 Convolution

We establish the existence of the convolution for integrable functions and
consider its properties, especially with relation to the Fourier transform. First, we

give the definition of the convolution of two functions.

Definition 2.5. (Convolution)
Let f, g be measurable functions on R%. The convolution of f and ¢ denoted f * g

is defined by
(f*g)(z) = 3 fy)g(z —y)dy.

By a change of variables, the preceding definition is equivalent to

(f*g)(x) = /A flz —y)g(y) dy.

Remark 2.3.

(1) Unless additional assumptions are made about f and g, the convolution
may not be defined.

(2) Suppose f,g € L'(R%). Then f x g is defined a.e., f * g € L}(R?) and

1+ gl < Iflllgll-

We have the following theorem on the Fourier transform of the convolution

of two functions.
Theorem 2.5. Suppose f and g are two integrable functions. Then
F(f+g9)=F(f) Flg)
FHF()-Flg) =f*g.

Proof. Details of the proof can be found in Folland (1999), pp.249 and 258. n
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2.3 Operators on L?(R%)

We introduce operators on LP(R?) that will be used frequently hereafter.

Definition 2.6. (Translation, Modulation and Dilation Operator)
Let f € LP(R%), 1 < p < oo.
1) Translation by y € R? and denoted by T}, is the operator defined by
(T, f)(z) = f(z —y) for all z € RY.
2) Modulation by ¢ € R? and denoted by M; is the operator defined by
(M f)(z) = ™% f(x) for all z € R%.
3) Dilation by A € My(R) (such that det A # 0) and denoted by Dy is the
operator defined by

(Daf)(z) = |det A| 7% f(A'z) for all z € RY.

It is easy to verify that these are all surjective isometries.

2.4 The Fourier Transform of a Measure

We next define the Fourier transform of a finite Borel measure. Bochner’s
Theorem characterizes these transforms, and involves the notion of positive defi-

niteness. Before describing it, let us review the analogous concept for matrices.

Let A = [A;;],, v denote an N x N matrix with complex entries. Associated

N

to this matrix is a quadratic form on C, defined by (Au,u) = Z Ajjuiu; for a
ij=1

vector u = (u1, ug, ...uy) in CY. We say the matrix is positive semi definite if the

quadratic form is always non negative, (Au,u) > 0 for all u. Now we can define

what is meant by a positive definite function on R

Definition 2.7. (Positive Definite Function)

A function ¢ on R? is a positive definite function if for every finite set of {&}Y,
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in R? and every finite set of complex numbers {c,}_, we have

N

m,n=1
Definition 2.8. (Fourier Transform of Measure)
Let i be a finite Borel measure on R?. The Fourier transform of the measure y is

the function
(€)= [ e duta).
Rd

If 1 is a probability measure then i is referred to as the characteristic func-
tion of the measure u. The map p — ji from the set of finite Borel measures is
additive, positive homogeneous and one-to-one.

The characteristic function of the measure arising from some random vari-
ables are computed in Example A.2 in Appendix A and Remark D.3 in Appendix

D.

Theorem 2.6. ( Bochner’s Theorem )
A function ¢ is a positive definite function on R if and only if there exists a

nonnegative Borel measure p on R? such that

p(z) = /Rd e T du(€), a.e. xz € RY (2.3)

Proof. A detailed proof can be found in Appendix B. O

2.5 Continuous Wavelet Transforms

In this section, we review the continuous wavelet transform in d-dimensions.
In general, the dilation-parameter in the continuous wavelet transform is a ma-
trix belonging to a closed subgroup of the group of invertible d x d matrices, as

introduced in the following.
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2.5.1 Matrix Groups

Definition 2.9. (General Linear Group)
Let M4(R) be the set of real d x d matrices. The general linear group denoted by

GL4(R) is the set of invertible elements,
GL4(R) = {A € My(R)|det(A) # 0} .

Remark 2.4. We can see that
1. GL4(R) is a group under matrix multiplication.
2. GL4g(R) = det " (R — {0}) is open in My(R). In particular, GL;(R) =

R — {0}.

2.5.2 The Continuous Wavelet Transform

We are now ready to state the definition of the continuous wavelet trans-

form.

Definition 2.10. (Continuous Wavelet Transform)

Let H be a closed subgroup of GL4(R). Fix ¢ € L%(R?), called the mother wavelet.
For each a € H, called the dilation parameter, and b € R?, called the translation
parameter, we set

Pa,b = TbDaSO-

That is
Vap() = TyDyp(x) = Dop(x — b) = | det a\’%go(afl(:c - b)) (2.4)

defines a 2-parameter family of functions in L?(RY).
Define the wavelet transform of f € L*(R?) associated with mother wavelet ¢ by

the inner product

CWED) = (f #ab)-
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That is

CWZ(b) = | det a|_% g f(@)p(a= (x — b)) du. (2.5)

Example 2.2. Let d =1and H =R* or H = {c* : k € Z, for fixed ¢ > 1}.

Then for fixed a € H,b € R

vain= s oo ()

gives information of f(xz) at scale a and location (time) determined by b.

Example 2.3. Let d =2, H = ca#0

a 0
Fix ¢ € L*(R?). For each h = € H,beR? | set
0 a

|—
o

$1—b1
Pap(w) = |det h|"2p(h™ (@ = b)) = |a] "¢

=1 Ty — b T3 — by
- |CL| ¥ ) d
a a

Thus the wavelet transform of f € L*(R?) is

1 —b —b
OW}I(b) = —/ f(x1, 22)p (xl 1, v 2) dxdxzs.
a Jp2 a a

In the case of general R, set H = {al;: a # 0}. Then for each h € H,b €

o
|

T — by

R? we have

Spa,b( ) |det h| 2(’0( (l’ _ b)) | |_%g0 ($ — b) .

Thus the continuous wavelet transform of f € L*(R?) is

cwrw =l [ e () a

a
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2.6 Discrete Wavelet Methods

In the continuous wavelet transform of Example 2.2 we consider the family
@, ,(r) = |a|_%<p(’”T’l’), where a,b € R,a # 0. We would like to restrict a,b to
discrete values only. Now we choose a = ag, b = na(’, where m,n range over Z

and ag > 1 is fixed. This corresponds to

_m T —nagy _m Cm
P (T) = ag 290(—mo) = Qo 290(% x—n).

There are some questions which arise naturally: Do the discrete wavelet coefficients
(f+¢,...) completely characterize f € L*(R) ? Furthermore, can every function f
be expressed in terms of the ¢,, , 7 In the present discrete case there is no analogue
of the resolution of the identity, so one has to attack the problem in some other

way.

2.6.1 Multiresolution Analysis on R

Daubechies (1992) opined that the first construction of smooth orthonormal
wavelet bases by Meyer seemed a bit miraculous in that the Meyer wavelets consti-
tute an orthonormal basis. This situation changed with the advent of multiresolu-
tion analysis, formulated in the fall of 1986 by Mallat and Meyer. Multiresolution
analysis provides a natural framework for the understanding of wavelet bases, and
for the construction of new examples. The construction of most wavelet bases
of square integrable functions on the interval [0, 1] derives from a multiresolution
analysis on L*(R). We therefore review the concept of multiresolution analysis, as

outlined in detail in Daubechies (1992), Meyer (1986) and Walnut (2001).

Definition 2.11. (Multiresolution Analysis on L*(R))
A multiresolution analysis (MRA) on L?(IR) consists of sequence of a closed sub-

spaces V; where j € Z of L*(R), satisfying
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(M1) V; CVjyy forall jeZ
(M2) feV;ifandonlyif f(2:) € V;1, forall jeZ
(M3) (V5 = {0}
JEL
(M4) [ JV; = L*(R), and

jEZ
(M5) there exists a function ¢ € Vj such that {¢(- — k) : k € Z} is a

complete orthonormal basis for Vj.

Remark 2.5.

1) The function ¢ whose existence is asserted in (M5) is called the scaling
function of the given multiresolution analysis.

2) Sometimes condition (M5) is relaxed by assuming that {¢(-—n) : n € Z}
is a Riesz basis for V. That is, for every f € V| there exists a unique sequence
{an}nez € I*(Z) such that

f(x) =) anp(a = n), (2.6)

ne’l

with convergence in L?(R) and

AY ol < IFIE<BY ol (2.7)

nel nez

with constants 0 < A < B < oo, independent of f. Observe that (M5) implies

that {¢(- —n) : n € Z} is a Riesz basis for Vj with A = B = 1.

Remark 2.6.
1) Usually, a multiresolution analysis is defined by first identifying the

closed subspace V[ and the scaling function ¢, and then setting
Vi ={f(2): [ €V}

so that (M2) holds.

2) Let f € Vo = span{Typ}, ;. Then Ty f € Vi for all k € Z.
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Similarly, since Ty f € Vp, then f = T (Tif) € Vo. Hence f € Vj if and only if
Typf € Vy for all k € Z. This property is called translation invariance, so Vj is a
translation invariant subspace of L*(R).

3) It follows from (M2) that Dy-; is an isomorphism of Vj onto V; (this is
proved in Walnut (2001)).

4) It follows from 3) , (M5) and 2) above that {¢,, : ;x(7) = 25 (g —
k)}rez is an orthonormal basis of V;.

5) By 4) we have V; = span{p,,}, _, C span{goj,k}j reg: and hence the

inclusion that U V; C span{g0j7k}j peg SO that L*(R) = U V; C span{goj’k,}j hez
j€z ’ jEZ ’
that is

PP}, e = LA(R). (28)

6) Since ¢ € Vo C Vi and {p, , }rez is an orthonormal basis of V;, we have

Y= Z <SP Pk = P (29)
kEZ

Setting hy =< ¢, ¢, , >= \/5/ o(x)p(2z — k) dx, then we rewrite equation (2.9)
R

as

prEDU ke, (2.10)

keZ
which often is written as

p(r) =Y V2hyp(2z — k),

keZ

converges in L?(R), and is called the scaling relation, and {hy }rez € (3(Z) is called

the scaling filter associated with ¢. By Parseval’s identity

D=1 <p 0, > =1l

keZ keZ

7) Equation (2.9) can be formulated for every f € V;,

f ::§£:<f7@1k>ka'

keZ
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Definition 2.12. (Orthogonal Projection)

Let H be a Hilbert space, V a closed subspace of H. Then for each x € H, there
exists unique element y € V' such that ||z —y|| = Zlg‘f/ ||z — z||, we define this point
as Pr = y. If x € V then Pxr = x. The mapping P is called the orthogonal

projection of H onto V.

Now suppose that we have a multiresolution analysis {V;};ez with scaling
function ¢. Let P; denote the orthogonal projection of L?(R) onto V}, j € Z, then
Pif = ffor f €V, and P;g =0 for g € VjL. The projections P; are called the
approximation operators.

Note that if H is a Hilbert space, V' a closed subspace of H and {e, }cs
an orthonormal basis for V', then for each x € H, the projection of H onto V is
given by

RTG Z(x,en>en.

neJ

According to Remark 2.6 (4), {¢,, }rez is an orthonormal basis for Vj. Thus, the
approximation operators P; f € V; are given by

Bif =D {fi8, D0, (2.11)

kEZ

for all f € V;. Let W; denote the orthogonal complement of V; in V;i; then
Viy1 = V; @ W;. The orthogonal projection @Q; of L?*(R) onto W; is called the
detail operator. By straightforward computation, we have @); = P — P; so that
for f € L*(R?),

lim [|f — Pjfllo=0 and lim P;f =0, (2.12)
j—oo j——00

details of the proof are given in Walnut (2001), pp.171 - 173. By these and a

telescoping technique it follows that, for each f € L*(R),

F=Y_Qf

JEZ
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Start with some closed subspace V; of L*(R) then L*(R) = V; @ V.

As Vii1 =V, @ W, then
LR)=Vin @ Vi =Vie W& Vi,
Continuing by induction we have, for all m > 1,
LR)=Viea W& Wi @ ... ® Viewm & Vi
Given n > 0 choose | = —n,m = 2n
PR =V, oW oW n®..0 W, W, V..
From 2.12 it follows, letting n — oo that
LQ(R) = ®;ezl;.

Beginning with the scaling filter {h}rez we define a sequence {gx} € I*(Z) by
gr = (—=1)*h1_, called the wavelet filter, and define an associated function ¢ € W,

called mother wavelet, by

kEZ

We have an important theorem, a detailed proof of which is given in Walnut

(2001).

Theorem 2.7. Let ¢ be a scaling function of a MRA {V;}jcz on L*(R) and 1 the
associated wavelet. Then

1) {Tx}rez is an orthonormal basis of Wy.

2) {1[)]k X (x) = 2%#)(2% — k) }kez is an orthonormal basis of W.

8) {1, , Yikez is an orthonormal (wavelet) basis of L*(R).

Remark 2.7.

1) From Theorem 2.7 (2) we have that the detail operators Q;f € W; are
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given by
Qif = {f. 0, )0, (2.14)
k€EZ

2) From relation (2.10), applying the operator DT we have

D, - Z WD, TmPr Z hiD, ;1 Dyos Tomenp
keZ kEZ
=> WD, Tomire =Y h,_,, D, Tip.
keZ kEZ

So that
Osrm = D PP, (2.15)
keZ

Next, ¢ = ng%,k gives in the same way that
keZ

] 1,m ng om Pk (2'16)

kEZ

Since V;(R) = V;_1 & W,_4, we can see that for f € V;, P;f = P,_1f + Q;_1 f thus

by the relations (2.11) and (2.14)

Z<f> 90j,k>(pj,k & Z<f> 90j71,m>§0j71,m + Z<f7 wjfl,m>’l/}j71,m

keZ meZ meZ

Then by equation (2.15) and (2.16) we have

Y Ao = [(ﬂ Prim) D oy

keZ meZ keZ

— Z Z [(f7 wj_17m>hk_2m + (f, ¢j—17m>gk—2m:| Pk

meZ keZ

=2 (Z [0, s+ (0, )00 ZmJ) P

keZ \mgeZ

2

meZ

(f, 1) ngm%,k]

keZ

Since {@,, }rez is orthonormal, the coefficients on both sides must be identical.
Then, for each k € Z and f € V},

<f7 (Pj,k> = Z [(fv 903'71,m> k—2m <f wg 1m>gk 2m:|

MEZ

= (£ [ﬁk_ms@j,l,m + ?k,m%,l,m} ).

MEZL
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Hence we have

spj«k = Z [Ek—zmspj—lam +gk—2m¢j—1ami| :

meZ

In particular, if j =1,k = 0 we get

Pio = Z [E—ngpo,m +§,2mwo,m} )

meZ

that is

V2p(22) =Y (A, oe —m)+7, vz —m)]. (2.17)

meZ

If j=1,k=1 we get

901,1 = Z [El—ngpo,m + g1fzmw0,m:| )

meZ

that is

\/§g0(2x —1) = Z [Ekago(x —m)+7, , ¥@— m)} ) (2.18)

2.6.2 Wavelet Bases with Compact Support

In this subsection we are mainly interested in constructing a wavelet basis
consisting of compactly supported wavelets which is important for the construc-
tion of wavelet bases on the interval, in the next subsection.

Recall equations (2.9) and (2.10) defining the scaling filter {h,, }mez asso-
ciated with the scaling function ¢. If this sequence has finite length, h,, = 0 for
m < 0orm > 2N —1, N € Z", then the corresponding basis wavelet has
compact support. This can be checked from the recursive definition of the 7;, see

more details of this recursive relation in Meyer (1987) and Daubechies (1988),

p(z) = lim n(z)

=00

m(l’) = \/EZ hmnl—l(Z’E - m)ﬂ]o = X[—%,% .

meZ
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Consider n; = V2 Z hmno(2x —m). Recall that h,, # 0 only for 0 < m < 2N —1,

MEZ

1 1
and supp(mo) C [—3,3]. If 2 € supp(n), therefore, then ) <2r—m < 5 for

1 1
all 0 < m < 2N — 1. In particular, —3 <2z < 5 + (2N — 1) or equivalently,

1 1
— << N-—-.
1" 1

1
Continue by induction. We obtain, when = € supp(7n2), then ~1 <2x—m <

1 1 1
N—ZforallOﬁmﬁZN—landhence—ZSQzS(N—Z—l)qL(ZN—l)or

Lo 3V s

8 2 8
Continuing, when x € supp(n;) we have

1 2l -1

Let | — o0, as p(x) = llirn m(z) we obtain that supp(yp) C [0,2N — 1)
—00
Therefore in this case, we can rewrite equation (2.10) as the following equa-
tion

2N—-1

= Z \/§hm90(37 D | m)v hohzwﬂ # 0.
=0

Then the associated wavelet ¢ has the same support (by a simple translation) and

we can rewrite equation (2.13) by
2N—1

2) = > V2gmple —=m),  gogax_, # 0.
m=0

Recall that equations (2.17) and (2.18) can be written as

V2p(2e) = > [he@—m)+7 , dlx—m)],
and

V222 — 1) Z (7 (@ —m) +7,, w(z—m)].

—N+1
Hence

V2p(22) = hop(x) + Gyt (@) + hap(@ + 1) + Gotb(a + 1)

m=0 m=—1

+ ... +ﬁ2N_2¢(x + N — 1)+ goy_¥(a+ N —1).

=—N+1
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That is

V2p(2x) = hop(x) + hop(z + 1) 4 ... + hay_sp(z + N — 1)

+ Got(x) + Goo(x + 1) + ... + Gy _o¥(x + N — 1), (2.19)

and similarly,

V20 (22 — 1) = np(x) + §ip() + hsp(a + 1) + Gyo(x + 1)

m=0 m=—1

m=—N+1

That is

V202 — 1) = hip(x) + hsp(@ +1) + ... + hoy_19(x + N — 1)

+g,0(x) + g3+ 1)+ ... + Gon_¥(z + N = 1). (2.20)

2.6.3 Wavelet Bases of L%[0,1] and L*([0,1]%)

Throughout this section, we let jo € Z be such that 270 > 4N — 4 and
{V;(R)}32, be a multiresolution analysis on L*(R) with scaling function ¢ and
associated wavelet 1) such that the scaling filter associated with ¢, {h,, }mez, has
finite length, h,, = 0 for m < 0 or m > 2N — 1. Hence suppy, suppyy C [0,2N —1].

Now set
V;(10,1]) = Spaﬂ{%’,k\m] tpik € V;(R)}
and
v;([0,1]) = span{y,« : suppp; i C [0, 1]}
Since ¢ is a function of compact support, it is obvious that V;(]0,1]) is finite
dimensional. Note that the collection of function g0j7k|[0’1] which do not vanish on

[0,1] may not be orthogonal on [0,1]. Our goal is to show that this system is

linearly independent, and thus can be made orthonormal by the Gram-Schmidt
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method. We now proceed to present elementary lemmas which will be useful in

the analysis of functions defined on the interval.

Definition 2.13. (Multiresolution Analysis on L*([0,1]))
Let {V;(R)}32, be a multiresolution analysis on L*(R). A sequence {V;};>;, of
closed subspaces of L*([0,1]) is called a multiresolution analysis on L%([0,1]) as-
sociated with {V;(R)} if

i) V) = o, w3((0,1)) € V; € V;((0,1)

i) Vj 2> jo, V; C Vi
Lemma 2.8. If f(z) = chgo(x — k) where ¢ = /OO f(@)p(x —k)dz, is a

keZ
function in Vo(R) such that f(z) =0 for x <0, then ¢, =0 for k < —1.

Proof. See Appendix C. m

For each j, denote by S(j) the range of all translation parameters k so
that the support of ¢, x(x) = 2%g0(2j:v — k) intersects the interval (0, 1), that is,

goj,k|[0,l] # 0. Since suppp; . = [277k, 277 (k + 2N — 1)] it follows that
S(i)=[-2N+2,22 - 1]NZ. (2.21)

The set S(j) can be divided into three disjoint subsets S1(j),S2(j) and Ss(j),
according to whether the interior of the support of ¢;; contains 0, the support of
©;r is complete contained in [0, 1], or the support of ¢, contains 1, respectively.

By (2.21) it follow that

S1(4) = ZN[—2N +2, —1], and in fact, supp(gpj‘k) C (—o0, 2]\27]2] C (—o0, %]

for k € S1(j),

S2(j) = 2N 10,27 — 2N + 1], and in fact, supp(ep,,) C [0,1] for k € Sy(j),

S3(j) = ZN[27 —2N 42,27 — 1], and in fact, supp(p,,) C [l — 22, 00) C

[%, o0) for k € S3(7).
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It is shown in Appendix C that for j > jy and any function f(z) = Z cro(20z—k)
in V;(R), f(z) =0for 0 <z < 1implies that ¢;, = 0 for —2N+42 < ’li;ezg 27—1. This
implies that {p(2'z — k) : k € S(j)} is a linearly independent system. Moreover,
we can show in Appendix C that there exist constants Cy > C} > 0 such that for

any sequence «;y, k € S(j) of coefficients,

) Z a, P | <[ Y a0, <, Z ja, |

keS(j keS(5) 200.1] keS(j

N
M

This will establish the following fundamental theorem.

Theorem 2.9. For j > jo, the functions ¢, ke S(j)=[-2N+22 —1],

|[01

form a Riesz basis of the space V;([0,1]).
Proof. See Appendix C. O]

Note that, we have the following orthogonality relations for elements of the
collection {¢, | 0.1 Yees()-
1) If k € S1(j) and [ € S5(j) we have as suppyp,, C (—o0, 5] and suppy,, C

[O’ 1]’

1 [e9)
/ @ ()p, (v)dr = Zj/ 02z — k)p(2ix — 1) dz =0
0 —o0

since {0 }mez is orthonormal in V.

2) If k € Sy(j) and [ € S3(j) we have suppyp,, C [0,1] and suppyp,, C

£, 00), and similarly to 1),

1
/ o (@) @) dr =0
0

3)If k € S1(j) and I € Ss(j) we have as suppy,, C (=00, 3] and suppy,, C

[%, 00), that ;@ % = 0 a.e., and hence
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1
4) If k € Sy(j) and | € Sy(j) we have / ¢, (2)ji(x) dr = 0x; by orthog-
0
onality and since suppy; i, suppy;; C [0, 1], k € Sa(j).

In order to transform the basis ¢ k € S(j) to an orthonormal ba-

gk ‘ [0,1]°

sis it is thus only necessary to make the function in ¢ k € S1(j) mutually

j,k‘[o,l]’
orthonormal and similarly, to render the function in gpm}[o 1},k‘ € S3(j) mutu-

ally orthonormal. At the first for ¢, k € S(j), we apply Gram-Schmidt

k ‘ [0,1]°

to these functions one thus obtains, in lieu of ¢, , ()|, k € S1(j), new func-

[0,1°
tions 2%90(12N+2(2jx),...,2%g021(2jx), near the boundary 0. Now, for functions
g0j7k|[0’1], k € S5(j), we reflect and translate by 1 to the right to obtain functions
near the boundary 1. Next, we thus apply Gram-Schmidt to these functions.
One thus obtains, in lieu of ¢;x(z),k € S3(j), new functions 2%90;-72]\,”(23'(1 —

x)), ...,2%<p§j_1(2j(1 — z)), near the boundary 1. Hence we have the following

proposition.

Proposition 2.10. The collection of function
2%9022N+2(2j37)> s 2%9021(2j$);
(2w — k)|, 0S k<2 —2N +1

and 2%g0§j_2N+2(2j(1 — 1)), .. 2%90§j_1(2j(1 — 1)),

is an orthonormal basis of V;[0,1]

It is easy to see that the space V; contains the orthonormal system ¢; |01, 0 <
k <29 —2N+1, and we add boundaries functions near 0 and 1 from the collections
280%y o(22), ., 280%, () and 28],y L (27(1 — 7)), ., 280 (2(1 - 2)),
respectively.

The construction of an orthonormal wavelet basis on [0, 1] follows thus the
classical scheme of multiresolution analysis. One has a nested sequence V;[0, 1] of
subspaces of L?[0,1], 7 > jo. The union of the V;[0,1] is dense in L?[0, 1] just as

the union of the V;(R) is dense in L*(R). One denotes by W;[0, 1] the orthogonal
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complement of V;11[0, 1] in V;[0, 1], that is
W00, 1) = (Vyal0, 1) 0 (Vi[0, 1))

Observe that W;[0,1] is not the space of restrictions of functions in W; to [0, 1]
thus the next lemma will be useful in what follows.

Now set V;[0,00) = Span{wjyk‘[o o) - Puk € Vi(R)}. In the following we

gk

establish the second goal of this section, which is to construct a wavelet basis of

the space W;(][0, 1]). For this purpose, we need some lemmas.

Lemma 2.11. The functions ¥(x — k)| o)’ —2N +2 <k < —N +1, belong to

[07

Vo[0, 00).
Proof. See Appendix C. O

The following lemma is an almost immediate consequence of the previous

lemma by changing variables.

Lemma 2.12. The functions (27 —k)|jo1), 2N +2 <k < —N or2 —N+1 <

k<27 —1, belong to V;]0,1].
Proof. See Appendix C. O

Applying Theorem 2.9 and Lemma 2.12, we reach the following important

theorem.

Theorem 2.13. For each j > jo a basis of V;11(0, 1] is formed by {; k|17, —2N +

2<k<2 -~ 1} U{Yjklpo1, - N+1<k< 2/ — N}.
Proof. See Appendix C. m

We now show that each v;|j01, =N +1 < k < 2/ — N is orthogonal to

Spj,k‘[o,l]:_QN + 2 < k < 2j — 1 so that wj,k’[O,l]a_N +1 < k < 2j — N forms
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elements of the space W;(]0, 1]).

Lemma 2.12 tells us that the restrictions of the ¢, to [0, 1] belong to V;[0, 1]
if 2N 4+2<k<-Nor2 —N+1<k<2 —1. When —-N+1<k<—1or
2/ —2N +2 < k <2/ — N, the restrictions of the functions ¢, certainly don’t
belong to V[0, 1], but are not orthogonal to V[0, 1] either.

In any case, one has
L7(0,1] = V[0, 1] @ W5, [0, 1] @ Wiya[0,1] & ... (2.22)

We already have an orthonormal basis of V},[0, 1] by Proposition 2.10.

Now, let —N +1 <k <2/ — N.

We distinguish the cases —N+1 <k < —1, 0 <k <27—2N+1,and 27 —2N+2 <
k<2 — N as follows.

Case . If —N +1 <k < —1, then SUPP(%,IC‘[Q,”) C [—%, %] We have

i) w;‘,k|[0,1] are orthogonal to cpj}l| i 0 <1< 2 —1, in fact supp(p | ) C

[0, 3. 100,1]

[0,2] so that Supp(wj,kﬁho’u) C [0, 3] and hence

as ¢,, € Vj(R) and v, € W;(R).

ii) Similarly, wmho,l] are orthogonal to ,l/}j,l‘[ 0 <1< 2 — N, in fact

071] ’

supp(g/)j,lh()’l]) C [0, 1] so that Supp(¢j,k%‘[071]) C [0, 3] and hence

/01 b, ()0, (z) de = /_Z b, (2)g, @) dz =0

as ¢, and ¢, belong to W;(R) and k # I.

iii) What the functions ¢, still look is orthogonality to the N —1 functions
2%@22N+2(2jx), o 2%@‘11(2%)“071}. Since these N — 1 functions form an orthogo-
nal sequence, the corrections which make the ¢, ,, =N+ < k < —1 orthogonal to

V;10, 1] are obvious, by Gram-Schmidt process. One thus obtains N — 1 functions
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Z%h_NH(Qj:E), - Q%h_l(ij) where h_ny1,...,h_1 are independent of j.

By i) and iii) we have that ¢, are orthogonal to V;[0, 1] and ii) says that

,k|[0,1}
¢j7k|[0 1 for 0 < k <2/ — N, are mutually orthogonal it suffices to make the func-
tions Q%h_NH(ij), o Z%h_l(ij) mutually orthogonal, by means of the Gram-

Schmidt process, to obtain the N —1 wavelets clustered at 0 namely Q%wf ni1(2x),

2500 (20)
Case II: If 0 < k < 20 — 2N + 1,suppy),, C [0, 1], then obviously ¢j:k|[0 1 belong
to the orthogonal complement of V;[0, 1] in V;;4[0,1], and moreover %,k}[o ) are

orthogonal already.
Case IIL: If 27 — 2N +2 < k <2/ — N, suppy),, C [%, %] Then we have

i) w;‘,k|[0,1] are orthogonal to ¢ —2N +2<1<2 —2N +1, in fact

gl | [0,1]°

suppwj’l‘[o’l] - [_%7 1] so that Supplpj,k@_j,l‘[m] C [%, 1] and hence

/01 ¥, (2)p,,(z)dv = /:: b, (2)p, @) dz = 0

as ¢,, € Vj(R) and v, € W;(R).

ii) Similarly, Q/JM‘ are orthogonal to v —2N+2<1<2—2N+1,

[0,1] il ‘ [0,1]’

in fact supp@bj?kzb_j’l’[()’l] C [%, 1] and hence

[ ot = [, 0w —o

as ¢, and ¢, belong to W;(R) and k # I.
iii) What the functions ¢, } 0.1] still look is orthogonality to the N —1 func-
tions 2%4,03]-72]\,%(2]'(1 — 1)), ...,Q%gogjfl(?(l — x)). Since these N — 1 functions

form an orthogonal sequence, the corrections which make the T/Jj,kh orthogonal

0,1]
to V[0, 1] are obvious, by Gram-Schmidt process. One thus obtains N —1 functions
2%iL2]‘,2N+2(2j(1 — ﬂf)), ceey 2%B2371(21(1 — .17)) Where ;Lz,j,QNJrQ, ceey iLQj,l are indepen—
dent of j.

By i) and iii) we have that zﬁj’k‘[ are orthogonal to V;[0,1], and ii) says

0,1]
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that 1/}j7k|[071} for —N +1 <1 <2/ —2N + 1, are mutually orthogonal it suffices
to make the function in 2%h2j_2N+2<2j(1 —T))y ey Q%ilgj_l(Qj(]. — z)) mutually or-
thogonal, by means of the Gram-Schmidt process, to obtain the N — 1 wavelets
clustered at 1, namely Q%ng_QNH(Qj(l — 1)), . Z%ng_N(Qj(l —x)).

We have obtained the following theorem concluding the construction of a wavelet

basis of L?[0, 1].

Theorem 2.14. Let V;(R) be multiresolution analysis on R with scaling function
¢ and associated wavelet 1. Let jo € Z be such that 270 > AN — 4. The following
collection

2j709032N+2(2j0I)a ) 2j709031(2j0$):

i ()] gy O Sk <20 — 2N +1,

jo. . jo .

2 20@5]‘072N+2(2j0(1 - ZE)), ) 2 2()9053'071(2]0(1 - (L’))

2%¢2N+1(2jx)a "'72%¢21<2jx);

wjyk(x)hwo <k<2 —2N +1,

2%¢§j_2N+2(2j(1 T 2%¢§J—N(2j(1 —)),J 2 Jo

is an orthonormal basis of L*[0,1].

Remark 2.8. Recall the construction of the boundary wavelets using the Gram-

Schmidt process. This construction gives, for j > jo and = € [0, 1],

Q%qprH (277) = C N1, o (T0)

2%1/}?]\[4,2 (2]:5) = OiN+2¢j,—N+2($) + CEN+177DJ',—N+1 ($)

2%¢g1(2j$) = Cile,—l(x) + 032%‘,—2(95) +t CJ_VJQL%',—NH(@
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and

2%¢B <2j(1 — 1)) = CQj—2N+2¢',2172N+2 (:)

27 —2N+2 J

J .
22¢5_2N+3(2j(1 — 1)) = Coy_on3¥ioi-anss(@) + Co oy ot o (@)

2%¢§j,N(2j(1 — 1)) = Cyy_yWjoi-n(x) + CF_y_1¥j0i-n-1(T) + ...

N-1
+ Oy ConyoVi2i—anya(T)

Remark 2.9. If {f;};c; is an orthonormal basis of L?(I), then

(1) elementary tensors, {f; ® f5};5c; = {fjf;};jes form an orthonormal
basis of L*(I) @ L*(I) = L*(I?).

(2) From (1) and induction we obtain that, for any multi-index set J¢ =
d

:::::
=1

L2(19).



CHAPTER III

RANDOM FIELDS

In this chapter, we introduce random fields and related notation. We also
review the concept of correlation function and covariance function of random fields
at different sample paths and then discuss some special classes of random fields
with continuous sample paths. Furthermore, we review the power spectral density
function of a random field. For further details, see Childers (1997) and Grimmett
and Stirzaker (1992). Finally, we discuss the wavelet transform of random fields,

additional details can be found in Cambanis and Houdre (1995).

3.1 Random Fields

A random field X (¢, w) is a function of two variables ¢ and w where ¢ is called
the coordinate position (or time for ¢ € R™) variable in standard terminology, and
w is the outcome variable which has several meanings according to the application

under cosideration.

Definition 3.1. (Random Field)
Let (Q, F, P) be a probability (sample) space, T' a parameter set and S a Borel
subset of R or C. A family {X,;},c7 where X, :  — S is an F-measurable random

variable for all t € T, is called a random field.

If T=RorT = [0,00), the random field is usually called a stochastic
process or random process. The term random field is usually used to stress that

the dimension of the coordinate space is higher than one.
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In this thesis we consider random fields whose coordinate space is T = RY,
that is X, is a real or complex random variable for any ¢ € R, and require that

X (t,w) is measurable on R¢ x €.

Remark 3.1. We can look at a random field in different ways.

(1) Fixt € T. Then the map w —— X;(w) is a random variable, as in
the definition, it is a function on the sample space. Thus, a random field is an
ensemble of random variables over some coordinate space 7T'.

(2) Fixw € Q. Then the map t — X;(w) is a deterministic function from

T to S, usually called the sample path of X at w.

Definition 3.2. (Expected Value, Variance and Covariance Values)
Let (2, F, P) be a probability space and X, Y real or complex random variables.

The expected value of X € L!(Q) is defined by
BlX] = /Q X (w) dP(w)
The variance of X € L?(Q) is defined by
Var[X] = E[|X — E[X]]"] = /Q | X (w) = E[X]|* dP(w) = E[|X|"] — | B[X]|*.
The covariance of X,Y € L?(Q) is defined by
Cov[X,Y] = E[(X — E[X])(Y — E[Y])].

Variance and covariance possess the following properties:

1) Cov|X,Y] = E[XY] — E[X]E[Y]

2) Cov[X,Y] = Cov[Y, X]

3) CovlaX + bY, Z] = aCov[X, Z] 4+ bCov|Y, Z] for all scalars a, b
)

4) Var[X + Y| = Var[X] + Var[Y] + 2ReCov[X, Y].
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Definition 3.3. (Second Order Random Field)
A random field {X;};cga is said to be a second order random field if E[|X;|?] < oo

for all t € R,

Definition 3.4. (Distribution Function)
Let (Q,F, P) be a probability space, and X a vector valued random variable,
X Q=R Set p, (A) = PlweQ: X(w) e Ay = P(X1(A)) for A € B(RY).

Then s, is a probability measure on B(R?), and
/ hdux—/honP(w) for all h: R* — R (3.1)
Ré Q

whenever one of these integrals is defined. p, is called the distribution of X. More
details can be found in Capiiiski and Marek (2004).

Define

Fy (>‘) = :LLX<<_OO7 )‘])
= 1, (=00, \i] X ... x (=00, Ag])  forall A= (A,...,\q) € R

Then F, : R — [0,1] is called the distribution function of X.

Definition 3.5. (Density Function)

Let (2, F, P) be a probability space, and X : @ — R? a random variable with
distribution p,. Suppose that p, is absolutely continuous with respect to the
Lebesgue measure A\. Then by Radon Nikodym’s theorem, there exists a nonneg-

ative integrable function f, such that
fy (A) = / f(@)d\(z)  for all A€ B(R?). (3.2)
A
If F, is the distribution function of X, we have for t = (t;, s, ..., tq) € RY,

F(t) = / / (@1, oo ) A1) (1),
(—o0,t1] (—o0,tq)
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and f = f, is called the (joint) density function of x,. One can show that there
is a one-to-one correspondence between distribution functions F', and distribution

measures U .

Example 3.1. (Normal Distribution)
Let us start with parameters m € R and s > 0, and consider the density function

f : R — R" defined by
1 (t=m)?

ft) = —o—e

27s

Set F(t) = / t f(z)dz; then F is a distribution function, and determines a
distribution u_bo; p(—o0,t] = F(t). Using (3.1) and (3.2) one obtains that any
random variable X whose distribution function is of this type will have mean m
and variance s?; we therefore call i the normal or Gaussian distribution with mean

m and variance s, and write " X is N(m, s?)”.

Definition 3.6. (Identically Distributed)
Let X and Y be random variables on probability spaces (Q, F, P) and (Q, F, P),
respectively. If p, = p,, then X and Y are said to be identically distributed,

written X 4 Y.

There are various ways of interpreting the statement X,, — X as n — oo,

some can be found in the next definition.

Definition 3.7. (Modes of Convergence of Random Variables)
Let X1, X, ... and X be random variables on some probability space (2, F, P).
We say that:
(a) X, converges to X almost surely, written as X,, % X,
if {weQ: X,(w) = X(w) as n — oo} is an event whose probability is one.

h

(b) X, converges to X in r*" mean, where r > 1, written as X,, — X,

if E[|X]"], E[|X,|"] < oo for all n and E[|X,, — X|"] — 0 as n — oo.
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Remark 3.2. Minkowski’s inequality states that

1
T

X1 = (ETX]T)

defines a norm on the collection of random variables with finite 7** mean, for any
value of » > 1. Of most use are the values r = 1 and r = 2.

If X, L X we say that X, converges to X in mean,
and

if X, 2 X we say that X, converges to X in mean square.

Definition 3.8. (Independent Random Variables)
A collection of random variables { X,,}_; on a probability space (2, F, P) is called

independent, if for any £, 1 <k < N, and any choice of Borel sets B,,,, ..., By,

P (X, (Bn)N...n X (By,)) = P (X, (By)) ..P (X, (Bn,)) -

ni ni Nk

Remark 3.3. Let Xi, Xy, be two independent vector valued random variables
on (Q,F,P), say X; : Q — R4 X, : Q — RY. Consider the product of
the measurable spaces (R?, B(R?)) and (R!, B(R')), denoted by (R? x R!, B(RY) ®
B(R!)). Next, consider X : 2 — R given by X (w) = (X;(w), Xa(w)). It is easy
to see that X is a random variable, that is B(R?) @ B(R') = B(R4*!)-measurable.
Let iy, iy, s 11y denote the distributions of X;, Xp and X respectively.
Then X; and X, are independent

if and only if P(X;!(B1) N X5 (By)) = P(X['(B1))P(X, (By))

if and only if P(X~Y(B; x By)) = P(X; Y(B1))P(X, 1 (By))

if and ouly if 11, (By % Ba) = iy, (B)piy, (Ba).
for all B; € B(R?), B, € B(R!). That is, X; and X5 are independent if and only if

Bx = Hxy X px,-

Next, let f(z): R? — R, g(y) : R® — R be Borel functions and consider

the Borel function f(x)g(y) : R — R. Suppose that either f > 0, g > 0
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or f(X1),9(Xs) € LY(Q). Then we can see that f(X;)g(Xs) > 0, respectively

f(X1)g(X3) € LY(Q). In fact, by Tonelli’s Theorem and (3.1),

BIFC)90DN = [ 1709l dy o, (o0.22)

R xR!

= [ [ irallsld,, @i, , ()
= E[|f(X1)”E[|9(X2)|]

which shows that f(X;)g(Xz) € L*(Q2) provided that f(X), g(z2) € L*(Q2). Then

we have have by Fubini’s Theorem, in a similar way,

BUCIO)] = [ [ fan)olaa) duy, (00) dy, (02) = ELFCX)]Elg((Xa)

We summarize as following result:

Theorem 3.1. Let X, and Xs be independent random variables on (0, F, P), f
and g Borel functions. If f >0, g > 0 or f(X1), 9(Xs) € L (), then f(X)g(Y) >

0, respectively f(X)g(Y) € L) and B[f(X1)g(X2)] = ELf(X,)]Elg(X2)).

The following result is an immediate consequence of the above theorem by

choosing f(x1) = x; and g(xs) = 5.

Corollary 3.2. Let X;, Xy be independent random variables X; : Q@ — R such

that Xl,XQ € Ll(Q) Then X1X2 S Ll(Q) and E[XIXQ] = E[Xl]E[XQ]

3.2 The Correlation and Covariance Functions

In many applications of random fields, it is necessary to consider the rela-
tionships between sample paths starting at different positions. To obtain useful
tools for analysing a pair of random variables, we recall that the correlation and
the covariance of a pair of random variables is random at different positions ¢

and t 4+ 7. To use this information to understand a pair of random variables, we



40

therefore work with the correlation and covariance of the random variables X; and

Xt—i-T-

Definition 3.9. (Auto-correlation and Auto-covariance Functions)
Let {X,},crae be a random field such that X; € L*(Q) for all t € R%

The auto-correlation of X, is defined by
R, (t,t+7) = E[X,X,,,] for t,7 € R% (3.3)

The auto-covariance of X; is defined by

C.(t,t+7)=E[(X, — B[X)])) (X4r — E[X\1,])] for t,7 € R% (3.4)

The auto-correlation and auto-covariance functions of a random field are

related to each other in the following way

C (t,t+7) =R (t,t+7) — E[X)E[X¢(,]. (3.5)

This property can be easily derived from equations (3.3) and (3.4). We can see
that for a zero mean random field, the auto-covariance function coincides with the
auto-correlation function.

So far we have considered the relationship between two sample paths of the
same random field at different positions. We now address a similar relationship

between two sample paths of different random field at different positions.

Definition 3.10. (The Cross-Correlation Function)

Let { X, },cre and {Y;},cra be random fields such that X;,Y; € L2(Q) for all t € R,

The cross-correlation function of X; and Y; is defined by

Ry, (tt+7) = E[X,Yi]. (3.6)

The cross-covariance is defined as

C

XY

(t,t+7) = E[(X, ~ BIX) Wirs — EVirr])| (3.7)
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The cross-correlation and cross-covariance functions of two random fields

are related to each other in the following way, see Childers (1999) for example.

Co (tt+7) =Ry, (tt +7) — E[X,]EYier]. (3.8)

This property can be easily derived from equations (3.6) and (3.7).

3.3 Classification of Random Fields

The mean and correlation functions can provide information about the spa-
tial structure of a random field. In this section we examine three particular classes

of stationary random fields with continuous sample paths.

Definition 3.11. (Strongly Stationary Random Field)
A random field {X;},cpa is called strongly (or narrow sense or first-order) station-
ary if the families of random variables {X;,, Xy,, ..., X;, } and { Xy, 1p, ooy Xoan}

for all n € N for all t1,t, ..., t, € R? and h € R?, have the same joint distribution.

In particular, mean, variance, auto-correlation etc. are independent of t.

This motivates the following definition:

Definition 3.12. (Weakly Stationary Random Field)
A random field { X} },cpa is called weakly (or wide sense or second order) stationary

if E[X;] = m, where m is a constant for all ¢+ € R and
R (t,t +7) =R (r) forall t 7€ R (3.9)

All strongly stationary random fields are also weakly stationary, provided
the mean and auto-correlation functions exist. We say that if a random field is not
weakly stationary, then it is non-stationary. The following definition introduces

interesting examples of non-stationary random fields.
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Definition 3.13. (Strongly / Weakly Stationary Increments)

A random field {X;};cra is said to have strongly stationary increments if the
probability distribution of any increment AX (¢; h) = X;1, — X; depends only on h
for all h € R? | to possess weakly stationary increments if for all ¢, E[AX (¢; h)]
depends on % only, and Raxtn)axrihe) = E{(Xewn, — Xo) (Xegrgn, — Xegr)]

depends only on hq, hy and 7, for all hy, he, 7 € R%.

For example, a fractional Brownian field { Bf'},cgs with Hurst index 0 <
H < 1 (for a precise definition, see section 3.5) is a random field with zero mean

and autocorrelation
Vi
R (tt+7) = = [P + [+ 7|2 = |17 (3.10)

where Vg = E[(Bf)?. We can see that the fractional Brownian field is not a
stationary random field because the auto-correlation function R " (t,t+7) depends
not only on ||7]| alone. We can however, show that a fractional Brownian field is a
stationary increments random field, see more details in Appendix F. In a similar

way, one defines:

Definition 3.14. (Jointly Strongly Stationary Random Field)
Two random fields, {X;},cpe and {Y;},cpae, are jointly strongly stationary if the
families {X;,, X4,, ..., Xs, } and {Yy, 40, Yipun, -, Yo, a0}, for alln € N, ¢4, to, ..., t, €

R? and h € R%, have the same joint distribution.

Note that if two random fields are jointly strongly stationary, then each is

individually strongly stationary.

Definition 3.15. (Jointly Weakly Stationary Random Field)
Two random fields, {X;},cpe and {Y;},cgra, are jointly weakly stationary if they

satisfy the following relationships:
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(1) Both X; and Y; are individually weakly stationary with identical means.

(2) Ry, (t,t +7) = R, (1) for all t € R? and 7 € R?.

One can establish that if two random fields are jointly strongly stationary,
then they are jointly weakly stationary. But, the converse is not true. Also
by definition, if two random fields are jointly weakly stationary, then they are

individually weakly stationary. However, the converse is not true in general.

3.4 The Power Spectral Density Function

The class of weakly stationary random fields is important as the autocor-
relation function R, (t,t + 7) is simply a function of the position difference 7,
R (t,t +7) = R, (7). Next we remark on properties of the auto-correlation func-
tion R, (7) of a weakly stationary random field which will be required later, for

an application of Bochner’s Theorem.

Remark 3.4. Let {X;},cpe be a weakly stationary random field. The following
properties can be shown to be true :

(a) R,(—7)= R, (7). Simply apply definition 3.9 and equation (3.3) and
change the variable ¢ to ¢t — 7.

(b) |R,(7)] £ R, (0) = E[|X;|?]. In fact, using Holder’s inequality E[|XY[]?
< E[IXP|E[|Y ], we have |[R, (7)[* < B[|X; Xy []* < E[| X[F]E[| Xesr ] = R3(0).

(c) By equation (3.5) we have R, (1) = C, (1) + |E[X{]|*.

(d) R, (7)is a positive definite function. In fact, for {z}, C C,

Y umR (1) =Y 4HEX X o)=Y 5HEX o Xipr,]
Jk=1 k=1 jik=1

n

=3 57 (CovIXerr,, Xern] + E[Xear [EXeir] )

jk=1
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that is

2z Ry (T — 75) = Z Cov(zj Xiyr), 26 Xtir,] + Z 22 B[ Xy | B[ Xt 1r, ]
k=1 Jik=1 jik=1
2

> 0.

n n

= COV[Z Zth+Tj7 Z ZkXt+Tk] +

j=1 k=1

n

Z ZjE[Xt+Tj]

j=1

Let {X;};ere be a weakly stationary random field. By Remark 3.4 (b) and

(d), we may apply Bochner’s Theorem (Theorem 2.6), to obtain

R (1) = éd e TAAF ()) ae. (3.11)

for some bounded Borel measure F (\), which is called spectral measure. Now
if the measure Fx is absolutely continuous with regards to the Lebesgue mea-
sure, then we define the power spectral density S, (\) as the generalized Fourier

transform as follows.

Definition 3.16. Let {X;},cra be a weakly stationary random field with auto-
correlation function Rx (7). The power spectral density function Sy (\) is defined

by the generalised inverse Fourier transform and its generalized Fourier transform

as follows,
_ 1 T
S (A) = @)’ /Rd e R (T)dr. (3.12)
and
R, (1) = / e TAS (X)) dA (3.13)
Rd

Thus, by (3.11) the power spectral density function is in fact a finite Borel
measure. However, if R is integrable, then S, is a continuous, non-negative func-
tion.

The power spectral density function is known by several names, includ-
ing energy spectrum, spectral density, spectrum, and perhaps most commonly as

simply the power spectrum.
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Remark 3.5. The definition of the power spectral density function as above
is known as the Winner-Khintchine Theorem or the Einstein-Wiener-Khintchine
Theorem. We shall refer to this method of calculating the spectral density function

as the correlation method.

An alternative definition for the power spectral density function is arrived
at by noting the following. Assuming that the Fourier transform of the sample
paths of a random variable X; exists over a range [—T,7T]% then we have the

random variable
Flxle) = [ xwestar
[-1,1)4
where Fr denotes the Fourier transform over the range [T, T]%.

The magnitude squared of this random variable is

|-7:T[Xt](f)‘2 = -FT[Xth)fT[Xt](f)

:/ the_’f’tl dt1/ X_th’f'tQ dts
[T, T4 [—T,7]4
:/ / thX_tzeig.(tZ_tl) dtldtg
[7T7T]d [_TrT]d
If we take the expectation and divide by (477T)?, we have by Fubini’s Theorem
E || Fr[X Xy, Xy e 2710 gt at
P NI = o | [ ] T :
- E[X, X, €71 gt dt
47TTd/TT /TT [ " t2]€ o

(ty — ty)eS 70 dt dt,,
47TT /TT /TT )

For each k = 1,2, ..., d, if we let 7% = t§ — ¥ and u* =t} +t§,

then dty dt = (J*)"'du dr where J* is the Jacobian which is

uk  ouF 1 1
k Ik
|Jk;| _ 8t1 dt2 _ -9
ork  ark -1 1

k k
otk otk
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Then we have

1
(4rT)4

E [|Fr[X:] ()]

1 1 d 2T7\7'1| 2T7|‘rd| ”
= — R, (7)e"" dudr
(4mT) /[—QT,QT]d (2) /(2T I71)) /(2T |74|) <(7)

_ 1 / zer/QT e
(87T)? [—2T,2T]d 2T—|7i|)
1
= R et V4T —2|7)) d
(87T) /[—2T,2T]d «(T)e H( ’T ) dr
1 ITI :
= (4T)" “Td
(87T)? /[—2T,2T]d H (T)e !

d .

L 7] |
~ (o) 1-— €T .
BT g L1057 ()70

If we take the limit as T' goes to infinity, as for each i we have |7/| < 2T so that

0<1 - |27—T| < 1, then we have by the Dominated Convergence Theorem,
1 .
lim XA = =— T dr =
Jim B (IFrXAOF] = g [ Relr)e” dr = 5,06

provided that the auto-correlation function R, (7) is integrable and hence we are

led to an alternative definition for the power spectral density function, namely:

Definition 3.17. (Alternative Definition of the Power Spectral Density Function)

The power spectral density function can be defined as

1
Sx(W) = fim P

(IFr[X ] (V)]
This method of calculating the power spectral density function is called the direct
method and is equivalent to the correlation method.

Let {X;}iere and {Y;}icra be jointly weakly stationary random fields. We
can now introduce the power cross spectral density Function in a similar way.

For every value of the argument 7, similar to Remark 3.4, the cross-correlation

function R, (7) has the following properties:
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(a) RXY (T) = RYX(_T)
(b) Ry (7)] < 3[Ry (0) + R, (0)]
(€) [Rey (T)P? < R ()R, (0).

The power spectral density function for the auto-correlation has been defined. In

a similar manner we define the cross-spectral density function.

Definition 3.18. (The Power Cross Spectral Density Function)

If X; and Y, are jointly weakly stationary random fields with respectively auto-
correlation R, (7) and R, (7) and cross-correlation R, (7), then power cross spec-
tral density function is defined as the generalized Fourier transform of the cross-

correlation; that is

Sw V) = g [ € Ry (1) 07

and
R, (1) = / e TS (A) dA.
R4
The term power cross-spectral density is often abbreviated to cross-spectral den-

sity.

Some properties of the cross-spectral density are:
(1) The cross-spectral density, S, (A), is not necessarily real, since R, (T)

is not necessarily even.

(2) SXY(/\) = SY (_)‘) ) SXY()\> = SXY(_)\)’

Indeed, since R, (1) = R, (—7) we have

Su ) = [ Byore ™ ar = [ By (o) 97 dr = 8, ()
R

R4 d

It is also true that

S = [ B e dr = Sy (-3

and hence S, (A\) = S, (—A) which is known as Hermitian symmetry.
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3.5 Fractional Brownian Field and Fractional Brownian

Sheet

In this section, we present the definition of fractional Brownian field. Fur-
ther definitions, details and important properties on Brownian fields can be found
in Appendix F, and on Brownian motion in Appendix E. Moreover, we review the
definition of a fractional Brownian sheet, in particular, a Brownian sheet which

we will use in our main results of Section 6.2 and 6.3.

Definition 3.19. (Fractional Brownian Field)
For a given real value H € (0,1), a fractional Brownian field {B}’},cgs with
Hurst index H is a Gaussian random field (see Appendix D) with zero mean and

covariance function given by

Vi

Cov[B,", Bff] = == (I + 1™ — lls — ¢*") (3.14)

where Viy = E[(Bf)?], for s,t € R%.

In case d = 1, {Bf },cg is called fractional Brownian motion. In case d = 1 and
1

H = %, {B? }icr is Brownian motion provided that sample paths are continuous,

as in the next definition.

Definition 3.20. (Brownian Motion)
A stochastic process {B;};>0 is called Brownian motion, if

(B1) the sample paths are continuous, that is for each w € Q,t — B;(w)
is continuous,

(B2) the increments of B; are independent, that is for any finite set of times
0 <t <ty <..<t, therandom variables By, B;, — By, , ..., B, — B;, , are inde-
pendent,

(B3) for any 0 < s < t < 0o, the increment B; — By has Gaussian distribu-



49

tion with zero mean and variance t — s, that is B, — B is N(0,t — s).

If in addition, By = 0 then {B;}:>¢ is called standard Brownian motion.

Remark 3.6. If {B;};> is a standard Brownian motion, then it is a Gaussian
process with zero mean and Cov|Bj, B;| = min(s, t); see further details in Theorem

E.1 and for a converse, see Lemma E.2 in Appendix E.

Definition 3.21. (Fractional Brownian Sheet)
For a given vector H = (Hy, H,,...,H;) € (0,1)%, a fractional Brownian sheet
{BF},cpa with Hurst index H is a real-valued, Gaussian field with zero mean and

covariance function given by
Cov[B?, BH] = H— (|l + [t — |5y — ) (3.15)
where s = (s1,....54),t = (t1, ..., tq) € R%.

Remark 3.7. In case H; = % for all i, {BH },cpa is called a Brownian sheet and

we have

ISH
—_

COV BS,Bt H— |$z|+|tz| —|Sz—tz|)

=1

l\D

Moreover, for {Bf'},cp o) in case H; = 3 for all i, we can see that

Cov|[Bs, By = H min(s;, t;)

3.6 Wavelet Transform of Random Fields

Let H be a matrix group and ¢ a real or complex valued mother wavelet
function. For each @ € H and b € R?, following the Definition 2.10, the continuous

wavelet transform of a second order random field {X;(w)};cga is defined by
CWa(b,w) = |deta| 2 /R Xo(w)pla(u— b)) du (3.16)

provided this integral exists with probability one.
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Remark 3.8. We can see that, if {X;},cgae such that E[|X;|] is bounded, then the

|

integral (3.16) exists with probability one. Indeed, formally

E[lCW(b,w)|] = E [ | det a|_%Xu(w)g0(a—1(u —b))du

Rd
< |deta| 3E [/ X ()] ‘cp(a—l(u - b))’ du} (3.17)
Rd
By Fubini’s Theorem we have
EllCW2 (b)) < |detal} [ (X, ()] [fla = 5)] du
R4

Since {X;}ere has constant mean we get that
a 1
E[JCWE(b,w)|] < |detalz E[[ X, (w)[] lp]l < oo.
Next, consider

B (leWs (b)) = B [ICW2(b,w)CWe (b,] |

=F U / | det a| | Xe(w) X, @)l [p(@ (& — D)l (n — b))| de di|

Since E||Xi|*] < oo (as {Xi}ere is a second order random field), we have by

Holder’s inequality,

E [|[CW(b,w)’]

<ldetal™ [ [ BN K@= el (- D)l de

[

<|deta|1// E[IX)* (B2 [pla 1€ —B)p(a\(n — b)| de dy
=rdeta|-1/R( E[1Xe)} [pla 1 = 1) !df/ 1,21)* lo(a™ (o — b)) di

JRGEs)

We have E [[CW?(b,w)|?] < co under each of the following conditions:

=

= |deta|™!

[(a™(§ = b))

(C1) If E[| |X;(w)|*dt] < oo and ¢ € L?(RY), then by the Cauchy-
Rd
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Schwartz inequality;

Bllowsvw)) < faetal | [ (B1XE) fota (e~ vl ac]
<ldetalt [ BIXePIde [ lota €~ )P g
~aetal | [ ae] [ lotanie - o) de < o

(C2) If E[|X{|*] £ M for some M < oo and all ¢, i.e. X; is bounded in

square mean, and ¢ € L'(R?) we have

Bllows )] < ldetal | [ (BIXD lotas — b))

<Jdetal™ | [ (f otae - o) dgr

= | det a| M[j¢|| < oo.

(C3) If E[|X;|?] is bounded on compact subsets of R? and ¢ has compact

support and is integrable, we have

2

BICWS )] £ [detal™ | [ (BIXPD)* fota € - )l de| <o

0
2

(C4) If B[|X)*] < M [—{—HtHQ]G for some § > 0 and [1+ [|t]*]% ¢(z) €
L'(R), then modify (C2) we also have E [|[CW¢(b,w)|*] < oo.

In all three cases, as 3.17 is finite, for all a and b, the wavelet transform 3.16 is

defined.

Remark 3.9. The continuous wavelet transform of a random field {X;(w)};cra
is a new random (position-scale) field {CW¢(b,w)},empere provided the path in-
tegral is defined with probability one. The continuous wavelet transform at scale
a € H is the random (position) field {CW¢ (b, w) },era Which is the a-section of the
wavelet transform {CW¢ (b, w)}semperd. As such the output {CW§(b)}yerae inher-

its certain features of the input X; and here we focus primarily on how features of
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the input X; may yield appropriate properties of the output, at fixed scale or at

different scales.

In this thesis, we assume throughout that condition (C2), (C3) or (C4) is
satisfied, so that E[|[CW(b,w)[’] < M < oo for all b. Then for fixed a € H, the

auto-correlation of {CW¢(b,w)},epra exists and is given by

R..(r)=E [ng(b)c*w;(b ) (3.18)

CWSI(
and for fixed a1, ay € H, the cross-correlation of {CW¢(b) }ycpa and {CWE2(b) }yepa

exists, and is given by

(1) = E [cw;;l (b)CWe=(b + 7)] . (3.19)

al az
CWX C’WX

This assumption will allow us to apply Fubini’s Theorem when computing

E[CW(b)], as

Blews 0 < £ | [ [ detal S ota (w0l du]

< M| det a]%H(le for some constant M. (3.20)



CHAPTER IV

POWER SPECTRAL REPRESENTATION OF

THE WAVELET TRANSFORM OF A

RANDOM FIELD

Let a second order random field with desired properties, such as square
integrable sample paths, and bounded and continuous auto-correlation function
be given. The power spectral density function is usually defined for weakly (also
strongly) stationary random fields. It turns out that the continuous wavelet trans-
forms of weakly stationary, strongly stationary increments and weakly stationary
increments random field are weakly stationary random fields. It is thus natural to
ask how the power spectral density functions of these wavelet transform random
fields look like. These wavelet transform deal with an integrable mother wavelet
function ¢ via scaling parameter a in a matrix group H and translation parameter
b e R

In this chapter, the spectral density function of the continuous wavelet
transform of a random field is discussed. The first section deals with weakly sta-
tionary random fields, random fields with strongly stationary increments are dis-
cussed in the second section, and random fields with weakly stationary increments
are discussed in the fourth section. Moreover, the third section gives an exam-
ple of the power spectral density function of the wavelet transform of a particular

strongly stationary increments random field, namely of a fractional Brownian field.
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4.1 The Spectral Representation of the Wavelet Transform

of a Weakly Stationary Random Field

Let { X} };era be a weakly stationary random field. Then the auto-correlation
function R, (7) is a positive definite function, hence by Bochner’s Theorem it has

the spectral representation

R (1) = /R de—”* dF.(\) a.e. (4.1)

where F()) is a finite Borel measure on R

The spectral representation for the wavelet transform of a weakly stationary
random field with scalar scaling parameter was determined by Elias Masry in 1998.
That is, the matrix group is of the simple form H = {al; : a > 0}. It was found
that for fixed scaling parameter a > 0, the spectral representation of the weakly

stationary random field {CW¢ (D) }yera is

Ry (1) = [ e Ip(a P aF () (1.2

and for ay,ay > 0, the cross-spectral representation is

d AT A
R s (1) = 01008 | ™ Fad)iplash) P, (4.3

We now determine the spectral density function of the wavelet transform of a

weakly stationary random field with arbitrary dilation matrix.

Theorem 4.1. Let H be a matriz group and a,ay,as € H. If {X;},cpa is a weakly
stationary random field, then the random fields {CWE (t) }iera and {CW (1) }iera
are jointly weakly stationary with constant mean | deta|2 E [Xo] $(0). Moreover, the

cross-correlation function has the spectral representation

Repsons (1) = [detanaalt [ W F@NGEEN AP ()
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In particular, the auto-correlation function has the spectral representation
Ry (7) = | detal /R A p(a ) dFx (V). (4.5)
Proof. Consider for each a € H, we have by Fubini’ theorem (see inequality (3.20))
E[CWL(t)] = E { 9 |deta| 2X,p (@ (u—t))du
~ldeta] "+ [ BP0 du

= |deta|2E [Xo] | ¢ (u)du

T

Rd

= | deta|2 E [X,] 5(0)

where we have used the fact that {X;},cpe has constant mean, F[X,| = E[X]
for all u € RY and ¢ € L'(R?). This shows that {CW$(t)},cre has constant
mean. Note that if {X;},cra is a zero mean random field or the mother wavelet
function ¢ satisfies the condition ¢(0) = 0, then we obtain a zero mean random
field {CWE(t)}iera-

Furthermore, for each aj,as € H, we have by Fubini’ theorem (see inequality

(3.20))

(t t+7)

ow ow

— [|dem1a2|-% [ X @ [ Xples'a-t-0) oo

—detaraal [ [ EIXE] @€ ) (@ -t-7) dedn
Since E[X¢X,] = R, (n — &), using equation (4.1) we have

(L t+7)

cwil cw§

= et [ [ [ OaE ) ¢ € st =) dgan
= | detajas|” Q/Rd/Rd D o (a7 (€ — 1)) de g e~y (az'(n—t—1)) dn

dF, ()
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Changing variables, £ — a1§ +t, 1+ asn+ (t + 7) it follows that

Lt t+7)

cwitows

|deta1a2|2 /Rd/Rd i(a1€)-A zt>\ (f) d§ —i(azn)- /\e_it')‘e_iT')‘QO (77) d77 dFX()\)
‘deta1a2’2 /Rd ZT)\/Rd i&-(aT'X) 5 —in-(al A ()0(77) dndFX()\)

= | det a1a2|2 / e (aTN)p (ag \) dF(N).
Rd
If a1 = ay = a, we have

Rcwa (t,t+71)= |deta|/ e TN (a" NP dFx (N).
Rd

We can see that the cross-correlation function B~ (¢,t+7) , and the auto-
CW C’W

correlation function R t,t + 7) depend on position translation 7 only, hence

cw, (b

we denote them by R

a1 a2
CWX CWX

(1) and Reyg (7), respectively. It follows that the
random fields {CW () }era and {CW () }iera are jointly weakly stationary, and

the cross power spectral representation of R a2(7) and the power spectral

a1
CWX CWX

representation of Rcwg{ (7) are given as above. ]

Remark 4.1. By Definition 3.18, the cross power spectral density function is

arrived at as follows
—iTA _ 1 A~ TV T
/Rde Scw;lcwgg (A) dA = |deta1a2|2 /Rde ( >‘) ( 2)\) dFX()\)
- \deta1a2|5/ e (TN (alN) S, (A) dA,
R4
and the power spectral density function is arrived as

/ e S (A)dA = |deta / e T p(a" N)[F dFx (V)
R¢ x Re
_ | detal / e p(aT N[ Sy (M) dA
Rd
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4.2 The Spectral Representation of the Wavelet Transform
of a Strongly Stationary Increments Random Field
Let {X;};cre be a stationary increments random field with zero mean. For

d = 1, its auto-correlation function has the spectral representation, as outlined in

Dzhaparide (2005),

R (t,s) = /R (€™ — 1)(c=™ —1)dF (\) st €R (4.6)

AP

e

In the special case of fractional Brownian motion { B };cg, the representation of

where dF ()\) is a Borel measure on R which satisfies /
R

its auto-correlation function is

7 —iAs dA
RBH(t’S):CIQJ/R(e ’\t—l)(e a —1) W—HH7 S,tGR, (47)

for some positive constant C%.
Malyarenko (2005), see Dzhaparide (2005), treats the multidimensional case; the

auto-correlation of a stationary increments random field has the spectral represen-

tation
R.(ts) = / (M 1) (e Z 1) dF, (), s,te R (4.8)
Rd
A 2
where dF ()\) is a Borel measure on R? which satisfies / % dF, (N).
R4

For a fractional Brownian field { B/'},cgs the representation of its auto-correlation
function is

A —iA-s dA
RBH(t78) :C’IZ{/Rd(e’\t—l)(e A —1)H)\HT+CZ, S,tERd, (49)

for some positive constant C%.
We have the following theorem for the continuous wavelet transform of a strongly
stationary increments random field, assuming that the integrable mother wavelet

function ¢ satisfies $(0) = 0 and condition (C3) in Remark 3.8 holds.
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Theorem 4.2. Let {X,;},cra be a stationary increments random field with zero
mean. Let H be a matriz group and a,ay,ay € H. Then {CWE (t)}iepe and
{CWE(t) }iera are jointly weakly stationary random fields with zero mean. More-

over, the cross-correlation has the spectral representations as
L —iT N~ Ty
RCW;ICW;2 (1) = |det ajas|2 /Rd e TAB(aT N @(al N) dFx (M)

2
where dF, (\) is a Borel measure on RY which satisfies / I dF, (N).

re 14 [|A]l?
In particular, the auto-correlation function has the spectral representations as

Ry (7) = | detal /R | e TN @@ N dFx (N).
Proof. For each scaling parameter a € H, we have by Fubini’ theorem (see 3.20)
BlOw: @] = & | [ Jdetal x5 - oy an
— |deta]-} /R E[X.] 7 (@ =1) du.

Since E[X;] = 0 for all t € R? it follows that E[CW(t)] = 0.

Furthermore, for each aq,a, € H,

R (t t+7)

cwylew

=F [| deta1a2|_% /Rd Xep (al_l(ﬁ —t)) d{/Rd Xy (a;l(n —t— T)) dn}
= |deta1a2\*% /Rd /RdE [Xﬁm © (al’l(f — t))go (a;l('r; —t— 7')) dg dn.

Applying the representation of R, (£,n) by equation (4.8) we have

R g (114 7) = | det aras| "z /R d /R d ( /R d(eM —1)(e — 1)dFX()\)>
p (a7 (E—1) ¢ (a; 1(77—1ﬁ—7)) dg dn

= |det aras|” 2/Rd/Rd (e — LHE—t))de

/Rd(e—z?vn — Dy (a;l(n —1— 7')) dndF, ().
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Since ¢(0) = 0 we have / (a7t (€ —1))dé =0 and / olay'(n—t—7))dn=0

R4 RA
so that
_1 i
Rcwf(lcwgg (t7 t+7—) :| deta1a2| 2/ /]Rd )) d£ 2
¢ (az'(n—t=7)) dndF ().
Continuing as in the proof of Theorem 4.1, we arrive at the assertion. O

In the special case of fractional Brownian field, the spectral density can be

computed, details are given in the next section.

4.3 The Spectral Representation of the Wavelet Transform

of a Fractional Brownian Field

Let {B'};cr be fractional Brownian motion with Hurst index 0 < H < 1.
In 1998, Takeshi Kato and Elias Masry computed the formula of the power spectral

density function of the wavelet transform of fractional Brownian motion as

aVyT'(2H + 1) sin(7H)|p(—a))|?
C’W;H ()\) 13 2H|A|2H+1 (4].0)

where Vi = E[(Bf)?]. In this thesis we present the simple computation of the
spectral density function of a fractional Brownian field by the representation (4.9)
for the d-dimensional case, in cases d = 1 this has been done in Masry by a different
method.

Let {B}'},cre be fractional Brownian motion with Hurst index 0 < H < 1.
Computing the spectral density function by representation (4.9), we obtain the

following theorem.

Theorem 4.3. Let ¢ be an integrable mother wavelet function with sup |||;\'0||( JE|H <
[All<e 2

M for some € >0 and 0 < M < oo and condition (C3) in Remark 3.8 holds. Let
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H be a matriz group and a,a1,a; € H. Then the random fields {CW 3, (1) }era
and {CW 55 (1) }rera are jointly weakly stationary with zero mean. Moreover, the

cross-correlation function has the power spectral representation

_ 12 —iT XA T\ 5 (T A
B s (7) = | detanan] 3G /R RN e (@D
A 2
where dF, () is a Borel measure on R? which satisfies / %H’l)\”zdFXo‘)‘ In
R4

particular, the auto-correlation function has the power spectral representation

, d\
_ 2 —iT |, T 2
RCW“;H (T) = |deta|CH /Rd e |QD(CL /\)| ”AHTM (412)

The cross power spectral density function is

| detaas|2 C}(a N @(af \)

SCW}?CWSI(Q( ) H)\H2H+d (4'13)
and the power spectral density function is
| det a|C%|p(a® N\)|?
Scwg( (A) : |’)\‘I|{2H+d (4-14)

Proof. Since E[Bf] =0 for all t € R? we have
E[CWgu(t)] = ]deta\é/ E B p(a'(s—t))ds =0.
R4

The quantity of interest are the auto-correlation and cross-correlation of the ran-
dom field {CW 3y (t) }1era for fixed scaling parameter a € H. Now we will consider

the cross-correlation

iy e, (01 +7) = B [owgl,, (£, (¢ + T)]

:E[|deta1a2|_é/ B5 © al df/ Y(n—t— 7')) dn|

Applying equation (4.9),

d\
R . w (L T+ deta;a 2/// _Z)""—l—
cugen (W10 7) = Culdetanea= | ) S T

plar (€= 1)plag ' (n—t — 7)) dE dn
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and using Fubini’s Theorem,

Ry, oyes (004 7) = O} detara| / / (M 1)p(a, (€ — 1)) de
CW CW Rd Rd

| )\
i) -1 —
JLle etz = by i

Since ¢(0) = 0 we have /
Rd

and the above simplifies to

so(all(f—t))df—()and/ p(ag'(n—t—7))dn=0,

]Rd

Mo = 1))
Rcwgl ow ( ) = Cj| detaias|” Q/Rd/ngd play’ t)) dg

d\
2N
/Rde Tp(azt(n —t — ))dnn/\”Ter

Changing variables & — a1 +t and 7 — aon + t + 7 we have by definition of

the Fourier transform

)
a1l a2 (
CW g CW

B B
i ix(a oM (a . d\
= C'121r|de13a1@2|2/ /d A\l 1€+t df Mazntty )90(77) dn [ A[|2H+
R

/ : LA BY . d\
— 02 det ;/ —z)\.r/ zf-al)\ d / _lU'QgA d
H| € a1a2| Rde de 90(5) g Rde @(77) n ||)\||2H+d

— (2 % AT A Ty T d\
= Cy| detajas| /Rde PlaFN)play M) —||)\||2H+d'
We now clai i |90( ) i
w claim that the function g(\) = H)\Hﬂ”d is integrable for 0 < H < 1. By

M. We

assumption, there exist € > 0 and M > 0 so that and sup [P(A )|H <
< Al

/R o)A = / e s /” s

Then we have

split

(6N 2

All<e l[All<e

For the second integral, we have as ¢ € L*(R) and |¢()\)| < ||¢||z: by Remark 2.1

(i),
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[P(N)]? ol
\g(k)!dA:/ Sl d)\ < UL gy
/|‘)\||>e [|A]|>€ H>‘H2H+d [\ ]| >€ H)‘”2H+d

1
ol / N
B Jiase [IN][2E+

~ A 2
Hence g(\) = m%[rd is integrable for 0 < H < 1. We can see that, if a

is any invertible matrix, then b||A|| < |laA|| < ¢||A|| for all A # 0 and some

A A 2
constants b, ¢, hence WTL is also integrable. By Cauchy-Schwartz, h(\) =
2 Plaf N)p(azA)

| det ayas|2C%

is integrable for 0 < H < 1. It follows that R, .
CcCwW cw

[A][ 2+ nit Vg

is the Fourier transform of h()), hence h(\) is the cross-power spectral density

function of the random field {CW g5} (t) }iera and {CW 53, (t) }iera and is given by
plafN)@lazA)

()\) AL CH’ detaq detaz‘ 2 H)‘H2H+d

ai a2
CWBHCWBH

If a; = as = a, we have
R (1) = | deta|C} / e N))? _dA
W H Jpa [[ [P+
thus the spectral density function, S_ . (A) equals
BH

[2la” V)P
[A][2

S

a
CWBH

() = | deta|C

4.4 The Spectral Representation of the Wavelet Transform

of Weakly Stationary Increments Random Field

Let {X;};cre be a weakly stationary increments random field with zero

mean. The auto-correlation function of its increments R E[(Xiir —

AX(t,71)AX (s,79)

Xt)(Xsir, — Xs)] admits the spectral representation (Yaglom, 1962)

Ryximyaxin = /R o) (1 — N (1 — e N AF (V) 4 (A7) - 7o (4.15)
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A 2
where dF,()\) is a measure on R?/{0} satisfying / &dFX (\) < o0
ra/oy 1+ [[Al[?
and A is a positive definite Hermitian matrix. The term (A7) - 75 represents the

contribution to the integral at A = 0. Assume that condition (C4) in Remark 3.8

holds, we have the following theorem.

Theorem 4.4. Let H be a matriz group and a,a,,as € H. Let o be an integrable
mother wavelet function which has zero first moments, that is /d up(u) du = 0 for
alli=1,2,....d, and $(0) = 0. If {X;},ere has weakly statz’onﬂzry increments and
zero mean, then the random fields {CW < (t) biere and {CWE(t) }iera are jointly

weakly stationary with zero mean, and the auto-correlation and cross-correlation

have the power spectral representations and cross power spectral representations

Ry (t,+7) = | detal / 3T N2 dFx (\) (4.16)
R4
1 AT T
Rcw;l cwi? (tv t+ 7_) B | det ala2‘ f /Rd € ’\gp(alT)\)go(ag)\) dFX()‘)a (4'17)
respectively, where dF, (\) is a measure on RY/{0} satisfying
IAI”
————=dF ()\) < 0.
feo TP

Proof. As in the previous proofs, E[X,] = 0 for all u € R? yields E[CW&(t)] = 0

and for ay,as € H we have

R yer o (B +7) = | det am!%/ /E (XX, 0 (a7t (€ —1))p (a3 (n—t — 7))

Rd R4

de dn.

Changing variables £ — a1& +t and n+— asn +t+ 7,

1
Rcwa1 ow 2 (t’ t+ T) = | det ala?l 2 / / E [Xa1§+tXa277+t+TJ 12 (5)90 (77) dg dn.
X X Rd JRd
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Since $(0) = 0, we add zero value terms as follows,

Ry cuptit 4 7) = detaraalt [ [ B [XoeeiKoryr] 5 () de

_ | det ayanl? / B [XiXor] / D@ e () dy

1
—|deta1a2]2/ a1§+tXt+T / 5) 5
R4

+ldetanna B XX [ G de [ ol dn

= ldctaal® [ [ B [ = X0 Kammerr = X)) ) () d

Applying the power spectral representation of R as in equation (4.15),

AX(t,71)AX(s,79)

t:t,S:t+T,T1:G1£,72:a277.

,(tt+T)

cwl ew§;

— | et ayas|? / / / TN LN 1— N dF (N (€) (n) dE dn
RdJRAJRA/{0}

+ldetaraalt [ [ (A0 (n)p @ o) ds i

~ldetoraalt [ e [ e em @ de [ (e () anar, O
RY/{0} R RY

+ | det a1a2\% / / ( Z@jfﬂi) 0 ()¢ (n) dédn where [a;] = al Aa,.

=1 g=1

Note that the use of Fubini’s theorem is justified by the estimation of integral and

by 2
/ AP dF,(\) < oo. Since ¢(0) = 0 and ¢ has zero first moments, we
rijfoy 1+ [[A[I?

can reduce the above equation

R o (4 T)

a1
CW " CW

1 . . Ty——— . T
— | det ajas|? / e~ / et (€) de / e~ () dndFy ()
R?/{0} R Re
1
:|deta1a2]2/ e~ TG (aTN) p(al \) dF (N).
Re/{0}

If a1 = as = a, we have

Reyg (7) = deta] [ ™ (@ NP dFx(N),
Rd



65

We can see that the cross-correlation function R 2(t, t+7) , and the auto-

ay a
CWX CWX

correlation function R_ ., (¢, + 7) depend on position translation 7 only, hence
X

o aQ(T) and R

X X

we denote them by R (1), respectively. It follows that ran-
C

CW%
dom fields {CW 2 (t)}iera and {CWE2(t)}yepa are jointly weakly stationary, and

the cross power spectral representation of R

cwil

.,(7) and the power spectral
X X

representation of R, (7) are given as above. O

a
CWX



CHAPTER V

ERGODICITY PROPERTIES

Ergodicity is very useful and widely used. However, ergodic theorems were
stated in the past under a variety of conditions regarding the random field to
which they applied; earlier versions were preoccupied with stationary or weakly
stationary random fields only, as it was thought for a while that stationarity was
needed for ergodicity. The first section gives the basic concept of the ergodicity.
Details can be found in Childers (1997), Grimmett and Stirzaker (1998), Papoulis
and Unnikrishno (2002) and Yannis (1998). The ergodic theorem for weakly sta-
tionary random fields is introduced and proven in the second section. Finally,
we will show how ergodicity properties are connected to the continuous wavelet

transform.

5.1 Mean Ergodic Random Fields

Let {X:};cre be a random field. There are several conventions for denoting
position (time) averages. One convention uses the one-sided average, which is

expressed for continuous random processes as

1
X)) = lim — X, dt.
W T T (0,774 t

Another convention is called the two-sided average, which is denoted as

1
X)) = lim ——
(el 5% (27)¢ /[—T,T}d

The two-sided convention appears more common, especially for theoretical defini-

X, dt.

tions. KErgodic in the mean or in short mean ergodic says that the estimate for
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the mean converges to the true mean in the mean square sense as per following

definition.

Definition 5.1. (Mean Ergodic Field)

A random field {X;},cre with constant mean m is mean ergodic if

1
lim ——— X, dt = 1
TLI}I;O (2T>d /[—T,T}d t m (5 )

in the mean square sense.

The following theorems provide conditions for mean ergodicity and suggests

an alternative definition for mean ergodicity of weakly stationary random fields.

Theorem 5.1. Let {X;}icpa be a weakly stationary random field with constant
mean m and auto-covariance function C (7). A necessary and sufficient condition

for {X;},cra to be mean ergodic is

d .
N ksl
hm—/ (1— )CXT dr = 0. 5.2
T—oo (277)¢ [—2T,2T]dg 2T (7) (5:2)

Proof. Let T > 0. For simplicity, let as define

1
X)p = —/ X, dt.
(i (2T) Ji—g e '

Then, as E[|X;|%] is a constant and F[|X;|] < M we can use Fubini’s theorem,

1 m

BUX)r] = G /[T,T]d PIX]dt = i /{W Ldt = m

and

var[(X)7] = E[[(X)r — m|?]

- @ [(/{_T,T}d(Xt - s i) ( [ 05 BX) d)]

( 1)2d /mw /[T’T}dE[(Xt — E[X,))(X, - E[X,])]dt ds
[«

(-1, 1] J[-T.T)4

2T
o
2724

( (s —t)dtds.
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For each i =1,2,....d, if we let 7; = s; — t; and u; = s; + 1;,

then dt; ds; = |J;| " 'du; dr; where |J;| is the Jacobian which is

Oui  Ouy 1 1
1 ot; 0s;
’J’L‘ = s p— p— 2_
o On _
ot; 0s; 1 1

Then we have

2T —| 71| 2T —| 72| 2T —| 74| 1 4
var[(X)r] / / / / C(m)(2)"dudr
2T 21,2714 J —(2T—|11]) J —(2T—|72]) (2T—|7al) * 2

2T — ||
— C, (1 / 1du; dr
2 (2T)2d /[_2T,2T]d ( )H —(2T—|m))

=1
d

1
_ W /{_mﬂd C, (1) [TAT = 2/)) dr

i=1

|TZ
2T /2T2T]dH (r) dr.

The condition 5.2 of the theorem is thus equivalent to var[(X)r] — 0, that is, to

mean ergodicity. ]

Because of this theorem, an alternative definition of mean ergodicity for a

weakly stationary random field is then given.

Definition 5.2. (Alternative Definition of Mean Ergodicity)
A weakly stationary random field {X;};cgre with constant mean is ergodic in the

mean if and only if

!T\
T)dT = 0. 5.3

Remark 5.1. If { X} },cpa is a weakly stationary random field with zero mean, then
the auto-covariance C (7) coincides with the auto-correlation function R, (7) and

hence {X;},cre is mean ergodic if and only if

d

T i
hm—/ 11— —— )R, (r)dr =0. 5.4
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5.2 Ergodic Theorems for Weakly Stationary Random Fields

Ergodic theorems relate functionals calculated along individual sample paths,
say the position (time) average, to functionals calculated over the whole distribu-
tion, say the expectation. The basic idea is that the two should be close and they
should get closer the longer the trajectory we use, because in some sense any one
sample path, carried far enough, is representative of the whole distribution.

Since there are many different kinds of functionals, and many different
modes of convergence, there are many different kinds of ergodic theorems. The
classical ergodic theorems say that position (time) averages converge either in
the p-th mean, or almost surely, both implying convergence in distribution or in
probability. The traditional centrepiece of the ergodic theorems is Birkhoff’s ”in-
dividual” ergodic theorem, asserting a.s. convergence and in mean convergence,
details of this theorem and its proof can be found in Grimmett and Stirzaker
(1998). By contrast, the L? or mean square ergodic theorem, attributed to Von
Neumann is already in our grasp, and holds for weakly stationary random fields.

We will see its proof in the next theorem.

Remark 5.2. Recall that, the norm || . ||z of a complex-valued random variable Z
is defined by

12|l = (E(Z7)* . (5.5)

For a second order random field {Y;};cpa,

3
[ viaes (B[] mia])
[7n7n]d - [7n7n}d
: ;
(e[ wla [ i)
L/ [—n,n]¢ [—n,n]?
: ;
<(e|[ [ wawias])
LJ [-n,n]d J [-n,n]?




N

H/ Yidt|ls < (/ / E[|Y1Ys]] dtds>
—n,n]? [—n,n]d J[—n,n]?

g(/ /] [1Y;]2] [|y;|2])%dtds)

EXY || < VE[IXPE[Y]]

N[

:(/ Lt DB (V) drs)

%
=(/ ||n||2dt/ ||Ys||2ds)
[—n,n]d [—TL,TL]d
- / 1Y; L2 dt.
—n,n)d

Theorem 5.2. (Ergodic Theorem for Weakly Stationary Random Fields)

SIS
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If{X:}iera is a weakly stationary random field, then there exists a random variable

Y such that E[Y] = E[X,] and

T (2%)(1 /[_md X, dt = Y (5.6)
i the square mean.
Proof. We wish to show that for (X), = ! / X, dt,
(2n)? JiZp e
(X)) — (X)m|l2 — 0 as n,m — oo.
Set
—inf | / (1) X, dt|» (5.7)
where the infinitum is calculated over all functions A(t) > 0 with / , A(t) dt =
1. For 0 < n; < no, o
Hoy = infll o At Xedtlls > inf| o A X dtly = p,,
so that
= nll_{glo oy, = i%f fin (5.8)
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exists as p, is decreasing and p,, > 0 for all n. In particular, |[(X),|2 > p for all

n > 0. If m < n then

[(X)n + (XD mll2
= / X, dt 4 — / X, dt|
<2n)d [—n,n]d ' <2m)d [=m,m]? ' ?
1

1 1
T / X, di + —— / X, dt + —/ X, dt]|5
(2n)? J 1y g [mimm) (2n)d (—m,m]d (2m)¢ Ji_ e '
1 1/ 1 1
=2 — X, dt — X, dt
”/[_n,n]d\[_m,m]d 22y +/[_m,m]d 2 (<2n>d ! <2m>d> cdtle
= 2||/ d/\(t)Xtdt||2
[7”‘7"]

where
)\(t) _ % ((2711)71 + ﬁ) ift e [_mam]d
2(21n)d ift € [-n, ”]d\ [_m7m]d7
and
1 1 1
A(t) dt = — dt dt
/[_n’n]d ( ) /{_Tmm]d 2 ((Qn) ) + —n,n)%\[—m,m]? 2n)d
2m)¢ 1 1
_ (2m) + [(2n m)?] = 1.
2 (2n)® = (2m)¢ n)d
Thus, as pu, > inf u, = p we have
(X)) + (X )nll2 > 21nf [ / (1) Xy dt||2 = 2p, > 21nfun = 24. (5.9)
Consider

KX n = (X)mll3 + KX )n + (X)mll3 = EIX)n — (X)ml*] + E[{X)n + (X)ml’]

= 2B[(X) |2 + 2E[[(X)m|]
= 20(X )12 + 20| (X )2

Then

KX )= (XD ml3 = 20XV all3 + 20Xl — KXY+ (X3
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By inequality (5.9) we have

KX = (Xl < 20X )nll3 + 20{X )5 — 4p2?

< 2|1(XDall3 = 2]+ 2[I{X )l — 17| (5.10)

Now we claim that [[(X),|s — u as n — oc.

Choose any € > 0 and pick 7" and A such that
1] o< e (5.11)
[_TvT]d

where A(t) > 0 and / A(t) dt = 1.

[_TuT}d
Define the moving average

Y, = / A() Xy, dt. (5.12)
[_T’T]d

It is not difficult to see that {Y}}cre has constant mean as { X, };cre has constant
mean. And for all & € R?,

2
' / A X dt
[7T7T]d

- l / M) Xy dt / )\(S)Xerkds]
[_TvT]d [_TvT]d

E
_ / / NN BIX i X dt ds
(~7,7)4 J [T, 7]

1Y]3=E

:/ / NOA(S)Ry (¢ + ks + k) dt ds
-7y Ji-rr

= / / AME)A(s)R, (t, s) dt ds as weakly stationary of {X;}
7.7 J[-7,7)

= [oll3

We shall show that

1Y), = (X)ull2 — 0 as n — o0 (5.13)
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1
where <Y>n = W/[ y Y;«/ dt.

Note first that by Remark 5.2 and ||Y;||2 = ||Yo||2 for all ¢, and then use Equations

(5.11) and (5.12) we have

(2n)d
1
:WHYOM [ ]dldt: 1Yoll2

= ||/ A)X;dt||a < p+e  forall n.
[7T7T]d

1
0Dl < o | Il

Now, by definition of (.),, and Y; we have

1 1
Yy, = Y, dt = A(s) X ¢ dsdt.
< > (2n)d /[n,n]d ' (2n)d /n,n]d /[T,T]d (S) e

By Fubini’s Theorem and the change variable of ¢ to t — s we have

1
vy, — / s / X,., dtds
&) (2n)? Ji_1,7a ) g
i
ey Npdtds = [ M)(X).ds
@) Sz I enssinted iy

/
( n) I Iifl [—n-l—si,n—l-si}

1
Now use the fact that (X)g, = W/ X;dt = (X),, and the triangle
n [—n,n]d

where (X);, =

inequality to deduce that
uwn—u%mzw/ A(S) (X )em ds — (X0l

[_TvT]d

:w/ Mmmw@—/ A(s) ds(X ol
[7T7T]d [7T7T}d

=w/ A(S) ((X)om — (Xow) dsls
[_TvT]d

s/ A s — (X Dol ds
[—T,T]d

computing as in Remark 5.2. Consider

1
uwxwwmmmz——w/ xw—/ X, dtls
(2n>d Hfle[—n—&-si,n—&-si] [—n,n]d



1
= ol Xtdt+/ Xydt
(2n)?" I, s mtsi\[-nn)d (T [—nt i, si)) N[ mym]d

_/ &ﬁ—/ X, dt|»
[—n,n)dN([TL | [~n+si,n+s:]) [=n,n) N\ (T, [—n+si,n+s;i])

_W“/ Xtdt—/ X, dt|)
()" J (1, [ ntseint s\ -] [\ ([T [—n-tsi,n+53])

<

1

IN
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1
i (1] Xedill + | X, dt||2>
n) (IT¢Z [=ntsimtsi)\[-n,n]¢ [=nn] N\ (T [=n+sintsi])

i ] Xl dt+ I, d
(2n)? \J (L, =t simt s\ [-nn)d [ )\ ([T [ sint-5:])

computing as in remark 5.2. As {X;};cre is a weakly stationary random field,

| X¢|l2 = || Xo||2 for all t € RY, and we get that

(X ) sn — (XDonll2
[| Xol|2

< 120l / 1dt + / 1dt] .
(2n)? | L =t simt s\ [nnld [ a\([Te [~ -t si,n+53])

Directly computing the integrals we obtain that

X} = (XJoull < 1L [2H\ \+2Z|szlﬂl2n—\s]\\]

=1 J#i
Thus
Y ) — (XDall2 S/ [2H|Sz| +2Z|51|H|2n— ISJ||]
[_T’T]d i=1 jFi
-l , , -
HlszH Z\SZ\H\ n— |sj]|
TT]d L =1 j#i
< ”XOUI/ A(s) 2HT+2ZTH|2n+T|
(2n)* Ji_p i o1 i
= |X0|Jl 2Td+2T23|2n+T|d_1 / A(s) ds
2n) — [T, T}
_ QHX[)HQTd 2dTHX0H2‘27”L+T’d_1
(2n)? (2n)¢

Let n — oo to deduce that |[(Y), — (X).|2 — 0 as n — oo holds.

Use
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(Y|l < g + € to obtain

< Xl < KX n = (Vnllz + [V )nlle < (X0 = (Va2 + p+ €

— u+€ asn — oo.

But € was arbitrary, hence the claim holds. Thus by inequality (5.10), {(X),}n>0 is
a Cauchy in the square mean. Since L?(2) is complete, there exists a square inte-
grable random variable Y such that (X), 3y, Moreover, by the same argument
from inequality (5.10) we have [|[(X )7, — (X)7,[|3 < 2||[(X)7 |13 — 12|+ 2| [{X) 1[5 —
p°| for all positive real number T and T» so that [(X)r, — (X)p[l3 — 0 as
T, T, — oo. Now for T € R™, there exist n € N such that T < n < T + 1 and

then we have

{X)r = Yll2 < [{X)z — (X)nll2 + [{(X)n = Y2

Thus |[(X)r — Y]la = 0 as T — oo. Hence (X)r 2 Y, we have that (X)p Y

which implies that E[(X)r] — E[Y]. However, E[(X)r] = E[X,], whence E]Y]| =

E[Xo]. O

Corollary 5.3. If {X,}icre is a weakly stationary random field with zero mean

and auto-correlation function R, (T), then the limit variable

1
Y = lim —— X, dt 5.14
Tglgo (QT)d /[T,T]d ! ( )

satisfies
EY]=0, E[Y]*] <2'R.(0) (5.15)
1

Proof. Consider (X)p = ———— / X, dt. By the proof of Theorem 5.2, there

2T)* Ji_r.ya

exists a random variable Y such that (X)7 — Y in mean square, so that E[(X)r] —

E[Y]. But E[(X)r] = E[Xy] = 0 for all T, thus it follows that E[Y] = 0. Since



76

(X)r — Y in square mean, then E[[(X)r[*] — E[|Y]?]. Now

BI(X)ll] = 2 [<X> | = B K (2;) /[ ) (g [ x|

Foreachi =1,2,....d, if welet 7; = s;—t; and u; = s;+t;, then dt; ds; = | J;| *dudr

where |.J;] is the Jacobian which is

Qu;  Ou; 1 1
ot; 0s;
|Ji| = = = 2.
oT; oT;
atﬁ a—si -1 1

Then we have

. / / R (7)dudr
[{X)]I?] 2T 20(2T)2 [ oromja JIp, (oars pm) o] <

2d<2T>2d /[_QT’QT]”I:[MT 2|mi|) Ry (7)dr

d
1 |7
— | | 1— dr.
(2T) /[2T,2T]d ol ( 2T) Rx(r)dr

Since —2T" < 7; < 27T then |1 — &%

S SRR T (I
PV = i PUCOS) = i g [ TT (1 57 ) ey

1
< lim —/ R (7)dr
T—oo (21) Ji_or 21y «(7)

1
< lim —/ R, (0)dr
T—oo (2T)% J_or2m)e «(0)

] 1 d
:Tlgrolo (ZT) [RX(O>(4T) ]

= 29Rx(0).
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5.3 Ergodic Properties of the Wavelet Transform

By the previous theorem, if {X;};cra is a weakly stationary random field it

follows immediately that there exists a random variable Y such that

1
li Xydt =Y. 1
TE;IOlO (2T>d /['—T,T}d ¢ (5 6)

In this section will show that if {X;},cra is a random field with either stationary

increments or weakly stationary increments, then we have an ergodic theorem and
hence ergodic properties for the wavelet transform. Now we consider the following
assumption:
Assumption A

1) The random field {X,};cra is weakly stationary with zero mean.

2) The mother wavelet function ¢ is in L*(R?) N L?(RY).
or

1’) The random field {X;};cra is weakly stationary.

27) The mother wavelet function ¢ is in L'(R%) N L2(RY) and $(0) = 0.
Assumption B

1) The random field {X;},cre has strongly stationary increments and zero
mean.

2) The mother wavelet function ¢ is in L'(R?) N L*(R?) and ¢(0) = 0.
Assumption C

1) The random field {X;};cre has weakly stationary increments and zero
mean.

2) The mother wavelet function ¢ is in L'(R%) N L?(RY) such that ¢(0) = 0

and all first moment are zero.

Theorem 5.4. Let H be a matrix group and a € H. If either of assumption A,

Assumption B or Assumption C is satisfied then there exists a random variable Y
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depending on a such that

1
lim —— % =Y 1
A o7 /[—T,T]d CW(t)dt (5.17)

in the mean square sense with E]Y] =0 and
2 d
BV < 2R, (0). (518

Proof. By Theorems 4.1, 4.2 and 4.4 for fixed a € H, the random field {CW(t) }1cpa
is weakly stationary with zero mean and auto-correlation R, (7). Hence by
X

Corollary 5.3, there exists a random variable Y such that

1
lim —— % =Y 1
A o7 /[—T,T]d CW(t)dt (5.19)

satisfying E[Y] = 0 and

B[Y?] = 2'R,, (0). (5.20)
]

Theorem 5.5. Let H be a matriz group, a € H. If assumption A is satisfied
and random field { X;}ycpa, with nonnegative real value auto-correlation function,

is ergodic in mean, then {CWx(t,a)}icra is also ergodic in mean.

Proof. Since {X;},cra is a weakly stationary random field, the auto-correlation
function R, (7) is a positive definite function and hence it has a power spectral
representation, by Bochner’s Theorem, which is given by equation (4.1) in Sec-
tion 4.1. Since {X;},cpa is a weakly stationary random field, then by Theorem
4.1, {CWE(t) }iera is weakly stationary with zero mean and the auto-correlation
function RCW; (7) has the power spectral representation given by equation (4.5)
in Section 4.1. As {X;},cra is @ mean ergodic and weakly stationary random field
with zero mean, by Remark 5.1

d .
- 1 ||
lim ——— 1 R, (r)dr = 0. 5.21
oo (2T')d /[QT,QT}dig( QT) x(7)dr (5:21)
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Now, using equation (4.5) in Section 4.1, remark 2.1 (ii) and then equation (4.1)

in Section 4.1 consecutively, we have

d .
1 |7
- 1 d
Ty /[]H< ) By ()
d .
1 / ( |TZ|>
1—— ] |deta
17 ), pny LI~ 27 ) Vet

d

< ]deta\ngH%l/ H <1 _ |Ti\)
- (21 [~2T.2T]d 1) 2T

d .
1 |7
| ea"HQOHLl (2T)d /[_2T72T}d il( 2T)| X(T>| T

Thus by equation (5.21) we have

<

d .
N il
lim —— N R dr =
e (274 /[2T,2T]dg( 2T> owe (r)dr =0

so that by Remark 5.1 {CW¢(t)}iera is mean ergodic. O




CHAPTER VI
WAVELET REPRESENTATION OF RANDOM

FIELDS

We will establish the existence of Brownian motion and Brownian sheets by
providing an explicit series expansion. The calculations we make with this series
are quite basic, but still require some facts about function spaces. In this chapter
we begin in the first section with reviewing the construction of the Haar wavelet
representation of Brownian motion, and then in the following section we develop a
framework for constructing the Haar wavelet representation of a Brownian sheet.
Finally, we construct the wavelet representation of a Brownian sheet in finite
dimension via arbitrary compactly supported wavelet functions. In the particular
one dimensional case, we construct a wavelet representation of Brownian motion

via a compactly supported wavelet basis of L?[0, 1].

Remark 6.1. We first review the important properties of a complete orthonormal
basis of a Hilbert space, as well as Parseval’s identity.

(1) If {¢,, € L?[0,1] : n € I} is a complete orthonormal basis of L?[0, 1],
then for all f € L?[0,1] we have the representation

F= {f00)0n.

nel

Furthermore, by Parseval’s identity we have for all f,g € L?[0,1],

/0 F@)g@) dz = (£,9) = S (f, 60} {0, bu).

nel
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Next, if f(z) = Xjo,9(2) and g(x) = X[o,q(2) for s,t € [0, 1] we get that

/szsn d:c/ Sl) Ay = 3" X0 6000 B) = (X X0

nel nel
that is
3 / bu(z) da / 9 dy = / X0, (#) X0 () d
nel
/1d$ ifs<t s ifs<t
={Jo = = min(s, t).
t
/lda: ift<s t ift<s
0

(2) We apply this idea to the d-dimensional case. If {¢, € L?([0,1]¢) :

n € I} is an orthonormal basis of L?([0,1]%), then for f(z) = x () and

1 [0,5]

g(x) = Xn?tl[o,t-](x)’ r = (z1,...,24) € [0, 1]¢, we get that
ou@)de [ Falahde = (g o X o) 2o
nZEI / d OSZ] H?:l[o’ti] H1:1[07 1} H1:1[07t1] ([ ’ ] )

X /[0 1)@ XH?zl[O’Si] (x)XH?ﬂ[U,ti} (LE) dz
d

:/ HX[Ovsi](l'DX[O,ti}(xi)dﬂ?i
0,1 j=1

[0,1]% 52
d

- H/ X[O,si](ffi)X[o,ti}(xi) dx;
i=1 " [0,1]

d

= H min(si, tl)
=1

6.1 Haar Wavelet Representation of Brownian Motion

Consider the Haar function H : R — R given by H(t) = X[Oé)(t) —X1(®).
Let n € N be arbitrary. Then n can be written uniquely in the form n = 2/ + k

for j =0,1,2,...and k =0,1,...,2 — 1. We define

H,(t) = 2§H(23t — k) for n =2/ +k, where j =0,1,2,...and k=0,1,...,27 — 1,
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and Hy(t) = 1. One can show that {H,, : n € NU{0} } is a complete orthonormal
sequence for L?[0,1]. Details of the proof can be found in Daubechies (1992),

pp.10-13, and Walnut (2001), pp.115-123.

Remark 6.2. Sincen =2/ + k for j =0,1,2,....and £ =0,1,...,27 — 1, we can
represent { H, } as a doubly indexed sequence, indexed by j and k. For each j, the
function Hyjy is simply a translation of Hy; by k, and the functions Hs;, have
disjoint supports for different &, so that for all z € [0, 1], Hyj 11 (z) # 0 for at most

one k.

Next, consider the triangle function 7' : R — R given by

T(t) = QtX[O,l) + 2(1 - t)X[%,l)'

N

Then for n = 2/ + k with j = 0,1,2,..., and k = 0,1,....,29 — 1 we set T),(t) =

T(27t — k) and we also set Ty(t) = t.

Remark 6.3.

0<T()<1f0rallt€[0 1] and all n.

/H ()forallte[()l]

Forn—2j—i—l<;vv1thj =0,1,2,...,and k =0,1,...,27 — 1 by note 2) we
have

t N
/ H,(z)dx = N\, T,,(t) where \g = 1, \,, = 9-4-1
0

Proof. 1) Since 0 < T'(t) < 1, we have 0 < T,,(t) = T(2/t— k) < 1 where n = 2/ +k
for j=0,1,2,...,and k =0,1,...,27 — 1.

2) Let t € R. Obviously we have

t
1
/ H(z)dx = tXjo,1y + (1 — t)X[%,l) = §T(t).
0
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3) Let n =2/ + k with j =0,1,2,..., and k =0, 1,...,27 — 1. Then

t ) t
/Hn(x)dx 2%/ H(2x —k)da
0 0

I
(\]
N[,

27t—k
/ H(z)27dr asx 277 (z+k)
—k

2% [/Oth_kH(x) dx + /_i H(z) dx]

275717 (2t — k)

ks,

o9-

“IT,().
O

Remark 6.4. Since n = 2/ +k for j =0,1,2,...,and k = 0,1,...,27 — 1 we can
represent {7}, } as a doubly indexed sequence indexed by 7 and k. For each j, the
T, are simply translations of T5; by k, also the 75, have disjoint supports, so
that for all € [0,1], 7oy (z) # 0 for at most one k, and hence by remark 6.3
291
1), 0< > T(@z—k)<1forallwe0,1].
k=0
Theorem 6.1. (Steele, 2000) If {Z,,} is a sequence of independent Gaussian vari-

ables with mean 0 and variance 1, then the series defined by

Xi(w) = AnZu(w)To(t) (6.1)

converges uniformly on [0, 1] with probability one. Moreover, the process { X }icpo]

defined by the limit is a standard Brownian motion.

Proof. (I) First we verify Uniform convergence with probability one. For each
n € N there exists a unique j > 0 such that n € [27,2/"1). Then Inn < In2/t! =
(j+1)In2 < j+ 1. Then by Lemma G.2 in Appendix G, there exist a random

variable C' such that |Z,| < CvVInn < Cy/j + 1 a.e. w for all n > 2.
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Let J € N and M = 27. We have

D Al Za(@)|To(t) < C D AVInnT,(t) ae w
n=M n=M

oo 27-1
< CZ Z 272 N+ 1T, 0(t) ae w
j=J k=0
00 _ 271
=Cy 27 /j+1 Z Toik(t) ae w.
j=J k=0
27 -1
By Remark 6.4 we have Z Tyi 1 (t) < 1, so that
k=0
Z)\n|Zn(w)| Z —3-1 Vitl<oo ae w. (6.2)
n=M j=J

We can see that, if J — oo then by Equation (6.2), Z M| Zn (W) |Tn(t) — 0 uni-

n=M
N
formly on [0, 1] a.e. w, so that Z M| Zn(w)| T, (1) is a uniformly Cauchy sequence,
n=0

and hence it is uniformly convergent. Thus Z)\nZn(w)Tn(t) is uniformly and
n=0
absolutely convergent a.e. w. It follows that the sample paths of { X} are

continuous with probability one.

(IT) Next we calculate the covariance functions, consider

EX. X)) =E ) MZn(@)T0(5) Y A Zin(w) T (£)

Since {Z, }n>0 are independent, have mean 0 and variance 1, we have by corollary

3.2,

o0

EXXi] = Z )\2 Z[)‘nTn<S)] AT (1))

:g/oan(u)du/otHn(v)dv
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By Remark 6.1 (1) and as {H, },>0 is a complete orthonormal basis of L*([0,1])

we obtain that
E[X X} = min(s, t).
Since E[X;| = FE Z)\Z Z)\E T,.(t) = 0, we have
Cov(X,, X,) = B[X,X,] — E[X,]E[X,] = E[X,X,] = min(s, ).

(IIT) Now we verify that {X}c01] is a Gaussian process.
Let t = {t1,t2, ...t = t; < tj,7 < j} be any choice of finite sequence with core-

sponding vector X = {X;,, ..., Xy, }. Consider for s = (sq,...,5,) € [0,1]™

exp < Z 55 Xt ) Elexp @ZSJ Z MZnTn(t5))]
= Elexp(i Z AnZn, Z siTn(t;))]

Since {Z,} are independent processes we have by Theorem 3.1,

=11 Blexornzn _s,T(t)]

As each Z, is Gaussian, we have by remark D.3,

= Hexp <Z<Z s; T (t;)E| ZSJ )?(Var(A, Z )))

As E[cX] = cE[X], Var(cX) = ¢*Var(X) and {Z,} has zero mean and variance 1

E[eisTX

we have

E[eiSTX] = H exp <—%)\i(z San(tj))2> = €Xp <_% Z )‘i(z 3an(tj))2)

= exp —% ZZSjSk Z)\nTn(tj))\nTn(tk)>
= exp —%iisjski/tj H,(u) du th H,(v) dv) :
- — /0
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By the calculation in part (IT) we have

E[e*"X] ( i i sjspCov(t;, tk))
7=1

k=1

l\UIH

1
= exp (isTE[X] - §ST0'S) as E[X;] =0 for all ¢

where 0 = [Cov(tj,tk)]mxm. Hence, by Remark D.3 in Appendix D , X =
{X4, ..., X4, } has the multivariate Gaussian distribution. This shows that { X} }iejo,1)
is a Gaussian process. (The definition of multivariate Gassian distribution and
Gaussian process can be found in Appendix D.)

Note that Xo(w Z AnZn( =0 as 7,,(0) = 0 for all n.

Therefore, by (1), (I) (H) and Lemma E.2 in Appendix E, {X;}ico1) is standard

Brownian motion on [0, 1]. O

6.2 Haar Wavelet Representation of a Brownian Sheet

Let © = (z1,79,...,24) € RL For each i = 1,2, ...,d we define a doubly-

indexed family of Haar functions by dilating and translating as
H . (z)=23H(2x; — k) for j;=0,1,2,...and k; =0,...,2% —1

(6.3)

and H—l,O(xi) =1. (64)

Using the notation J = {j = (j1,72,--,Ja) : Ji = —1,0,1,2,...} and K/ = {k =

(ki ko, ....kg) = if j; = —1 then k; = 0, else k; = 0,1,...,2% — 1}, then for

j € J ke K’ we define

HH (z;) for all z = (1, ...,z4) € R

We know that the family {H_,o, H;x ;j = 0,1,2,... and k = 0,1,...,27 — 1}
is a complete orthonormal basis of L?[0, 1], hence by Remark 2.9 we obtain that

{ka . j € J,k € K’} is a complete orthonormal basis for L2([0, 1]%).
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Remark 6.5. For eachi = 1,2,...,dif j; = 0,1,2,... and k; = 0, ..., 2% — 1 we have

H(2ig; — k;) = . ) R . . . .
( ( 1) X[Q_Jiki, 2= di~1yo=Jik,) X[g—n—uz—hki, 27Ji427 i ky)

We can see that for ¢ € [0,1]¢ and for each j € J,
1) H? (x) are simply translations of H]‘_iﬁ(x).
2) H? () have disjoint support, that is H? (z) # 0 for at most one k at

each level j, and hence —1 < Z ka(x) <1.
keki

Next, consider the triangle function 7" : R — R such that

T(t) = 2tx;0,1)(t) + 2(1 — O)xp2 1y (D).
Now for j; = 0,1,2,... and k = 0, ..., 2% — 1, we define a doubly -indexed family of
triangle functions as

and T—l,o (tl) = tiX[O,l] (tl>
For j € J, k € K7 we define
d
T () = [ [T, ()
=1

Remark 6.6. Let j € J k € K/. We have the following properties.
1) As 0 < T(t) <1 then also 0 < TJdk (t) < 1 for all t € [0,1]¢. Moreover, T]dk(z)
are simply translations of H ‘_ia(x) and have disjoint support, that is Tjdk () # 0 for

at most one k at each level j, and hence 0 < Z Tjdk(x) <1
keKi

t
2) As T(t) = 2/ H(z)dx for all ¢ € [0, 1], then for each 1,
0
. 2it;—k;
Tji,/ﬂi(ti) = T(2Jiti - kz) = 2/ H(CL’Z) dx;.
0

d
3) / - }H;fk(x) dr = \TC (1) for A =[] A,
i=110:t j=1



2-F-1 if j, £ —1
where >‘n =
1 if j, = —1.

-

t
1
In fact, / H(x)dx =txp 1)+ (1 - t)X[l )= §T(t), gives
0

N

/ HHﬂz ki (2i) d(xy, ..., x4q)
7. 1[Ot]

=1

d
/H s
i=110t:

2% [ H(iz;, —k)dw;, if i # —1

d
H 0,t4]

[Ovti}

By changing variables, x; — 279 (x; + k;), we have

/ A (2)dr =[] \
d ) 75
o t if j; = —1.

el

2jiti7k-i
/ H (2)de =[] 0
FARY (073 B "

By 2) we obtain that

38

d 27T, () if g £ -
[, ml@a=]]
d J
- - 2731 if i # -1
- (H /\j¢> (H T]k(tz)) where A, =
=1 i=1 1 lf jl _

d
=X -Th(t) where ); =[]\, <1
=1
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Remark 6.7. Fix an integer jo (in particular, jo = —1), let J = {(j1, jo, ---, Ja) :

Ji > jo for all i} and define [j| = max {|j,|} for j = (j1,..,Ja) € J. Then

.....

Z 1_[(]Z + 1)%2_% — 0as N — oc.

J€J =1
l71>N

Proof. ForeachnENU{O —1}let S, ={j € J:|j| =n}.
Then U S, =J, 1S <n? and S,, NS, = ¢ if m # n.

Now if j € S, there exists k = k(n,j) such that j, = n. Separating the corre-

sponding factor out,

d o0 d
> [IGi+nr2s <30 3+ 12275 [JGi+ D22
jeJ =1 n=N jES, i=1,
l7|=N i#k
9] / d ] +1\2
=S mnis Y ()
n=N JESK Z“:llé
<3S +mi27E Y 1= (1 +n)i2ES,
n=N JESH n=N
SZ(1+n)22n —0 as N - o0
n=N
This proves the remark. ]

Theorem 6.2. If {Z,, : j € J and k € K’} is a collection of independent
Gaussian variables with mean 0 and variance 1, then the series defined by
=3 > Z, (T (1) (6.5)
J€J keki
converges uniformly and absolutely on [0,1]% with probability one. Moreover, the

random field {X;}iej0.170 defined by the limit is a Brownian sheet with zero mean.
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Proof. (I) Verify uniform convergence with probability 1. For each i =1, ...,d, we
have In(2% + k;) < In(2"*1) as k < 2, and hence In(2% + |k;|) < 7; + 1. Then by

Lemma G.3 in Appendix G, there exist a random variable C'

1Z;x] < C (Z In(27 + |/€z\)> <C (Z(]Z + 1)) 2 a.e. w.

D=

=1

[N

d
It is easy to see that, if j; > 1 for all ¢ then (Z Ji+1) > < H \/Ji + 1, so that

1=1

d
the above inequality becomes |Z; ;| < C H \/Ji + 1. Now, consider

Z Z |25l M T5() Z ZCH\/]Z INT () ace. w

J€JS keki JjEJ kel =1
l7|>N l71>N
d
=] . d
=C E H)\j\/ji—i—l E T.(t) ae w.
el i=1 keki
l71>N

By definition of A and as by Remark 6.6 (1), 0 < Z Tjdk (t) <1, we have

keki
DD PLAICAUEISD o) | CxmN et
jeJ keki je€Ji=1
l7|>N IJ'\ZN

Then by Remark 6.7,

ZZ|ZM|/\T;I,€ <HCZ2_;_ +1—0ae was N — oo.

geJ kel j€J
l7I=N l7I=N

This show that Z Z |Zj,k])\ﬂfk(t) is a uniformly Cauchy sequence, and hence

j€J keki
l71<N

it converges uniformly. Thus, Z Z ijkAjTjdk (t) is absolutely and uniformly

J€J keKI
convergent a.e. w. In particular, the paths of the random field {X}c(1ja are

continuous with probability one.
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(IT) Next we calculate the auto-covariance function. Consider

SN EINZ, TGP =YD INPENZPIT (1)

j€J keki je€J keki
=D NP TP <Y NP
JjeJ keki jeJ
d
= HZQ’””Q < 00,
i= jeJ

then we have by Beppo Levi theorem

E[X.X,] = E (ZZAZ T (s ) PP BTN

Jje€J keki jeJ keki

= 3N ST NNEIZZ T ()T (1),

J€J jeg keKi keki
Since the random variables Z; are independent with mean 0 and variance 1 we
have by corollary 3.2 and Remark 6.6,
EX.Xi] =) Y NT(s)T ZZ/d Hd dat/d HY da.
j€J keKi jeJ keki i=1[0,84]
By Remark 6.1 (2) and since {H{, : j € Jk € K7} is a complete orthonormal

basis for L2([0,1]?) we have

E[XX;] = HHIID{SZ,t }.

For t € [0,1]%, we have as F[Z;;] = 0 for all j, k

ED Y N2, T =YY NE[Z,]T (1) = 0.

JjeJ keki JjeJ kekKi

Hence
Cov[X, X,] = E[X,X,] — E[X;]E[X,] = [ [ min(s;, t:).

(III) Finally we verify that {X;};cra is a Gaussian random field.

Let t = {t},#?,....,t™}, " € [0,1]¢ be any finite sequence, and consider the vector
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X =(X

R X,..). We claim that X has the multivariate Gaussian distribution.

For each [ = 1,...,m, t' is a vector (¢, ..., t}). Furthermore let s = (s1, 89, ..., $;) €

)

R? be arbitrary. Consider

Ele’ X Elexp ZZSZX

S0 RN

=1 jeJ kekKi

exp(ZZ)\Z ZslT )]

JjeJ keki

Since {Z;} is independent, we have by Theorem 3.1,

E[e™"X] = E[exp(zzm:le H H E |exp (z/\ iz, ZS;T )]
=1 j€J kexi

Since each Z;; has Gaussian distribution with zero mean and variance 1 we have

2 =TT T[ ex» ZZ s, (Y E(Z D sTi(t)| AVar(Z,,)
j€J keki I=1 =1
cew (I T 0 Zm ()
Jj€J keKi

= exp ——Z Z )\QZZSZSqu Td (1)

L jeJ keki =1 ¢g=1

— exp -_% % s, (Z ST (AT (t‘J))]

=1 ¢=1 jeJ keki

By the calculation of (II) we have

m m 1
Ele = [ Z Z s15,Cov(X ,, X, )] = exp[—§sTas]
=1 g=1

1
= explis’ E[X] — §STUS],

[\DI»—

where 0 = [0 4]mxm, 014 = Cov[Xyu, Xial.

Hence by Remark D.3 in Appendix D, {th, ...y X, } has the multivariate Gaus-
sian distribution. This shows that, {X, },c01j¢ is a Gaussian process. Therefore,
{Xi}tepje is a Brownian sheet (see the definition of Brownian sheet in Section

3.5). 0
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6.3 Compactly Supported Wavelet Representation of Brow-

nian Sheet

Let {V;(R)};ez be a multiresolution analysis on L*(R), ¢ the real valued
scaling function of V;(R) satisfying ¢(0) = 0, and ¢ the associated wavelet. Sup-
pose that suppyp, suppy C [0,2N — 1]. Let jo € Z be such that 270 > 4N — 4. By
Theorem 2.14, the following collection

2%09032N+2(2j033)a "t 2%%031(23.%)’

<pj0,k(:c)\[071],o <k <20 —2N 41,

28 0l anaa (21— 1)), 2800 (20(1 — x))

2%¢2N+1<2j$)’ e 2%7?31(2%3%

Uil 0 Sk <2 —2N +1,

2202, a1 = 2D 2505 (P (1= 2)),) >
is a complete orthonormal basis of L?[0, 1].
Now let & = (21, ...,2q) € [0,1]%,5 = (j1, ..., Ja) € Z%, j; > jo, k = (k1,..., kq) € Z°.
Introduce a separate dilation index j, for the scaling function, jo = jo, and for
each i € {1, ...,d} we define 90(30’]”) for 2N +2<k; < 20 _ 1 by

(

2% o (2001;), if —2N+2<k <-1

(Go-k4) =
P =0 ()] i0<k<20—2N+1

J0:k;

28 (20(1 —x;)), 20 —2N 42<k <201,

and for each j; > jo, define ¥Uikd for —N +1 < k; < 25t — N by

(

252 (2x,), if —N+1<k<-1

W () = : i
i U0, (@) | g1y if 0 <k <2/ —2N +1

(250025 (1 —m)), 2 —2N+2<k <2 N,
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and define the collections

Ci = {Bsins + Bios = 9V, 2N 42 < by <20 — 1,
Or @,k = 77/,(J‘Z-Jci), ~N+1<k <2%—N,j> jo} fori=1,....d.
We will use the notation J = {j = (j1, ..., ja) : Ji = Jo jos Jo + 1, ...}
and
K/ = {k = (k1) oo ka) : —2N +2 < k; <200 — 1if j; = jo

or —N+1<k <2~ Nifj;#jo}.
For each j € J and k € K/, we define
2) = [[ bjon(x:) forall xe0,1]? and ¢4, € Ci. (6.6)

By Remark 2.9 we obtain that {®;;: j € J,k € K’} is a complete orthonormal

basis for L2(]0,1]%).

21 —N

/thk Y(z)dx

-k

Lemma 6.3. For j = jo,jo,jo +1,..., and t € R, <M

k=—N+1
for some constant M which does not depend on j.

Proof. Since 1) has compact support, ||#]|; < oo and then we have

2/-N 2t—k -1 2t—k 2-N| L2it—k
Z / W(r)de| = Z / Y(z) dx| + Z / Y(z) d
k=—N+1 |7~k k=—N+1 |7 7F k=0 |V K
20 ¢— k 2-N 27 t—k
< Z / |dx+z / Y(z) de
—N+1 —k
2tk
< Z / x)| dx + Z Y(z)dx
—~N+1
- 2tk
—w=h+ S| v i
k=0
2-N| r2it—k
It remains to show that Z / Y(z)dx| < C for some constant C' which
k=0 [0

does not depend on j. Since suppy C [0,2N — 1] and 1/;(0) =0 (as ¢(0) = 0 and
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P(&) = hl(g)gb(%), details can be found in Walnut (2001) pp.185 ) then obviously,

/Otw(iv) dx = </0t¢(x) dac> Xpoan—1)(t).
/Ot¢(x) dx

We can see that supp(F) C [0,2N —1], and suppFj; C |25, 255+E]. Now consider

We define F(t) = Xp2n—1)(t) and Fj(t) = F(2/t — k) for all t € R.

the following cases of k € NU {0}.

If k=1(2N — 1) where | > 0 we have

suppF, C [

I2N —1) {(2N—1)+2N —1] T[I(2N—1) (I+1)(2N —1)
21 2i }_{ 21 2i

We can see that if [ # [ and k = [(2N — 1) and k = [(2N — 1) then
suppFj i O suppt ; = ¢.

If k=1(2N — 1) + 1 where [ > 0 we have

[(2N —1 1 (2N -1 1+2N -1
Supij’kC[( 2j)+ 7( )+2j+ }

B [1(21\7—1)+1 (l+1)(2N—1)+1]

A 2J 4 2J

We can see that if | # [ and k =1(2N = 1)+ 1 and k = [(2N — 1) + 1 then
suppFjx Nsuppl; = ¢.

Continuing until £ = {(2N — 1) + 2N — 2 where [ > 0 we have

P 2N —1)4+2N —2 I(2N —1)+2N —2+2N — 1
B {l(zN—1)+2N—2 (l+1)(2N—1)+2N—2}
N 27 ’ 27 '

We can see that if [ # [ and k = [(2N — 1) and k = [(2N — 1) then

suppFjx Nsuppl; = ¢.
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Hence
oo co 2N-2 2N—-2 oo
2 Fnl) =2 3 Fuaw-in®) = 2 3 Futan-pnlt
k=0 =0 n=0 n=0 [=0
2N -2
< C=C(2N-1)
n=0
for some constant C’ as for each t, only one term in Z Sl(2N—1)+n (t) is nonzero,
=1
and hence H Z ieN-D4n(t)] < SUP | Fjaen— +nH < 1Y
Thus,
21 —N 20 t— k oo
S| vwde =3 Rt < N - 1)
k=0 |70 k=0
so that
21-N 2tk
| v@ds V=Dl + N - 10 =
k=—N+1 |7~k
for some constant M. O
2i0 -1 270t —k ~
By a similar argument, we also obtain that Z / p(x)de)| < M
k=—2N+2 |7k

for some constant M.

2]

Lemma 6.4. Fort e [0,1], < (0273 for some constant C,

/ ¢]k d(L‘
3 k=—N+1
for all j = jo,jo,jo + 1,..., where KJ and ¢; are as defined at the beginning of

this section.

Proof. Recall to remark 2.8 the construction of the boundary wavelets using the

Gram-Schmidt process. Thus, for each k = —N +1,..., —1 we have

23y (2a Z Clju(x (6.7)

—N+1
then

-1

2.

k=—N+1

/t2%wf‘(2jx) dz| =

0

/ Z Clips()

—N+1

—N+1
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DS

/Clel )
l——N+1k— N+1

< Z /Cﬂ/m

—N+1
where C; = max{|CF|}, (6.8)
similarly
21 —N t
> /zézpf(zﬂ(l—x))dx = /Cﬂ/}]l (6.9)
k=2i—2N+2 1”0 1=2i — 2N+2

for some scalars C, C).

Now consider, for each t € [0, 1],

29N : 27— 2N+1
Z /w(j’k)(q:)dx — /wyk) )dz| + /wjk
k=—N+1170 N1
2 3 [
k=2 —2N+2

By the definition of ¢@*)

/wm ) dx

=1l

5 2

27 — 2N+1

| e +

/m

~N+1 ~N+1
21 —-N t
+ ) /2%¢5(2j(1—a:))dx.
k=2i—2N+2 70
By (6.8) and (6.9),
27— 2N+1
/Wk )dz| < /Ckzpjk )dzx| + /%k ) dx
—N+1 —N+1
21—N
+ Y / Crthjp(z) do
k=2i —2N+2 170
21—N
<M Z / Vix(x
—N+1

where M = max{|Cy, 1, |Ci|}
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By changing variable x — 277 (z + k) we have

2Jt k 2N 27t~k
/z/ﬂk dm<MZ2 v)do| = M272 " O(x) de| .
“N+1 ~N+1 k=—N+1 |7k
By Lemma 6.3, we obtain that, for some a constant M’,
2J N _
/W’f z)de| < MM'275. (6.10)
k=—N+1
By the same argument we obtain that,
2j0—1 . 200—1 2d0t—k .
~ ~ ~ o~ J
3 /¢(Jo,k)( )da| < M27% > / o(x)de| < MM'2™%
k=—2N+2 10 k=—2N+2 |7~k
(6.11)
for some constant M. Hence,
( 2i0-1 .
t S| @) it 5=
2| [, danle)do| = ’“;:%”
re / W) de| if §# o

\k—fN+1

MM2 if § = Jo

IN

MM'27% i j # o
\

~ J

<C27z for C = maX{MM’,MM'}.

Remark 6.8. For each j € J we have

> / D, 1. (z) dz| = / Hd)ﬁ g (27) day...dxg
(8%

EY (V2 iy

keKi keKi
t;
- : :H / gb]z k; l‘l d'rl H : : /¢]1akz(x7/) dl‘l
keICJz 1 i=1 gexci 170

<C H 9% by Lemma 6.4.
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Theorem 6.5. Let {Z;), : j € J and k € K7} be a sequence of independent

Gaussian variables with mean 0 and variance 1. Then the series defined by
=> >z / D, p(x)dx, fort=(ty,...ts) € [0,1)¢, (6.12)
jeJ kekKi [Ti=1[0:t:]

converges uniformly and absolutely on [0,1]% with probability one. Moreover,

{Xi}iepoye is a Brownian sheet with zero mean.

Proof. (i) Verify uniform convergence with probability one.

For each i = 1,...,d, we have In(27" + |k;|) < In(27™) as k; < 29, and hence
In(2% + |k;|) < ji + 1. Then by Lemma G.3 in Appendix G, there exist a random
variable C' such that

> d P
Zixl <C (Zm (29 + | Ki]) ) <C <Z(Jé + 1)) a.e. w

=1

N =

2 d
It is easy to see that, if j; > jo, jo > 1 for all 7 then (Z(]l + 1)) < H
j= i=1

d
so that the above inequality become |Z;;| < H v/Ji + 1. Now, we have for each

NeN
d 1
ZZ| / x)dx <C’ZZ[H‘]¢+12 / D, (x)dx
jed keEKI :1[0’t jed kekd Li=1 [Ty (0.t3]
=N lil=N
jeg  Li=1 keki L0t
l71>N
By Remark 6.8, we obtain that
d d _
~ 1 Jq
SDOICHY ESRETE FID o | CRR |
jeJ _keki i=1{0:%:] jed i=1 i=1
lil=N lil=N
B d
~ 1 24
=C Z H<ji+1)§2_7 —0 as N - o
jeJ =1
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arguing as in the proof of Theorem 6.2. Thus Z Z | Z; k

|J|€JN keki
jI<
is a uniformly Cauchy sequence and thus converges uniformly. It follows that

DI
J€J kekKi

0, 1)%.

D, () de

i=1 [Ovt’i}

®; (z) dz converges absolutely and uniformly a.e. w on
d
i:l[ovti}

(ii) Next, we calculate the covariance function. Consider

E[X X, = (ZZ / o D, 1 (2) d:c) ZZZM/ & (7) dx

d
€J keKi jeJ keki [Ti=1 [0:8:]

DI AL

J€J e keki ek I1

D, () dx/ , P () dz.

?:1 [0732'] i=1 [O’ti]

Since {Z;;,} is independent with mean 0 and variance 1 we have by Corollary 3.2,

EX.X]=Y Y / z) dx /H o O, (x) da.

jed keki [Tz Osz]
By Remark 6.1 (2) and as {®; : j € J,k € K’} is a complete orthonormal basis

for L?([0,1]?) we have
E[X,, X;] = Hmln (siyt)

For t € [0,1]%, since E[Z;;] = 0 for all j, k we obtain that
~Y S Bzl [ tu@de=o
jeJ keki TT5[0.t3]
Hence

Cov[X;, X,] = E[X,X,] — E[X})E[X,] = [ [ min(s; ;)

(iii) Verify that the random field is a Gaussian random field.
Let t = {t',¢*,...,t"},t' € [0,1]¢ be any choice of finite sequence with corre-
sponding vector X = (X, ..., Xym). Claim that X has the multivariate Gaussian

distribution.



For each [ = 1,...,m we set t' = (#|,...,t},) and also s = (s, ...

Consider

Ele™"X] = Elexp( ZZ 51 X))

=1

=FE |exp
J€J keki

=F |exp

(%
=

S5 zuda |

l
jeJ keki [[i=1[0.43]

Since {Z; .} is independent , we have by Theorem 3.1

TX]:HHEeXp( stl/ Otl

J€J keKi
Since {Z;} is a Gaussian random field we have

ST (530 f, 0

JjeJ keki

7Sm

).

i [zz . _?f"“(”d””])]

dlL’E [Zj,k]

_ (Zsl/d [Otl (x) :L*>2Var[Zj,k]

Since {Z;;} has zero mean and variance 1 we obtain that

HHeXp —— (Zsl/d x)dz
jeJ keki [Otl
= exp —%ZZ (Zsl/d o x)d
J€J keki

1 m m
—ow (32 233 s Bl ds
qg=1 =117

Jj€J kekKi I=1

= exp ——2251561 ZZ/d

=1 ¢g=1 J€J keki

)
-
/

1=

/ ;l:l[

By the calculation of covariance function in step (ii) we get that

o 1 s
E[ezs X] = exp <_§ZZSlSqCOV[th;Xt’J]>

=1 ¢g=1

;1 (z)dx

0,t7]

1
= exp(—gsTJS) where 0 = [0 4|mxm, 01g = Cov[ Xy, Xta]

1
= exp(is’ E[X] — §STUS) as E[X;] = 0 for all ¢ € [0, 1]~

101

D 1(x) d:c)

d
=1 [Ovt;z]

)



102

Hence by Remark D.3 in Appendix D , {Xj,, ..., Xi= } has the multivariate Gaussian
distribution. Thus {X;}c(01j¢ is a Gaussian process. Therefore by (ii) and (iii),
{Xi}iepoye is a Brownian sheet (see the definition of Brownian sheet in Section

3.5). 0

Remark 6.9. In the one dimensional case (d = 1), we have the collection

C= {(b.]yk : ¢J,k = 9060,]07 —2N +2 < k < 230 - 17

or ¢ =PI N +1<k <2 —N,j > jo}
In notation J = {Jo, jo, jo + 1, ...} and

or —N+1§k§2j—Nif¢jyk:¢(%’f)ec}

Then the collection {¢; : j € J,k € K7} is a complete orthonormal basis for L%([0, 1]).
Following Theorem 6.5, the series written as
t
Xiw) =) > Zin(w) / ¢;r(x)dr for t €[0,1]

JET kek 0
converges uniformly on [0, 1] with probability one. We therefore find that the
sample paths of {X;}cj01] are continuous with probability one. As in step (ii) of
the proof we have E[XX;] = min(s,t), it follows that Cov[X}, X] = min(s,t) for
all s, € [0,1]. Hence, by Lemma E.2 in Appendix E, the process {X;}icp1) is a

Brownian motion.



CHAPTER VII

CONCLUSION

In this thesis, we have discussed two main topics; how to obtain the spectral
density function of a random field which is the continuous wavelet transform of
some random field with arbitrary dilation matrix, and then use this spectral density
function to obtain the ergodic properties, and how to construct Brownian motion
and a Brownian sheet from the Haar wavelet function and more generally, from
arbitrary compactly supported wavelet functions.

In Chapter IV, we discussed the continuous wavelet transform of three
types of random fields, a weakly stationary random field, a random field with
stationary increments and a random field with weakly stationary increments, via
arbitrary dilation matrix. The wavelet transform gives new random fields, which
are weakly stationary, as well as jointly weakly stationary for different dilation
matrices. Moreover, we calculated the power spectral and cross-power spectral
density function of those continuous wavelet transforms. Starting from a weakly
stationary random field (Section 4.1), we calculated the cross-power spectral den-
sity function of the wavelet transform of such a field, by a formula involving the
product of two of Fourier transforms of the mother wavelet function, each di-
lated by one of the dilation matrices as well as the power spectral function of
the original weakly stationary random field, in Theorem 4.1. We then obtained
the cross-power spectral density function of the continuous wavelet transform of
a stationary increment random field (Section 4.2) by the formula of Theorem 4.2.

We gave some examples of a random field with stationary increments in the one
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dimensional and d-dimensional cases respectively, namely of fractional Brownian
motion and the fractional Brownian field; the finite Borel measures on R and
R? are found in equation (4.7) and (4.9), respectively. We also determined the
cross-power spectral density function for the wavelet transform of Brownian field
in Theorem 4.3, and of fractional Brownian motion in the one dimensional case.
In the final section of Chapter IV we showed that the cross-power spectral den-
sity function of the continuous wavelet transform of a random field with weakly
stationary increments involves a formula of products of two Fourier transform of
the mother wavelet each dilated by one of the dilation matrix, and a finite Borel
measure which derives from the spectral density function of the increments of the
original random field.

In Chapter V, we then showed that the continuous wavelet transform of a
weakly stationary, strongly stationary increments or weakly stationary increments
random field satisfies the ergodic property, that is there exists a random variable
with zero mean such that the estimate for the mean of the wavelet transform con-
verges to this random variable (Equation (5.17)) in the mean square sense, and
the estimate for the mean of the auto-correlation function of wavelet transform
converges to the square mean of this random variable (Equation (5.18)). In addi-
tion, for a weakly stationary random field with zero mean, if it is ergodic in mean
then its wavelet transform is also ergodic in mean.

In Chapter VI, the discrete wavelet method was used to construct Brow-
nian motion and Brownian sheets. The main contribution of the present work is
the construction of a Brownian motion from a wavelet basis. By the tensor prod-
uct construction, the Haar wavelet of L2[0, 1] basis gave a basis of L?[0,1]%. We
then constructed the Brownian sheet from this Haar wavelet basis of L?([0,1]¢)

in Theorem 6.2. Secondly, recently some mathematicians constructed complete
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orthonormal bases of L2([0,1]¢) via a compactly supported wavelet function, as
explained in Section 2.6 and also the proofs in Appendix C. We then used this
basis to construct a Brownian sheet in Theorem 6.5, which reduces to Brownian

motion in the one dimensional case, as shown in Remark 6.9.
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APPENDIX A
FOURIER TRANSFORM OF SOME

FUNCTIONS

Example A.1. If f(x) = e~ 2 € R where a > 0 then f(é) = (z) e da,

Proof. Since f € L'(R?) we consider the L' Fourier transform.
2
=

First let d = 1. Then, 4 (e
dx

(]E)/(ﬁ) =iF(zf)(€) and F(f") (&) = —z{f(é') , hence we have

—2axe™ . Theorem 2.3 (1) says that,

(F)(©) = iF(ze)(€) = —5=F (~2az¢") (g)

LEME = =i he) = - S (7
= L F () = o (0O =~ (F)(©
so that we obtain the linear differential equation (f)'(€) % f(€) = 0. Tt follows

that

% (510 = RGO + O G =e% (10 + 50| o

2 ~
Hence efa f(§) is a constant (does not depend on the variable £). To obtain the

value of this constant, let &€ = 0. We get f(0) = /f(x) dx = /e—az2 dx = \/E
a
Thus eiif(g) = \/E and then f(£) = \/:e_%2
=/ =/ :

2

d
The d-dimensional case follows by Fubini’s Theorem, since |z|? = Z a3, then
j=1

d
f(f) = / €_a|$‘26_i§m dr = H/ eiaxgz'e—iﬁjmj d:L‘j
R¢ e

d
(W>§ H &
= — e 4a
o

J=1

d
(7r>5 _ g2
fry — [ da
(8%
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We next apply the result of Example A.1.

Example A.2. The Gaussian distribution with zero mean and variance parameter

o > 0 is the Borel measure on R? with density e*%. That is, it is the probability

measure m defined by m(A) = / 6_% dz for Borel subsets A of R? (see also more
A

details in Definition 3.5 in Section 3.1). The Fourier transform m of this measure

is given in Definition 2.8 of Section 2.4, and by Example A.1 we obtain that

_1e1%02
2

m() = /Rd e~ 57 dy = (27ra2)%e

We will use this formula in Appendix D to obtain the characteristic function of a

Gaussian random field.



APPENDIX B

THE PROOF OF BOCHNER’S THEOREM

We begin by establishing some general properties of positive definite func-

tions.

Proposition B.1. Let ¢ be a positive definite function. Then
1) ¢(0) =0
2) ¢(—z) = p(z) and [p(x)| < ¢(0) for allz € R

3) the sums, products and limits of positive definite functions are positive

definite. In addition, exp ¢ s a positive definite function.

Proof. Suppose that ¢ is a positive definite function. Then for all finite sequences

N
of complex number {¢;}¥, and finite sequences {&}Y, C R? we have Z cicip(&i—
ij=1
&) > 0.

Then 1) setting N =1 and ¢; = 1 we get ¢(0) > 0,

2) Setting N =2, & =z and & = 0 we get
le120(0) + |ea]*0(0) + crcze(x) + crcro(—x) > 0.

Setting ¢; = i,co = —1 we have 2¢(0) > ip(z) — ip(—x), then 0 = Im(ip(x)) —

Im(ip(—z)) = Re(p(x)) — Re(p(—x)), that is

Re(p(—)) = Re(p(x)).

Setting ¢; = 1,¢5 = —1 we have 2¢(0) > p(z) + ¢(—x). Hence 0 = Im(p(z)) +
Im(p(—x)) that is

Im(p(=2)) = —Im(p(z)).
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Hence ¢(—z) = Re(p(—2)) + ilm(p(—2)) = Re(p(x)) + iIm(p(x)) = ¢(z).

If p(z) # 0, setting ¢; = _le(@)]

, 3 =1, then |¢;| = 1 and hence

()
260) 2 E ot + E0e(-0) = loto)] + £ = 24o(r)

Thus |p(x)] < ¢(0).

3) Note that ¢ positive definite is equivalent to the matrix [p(& — &)l
being positive semidefinite for all choice of &;, ...,y € R? and N € N. From
here it is not difficult to see that the product of two positive definite functions
is again a positive definite function. The sums and pointwise limits of positive
definite functions are obviously positive definite from the definition. Since the
exponential function of a given function is obtained by sums, products, and limits,

the exponential of a positive definite function is again positive definite. O

Remark B.1. The following two properties will be used in the next proposition.
1) For fixed z € R? the function z — ¢(2)e®*? is a positive definite
function, whenever ¢ is a positive definite function.

Indeed, let {c; Y, C C and {&.}2_, € R% We have

E Ckc 6 gk gj)x E CkC elfk z Zg] E Ckelfk C 625] o ‘ E Ckelék x
k,j=1 k,j=1 k,j=1

z-X 12X

Thus z — €*% is a positive definite function and hence z — (2)e"** is a
positive definite function, as it is the product of two positive definite functions.
2) If f is an integrable even function, then fxf is a positive definite function.

Indeed, let {¢;}¥, C C and {&}Y, C R

We have

Z CiCj f f é] Z CIC]/ f y) dy.

1,j=1 i,j=1
Changing the variable y — &, — y we have

ZCzCJ f*f)E g] chcj/ f(& y_gj)dy

1,5=1 1,5=1
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Since f is an even function, f(y —¢;) = f(& — y) so that

Sl s DG -8 = Y ew [ 6= (e~ ) dy

ij=1

_ /R Y e (& =y —v)dy

ij=1
/Rd

N 2
Proposition B.2. The Fourier transform of a finite Borel measure m on R¢ has

dy > 0.

Z af(&—y)

i=1

the following properties.

1) m is a continuous function with m(0) = m(RY).

2) m is a positive definite function.

3) If my, ma are two measures, then the Fourier transform of their con-
volution is the product of their Fourier transforms. Recall that the convolution is

defined by

(m xm2)(B) = [ Ldm(x)dma(y),
{(z,y):x+ycB}

and hence for any bounded continuous function g

/]Rd g(2)d(my *my)(z) = /R2d g(x + y) dmq(z)dms(y).

Proof. 1) Suppose that &, — £ as n — oo. Now for each n € N, |e®?| = 1,
/ dm(z) = m(R?) < oo and e¥"® — €. Then by the Dominated Conver-
R4

gence Theorem,

m(&,) = /R ) e T dm(x) — / e % dm(x) = m(€).

Rd
This shows that m is a continuous function.

Obviously, 1 (0) — / Ldm(r) = m(R").

2) Let {c;}7_, be a gjnite set of complex numbers and {;}7_; any corresponding

finite subset of R?.
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Then

n

Z cepm(&; — &) = chck/ TR g (z / Zc e e e zgchm( )
k=1 k=1 R L

n 2

o
E cje

J=1

dm(z) > 0

:/Rd

Hence m is a positive definite function.

3) Consider

mi(§)ma(§) = /Rmeig'(ﬁy) dmy (z) dma(y) = /Rdeig'(z) d(myxmg)(z) = WQ(Q-

]

Lemma B.3. If ¢ is a measurable positive definite function on R, then for every

nonnegative Lebesque integrable function f, one has
/ / (z —y)f(x)f(y)drdy > 0. (B.1)
R JRd
If the function f is even, then

| e@ G+ pia)dazo (B2

In particular, for all o > 0 we have

/ o(x)e~ " dz > 0, (B.3)

Proof. Let k > 2 be arbitrary.

As ¢ is a positive definite function, kp(0) + Zap , — y;) > 0 for any vector
i#]
vy = (y1,...,yx) € (RY*. Clearly, the function $(y) ) + Zcp — yj)
i#]

Lebesge measurable on (R9)*.
By using the boundedness and measurability of ¢ we can integrate this inequality

with respect to the finite measure f(y1)f(y2)...f(yx) dy1 dys ... dyx, and as I(f) =



119

/ f(z)dx > 0 we have
R4

! Zf]Rd Re x R4
kp(OVI(f)* + 1(f)* ZZ/ / Fy;) dy; dy; >0
i#j Re
ko (OVI(f) + k—1) / / (z—y y) da dy > 0.
Rd JR4

If I(f) = 0, the assertion is trivial. Thus, we may assume that I(f) # 0. Dividing

by k(k — 1)I(f)* we get

(’0 / / (x—vy y)dxdy > 0.
k Rd JRdA

Letting k£ — o0,
/ / (x — y)dxdy > 0. (B.4)
Rd JRA

Next, assume that f is even, that is f(—y) = f(y) for all y € R%.

//@(x—y dwdy—// (z —y)f(z)dz f(y) dy
Rd JRA Rd JRdA
Changing a variable, x — x + y, and applying Fubini’s Theorem we have
//w(fﬁ—y dxdy—// fx+y)dr f(y)dy
Re JRd Rd JRd
/ / flz+y)f(y)dydz.
Again changing a variable, y — —y, and as f is even we have
| ] et piedy= [ o) [ fo-nr-pdyds
Re JRd R R
— [ ole) [ fe- i@y
R R
= [ ela)(fx Hia)da, (B.5)
Rd

Then
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Thus, by equation (B.4) and (B.5),

| e@tr = payde =0 (5.6)

. _ 2 . _ 2
To prove the last assertion, we express e~®*I" as a convolution. Set f(x) = ce 2ae]

for ¢, > 0. This function is Lebesgue integrable, nonnegative and even on R,
™ % _le? P 2 2 T \4 _le?

e(5o) e Thus F(F« N©) = (F©) = (52) ¢ % =

Q

and f(§) = ¢ (50

d 2
¢ (27T > {(; >2 e_lia} Then, by Example A.1 in Appendix A we have (f x
« (0%
T

Niw) = ¢ (%)g e 1f we let ¢ = <%>_

¢, > 0 and hence (f = f)(z) = e ", Substituting into equation (B.6) we obtain

LY

_d )
, then f(z) = (£) * e " with

2«

/So(x)e_C“'“"de > 0.
R4

Proof of Bochner’s Theorem

Proof. First, suppose that ¢ is an integrable positive definite function on R?. Let
f =¢. Then f is bounded and continuous. We claim that f > 0. Let us consider
the function

4 _|z?
2

Py(xz) = (2nt)"2e” 20 for t > 0.

As f is bounded and P, integrable, P, x f exists. Then

_ == y\

(P % f)(z) = f<y>a<x—y>dy=<2m>—% | Jwe T dy

J , _
(2mt) 2 Y dz e_ =
R4 ]Rd
d lz—yl|
(2mt) "2 e Y e 3
R4 Rd

where Fubini’s theorem applies by integrability of ¢. Changing the variable y —

dy
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xr —y we have

|2
(Pt * f) 27Tt % / / —ZZ 1' _% dy dZ
Rd JRd

2
/Rd o(z)e " (/Rd eV ¢ 5t dy) dz.

M\&

= (27t)”

By Example A.1 we have

IS

(P pla) = @ty d [ gl (e

By Lemma B.3 and Remark B.1 it turns out that

(P Pla) = [ elo)e

As |p(2)e!

Convergence Theorem

(2)|, and ¢ is integrable, we have by the Dominated

lim Py« f(x) = /go(z)e = lim ( 7 ) dz = /go(z)e_i“” dz = f(z).

k—o0 k—o0

Hence f > 0 as P% « f(x) > 0 for all k> 0, and the claim is proved. Next we show

that f is integrable. For each k > 0 , we have by Fubini’s Theorem

212 f z|?
f(x)e’% dx = / / p(z)e % dz e dr as f=¢
R4 R4 JRA

_ /Rdgo(z) UR e o d:@} dz
_ /Rd@( ) {(M)i 1 dz.

Since ¢ is positive definite and applying Proposition B.1 (1) we have

k\z\Q
dz.
Rd

|12

Jw)e 5 dr < o(0) (2kr)

[SlIsH

d
32 5
Since/ e dy = (2—7T) it follows that
Rd k



122

|z|2 2

Since e~ 2= < 1 and klim e’% = 1 we have by Fatou’s Lemma
—00
- T 2
f(z)dz < lim f(x)e’% dr < lim ¢(0)(27)? < oo.
Rd k—o0 Rd k—o0

That is f is integrable. Since f = ¢ and f, ¢ are integrable functions, we have

f(z) = ¢(x) a.e. x. That is

1 &x
o) = G [ s ae

which shows that the assertion holds, with du(§) = @ f(&)d¢. Note that the
measure g is finite as f is an integrable function.

In the general case, suppose that ¢ is a Lebesgue measurable positive def-
inite function on R%. Let € > 0, and consider the function = —s ¢(z)e . We

have

/ lp(x)e™ | da < go(O)/ el dr < 00
Rd Rd

—elz|?

that is, z — @(x)e is an integrable function. As shown in the proof of

e is a positive definite function. Since the product of positive

Lemma B.3, e~
definite functions is again positive definite, then gp(ac)e‘e‘ﬂ”|2 is an integrable positive
definite function, hence as shown above, coincides almost every where with a
continuous function. Hence the function ¢ has a continuous modification 1. We
show that 1 is also a positive definite function. Indeed, since ¢ is bounded and
P, integrable, ¢ * P, exists. By continuity (see Theorem 8.4 in Folland (1999))
one has ¢¥(x) = 1%@/) « Py(x) for each x. As ¢ x P(z) = ¢ * Py(x) for all z and
t > 0, in view of proposition B.1 (3), it remains to note that ¢ * P; is a positive
definite function. Indeed, applying the Dominated Convergence Theorem we have
px P(z) = lg% @ * Py(z), where ¢ (x) = p(z)e~ . We already know by the first
part that the integrable positive definite function ¢, coincides almost everywhere

with the Fourier transform of some nonnegative integrable function g.. Hence
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e * P, is the Fourier transform of the nonnegative function gept, i.e., is positive
definite. Therefore, v is a continuous positive definite function, almost everywhere
equal to ¢. The remaining part of this proof requires tools of functional analysis

and can be found in Pinsky (2009). O



APPENDIX C

THE PROOF OF SUBSECTION 2.6.3

The proof of Lemma 2.8

Proof. Since supp(y) C [0,2N — 1], the support of ¢(x — k) is contained in [k, k +

2N —1]. Now, for k < —2N + 1, we have [k, k + 2N — 1] C (—o0, 0], and we get

o kE+2N—-1
o = / f(@)ol@ — k) dz = / f(@) @ — k) dz =0

as f(z) =0 for x € [k, k+ 2N — 1] C (—o0,0].

Let p be the smallest integer k such that ¢ # 0 (p exists as ¢, = 0 for k < —2N+1).
Suppose to contrary that p < 0. Then p+ 1 < 0, and it follows that f(z) =0
for all x € [p,p+ 1] C (—00,0]. Observe however that f(z) = c,p(z — p) for
x € [p,p+ 1]. Then p(z —p) = 0 for all « € [p,p + 1], that is, p(z) = 0 for all
x € [0, 1], which contradicts the fact that supp(¢) N[0, 1] # 0. Hence the smallest
integer p such that ¢, # 0 is greater than or equal to 0. Therefore, ¢;, = 0 for

k< —1. [

The proof of Theorem 2.9

Proof. Keep the notation S;(j),l = 1,2, 3 from the paragraph below Lemma 2.8.

For each j, let us set
X;l) = span{y; : k € S1(j)}

X]@) = span{y; : k € S2(j)}

X](S) — Span{@j,k . k S S3<.])}
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Furthermore, let us set

v = span{ ;x| o, + k € S1(7)}
Y;Q) = Span{@j,k‘[OJ] k€ SQ(])}

Yj(g) = Span{%‘,k}m] ke Ss5(5)}

These are all finite dimensional spaces. Our first goal is to show that P : X ;1) —
Y;-(l), P X]@) — Y}(z), P X;?’) — Yj(?’) are one-to-one. P being linear and
surjective, it will follow that these two maps are linear isomorphisms. Clearly
P X;z) — Yj(z) is one-to-one, as supp(y; ;) C [0,1] for all & € Sa(j).

Next, let fi(z) = Z crpjr(x) € X](l) and suppose that Pf; = 0. That is,
keS1(5)

-1

fl@)= Y capule) =0 forallz € [0,1]. (C.1)

k=—2N+2
As supp(p;r) C [277k, 279 (2N + k — 1)] and j > jo, it follows that (C.1) holds for
all z € [0,00). Equivalently,

L
f1(2772) = Z 2epp(x —k) =0 for all z > 0.
k=—2N+2

Let us first show that ¢_; = 0.

If —2N +2 < k < —2, then supp(p(z — k)) C (—o0,2N — 3] while for kg = —1,
supp(¢(x — ko)) C [-1,2N — 2]. Hence for z € (2N — 3,2N — 2) we have 0 =
fi(2792) = 25c_jp(z — (=1)). As (2N —3,2N — 2) Nsupp(p(z — (—1))) # 0, then
c_1 = 0. Thus,

-2
fi1(279x) = Z 23cpp(x —k) =0 for all z > 0.

k=—2N+2

We repeat the above argument, with ky = —2. If —2N +2 < k < —3, then
supp(p(z—k)) C (—o0, 2N —4] while for ky = —2, supp(p(x—ko)) C [-2,2N —3].

Hence for z € (2N — 4,2N — 3) we have 0 = f,(2772) = 23c_sp(x — (—2)). As
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[2N — 4,2N — 3] Nsupp(p(z — (—2))) # 0, then c_5 = 0.
Continuing this way, we obtain that ¢, = 0 for all —2N 4+ 2 < k < —1, that is,
f1 = 0. It follows that

P:x" —vyWV

1s one to one.

Next let f3(x) = Z crpjr(x) € X}S) and suppose that Pf; = 0. That

keS3(j)
18,
271 -1

fs@)= > cprlx) =0 forall z € 0,1]. (C.2)

k=2J —2N~+2

As supp(pjx) C [277k,277(2N + k —1)] and j > jo, it follows that (C.2) holds for
all x € (—o0,1].

Set

271

fa)= e+ = > a2ip@a+2 k)
k=2/ —2N+2
=1

=22 Z Cryip(2x — k).

k=—2N42

a)f

Then f5 € V;(R) and f3(277z) = 22 Z Crraip(x —k) =0 for all z € (—o0,0].
k=—2N+2

By lemma 2.8 we have ¢; 0 = 0 for k£ < —1, that is, ¢, = 0 for 21 —IN4+2<Ek<

27 — 1. This shows that

P:xP —vy®

J

is one to one.
Next we claim that there exist Cy > C7 > 0 so that for any 7 > jo and for

any sequence {a; }res(;) of coefficients

2 2

Cy Z |a’j,k|2 < Z aj,k(pj,k(x) < Cy Z |a]’,k|2 : (03)
)

kes () kes () L20.] =
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Let any j > jo be fixed. Let X; = Xj(l) + XJ@) + X;g) and Y; = Yj(l) + Yj(2) + Yj(g).

Then as {¢; i }res(;) are orthonormal, (C.3) is equivalent to
Cillfllzz®y < 1P fllrzqo < Collfllz2 ) (C.4)

for f = Z aj kP € Xj.
kesS(5)
We first show that (C.4) holds for all f € X ;1). Observe that

1) X ;1) and Yj(l) are 2N — 2 dimensional vector spaces.
~1

2) If f(z) = Z crpik(x) € Xj(l), then as supp(p;x) C [277k, 277 (2N +
k=—2N+2
k — 1)] we have that ¢;,(z) = 0 for all z > 279(2N — 2), and as j > jo then,

f(z) = 0for all x > 1. Observe that the following diagram is commutative:

D.
XV Nzw 2 X5 e
P 1@

D.
YN ey =2 Y0 ezoe)

where Xél) = span{p(z +1),...,p(z + 2N — 2)}
Yo(l) = span{p(z + 1)'[0700), vy p(x + 2N — 2)‘[0’00)}
Q:fr— f‘[o ) the restriction map

(D f)(z) = 275 (27 % ).

-1 -1
Since fi = Z CkPik € X](-l) then (Dy; f1)(x) = Z cep(x — k) € Xél).
k=—2N+2 k=—2N+2

Thus, clearly, Dy; is an isometry of X ;1) onto Xél) in the norm || - || p2(ry. Similarly,
D,; is an isometry of Yj(l) onto Yo(l), when Yj(l) is given || - || z2[0,1) and Yo(l) is given

H . HLQ[O,oo)' In fact

1) Since p;x(z) = 0 for z > 1 we may consider an element of Yj(l) as

defined on [0, 00).
—1
2) It f(z) = Z Ck(pjvk(aj)’[o,mfty) < Yj(l) for x > 0, then (Dy; f)(z) =
k=—2N+2
-1
Z crp(r — k)‘[o o) € Yo(l) for z > 0.
k=—2N+2 ’
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3) D2 fllzzp0.00) = [1fllz2p0,00) = [1fll 200,17 a8 supp(f) < [0, 1].
Now () maps basis vector to basis vector and is linear, hence defines an isomor-
phism between the two finite dimensional vector spaces Xo(l) and Yo(l). Hence there

exist C’fl), C’él) > (0 such that

CONfill e < 1Qf N 2pee) < CV 1 full 2 ey

for all f; € Xél). As Dyj, Dy-; are isometries, we have

CN Al < P fillz2po, < CN full ey

for all f; € X\ for j > jo.

A similar argument shows that there exist C’fg), C’ég) > 0 such that

CONfall 2wy < 1PFsll 200y < O foll 2y

for all f3 € X;g) for j > jo.
Observe that for f, € X](-Q), as supp(p;x) C [0, 1] for all & € Sy(j), then supp(f) C
[0,1] and we have

1f2llz2®y = [ f2]l2p0,15-
Next let f € X, be arbitrary, say f(x) = fi(z) + fa(x) + f3(z) where f; € X](i),
that is, fi(z) = Z ajpp,,(x);i=1,2,3.

kesS;(5)
Now

Ifoll oo = lfolleey = Y la,,|?
keSa(j)

= Z 1< f.o,, >L2(Rd)’2 as {¢;,} is an orthonormal basis of X
keSa(j)

2
= Z ‘< /5 Pk >L2[0,l]‘ as supp(p;x) C [0,1]

keSa2(4)
< HfH%%o,u by Bessel’s inequality and since {; i }res,(j) i

orthonormal in L*[0,1].
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It follow that

1f1 + f3llzzp = IIf = fallzzp,
< |[fllz20, + [ fall z2j0,15

< ez, + 1l 220, = 21 f1 270,1-

Now as f; and f3 have disjoint supports then

1l 220,01 + sl 2200 = 12 + fallZ20

then

I fillz2i0,0) < U1+ f3lle2io,) < 201 f | 2200,

I f3ll 220 < W2+ fallzepoay < 20 fll 2o,

Thus,

Ifllzewy = Ilfr + f2 + sl
<\ fillezw + I follL2y + 1 f3ll 2wy

1 1
< —= I fillzeo, + I 2l 22 + = 1 f3ll 22
C%l) [0,1] (0,1] Cfg) [0,1]

2 2
< —= iz + 1 fl 20, + =5 11 f 12210
Cfl) [0,1] [0,1] C{?’) [0,1]

2 +1+ 2 11l
- L2[0,1
o R o

1

where we have used the fact that fi, f, and f3 are mutually orthonormal in L?(R9).

1 2 2
Thus, the left inequality holds with e +1+ @ For the right hand side,

1

I fllz200) < I1fillz2o0 + 1 f2ll 20,0 + [ fsl 22101
< CP N il + 1 fall 2@y + 31 fsll 2wy
< O ey + Il 2@y + CS2N Nl zamy

= (" + 1+ ) Il



130

and the right inequality holds with Cy = Cél) + 1+ 053).

Hence inequality (C.3) holds. O
The proof of Lemma 2.11

Proof. Below, we will replace x by x + 2N — 1 —1[ where [ = 1,2,.... N — 1 in

equation (2.19) . Note that, for each [, we have for —[ > 1 — N, if x > 0,
2z +2N —1—1)>2(0+2N —1+1— N) = 2N,
so that by suppy C [0,2N — 1],
©2x+2N—-1-1))=0 foral [=1,2,..,N —1. (C.5)
First, we replace x by  + 2N — 2 in equation (2.19) and get

V2p(2(z + 2N —2))
= hop(z + 2N — 2) + how(z + 2N — 1) + ... + hoy_s(x + 3N — 3)
+Got(x + 2N = 2) + Got¥(z + 2N — 1) + ... + Goy_o¥(z + 3N — 3).
Now, if t > 0 and k <1, then x +2N — k > 2N — 1, and as suppyp, supp? lie in
[0,2N — 1] we have p(z + 2N = k) = 0 = ¢(x 4+ 2N — k) for all £ < 1. Applying

(C.5), the above equation yields

Bz — (—2N +2)) = _g—i)%(x_ (—2N +2)). (C.6)

Next, we replace x by z + 2N — 3 in equation (2.19),
V2p(2(z + 2N — 3))
= hop(z + 2N — 3) 4+ hop(x + 2N — 2) + ... + hon_s(x + 3N — 4)
+ Got(x + 2N — 3) + Gop(x + 2N — 2) + ... + Goy_o¥(x + 3N — 4).

Again, suppyp, suppy are contained in [0,2N — 1] and we have p(z + 2N — k) =

0=1(z+2N —k) for z > 0 and k < —1, and hence by (C.5), 0 = hop(x + 2N —
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3) + hop(x + 2N — 2) + Gyt (x + 2N — 3) + Gy¥(z + 2N — 2). Then by equation
(C.6) we have
hogs s

i g_o) olx—(=2N+3)+1).

Wz — (—2N +3)) = _g—i)%(x _(—aN+3)+ (

(C.7)
Continuing by induction, we finally replace x by x + N in equation (2.19),
V20 (2(z + N)) = hop(z + N) + hop(z + N + 1) + ... + hoy_op(x + 2N — 1)
+ G0 (x+ N)+Gotb(x+ N+ 1)+ ... + Goy_o¥(z + 2N — 1).
Then, as ¢(z +2N —1) =0 = ¢(x + 2N — 1) for z > 0 and applying (C.5) we
have
0 = hop(z + N) 4+ hoo(x + N + 1) + ... + hon_so(z + 2N — 2)

That is,

V@t N) =t N = 2o N1 -

90 90
hon_4 Ja
———p(@+2N-2)—=¢(z+ N+1)— ...
90 90
— PNy poN —2),
90

Applying the results of the previous induction steps, we see that each ¢ (z + N +
k),0 <k < N —2 can be expressed on [0,00) as a linear combinations of function

ol@+N+r)k<r<N-=-2
N-2

Y+ N+k)= Z a®p(x + N +7)

r=k+1

for some coefficients a!*) determined by the wavelet and scaling filters. That is,

each ¢¥(x — k)‘[g oy 2N 2 < k < —N, is a linear combination

k—1
Doz 7).
r=2—2N
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We conclude that the functions ¢(x — 2N +2 < k < —N belong to

=8y
V5[0, 00). This proves the lemma. O

The proof of Lemma 2.12

Proof. Part I: By Lemma 2.11, the functions ¢(x — k),—2N +2 < k < —N,
when restricted to [0,00), belong to V4[0,00). That is, each 1(x — k) is a linear
combination of functions ¢;(x) = p(z — ) when z is restricted to [0, 00).

Replacing now x by 2/x, we have the function ¢(2/z — k), —2N +2 < k < —N,
when restricted to [0, 00), belong to V;[0,00) and in fact, are linear combinations

of functions ¢;;(x) . Now, if we restrict = further to [0, 1] we obtain ¥ (2/z —

|[Ooo

k)|, and clearly, ¢¥(27z — k)| 0 18 @ linear combination of 90%1}[0 y- That is,

(0,1]

Y(2x — k), —2N + 2 < k < —N, when restricted to [0, 1], belong to V;[0, 1].

Part II: By part I, the functions ¢ (z —2N +2 <k < —N, belong

k)’[o,u’
to V5|0, 1].
Next, the same argument of Part I, we have (272 — k:)‘ 0.] for 27 — N+1<k<

2 —1. m
The proof of theorem 2.13

Proof. Note that by Theorem 2.9, the functions ¢, IN+2< k<2 —1,

k‘[o,u’
form a Riesz basis of the space V;([0,1]). That is, the dimension of V;4[0, 1] is
2/t1 + 2N — 2, and now card{p,,,—2N +2 < k <2/ —1} = 2/ + 2N — 2 and
card{¢), ,,—N+1<k<2 — N} =2,

It remains to show that, for an arbitrary function f of V__ , the restriction of f to

J+10

0,1] can we written as g + h where g € V;[0, 1] and

Z Oé]kak

—N+1
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In fact, let f € V;41[0,1]. Then f = g+ h where g € V;[0,1] and h € V;[0,1]*. As
such, h =Y B, 4, . Consider the following.
k

If k< —2N +1, then 272 — k> —k > 2N — 1. Thus ¢ 0.

ik ‘ 01 —

If —2N +2 < k < —N, then by Lemma 2.12, wj,k\[ € V;[0,1].

0,1]

If k> 27, then 27z — k <2/ — k <27 < 0. Thus wml[oﬂ =0

If2) - N+1<k<2 1 then¢,,|,, € V;[0,1].

0,1]

These show that ¢ (z —k # 0 and does not belong to V;[0,1] if —-N+1 <k <

)|[0,1]

2/ — N, and hence
21N

h(z) = Z aj,k¢j,k(x)'

=—N+1



APPENDIX D

GAUSSIAN RANDOM FIELD

Definition D.1. (Multivariate Gaussian Distribution)

Let V = [V}, Va, ..., V,u]T be an m-dimensional random variable vector. We define
the mean vector of V' to be the vector E[V] = [E[V4], ..., E[V,,]]* and the covariance
matrix V' to be ¥ = [04;]mxm where o;; = Cov(V;,V;) for i,j = 1,2,..,m. V
is called multivariate Gaussian with mean E[V] and covariance matrix o if the

density function of V' is given by
f(z) = (2%)_%(det 0)_%e_%(:”_EW])T”_l(m_E[VD for all x = (21, ..., z,) € R™

Remark D.1. If V = (V4,..., V},) is a multivariate Gaussian with mean E[V] and
covariance matrix o, then one can show (see in Grimmett and Stirzaker (1998))

Y =a Vi+aVo+...+a,V,, for constants aq, ..., a,, has the Gaussian distribution

with mean Z a;E[V;] and variance Z a?Var[V;] 4 2 Z a;a;Cov[V;, Vj].

i=1 i=1 i<j

Remark D.2. If 0 = diag(oy;) we get

— [T 2row) exp (—% > i - E[m)?aﬁl)

(z—E[x])?
where fx(z) = (2rmp)~2¢~ %  is a normal density function with mean E[X]

and variance p. This shows that the components in a multivariate Gaussian
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(V1, Vs, ..., Vi) are independent, if it has a diagonal covariance matrix.

Definition D.2. (Characteristic Functions)

Let V be any m-dimensional vector of random variables of distribution p, and
t = (t1,t2,...,tm) a vector of real numbers. The characteristic function of V' is
defined by the function ¢ : R™ — C given by ¢(t) = E(e™"V). Note that if p is
the distribution of V, then ¢(¢) is the inverse Fourier transform fi of u, up to a

scaling factor. In particular ¢ uniquely determines the distribution .

Remark D.3.
T
By the identity / e~ dp = \/j we have by the covariance matrix o is
R a
. d
a Hermitian matrix / e’ %dr = and for a m-dimensional multivari-
R4 | det U|

ate Gaussian distribution V' with mean E[V] and covariance matrix ¢ we have

characteristic function

(2m)z|deto|z Jrm

By a change of variables, z — oz + E[V] we have

g P e — / ¢ TN 0 det o] da
(2m)2 | deta]z Jrm

1
_ |?‘2et)012 eitTE[V]/ eitTUxe—%:cTJx dr
™) 2 m

1
_ | det O;leeitTE[V]—étTat/ o b a—itTo(a—it) g,

1 m
_ |det 0|2 it ElV]=5tT ot ( w2 )
m m 1
(2m) 2 (3) 2 | det(o)]2

_ eitTE[V}f%tTot.

Definition D.3. (Gaussian Random Field)
A random field {X;};cga is called a Gaussian random field if for any m € N, and
any choice of ti,...,t,, t; € R% the random vector {X;,, Xy,, ..., X;,, }, has the

multivariate Gaussian distribution.
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Lemma D.1. Let Xy, Xo, ..., X,, be independent Normal Random variables with
distributions N(E[X1], Jil), . N(E[X,],0% ), respectively. Then the distribution
of (X1, X1+ X0, Xh + Xo+ Xs,.... X5 + Xo + ... + X,,) is multivariate Gaussian

with mean (E[X4], E[X1] + E[Xs], ..., E[X1] + ... + E[X,]) and covariance matrix

2 2 2 2
UX1 UX1 UX1 UXl
2 2 2 2 2 2 2
O-X1 le + UX le + JXQ le + UXQ
o= 2 2 2 2 2 2 2 2 2
Oxl Jxl + UXQ UX + OXQ + OX3 UX + UXQ + OXS
2 2 2 2 2 2 2 2 2
_O'Xl chl + 0X2 0'X1 + sz + UXS O'Xl + 0X2 + ...+ an_

Proof. Note that E[X; + X,] = E[Xi] + E[X,]. Since Var[X;] = 0%, we have by

independence, Cov|[ X1, Xs] = E[X;Xs] — E[X;][Xs] = 0, and hence Cov[X;, X; +

X,] = Cov[ Xy, Xi] 4 Cov[X,, Xi] = 0%, , and Var[X; + X] = Var[X;] 4 Var[X,] +

2Cov[ X1, Xo] = 0%, +0%,+2(0) = 0%, +0%,. Next, set V = (X1, X;+X,)T, E[V] =
0% Tk

(E[Xh], E[X;] + E[X]), and 0 = , consider

9 9 9
Ok, 0x, T0x,

E[eitTV] — E[ei(t1X1+t2(Xl+X2))] -4 E[ez‘(tl—i-tg)Xleithg]'

Since X; and X5 are independent we have

. . . ; (t1+t2)% o ; 3 5
E[eltTV} _ E[ez(t1+t2)X1]E[61t2X2] _ el(t1+t2)E[X1]—%o’X1 el(tz)E[XQ]—%JXZ

. _ 1042 2\ 42 2.2 .
_ it BXa]+2(BX1]+E[X]) 2[(t1+2t1t2+t2)ax1 +t2<fX2] _ ethE[V]e—%tTUt'

Hence ¢(t) = " EVI=3t"0t i5 the characteristic function of V = (X1, X1 + Xo),
which shows that V' is bivariate Gaussian with mean (E[X;], F[X;] + E[X3]) and

covariance matrix

2 2
o o
X X
O' = 1 1
o2 o2 + o2
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Now E[X;+ ...+ Xi] = E[Xq]+... + E[X}] forall 2 < k <n. Foreach 1 <k <n,

k k k
Cov[X1, Y " Xi] = Cov[Y | X;, Xi] = Var(Xy) + Y Cov[X;, X1] = 0%,

=1 =1 =2

k

as Z Cov[X;, X1] = 0 by independence.
=2

Furthermore, for each 2 < k < n,

k k k
Cov[Xy + X5, Y Xi] = Cov[X1, Y X+ Cov[Xp, ) X]]

i=1 =1 =1

k
= COV[Xl, Xl] + Z COV[Xl, Xz] + COV[XQ, Xg]
=2

k
+ Z COV[XQ, XZ]

i=1,i#2

= Var(X;) + Var(X5)

_r= 2
Ny 0X1 + UX2
k
as Z Cov[X;, X;] = 0 by independence.
i=1,i#j

Continuing by induction, we get

2 2 D) 2
aXl le axl le
2 2 2 2 2 2 2
O-Xl 0-X1 + O-XQ UXl + O-XQ 0-X1 + Xo
o= 2 2 2 2 2 2 2 2 2
le O-Xl + UXQ axl + UXQ + UX3 le + UXQ + UX
2 2 2 2 2 2 2 2 2
_O’Xl axl + 0X2 O'Xl + O'XZ + 0X3 O'Xl + 0X2 + ...+ O'Xn_

Set V= (X1, X1+ Xo,.... X1+ Xo + ... + X,,)T, then
E[V] = (E[X.],E[X\] + E[Xa), ..., E[X1] + E[Xs] + ... + E[X,.])".
Consider for all t = (t1,tq,...,1,)"

E[eitTV] = E[eXp(Z(thl + t2<X1 "‘ XQ) + + tn(Xl + X2 + + Xn))]

= Elexp(i([(t1 +ta+ ... + ) X1+ (ta +t3+ ... + 1) Xo + ... + 1, X,)).
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By independence of the random variables X, X5, ..., X,, and continuity of the

exponential function, we may use Theorem 3.1 to obtain that

E[e™"V] = Elexp(ilt; + ... + t,]X1)]|Elexp(i[ts + ... + t,)X2)]... Elexp(itn X,1)]

1
= exp <z’(t1 +ty+ .+t E[X] — 5(1&1 +to+ ...+ tn)%il)
1
. Lo o
exp | it, F[X,] — étnaxn .

We can rewrite this in term of E[V] and ¢ as
E[e“TV} =exp (i(t1 B[ X1] + t2(E[Xq] + B[ X)) + ... + to(E[X4] + ... + E[X,])))

1
exp (—5(@1 ot ) fon (it tn)Qa§2 + .+ tiaxn))
LT L 7
= exp <zt ElV] - §t at) .
This shows that (X7, X7 + Xo, ..., X5 + X5 + ... + X,,) is multivariate Gaussian, by

remark D.3. O



APPENDIX E

BROWNIAN MOTION

Theorem E.1. Standard Brownian motion is a Gaussian process with mean func-

tion zero and covariance function Cov[Xy, Xs] = min(¢, s).

Proof. Let {B:}+>0 be a Brownian motion. Let n € N and for t; < ty < ... < tp,
consider the vector {By,, By, ..., Bt }
By (B1), (B2) , the increments B; — B, are independent and Gaussian distributed

with mean 0 and variance t—s for all ¢ > s, that is B;,, By, — By, , By;— DBy, ..., By, —

B,, . are independent and N(0,¢;,1 — t;) for all : = 1,2,3, ..., n.

We now apply Lemma D.1 in Appendix D, by choosing

X1 — Bt1

XQ - Btg " Bt1

Xn — Btn - Btnfl‘

We thus obtain that

X1 +X2 :Bt2

X1+ Xy + X3 = By,

Xi+Xo+ ...+ X, = By,



and hence

EXi+Xo+ ..+ X,)=E[B,] =0

E[X\|=FE[By,]|=0

E[X1+ Xo] = E[B,] =0
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2 _ 2 _
O =0p, = 1
2 _ 2 .
0X2 — O-BtQ*Btl — t2 tl
2 2 _ _
O-Xn — O-Btn_Btn,1 — t’l’b tn_l

It follows from Lemma D.1, that (B,,..., B;,) is multivariate Gaussian, with

E(B:,) = 0 for all ¢ and covariance matrix

ty

ty

131

123

3]

tn

min(t1 s tl)
min(ty, ty)

l’IliIl(t3, tl)

min(t,, 1)

Let s,t € [0,00). Consider

Now, if t < s then B, = B, + B; — B; and hence

min(tl, tg)
min(tg, tg)

min(t3 s tg)

min(t,, t2)

min(¢y, t,)
min(ta, t,)

min(ts, t,)

min(t,, t,)

Cov(By, B,) = E[(B; — E[By])(Bs — E[By])]

— E[B/B,] — 2E[B|E|B,| + E [E[B)E|B,]]

= F[B;B;] as E[B;] =0 for all t.

Cov(By, B;) = E[By(B, + B, — By)]

E[BY + E[By(B, — B,)].

Since {B;} has independent increments of distribution N(0,s — ¢), we have

COV<Bt7 Bs) = E[Bz?] + E[Bt]E[Bs - Bt]

= E[B}] =t = min(t, s).

This shows that {B;}:>¢ is a Gaussian process with mean 0 and variance min(¢, s).

[]
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Lemma E.2. A Gaussian process {X;}i>0 with the property E[X:] = 0 for all
t >0 and

Cov(Xs, X;) = min(s,t) for all s,t >0,

has independent increments. If in addition, the process has continuous paths , then

it is a standard Brownian motion on [0, 00).

Proof. First we can see that for all s,¢ > 0;
E[X X = Cov(Xy, X;) + E[ X E[X,] = Cov(X,, X;) = min(s, t), (E.1)

since E[X¢] = 0forallt > 0. Then forall 0 < s <t, E[X;—X,] = F[X;]-FE[X{] =

0 and hence

Var(X, — X,) = E [(X; — X,)?] - B[X; — X,)* = E[(X; — X,)?]

= E[X}]+ E[X] - 2E[X,X,]=t+s5—2s=t—s. (E.2)

Next, consider the process of increments {X;, — X4, X¢y — Xoy, o0, Xp,, — Xt 1 }
for each n > 0. Note that {X;, — Xy, Xy, — X4y, ...y Xt,, — X3, } is a multivariate

Gaussian by Remark D.1 in Appendix D. Let ¢ < j < n we have

COV(Xti _Xtifl ) th _th—l) = E[(th _Xtifl)(th _thfl)]
= E[Xtith] _E[Xtith—l] _E[Xti—lth] +E[Xti—1th—1]
=t;—t; —t;_1 +1t;_1 by Equation (F.1)

=0 (E.3)

This shows that X;, — X;,, X¢, — X4y, ..., Xz, — Xy, _, has a diagonal covariance
matrix, then we have by remark D.2, X;, — X, X;, — X,,,.... X, — X, , are
independent. By equations (E.1), (E.2), (E.3), if it has continuous sample paths,

then {X;}er is a standard Brownian motion on [0, co). O



APPENDIX F

FRACTIONAL BROWNIAN FIELD

Definition F.1. (Self similarity)
A random field {X;}, pa is H-selfsimilar if for any a > 0, X, 4 a’ X,;: we call H

the exponent of self-similarity.

Lemma F.1. If {B;},., is a standard Brownian motion then we have

1) {Bi},cr 5 a Gaussian process with zero mean and
Cov(Bs, B;) = E[BsBy] = min(s,t) for all st

2) {Bi},cp is 3-selfsimilar, and

8) {Bi},cr has stationary increments.

Proof. 1) See Theorem E.1 in Appendix E.

2) Let a > 0. First we show that {a’%Bat} is a standard Brownian motion.
(B1) sample paths ¢ — a~2 By, are continuous a.e. w as the dilation function is
continuous.
(B2) Since the increments {B; — B} are independent then a~2B, — a~2B,, are
also independent as dilation is a Borel (continuous) function.
(B3) Let 0 < s < t, then E[a_%Bat — a_%Bas} = a_%E[Bat — Bys] = a_%(O) =0
and Var(a’%Bat — a’%Bas) = (@5)2 Var(Bat — Bas) = a”*(at —as) =t — s.
Thus a~2 By — a~3 B,, is N(0,t —s).
(B4) Let t >0 , then a™2 By = a~2(0) = 0
This shows that {X;} = {a’%Bat}tER is a standard Brownian motion. In particu-

lar, the process {X;} is N(0,¢) which shows that X, < By, ie. a~3 By, 4 By, that
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is Bat i (I%Bt.
3) Let h € R. Then B, ), — By, is N(0,t) as {B;},.p is a standard Brownian
motion. Since By is also N(0,t) , then By, — By, and B; has normal distribution

with the same mean and variance, we get that they have the same density function.

Therefore By, — By, 4 B,. O

1
Theorem F.2. A fractional Brownian motion {Bf} which has continuous
t>0
1
paths and satisfies B; = 0 is a standard Brownian motion up to a multiplicative

constant.

Proof. Now for all s, > 0 we have F[B?] = 0 and

11
E[BBZ] = VTH (|t] + |s] — |t — s]) = Vi min(s, )

N

1 L1
then — F[B? B2| = min(s,t). By Lemma E.2 in Appendix E, {LBt } is a
Vi Vi t>0

standard Brownian motion. OJ

Theorem F.3. Let {B;H} be a fractional Brownian field. Then

tcRd

1) {BtH}teRd has stationary increments.

2) If {BtH}teRd has independent increments, then H = %
Proof. 1) Let h € R, then
K [Btlih - Bf)(Bih - Bf)} =L [(Bﬁthrh} - B [Bﬁth] - b [B}?Bgf—h}

+E[B)/By]

v
= 5 (It +hlP 4 lls + AP — [l + h— s = h|*)
Vir
== (le+AP" I = e+ 2 = hlY)
%

= (IRIPP 4 s+ RIPT = B = s = BI*)

<w|

2 (I AP = 1 — B

_Vu
2

= E[BI BM.

(I + sl = 11 = s[1*)
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Now E[Bff, —Bf'] = E[B[,]-E[B}f] = 0—0 = 0 = E[B}], and Var (BfL, — Bff) =
E|(BH, — BI"? — (E[BE, — BI'])* = E[(BI)2) = Var|B]. Note that {B!, —
B} is a multivariate Gaussian by Remark D.1 in Appendix D. Then B, — B
and BJT has normal distribution with the same mean and variance, we get that

they have the same density function. Therefore BH, — B £ BH.

2) Suppose that {B}?} has independent increments . Then, for s,t € R,

0= E[BME[B!" — BI') = E[B(B!" — B!)]

= E[BBf'] - E[(B;)’]

_Vu
2

Vi
= (P = 1] = [t = s|I™) .

(sl + 1l = 11t = s = 2[ls]*)

Then ||t]|*# —||s||* — ||t — s||* = 0 implies ||¢||*" — ||s]|*" = ||t — s||*" and hence
H = 1. Indeed, if H # %, set t = 2s we have (2|/s[|)2? — [|s[|*# = ||2s — s||*,
then (227 — 1)||s[|*! = ||s[|* so that 22 = 2 that is H = 1 which is a contradic-

tion. O



APPENDIX G

BOREL CANTELLI LEMMA

Lemma G.1. (Borel-Centelli Lemma)

If {A;}52, is any sequence of events and Z P(A;) < oo then
i=1

P(() | 4 =

m=1k=m

Proof. Since Z P(A;) < oo we have

=1

P(ﬁ GAk):%%P UAk <$§1MZPAk

m=1k=m =m
9] m—1
(ZM 3 ray) <o
k=1 k=1
[
Note that

ﬂ UAk:{w:wE ﬂ UAk}:{w:‘v’mENEIk:stuchthathAk}
m=1k=m m=1k=m

= {w:w belongs to infinitely many Ay’s}.

Lemma G.2. If {Z,} is a sequence of Gaussian random variables with mean 0
and variance 1, then there is a random variable C' such that |Z,| < CvInn a.s.

forn >2 and P(C < 00) = 1.

Proof. Let x > 1.

2 [ 22 2
Then P(|Z|>ZL‘ \/_/ _2 du<\/;L ue  zdu=e 72 %

Hence for all @ > 1 and n > 2,

P (]Zn\ > v2alnn> < e_(2 2 )\/j = n_a\/i.
T T

|5
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Now Zn O‘\/> < oo as @ > 1. Then by the Borel-Cantelli Lemma (Lemma

G.1) we have P(|Z,| > vV2alnn for infinitely many n) = 0.

Zn
Setting C' = sup | 2]

n>2 vInn

A
P(C=00)=P (sup M:oo> <P (|Zn| > v2alnn for infinitely many n) = 0.
n>2 VInn

Thus P(C < o0) = 1. O

then consider, for some fixed o > 1

A modification of this proof yields:

Lemma G.3. Let J = {j = (j1, .., Ja) : s € NU{0}} and K = {k = (ky, ..., kq) :
ki = =20 +1,..,29 =1}, If{Z;),j € J and k € K’} is a sequence of Gaussian

N(0,1) random variables, then there exists a random variable C' such that |Z, | <
d 3
C (Z In(27% + |k‘l\)> a.s. forall j € J and k € K, and P(C < 00) = 1.

Proof. Let x > 1. Then as in the proof of Lemma G.2

22 [2 .
P(|Z,,|>z) < 6_2\/i for each j € J, k € K’.
: T

Hence for each o > 1,

1

2 d
2 .
<\ /Zexp [ —a> (@ + |k,
_\/;exp( D +|z|>)
2 |
— V2 T esptin@ + k)
=1

d
2 )
_ - Ji 1Y~
= \/;| [ + (ki)
=1
00 2Ji—1

Nowforeach1<z<dz Z (27 + |k;|)™® < 0o as @ > 1, then

Ji=0k;=—29i+1

d
P|1Z,|> [2a)  In(2" + [k)
=1

d
Z Z H(jS + ki)™ < oo, and hence by the Borel-Cantelli Lemma we have

je€J keKJ i=i

d
P <|Zj’k| > [2(12111(2” + |kl|)]% for infinitely many j and k:) = 0.

i=1
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_ 1Z,,]
Set C' = sup —, then
Jj€J d 2
keki [Z ln(jS + |kz|)
i=1
d
P(C=00) <P |supl|Z,|>[2a Zln(Z” + |k:])]2 for infinitely many j,k | = 0.
JjeJ X
keKi =1

]
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