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Abstract


The pottery shards excavated from the Ban Chiang archaeological site a UNESCO world heritage
 
site, Thailand are well known for their distinctive red paint and exquisite designs. The pottery 
 
assemblages are found to span 3 periods: Pre-metal, Bronze, and Iron Ages. The aim of this research 
 
is to explore the firing techniques used for pottery production during these time spans. X-ray 
 
absorption spectroscopy carried out at Beam line 8 (BL-8) of the National Synchrotron Research 
 
Center (NSRC), Thailand was used to measure Fe2+ and Fe3+ distributions in the pottery. A range 
 
of other analytical techniques, including X-ray Diffraction (XRD), X-ray Fluorescence (XRF),
 
Fourier Transform Infrared Spectroscopy (FT-IR),  Differential Thermal Analysis (DTA), and  
 
Thermal Gravimetric Analysis (TGA) were also used to obtain the chemical compositions and 
 
information on changes in the thermal properties of the samples. The Fe K-edge absorption spectra 
 
of mixed standard iron compounds and the red clay ceramics fired under control conditions at 
 
various temperatures are used as a reference standard to determine the ferric/ferrous ratio in the 
 
pottery shards. Results revealed that all Ban Chiang pottery was likely fired under partial reducing 
 
conditions, but the firing temperature used was higher in the Pre-metal Age than those in the Bronze 
 
and Iron Ages.  
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Introduction

The Ban Chiang archaeological site in the 
 
northeast of Thailand has been designated as a 
 
world heritage site by UNESCO since 1992. 
 
This site dates from circa. 2100 B.C. to A.D.
 

200, spanning the Pre-metal, Bronze, and Iron 
 
Ages (Pietrusewsky and Douglas, 2002). A 
 
team from the University of Pennsylvania and 
 
Thai Fine Arts Department suggested that Ban
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Chiang pottery represents the world’s oldest 
 
bronze-casting and iron-working civilization 
 
(Gorman and Charoenwongsa, 1976).  Ban 
 
Chiang pottery has a unique appearance with 
 
no Chinese or Indian influence seen in the 
 
pottery. Some pottery was printed with rice 
 
husk patterns.  Interestingly, the bronze items 
 
from Ban Chiang appeared only as jewelry, 
 
not as weapons as often found in Europe and 
 
the rest of the world (Pietrusewsky and 
 
Douglas, 2002). This evidence indicates that 
 
Ban Chiang was a peaceful agricultural 
 
society. The excavations of Ban Chiang pottery 
 
are divided into 3 periods: Pre-metal Age 
 
pottery as characterized by black vessels and 
 
decorated with a cord-mark design is dated 
 
between 3000-5000 years ago. Bronze Age 
 
pottery, dated between 2300-3000 years old, 
 
comprises carinated pots with greyish-white 
 
clay, and a plain surface with a painted incision 
 
under their rims. Iron Age pottery, dated 
 
between 1800-2300 years old, is the most 
 
beautiful of all. The designs on dark clay 
 
covered with a buff slip are painted with red 
 
geometric patterns. The unique style of the 
 
pottery in each period suggested the possibility 
 
of different fabrication processes and firing 
 
temperatures during each period.  Investigation 
 
of this may provide important clues to the 
 
evolution of these ancient societies as well as 
 
their technology transfer.	

	 McGovern et al. (1985) and Bubpha 
 
(2003) studied Ban Chiang pottery by 
 
petrography and found that the major inclusions 
 
of Ban Chiang pottery are quartz, grog, and 
 
plant material. While plant material was the 
 
major inclusion in the Bronze Age pottery, it 
 
was rarely found in the Iron Age pottery.  
 
They also investigated the slips which coated 
 
the Iron Age pottery with a scanning electron 
 
microscope (SEM) and reported that the slips 
 
were a 10-50 microns thick fused clay. 
 
By examining with an energy dispersive 
 
spectrometer (EDS) they proposed that the 
 
chemical compositions of the slip are almost 
 
the same as those of the interior of the ware.  
 
The difference is that the slip has slightly 
 
more iron (Fe) and slightly less calcium (Ca) 
 
contents than that of the interior of the ware.  
 

Moreover, their studies of the red paint on the 
 
Iron Age pottery reveal that the paint has 
 
similar chemical compositions to that of the 
 
slip. The dissimilarity is that the red paint is 
 
composed of more Fe and less Ca. Glanzman 
 
and Fleming (1985) examined Ban Chiang 
 
pottery fabrication methods by xeroradiography.  
 
They noted that the Pre-metal Age pottery was 
 
predominately fabricated with a coil and slab 
 
method. The Bronze Age pottery was fabricated 
 
by both coil and slab and lump and slab 
 
methods. During the Iron Age the coil and 
 
slab technique was used to make pottery.  
 
However, the coils in the Iron Age period 
 
were rounded, not flat as in the earlier period.  
 
White et al. (1991) wrote an excellent reviewed 
 
paper about the ceramic technology at Ban 
 
Chiang.     

	 Many analytical techniques and 
 
approaches have been applied to identify the 
 
firing temperatures of ancient ceramics. Uda 
 
et al. (1999) estimated the firing temperature 
 
of ancient Chinese pottery by applying 
 
various analytical techniques, for instance 
 
XRD, X-ray Emission (PIXE), and DTA.
 
Mössbauer Spectroscopy provided relevant 
 
information on the firing techniques in many 
 
publications (Wagner et al., 1997; Matsunaga 
 
and Nakai, 2004; Maritan et al., 2005). 
 
Recently, the Synchrotron X-ray Absorption 
 
Near-Edge Spectroscopy (XANES) technique 
 
has been developed, which provides advantages 
 
in archaeological research (Pantos et al., 
 
2002). This technique was applied for iron 
 
(Fe) valence state analysis in the samples the 
 
same as that used in the Mössbauer’s 
 
Spectroscopy technique, but it also provided 
 
oxidation states of the Fe-ion and local 
 
symmetries of transition metal ions (Bianconi, 
 
1988; Lamberti et al., 2003). The XANES 
 
technique has been known to be used for 
 
determination of iron oxidation states in other 
 
samples such as silicate glass (Berry et al., 
 
2003), minerals (Wilke et al., 2001), and
 
ancient pottery from the Kaman-Kalehöyük 
 
site (Matsunaga and Nakai, 2004).								

	 The XAS beamline (BL-8) of the 
 
National Synchrotron Research Center 
 
(NSRC), Thailand, has been successfully 
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constructed and opened for users since 2006 
 
(Klysubun et al., 2007).  Therefore, it is a good 
 
opportunity for us to conduct archaeological 
 
research using the XAS beamline in Thailand.  
 
The objective of this work was to determine 
 
whether the Ban Chiang pottery of the 3 
 
chronological periods was fired under different 
 
conditions by using XANES. The relationships 
 
between potential changes of the Fe redox 
 
state in controlled experimental fired clay 
 
across various firing temperatures and 
 
conditions were examined. The resulting 
 
spectra of these red clay samples were used as 
 
a fingerprint for the firing characterization of 
 
Ban Chiang pottery. Moreover, analysis 
 
techniques including XRF, XRD, thermal 
 
analysis, and FT-IR were combined in this 
 
research investigation to obtain other relevant 
 
information.


Materials and Methods 


Sample Preparation								

	 Three different types of samples were 
 
used in this present study including pottery 
 
shards, reference fired clays, and Fe standard 
compounds. The Fe standard compounds were 
 
analyzed to obtain the standard curve of the 
 
Fe redox state and Fe K-edge energy. The 
 

reference fired clays prepared in the laboratory 
 
were used for comparison with the XANES 
 
spectra of the shard samples.				


Pottery shards										

	 The pottery shards excavated from Ban 
 
Chiang archaeological site in the Northeastern 
 
of Thailand were used in this study. Ten 
 
representative shards (Figure 1) from 3
 
different Ages were selected for investigation 
 
as follows:

	 i) For Pre-metal Age: 3 pottery shards 
 
with a cord-marked design of simple geometric 
 
incising; PSN-2 (S10E13) (Figure 1(a)), 
 
excavated at 237 centimeter depth (cmdt); 
 
5423 (Figure 1(b)), excavated at 400-410 cmdt; 
 
and 5424 (Figure 1(c)), excavated at 410-420 
 
cmdt.											

	 ii) For Bronze Age: 2 pottery shards 
 
with a puff rim and red paint; 5412 (S6E15) 
 
(Figure 1(d)), excavated at 330-340 cmdt; and 
 
5414 (Figure 1(e)), excavated at 350-360 cmdt.												

	 iii) For Iron Age: 5 pottery shards 
 
painted with red-on-buff; 8027 (Figure 1(f)), 
 
excavated at 130-160 cmdt; 0602 (Figure 1(g)), 
 
excavated at 190-200 cmdt; 7083 (Figure 1(h)), 
 
excavated at 160-180 cmdt; 8033 (Figure 1(i)), 
 
excavated at 160-180 cmdt; and 0042 (Figure 
 
1(j)), excavated at surface-150 cmdt.


Figure 1.	 Ban Chiang pottery shards; a), b), and c) Pre-metal Age; d), and e) Bronze Age;
 
			   f), g), h), i), and j) Iron Age
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Reference Fired Clays 								


	 Natural clay, of which the chemical 
 
composition is provided in Table 1 was used
 
to fabricate the reference fired clay. The clay
 
was extruded and prepared to get the sample 
 
size of 20×100×10 mm (W×L×H) and dried at 
 
100oC. Samples were fired at 500, 700, 
 
900, and 1200oC in an electric kiln under
 
oxidizing or reducing conditions with the 
 
heating rate of 5oC/min. Samples were soaked 
 
at the preset temperature for 1 h. Afterwards, 
 
they were cooled to room temperature at a rate 
 
of 5oC/min.


Fe Standard Compounds


	 Fe standard compounds were prepared 
 
by mixing FeSO4.7H2O (Fe2+) and FePO4.2H2O 
 
(Fe3+) in the ratios of 20%, 30%, 50%, 70%, 
 
and 80% (w/w in Fe of (Fe3+/(Fe2++Fe3+)).  
 
Then they were finely ground to a powder for 
 
homogeneity before use.


Chemical Analysis by XRF 							


	 Chemical analyses of the samples were 
 

determined by XRF using a Philips PW-2404 
 
spectrometer equipped with a Cr tube.


Phase Analysis by XRD

	 The phase of samples was characterized 
 
by XRD using a Bruker Analytical X-ray 
 
Systems model D5005 X-ray diffractometer 
 
equipped with a Cu Kα sealed tube X-ray 
 
source operating at 40 kV and 35 mA. The
 
data were collected in the range of 4.0-70.0° 2 
 
theta with a 0.02° step size and a scan speed 
 
of 0.1 sec/step. 


FT-IR Analysis										

	 The samples were manually ground in 
 
an agate mortar for about 5 min for infrared 
 
analysis. FT-IR spectroscopy was performed 
 
using a Bruker infrared spectroscopy, ATR, 
 
Alpha, equipped with a Globar source. The 
 
spectra were obtained covering the 4000-400 cm-1 
 
range. The spectra were recorded with a 
 
spectral resolution of 2 cm-1 and 128 scans. 
 
Data processing was performed by OPUS 
 
version 5.5 (Bruker Optic GmbH, Germany). 


Table 1.	 Chemical composition of reference clay and Ban Chiang pottery shards 




Compounds

Chemical composition (wt%)


Reference clay
 Pre-metal Age

(PSN-2)


Bronze Age

(5412)


Iron Age

(8027)


SiO2
 74.57
 57.90
 55.70
 67.10


Al2O3
 16.14
 17.70
 16.20
 14.10


Fe2O3
 5.38
 3.52
 3.16
 1.43


TiO2
 0.88
 1.00
 0.78
 0.85


K2O
 1.13
 1.33
 2.47
 2.61


Na2O
 0.43
 0.14
 0.29
 0.31


CaO
 0.32
 0.74
 1.81
 1.11


MgO
 0.67
 0.71
 0.57
 0.35


P2O5
 0.04
 0.15
 0.79
 0.82


MnO
 0.07
 0.07
 0.28
 0.08


ZrO2
 0.01
 0.02
 0.03
 0.02


BaO
 0.01
 -
 0.11
 0.09


SiO2/Al2O3
 4.62
 3.27
 3.43
 4.76
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Thermal Analysis by TGA/DTA


	 TGA/DTA measurements were performed 
 
on a Perkin Elmer model DTA7 under air 
 
atmosphere from room temperature up to 
 
1200ºC at a heating rate of 20ºC/min.


XAS Data Collection								


	 Samples and reference compounds were 
 
ground manually in an agate mortar until 
 
homogenized fine powders were obtained.  
 
Sample powders were filled into the 
 
rectangular frames of the sample holders, 
 
which were taped with Kapton tape. The 
 
sample holder size was 12 mm × 6 mm, 
 
covering the beam size of the measuring 
 
station. The Fe K-edge XANES spectra were 
 
measured in the transmission mode using
 
the BL-8 beamline of the National 
 
Synchrotron Research Center (NSRC, 
 
Thailand). Monochromatized 1.2 GeV SR 
 
X-rays, obtained from a Ge (220) double-
 
crystal monochromator, was used to select the 
 
photon energy with a spectral resolution
 
(ΔE/E) of 10-4 (Klysubun et al., 2007). While
 
scanning the photon energy, the absorption 
 
spectrum was measured with 2 ionization 
 
chambers located before and after the sample.  
 
Incident beam energies were set from 50 eV 
 
below the main absorption edge energy
 
(about 7112 eV for Fe) to about 200 eV above 
 
the Fe K-edge, with 0.2 eV steps for the 
 
7050–7150 eV region and 1 eV steps after that 
 
region. The photon energy was calibrated in 
the region around the iron K-edge absorption
 
using the maximum of the absorption peak 
 
(white line) of iron foil at 7112 +/- 0.2 eV. All 
 
of the XANES spectra were averaged and 
 
normalized using IFEFFIT software version 9 
 
software (Ravel and Newville, 2005). The 
 
energy of the absorption edge (E0) is defined 
 
as the edge crest in the normalized XANES 
 
spectra throughout this paper.


Results and Discussion 


Chemical Analysis by XRF 						


	 Investigation of the chemical composition 
 
of Ban Chiang pottery using XRF is shown in 
 

Table 1. In this Table the SiO2/Al2O3 ratio is 
 
also shown. All the samples contain a high 
 
amount of SiO2 and low amount of Al2O3, of 
 
which the SiO2/Al2O3 ratio varied between 
 
3.27 and 4.76. The amount of alkaline oxides 
 
(K2O and Na2O) of the Pre-metal Age shard is
 
lower than those found in both the Bronze 
 
Age and Iron Age shards. The amounts of 
 
alkaline-earth oxides (CaO and MgO) which
 
are auxiliary fluxes are also low.  In contrast, 
 
the amount of Fe oxide in the Pre-metal Age 
 
shard is higher than those in both the Bronze 
 
Age and Iron Ages shards.  It is known that 
 
iron oxide causes the reddish color of the 
 
clay-based products after firing at low 
 
temperature, but gives a grayish color under 
 
high temperature. In this investigation, only 
 
Pre-metal Age pottery showed a grayish color 
 
throughout, while the Bronze Age and Iron 
 
Age shards exhibited a lighter color on the 
 
surface but showed dark-grey to black colors 
 
in the interior of the shards.				

	 The composition of the reference clay 
 
(Table 1) contains higher amount of SiO2 and 
 
Fe2O3 than those found in the pottery shards.  
 
However, the amount of these compositions 
 
did not effect the change of the iron redox 
states after firing. Therefore, it is acceptable 
 
to compare the iron redox states in the 
 
controlled samples to those in the pottery 
 
shards.  


Mineral Phase Analysis by XRD							


	 The mineral phase composition that was 
 
analyzed using XRD is shown in Figure 2.  
 
All Ban Chiang pottery shards have Quartz as
 
main mineralogical phase. Quartz is also 
 
found to be the main phase of the reference 
 
clay samples.


Thermal Analysis by TGA/DTA						


	 Figure 3(a) displays the TGA curves of 
 
Ban Chiang pottery shards from various ages.  
 
It is clear that the TGA curve of the Pre-metal 
 
Age shard PSN-2 is significantly different 
from those of the other ages. From the TGA 
 
curves it appears that the weight loss of the 
 
Pre-metal, Bronze, and Iron Ages pottery 
 
when heated from room temperature to 300°C 
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are 1%, 5%, and 6% respectively. In the 
 
300-600°C temperature range, the Pre-metal 
 
Age shard lost about 2% of its weight while 
 
the Bronze Age and Iron Age shards lost 
 
approximately 8% of their weights. These 
 
results suggest that the Pre-metal Age pottery 
 
was fired to a higher temperature than the 
 
2 later Ages pottery.

	 Figure 3(b) illustrates the DTA curves of 
 
Ban Chiang pottery. It is clear that the DTA 
 
curve of the Pre-metal Age pottery has 2 
 

different characteristics from the other Ages 
 
pottery. First, its peaks are both shorter and 
 
boarder. Second, its curves show downward 
 
slopes at high temperature which may be 
 
caused by baseline drift. From Figure 3(b) it is 
 
obvious that the DTA curves of Ban Chiang 
 
pottery of all ages show 1 large endothermic 
 
peak between room temperature and 350°C 
 
and 1 exothermic peak in each of the 350-500°C 
 
and 800-1050°C ranges. The peaks which 
 
occurred in the room temperature -350°C and 
 
800-1050°C ranges were very broad, indicating 
 
that reaction occurred over large temperature 
 
intervals. Normally, the DTA curve of clay 
 
shows a first endothermic peak between room 
 
temperature and 200°C from the removal of 
 
adsorbed moisture reaction. This peak is much 
 
sharper than the endothermic peak found 
 
between room temperature and 350°C in the 
 
Ban Chiang pottery. The reason for this 
 
difference may be attributed to the fact that 
 
moisture which was absorbed into the ancient 
 
pottery for thousands of years reacted to some 
 
compounds inside the pottery to form
 
new compounds of a hydrate form. These 
 
compounds may be tightly bonded to the
 
pottery. Therefore they are more difficult to 
 
remove. In addition, the peak shifting and 
 
broadening in the Ban Chiang pottery’s DTA 
 
curve may be caused by the high heating rate 
 
used in this experiment. The DTA curve of 
 
general clay shows a large and broad exothermic 
 
peak at 300-500°C, attributed to burn out of 
 
organic materials. It appears that peaks of this 
 

Figure 2.	 X-ray diffractograms of following 
 
	 Ban Chiang pottery shards: PSN-2, 
 
	 Pre-metal Age; 5412, Bronze Age; 
 
	 and 8027, Iron Age. Note K is 
 
	 Kaolinite and Q is Quartz


Figure 3.   (a) TGA curve; and (b) DTA curve of Ban Chiang pottery shards
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temperature range in Figure 3(b) are small 
 
especially the peak of the Pre-metal Age 
 
period. This result suggests that all periods of 
 
Ban Chiang pottery were fired to higher 
 
temperatures than this temperature range and 
 
the Pre-metal Age pottery was fired to a 
 
higher temperature than the other ages. The
 
small peaks at 300-500°C in Figure 3(b) are 
 
likely to be caused by the burning out of 
 
organic materials which were not completely 
 
burned thousands of years ago when the 
 
pottery was fired in a reducing atmosphere 
 
heated by burning wood. The large exothermic 
 
DTA peaks in the range of 800-1050°C, shown 
 
in Figure 3(b), may be caused by a reaction 
 
between alumina and silica to form crystals.  
 
However, the exothermic peak of the same 
 
reaction of clay is normally sharper and longer 
 
than those in Figure 3(b). The discrepancy 
 
may be caused by the high heating rate used 
 
in this experiment.  It is important to note that 
 
all DTA peaks of the Bronze Age and Iron 
 
Age shards are not only sharper but also larger 
 
than those of the Pre-metal Age shards. Both 
 
the TGA and DTA data suggest that the 
 
Bronze Age and Iron Age specimens were 
 
fired at lower temperatures or/and different 
 
atmosphere than the Pre-metal Age specimens.  

Firing Temperature Analysis by FT-IR						

	 The FT-IR absorbance measurements 
 
were performed on the whole set of 
 
experimentally fired clay and pottery shards.  
 
The FT-IR spectra were obtained covering the 
 
range of 4000-400 cm-1. However, the typical 
 
spectra presented similar features ranging 
 
from 1400-600 cm-1. These spectra ranges 
 
allowed us to use them as fingerprint spectra 
 
for the firing temperature characterization.  
 
The clay mineral (kaolinite) has characteristic 
 
absorption peaks at 917, 1012, 1038,
 
and 1117 cm-1 (De Benedetto et al., 2002).  
 
Investigation of the reference fired clays 
 
reveals that the intense absorbance peak of 
 
1038 cm-1 corresponds to the clay mineral and 
 
is obviously seen in the 500ºC fired clay of 
 
both the oxidizing and reducing atmosphere. 
 
At 700ºC in both conditions, the absorption 
 
peak of the clay mineral slightly shifts to 
 
higher wave numbers by about 8-10 cm-1.  
 
Interestingly, at 900ºC oxidizing conditions, 
 
the peak shape of the experimental clays 
 
shifted significantly toward a higher wave 
 
number (1093 cm-1) and has an extra  shoulder 
 
peak at 1066 cm-1 (Figure 4(a)), while the 
 
900ºC reducing condition (Figure 4(b)) still 
 
has a peak shape similar to the 700ºC fired 
 

Figure 4.	 FT-IR absorbance spectrum of reference fired clays. R, Reduction firing; Ox, 
 
			   Oxidation firing; Kln, kaolinite; Qtz, quartz
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clay. These results imply that under oxidation 
 
firing, the temperature reaches a higher degree 
 
than that of reduction firing.  The intense band 
 
of 1038 cm-1 shifts to a higher wave number 
 
of 1093 cm-1 as the firing temperature increases 
 
(Figure 4(a)), suggesting the decreasing 
 
of clay minerals and the mineral phase 
 
transformation during firing. The 1200ºC fired
 
clay showed peak positions at 1170, 1093, 
 
802, and 782 cm-1 which corresponds to the
 
SiO stretching of quartz. It is known that 
 
when the temperature reaches 1200ºC, the 
 
complete breakdown of clay mineral occurs; 
 
therefore the clay mineral could not be 
 
observed. It would be due to the fact that 
 
silica in clay material transforms into quartz 
 
continuously during firing, thus changing the 
 
FT-IR spectrum shape. The result suggests 
 
that the FT-IR spectrum reflects the phase 
 
changing of the mineral in clay fired under 
different conditions. Therefore, the FT-IR 
 
spectra of the reference fired clays were used 
 
as reference spectra to determine the firing 
 
temperature of Ban Chiang pottery.

	 The FT-IR absorbance of the Bronze 
 
Age and Iron Age shards shows minor 
 
differences, while 2 Pre-metal Age shards 
 
present a distinct feature (Figure 5). The 
 
spectra of 2 Bronze Age shards (5412 and 
 
5414) and 3 Iron Age shards (8027, 8033, and 
 
7083) are clearly matched to 700ºC fired clays 
 
under oxidizing conditions and 700ºC and
 
900ºC fired clays under reducing conditions.  
 
The spectra peak of 2 Iron Age shards (0042 
 
and 0602) have shifted close to 500ºC 
 
fired clays but are different in shape. Results 
 
suggest that these 2 shards were fired at a
 
lower temperature than others.  The Pre-metal 
 
Age shards (PSN-2 and 5424) exhibited an 
 
intense absorbance peak at 1093 cm-1
 

corresponding to a 1200ºC firing temperature 
 
of both oxidizing and reducing conditions.  
 
Another one of the Pre-metal Age shards 
 
presented a spectrum similar to 700ºC 
 
fired clays under oxidizing conditions and to 
 
700ºC and 900ºC fired clays under reducing 
 
conditions. Even though the FT-IR spectra 
 
could not tell the differences between clays 
 
fired under oxidation or reduction conditions, 
 

it provided more insight on the firing 
 
temperature estimation which could support 
 
the XANES data.


Fe-K XANES Analysis of Standard Fe 
 
Compounds

	 The Fe K-edge XANES spectra of the
 
mixture Fe2+ (FeSO4) and Fe3+ (FePO4) 
 
standard compounds showed that there are 
 
distinct features in each individual spectrum 
 
(Figure 6). The structure at the main crest is 
 
significantly different between the oxidized 
 
and reduced forms of the samples. For
 
example, the Fe K-edge spectra of samples 
containing 20% Fe3+ show an absorption edge 
 
at 7128.83 eV, while, the 80% Fe3+/(Fe2++
 
Fe3+) sample peaked at about 7133.99 eV.  
 
Therefore, the absorption edge shifted to a 
 
higher energy with an increased amount of 
 

Figure 5.	 FT-IR absorbance spectra of 
 
			   Ban Chiang Pottery shards. R, 
 
			   Reduction firing; Ox, Oxidation 
 
			   firing
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Fe3+ in the Fe3+ /(Fe2++Fe3+) ratio. This result 
 
is in agreement with the XANES spectra of a 
 
series of quenched synthetic basaltic melts, in 
 
which the edge positions are shifted to higher 
 
energies with an increasing Fe oxidation state 
 
(Wilke et al., 2005). The XANES results of 
 
the present work were used to draw the 
 
standard curve plotted between the Fe3+/
 
(Fe2++Fe3+) ratio and the absorption energy. 
 
The standard plotted curve (Figure 7) shows
 
clear positive relationships between the Fe3+/
 
(Fe2++Fe3+) ratio and the absorption energy,
 
with the R-squared value of 0.992. With this 
 
certainty, we concluded that it is safe to use 
 
the Fe3+/(Fe2++Fe3+) ratio resulting from the 
 
controlled experimental clay measurements as 
 
a standard curve for the estimation of the 
 
mixture of iron valence state of an unknown 
 
material as in the pottery shards. 


Oxidation State Analysis with Fe-K XANES 
 
of Reference Fired Clays

	 The Fe K-XANES spectra of the reference 
 
clays fired under various conditions are shown 
 
in Figure 8 and the characteristic energies for 
 
the XANES spectra of each sample are 
 
summarized in Table 2. 										

	 The absorption edges of the clays
 

fired under oxidizing conditions at various 
 
temperatures showed approximately the same 
 
energy level for each treatment; 7134+0.2 eV 
(Figure 8(a) and Table 2). The iron oxidation 
 
state of the clays fired under an oxidizing 
 
atmosphere was determined from the standard 
curve of the mixed Fe2+ and Fe3+ compound. 
 
Ninety-four percent are found to be mainly 
 
trivalent iron. These results correlate with the 
 
finding of Matsunaga and Nakai (2004) that 
 
the iron atoms that remained in fired clay are 
 
in a trivalent state after oxidation firing. We 
 
also observed slight increases of pre-edge peak 
 
intensities of the fired clays with increased 
 
firing temperatures. It might be due to the 
 
hematite formation after heating as reported 
 
by Matsunaga and Nakai (2004) that the 
 
hematite has a strong pre-edge peak because 
 
the iron atoms occupy distorted octahedral 
sites.

	 The Fe K-XANES spectra of clays fired
 
under reducing conditions are shown in 
 
Figure 8(b). The spectrum shape of the 
 
reduced fired clay under 500oC is very close 
 
to the oxidized fired clay under 500oC, while 
 
the absorption energy of the reduced fired 
 
clay under 700oC shifted 0.72 eV to the lower 
 
energy. The trivalent Fe contained in the 
 

Figure 6.	 Fe K-XANES spectra of mixture 
 
		  	 Fe2+ and Fe3+ standard compounds


Figure 7.	 Plot depicting the percentage 
 
			   ratio Fe3+/(Fe2++Fe3+) versus Fe
 
			   K-edge energy of standard Fe
 
			   compounds
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500oC fired clay and 700oC fired clay 
 
(calculated from the standard curve in 
 
Figure 7) are 92.8% and 84.1%, respectively
 
(Table 2).  Furthermore, the absorption spectra 
 
of the fired clay shifted significantly to the 
 
lower energy as the firing temperature 
 
increased.  For example, the 900oC fired clay 
 
gave a broad absorption shape and edge crests 
 
at 7132.09-7132.97 eV. The energy at the 
 
middle of the edge crests was used to calculate 
 
the iron valence of the fired clay, and it was 
 
found that this clay contains 63% of trivalent 
 
iron. It is known that the broadened edge 
 
crests are often observed in mixed-valent 
 
compounds and compounds in which the 
 
absorber atoms occupy several different 
 
energy sites (Matsunaga and Nakai, 2004).  
 

Noticeably, the absorption feature of the 
 
1200oC fired clay was different from other 
 
fired clays; it has a shoulder peak at 7128.29 
 
eV and a sharp edge crest at 7132.39 eV.  This 
 
sharp edge feature is defined as “white line”, 
 
in which the typical species of iron atoms are 
 
located at highly symmetric sites and the 
 
valency of the absorber atom is expressed as 
 
an integer (Waychunas et al., 1983).  Therefore, 
 
the divalent Fe atom might be present 
 
predominantly in the clay fired at 1200oC 
 
under a reducing atmosphere. The shape of 
 
the shoulder can be attributable to the transitions 
 
of the bounded Fe atom from the 1s orbital to 
 
the 4s orbital (Shulman et al., 1976; Waychunas 
 
et al., 1983). The different features of the 
 
shoulder presumably reflect changes in the 
 

Table 2. 	 The energy of Fe K-edge features in reference fired clay and Ban Chiang pottery
 
	 and Fe redox state contained in sample (calculated from the standard curve of 
 
	 Figure 7)




Sample

Edge crest energy 


(keV)

Fe content


(% Fe3+/(Fe2++Fe3+))

Reference fired clay
 
 


	 Oxidizing conditions	 :	 500oC
 7134.65
 94.07

                             	 :	 700oC	 
 7134.70
 94.69

                                 	 :	 900oC	 
 7134.75
 95.31

                                 	 :	 1200oC
 7134.80
 95.94

	 Reducing conditions	 :	 500oC
 7134.55
 92.83

                               	 :	 700oC
 7133.82
 84.16

                                 	 : 	 900oC	 
 7132.09
 63.33

		  :	 1200oC
 7132.39
 63.93

Archaeological pottery
 
 


	 Pre-metal Age	 :	 PSN-2
 7132.09
 63.33

                       	 : 	5424
 7131.33
 54.19

                       	 :	 5423
 7132.56
 68.97

	 Bronze Age	 :	 5414
 7132.86
 72.58

                       	 :	 5412
 7133.45
 79.67

	 Iron Age          	 :	 8027
 7133.72
 82.91

                       	 : 	0042
 7133.88
 84.84

                       	 :	 7083
 7133.17
 76.30

                       	 :	 0602 
 7133.60
 81.47

		  :	 8033
 7133.07
 75.10
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Figure 8.	 Fe K-edge XANES spectra of 
 
			   reference fired clays at various
 
			   temperatures under: (a) oxidizing 
 
			   conditions (b) reducing conditions. 
 
			   Ox, Oxidation firing; R, Reduction 
 
			   firing


Figure 9.	 Fe K-edge XANES spectra of 
 
			   Ban Chiang pottery shards from 
 
			   different period of times. Ox, 
 
			   Oxidation firing; R, Reduction 
 
			   firing


Fe coordination number associated with the 
 
silicon crystal when being fired at different 
 
processes. Therefore, the features of Fe 
 
K-absorption of both the edge crest and 
 
shoulder might need to be taken into 
 
consideration for distinguishing the temperature 
 
and firing conditions of unknown pottery 
 
shards. 


The Characterization of Ban Chiang Pottery 
 
Shards by XANES Spectra	

	 In order to distinguish whether the 
 
pottery from different periods were produced 
 
under the same firing conditions, it is 
 
important that comparison is made of the 
 
XANES spectra of pottery samples (Figure 9) 
 
with the reference fired clays (Figures 8(a)
 
and 8(b)), and the redox state of standard iron 
 
compounds (Figure 6). The Fe K-XANES 
 
spectra of pottery shards present different 
 
characteristics (Figure 9). It was found that 5 
 

Iron Age shards have absorption edges in 
 
a range between 7133.07 and 7133.88 eV, in 
 
which the trivalent iron distributions are 
 
between 75.1% and 84.84% (Table 2). Two 
 
shards of the Bronze Age have absorption 
 
edges close to the Iron Age shards (7132.86 
 
and 7133.45 eV), in which the trivalent 
 
iron distributions are 72.58% and 79.64%, 
 
respectively (Table 2). Results suggest that 
 
this pottery from 2 periods was fired under 
 
reducing conditions at temperatures between 
 
700o and 900oC. By thin section, an obvious 
 
black core was present within the pottery of 
 
both the Bronze Age and Iron Age shards.  It 
 
might be due to incomplete burning of 
 
carbonaceous materials (impurities in the 
 
clay) in a low firing temperature, which is 
 
caused by sealing off of the clay surface when 
 
temperatures reach 800oC, then trapping 
 
unburned carbonaceous materials and sulfides.  
 
These observations support the conclusion 
 
that the Bronze Age and Iron Age pottery was 
produced at a temperature between 700oC to
 
900oC under reducing conditions.				
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	 The XANES features of 3 Pre-metal 
 
Age shards presented 2 different characteristics.  
 
The first 2 shards (PSN-2 and 5424) have a 
 
similar shape of XANES spectrum with 2 
 
positions of absorption energy, the shoulder at 
 
7128.29 eV and edge crest at 7132.09 eV and 
 
7131.33 eV, respectively. The shape and 
 
absorption energy of these shards are very 
 
close to the clay samples produced under 
 
reducing conditions at 1200oC (Figure 8 and
 
Table 2). Calculation of the trivalent iron 
 
distributions of the PSN-2 and 5424 shards 
 
found them to be 63.33% and 54.19%, 
 
respectively.  However, the XANES feature of 
 
the 5423 shards shows a similar spectrum to 
 
the reference fired clay processed at 900oC 
 
under reducing conditions. Therefore, some 
 
pottery from the Pre-metal Age might have 
 
been fired under higher temperatures than that 
 
of the Bronze Age and Iron Age.								

	 The characteristic of a Pre-metal Age 
 
shard is a dark-grey to black state which is 
 
believed to occur from ferric oxide (Fe2O3) or 
 
red iron oxide reduction at temperatures 
 
around 1200oC under reducing conditions to 
 
form ferrous oxide (FeO). Likewise, those of  
 
Grey Ware from Kamen-Kalehöyük, Turkey 
 
and grey shards from the Chinese terracotta 
 
figures in Matsunaka and Nakai (2004) and 
 
Qin and Pan’s (1989) papers, respectively.  										

	 This study has concentrated on the
 
original firing temperature and atmosphere 
 
conditions used on Ban Chiang pottery 
 
production during the historical period. The
 
XANES technique has been applied for these 
 
analyses. This technique is proven as a 
 
potential way to identify the Fe reduction state 
 
of various materials, particularly pottery 
 
shards. The Fe reduction state in clay provides 
 
information on conditions used during firing, 
 
since the iron oxide in clay material undergoes
 
transformation when being fired in different 
 
conditions, occurring in 2 valence states, Fe2+ 
 

and Fe3+. Most iron undergoes transformation 
 
in a silicate matrix, therefore there was a low 
 
possibility of chemical alterations while the 
 
pottery was buried. The iron oxides remaining 
 
in the pottery body allow us to track back the 
 
original firing temperature in an ancient 
 

period. In this present work we found that Ban 
 
Chiang pottery shards in all 3 periods were 
 
fired under reducing conditions, but at 
 
different temperatures.	

	 Five Iron Age shards, 2 Bronze Age 
 
shards and 3 Pre-metal Age shards were 
 
produced under reducing conditions at a 
 
temperature between 700oC and 900oC. And 
 
2 Pre-metal Age shards were produced at 
 
1200oC under reducing conditions. The 
 
XANES results are confirmed by FT-IR 
 
analyses, which presented a similar outcome.  
 
Even though the FT-IR measurement is not 
 
straightforward to find the firing conditions, 
 
the transformation of clay minerals after being 
 
fired could be determined. Thus, the FT-IR
 
results can support the XANES analysis. This 
 
finding is also consistent with the TGA/DTA 
 
analysis as stated above.  						

	 An original firing temperature of Ban 
 
Chiang potteries has previously been reported 
 
by McGovern et al. (1985). By comparing the 
 
degrees of vitrification of 3 different ages of 
 
pottery with those of the refired tiles cut from 
 
the same specimens, they proposed that Ban 
 
Chiang pottery of all periods was fired at 
 
500-700oC in the open air by piling wood and 
 
rice straw up and around the vessels. Our 
 
finding is inconsistent with McGovern et al’s. 
 
(1985) work. One possible reason for this 
 
discrepancy is the variation of shard samples.  
 
Most of our samples were excavated in 2003 
 
while McGovern’s samples were excavated 
 
earlier. Furthermore, McGovern et al. (1985) 
 
and our studies used different analytical 
 
techniques to interpret firing temperatures. 								

	 Since our result showed that some Pre-
 
metal Age Ban Chiang pottery was fired at a 
 
rather high temperature and no evidence of an 
 
ancient kiln has been found, we consider that 
 
termite mounds could be used as kilns by Ban 
 
Chiang ancient people. It is highly possible 
 
that ancient Ban Chiang villagers used wood 
 
as fuel in their kilns, which could introduce 
 
reducing conditions.  The firing technology of 
 
Ban Chiang in the Pre-metal Age might be 
 
relevant to pottery from Non Nok Tha and 
 
Ban Na Di (prehistoric sites close by Ban 
 
Chiang), which, according to Meacham and 
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Solheim’s (1980) studies could be fired in 
 
kilns at 800-1150°C.  


Conclusions										

XANES has proven to be a technique of great 
 
potential for interpreting original firing 
 
temperatures and conditions of archaeological 
pottery production. The detailed shape and 
 
position of the edge, including the shoulder 
 
and the absorption K-edge are informative and 
 
relevant for Fe ion characterization.  Combining 
 
XANES results with other common techniques 
 
used in materials science analyses, including 
 
FT-IR and TGA/DTA, strengthens the 
 
XANES analysis and is useful for archaeological 
 
research. Our results showed that all Ban 
 
Chiang pottery was likely fired under partial 
 
reducing conditions; the firing temperature 
 
used in the Pre-metal Age was higher than 
 
those in the Bronze and Iron Ages. 
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