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CHAPTER I

INTRODUCTION

In the Standard Model (SM) hadrons are comprised of quarks which are

held together by strong forces. Quantum Chromodynamics (QCD) is used to

formulate in terms of quarks and leptons degrees of freedom and its fundamental

coupling constant is the strong coupling constant αS. At high energies, observables

can be expanded in terms of αS. But at low energies, the strong coupling constants

become large so that the perturbative methods are not applicable. This leads to

use of effective field theory (EFT) method which is called Chiral Perturbation

Theory (ChPT). ChPT is just the EFT of the SM at low energies. It was initiated

by S. Weinberg in 1979 (Weinberg, 1979) and then developed by J. Gasser and H.

Leutwyler in 1984 and 1985 (Gasser and Leutwyler, 1984; Gasser and Leutwyler,

1985) and described in terms of the degrees of freedom relevant to low-energy

strong processes. Physical quantities are calculated as expansions in terms of

small momenta. The ChPT Lagrangian contains an infinite number of terms and

Feynman diagrams contributing to any physical process can be derived.

ChPT has proven to be a useful method for studying low energy processes

for example ππ scattering which is a fundamental process for QCD at low en-

ergies (Bijnens et al., 1996; Bijnens et al., 1997). However, the extension to

processes which involve a nucleon (Gasser et al., 1988) caused some problems.

In the mesonic sector the Feynman diagrams which are relevant for calculation

are chosen by a scheme called Weinberg’s power counting (Weinberg, 1979). It

gives a chiral order D to each diagram. But in the case with nucleon there are
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terms which do not obey the power counting. These problems can be solved by

the application of a renormalization scheme, which regenerates the power count-

ing. The different methods were subsequently developed for the description of

the baryonic sector. Heavy baryon chiral perturbation theory (HBChPT) received

most success (Bernard et al., 1992; Ecker and Mojžǐs, 1996). HBChPT is con-

structed similarly as heavy-quark effective theory. The nucleon field is divided

into two components which are heavy and light where the heavy components are

integrated out. Subsequently the nonlocal contributions created by integrating

out, the heavy components are expanded in local interaction terms suppressed

with powers of the nucleon mass. Later the new manifestly Lorentz-invariant for-

mulations of baryonic ChPT have been introduced (Ellis and Tang, 1998; Becher

and Leutwyler, 1999; Gegelia and Japaridze, 1999; Goity et al., 2001; Schindler

et al., 2004). These formulations were used to restore the power counting in the

baryonic sector.

The complete chiral Lagrangian in baryonic case based on the relativistic

ChPT has been constructed up to fourth order and applied to describe the dy-

namics of πN scattering (Fettes et al., 1998; Fettes and Meißner, 2000; Fuchs

et al., 2003). In the framework of ChPT the presence of the electromagnetism was

originally proposed by Urech (Urech, 1995). In principle, it is straightforward to

establish the theoretical framework for the description of EM effects. First, the

photon field was included as an additional dynamical degree of freedom and then

the most general Lagrangian of the desired order was constructed. The divergences

of the generating function to one loop were calculated and the structure of the local

action that incorporates the counterterms which cancel the divergences was de-

termined. This method was used to calculate the electromagnetic corrections for

the low energy ππ scattering (Ecker et al., 1989; Meißner et al., 1997; Knecht and
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Urech, 1998). About a decade ago, the general Lagrangian with virtual photons

for baryonic case was constructed by Müller and Meißner with the same procedure

(Müller and Meißner, 1999). They applied this method to calculate the nucleon

self energy, nucleon mass and the scalar form factor of the nucleon based on the

heavy baryon chiral perturbation theory.

The inclusion of virtual photons and leptons in the chiral Lagrangian was

introduced for mesonic sector by Knecht et al. (2000). The full treatment of

isospin breaking effects in semileptonic weak interaction was allowed. They enlarge

the ChPT Lagrangian with virtual photons (Urech, 1995) by including the light

leptons as dynamical degree of freedom and determine the additional one-loop

divergences generated by the presence of virtual leptons and give the full list of

associated counterterms. This method was applied to the pion and kaon decays

to calculate their decay rates.

There has been no development of the chiral Lagrangian with both virtual

photons and leptons for baryonic sector. Therefore, in this thesis we construct the

general pion-nucleon Lagrangian in which both virtual photons and leptons are

included. Then, we use this Lagrangian to calculate the tree level contributions of

the new terms involving photons to the weak form factors. This is an important

first step in the calculation of radiative corrections to weak processes, such as beta

decay or muon capture, in the framework of ChPT. We then consider as a specific

example radiative corrections to neutron beta decay.

In Chapter II, a review of ChPT with the construction of the Lagrangian

both in mesonic and baryonic sectors will be presented. The inclusion of virtual

photons and leptons to the mesonic Lagrangian and virtual photons in the pion-

nucleon Lagrangian up to fourth order will be shown in Chapter III. In Chapter

IV, we construct the new Lagrangian in the pion-nucleon sector, including both
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virtual photons and leptons. Renormalization scheme and the calculations of the

wavefunction renormalizations of pion, nucleons and leptons are in Chapter V. In

Chapter VI we apply our new Lagrangian to the neutron beta decay to evaluate

the weak form factors to the nucleon current. A summary and conclusion can be

found in Chapter VII, while the appendices contain theoretical details.



CHAPTER II

CHIRAL PERTURBATION THEORY

Chiral perturbation theory is based on an effective Lagrangian which can

be used to describe strong interactions at low energies. In the effective Lagrangian,

the quark and gluon fields are replaced by meson and baryon fields and the quark

interactions are replaced by a series of effective vertices. Since the effective vertices

are reformulated from QCD, they must possess the same symmetry properties,

which are chiral, Lorentz, parity, charge conjugation and time reversal symmetries.

In this chapter, the definition of chiral symmetry will be explained and the

building blocks which are used to construct the effective Lagrangian for both pion

and pion-nucleon systems will be introduced.

2.1 Chiral symmetry in QCD

The form of the QCD Lagrangian is

LQCD = −1

2
〈GµνG

µν〉+ q̄(iγµDµ −M)q. (2.1)

The matrix Gµν is the gluon field strength tensor, the vector q̄ and q are the

quark fields, Dµ is the gauge covariant derivative, and M is quark mass matrix.

The quark field is decomposed into the sum of the left and right handed

helicity components,

q =
1

2
(1− γ5)q +

1

2
(1 + γ5)q = qL + qR. (2.2)
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By using this, the QCD Lagrangian is then written as

LQCD = −1

2
〈GµνG

µν〉+ q̄R(iγ
µDµ −M)qR + q̄L(iγ

µDµ −M)qL

−q̄RMqL − q̄LMqR. (2.3)

We notice that if M = 0, qL and qR do not interact with each other. In this case

they are each invariant under its own transformations, and there is a new symmetry

group SU(N)R × SU(N)L which is referred to as chiral symmetry group.

One assumes that the vacuum state does not obey chiral symmetry even

be invariant under SU(N). From this result SU(N)R × SU(N)L is spontaneously

broken down to SU(N). Goldstone’s theorem predicts the occurrence of N2 − 1

massless bosons which are called pseudoscalar Goldstone bosons.

The mass of the three lightest quarks, the up, down, and strange, are small

compared to typical energy scales of QCD. This means that the chiral symmetry

is valid for just the light quarks:

q =




u

d

s



. (2.4)

The spontaneous breaking of this chiral symmetry form the pseudoscalar octet.

In this work, the strange quark mass is considered to be large at very low

energies so only the up and down quarks are involved

q =




u

d


 , (2.5)

which is invariant under the chiral symmetry group SU(2)R×SU(2)L. The sponta-

neous breaking of this symmetry predicts the occurrence of three massless bosons,

which are the pions.
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2.2 Pion chiral perturbation theory

2.2.1 Definitions

The pion fields obey an SU(2) symmetry which is isospin symmetry. This

symmetry was created to describe the symmetry of the nucleons where the masses

of proton and neutron are almost identical. Then the nucleons can be treated

as a single particle with isospin state either up or down.That means each state

represents either proton or neutron.

This spin symmetry is used for the three pion states, with the isospin quan-

tum number I3 = 0,±1 instead of I3 = ±1/2. But this representation is not used

in chiral perturbation theory. One can write a new representation for the SU(2)

symmetry by using a three dimensional basis composed of the Pauli matrices.Then

he pion wavefunction is written as the triplet

φ =
3∑

i=1

τiπi, (2.6)

where the τi’s are the Pauli matrices:

τ1 =




0 1

1 0


 , τ2 =




0 −i

i 0


 , τ3 =




1 0

0 −1


 . (2.7)

The πi’s are fundamental pion fields which are convenient notations; how-

ever we have to transform to the physical pion fields that are eigenstates of electric

charge and defined as follow:

π+ =
π1 − iπ2√

2
,

π− =
π1 + iπ2√

2
,

π0 = π3, (2.8)
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which gives the general pion wavefunction as

φ =




π0
√
2π+

√
2π− −π0


 . (2.9)

In chiral perturbation theory, the nonlinear function of the meson field φ is

used in the chiral Lagrangian (Weinberg, 1979). The exponential representation

is the most common choice

U(x) = exp[
iφ(x)

F0

], (2.10)

where F0 is a constant with the proper dimensions. The matrix U is the building

block from which an effective Lagrangian is constructed and must be invariant

under chiral symmetry,

U(x) −→ gR(x)U(x)g†L(x) gR(x), gL(x) ∈ SU(2). (2.11)

The matrix U has always appeared in the effective Lagrangian for the pro-

cesses which do not have nucleons. For the processes which involve nucleons, one

defines (Ecker et al., 1989)

U = u2, (2.12)

which in the exponential parameterization gives

u(φ(x)) = exp[
iφ(x)

2F0

], (2.13)

where the constant F0 can be identified with the pion decay constant. The matrix

u can be written in two components uL and uR with u2 = uRu
†
L = u†

LuR and each

component transforms chirally as

uL → gLuLh
−1(gL, gR, φ),

uR → gRuRh
−1(gL, gR, φ),

gR, gL ∈ G = SU(2)L × SU(2)R, (2.14)
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where the compensator h(gL, gR, φ) is a nonlinear function of the pion field φ and

the chiral symmetry group G.

One defines the covariant derivative as (Fearing and Scherer, 1996)

A
G−→ h(gL, gR, φ)A : DµA = ∂µA+ ΓµA,

B
G−→ h(gL, gR, φ)Bh−1(gL, gR, φ) : DµB = ∂µB + [Γµ, B],

(2.15)

where

Γµ =
1

2

[
u†
R(∂µ − irµ)uR + u†

L(∂µ − ilµ)uL

]
, (2.16)

with rµ = vµ + aµ and lµ = vµ − aµ. vµ and aµ are the external vector and axial-

vector fields. Note that the definition of the covariant derivative depends on the

transformation property of the object it acts on and the covariant derivative trans-

forms in the same way as that object. The Γµ is the so-called chiral connection.

It transforms under local transformation as

Γµ → hΓµh
−1 + h∂µh

−1. (2.17)

The connection Γµ contains one derivative. Another object with one derivative is

called the axial-vector object and defined as

uµ = i
[
u†
R(∂µ − irµ)uR − u†

L(∂µ − ilµ)uL

]
, (2.18)

which transforms homogeneously, uµ → huµh
−1. Field strength tensors are defined

by

F±
µν = u†

RF
R
µνuR ± u†

LF
L
µνuL, (2.19)

where

FR
µν = ∂µrν − ∂νrµ − i[rµ, rν ], (2.20)

FL
µν = ∂µlν − ∂νlµ − i[lµ, lν ]. (2.21)
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Under a chiral transformation, these two tensors transform as

FR
µν → gRF

R
µνg

†
R, (2.22)

FL
µν → gLF

L
µνg

†
L. (2.23)

Therefore, they make the transformation of F±
µν as

F±
µν → hF±

µνh
−1. (2.24)

The last component corresponds to the explicit symmetry breaking created by the

non-zero quark mass. It is introduced as

χ± = u†
RχuL ± u†

Lχ
†uR, (2.25)

with

χ = 2B0(s+ ip), (2.26)

where s and p are scalar and pseudoscalar densities and B0 is related to the quark

condensate in the chiral limit. It is used to set up a general Lagrangian which has

symmetry breaking. It is then assumed that for the real world, the scalar density

is the quark mass matrix

M =




mu 0

0 md


 , (2.27)

and the pseudoscalar is zero. One assumes that χ transforms as

χ → gRχg
†
L, (2.28)

under chiral symmetry, so it makes

χ± → hχh−1. (2.29)
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In order to construct the Lagrangian we have to know the order of each

building blocks. One assign the following chiral dimensions to the building blocks:

Ψ, ∂µΨ = O(1), (2.30)

uµ = O(p), (2.31)

χ±, F±
µν = O(p2). (2.32)

Here, p denotes a small momentum or meson mass with respect to the typical

hadronic scale of about 1 GeV. The covariant derivative of each building block has

the same order as the building block it acts on.

2.2.2 Chiral invariants

In the Lagrangian, all terms must be invariant under chiral transformation.

This requires that the trace of matrices has to be taken. The lowest order contri-

bution to the Lagrangian is the second order O(p2). There are three terms which

obey Lorentz and chiral symmetry

〈uµu
µ〉,

〈χ+〉,

〈χ−〉, (2.33)

where 〈· · · 〉 represents the trace in flavor space. This method is used to derive the

fourth order effective Lagrangian as well. Each term is comprised of four axial-

vector objects, two axial-vector objects and one χ±, two axial-vector objects and

one F±
µν , one χ± and one F±

µν , two χ± or two F±
µν . There are too many chiral

invariant terms, so they will not be written explicitly.
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2.2.3 Parity

The parity transformation acts on the fields as follow:

uR(t,x) → u†
R(t,−x) = uL(t,−x)

uL(t,x) → u†
L(t,−x) = uR(t,−x)

∂µuR(t,x) → ∂µu†
R(t,−x) = ∂µuL(t,−x)

∂µuL(t,x) → ∂µu†
L(t,−x) = ∂µuR(t,−x)

vµ(t,x) → vµ(t,−x)

aµ(t,x) → −aµ(t,−x)

s(t,x) → s(t,−x)

p(t,x) → −p(t,−x). (2.34)

They lead to the transformation of the building blocks as

uµ → −uµ

χ+ → χ+

χ− → −χ−

F+
µν → F µν+

F−
µν → −F µν−. (2.35)

By using these transformation properties. The three chiral invariant terms are

reduced to

〈uµu
µ〉,

〈χ+〉. (2.36)

2.2.4 Charge conjugation

The last symmetry of the QCD Lagrangian which is considered in the chiral

Lagrangian is charge conjugation. The transformation properties of the fields
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under this symmetry are

uR → uT
R

uL → uT
L

∂µuR → ∂µu
T
R

∂µuL → ∂µu
T
L

vµ → −vTµ

aµ → aTµ

s → sT

p → pT . (2.37)

From the properties above, one gets

uµ → uT
µ

χ+ → χT
+

χ− → χT
−

F+
µν → −F+

µν

F−
µν → F−

µν . (2.38)

Using the property of trace

〈AT 〉 = 〈A〉, (2.39)

and one has for a pair of matrices,

〈ATBT 〉 = 〈(BA)T 〉 = 〈BA〉 = 〈AB〉. (2.40)

As a result, there are still two possible terms which are invariant under all QCD

symmetries. They are

〈uµu
µ〉,

〈χ+〉. (2.41)
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2.2.5 The Lagrangian

At the second order, there are two independent terms left so there should

be two constants in the Lagrangian which are taken to be the pion decay constant

F0 and the parameter related to the strength of the quark-antiquark condensate

B0. The resulting Lagrangian is

L(2)
π =

F 2
0

4
〈uµu

µ〉+ F 2
0

4
〈χ+〉. (2.42)

At fourth order, there are twelve terms which satisfy all QCD symmetries.

The constants which are usually called the low energy constants are defined as `i.

Then, the fourth order Lagrangian is (Gasser and Leutwyler, 1985)

L(4)
π = `1〈uµu

µ〉2 + `2〈uµu
ν〉〈uµuν〉+ `3〈uµu

µuνu
ν〉

+`4〈uµu
µ〉〈χ+〉+ `5〈uµu

µχ+〉+ `6〈χ+〉2

+`7〈χ−〉2 + 1

4
(2`8 + `12)〈χ2

+〉+
1

4
(2`8 − `12)〈χ2

−〉

−i`9〈F µν+uµuν〉+ 1

4
(`10 + 2`11)〈F+

µνF
µν+〉

−1

4
(`10 − 2`11)〈F−

µνF
µν−〉. (2.43)

2.3 Baryon chiral perturbation theory

2.3.1 Definitions

The inclusion of baryons in the effective Lagrangian was first systematized

by (Gasser et al., 1988). The construction of the Lagrangian for baryon is more

difficult because the nucleon mass does not vanish in the chiral limit. In the deriva-

tion of the Lagrangian for pion it was assumed that the energy and momentum

of the fields were very much less than 1 GeV which is called chiral scale, however

the nucleon mass is close to the 1 GeV scale, which implies that an expansion in
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terms of the nucleon energy will not converge. In this section the pion-nucleon

Lagrangian will be derived and the convergence will be studied in the next section.

The nucleon fields will be defined in the spinor

Ψ =




p

n


 , (2.44)

where p and n are proton and neutron wavefunction respectively. When we con-

sider massless quarks in QCD the axial symmetry U(1) must be included. Under

this symmetry the quark fields are invariant and transform as (Donoghue et al.,

1995)

q → e−iθγ5

q. (2.45)

The axial symmetry should be satisfied in the chiral Lagrangian. In the previous

section, the terms in the pion Lagrangian are unchanged under axial transforma-

tion so it was ignored. The symmetry group which is used in the pion-

nucleon Lagrangian is SU(2)R × SU(2)L × U(1)A and the transformation of the

nucleon field is

Ψ → h(gL, gR, φ)Ψ, Ψ → Ψh−1(gL, gR, φ). (2.46)

From Equation (2.15), the nucleon covariant derivative is defined as

DµΨ = ∂µΨ+ ΓµΨ, (2.47)

and transforms as

DµΨ → h(gL, gR, φ)DµΨ. (2.48)

For the construction of invariant terms and phenomenological applications,

one treats isosinglet and isotriplet components of the external fields separately and

defines the traceless operator as

X̃ = X − 1

2
〈X〉, (2.49)
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Table 2.1 Chiral dimension and the transformation properties of the building

blocks and the covariant derivative of the nucleon field

uµ χ+ χ− F+
µν F−

µν Dµ

chiral dimension 1 2 2 2 2 1

parity − + − + − +

charge conjugation + + + − + +

hermitian conjugation + + − + + +

where 〈. . .〉 represents the trace. To construct a hermitian Lagrangian which is

chiral, parity and charge conjugation invariant, we need to know the transforma-

tion properties of the fields under all transformations. Under parity the building

block transforms to ± itself with changing Lorentz indices from lower to upper.

The building block transforms to ± its transposed under charge conjugation and

to ± itself under hermitian conjugation where the signs are given in Table 2.1

(Fettes et al., 2000).

The pion-nucleon Lagrangian also includes the Clifford algebra elements

which are γ5, γµ and γµγ5 and σµν , the metric gµν and the Levi-Civita tensor εµναβ

and the covariant derivative of the nucleon field to contract Lorentz indices. Each

matrix transforms to ± itself with changing Lorentz indices from lower to upper

under parity. Under charge conjugation the matrix transforms to ± its trans-

posed under charge conjugation and transforms to ±γ0(itself) γ0 under hermitian

conjugation where the signs are given in Table 2.2 (Fettes et al., 2000).
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Table 2.2 Transformation properties and chiral dimension of the Clifford algebra

elements, the metric, the Levi-Civita tensors with the covariant derivative of the

nucleon field.

γ5 γµ γµγ5 σµν gµν εµναβ DµΨ

chiral dimension 1 0 0 0 0 0 0

parity − + − + + − +

charge conjugation + − + − + + −
hermitian conjugation − + + + + + −

2.3.2 Chiral invariants

In this section, we will construct all possible chiral and Lorentz invariant

terms by combining all building blocks. Any invariant term in the pion-nucleon

Lagrangian is of the form

ΨAµν...Θµν...Ψ+ h.c., (2.50)

where Aµν... is a product of pion and/or external fields and the covariant derivative

thereof. Θµν... is a product of an element of Clifford algebra Γµν and n covariant

derivatives acting on the nucleon field Dn
αβ....

One expects that the first term in the pion-nucleon Lagrangian will be the

Lagrangian for a free Dirac field

Lfree = Ψ(iγµD
µ −mN)Ψ, (2.51)

where mN is the nucleon mass and this Lagrangian is counted as O(p). All terms
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which are chiral and Lorentz invariant are

Ψ(iγµD
µ −mN)Ψ, (2.52)

ΨγµuµΨ, (2.53)

Ψγµγ5uµΨ, (2.54)

Ψγ5Ψ, (2.55)

ΨuµD
µΨ+ h.c. (2.56)

At second order, the chiral invariant terms are

Ψuµu
µΨ, (2.57)

ΨσµνuµuνΨ, (2.58)

ΨDµuµΨ, (2.59)

Ψγ5uµD
µΨ+ h.c., (2.60)

ΨσµνDµuνΨ, (2.61)

ΨuµuνD
µDνΨ+ h.c., (2.62)

ΨuµuνD
νDµΨ+ h.c., (2.63)

Ψ〈uµuν〉DµDνΨ+ h.c., (2.64)

Ψ〈uµuν〉DµDνΨ+ h.c., (2.65)

ΨεµναβuµuνDαDβΨ+ h.c., (2.66)

Ψχ+Ψ, (2.67)

Ψ〈χ+〉Ψ, (2.68)

Ψχ−Ψ, (2.69)

Ψ〈χ−〉Ψ, (2.70)

ΨσµνF+
µνΨ, (2.71)

Ψσµν〈F+
µν〉Ψ, (2.72)
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ΨF+
µνD

µDνΨ+ h.c., (2.73)

ΨF+
µνD

νDµΨ+ h.c., (2.74)

ΨεµναβF+
µνDαDβΨ+ h.c., (2.75)

Ψ〈F+
µν〉DµDνΨ+ h.c., (2.76)

Ψ〈F+
µν〉DνDµΨ+ h.c., (2.77)

Ψεµναβ〈F+
µν〉DαDβΨ+ h.c., (2.78)

ΨσµνF−
µνΨ, (2.79)

Ψσµν〈F−
µν〉Ψ, (2.80)

ΨF−
µνD

µDνΨ+ h.c., (2.81)

ΨF−
µνD

νDµΨ+ h.c., (2.82)

ΨεµναβF−
µνDαDβΨ+ h.c., (2.83)

Ψ〈F−
µν〉DµDνΨ+ h.c., (2.84)

Ψ〈F−
µν〉DνDµΨ+ h.c., (2.85)

Ψεµναβ〈F−
µν〉DαDβΨ+ h.c. (2.86)

The terms which involve derivatives of the nucleon field are not hermitian

therefore these terms must be the sum of the term and its hermitian conjugate.

2.3.3 Parity

The parity transformation of each factor are given in Table 2.1 and Table

2.2. The lowest order parity invariant terms are

Ψ(iγµD
µ −mN)Ψ, (2.87)

Ψγµγ5uµΨ. (2.88)
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The second order O(p2) terms are

ΨuµuµΨ, (2.89)

Ψ〈uµuµ〉Ψ, (2.90)

ΨσµνuµuνΨ, (2.91)

Ψσµν〈uµuν〉Ψ, (2.92)

Ψγ5uµD
µΨ+ h.c., (2.93)

Ψγ5〈uµ〉DµΨ+ h.c., (2.94)

ΨuµuνD
µDνΨ+ h.c., (2.95)

Ψ〉uµuν〉DµDνΨ+ h.c., (2.96)

ΨuµuνD
νDµΨ+ h.c., (2.97)

Ψ〈uµuν〉DνDµΨ+ h.c., (2.98)

Ψχ+Ψ, (2.99)

Ψ〈χ+〉Ψ, (2.100)

ΨσµνF+
µνΨ, (2.101)

Ψσµν〈F+
µν〉Ψ, (2.102)

ΨF+
µνD

µDνΨ+ h.c., (2.103)

ΨF+
µνD

νDµΨ+ h.c., (2.104)

Ψ〈F+
µν〉DµDνΨ+ h.c., (2.105)

Ψ〈F+
µν〉DνDµΨ+ h.c., (2.106)

ΨεµναβF−
µνDαDβΨ+ h.c., (2.107)

Ψεµναβ〈F−
µν〉DαDβΨ+ h.c. (2.108)
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2.3.4 Charge conjugation

The first order parity invariant terms which are also invariant under charge

conjugation are

Ψ(iγµD
µ −mN)Ψ, (2.109)

Ψγµγ5uµΨ, (2.110)

and for the second order Lagrangian there are

Ψ〈uµuµ〉Ψ, (2.111)

Ψσµν [uµ, uν ] Ψ, (2.112)

Ψ〈uµuν〉DµDνΨ+ h.c., (2.113)

Ψχ+Ψ, (2.114)

Ψ〈χ+〉Ψ, (2.115)

ΨσµνF+
µνΨ, (2.116)

Ψσµν〈F+
µν〉Ψ, (2.117)

ΨεµναβF−
µνDαDβΨ+ h.c., (2.118)

Ψεµναβ〈F−
µν〉DαDβΨ+ h.c. (2.119)

2.3.5 The pion-nucleon Lagrangian

The list of invariant terms generated above still contains linearly dependent

term which can be reduced by using various identities. First of all, the property

which is frequently used in the construction of the Lagrangian is provided by the

Cayley-Hamilton theorem. For 2 × 2 matrices A and B, the anti-commutator of

these two matrices can be written in terms of their traces as

{A,B} = A〈B〉+ 〈A〉B + 〈AB〉 − 〈A〉〈B〉. (2.120)
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Another identity is the curvature relation

[Dµ, Dν ] =
1

4
[uµ, uν ]− i

2
F+
µν . (2.121)

We notice that the terms on the right hand side are both second order, so

the term in Equation (2.118) can be rewritten as

ΨεµναβF−
µν(DβDα +O(p2))Ψ ≈ ΨεµναβF−

µνF
+
βαΨ. (2.122)

The Lorentz indices can be interchanged, which gives

ΨεµνβαF−
µνDαDβΨ = −ΨεµναβFµνDαDβΨ. (2.123)

The result is that the term in Equation (2.118) is not actually a second

order term. The same proof can be use to eliminate Equation (2.119).

Another set of identities is based on the equation of motion (EOM) deduced

from the lowest order pion Lagrangian

[Dµ, u
µ] =

i

2
χ̃−, (2.124)

and pi-nucleon Lagrangian

(
iγµD

µ −mN +
1

2
gAγµγ5u

µ

)
Ψ = 0, (2.125)

(
iγµ

←−
Dµ +mN − 1

2
gAγµγ5u

µ

)
Ψ = 0 (2.126)

where mN and gA are the nucleon mass and the axial-vector coupling constant in

the SU(3) chiral limit. The EOM is used to simplify things, e.g. it allows us to

disregard γµD
µ in many terms.

For the construction of higher order Lagrangian we need more relations to

reduce to the minimal set of terms. Some of these relations have already appeared

in (Fettes et al., 1998) as following:

ΨAµiDµΨ+ h.c.
.
= 2mNΨγµA

µΨ, (2.127)

ΨAµνDνDµΨ+ h.c.
.
= −mN(ΨγµA

µνiDνΨ+ h.c.), (2.128)
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ΨAµναiDαDνDµΨ+ h.c.
.
= mN(ΨγµA

µναDαDνΨ+ h.c.), (2.129)

Ψγ5γνA
µνiDµΨ+ h.c.

.
= 2imNΨγ5σµνA

µνΨ

+(Ψγ5γµA
µνiDνΨ+ h.c.), (2.130)

Ψγ5γµA
µναDαDµΨ+ h.c.

.
= mN(Ψγ5σµνA

µναDαΨ+ h.c.)

+(Ψγ5γµA
µναDαDνΨ+ h.c.), (2.131)

Ψγ5γνA
µναβiDβDαDµΨ+ h.c.

.
= mN(iΨγ5σµνA

µναβDβDαΨ+ h.c.)

+(Ψγ5γµA
µναβiDβDαDνΨ+ h.c.),

(2.132)

ΨσαβA
αβµiDµΨ+ h.c.

.
= −2mNΨεαβµνγ5γ

νAαβµΨ

−(ΨσβµA
αβµiDαΨ+ h.c.)

+(ΨσαµA
αβµiDβΨ+ h.c.), (2.133)

ΨσαβA
αβνµDνDµΨ+ h.c.

.
= mN(iΨεαβµνγ5γ

νAαβµνDνΨ+ h.c.)

−(ΨσβµA
αβνµDνDαΨ+ h.c.)

+(ΨσαµA
αβνµDνDβΨ+ h.c.), (2.134)

Ψγ5σαβA
αβµDµΨ+ h.c.

.
= −(Ψγ5σβµA

αβµDα + h.c.)

+(Ψγ5σαµA
αβµDβΨ+ h.c.), (2.135)

iΨγ5σαβA
ανµDνDµΨ+ h.c.

.
= −(iΨγ5σβµA

αβνµDνDαΨ+ h.c.)

+(iΨγ5σαµA
αβνµDνDβΨ+ h.c.),(2.136)

Ψγµ[iD
µ, A]Ψ

.
=

gA
2
Ψγµγ5[A, uµ]Ψ, (2.137)

Ψγ5γµ[iD
µ, A]Ψ

.
= −2mNΨγ5AΨ− gA

2
Ψγµ[A, uµ]Ψ,(2.138)

Ψγ5γν [D
µ, Aν ]iDµΨ+ h.c.

.
= 0 (2.139)

Ψεαβµνγ
ν [Dλ, Aαβµ]iDλΨ+ h.c.

.
= 0, (2.140)

Ψ[Dµ, Aν ]DνDµΨ+ h.c.
.
= 0, (2.141)

Ψσαβ[D
µ, Aαβν ]DνDµΨ+ h.c.

.
= 0, (2.142)
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where the symbol
.
= means equal up to terms of higher order.

Another set of identities is provided by the connection between curvature

relation in Equation (2.121) and the Bianchi identity for covariant derivatives

[Dα, [Dµ, Dν ]] + cyclic = 0, (2.143)

where “cyclic” refers to cyclic permutations It leads

[Dα, F
+
µν ] + cyclic =

i

2
[uα, F

−
µν ] + cyclic, (2.144)

by using the Leibniz rule and the relation that

[Dµ, uν ]− [Dν , uµ] = F−
µν . (2.145)

The effective πN Lagrangian is given by the combination of terms with

increasing chiral dimension,

Leff
πN = L(1)

πN + L(2)
πN + L(3)

πN + L(4)
πN + . . . . (2.146)

At lowest order, the effective πN Lagrangian is given by

L(1)
πN = Ψ

(
iγµD

µ −mN +
gA
2
γµγ5u

µ
)
Ψ. (2.147)

At second order, there are seven independent terms with their low energy constants

(LECs) (Gasser et al., 1988),

L(2)
πN = Ψ

{
c1〈χ+〉 − c2

8m2
N

(〈uµuν〉 {Dµ, Dν}+ h.c.) +
c3
2
〈u2〉

+
ic4
4
σµν [uµ, uν ] + c5χ̃+ +

c6
8mN

σµνF+
µν +

c7
8mn

σµν〈F+
µν〉

}
Ψ.

(2.148)

The third order pion-nucleon Lagrangian has 23 independent terms and 118 terms

for the fourth order. We will write these two Lagrangian in the form (Fettes et al.,
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Table 2.3 The terms of dimension three for the relativistic Lagrangian.

i O(3)

1 − 1
2mN

[uµ, [Dν , u
µ]]Dν + h.c.

2 − 1
2mN

[uµ, [D
µ, uν ]]D

ν + h.c.

3 1
12m3

N
[uµ, [Dν , uα]](D

µDνDα + sym.) + h.c.

4 − 1
2mN

εµναβ〈uµuνuα〉Dβ + h.c.

5 1
2mN

i[χ−, uµ]D
µ + h.c.

6 1
2mN

i[Dµ, F̃+
µν ]D

ν + h.c.

7 1
2mN

i[Dµ, 〈F+
µν〉]Dν + h.c.

8 1
2mN

iεµναβ〈F̃+
µνuα〉Dβ + h.c.

9 1
2mN

iεµναβ〈F+
µν〉uαDβ + h.c.

10 1
2
γµγ5〈u2〉uµ

11 1
2
γµγ5〈uµuν〉uν

12 − 1
8m2

N
γµγ5〈uαuν〉uµ {Dα, Dν}+ h.c.

13 − 1
8m2

N
γµγ5〈uµuν〉uα {Dα, Dν}+ h.c.

14 1
4mN

iσµν〈[Dα, uµ]uν〉Dα + h.c.

15 1
4mN

iσµν〈uµ[Dν , uα]〉Dα + h.c.

2000)

L(3)
πN =

23∑
i=1

diΨO(3)
i Ψ, (2.149)

L(4)
πN =

118∑
i=1

eiΨO(4)
i Ψ, (2.150)

and the monomials O(3) and O(4) are in Table 2.3 and Table 2.4, respectively.
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Table 2.3 (Continued.)

i O(3)

16 1
2
γµγ5〈χ+〉uµ

17 1
2
γµγ5〈χ+uµ〉

18 1
2
iγµγ5[Dµ, χ−]

19 1
2
iγµγ5[Dµ, 〈χ−〉]

20 − 1
8m2

N
iγµγ5[F̃

+
µν , uα] {Dα, Dν}+ h.c.

21 1
2
iγµγ5[F̃

+
µν , u

ν ]

22 1
2
γµγ5[D

ν , F−
µν ]

23 1
2
γµγ5ε

µναβ〈uνF
−
αβ〉

Table 2.4 The independent terms for fourth order relativistic pion-nucleon La-

grangian.

i O(4)

1 〈u · u〉〈u · u〉
2 〈uµuν〉〈uµuν〉
3 1

4m2
N
〈u · u〉〈uµuν〉 {Dµ, Dν}+ h.c.

4 − 1
4m2

N
〈uαuµ〉〈uαuν〉 {Dµ, Dν}+ h.c.

5 1
48m4

N
〈uαuµ〉〈uνuβ〉(DαDµDνDβ + sym.) + h.c.

6 i
2
σµν [uµ, uν ]〈u · u〉

7 − i
8m2

N
σαµ[uα, uµ]〈uνuβ〉

{
Dν , Dβ

}
+ h.c.

8 i
2
σµν〈[uµ, uν ]uα〉uα

9 − i
8m2

N
σαµ〈[uα, uµ]uν〉uβ

{
Dν , Dβ

}
+ h.c.

10 − 1
4m2

N
εµνβτ 〈hαµuν〉uβ {Dα, Dτ}+ h.c.

11 1
4mN

γµγ5〈hαµ[u
α, uν ]〉Dν + h.c.
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Table 2.4 (Continued.)

i O(4)

12 1
4mN

γνγ5〈hαµ[u
α, uν ]〉Dµ + h.c.

13 − 1
24m3

N
γβγ5〈hαµ[uν , uβ]〉(DαDµDν + sym.) + h.c.

14 〈hµνh
µν〉

15 − 1
4m2

N
〈hαµh

α
µ〉 {Dµ, Dν}+ h.c.

16 1
48m4

N
〈hαµh

νβ〉(DαDµDνDβ + syms.) + h.c.

17 i
2
σµν [hαµ, h

α
ν ]

18 − i
8m2

N
σµν [hαµ, hνβ]

{
Dα, Dβ

}
+ h.c.

19 〈χ+〉〈u · u〉
20 − 1

4m2
N
〈χ+〉〈uµuν〉 {Dµ, Dν}

21 i
2
σµν〈χ+〉[uµ, uν ]

22 [Dµ, [D
µ, 〈χ+〉]]

23 χ̃+〈u · u〉
24 − 1

4m2
N
χ̃+〈uµuν〉 {Dµ, Dν}

25 uµ〈χ̃+u
µ〉

26 − 1
4m2

N
uµ〈χ̃+uν〉 {Dµ, Dν}+ h.c.

27 i
2
σµν〈χ̃+[uµ, uν ]〉

28 1
4mN

γµγ5[χ̃+, hµν ]D
ν + h.c.

29 1
4mN

γµγ5[[Dµ, χ̃+], uν ]D
ν + h.c.

30 [Dµ, [D
µ, χ̃+]]

31 − i
4mN

γµγ5〈χ−〉[uµ, uν ]D
ν + h.c.

32 − i
4m2

N
〈χ−〉hµν {Dµ, Dν}+ h.c.

33 iuµ[D
µ, 〈χ−〉]

34 − i
4mN

γµγ5〈χ̃−[uµ, uν ]〉Dν + h.c.

35 − i
4m2

N
〈χ̃−hµν〉 {Dµ, Dν}+ h.c.
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Table 2.4 (Continued.)

i O(4)

36 i〈uµ[D
µ, χ̃−]〉

37 −1
2
σµν [uµ, [Dν , χ̃−]]

38 〈χ+〉〈χ+〉
39 χ̃+〈χ+〉
40 〈χ̃+χ̃+〉
41 χ̃−〈χ−〉
42 i〈F+

µν〉[uµ, uν ]

43 − i
4m2

N
〈F+

αµ〉[uα, uν ] {Dµ, Dν}+ h.c.

44 −1
2
σµν〈F+

µν〉〈u · u〉
45 −1

2
σµν〈F+

αµ〉〈uαuν〉
46 1

8m2
N
σαµ〈F+

αµ〉〈uνuβ

{
Dν , Dβ

}
+ h.c.

47 − 1
8m2

N
σµν〈F+

αµ〉〈uνuβ〉
{
Dα, Dβ

}
+ h.c.

48 − i
4mN

γµγ5〈F+
αµ〉hα

νD
ν + h.c.

49 − i
4mN

γνγ5〈F+
αµ〉hα

νD
µ + h.c.

50 − i
24m3

N
γαγ5〈F+

αµ〉hνβ(D
µDνDβ + sym.) + h.c.

52 − i
4mN

γµγ5uµ[D
α, 〈F+

αν〉]Dν + h.c.

53 − i
4mN

γνγ5uµ[D
α, 〈F+

αν〉]Dµ + h.c.

54 −1
2
σµν [Dα, [Dα, 〈F+

µν〉]]
55 i〈F̃+

µν [u
µ, uν ]〉

56 − i
4m2

N
〈F̃+

αµ[u
α, uν ]〉 {Dµ, Dν}+ h.c.

57 −1
2
σµνF̃+

µν〈u · u〉
58 −1

2
σµνF̃+

αµ〈uαuν〉
59 1

8m2
N
σµνF̃+

µν〈uαuβ〉
{
Dα, Dβ

}
+ h.c.

60 1
8m2

N
σµνF̃+

αµ〈uνuβ〉
{
Dα, Dβ

}
+ h.c.
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Table 2.4 (Continued.)

i O(4)

61 −1
2
σµνuα〈F̃+

µνuα〉
62 −1

2
σµνuα〈F̃+

αµuν〉
63 −1

2
σµνuµ〈F̃+

ανu
α〉

64 − 1
8m2

N
σµνuα〈F̃+

µνuβ〉
{
Dα, Dβ

}
+ h.c.

65 1
8m2

N
σµνuβ〈F̃+

µαuν〉
{
Dα, Dβ

}
+ h.c.

66 1
8m2

N
σµνuν〈F̃+

µαuβ〉
{
Dα, Dβ

}
+ h.c.

67 − i
4mN

γµγ5〈F̃+
αµh

α
ν 〉Dν + h.c.

68 − i
4mN

γνγ5〈F̃+
αµh

α
ν 〉Dν + h.c.

69 i
24m3

N
γαγ5〈F̃+

αµhνβ〉(DµDνDβ + sym.) + h.c.

70 − i
4m2

N
εαµντ [F̃+

αµ, hνβ]
{
Dβ, Dτ

}
+ h.c.

71 − i
4mN

γµγ5〈uα[Dα, F̃
+
µν ]〉Dν + h.c.

72 − i
4mN

γµγ5〈uµ[Dα, F̃+
αν ]〉Dν + h.c.

73 − i
4mN

γνγ5〈uα[Dα, F̃
+
µν ]〉Dµ + h.c.

74 −1
2
σµν [Dα, [Dα, F̃

+
µν ]]

75 εαµνβuα〈F−
µνuβ〉

76 − 1
4m2

N
εµνβτ uα〈F−

µνuβ〉 {Dα, Dτ}+ h.c.

77 − 1
4m2

N
εαµντ uα〈F−

µνuβ〉
{
Dβ, Dτ

}
+ h.c.

78 − 1
4m2

N
εαµντ F−

αµ〈uνuβ〉
{
Dβ, Dτ

}
+ h.c.

79 1
4mN

γµγ5〈F−
αµ[u

α, uν ]〉Dν + h.c.

80 1
4mN

γνγ5〈F−
αµ[u

α, uν ]〉Dµ + h.c.

81 − 1
4m2

N
〈F−

αµ
hα
ν 〉 {Dµ, Dν}+ h.c.

82 i
2
σµν [F−

αµ, h
α
ν ]

83 − i
8m2

N
σµν [F−

αµ, hνβ]
{
Dα, Dβ

}
+ h.c.

84 − i
8m2

N
σαµ[F−

αµ, hνβ]
{
Dν , Dβ

}
+ h.c.
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Table 2.4 (Continued.)

i O(4)

85 〈uµ[Dν , F−
µν ]〉

86 − 1
m2

N
〈uµ[D

α, F−
αν ]〉 {Dµ, Dν}+ h.c.

87 i
2
σµν [uα, [Dα, F

−
µν ]]

88 i
2
σµν [uµ, [D

α, F−
αν ]]

89 〈F+
µnu〉〈F µν+〉

90 − 1
4m2

N
〈F+

αµ〉〈Fα
ν
+〉 {Dµ, Dν}+ h.c.

91 F̃+
µν〈F µν+〉

92 − 1
4m2

N
F̃+
αµ〈Fα

ν
+〉 {Dµ, Dν}+ h.c.

93 〈F̃+
µνF̃

µν+〉
94 − 1

4m2
N
〈F̃+

αµF̃
α+
ν 〉 {Dµ, Dν}+ h.c.

95 i
2
σµν [F̃+

αµ, F̃
α+
ν ]

96 − i
8m2

N
σµν [F̃+

αµ, F̃
+
βν ]

{
Dα, Dβ

}
+ h.c.

97 i
2
σµν [F−

αµ, F
α−
ν ]

98 − i
8m2

N
σµν [F−

αµ, F
−
βν ]

{
Dα, Dβ

}
+ h.c.

99 − i
4mN

γµγ5F
−
αµ〈Fα+

ν 〉Dν + h.c.

100 − i
4mN

γνγ5F
−
αµ〈Fα+

ν 〉Dµ + h.c.

101 − i
4mN

γµγ5〈F−
αµF

α+
ν 〉Dν + h.c.

102 − i
4mN

γνγ5〈F−
αµF

α+
ν 〉Dµ + h.c.

103 iεαµνβ[F−
αµ, F̃

+
νβ]

104 − i
2m2

N
εαµντ [F−

αµ, F̃
+
νβ]

{
Dβ, Dτ

}
+ h.c.

105 −1
2
σµν〈F+

µν〉〈χ+〉
106 −1

2
σµνF̃+

µν〈χ+〉
107 −1

2
σµν〈F+

µν〉χ̃+

108 −1
2
σµνF̃+

µνχ̃+
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Table 2.4 (Continued.)

i O(4)

109 1
4mN

γµγ5[F
−
µν , χ̃+]D

ν + h.c.

110 1
4mN

γµγ5〈F+
µν〉〈χ−〉Dν + h.c.

111 1
4mN

γµγ5F̃
+
µν〈χ−〉Dν + h.c.

112 1
4mN

γµγ5〈F+
µν〉χ̃−Dν + h.c.

113 1
4mN

γµγ5〈F̃+
µνχ̃−〉Dν + h.c.

114 −1
2
σµν [F−

µν , χ̃−]

115 1
4
〈χ2

+ − χ2
−〉

116 −1
4
(〈χ2

−〉 − 〈χ−〉2 + 〈χ2
+〉 − 〈χ+〉2)

117 − 1
8m2

N
〈F−

αµF
α−
ν + F+

αµF
α+
ν 〉 {Dµ, Dν}+ h.c.

118 1
2
〈F−

µνF
µν− + F+

µνF
µν+〉

2.4 Power counting

In this section, we will set up a scheme to organize the infinite number of

terms contributing to the most general effective Lagrangian which can be ordered

according to the number of derivatives acting on pion fields and powers of pion

masses,

L = L1 + L2 + L3 + . . . (2.151)

The mesonic Lagrangian contains terms of even power, while in the baryonic case

all orders appear. The order of a Feynman diagram will be defined corresponding

to the order of each term in the Lagrangian. For the mesonic sector this is achieved

by Weinberg’s power counting. Any Feynman diagram contributing to a physical

matrix element M is a function of the quark masses an the momenta of pions

M = D1(mq, pi) +D2(mq, pi) + . . . . (2.152)
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Consider the behavior of a physical matrix element M(mq, pi) under linear rescal-

ing of the external pion momenta, pi 7→ tpi, and quadratic rescaling of quark

masses, mq 7→ t2mq,

M(mq, pi) 7→ M(t2mq, tpi) = tDM(mq, pi). (2.153)

Here, D is the chiral dimension and is given by

D = 2 +
∞∑
n=0

2(n− 1)N2n + 2NL (2.154)

where N2n is the number of vertices form L2n and NL is the number of loop inte-

grations. For small values of t diagrams with an increasing order D are suppressed

and those with smaller D dominate. If the order D is fixed only a limited number

of diagrams from the most general Lagrangian contribute. Using the relation

NV = NI −NL + 1, (2.155)

where NV is the total number of vertices and NI stands for the number of internal

pion lines, one obtains

D = 4NL − 2NI +
∞∑
n=0

2nN2n. (2.156)

Therefore, one assigns the following chiral order to individual parts of Feynman

diagrams:

1. Loop integration in 4 dimensions counts as chiral order 4,

2. a pion propagator counts as chiral order −2,

3. a vertex from L2n counts as chiral order 2n.

Next we will extend to the baryonic sector. The power counting in the baryonic

sector was first stated by Gasser, Sainio, and Svarc (Gasser et al., 1988). The gen-

eralization of the power counting from the mesonic sector is realized by assigning

the following chiral orders to the individual component of diagram:
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1. The nucleon propagator counts as chiral order −1,

2. vertices from the Lagrangian L(n)
πN count as chiral order n,

3. the mesonic power counting is still the same.

Finally loop corrections are arised at some stage in a perturbative calculation which

have to be treated carefully. In the mesonic sector diagrams are evaluated by using

dimensional regularization and the so-called modified minimal substraction scheme

of ChPT (M̃S). When ChPT was extend to include processes with one nucleon,

one saw a breakdown of the power counting. The breakdown consist of terms with

smaller chiral dimension of the nucleon. Let us establish the chiral orders of the

diagrams in Figure 2.1 using the above power counting.

1. The diagram of the left in Figure 2.1 has chiral order

D = n+ 2 · 1− 1− 2 = n− 1 → 3 (2.157)

2. The right diagram in Figure 2.1 has chiral order

D = n+ 1 · 2− 2 = n → 4 (2.158)

where n is the space-time dimension. However the lowest-order term has chiral

order

D = 2, (2.159)

We will see explicitly that the calculation of the diagrams in dimensional

regularization combined with the M̃S-scheme shoes that in Figure 2.1, the left

diagram contains terms violating power-counting, but the right diagram satisfies

power counting. One has to remember that the power counting was ob-

tained by rescaling the momenta and quark masses of a physical element and

attending to the behavior of diagrams contributing to this matrix element case
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1 1 2

p p − k p p p

k
k

Figure 2.1 Self-energy diagrams

by case. Therefore, power counting should be applied to renormalized diagrams

only, it was realized in (Gasser et al., 1988) that the validity of the power counting

scheme is related to the choice of the renormalization scheme.



CHAPTER III

INCLUSION OF PHOTONS AND LEPTONS

In the previous chapter we have presented the construction of the most

general effective Lagrangian only for strong interactions. In this chapter we will

construct the complete effective chiral Lagrangian including photons and leptons

for the mesonic and photons for the baryonic sectors. The next chapter will be

devoted to the extension of this procedure to obtain the full Lagrangian in the

baryonic sector including both virtual photons and leptons. Since the details of

the construction are similar to the previous chapter, we will concentrate on the

parts due to the inclusion of the photons and leptons.

3.1 Chiral perturbation theory with virtual photons

From the reason that Chiral perturbation theory is a nonrenormalizable

theory, loops generate divergences. One needs a set of counterterms for each order

and thus an infinite number to renormalize to all orders. In ChPT, one considers

only order by order, and renormalizes only be order. The divergences can be ab-

sorbed by introducing counterterms. The associated coupling constants of these

counterterm absorb the divergences that are produced by loop-graphs with a vir-

tual photon or a vertex from the Lagrangian of O(e2).

The counterterms of the effective Lagrangian for electromagnetic interac-

tions were introduced firstly by G. Ecker et al. (Ecker et al., 1989) but they

considered only up to second order for mesonic sector. Then, the counterterms

for fourth order effective Lagrangian in mesonic (Urech, 1995) and baryonic sector
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(Müller and Meißner, 1999) were constructed later.

To introduce photons in the effective field theory, one firstly has to set up

the power counting scheme for the electric charge e. From the observation that

e2/4π ' m2
π/(4πFπ)

2 ∼ 1/100, one counts the electric charge as a small momen-

tum (Müller and Meißner, 1999),

e = O(p). (3.1)

Since the electric charge is always quadratic there are only terms of order e2 at

second order, e2p at third order and e2p2 or e4 at fourth order .

3.1.1 Definitions for meson case

The effective Lagrangian in mesonic sector with the inclusion of virtual pho-

tons had been constructed (Urech, 1995) up to fourth order. The building blocks

which corresponded to the electromagnetic effects are defined via the spurions QL

and QR with a definite transformation property under chiral SU(3)L × SU(3)R,

QI −→ gIQIg
†
I , gI ∈ SU(3), I = L,R. (3.2)

In our case we consider chiral SU(2) symmetry and follow the procedure

and notation of Knecht et al. (Knecht et al., 2000) in which the photon field Aµ

is introduced in

uµ = i[u†
R(∂µ − irµ)uR − u†

L(∂µ − ilµ)uL], (3.3)

by adding the term which corresponds to the electromagnetic field to the usual

external vector field vµ. The result gives

rµ = vµ + aµ − eQem
R Aµ, (3.4)

lµ = vµ − aµ − eQem
L Aµ. (3.5)
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In this work we consider SU(2) symmetry. The quark charge matrix for

SU(2) symmetry is

Qem
L,R =




2/3 0

0 −1/3


 , (3.6)

and one introduces spurion fields Qem
L,R with the transformation properties

Qem
L

G−→ gLQ
em
L g†L, Qem

R
G−→ gRQ

em
R g†R, (3.7)

under chiral SU(2)L × SU(2)R. In accord with the definitions of the building

blocks defined in the previous chapter, one also defines

Qem
L ≡ u†

LQ
em
L uL, (3.8)

Qem
R ≡ u†

RQ
em
L uR, (3.9)

which transform under chiral group as,

Qem
L

G−→ h(g, φ)Qem
L h(g, φ)−1, (3.10)

Qem
R

G−→ h(g, φ)Qem
R h(g, φ)−1. (3.11)

Furthermore, under parity (P) and charge conjugation (C) transformations,

one finds

Qem
R

P−→ Qem
L , Qem

L
C−→ Qem

R , (3.12)

Qem
R

P−→ Qem
L

T , Qem
L

C−→ Qem
R

T . (3.13)

One also defines the derivative of Qem
R and Qem

L as (Knecht et al., 2000)

∇̂µQem
L = ∇µQem

L +
i

2
[uµ,Qem

L ] = u†
L(DµQ

em
L )uL, (3.14)

∇̂µQem
R = ∇µQem

R − i

2
[uµ,Qem

R ] = u†
R(DµQ

em
R )uR, (3.15)

where

DµQ
em
L = ∂µQ

em
L − i[lµ, Q

em
L ], (3.16)

DµQ
em
R = ∂µQ

em
R − i[rµ, Q

em
R ], (3.17)
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which transform in the same way as Qem
L and Qem

R and the definitions of ∇µQem
L

and ∇µQem
R are

∇µQem
L = ∂µQem

L + [Γµ,Qem
L ], (3.18)

∇µQem
R = ∂µQem

R + [Γµ,Qem
R ]. (3.19)

3.1.2 The EM lagrangian in meson case

With these building blocks the lowest order effective pion Lagrangian with

virtual photons takes the form

L(2)
ππ,em = −1

4
F µνFµν−1

2
λ(∂µA

µ)2+
F 2
0

4
〈uµu

µ〉+F 2
0

4
〈χ+〉+e2F 4

0Z〈Qem
L Qem

R 〉, (3.20)

where Fµν is the field strength tensor of the photon field Aµ, Fµν = ∂µAν−∂νAµ. λ

is the gauge fixing parameter and will be kept at λ = 1 (we are using the Feynman

gauge). The coupling constant Z can be determined from the difference of the

charged pion and the neutral pion masses.

For the fourth order, there are two minimal set of terms. One has order

e2p2 and another one has order e4. For the first set Urech’s Lagrangian can be

rewritten in Knecht’s notation as (Knecht et al., 2000)

L(4),e2p2

ππ,em = e2F 2
0

{
1

2
k1〈(Qem

L )2 + (Qem
R )2〉〈uµu

µ〉+ k2〈Qem
L Qem

R 〉〈uµu
µ〉

−k3[〈Qem
L uµ〉〈Qem

L uµ〉+ 〈Qem
R uµ〉〈Qem

R uµ〉]

+k4〈Qem
L uµ〉〈Qem

R uµ〉+ k5〈[(Qem
L )2 + (Qem

R )2]uµu
µ〉

+k6〈(Qem
L Qem

R +Qem
R Qem

L )uµu
µ〉

+
1

2
k7〈(Qem

L )2 + (Qem
R )2〉〈χ+〉

+k8〈Qem
L Qem

R 〉〈χ+〉+ k9〈[(Qem
L )2 + (Qem

R )2]χ+〉

+k10〈(Qem
L Qem

R +Qem
R Qem

L )χ+〉

−k11〈(Qem
L Qem

R −Qem
R Qem

L )χ−〉
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−ik12〈
[
(∇̂µQem

L )Qem
L −Qem

L ∇̂µQem
L

− (∇̂µQem
R )Qem

R +Qem
R ∇̂µQem

R

]
uµ〉

+k13〈(∇̂µQem
L )(∇̂µQem

R )〉

+k14〈(∇̂µQem
L )(∇̂µQem

L ) + (∇̂µQem
R )(∇̂µQem

R )〉
}
, (3.21)

The latter set which has order e4 and which we will need, was not considered by

Knecht et al. Therefore, we have rewritten at order e4 based on the Knecht’s

notation as

L(4),e4

ππ,em = e2F 4
0

{
k15〈Qem

R Qem
L 〉2 + k16

2

(〈Qem
R Qem

L 〉〈(Qem
R )2 + (Qem

L )2
)

+
k17
4
〈(Qem

R )2 + (Qem
L )2〉2

}
. (3.22)

3.1.3 Definitions for baryon case

Electromagnetic corrections to pion-nucleon systems were first emphasized

by Weinberg (Weinberg, 1977). He pointed out that reactions involving nucleon

and neutral pions might lead to violations of isospin symmetry and argued that

the mass difference of the up and down quarks can produce a 30% effect in the

difference of the π0p and π0n S-wave scattering length. This calculation was ex-

tended to the so-called pion-nucleon σ-term by Meißner and Steininger (Meißner

and Steininger, 1998). The effective chiral pion-nucleon Lagrangian with the in-

clusion of virtual photons to one loop was constructed up to third order in that

paper and extended to fourth order by Müller and Meißner (Müller and Meißner,

1999).

To introduce virtual photons in the effective pion-nucleon field theory one

defines (Meißner and Steininger, 1998)

Q± =
1

2

(
uQu† ± u†Qu

)
, (3.23)
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which can be rewritten in Knecht’s notation as

Q± =
1

2
(Qem

L ±Qem
R ) , (3.24)

where the definitions of Qem
L and Qem

R are in Equation (3.8) and Equation (3.9).

It is natural here to use the nucleon charge matrix

Qem
L,R =




1 0

0 0


 , (3.25)

We can also define the covariant derivative of Q± via

[∇µ, Q±] =
i

2
[uµ, Q∓] + c±µ , (3.26)

where

c±µ =
1

2

{
uL(∂µQ

em
L − i[lµ, Q

em
L ])u†

L ± u†
R(∂µQ

em
R − i[rµ, Q

em
R ]uR)

}
. (3.27)

Under parity and charge conjugation Q± transform as

Q±
P−→ ±Q±, Q±

C−→ ±Q±
T . (3.28)

3.1.4 The EM lagrangian in baryon case

At first order, from substituting Equation (3.4) and Equation (3.5) to Equa-

tion (3.3) one finds

L(1)
πN,em = Ψ

(
iγµD̃

µ −mN +
1

2
gAγ

µγ5ũµ

)
Ψ, (3.29)

with

D̃µ = Dµ − iQ+Aµ, (3.30)

ũµ = uµ − 2Q−Aµ. (3.31)
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Table 3.1Monomials Oi of third order for the relativistic EM lagrangian.

i O(3)
i,em i O(3)

i,em

1 γµγ5〈Q̃+uµ〉Q̃+ 7 γµ〈Q̃−uµ〉Q̃+

2 γµγ5〈Q̃−uµ〉Q̃− 8 γµ〈Q̃−uµ〉〈Q+〉
3 γµγ5〈Q̃+uµ〉〈Q+〉 9 γµ[Q̃+, [i∇µ, Q̃+]]

4 γµγ5〈Q̃2
+ + Q̃2

−〉 10 γµ[Q̃−, [i∇µ, Q̃−]]

5 γµγ5〈Q̃2
+ − Q̃2

−〉 11 γµγ5[Q̃+, [i∇µ, Q̃−]]

6 γµ〈Q̃+uµ〉Q̃− 12 γµγ5[Q̃−, [i∇µ, Q̃+]]

At second order, local contact terms with their low-energy constants (LECs)

fi appear. The EM Lagrangian is given in terms of squares of Q± as expressed

before (Müller and Meißner, 1999),

L(2)
πN,em =

3∑
i=1

e2F 2
0 fiΨO(2)

i Ψ, (3.32)

with

O(2)
1 = 〈Q̃2

+ − Q̃2
−〉, O(2)

2 = 〈Q+〉Q̃+, O(2)
3 = 〈Q̃2

+ + Q̃2
−〉, (3.33)

where Q̃± represents the traceless part of Q±. The EM Lagrangian to third order

has been constructed with LECs gi (Müller and Meißner, 1999)

L(3)
πN,em =

12∑
i=1

e2F 2giΨO(3)
i Ψ, (3.34)

with the O(3)
i are in Table 3.1.

Next, we will consider the terms of fourth order. The complete fourth

order EM pion-nucleon Lagrangian with corresponding LECs is written as (Müller

and Meißner, 1999)

L(4)
πN,em =

5∑
i=1

e4F 4
0 hiΨO(e4)

i Ψ+
90∑
i=6

e2F 2
0 hiΨO(e2p2)

i Ψ. (3.35)
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Table 3.2 The monomials for O(e4).

i O(e4)

1 〈Q̃2
+ + Q̃2

−〉2

2 〈Q̃2
+ − Q̃2

−〉2

3 〈Q̃2
+ + Q̃2

−〉〈Q̃2
+ − Q̃2

−〉
4 〈Q̃2

+ + Q̃2
−〉〈Q+〉Q̃+

5 〈Q̃2
+ − Q̃2

−〉〈Q+〉Q̃+

Table 3.3 The monomials for O(e2p2).

i O(e2p2) i O(e2p2)

6 〈Q̃2
+ + Q̃2

−〉〈u2〉 12 〈Q̃2
+ + Q̃2

−〉〈uµuν〉DµDν + h.c.

7 〈Q̃2
+ − Q̃2

−〉〈u2〉 13 〈Q̃2
+ − Q̃2

−〉〈uµuν〉DµDν + h.c.

8 〈Q̃+uµ〉〈Q̃+u
µ〉 14 〈Q̃+uµ〉〈Q̃+uν〉DµDν + h.c.

9 〈Q̃−uµ〉〈Q̃−uµ〉 15 〈Q̃−uµ〉〈Q̃−uν〉DµDν + h.c.

10 〈Q+〉〈u2〉Q̃+ 16 〈Q+〉〈uµuν〉Q̃+D
µDν + h.c.

11 〈Q+〉〈Q̃+uµ〉uµ 17 〈Q+〉〈Q̃+uµ〉uνD
µDν + h.c.

Note that the first five terms are all O(e4) and given in Table 3.2. The other terms

are O(e2p2) and given in Table 3.3.
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Table 3.3 (Continued.)

i O(e2p2) i O(e2p2)

18 iσµν〈Q̃+[uµ, uν ]〉Q̃+ 42 σµν〈Q̃2
+ − Q̃2

−〉〈F+
µν〉

19 iσµν〈Q̃−[uµ, uν ]〉Q̃− 43 σµν〈Q+〉Q̃+〈F+
µν〉

20 iσµν〈Q̃2
+ + Q̃2

−〉[uµ, uν ] 44 σµνγ5〈[Q̃+, Q̃−]F̃+
µν〉

21 iσµν〈Q̃2
+ − Q̃2

−〉[uµ, uν ] 45 σµνγ5[Q̃+, Q̃−]〈F+
µν〉

22 iσµν〈Q̃+uµ〉[Q̃+, uν ] 46 σµνγ5〈Q+〉[Q̃−, F̃+
µν ]

23 iσµν〈Q̃−uµ〉[Q̃−, uν ] 47 σµν〈Q+〉〈Q̃−F̃−
µν〉

24 iσµν〈Q+〉〈Q̃+[uµ, uν ]〉 48 σµνQ̃+〈Q̃−F̃−
µν〉

25 γµγ5〈Q̃+uµ〉〈Q̃−uν〉iDν + h.c. 49 σµνQ̃−〈Q̃+F̃
−
µν〉

26 γνγ5〈Q̃+uµ〉〈Q̃−uν〉iDµ + h.c. 50 σµνγ5〈Q+〉[Q̃+, F̃
−
µν ]

27 γµγ5〈Q+〉〈Q̃−uµ〉uνiD
ν + h.c. 51 〈[i∇µ, Q̃+][Q̃−, uµ]〉

28 γνγ5〈Q+〉〈Q̃−uµ〉uνiD
µ + h.c. 52 〈[i∇µ, Q̃−][Q̃+, u

µ]〉
29 〈Q̃2

+ + Q̃2
−〉χ̃+ 53 〈[i∇µ, Q̃+][Q̃−, uν ]D

µDν + h.c.

30 〈Q̃2
+ − Q̃2

−〉χ̃+ 54 〈[i∇µ, Q̃−][Q̃+, uν ]D
µDν + h.c.

31 〈Q+〉〈Q̃+χ̃+〉 55 〈[i∇µ, uν ][Q̃+, Q̃−]DµDν + h.c.

32 〈Q̃2
+ + Q̃2

−〉〈χ+〉 56 〈Q̃−[∇µ, [∇µ, Q̃−]]〉
33 〈Q̃2

+ − Q̃2
−〉〈χ+〉 57 〈Q̃−[∇µ, [∇ν , Q̃−]]〉DµDν + h.c.

34 〈Q+〉Q̃+〈χ+〉 58 〈[∇µ, Q̃−][∇µ, Q̃−]〉
35 〈Q+〉[iQ̃−, χ̃−] 59 〈[∇µ, Q̃−][∇ν , Q̃−]〉DµDν + h.c.

36 〈[Q̃+, Q̃−]χ̃−〉 60 〈Q+〉[[i∇µ, Q̃−], uµ]

37 [Q̃+, Q̃−]〈χ−〉 61 〈Q+〉[[i∇µ, Q̃−, uν ]]D
µDν + h.c.

38 σµν〈Q̃2
+ + Q̃2

−〉F̃+
µν 62 〈Q+〉[[i∇µ, uν ], Q̃−]DµDν + h.c.

39 σµν〈Q̃2
+ − Q̃2

−〉F̃+
µν 63 〈[∇µ, Q̃+][∇µ, Q̃+]〉

40 σµν〈Q+〉〈Q̃+F̃
+
µν〉 64 〈[∇µ, Q̃+][∇ν , Q̃+]〉DµDν + h.c.

41 σµν〈Q̃2
+ + Q̃2

−〉〈F+
µν〉 65 〈Q̃+[∇µ, [∇µ, Q̃+]]〉
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Table 3.3 (Continued.)

i O(e2p2) i O(e2p2)

66 〈Q̃+[∇µ, [∇ν , Q̃+]]〉DµDν + h.c. 79 iσµν [Q̃−, [∇µ, [∇ν , Q̃−]]]

67 [∇µ, [∇µ, Q̃+]]〈Q+〉 80 γµγ5〈Q+〉[[∇µ, Q̃], uν ]D
ν + h.c.

68 [∇µ, [∇ν , Q̃+]]〈Q+〉DµDν + h.c. 81 γνγ5〈Q+〉[[∇µ, Q̃], uν ]D
µ + h.c.

69 σµν [∇µ, Q̃+]〈Q̃−uν〉 82 γµγ5〈[∇µ, Q̃+][Q̃+, uν ]〉Dν + h.c.

70 σµνQ̃+〈[∇µ, Q̃−]uν〉 83 γνγ5〈[∇µ, Q̃+][Q̃+, uν ]〉Dµ + h.c.

71 σµν〈Q+〉〈[∇µ, Q̃−]uµ〉 84 γµγ5〈[∇µ, Q̃−][Q̃−, uν ]〉Dν + h.c.

72 σµν [∇µ, Q̃−]〈Q̃+uν 85 γνγ5〈[∇µ, Q̃−][Q̃−, uν ]〉Dµ + h.c.

73 σµνQ̃−〈[∇µ, Q̃+]uν〉 86 γνγ5〈[∇µ, Q̃+][∇ν , Q̃−]〉iDµ + h.c.

74 σµνuµ〈[∇ν , Q̃+]Q̃−〉 87 γµγ5〈[∇µ, Q̃+][∇ν , Q̃−]〉iDν + h.c.

75 σµνuµ〈[∇ν , Q̃−]Q̃+〉 88 iσµνγ5〈[∇µ, [∇ν , Q̃+]]Q̃−〉
76 iσµν [[∇µ, Q̃+], [∇ν , Q̃+]] 89 iσµνγ5〈[∇µ, [∇ν , Q̃−]]Q̃+〉
77 iσµν [[∇µ, Q̃−], [∇ν , Q̃−]] 90 iσµνγ5〈Q+〉[∇µ, [∇ν , Q̃−]]

78 iσµν [Q̃+, [∇µ, [∇ν , Q̃+]]]

3.2 Chiral perturbation theory with photons and leptons

3.2.1 Definitions in meson case

The theoretical results in mesonic sector mentioned in previous section have

been used to calculate the electromagnetic corrections to the elastic ππ scatter-

ing amplitude, in particular to its S-wave threshold parameters. These electro-

magnetic effects are found to be comparable size to the O(p6) strong interaction

contributions (Meißner et al., 1997; Knecht and Urech, 1998).

The further extension of ChPT is the analysis of the electromagnetic correc-

tions in semileptonic reactions. For the complete treatment of the electromagnetic
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and weak interactions within the framework of the ChPT, the photons and light

leptons have to be included as explicit dynamical degrees of freedom in a suitable

effective Lagrangian.

The photon field Aµ and the leptons `, ν`(` = e, µ) are also introduced in

Equation (3.3) with (Knecht et al., 2000)

lµ = vµ − aµ − eQem
L Aµ +

∑

`

(
¯̀γµ(1− γ5)ν`Q

wk
L + ν`γµ(1− γ5)`Q

wk
L

†)
,

(3.36)

rµ = vµ + aµ − eQem
R Aµ. (3.37)

The matrix Qwk
L is the new building block which corresponds to the weak

field and transforms as

Qwk
L

G−→ gLQ
wk
L g†L, (3.38)

under chiral symmetry. The weak spurion in SU(2) symmetry is taken at

Qwk
L = −2

√
2GF




0 Vud

0 0


 , (3.39)

where GF is the Fermi coupling constant and Vud is Kobayashi-Maskawa matrix

element. To work with the usual generalizations one defines

Qwk
L = u†

LQ
wk
L uL, (3.40)

which transforms as

Qwk
L

G−→ h(g, φ)Qwk
L h−1(g, φ). (3.41)

In the leptonic case we have to consider the CP transformation of the

building blocks, we find

Qwk
L

CP−−→ (−Qwk
L

†
)T , (3.42)

where (· · · )T is the transpose of the matrix in (· · · ).
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3.2.2 The leptonic lagrangian in meson case

The lowest order effective Lagrangian takes the form

L(2)
ππ,wk = −1

4
FµνF

µν +
F 2
0

4
〈uµu

µ〉+ F 2
0

4
〈χ+〉+ e2F 4

0Z〈Qem
L Qem

R 〉

+
∑

`

[
¯̀(iγµ∂µ + eγµAµ −m`)`+ ν`iγ

µ(1− γ5)∂µν`
]
. (3.43)

For the fourth order Lagrangian with LECs xi is given by (Knecht et al., 2000)

L(4)
ππ,wk = e2

∑

`

{
F 2

[
x1

¯̀γµ(1− γ5)ν`〈uµ{Qem
R ,Qwk

L }〉

+ x2
¯̀γµ(1− γ5)ν`〈uµ[Qem

R ,Qwk
L ]〉

+ x3m`
¯̀(1− γ5)ν`〈Qwk

L Qem
R 〉

+ ix4
¯̀γµ(1− γ5)ν`〈Qwk

L ∇̂µQem
L 〉

+ix5
¯̀γµ(1− γ5)ν`〈Qwk

L ∇̂µQem
R 〉+ h.c.

]

+ x6
¯̀(iγµ∂µ + eγµAµ)`

+x7m`
¯̀̀
}
. (3.44)

In Lππ,wk we consider only quadratic terms in the weak fields and linear

in GF . The coupling constants x1, . . . , x5 are real in the limit of CP invariance

and the reality of x6 and x7 is a consequence of the hermiticity of the associated

action.

One has used

∇µu
µ =

i

2

(
χ− − 1

2
〈χ−〉

)
+ 2ie2F 2

0Z[Qem
R ,Qem

L ], (3.45)

which is the mesonic equation of motion for SU(2) symmetry and the following

relations

Qem
L Qwk

L =
2

3
Qwk

L , Qwk
L Qem

L = −1

3
Qwk

L , 〈Qwk
L 〉 = 0, (3.46)

to get a minimal set of terms in Equation (3.44). This equation was applied

to perform a complete one-loop analysis of semileptonic pion and kaon decays
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including the electromagnetic contributions of O(e2p2). The theoretical results for

the decay rates of π → `ν` and K → `ν` were illustrated (Knecht et al., 2000).



CHAPTER IV

THE LEPTONIC LAGRANGIAN FOR

BARYONIC SECTOR

The inclusion of virtual photons and leptons has been worked out com-

pletely only for meson case by Knecht et al. (2000) which the details have been

shown in previous Chapter.

In this thesis we will extend the work of Knecht et al. to calculate the

electromagnetic corrections to the neutron beta decays which involve both the

weak leptonic and nucleonic currents. Thus we will have photons loops connecting

to both leptons and nucleons. Therefore, we have to include both virtual photons

and leptons in the effective Lagrangian as dynamical degrees of freedom as in the

meson case, but we also have nucleons which bring in the Dirac structure. Thus

this is much more complicated than it is in the purely mesonic sector thus we will

devote this chapter to the consideration of both virtual photons and leptons in

baryonic sector.

4.1 Weak current building block

In this section, we will be concerned with the construction of the effective

Lagrangian for baryon ChPT involving virtual photons and leptons. Since the

details of the construction with virtual photons involved has been demonstrated

in Section 3.1.3 and 3.1.4, we will concentrate on discussing the new aspects due

to the inclusion of the leptons.
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To introduce leptons in the effective pion-nucleon Lagrangian we have to

define the building block which represents weak current. This building block is

Qwk
L which has been defined in Equation (3.40). In the real world there is only

left-handed weak current so the subscript L will be neglected.

We recall the definition and the transformation properties of the weak cur-

rent building block to make it easier to follow the argument. One defines the weak

current building block as

Qwk = u†
LQ

wk
L uL (4.1)

where

Qwk
L = −2

√
2GF




0 Vud

0 0


 , (4.2)

and it transforms as

Qwk G−→ h(g, φ)Qwkh−1(g, φ), Qwk CP−−→ (−Qwk†)T (4.3)

under the chiral group and charge conjugation with parity invariance (CP), re-

spectively. And we define

jwk
µ =

∑

`

¯̀γµ(1− γ5)ν`, ` = e, µ (4.4)

where (1− γ5) reflects the parity violation.

4.2 The construction of leptonic lagrangian

In this section, we give a detailed exposition of how to get the effective chiral

leptonic lagrangian for baryon case. The way to form the invariant monomials is

to combine the building block which have been introduced formerly into invariant

terms in the form of Equation (2.50). For third order leptonic lagrangian we have

to consider terms of the form

e2jwk
µ ΨQ±QwkΘµΨ, (4.5)
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with the possibilities of Θµ are γµ, γµγ5, D
µ and σµνDν . The multiplication of Q±

and Qwk can be rewritten in terms of commutators, anticommutators, single and

multiple traces, which are

[Q±,Qwk], {Q±,Qwk}, 〈Q±〉Qwk, Q±〈Qwk〉, 〈Q±Qwk〉. (4.6)

From the definitions of Q− and Qwk in Equation (3.23) and Equation (4.1), they

give 〈Q−〉 = 〈Qwk〉 = 0 and for the anticommutator terms we use Equation (2.120)

which leads

{
Q+,Qwk

}
= Q+〈Qwk〉+ 〈Q+〉Qwk + 〈Q+Qwk〉 − 〈Q+〉〈Qwk〉

= 〈Q+〉Qwk + 〈Q+Qwk〉 (4.7)

{
Q−,Qwk

}
= Q−〈Qwk〉+ 〈Q−〉Qwk + 〈Q−Qwk〉 − 〈Q−〉〈Qwk〉

= 〈Q−Qwk〉 (4.8)

All possible chiral invariant terms are

e2Ψjwk
µ





[Q±,Qwk]

〈Q+〉Qwk

〈Q±Qwk〉





ΘµΨ+ h.c. (4.9)

Next, we apply the CP transformation to these terms. The transformation prop-

erties of the Clifford algebra elements have been shown in Table 2.2 and under CP

transformation Q±, Qwk and jwk
µ transform as

Q±
CP−−→ (Q±)T , Qwk CP−−→ −(Qwk†)T , jwk

µ
CP−−→ jµ,wk† (4.10)

So that the CP invariant terms are

e2Ψγµjwk
µ [Q+,Qwk]Ψ + h.c. (4.11)

e2Ψγµjwk
µ [Q−,Qwk]Ψ + h.c. (4.12)

e2Ψγµjwk
µ 〈Q+〉QwkΨ+ h.c. (4.13)

e2Ψγµjwk
µ 〈Q+Qwk〉Ψ+ h.c. (4.14)
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e2Ψγµjwk
µ 〈Q−Qwk〉Ψ+ h.c. (4.15)

e2Ψγµγ5j
wk
µ [Q+,Qwk]Ψ + h.c. (4.16)

e2Ψγµγ5j
wk
µ [Q−,Qwk]Ψ + h.c. (4.17)

e2Ψγµγ5j
wk
µ 〈Q+〉QwkΨ+ h.c. (4.18)

e2Ψγµγ5j
wk
µ 〈Q+Qwk〉Ψ+ h.c. (4.19)

e2Ψγµγ5j
wk
µ 〈Q−Qwk〉Ψ+ h.c. (4.20)

e2Ψjwk
µ [Q+,Qwk]DµΨ+ h.c. (4.21)

e2Ψjwk
µ [Q−,Qwk]DµΨ+ h.c. (4.22)

e2Ψjwk
µ 〈Q+〉QwkDµΨ+ h.c. (4.23)

e2Ψjwk
µ 〈Q+Qwk〉DµΨ+ h.c. (4.24)

e2Ψjwk
µ 〈Q−Qwk〉DµΨ+ h.c. (4.25)

e2Ψσµνjwk
µ [Q+,Qwk]DνΨ+ h.c. (4.26)

e2Ψσµνjwk
µ [Q−,Qwk]DνΨ+ h.c. (4.27)

e2Ψσµνjwk
µ 〈Q+〉QwkDνΨ+ h.c. (4.28)

e2Ψσµνjwk
µ 〈Q+Qwk〉DνΨ+ h.c. (4.29)

e2Ψσµνjwk
µ 〈Q−Qwk〉DνΨ+ h.c. (4.30)

We can use the total derivative argument on Equations (4.21) - (4.25) to

put Dµ on Q± or Qwk, these equations become higher order. In Equations (4.26)

- (4.30), we use the Dirac matrices relation,

σµν =
i

2
[γµ, γν ]. (4.31)

For example, let us consider Equation (4.26)

e2Ψσµνjwk
µ [Q+,Qwk]DνΨ+ h.c.

= 2mNe
2Ψjwk

µ γµ[Q+,Qwk]Ψ + higher order, (4.32)
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Table 4.1 The monomials Oi,wk(e
2p) of third order for the leptonic Lagrangian.

i Owk(e
2p)

1 γµjwk
µ 〈Q̃+Qwk〉 + h.c.

2 γµjwk
µ Qwk〈Q+〉 + h.c.

3 γµjwk
µ [Q̃+,Qwk] + h.c.

4 γµjwk
µ 〈Q̃−Qwk〉 + h.c.

5 γµjwk
µ [Q̃−,Qwk] + h.c.

6 γµγ5j
wk
µ 〈Q̃+Qwk〉 + h.c.

7 γµγ5j
wk
µ Qwk〈Q+〉 + h.c.

8 γµγ5j
wk
µ [Q̃+,Qwk] + h.c.

9 γµγ5j
wk
µ 〈Q̃−Qwk〉 + h.c.

10 γµγ5j
wk
µ [Q̃−,Qwk] + h.c.

which yields Equations (4.26) - (4.30) are not independent terms. To make our

result consistent with the previous Lagrangian, we switch Q± to the traceless

version Q̃± where

Q̃± = Q± − 1

2
〈Q±〉, (4.33)

4.3 The leptonic lagrangian in baryon case

For the third order, the leptonic Lagrangian is written shortly as

L(3)
πN,wk =

10∑
i

e2F 2
0 niΨO(e2p)

i,wk Ψ, (4.34)

where Oi,wk denotes the minimal chiral CP invariance terms which are shown in

Table 4.1.

For fourth order leptonic Lagrangian we construct only for the specific case

which has no pion i.e. no uµ. The leptonic Lagrangian can be written in the same
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Table 4.2 The monomials Oi,wk(e
2p2) of fourth order for the leptonic Lagrangian.

i Owk(e
2p2) i Owk(e

2p2)

1 i(∇µjwk
µ )〈Q̃+Qwk〉 + h.c. 11 σµνγ5(∇νj

wk
µ )〈Q̃+Qwk〉 + h.c.

2 i(∇µjwk
µ )〈Q+〉Qwk + h.c. 12 σµνγ5(∇νj

wk
µ )〈Q+〉Qwk + h.c.

3 i(∇µjwk
µ )

[
Q̃+,Qwk

]
+ h.c. 13 σµνγ5(∇νj

wk
µ )

[
Q̃+,Qwk

]
+ h.c.

4 i(∇µjwk
µ )〈Q̃−Qwk〉 + h.c. 14 σµνγ5(∇νj

wk
µ )〈Q̃−Qwk〉 + h.c.

5 i(∇µjwk
µ )

[
Q̃−,Qwk

]
+ h.c. 15 σµνγ5(∇νj

wk
µ )

[
Q̃−,Qwk

]
+ h.c.

6 σµν(∇νj
wk
µ )〈Q̃+Qwk〉 + h.c. 16 iγ5(∇µjwk

µ )〈Q̃+Qwk〉 + h.c.

7 σµν(∇νj
wk
µ )〈Q+〉Qwk + h.c. 17 iγ5(∇µjwk

µ )〈Q+〉Qwk + h.c.

8 σµν(∇νj
wk
µ )

[
Q̃+,Qwk

]
+ h.c. 18 iγ5(∇µjwk

µ )
[
Q̃+,Qwk

]
+ h.c.

9 σµν(∇νj
wk
µ )〈Q̃−Qwk〉 + h.c. 19 iγ5(∇µjwk

µ )〈Q̃−Qwk〉 + h.c.

10 σµν(∇νj
wk
µ )

[
Q̃−,Qwk

]
+ h.c. 20 iγ5(∇µjwk

µ )
[
Q̃−,Qwk

]
+ h.c.

way as

L(4)
πN,wk =

20∑
i

e2F 2
0 siΨO(e2p2)

i,wk Ψ, (4.35)

with the monomials Oi,wk(e
2p2) are shown in Table 4.2.



CHAPTER V

RENORMALIZATION

From the exploring work of Weinberg (1979), effective field theory has been

developed to one of the most important tools for investigating strong interaction

processes in the low-energy regime. It is based on a completely general lagrangian

requires an infinite number of counterterms and is not renormalizable, infinities

encountered in the calculation of loop diagrams need to be removed by a renor-

malization of the infinite number of free parameters of the lagrangian.

If the lagrangian is actually the most general one possible, up to a given

order, then a renormalization can be set up for that order, and relations between

all physical observables will be finite. Infinities arising in the calculation are all

absorbed into the definitions of the free parameters of the contact terms in the

lagrangian.

In this work, we do not do a full renormalization which gives lots of loop

diagrams for the beta decay process and would be better after renormalization.

The calculations in this chapter relate to the contributions of the electromagnetic

LECs to the weak current. We will discuss the wavefunction renormalizations of

all particles involved in the beta decay. Since these renormalizations appear in

the calculations of the observables for beta decay and thus will contribute to the

contributions of the electromagnetic LECs to the observables.

To determine the pion and nucleon wave function renormalizations Zπ and

ZN , we have to calculate the pion self energy and nucleon self energy. The calcu-

lation of self energy for pion and nucleon will be shown in later sections.
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Figure 5.1 Tree-level diagrams contributing to the pion self-energy.

5.1 Pion self energy

According to Weinberg’s power counting scheme, we have to include a tree-

level contribution from L(2)
ππ and a tree-level contribution from L(4)

ππ . The pion self

energy Σπ can therefore be written as

Σπ = Σ(2)
π + Σ(4)

π , (5.1)

where the superscript refer to the contributions from the Lagrangian L(2)
ππ and L(4)

ππ .

The tree-level diagrams contributing to the pion self-energy are shown in Figure

5.1, the results for the tree-level diagrams read

−iΣ(a) = iL(2)
ππ =

i

2

(
p2 − ◦

m
2

π

)
π2, (5.2)

−iΣ(b) = iL(4)
ππ = i

m◦2
π

F 2
0

[
l4(p

2 − ◦
m

2

π)− l3
◦
m

2

π

]
π2, (5.3)

−iΣ(c) = iL(2)
ππ,em = ie2F 2

0Z
[
(~π · ẑ)2 − π2

]
, (5.4)
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−iΣ(d) = iL(4)
ππ,em,

= ie2
[
10

9
p2(k1 + k2 + k5 + k6)π

2 + p2(−2k3 + k4)(~π · ẑ)2

−1

9

◦
m

2

π(10k7 + 46k8 + 10k9 + 46k10 + 36k11)π
2

+4
◦
m

2

π(k8 + k10 + k11)(~π · ẑ)2
]

+ie4F 2
0

[
−5

9
(2k15 + k16)π

2 +
5

9
(2k15 + k16)(~π · ẑ)2

]
. (5.5)

5.2 Pion wave function renormalization constant

From H. Fearing et al. (Fearing et al., 1997), they defined Γππ(q
2) as the

Green function which is the sum of iLππ for tree-level and one-loop calculations.

The Green Function is related to the pion self energy Σπ(q
2) via

iLππ(p
2) = i

(
p2 − ◦

m
2

π − Σ(p2)
)
, (5.6)

where
◦
m

2

π is the square of pion mass in chiral limit.

− 1

iLππ(p2)
=

i

p2 − ◦
m

2

π − Σ(p2)
,

=
i

p2 − ◦
m

2

π − Σ(m2
π)− (p2 −m2

π)Σ
′(m2

π)− Σ̃(p2)
. (5.7)

The last equation is obtained from expanding the self energy about the point

p2 = m2
π.

The pion mass is obtained from the condition that the propagator has a

pole at the physical mass which means

iLππ(m
2
π) = m2

π −
◦
m

2

π − Σ(m2
π) = 0, (5.8)

which gives

m2
π =

◦
m

2

π + Σ(m2
π). (5.9)
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So the full propagator can be written as

− 1

iLππ(p2)
=

i

(p2 −m2
π)− (p2 −m2

π)Σ
′(m2

π)− Σ̃(p2)
,

=
i

(p2 −m2
π)[1− Σ′(m2

π)]− Σ̃(p2)
,

=
i

[1− Σ′(m2
π)]

[
p2 −m2

π − Σ̃(p2)
1−Σ′(m2

π)

] . (5.10)

One defines − 1
iLππ(p2)

= iZπ

p2−m2
π−ZπΣ̃(p2)

. Then

Zπ =
1

1− Σ′(m2
π)

=

[
i(p2 −m2

π)

iLππ(p2)

]

p2=m2
π

. (5.11)

In our case, we consider only tree-level calculations.

iLππ(p
2) =

i

2
(p2 − ◦

m
2

π)π
2 + i

◦
m

2

π

F 2
0

[
p2l4 − ◦

m
2

π(l3 + l4)
]
π2 + ie2F 2

0Z[(~π · ẑ)2 − π2]

+ie2
[
10

9
p2(k1 + k2 + k5 + k6)π

2 + p2(−2k3 + k4)(~π · ẑ)2

−
◦
m

2

π

9
(10k7 + 46k8 + 10k9 + 46k10 + 36k11)π

2

+ 4
◦
m

2

π(k8 + k10 + k11)(~π · ẑ)2
]

+ie4F 2
0

[
5

9
(2k15 + k16)((~π · ẑ)2 − π2)

]
. (5.12)

Then calculate the propagator for pion that correspond to the annihilation

of π± to create π∓(π2 = π02 + 2π+π−),

Γππ(p
2) = i(p2 − ◦

m
2

π) + i

◦
m

2

π

F 2
0

[
2p2l4 − 2

◦
m

2

π(l3 + l4)
]
− 2ie2F 2

0Z

+
20ie2

9
p2(k1 + k2 + k5 + k6)

−2ie2

9

◦
m

2

π(10k7 + 46k8 + 10k9 + 46k10 + 36k11)

−10ie4F 2
0

9
(2k15 + k16). (5.13)
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Then the pion self energy can be obtained as

−Σ(p2) =

◦
m

2

π

F 2
0

[
2p2l4 − 2

◦
m

2

π(l3 + l4)
]
− 2e2F 2

0Z

+e2
[
20

9
p2(k1 + k2 + k5 + k6)

]

−e2
[
2

9

◦
m

2

π(10k7 + 46k8 + 10k9 + 46k10 + 36k11)

]

−e4F 2
0

10

9
(2k15 + k16). (5.14)

To get the pion wavefunction renormalization constant we calculate the

derivative of the pion self energy as

− dΣ(p2)

d(p2)

∣∣∣∣
p2=m2

π

=
2m2

π

F 2
0

l4 +
20e2

9
(k1 + k2 + k5 + k6). (5.15)

From the relation that

Zπ =
1

1− Σ′(m2
π)
,

we get

Zπ =
1

1 + 2m2
π

F 2
0
l4 +

20e2

9
(k1 + k2 + k5 + k6)

∼ 1−
[
2m2

π

F 2
0

l4 +
20e2

9
(k1 + k2 + k5 + k6)

]
. (5.16)

which is the charged pion wave function renormalization constant.

5.3 Nucleon self energy

A one-particle state in the spectrum of a Hamiltonian has the physical

mass mN if P 2 = m2
N for this state. The corresponding full propagator Γ(P ) has

a simple pole at P 2 = m2
N . The full propagator can be written in terms of free

nucleon propagator as

Γ(P ) =
i

6P − ◦
mN − Σ(P ) + i0+

, (5.17)
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Figure 5.2 Tree-level diagrams contributing to the nucleon self-energy.

where
◦
mN is the bare nucleon mass and −iΣ(P ) represents the summation of one

particle irreducible diagrams. The physical mass of the nucleon is given by the

pole in the full propagator. The mass of the nucleon is given by 6P0 = mN where

6P0 satisfies

6P0 − ◦
mN − Σ(P0) = 0. (5.18)

When the nucleon momentum is close to the pole, the nucleon propagator is of

the form

Γ(P ) =
iZ(6P +mN)

P 2 −m2
N + i0+

, (5.19)

where the renormalization constant is

Z−1 = 1− ∂Σ(P0)

∂ 6P . (5.20)

The external nucleon fields must also be renormalized, which results in a factor of

√
Z in the amplitude for each external fields.

The tree-level diagrams contributing to the nucleon self-energy from contact

interaction are shown in Figure 5.2 and can be evaluated as
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−iΣ(a) = i(i6∂ − ◦
mN), (5.21)

−iΣ(b) = 4ic1
◦
m

2

π, (5.22)

−iΣ(c) = 0, (5.23)

−iΣ(d) = i(16
◦
m

4

πe38 + 2
◦
m

4

πe115 + 2
◦
m

4

πe116), (5.24)

−iΣ(e) = i
e2F 2

0

2
(f1 + ~τ · ẑf2 + f3), (5.25)

−iΣ(f) = 0, (5.26)

−iΣ(g) = i
e4F 4

0

4
(h1 + h2 + h3 + ~τ · ẑh4 + ~τ · ẑh5)

+2ie2F 2
0

◦
m

2

π(h32 + h33 + ~τ · ẑh34). (5.27)

Next, we will consider the loop diagrams which are shown in Figure 5.3.

Only one-loop diagrams are calculated in this work. The detail of loop calculation

is in Appendix B. The diagram 5.3(h) is the third order contribution to Σ(P ), the

vertices are given by the first order term

Ψ
gA
2
γµγ5uµΨ = Ψ

−gA
2F0

γµγ5∂µπ
aτaΨ, (5.28)

where a is the pion isospin index. The contribution to the matrix element from

each pion-nucleon vertex is igA
2F0

γ5 6∂πaτa. The total matrix element is

−iΣ(h) = µ4−d

∫
dd`

(2π)d
Ψ

(−igA
2F0

γµγ5∂µπ
aτa

)
ΨΨ

(−igA
2F0

γνγ5∂νπ
bτ b

)
Ψ,

=
−ig2A
4F 2

0

µ4−d

∫
dd`

(2π)d
γµγ5τ

a[−(`+ k)a]πaγνγ5τ
b[(`+ k)b]πb

(6 `+ 6k + 6p)− ◦
mN + i0+

. (5.29)

We will always redefine the integration variable ` so to make the first pion

momentum k = 0,

−iΣ(h) =
ig2A
4F 2

0

µ4−d

∫
dd`

(2π)4
γµγ5τ

a`aπa[( 6 `+ 6p) + ◦
mN ]γ

νγ5τ
b`bπb

(`+ p)2 − ◦
m

2

N + i0+
,

=
ig2A
4F 2

0

µ4−d

∫
dd`

(2π)d
6 `γ5[(6 `+ 6p) + ◦

mN ] 6 `γ5iδabτaτ b

[(`+ p)2 − ◦
m

2

N + i0+][`2 − ◦
m

2

π + i0+]
. (5.30)
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Figure 5.3 loop diagrams contributing to the nucleon self-energy.

The isospin indices are summed over including the neutral and charged

pion loops, and the sum contributes a factor of 3 to the matrix element. The loop

integral can be written as a sum of the integral in Appendix. Then the contribution

to Σ(p) from diagram (h) is

−iΣ(h) =
3ig2A
4F 2

0

IπN [p, 6 `γ5(6 `+ 6p+ ◦
m) 6 `γ5]. (5.31)

The contribution from the remaining diagrams in Figure 5.3 are

−iΣ(i) =
−3ic1

◦
m

2

πg
2
A

F 2
0

[
iµ4−d

∫
dd`

(2π)d
6 `γ5[6 `+ 6 p+ ◦

mN ]
2 6 `γ5

[(`+ p)2 − ◦
m

2

N + i0+]2[`2 − ◦
m

2

π + i0+]

]
,

=
−3ic1

◦
m

2

πg
2
A

F 2
0

IπNN [p, p, 6 `γ5[6 `+ 6 p+ ◦
mN ][6 `+ 6 p+ ◦

mN ] 6 `γ5], (5.32)

−iΣ(j) = 0. (5.33)

The contribution from diagram (k) and (l) are given by the three terms in the
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Lagrangian which contain 2 pion fields.

−iΣc1
(k) =

−6ic1
◦
m

2

π

F 2
0

[
iµ4−d

∫
dd`

(2π)d
1

[`2 − ◦
m

2

π + iε]

]
,

=
−6ic1

◦
m

2

π

F 2
0

Iπ[1], (5.34)

−iΣc2
(k) =

3ic2
◦
m

2

πp
2

dF 2
0

◦
m

2

N

Iπ[1], (5.35)

−iΣc3
(k) =

3ic3
◦
m

2

π

F 2
0

Iπ[1]. (5.36)

Then,

−iΣ(k) =
3i

◦
m

2

π

F 2
0

[
−2c1 +

c2p
2

d
◦
m

2

N

+ c3

]
Iπ[1]. (5.37)

For diagram (l),

−iΣf1
(l) =

−5if1e
2

2
Iπ[1],

−iΣf2
(l) =

−3if2e
2~τ · ẑ

4
Iπ[1],

−iΣf3
(l) =

−if3e
2

2
Iπ[1].

So the final result for diagram (l) is

−iΣ(l) =
−ie2

2
[5f1 + 3f2~τ · ẑ + f3] Iπ[1]. (5.38)

The results of the rest diagrams in Figure 5.3 are

−iΣ(m) = 0, (5.39)

−iΣ(n) = 0, (5.40)

−iΣ(o) = 0, (5.41)

−iΣ(p) = 0, (5.42)

−iΣ(q) =
−9ig2A

8
IπN [p, γ5 6 `(6 `+ 6p+ ◦

mN)γ5 6 `], (5.43)

−iΣ(r) =
−15ig2Ae

2Z

8
IππN [q, p, γ5 6 `(6 `+ 6p+ ◦

mN)γ5 6 `]. (5.44)
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5.4 Nucleon renormalization constant

The wave function renormalization constant for nucleon, defined by

Z−1
N = 1− ∂Σ

∂ 6p |6p = mN
(5.45)

is used to renormalize the nucleon propagator and the external nucleon fields.

In our case, we consider only tree-level diagrams. Therefore, the nucleon wave

function renormalization constant is

ZN ∼ 1. (5.46)



CHAPTER VI

CALCULATION OF THE FORM FACTORS

We will apply our method to the neutron beta decay process, since this

decay is a low energy process. In this work we will calculate the contributions of

the LECs to the radiative corrections, but loop calculation will not be considered

because they would be too complicated. Thus, our result will miss out on finite

contributions from loops. In this chapter, we calculate unrenormalized LECs, but

we know that they can be renormalized and that the expressions for the contri-

butions from the LECs will look the same only with unrenormalized quantities

replaced by renormalized ones.

6.1 Weak form factor of the nucleon current

We consider the neutron beta decay process,

n(pi) → p(pf ) + e−(pe) + ν̄e(pν), (6.1)

where pi, pf , pe and pν denote the four-momentum of the neutron, proton, electron

and anti-neutrino, respectively. The S-matrix amplitude is indicated in a common

(V-A) form (Bjorken and Drell, 1964) and given by

M = −iGFVud√
2

ū(pe)γα(1− γ5)u(pν)ū(pf )τ+[V
α − Aα]u(pi), (6.2)

with

V α = GV (q
2)γα +

iGM(q2)

2mN

σαβqβ +
GS(q

2)

mµ

qα, (6.3)

Aα = GA(q
2)γαγ5 +

GP (q
2)

mµ

qαγ5 +
iGT (q

2)

2mN

σαβqβγ5, (6.4)
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where qα = pαf −pαi . Here GF is the Fermi constant, Vud is an element of the CKM

matrix, mµ is the physical muon mass, mN is the average of the physical neutron

and proton masses, mN = 1
2
(mn + mp), and τ+ is the isospin raising operator,

〈p|τ+|n〉 = 1. Here we also consider second class currents.

The fact that the nucleon has a complicated internal structure means a

deviation from the V-A structure, i.e. GV /GA 6= 1 and induces non-zero scalar

GS, pseudo-scalar GP , weak-magnetic GM , and axial-tensor GT , form factors.

GA(0) is most exactly determined from neutron beta decay rate.

The contributions to the weak-nucleon-nucleon vertex involve coupling of

the nucleons to an external vector field and to an external axial field for strong,

em and weak interactions. The diagrams which contribute to these contributions

are given in Figure 6.1.

The tree level contributions to the amplitude for strong terms correspond

to diagram (a)− (d) in Figure 6.1 and are given by (Ando and Fearing, 2007)

M(a)V = i
√

ZNΨf (v
(s)
µ + ~τ · ṽµ)γµΨi

√
ZN ,

= i
√

ZNΨf (v
(s)
µ + τ+ṽ

+
µ + τ−ṽ−µ )γ

µΨi

√
ZN , (6.5)

M(a)A = igA
√

ZNΨf~τ · ãµγµγ5Ψi

√
ZN ,

= igA
√

ZNΨf (τ+ã
+
µ + τ−ã−µ )γ

µγ5Ψi

√
ZN , (6.6)

M(b)V = i
√

ZNΨf
iσµνqν
2mN

[(c6 + 2c7)v
(s)
µ + c6~τ · ṽµ]Ψi

√
ZN ,

= i
√

ZNΨf
iσµνqν
2mN

[(c6 + 2c7)v
(s)
µ + c6(τ+ṽ

+
µ + τ−ṽ−µ )]Ψi

√
ZN , (6.7)

M(b)A = 0, (6.8)

M(c)V = iΨf (q
µqν − q2gµν)(pi + pf )ν(

2d7
mN

v(s)µ +
d6
mN

~τ · ṽµ)Ψi, (6.9)

by using the Gordon decomposition

ūγµu = ū

[
(pf + pi)

µ

2mN

+
iσµν(pf − pi)ν

2mN

]
u, (6.10)



66

L

(1)
NNV,NNA

(a)

L

(2)
NNV,NNA

(b)

L

(3)
NNV,NNA

(c)

L

(4)
NNV,NNA

(d)

L

(2)
NNV,NNA,em

(e)

L

(3)
NNV,NNA,em

(f)

L

(4)
NNV,NNA,em

(g)

L

(3)
NNV,NNA,wk

(h)

L

(4)
NNV,NNA,wk

(i)

Figure 6.1 Diagrams which contribute to the coupling of nucleon to the exter-

nal vector and axial vector currents. L(1,...,4)
NNV,NNA is the pion-nucleon Lagrangian

from the strong part, L(2,...,4)
NNV,NNA,em is the Lagrangian from the EM part and

L(3,4)
NNV,NNA,wk is the Lagrangian from the weak part up to fourth order.
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we can replace,

(pf + pi)ν → 2mNγν + iσαν(pf − pi)
α. (6.11)

So we get

M(c)V = iΨf (q
µqν − q2gµν)(2mNγν + iσαν(pf − pi)

α)

[
2d7
mN

v(s)µ +
d6
mN

~τ · ṽµ
]
Ψi,

(6.12)

since the momentum transfer qα = pαf − pαi therefore,

M(c)V = iΨf (q
µqν − q2gµν)(2mNγν + iσανq

α)

[
2d7
mN

v(s)µ +
d6
mN

~τ · ṽµ
]
Ψi,

= iΨf

{[−2mNγ
µq2 + iσµνq2qν

]×
[
2d7
mN

v(s)µ +
d6
mN

(τ+ṽ
+
µ + τ−ṽ−µ )

]}
Ψi,

(6.13)

M(c)A = iΨfγ
µγ5[4

◦
m

2

πd16~τ · ãµ + d22(q
2gµν − qµqν)~τ · ãν ]Ψi,

= iΨf

[
4γµγ5

◦
m

2

πd16 + γµγ5d22q
2 − 2mNγ5q

µd22

]
~τ · ãµΨi,

= iΨf

[
4γµγ5

◦
m

2

πd16 + γµγ5d22q
2 − 2mNγ5q

µd22

]
(τ+ã

+
µ + τ−ã−µ )Ψi, (6.14)

M(d)V = iΨf iσ
µνqν [4(q

2e54 − 4
◦
m

2

πe105)v
(s)
µ + 2(q2e74 − 4

◦
m

2

πe106)~τ · ṽµ]Ψi,

= iΨf iσ
µνqν [4(q

2e54 − 4
◦
m

2

πe105)v
(s)
µ

+2(q2e74 − 4
◦
m

2

πe106)(τ+ṽ
+
µ + τ−ṽ−µ )]Ψi, (6.15)

M(d)A = 0. (6.16)

The subscript V or A refers to coupling to vector and axial current respec-

tively and the number refers to the diagram number in Figure 6.1. The contribu-

tions from electromagnetic terms originating from the Lagrangian constructed in

Ref. (Müller and Meißner, 1999) in diagram (e)-(g) are given by

M(e)V = 0, (6.17)

M(e)A = 0, (6.18)



68

M(f)V = ie2F 2
0Ψfγ

µg9(−~τ · ṽµ + ~τ · ẑ ṽµ · ẑ)Ψi,

= ie2F 2
0Ψfγ

µg9(−τ+ṽ
+
µ − τ−ṽ−µ + τ3ṽ

3
µ)Ψi, (6.19)

M(f)A = ie2F 2
0Ψfγ

µγ5[g1~τ · ẑ ãµ · ẑ + 2g3ãµ · ẑ + (g4 + g5)(~τ · ãµ)]Ψi,

= ie2F 2
0Ψfγ

µγ5[g1τ3ã
0
µ + 2g3ã

0
µ + (g4 + g5)(τ+ã

+
µ + τ−ã−µ )]Ψi,

= ie2F 2
0Ψfγ

µγ5[(g4 + g5)(τ+ã
+
µ + τ−ã+µ )]Ψi (6.20)

M(g)V = −ie2F 2
0Ψf {2(h38 + h39)iσ

µνqν~τ · ṽµ + 4h40iσ
µν ṽµ · ẑ

+4(h41 + h42)iσ
µνqνv

(s)
µ + 4h43iσ

µνqν~τ · ẑ v(s)µ

−h67iqµ~τ · ṽµ × ẑ − 2h68iqµ(p
µ
i p

ν
i + pµfp

ν
f )~τ · ṽν × ẑ

+h78iσ
µνqν(−~τ · ṽµ + ~τ · ẑ ṽµ · ẑ)}Ψi,

= ie2F 2
0Ψf

{
2(h38 + h39)iσ

µνqν(τ+ṽ
+
µ + τ−ṽ−µ ) + 4h40iσ

µνqν ṽ
3
µ

+4(h41 + h42)iσ
µνqνv

(s)
µ + 4h43iσ

µνqντ3v
(s)
µ

−h67iqµ[i
√
2(τ+ṽ

µ
+ − τ−ṽ

µ
−)] + h68iqµq

2[i
√
2(τ+ṽ

µ
+ − τ−ṽ

µ
−)]

+h78iσ
µνqν(−τ+ṽ

+
µ − τ−ṽ−µ + τ3ṽ

3
µ)
}
Ψi (6.21)

M(g)A = ie2F 2
0Ψf4h50σ

µνγ5qν~τ · ãµ × ẑΨi

= ie2F 2
0Ψf iσ

µνγ5qν4h50

√
2(τ+ã

+
µ − τ−ã−µ )Ψi. (6.22)

The tree level contributions to the amplitude from our new terms corre-

spond to diagram (h)-(i) in Figure 6.1 are

M(h) = iL(3)
NNA,wk,

= i
√
2GFVude

2F 2
0Ψf

{
−(n2γ

µ + n7γ
µγ5)[j

wk
µ ~τ · (x̂+ iŷ) + jwk

µ

†
~τ · (x̂− iŷ)]

−(n3γ
µ + n8γ

µγ5)[j
wk
µ ~τ · (x̂+ iŷ) + jwk

µ

†
~τ · (x̂− iŷ)]

}
Ψi,

(6.23)
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M(i) = iL(4)
NNA,wk,

= −i
√
2GFVude

2F 2
0Ψf

{
[(s2 + s3)q

µ − (s12 + s13)iσ
µνγ5qν ]

[
jwk
µ ~τ · (x̂+ iŷ)− jwk

µ

†
~τ · (x̂− iŷ)

]

− [(s7 + s8)iσ
µνqν + (s17 + s18)γ5q

µ]
[
jwk
µ ~τ · (x̂+ iŷ) + jwk

µ

†
~τ · (x̂− iŷ)

]}
Ψi.

(6.24)

In the weak case, we have to rewrite jwk
µ ~τ · (x̂ + iŷ) in terms of aµ and vµ

which is

−
√
2GFVud

[
jwk
µ ~τ · (x̂+ iŷ) + h.c.

] → 2~τ · ṽµ or − 2~τ · ãµ, (6.25)

−
√
2GFVud

[
jwk
µ ~τ · (x̂+ iŷ)− h.c.

] → −
√
2i~τ · ṽµ × ẑ or

√
2i~τ · ãµ × ẑ

(6.26)

This holds only for the v+ and v− components. By picking up either vµ or aµ

appropriately. Then M(h) and M(i) are

M(h) = ie2F 2
0Ψf {2(n2 + n3)γ

µ~τ · ṽµ − 2(n7 + n8)γ
µγ5~τ · ãµ}Ψi,

= ie2F 2
0Ψf

{
2(n2 + n3)γ

µ(τ+ṽ
+
µ + τ−ṽ−µ )

−2(n7 + n8)γ
µγ5(τ+ã

+
µ + τ−ã−µ )

}
Ψi, (6.27)

M(i) = ie2F 2
0Ψf

{[
−
√
2(s2 + s3)q

µ~τ · ṽµ × ẑ −
√
2(s12 + s13)iσ

µνγ5qν~τ · ãµ × ẑ
]

+ [−2(s7 + s8)iσ
µνqν~τ · ṽµ − 2(s17 + s18)γ5q

µ~τ · ãµ]
}
Ψi,

= ie2F 2
0Ψf

{[
−
√
2(s2 + s3)q

µ(τ+ṽ
+
µ − τ−ṽ−µ )

−2(s7 + s8)iσ
µνqν(τ+ṽ

+
µ + τ−ṽ−µ )

−
√
2(s12 + s13)iσ

µνγ5qν(τ+ã
+
µ − τ−ã−µ )

−2(s17 + s18)γ5q
µ(τ+ã

+
µ + τ−ã−µ )

] }
Ψi. (6.28)

Another contribution which we have to calculate comes from the NNπ

vertex and will contribute to the axial current. The diagrams are shown in Figure
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L

(1)
NNπ

L

(2)
NNπ

L

(3)
NNπ

L

(4)
NNπ

(a) (b) (c) (d)

L

(2)
NNπ,em L

(3)
NNπ,em L

(4)
NNπ,em

(e) (f) (g)

Figure 6.2 Tree level diagrams which contribute to the NNπ vertex.

6.2.

M(a)π = − gA
2F0

√
ZNΨf~τ · ~πγµγ5qµΨi

√
ZN

√
Zπ, (6.29)

M(b)π = 0, (6.30)

M(c)π =

◦
m

2

π

F0

(d18 − 2d16)Ψfγµγ5~τ · ~πqµΨi, (6.31)

M(d)π = 0. (6.32)

The contributions from EM corrections are

M(f)π = 0, (6.33)

M(g)π = −e2F0

2
Ψfγ

µγ5qµ {(g1 + g11)~τ · ẑ~π · ẑ + 2g3~π · ẑ

+(g4 + g5 − g11)~τ · ~π}Ψi, (6.34)

M(h)π = 0. (6.35)

To get the contribution to the weak nucleon-nucleon current form πNN

amplitude we combine the πNN amplitudes with the πA amplitudes to get the
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pion pole diagram. The amplitudes for πA vertex are

M(2)
πA = 2F0qµ~π · ãµ

√
Zπ (6.36)

M(4)
πA =

4

F0

m2
π`4qµ~π · ãµ (6.37)

for the second and fourth order respectively. The contraction between M(a)π with

M(2)
πA gives

M(1)
NNA = − gA

2F0

√
ZNΨf~τ · ~πγνγ5qν(2F0qµ)~π · ãµ

√
ZπΨi

= −2igAmNZNZπΨf
γ5qµ~τ · ãµ
q2 −m2

π

Ψi

= −2igAmNZNZπΨf
γ5qµ(τ+ã

+,µ + τ−ã−,µ)

q2 −m2
π

Ψi (6.38)

Contracting M(c)π and M(2)
πA, we get

M(3)
NNA =

m2
π

F0

(d18 − 2d16)Ψf~τ · ~πγνγ5qν(2F0qmu)~π · ãµ
√

ZπΨi

= 4im2
πmNΨf

γ5qµ(d18 − 2d16)~τ · ãµ
q2 −m2

π

Ψi

= 4im2
πmNΨf

γ5qµ(d18 − 2d16)(τ+ã
+,µ + τ−ã−,µ)

q2 −m2
π

Ψi (6.39)

The contraction between the EM correction of NNπ amplitude and the second

order πA amplitude is calculated as

M(3)
NNA,em = −e2F 2

0Ψf {γνγ5qν [(g1 + g11)~π · ẑ~τ · ẑ + 2g3~π · ẑ

+ (g4 + g5 − g11)~τ · ~π] qµ~π · ãµ}Ψi

=
2ie2F 2

0mN

q2 −m2
π

Ψf {γ5qµ [(g1 + g11)ã
µ · ẑ~τ · ẑ + g3ã

µ · ẑ

+(g4 + g5 − g11)~τ · ãµ]}Ψi

=
2ie2F 2

0mN

q2 −m2
π

Ψf

{
γ5qµ

[
(g4 + g5 − g11)(τ+ã

+,µ + τ−ã−,µ)
]}

Ψi

(6.40)

Another third order NNA amplitude is from the contraction between the

lowest order NNπ vertex and the fourth order πA vertex for strong, EM and weak
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parts. Firstly, we contract NNπ vertex with the fourth order strong πA vertex,

M(3)
NNA,strong = −4igAm

2
πmN

F 2
0

Ψf
γ5qµ~τ · ãµ`4
q2 −m2

π

Ψi

= −4igAm
2
πmN

F 2
0

Ψf
γ5qµ`4(τ+ã

+,µ + τ−ã−,µ)

q2 −m2
π

Ψi (6.41)

For the contraction between the NNπ vertex and the fourth order EM πA vertex,

it yields the EM NNA amplitude as

M(3)
NNA,em = −igAmNe

2Ψfγ5qµ

{[
40

9
(k1 + k2 + k5 + k6) + 4k12

]
~τ · ãµ

+4(k4 − 2k3 − k12)~τ · ẑãµ · ẑ
}
Ψi

= −igAmNe
2Ψfγ5qµ

{
1

q2 −m2
π

[
40

9
(k1 + k2 + k5 + k6) + 4k12

]

×(τ+ã
+,µ + τ−ã−,µ)

}
Ψi (6.42)

The third order weak NNA amplitude is

M(3)
NNA,wk = −2igAmNe

2Ψf

{
γ5qµ

[−2
3
x1 − 2x2 + 2x3](τ+ã

+,µ − τ−ã−,µ)

q2 −m2
π

}
Ψi

(6.43)

6.2 The calculations

The most general form for the vector and axial-vector currents evaluated

for neutron beta decay are given by

〈p(pf )|V +
µ |n(pi)〉 = ū(pf )

[
GV γ

µ +
iGM

2mN

σµνqν +
GS

mµ

qµ
]
τ+u(pi), (6.44)

〈p(pf )|A+
µ |n(pi)〉 = ū(pf )

[
GAγ

µγ5 +
GP

mµ

qµγ5 +
iGT

2mN

σµνqνγ5

]
τ+u(pi).

(6.45)
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By adding up the vector contributions of Equations (6.5), (6.7), (6.13),

(6.15), (6.17), (6.19) and (6.21), the vector current operator can be calculated as

V µ = γµ
[
1 + q2(−2d6) + e2F 2

0 [−g9 + 2(n2 + n3)]

+
iσµνqν
2mN

[
c6 − 16e106mN

◦
m

2

π

+2e2F 2
0 (2h38 + 2h39 − h78 − 2(s7 + s8))mN

+q2(2d6 + 4e74mN)
]

+
qµ

mµ

[
e2F 2

0mµ

(
−
√
2(s2 + s3) +

√
2h67

)]
. (6.46)

The axial vector current can be received from Equations (6.6), (6.8), (6.14), (6.16),

(6.18), (6.20), (6.22), (6.27), (6.28), (6.38), (6.39), (6.40), (6.41), (6.42) and (6.43)

and written as

Aµ = γµγ5

[
gA + 4

◦
m

2

πd16 + q2d22 + e2F 2
0 (g4 + g5 − 2(n7 + n8))

]

+
qµγ5
mµ

{
−−2mNmµ

q2 −m2
π

[
ZπgA −m2

π(2d18 − 4d16)− e2F 2
0 (g4 + g5 − g11)

+e2gA[
20

9
(k1 + k2 + k5 + k6) + 2k12]− e2gA(

2

3
x1 + x2 − x3)

]

−2mNmµd22 − 2e2F 2
0mµ(s17 + s18)

}

+
iσµνqνγ5
2mN

e2F 2
0

[
2mN(−4

√
2h50 −

√
2(s12 + s13))

]
. (6.47)

From above equations we get

GV (q
2) = 1 + q2(−2d6) + e2F 2

0 [−g9 + 2(n2 + n3)] , (6.48)

GM(q2) = c6 − 16e106mN
◦
m

2

π + 2e2F 2
0 (2h38 + 2h39 − h78 − 2(s7 + s8))mN

+q2(2d6 + 4e74mN), (6.49)

GS(q
2) = e2F 2

0mµ

(
2(s2 + s3)−

√
2h67

)
, (6.50)

GA(q
2) = gA + 4

◦
m

2

πd16 + q2d22 + e2F 2
0 (g4 + g5 − 2(n7 + n8)) , (6.51)
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GP (q
2) = −2mNmµ

q2 −m2
π

{
ZπgA −m2

π(2d18 − 4d16)− e2F 2
0 (g4 + g5 − g11)

+e2gA

[20
9
(k1 + k2 + k5 + k6) + 2k12 − 2

3
x1 − x2 + x3

]}

−2mNmµd22 − 2e2F 2
0mµ(s17 + s18), (6.52)

GT (q
2) = 2mNe

2F 2
0

[
4
√
2h50 − 2(s12 + s13)

]
. (6.53)

The pion-nucleon-nucleon coupling GπNN(q
2) is defined by the πNN am-

plitudes by

MπNN(q
2) = −GπNN(q

2)Ψf~τ · ~πγ5Ψi. (6.54)

The πNN amplitudes have been calculated in Ref. (Ando and Fearing, 2007).

MπNN = −Ψf~τ · ~πγµγ5qµ
[
gA
2F0

−
◦
m

2

π

F0

(d18 − 2d16)

]
Ψi. (6.55)

Substituting γµq
µ = 2mN . Then,

GπNN(q
2) =

mN

F0

[
gA − ◦

m
2

π(2d18 − 4d16)
]
. (6.56)

Therefore,

gA − ◦
m

2

π(2d18 − 4d16) =
GπNN(q

2)F0

mN

, (6.57)

and GP (q
2) can be rewritten as

GP (q
2) = −2mNmµ

q2 −m2
π

{
GπNN(q

2)F0

mN

− e2F 2
0 (g4 + g5 − g11)

+e2gA

[20
9
(k1 + k2 + k5 + k6) + 2k12 − 2

3
x1 − x2 + x3

]}

−2mNmµd22 − 2e2F 2
0mµ(s17 + s18), (6.58)

6.3 Dimensional analysis of the LECs

Since there is a lack of experimental information for the electromagnetic

and weak low-energy constants (LECs) fi, gi, hi, ni and si, we have to look for

some method estimating them. One possibility is dimensional analysis (Müller
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and Meißner, 1999). It is a tool for estimating the dimensionless parameters

appearing in a low energy effective theory. The application of dimension analysis

is an estimation of the size of the LECs. The accepted estimation is α ≈ 4π.

From the effective Lagrangian, we can notice that each power whether of

electromagnetic or weak charge matrices appearing in any monomial is accom-

panied by a factor of F0 so that the corresponding LECs have the same mass

dimension as their strong counterparts. Therefore, the fi, gi and h1...5 scale as

[mass]−1, [mass]−2 and [mass]−3, respectively. Most of h6−90 have dimensional-

ity [mass]−3 except for the terms which have single and double of the covariant

derivative acting on wavefunction have [mass]−4 and [mass]−5 respectively. Fur-

thermore, the factors of F0 are proportional to the natural low energy scale and

defined through 〈0|Aa
µ(0)|πb(x)〉 = eipxpµδ

abF0 where |πa(p)〉 is the exact one-pion

eigenstate and |0〉 is the corresponding vacuum. The appearing of the pion decay

constant in the chiral limit is necessary and sufficient conditio for spontaneous

chiral symmetry breaking. The origin of electromagnetic and weak LECs is the

integration of hard photon loops. Therefore, each power in e2 is a power in the fine

structure constant α = e2/4π. Thus the natural scale of chiral symmetry breaking

is Λ ∼ mN ∼ 1GeV, one can deduce the following estimates on the renormalized

electromagnetic and weak LECs at the typical hadronic scale:

fi =
f̃i
4π

, gri =
g̃i
4π

, hr
1...5 =

h̃1...5

(4π)2
, hr

6...90 =
h̃6...90

4π
(6.59)

nr
i =

ñi

4π
, sri =

s̃i
4π

, (6.60)

with the f̃i, g̃i, h̃i, ñi and s̃i are number of order one,

f̃i ∼ g̃i ∼ h̃i ∼ ñi ∼ s̃i = O(1). (6.61)

Because our formulas also contain ci, di and ei which are the strong LECs

for the second, third and fourth order of the pion-nucleon Lagrangian. We will
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apply the dimensional analysis to get their dimensionality. The dimension of the

strong LECs for second order is considered as [mass]−1, for the third order scale

as [mass]−2 whereas the dimension for the LECs of the most terms in fourth

order is [mass]3. By the same reason as the consideration of the dimension for

h6−90, the dimension of LECs of the terms which have single derivative acting on

wavefunction is [mass]−4 and the dimensionality [mass]−5 is for the LECs of the

terms which have double derivative acting on wavefunction.



CHAPTER VII

CONCLUSIONS

We have constructed the most general effective pion-nucleon Lagrangian

for the relativistic baryon chiral perturbation theory with the consideration of

the electromagnetic corrections in weak processes. The electromagnetic reactions

requires the inclusion of the virtual photons and the light leptons fields as explicitly

dynamical degrees of freedom in the chiral Lagrangian. We applied our new terms

of the pion-nucleon Lagrangian to the neutron beta decay and evaluate their weak

form factors.

In order to obtain and simplify the radiative corrections to the weak form

factors we define

G̃ = G[1 +
α

4π
(eV − eA)] (7.1)

where eV and eA are the α-order corrections. The values of G’s correspond to the

physical value with short-range radiative corrections have been removed. From

Equation (6.48) to Equation (6.53), we get the radiative corrections for all weak

form factor as following:

Gr
V =

4π

α
e2F 2

0

[−g9 + 2(n2 + n3)
]

(7.2)

Gr
M =

4π

α
2e2F 2

0

[
2h38 + 2h39 − h78 − 2(s7 + s8)

]
(7.3)

Gr
S =

4π

α
mµe

2F 2
0

[−
√
2h67 + 2(s2 + s3)

]
(7.4)

Gr
A =

4π

α
e2F 2

0

[
g4 + g5 − 2(n7 + n8)

]
(7.5)

Gr
P =

2mNmµ

q2m2
π

e2
(4π
α

){[
F 2
0 (g4 + g5 − g11)− gA

(20
9
(k1 + k2 + k5 + k6)

+2k12 − 2

3
x1 − x2 + x3

)]}−4π

α
2mµe

2F 2
0 (s17 + s18) (7.6)
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Gr
T =

4π

α
2mNe

2F 2
0

[
4
√
2h50 − 2(s12 + s13)

]
(7.7)

From the result of weak form factors the interesting things happened when

we get non-zero GS and GT , which are corresponded to the second-class currents

and do not figure in the standard model.

From Equation (6.50) and Equation (6.53) we may conclude that the in-

duced scalar and induced tensor form factors come from the radiative corrections.

To date, there is no unambiguous evidence for the presence of second class currents

in nuclear beta decay, but it is nonetheless an interesting experimental challenge

to place limits on the possible presence of these second-class currents.

The induced scalar in the vector current is second class is zero by the

conserved vector current (CVC) hypothesis, we do not question that here. We

look for second-class effects by a finite value for the induced-tensor GT in the axial

current. An early estimate based on the dynamics of relativistic current quarks

(Halprin et al., 1976) gave:

GT ≈ (md −mu)/2mNω (7.8)

where ω is a single-quark energy of about 400 MeV and mN is the nucleon mass, so

that we might then expect GT ≈ 4× 10−6 MeV−1. More reliable estimation of GT

derived from the application of QCD sum rules to mu and md symmetry-breaking

which yields (Shiomi, 1996) GT = (1.0± 0.4)× 10−5 MeV−1.

If the LECs are in the natural order, the value of GT is estimated to be of

the order 10−7. This leads to an estimation of GT about 100 times smaller than

that of Ref. (Shiomi, 1996).
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APPENDICES



APPENDIX A

INFRARED REGULARIZATION OF BECHER

AND LEUTWYLER

The method of infrared regularization is based on dimensional regulariza-

tion and the analytic properties of loop integrals. It is applicable to one-loop

integral in the one-nucleon sector of ChPT. Consider the general integral

Hπ···N ···(q1, . . . , p1, . . .) = i

∫
dD

(2π)D
1

a1 · · · amb1 · · · bl , (A.1)

where ai = (k+ qi)
2 −m2

π + i0+ and bj = (k+ pj)
2 −m2

N + i0+ represent pion and

nucleon propagators, respectively, D is the number of space-time dimensions and

the masses mπ and mN refer to the lowest-order pion mass and the nucleon mass

in the chiral limit. One combine the pion propagators by using

1

a1 · · · am =

(
∂

∂m2
π

)(m−1) ∫ 1

0

dx1 · · ·
∫ 1

0

dxm−1
X

A
, (A.2)

with the numerator given by

X =





1 for m = 2,

x2(x3)
2 · · · (xm−1)

m−2 for m > 2,
(A.3)

and the recursion relation for the denominator

A = Am

A1 = a1

Ap+1 = xpAp + (1− xp)ap+1 (p = 1, . . . ,m− 1) (A.4)

The denominator A can be written as

A = (k + q̄)2 − Ā+ i0+, (A.5)
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where q̄ is a linear combination of the external momenta qi and Ā ia a constant.

We combine the nucleon propagators in the same way

1

b1 · · · bl =
(

∂

∂m2
N

)(l−1) ∫ 1

0

dy1 · · ·
∫ 1

0

dyl−1
Y

B
, (A.6)

where the numerator reads

Y =





1 for l = 2,

y2(y3)
2 · · · (yl − 1)l−2 for l > 2,

(A.7)

and the recursion relation for the denominator B is given by

B = Bl

B1 = b1

Bp+1 = ypBp + (1− yp)bp+1 (p = 1, . . . , l − 1) (A.8)

The result for the denominator is

B = (k + p̄)2 − B̄ + i0+, (A.9)

where p̄ is a linear combination of the external momenta pi. The two resulting

denominators can be combined by using the identity

1

AB
=

∫ 1

0

dz

[(1− z)A+ zB]2
, (A.10)

giving

Hπ···N ···(q1, . . . , p1, . . .) = i

(
∂

∂m2
π

)(m−1) (
∂

∂m2
N

)(l−1)

∫ 1

0

dz

∫ 1

0

dxi

∫ 1

0

dyiXY

∫
dDk

(2π)D
1

[(1− z)A+ zB]2

(A.11)

where

∫ 1

0

dxi =

∫ 1

0

dx1 · · ·
∫ 1

0

dxm−1,

∫ 1

0

dyi =

∫ 1

0

dy1 · · ·
∫ 1

0

dyl−1. (A.12)
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one obtains

Hπ···N ···(q1, . . . , p1, . . .) =
(−1)1−l−m

(4π)D/2
Γ(l +m− D

2
)

∫ 1

0

dzzl−1(1− z)m−1

∫ 1

0

dxi

∫ 1

0

dyiXY [f(z)](D/2)−l−m,

(A.13)

with

f(z) = p̄2z2 − (
p̄2 − B̄

)
z + Ā(1− z)− (

q̄2 − 2p̄ · q̄) z − i0+. (A.14)

The infrared regularization consists of the z integration as

∫ 1

0

dz . . . =

∫ ∞

0

dz · · · −
∫ ∞

1

dz · · · . (A.15)

The first term on the right-handed of Equation. A.15 is called the infrared singular

part I, and the second term is called the infrared regular part R,

Hπ···N ··· = Iπ···N ··· +Rπ···N ···, (A.16)

it can be written shortly

H = I +R. (A.17)

The infrared singular I satisfies power counting, while R contains terms that vi-

olate the power counting. In contrast to the infrared singular part the regular

part allows for an expansion in a Taylor series in the external momenta and the

quark masses. Therefore using an appropriate renormalization procedure one can

compensate these terms in the redefinition of the coupling constants and fields of

the most general Lagrangian. So the Green functions obtained from a one-loop

diagram separated into an infrared singular and regular part separately satisfy the

Ward identities of the theory. This guarantees that regular part can be combined

in the coupling constants and fields of the most general Lagrangian. If one re-

moves the regular part of the integral IπN , the resulting expression satisfies power
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counting. Note that I and R contain additional divergences which are not shown

in IπN therefore, these divergences have to be taken away.



APPENDIX B

LOOP INTEGRALS

We will define the general loop integral in d dimensions containing i pion

propagators and j nucleon propagators and corresponding to the momenta as in

Figure (B.1) as

Iππ...πNN...N [k1, k2, . . . , ki, p1, p2, . . . , pj, A]

= iµ4−d

∫
dd`

(2π)d
A

Dπ(k1) . . . Dπ(ki)DN(p1) . . . DN(pj)
(B.1)

Here µ is a scale factor and A is the numerator function, which may contain

anything. Dπ(k) = (` + k)2 − ◦
m

2

π + iε and DN(p) = (` + p)2 − m2
N + iε are the

pion and nucleon propagator denominators , respectively.
◦
m

2

π and mN are the

unrenormalized pion and nucleon masses appearing in the original Lagrangian.

The number of subscripts π and N correspond to the number of pion and nucleon

propagators, respectively.

` + p1 ` + p2 ` + pj

` + k1

` + k2

` + ki

pi
pf

Figure B.1 The general loop integral.
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