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When the effective viscosity of suspensions is modeled, the main gradient flow

u|∞ ' U +Gx,

is perturbed by the presence of spherical inclusions. Here U is the uniform stream,

G is the constant velocity gradient at infinity and x is a position vector. The

flow around a single sphere allows one to find the average contribution to the

effective viscosity within the first order with respect to the volume fractions of

the particulate phase. In order to obtain the second asymptotic order, one needs

to solve the problem of the flow around two non-equal spheres under constant

velocity gradient at infinity, which is a 3D problem.

In this study, the underlying symmetries of the flow are used, and the full

3D problem is reduced to five conjugated 2D problems. The simplest 2D problem

is formulated in terms of the stream function, which requires solving equation with

bi-Stokesian operator. Bi-spherical coordinates are used for which the boundaries

of the spheres are also coordinate surfaces. To solve the bi-Stokesian equations, a

fast spectral method based on Legendre polynomials is proposed with exponential
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convergence. The method of generating function is used for both Chebyshev and

associated Legendre polynomials and closed algebraic systems are obtained for the

systems under considerations.
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CHAPTER I

INTRODUCTION

The hydrodynamic behavior of solid particles or fluid drops moving in a

continuous medium at very small Reynolds numbers has a great importance for

investigations in the fields of chemical, biochemical, and environmental engineering

and science.

1.1 Previous research

The theoretical study of Stokes of the flow created by a translating rigid

sphere in a viscous fluid has been extended by Hadamard and Rybczynski to the

translation of a fluid sphere (droplet). In most practical applications, particles or

drops are not isolated. Rather they interact through the disturbances that they

introduce in the surrounding liquid. Hence, it is important to determine how the

presence of neighboring particles affects the motion of the fluid inside and outside

of droplets/particles, and determine their interaction. Estimating the effective

transport coefficients of heterogeneous media is of great importance for many

technological processes. The most typical examples of such media are suspensions,

in which the second (particulate) phase is comprised by spherical particles (the

filler) that are randomly dispersed throughout the continuous phase (the matrix).

The different transport problems that can be considered for a suspension are the

effective electric or heat conductivity, effective viscosity, effective elasticity.

The first successful attempt to estimate the effective electric conductivity

is due to Maxwell (1873) who compared the potential created by n spheres of
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radius a each to the potential of a sphere that encompasses the swarm of small

spheres and has an equivalent electric conductivity in the sense of yielding the

same potential at a large distance. Using this approach, Maxwell obtained the

contribution to the effective conductivity of first order with respect to the volume

fraction of the particulate phase. The same idea was applied by Einstein (1906) for

computing the first-order in volume fraction contribution to the effective viscosity

of a suspension. For the elastic moduli of a suspension, the same approach was

applied (Walpole, 1972).

Jeffrey (1973) argued that the method proposed by Maxwell can give cor-

rectly only the first order in the volume fraction and went on to discuss the statis-

tical properties of the centers of spheres. He extended the arguments of Batchelor

and Green (1972) and justified the conclusion that the second order approximation

in the volume fraction can be obtained only if the solution around two spheres is

obtained. A comprehensive review of the works on viscosity of suspensions can be

found by Herczynski and Pienkovska (1980).

The method of functional expansions (Volterra–Wiener series) with ran-

dom point basis function (RPF) for rigorous treatment of the statistical proper-

ties of materials with random structure has originated in (Christov, 1981). The

application to estimating the effective heat conduction modulus of monodisperse

suspension was presented in (Christov and Markov, 1985a), while the elastic mod-

uli were treated in (Christov and Markov, 1985b). After the generalization of the

RPF expansion to marked random point functions was outlined (Christov, 1985a),

the most general case of a polydisperse suspension of perfect disorder type became

amenable to the Volterra–Wiener method (Christov and Markov, 1985c). Nowa-

days, it can be considered as proven that the two-sphere solution does rigorously

lead to the second-order approximation with respect to the volume fraction as it
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gives precisely the second-order kernel in the formal Volterra-Wiener expansion.

Since the effective transport properties are aimed at, one needs to solve the two-

sphere problem under constant gradient of the main field at infinity. This defines

the main goal of the present thesis: to develop an efficient numerical tool for

solving the two-sphere problem.

A method to solve the Laplace equation, called currently “twin-pole ex-

pansion” (Jeffrey, 1973) was proposed by Hicks (1879). The method consists in

expanding the solution in spherical harmonics around two poles. This method was

used on numerous occasions.Its main advantage lies in the fact that the integrals

needed to compute the overall transport coefficients are easy to evaluate. For this

reason, Jeffrey (1973) went on to suggest that, in the context of the statistical

theory of suspension, the twin-pole expansion is superior to the method involv-

ing bi-spherical coordinates. This claim is not immediately verifyable because the

twin-pole expansion actually involves two levels of approximation: the first level

is the truncation of the Legendre series. The second level of approximation stems

from the fact that the functional coefficients of the series which depend on the

radial coordinate, cannot be found in closed form. Rather, the solution is sought

in asymptotic series with respect to the small parameter r/D, where r is the radius

of the bigger of the spheres, and D is the distance between their centers.

The procedure of asymptotic solution can be interpreted physically as

adding to the solution created by the boundary condition on one of the bound-

aries, a solution that is reflected from the other boundary. The procedure is also

known as the “method of reflections” (Happel and Brenner, 1983). It has been

successfully applied in various problems with two boundaries (e.g., for Stokes flow

around a sphere in a cylindrical pipe (Zimmerman, 2004)).

For the case of closely situated spheres when one of the radii is much greater
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than the other, the said parameter can actually tend to unity, which can make

the respective series very slowly convergent. The bi-spherical coordinates offer an

approach that is free of this limitation.

Without belittling the importance of the twin-pole expansion, a numerical

solution with controlled convergence is still in demand, if for no other reason, but

at least for estimating the region of convergence of the twin-pole expansion. The

approach based on bi-spherical coordinates gives the solution in closed form, albeit

in an infinite series with respect to the Legendre polynomials.

A successful numerical (e.g., spectral) solution is contingent on finding the

appropriate curvilinear coordinates in which the boundaries of the domain of the

solution are coordinate lines. The fact that the bi-spherical coordinates are the

best suited tool for solving a transport problem in a medium containing two spher-

ical solutions was first emphasized by Lord Kelvin. He was apparently the first to

introduce the bi-spherical coordinates in 1846 in a letter to Liouville (Thomson,

1884). The first detailed application of the bi-spherical coordinates for solving

the Laplace equation was given by G. B. Jeffery (1912) for the potential flow

around two spheres. The important difference here is that the flow stream has

a constant gradient at infinity. The situation with the two-particle problem is

much more complicated because of technical difficulties connected with the solu-

tion. Legendre et al. (2003), numerically solved the three dimensional flow past

two identical spherical bubbles moving side by side in a viscous fluid for Reynolds

number 0.02 ≤ Re ≤ 500 and calculated the drag and the lift forces. Similar

results were given by Kim et al. (1993), where the drag and the lift forces were

discussed for two rigid spheres placed in a uniform stream perpendicular to their

line of centers. Ardekani and Rangel (2006), studied the unsteady motion of two

solid spherical particles in an unbounded incompressible Newtonian flow, where
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the background flow can be time dependent. The application of the bi-spherical

coordinates to the heat conduction problem around two spheres with constant

gradient at infinity was studied by Christov (1985b), where the Legendre-series

method is worked out analytically but no numerical results were presented. An

important advance in that paper was the proposed effective way to reduce an es-

sentially 3D problem to a set of three 2D problems. The numerical results for

this case have recently been obtained by Chowdhury and Christov (2009). They

present the solutions for the temperature distribution with both longitudinal and

transverse gradients at infinity, and demonstrated the very fast convergence of the

Legendre-series method for problems of the type they considered.

1.2 Objectives and overview of the thesis

Due to the specific dimension of the particles and the intraparticle distances

(characteristic lengths) in suspensions, the particles can be considered as being

very small and their movements can be considered to be very slow. As a result of

these assumptions, the problems under consideration are, in fact, quasisteady, and

the explicit dependence on time can be neglected in the equations. In this study

we shall be interested in the problem of the gradient creeping (Stokes) flow around

two spheres. Following the gist of the works of Christov (1985b), and Chowdhury

and Christov (2009), we generalized the idea there, and succeeded in reducing the

original 3D problem to five 2D problems. This radically reduces the complexity

of the problem when treated numerically. Note that the flow of viscous liquid is

mathematically speaking significantly more complicated than the problem of heat

conduction, where the 3D problem was equivalent to just three 2D problems. The

five systems are one of the important contributions of the present work, and are

shown in Chapter III. The decision is made there to focus only on the first of
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the system derived there, and it is recast in bi-spherical coordinates in terms of

stream function.

In Chapter IV, the objective is to find a semi-analytical solution in Leg-

endre series for the stream function from the first of these systems. To make the

exposition self-contained and to facilitate the reader, the pertinent properties of

the Legendre polynomials are compiled in Chapter II. The important contribution

of Chapter IV is that for the first time in the literature, a Legendre series tech-

nique is applied for solving equation with bi-Stokesian operator. We show how

to obtain a closed system for the the unknown coefficients of the Legendre series

for the stream function by satisfying the boundary conditions which are expanded

into series with respect to associated Legendre polynomials. The chapter shows

how the algebraic systems for these boundary conditions are derived.

The method created in Chapter IV is implemented numerically in Chap-

ter V, and it is demonstrated that the theoretically expected exponential conver-

gence is splendidly confirmed by our numerical experiments. After the validations

performed in Chapter V, the method is judged to be reliable and very efficient,

and some specific preliminary result about the flow around two spheres are pre-

sented in Chapter VI for the stream lines of the flow. Finally, conclusions and

recommendation for the future research are provided in chapter VII.



CHAPTER II

LEGENDRE POLYNOMIALS

In this chapter we compile the necessary information on the Legendre poly-

nomials in order to make the presentation self-contained (Andrews, 1985).

We recall the binomial series

(1− u)−
1
2 =

∞∑
n=0

( −1
2

n

)
(−1)nun, |u| < 1. (2.1)

Upon setting u = t(2x− t), we find that

w(x, t) = (1− 2xt + t2)−
1
2 =

∞∑
n=0

( −1
2

n

)
(−1)ntn(2x− t)n, (2.2)

which is valid for |2xt − t2| < 1. For |t| < 1, it follows that |x| ≤ 1. The factor

(2x− t)n is simply a finite binomial series, and thus (2.2) can further be expressed

as

w(x, t) =
∞∑

n=0

( −1
2

n

)
(−1)ntn

n∑

k=0

(
n
k

)
(−1)k(2x)n−ktk or (2.3)

w(x, t) =
∞∑

n=0

n∑

k=0

( −1
2

n

)(
n
k

)
(−1)n+k(2x)n−ktn+k. (2.4)

Since our goal is to obtain a power series involving powers of t by a single index,

the change of indice n → n − k is suggested. Thus, Eq. (2.4) can be written in

the equivalent form

w(x, t) =
∞∑

n=0

{ [n/2]∑

k=0

( −1
2

n− k

)(
n− k

k

)
(−1)n(2x)n−2k

}
tn. (2.5)

The innermost summation in (2.5) is of finite length and therefore represents a

polynomial in x, which happens to be of degree n. If we denote this polynomial



8

by

Pn(x) =

[n/2]∑

k=0

( −1
2

n− k

)(
n− k

k

)
(−1)n(2x)n−2k, (2.6)

then Eq. (2.5) leads to the intended result

w(x, t) =
∞∑

n=0

Pn(x)tn, |x| ≤ 1, |t| < 1, (2.7)

where w(x, t) = (1 − 2xt + t2)−
1
2 . The polynomial Pn(x) are called the Legendre

polynomials in honor of their discoverer. Since

( −1
2

n

)
= (−1)n

(
n− 1

2
n

)
=

(−1)n(2n)!

22n(n!)2
, (2.8)

it follows that the product of binomial coefficients is

( −1
2

n− k

)(
n− k

k

)
=

(−1)n−k(2n− 2k)!

22n−2k(n− k)!k!(n− 2k)!
, (2.9)

and hence

Pn(x) =

[n/2]∑

k=0

(−1)k(2n− 2k)!xn−2k

2n(n− k)!k!(n− 2k)!
(2.10)

We note here that when n is an even number, the polynomial Pn(x) is an even

function, and when n is odd the polynomial is an odd function. Therefore,

Pn(−x) = (−1)nPn(x), n = 0, 1, 2, ... (2.11)

2.1 Basic properties of Pn(x)

The Legendre polynomials are rich in recurrence relations and identities.

Central to the development of many of these is the generating function relation

(1− 2xt + t2)−
1
2 =

∞∑
n=0

Pn(x)tn, |x| ≤ 1, |t| < 1. (2.12)

In order to obtain the desired recurrence relations, we observe that the function

w(x, t) = (1− 2xt + t2)−
1
2 satisfies the differential equation

(1− 2xt + t2)
∂w

∂t
+ (t− x)w = 0. (2.13)
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Direct substitution of the series (2.7) for w(x, t) into (2.13) yields

(1− 2xt + t2)
∞∑

n=0

nPn(x)tn−1 + (t− x)
∞∑

n=0

Pn(x)tn = 0. (2.14)

After algebraic manipulations, one obtains

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0, (2.15)

where n = 1, 2, 3, ...

A relation involving derivatives of the Legendre polynomials can be derived

in the same fashion by first making the observation that w(x, t) satisfies

(1− 2xt + t2)
∂w

∂t
− tw = 0, (2.16)

where this time the differentiation is with respect to x. Substituting the series for

w(x, t) directly into (2.16) leads to

(1− 2xt + t2)
∞∑

n=0

P ′
n(x)tn −

∞∑
n=0

Pn(x)tn+1 = 0. (2.17)

After rearrangement, we get

P ′
n+1(x)− 2xP ′

n(x) + P ′
n−1(x)− Pn(x) = 0, (2.18a)

P ′
n+1(x)− xP ′

n(x) = (n + 1)Pn(x), (2.18b)

xP ′
n(x)− P ′

n−1(x) = nPn(x), (2.18c)

(1− x2)P ′
n(x) = nPn−1(x)− nxPn(x), (2.18d)

where n = 1, 2, 3, ...

All the recurrence relations that have been derived thus far involve succes-

sive Legendre polynomials. We may well wonder if any relation exists between

derivatives of the Legendre polynomials and Legendre polynomials of the same in-

dex. The answer is in the affirmative, but to derive this relation we must consider

second derivatives of the polynomials.
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By taking the derivative of both sides of (2.18d), we get

d

dx

[
(1− x2)P ′

n(x)
]

= nP ′
n−1(x)− nPn(x)− nxP ′

n(x), (2.19)

and then, using (2.18c) to eliminate P ′
n−1(x), we arrive at the derivative relation

d

dx

[
(1− x2)P ′

n(x)
]

+ n(n + 1)Pn(x) = 0, (2.20)

which holds for n = 0, 1, 2, ....

Expanding the product term in (2.20) yields

(1− x2)P
′′
n (x)− 2xP ′

n(x) + n(n + 1)Pn(x) = 0, (2.21)

and thus we deduce that the Legedre polynomial y = Pn(x) (n = 0, 1, 2, ...) is a

solution of the linear second order DE

(1− x2)y
′′ − 2xy′ + n(n + 1)y = 0, (2.22)

which is called Legendre’s differential equation.

Perhaps the most natural way in which Legendre polynomials arise in ap-

plications is in their virtue of being the solutions of Legendre’s equation. In such

problems the basic model is generally a partial differential equation. Solving the

partial DE by the separation of variables leads to a system of ODEs, and some-

times one of these is Legendre’s ODE, Eq. (2.22).

The first few Legendre polynomials are listed in Table 2.1. The graphs of

Pn(x), n = 0, 1, 2, 3, 4, 5 are sketched in Fig. 2.1

A representation of the Legendre polynomials involving differentiation is

given by the Rodrigues formula

Pn(x) =
1

2nn!

dn

dxn

[
(x2 − 1)n

]
, n = 0, 1, 2, . . . . (2.23)

In order to verify (2.23), we start with the binomial series

(x2 − 1)n =
n∑

k=0

(−1)kn!

k!(n− k)!
x2n−2k, (2.24)
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P0(x) = 1

P1(x) = x

P2(x) = 1
2
(−1 + 3x2)

P3(x) = 1
2
(−3x + 5x3)

P4(x) = 1
8
(3− 30x2 + 35x4)

P5(x) = 1
8
(15x− 70x3 + 63x5)

P6(x) = 1
16

(−5 + 105x2 − 315x4 + 231x6)

P7(x) = 1
16

(−35x + 315x3 − 693x5 + 429x7)

P8(x) = 1
128

(35− 1260x2 + 6930x4 − 12012x6 + 6435x8)

Table 2.1 Legendre polynomials Pn(x)

and differentiate n times. Noting that

dn

dxn
xm =





m!
(m−n)!

xm−n, n ≤ m

0, n > m

(2.25)

we infer that

dn

dxn

[
(x2 − 1)n

]
=

[n/2]∑

k=0

(−1)kn!(2n− 2k)!

k!(n− k)!(n− 2k)!
xn−2k = 2nn!Pn(x) (2.26)

from which Eq.(2.23) now follows.

The orthogonality property for Legendre polynomials is

1∫

−1

Pn(x)Pm(x)dx =





0, n 6= m

2
2n+1

, n = m

(2.27)

The theorem for convergence of Legendre series is given by (see Andrews (1985))

Theorem 2.1. If the function f is piecewise smooth in the closed interval −1 ≤
x ≤ 1, then the Legendre series

f(x) =
∞∑

k=0

ckPk(x) , ck = (k +
1

2
)

∫ 1

−1

f(x)Pk(x)dx, (2.28)
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Figure 2.1 Graph of Pn(x), n = 0, 1, 2, 3, 4, 5

converges pointwise to f(x) at every continuity point of the function f in the

interval −1 < x < 1. At points of discontinuity of f in the interval −1 < x < 1,

the series converges to the average values 1
2
[f(x+) + f(x−)]. Finally, at x = −1

the series converges to f(−1+), and at x = 1 it converges to f(1−)

2.2 Associated Legendre polynomials

In applications involving either the Laplace or the Helmholtz equation in

spherical, oblate spheroidal, or prolate spheroidal coordinates, it is not Legendre’s

equation that ordinarily arises but rather the associated Legendre equation

(1− x2)y
′′ − 2xy′ +

[
n(n + 1)− m2

1− x2

]
y = 0. (2.29)

Observe that for m = 0, (2.29) reduces to Legendre’s equation. The DE (2.29)

and its solutions, called associated Legendre functions, can be developed directly

from Legendre’s equation and its solutions.

If z is a solution of Legendre’s equation, i.e. if

(1− x2)z
′′ − 2xz′ + n(n + 1)z = 0, (2.30)
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then

y = (−1)m(1− x2)
m
2

dm

dxm
z, (2.31)

is a solution of (2.29).

We define the associated Legendre functions by

P (m)
n (x) = (−1)m(1− x2)

m
2

dm

dxm
Pn(x) , m = 0, 1, 2, ..., n. (2.32)

The first few associated Legendre polynomials P
(1)
n (x) are listed in Table

2.2 The graphs of P
(1)
n (x), n = 1, 2, 3, 4, 5 are sketched in Fig. 2.2

P
(1)
1 (x) = −(1− x2)

1
2

P
(1)
2 (x) = −3x(1− x2)

1
2

P
(1)
3 (x) = −3

2
(1− x2)

1
2 (−1 + 5x2)

P
(1)
4 (x) = −5

2
(1− x2)

1
2 (−3x + 7x3)

P
(1)
5 (x) = −15

8
(1− x2)

1
2 (1− 14x2 + 21x4)

P
(1)
6 (x) = −21

8
(1− x2)

1
2 (5x− 30x3 + 33x5)

P
(1)
7 (x) = − 7

16
(1− x2)

1
2 (−5 + 135x2 − 495x4 + 429x6)

P
(1)
8 (x) = − 9

16
(1− x2)

1
2 (−35x + 285x3 − 1001x5 + 715x7)

Table 2.2 Associated Legendre polynomials P
(1)
n (x)

2.3 Basic properties of P
(m)
n (x)

Using the Rodrigues formula (2.23), it is possible to write (2.32) in the form

P (m)
n (x) =

(−1)m

2nn!
(1− x2)

m
2

dn+m

dxn+m

[
(x2 − 1)n

]
. (2.33)

Here we make the interesting observation that the right hand side of (2.33) is well

defined for all values of m such that n + m ≥ 0, i.e., for m ≥ −n, whereas (2.32)
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Figure 2.2 Graph of P
(1)
n (x), n = 1, 2, 3, 4, 5

is valid only for m ≥ 0. Thus, (2.33) may be used to extend the definition of

P
(m)
n (x) to include all integer values of m such that −n ≤ m ≤ n (If m > n, then

necessarily P
(m)
n (x) ≡ 0, which we leave to the reader to prove). The functions for

negative n are defined by P
(m)
−n = P

(m)
n−1. Moreover, using the Leibniz formula

dm

dxm
(fg) =

m∑

k=0




m

k


 dm−kf

dxm−k

dkg

dxk
, m = 1, 2, 3, . . . , (2.34)

it can be shown that

P (−m)
n (x) = (−1)m (n−m)!

(n + m)!
P (m)

n (x). (2.35)

Lastly, we note that for m = 0 we get the special case

P (0)
n (x) = Pn(x). (2.36)

The associated Legendre functions P
(m)
n (x) satisfy many recurrence rela-

tions, several of which are generalizations of the recurrence formulas for Pn(x).

But because P
(m)
n (x) has two indices instead of just one, there exists a wider

variety of possible relations than for Pn(x). To derive the three-term recurrence
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formula for P
(m)
n (x), we start with the known relation

(n + 1)Pn+1(x)− (2n + 1)xPn(x) + nPn−1(x) = 0. (2.37)

Upon differentiating the last expression m times, and using the recurrence relations

from the previous section one gets

(n−m + 1)P
(m)
n+1(x)− (2n + 1)xP (m)

n (x) + (n + m)P
(m)
n−1(x) = 0. (2.38)

Additional recurrence relations include the following

(1− x2)P ′(m)
n (x) = (n + m)P

(m)
n−1(x)− nxP (m)

n (x), (2.39)

(1− x2)P ′(m)
n (x) = (n + 1)xP (m)

n (x)− (n−m + 1)xP
(m)
n+1(x), (2.40)

(1− x2)
1
2 P (m)

n (x) =
1

2n + 1

[
P

(m+1)
n+1 (x)− P

(m+1)
n−1 (x)

]
, (2.41)

(1− x2)
1
2 P (m)

n (x) =
1

2n + 1

[
(n + m)(n + m− 1)P

(m−1)
n−1 (x),

− (n−m + 1)(n−m + 2)P
(m−1)
n+1 (x)

]
, (2.42)

P (m+1)
n (x) = 2mx(1− x2)−

1
2 P (m)

n (x)

− [n(n + 1)−m(m− 1)]P (m−1)
n (x), (2.43)

(1− x2)1/2P
(m+1)
l (x) = (l −m)xP (m)

n (x)− (n + m)P
(m)
n−1(x), (2.44)

(x2 − 1)P (m)′
n (x) = lxP (m)

n (x)− (n + m)P
(m)
n−1(x), (2.45)

(x2 − 1)P (m)′
n (x) = −(n + m)(n−m + 1)(1− x2)1/2P (m−1)

n (x)

−mxP (m)
n (x). (2.46)

The generating function for P
(m)
n (x) is

(1− x2)
m
2

(1− 2tx + t2)m+1/2
=

(−1)m2mm!

(2m)!

∞∑
n=0

tnP
(m)
n+m(x)tn , |x| < 1, |t| < 1. (2.47)

The orthogonality of associated Legendre polynomials can be shown that

1∫

−1

P (m)
n (x)P

(m)
k (x)dx = 0, k 6= n, (2.48)
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and
1∫

−1

[P (m)
n (x)]2dx =

2(n + m)!

(2n + 1)(n−m)!
. (2.49)

Moreover, it can be shown that

1∫

−1

P
(m)
n (x)P

(k)
n (x)

1− x2
dx =





0, k 6= m,

(n+m)!
m(n−m)!

, k = m 6= 0,

∞ , k = m = 0.

(2.50)

2.4 Chebyshev Polynomials of the Second Kind

Chebyshev polynomials of the second kind of degree n are denoted by Un.

They are the solutions to the Chebyshev differential equation:

(1− x2)y
′′ − 3xy′ + n(n + 2)y = 0. (2.51)

In general, a series solution about the origin will only converge for |x| < 1, when

n is an integer. The first few Chebyshev polynomials of the second kind are listed

in Table 2.3. The graphs of Un(x), n = 0, 1, 2, 3, 4, 5 are sketched in Fig. 2.3

U0(x) = 1

U1(x) = 2x

U2(x) = −1 + 4x2

U3(x) = −4x + 8x3

U4(x) = 1− 12x2 + 16x4

U5(x) = 6x− 32x3 + 32x5

U6(x) = −1 + 24x2 − 80x4 + 64x6

U7(x) = −8x + 80x3 − 192x5 + 128x7

Table 2.3 Chebyshev polynomials Un(x)
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Figure 2.3 Graph of Un(x), n = 0, 1, 2, 3, 4, 5

2.5 Basic properties of Un(x)

Rodrigues’s Formula for Un(x) reads

Un(x) =
(−1)n(n + 1)

√
π

2n+1(n + 1
2
)!(1− x2)

1
2

dn

dxn
(1− x2)n+ 1

2 . (2.52)

The polynomials can also be defined in term of the sum

Un(x) =

[n/2]∑
r=0

(−1)r
(

n− r
r

)
(2x)n−2r, (2.53)

and they satisfy the orthogonality condition

1∫

−1

Un(x)Um(x)(1− x2)
1
2 dx =





0, n 6= m

π
2
, n = m.

(2.54)

The generating function for Un is

1

1− 2tx + t2
=

∞∑
n=0

Un(x)tn , |x| < 1, |t| < 1. (2.55)

The Chebyshev polynomials Un(x) of the second kind satisfy many recur-
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rence relations. The list here those that are pertinents to the present work:

2xUn(x) = Un+1(x) + Un−1(x), (2.56)

U ′
n+1(x) + U ′

n−1(x) = 2xU ′
n(x) + 2Un(x), (2.57)

(1− x2)U ′
n(x) = −nxUn(x) + (n + 1)Un−1(x), (2.58)

(1− x2)U
′′
n (x) = 3xU ′

n(x)− n(n + 2)Un(x). (2.59)



CHAPTER III

REDUCTION OF THE 3-DIMENSIONAL

B.V.P. TO FIVE 2-DIMENSIONAL B.V.P.’S

One of the crucial elements of the present work is the reduction of the

original 3D problem for the gradient flow around two spheres to five 2D problems.

In order to elucidate the main idea, we will demonstrate the idea of reduction in

terms of cylindrical coordinates, and only when the 2D problems are obtained we

will move from cylindrical to bi-spherical coordinates.

3.1 Statement of the problem

Consider two rigid spheres of generally unequal radii ri, i = 1, 2 suspended

in an incompressible fluid of kinematic viscosity ν. The centers of spheres are

laid on the z−axis, and the distances of sphere centers from the origin are d1 and

d2, respectively. Assuming creeping flow (very low Reynolds number), one can

use the linear Stokes equations instead of the full Navier-Stokes equations. The

boundary conditions include the non-slip condition on the sphere’s boundaries,

and the requirement for a constant velocity gradient at infinity. A sketch of the

problem is shown in Figure 3.1.

The Stokes equations read

∇p = ν∇2u, x ∈ Ω, (3.1a)

∇ · u = 0, x ∈ Ω (3.1b)
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Figure 3.1 Gradient flow around two spheres

The boundary conditions on the spheres are

u|Γ = 0, (3.2a)

here Γ is the composite boundary of the two inclusions (spheres), Ω is the region

exterior to the spheres. The flow of interest here is the one with constant gradient

at infinity, namely

u|x→∞ = U +Gx, (3.2b)

where U is the constant velocity at infinity, while the tensor of the velocity

gradient at infinity is denoted by G. In the above formula we use the notations x

for the position vector, and u for the velocity vector, namely

x =




x

y

z




, u =




ux

uy

uz




, U =




U (x)

U (y)

U (z)




, G =




G11 G12 G13

G21 G22 G23

G31 G32 G33




. (3.3)

For the components of the velocity, the asymptotic boundary conditions
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read

ux = U (x) + G11x + G12y + G13z, (3.4a)

uy = U (y) + G21x + G22y + G23z, (3.4b)

uz = U (z) + G31x + G32y + G33z. (3.4c)

Eqs. (3.1) can be written for the perturbation

v = u− Ũ, (3.5)

where Ũ = U +Gx, the velocity at infinity. Then

∇p = ν∇2v, x ∈ Ω, (3.6a)

∇ · v = 0, x ∈ Ω, (3.6b)

with boundary conditions

v|Γ = −Ũ|Γ, (3.7a)

v|x→∞ = 0. (3.7b)

Note that the incompressibility condition imposes the following restriction

on the components of the velocity gradient at infinity: G11 + G22 + G33 = 0.

3.2 Acknowledging the Symmetry of Boundary Conditions

The important difference between the considered problem and other similar

studies is that the flow at infinity has a constant velocity gradient. This makes

the problem three dimensional. Cases of two spheres in a uniform free stream are

considered by many authors. An effective way to take advantage of the linearity of

the problem when dealing with the boundary conditions was proposed in Christov
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(1985) for the case of the temperature distribution around two spheres with a

constant gradient at infinity. The gist of that method is to take advantage of the

fact that there is no explicit dependence on the polar angle in the Laplace equation

(what is called a ‘cyclic variable’), and the authors presented the sought solution

as a linear combination of Fourier functions of the polar angle as dictated only

by the boundary conditions. We generalize this idea to our case. The essential

difference in our case is that there are five functions of the polar coordinates that

enter the boundary conditions.

Let us first render Eqs. (3.6) into cylindrical coordinates (r, φ, z)∗

x = r cos φ, y = r sin φ, z = z, (3.8)

where r ≥ 0 , φ ∈ [0, 2π] , z ∈ (−∞,∞). Then Eqs. (3.6) adopt the form

ν
[ ∂

∂r

1

r

∂

∂r
rvr +

1

r2

∂2vr

∂φ2
− 2

r2

∂vφ

∂φ
+

∂2vr

∂z2

]
=

1

ρ

∂p

∂r
, (3.9a)

ν
[ ∂

∂r

1

r

∂

∂r
rvφ +

1

r2

∂2vφ

∂φ2
+

2

r2

∂vr

∂φ
+

∂2vφ

∂z2

]
=

1

ρr

∂p

∂φ
, (3.9b)

ν
[1

r

∂

∂r
r
∂vz

∂r
+

1

r2

∂2vz

∂φ2
+

∂2vz

∂z2

]
=

1

ρ

∂p

∂z
, (3.9c)

1

r

∂

∂r
rvr +

1

r

∂vφ

∂φ
+

∂vz

∂z
= 0, (3.9d)

where vr, vφ, vz are the velocity components in terms of the cylindrical coordinates

vr = vx cos φ + vy sin φ, vφ = −vxr sin φ + vyr cos φ, vz = vz. (3.10)

In terms of the cylindrical coordinates, the boundary conditions on the sphere

surfaces can be recast as follows

vr|Γ = −(G11 + G22)
r

2
− (U (x) + G13z) cos φ− (U (y) + G23z) sin φ

− (G11 −G22)
r

2
cos 2φ + (G12 + G21)

r

2
sin 2φ, (3.11a)

∗For details, see appendix A
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vφ|Γ = −(G21 −G12)
r

2
− (U (y) + G23z) cos φ + (U (x) + G13z) sin φ

− (G21 + G12)
r

2
cos 2φ− (G22 −G11)

r

2
sin 2φ, (3.11b)

vz|Γ = −(U (z) + G33z)−G31r cos φ−G32r sin φ. (3.11c)

Recall that at infinity we have vr = vφ = vz = 0 and that the variable φ is a cyclic

variable, i.e., it does not enter the coefficients of equations (3.9). This means that

the symmetry of the boundary conditions is entirely defined by Eqs. (3.11), which

hints at the idea that one can seek the solutions of the 3D problems in the form

of the following linear combinations

vr(r, φ, z) = v(0)
r (r, z) + v(1)

r (r, z) cos φ + v(2)
r (r, z) sin φ + v(3)

r (r, z) cos 2φ

+ v(4)
r (r, z) sin 2φ, (3.12a)

vz(r, φ, z) = v(0)
z (r, z) + v(1)

z (r, z) cos φ + v(2)
z sin φ + v(3)

z (r, z) cos 2φ

+ v(4)
z (r, z) sin 2φ, (3.12b)

vφ(r, φ, z) = v
(0)
φ (r, z) + v

(1)
φ (r, z) cos φ + v

(2)
φ (r, z) sin φ + v

(3)
φ (r, z) cos 2φ

+ v
(4)
φ (r, z) sin 2φ, (3.12c)

p(r, φ, z) = p(0)(r, z) + p(1)(r, z) cos φ + p(2)(r, z) sin φ + p(3)(r, z) cos 2φ

+ p(4)(r, z) sin 2φ. (3.12d)

Since the Stokes equations are linear and the functions 1, cos φ, sin φ, cos 2φ

and sin 2φ are linearly independent, the 3D governing equations (3.9) naturally

split into the following five conjugated 2D problems.
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System 1.

1

ρ

∂p(0)

∂r
= ν

[ ∂

∂r

1

r

∂

∂r
rv(0)

r +
∂2v

(0)
r

∂z2

]
, (3.13a)

1

ρ

∂p(0)

∂z
= ν

[1

r

∂

∂r
r
∂v

(0)
z

∂r
+

∂2v
(0)
z

∂z2

]
, (3.13b)

0 = ν
[ ∂

∂r

1

r

∂

∂r
rv

(0)
φ +

∂2v
(0)
φ

∂z2

]
, (3.13c)

0 =
1

r

∂

∂r
rv(0)

r +
∂v

(0)
z

∂z
. (3.13d)

System 2.

1

ρ

∂p(1)

∂r
= ν

[ ∂

∂r

1

r

∂

∂r
rv(1)

r − 1

r2
v(1)

r − 2

r2
v

(2)
φ +

∂2v
(1)
r

∂z2

]
, (3.14a)

1

ρ

∂p(1)

∂z
= ν

[1

r

∂

∂r
r
∂v

(1)
z

∂r
− 1

r2
v(1)

z +
∂2v

(1)
z

∂z2

]
, (3.14b)

p(2)

ρr
= ν

[ ∂

∂r

1

r

∂

∂r
rv

(1)
φ − 1

r2
v

(1)
φ +

2

r2
v(2)

r +
∂2v

(1)
φ

∂z2

]
, (3.14c)

0 =
1

r

∂

∂r
rv(1)

r +
∂v

(1)
z

∂z
+

1

r
v

(2)
φ . (3.14d)

System 3.

1

ρ

∂p(2)

∂r
= ν

[ ∂

∂r

1

r

∂

∂r
rv(2)

r − 1

r2
v(2)

r +
2

r2
v

(1)
φ +

∂2v
(2)
r

∂z2

]
, (3.15a)

1

ρ

∂p(2)

∂z
= ν

[1

r

∂

∂r
r
∂v

(2)
z

∂r
− 1

r2
v(2)

z +
∂2v

(2)
z

∂z2

]
, (3.15b)

−p(1)

ρr
= ν

[ ∂

∂r

1

r

∂

∂r
rv

(2)
φ − 1

r2
v

(2)
φ − 2

r2
v(1)

r +
∂2v

(2)
φ

∂z2

]
, (3.15c)

0 =
1

r

∂

∂r
rv(2)

r +
∂v

(2)
z

∂z
− 1

r
v

(1)
φ . (3.15d)
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System 4.

1

ρ

∂p(3)

∂r
= ν

[ ∂

∂r

1

r

∂

∂r
rv(3)

r − 4

r2
v(3)

r − 4

r2
v

(4)
φ +

∂2v
(3)
r

∂z2

]
, (3.16a)

1

ρ

∂p(3)

∂z
= ν

[1

r

∂

∂r
r
∂v

(3)
z

∂r
− 4

r2
v(3)

z +
∂2v

(3)
z

∂z2

]
, (3.16b)

2p(4)

ρr
= ν

[ ∂

∂r

1

r

∂

∂r
rv

(3)
φ − 4

r2
v

(3)
φ +

4

r2
v(4)

r +
∂2v

(3)
φ

∂z2

]
, (3.16c)

0 =
1

r

∂

∂r
rv(3)

r +
∂v

(3)
z

∂z
+

2

r
v

(4)
φ . (3.16d)

System 5.

1

ρ

∂p(4)

∂r
= ν

[ ∂

∂r

1

r

∂

∂r
rv(4)

r − 4

r2
v(4)

r +
4

r2
v

(3)
φ +

∂2v
(4)
r

∂z2

]
, (3.17a)

1

ρ

∂v(4)

∂z
= ν

[1

r

∂

∂r
r
∂v

(4)
z

∂r
− 4

r2
v(4)

z +
∂2v

(4)
z

∂z2

]
, (3.17b)

−2p(3)

ρr
= ν

[ ∂

∂r

1

r

∂

∂r
rv

(4)
φ − 4

r2
v

(4)
φ − 4

r2
v(3)

r +
∂2v

(4)
φ

∂z2

]
, (3.17c)

0 =
1

r

∂

∂r
rv(4)

r +
∂v

(4)
z

∂z
− 2

r
v

(3)
φ . (3.17d)

The above systems can be written in compact form as

1

ρ

∂p(j)

∂r
= ν

[ ∂

∂r

1

r

∂

∂r
rv(j)

r +
∂2v

(j)
r

∂z2
− βj

r2
v(j)

r − δj

r2
v

(j−(−1)j)
φ

]
, (3.18a)

1

ρ

∂p(j)

∂z
= ν

[1

r

∂

∂r
r
∂v

(j)
z

∂r
+

∂2v
(j)
z

∂z2
− βj

r2
v(j)

z

]
, (3.18b)

δj

2

p(j−(−1)j)

ρr
= ν

[ ∂

∂r

1

r

∂

∂r
rv

(j)
φ +

∂2v
(j)
φ

∂z2
− βj

r2
v

(j)
φ +

δj

r2
v(j−(−1)j)

r

]
, (3.18c)

0 =
1

r

∂

∂r
rv(j)

r +
∂v

(j)
z

∂z
+

δj

2r
v

(j−(−1)j)
φ , (3.18d)

where j = 0, 1, 2, 3, 4 and

βj =





0 j = 0

1 j = 1, 2

4 j = 3, 4

, δj =





0 j = 0

(−1)j+12 j = 1, 2

(−1)j+14 j = 3, 4

.
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The boundary conditions for v
(j)
r , v

(j)
φ and v

(j)
z are easily derived from (3.11)

and (3.12). Thus, we have reduced the original 3D problem to five 2D problems,

which significantly reduces the complexity of the problem.

We point out here that System 1 is uncoupled from the other four systems.

Systems 2 and 3 are coupled with each other, but uncoupled from the other sys-

tems. Thus we can solve these systems together by suitable numerical method.

Systems 4 and 5 can be treated as Systems 2 and 3 provided the solution of the

latter is already know.

In this dissertation we focus on creating an efficient spectral technique for

solving the boundary value problem for System 1.

3.3 Stream Function Formulation for System 1

The component v
(0)
φ satisfies an elliptic equation and v

(0)
φ ≡ 0 in the case

G12 = G21. The three equations (3.13a), (3.13b) and (3.13d) for v
(0)
r , v

(0)
z and p(0)

are the 2D incompressible Stokes equations with radial symmetry ( no dependence

on the variable φ). Then it is possible to introduce stream function. We rewrite

the momentum equations of System 1 as follows

1

ρ

∂p(0)

∂r
= ν

[∂2v
(0)
r

∂r2
+

1

r

∂v
(0)
r

∂r
− v

(0)
r

r2
+

∂2v
(0)
r

∂z2

]
, (3.19a)

1

ρ

∂p(0)

∂z
= ν

[∂2v
(0)
z

∂r2
+

1

r

∂v
(0)
z

∂r
+

∂2v
(0)
z

∂z2

]
. (3.19b)

The stream function ψ is introduced the standard way:

v(0)
r =

∂ψ

∂z
, v(0)

z = −1

r

∂rψ

∂r
. (3.20)

Upon substituting the above expression for v
(0)
r and v

(0)
z in (3.19a), we obtain

1

ρ

∂p(0)

∂r
= ν

[ ∂3ψ

∂r2∂z
+

1

r

∂2ψ

∂r∂z
− 1

r

∂ψ

∂z
+

∂3ψ

∂z3

]
. (3.21)
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Differentiating with respect to z , gives us

1

ρ

∂2p(0)

∂r∂z
= ν

[ ∂4ψ

∂r2∂z2
+

1

r

∂3ψ

∂r∂z2
− 1

r

∂2ψ

∂z2
+

∂4ψ

∂z4

]
. (3.22)

Consider (3.19b) in the same manner:

1

ρ

∂p(0)

∂z
= −ν

[ ∂2

∂r2
(
1

r

∂rψ

∂r
) +

1

r

∂

∂r
(
1

r

∂rψ

∂r
) +

∂2

∂z2
(
1

r

∂rψ

∂r
)
]
. (3.23)

Differentiating the latter with respect to r gives

1

ρ

∂2p(0)

∂r∂z
= −ν

∂

∂r

[ ∂2

∂r2
(
1

r

∂rψ

∂r
) +

1

r

∂

∂r
(
1

r

∂rψ

∂r
) +

∂2

∂z2
(
1

r

∂rψ

∂r
)
]
. (3.24)

Now, subtracting (3.24) from (3.22), we get

0 = ν
[ ∂

∂r

1

r

∂

∂r
r

∂

∂r

1

r

∂

∂r
rψ + 2(

∂

∂r

1

r

∂

∂r
r)

∂2

∂z2
ψ +

∂4ψ

∂z4

]
. (3.25)

We introduce the notations

F 2 =
∂

∂r

1

r

∂

∂r
r and D2

z =
∂2

∂z2
,

and define the Stokesian operator as

E2 = F 2 + D2
z

def
=

∂

∂r

1

r

∂

∂r
r +

∂2

∂z2
. (3.26)

Then the equation for the stream function Eq. (3.25) adopts the form

(E2)2ψ = 0, (3.27)

where (3.27) can be called the bi-Stokesian equation in an analogy of biharmonic

equation, in which the Laplace operator is applied twice.

3.4 Bi-Stokesian Equation in Bi-Spherical Coordinates

At this junction we will introduce the bi-spherical coordinates, because as

already mentioned they give a decisive advantage in the problem when the bound-

ary involves two spheres. In the bi-spherical coordinate system, both boundaries

of the rigid spheres can be represented as coordinate surfaces.
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We introduce the bi-spherical coordinates (ξ, φ′, η) via their connection to

cylindrical coordinates (r, φ, z) namely

r =
a sin ξ

cosh η − cos ξ
, φ′ = φ, z =

a sinh η

cosh η − cos ξ
, (3.28)

where the constant a is called focal distance. Substituting into (3.8), gives us

x =
a sin ξ cos φ

cosh η − cos ξ
, y =

a sin ξ sin φ

cosh η − cos ξ
, z =

a sinh η

cosh η − cos ξ
. (3.29)

The coordinates (ξ, φ, η) vary in the interval [0, π], [0, 2π] and [η1, η2], respectively.

Surfaces of constant η are given by the spheres

x2 + y2 + (z − a coth η)2 = a2 csch2 η. (3.30)

Surfaces of constant ξ by the apples (ξ <
π

2
) or lemons (ξ >

π

2
)

z2 + (
√

x2 + y2 − a cot ξ)2 = a2 csc2 ξ. (3.31)

Finally, surface of constant φ by the half-planes

tan φ =
y

x
. (3.32)

A sketch of the bi-spherical coordinate system is shown in Figure 3.2. The spheres’

radii r1 and r2, and the distance of their centers d1 and d2 from the origin are

computed by using the following relations

ri = a csch|ηi| , di = a coth |ηi|. (3.33)

The center to center distance between the spheres is d = d1 + d2. If r1, r2 and d

are given, we can find a, η1 and η2 as follows

a =

√
d 4 − 2d 2(r2

1 + r2
2) + (r2

1 − r2
2)

2

2 d
, (3.34)

η1 = − ln
( a

r1

+

√
a2

r2
1

+ 1
)

= −arcsinh
a

r1

, (3.35)

η2 = ln
( a

r2

+

√
a2

r2
2

+ 1
)

= arcsinh
a

r2

. (3.36)
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Y

Z

a a

ξ=π/2

ξ=π/4

ξ=π/6

ξ=3π/2

ξ=7π/4

ξ=11π/6

η=2 η=1 η=0.5η=−2η=−1η=−0.5

X

φ

Figure 3.2 Sketch of bi-spherical coordinates (ξ, η, φ).

Now, for the Stokesian differential operator we get the obvious rendition

E2 =
∂

∂r

1

r

∂

∂r
r +

∂2

∂z2
=

∂2

∂r2
+

1

r

∂

∂r
− 1

r2
+

∂2

∂z2
. (3.37)

The connection Eq. (3.28) between the polar and the bi-spherical coordi-

nates can be differentiate to obtain

∂

∂r
=

∂ξ

∂r

∂

∂ξ
+

∂η

∂r

∂

∂η
,

∂

∂z
=

∂ξ

∂z

∂

∂ξ
+

∂η

∂z

∂

∂η
, (3.38)

and

∂

∂r
=

cos ξ cosh η − 1

a

∂

∂ξ
− sin ξ sinh η

a

∂

∂η
, (3.39a)

∂

∂z
= −sin ξ sinh η

a

∂

∂ξ
− cos ξ cosh η − 1

a

∂

∂η
. (3.39b)
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Respectively, for the second derivatives we get

∂2

∂r2
=

(cos ξ cosh η − 1

a

)2 ∂2

∂ξ2
+

(sin ξ sinh η

a

)2 ∂2

∂η2
(3.40a)

− 2
(cos ξ cosh η − 1

a

)(sin ξ sinh η

a

) ∂2

∂ξ∂η

−
[(cos ξ cosh η − 1

a

)(sin ξ cosh η

a

)
+

(sin ξ sinh η

a

)(cos ξ sinh η

a

)] ∂

∂ξ

−
[(cos ξ cosh η − 1

a

)(cos ξ sinh η

a

)
−

(sin ξ sinh η

a

)(sin ξ cosh η

a

)] ∂

∂η
,

∂2

∂z2
=

(sin ξ sinh η

a

)2 ∂2

∂ξ2
+

(cos ξ cosh η − 1

a

)2 ∂2

∂η2
(3.40b)

+ 2
(cos ξ cosh η − 1

a

)(sin ξ sinh η

a

) ∂2

∂ξ∂η

+
[(sin ξ sinh η

a

)(cos ξ sinh η

a

)
+

(cos ξ cosh η − 1

a

)(sin ξ cosh η

a

)] ∂

∂ξ

−
[(sin ξ sinh η

a

)(sin ξ cosh η

a

)
−

(cos ξ cosh η − 1

a

)(cos ξ sinh η

a

)] ∂

∂η
.

Thus, for the Stokesian operator in bi-spherical coordinates we obtain

E2 =
(cosh η − cos ξ

a

)2( ∂2

∂ξ2
+

∂2

∂η2

)
−

(cosh η − cos ξ

a sin ξ

)2

+
(cosh η − cos ξ

a

)[cos ξ cosh η − 1

a sin ξ

∂

∂ξ
− sinh η

a

∂

∂η

]
. (3.41)

This operator will be used in next section for solving the bi-Stokesian equation.



CHAPTER IV

LEGENDRE SPECTRAL METHOD FOR

BI-STOKESIAN EQUATION

In this chapter, we create a spectral method based on associated Legen-

dre polynomials for solving the bi-Stokesian equation E4ψ = 0. The unknown

coefficients of the series with respect to the associated Legendre polynomials are

obtained by satisfying the boundary conditions which are expanded in series with

respect to the associated Legendre polynomials. Consequently, the closed algebraic

system for the unknown coefficients are represented.

4.1 General solution of bi-Stokesian equation

The stream function can be defined to satisfy the continuity equation

(3.13d) for v
(0)
r and v

(0)
z

v(0)
r =

∂ψ

∂z
, v(0)

z = −1

r

∂rψ

∂r
. (4.1)

The introduced stream function satisfies the so called bi-Stokesian equation

E2(E2ψ) = 0. (4.2)

To find the general solution of (4.2), let us consider a related coupled system i.e.,

E2ψ = χ, (4.3a)

E2χ = 0. (4.3b)
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Consider first (4.3b),

(cosh η − cos ξ

a

)2(∂2χ

∂ξ2
+

∂2χ

∂η2

)
−

(cosh η − cos ξ

a sin ξ

)2

χ

+
(cosh η − cos ξ

a

)[cos ξ cosh η − 1

a sin ξ

∂χ

∂ξ
− sinh η

a

∂χ

∂η

]
= 0. (4.4)

It is well known that by means of the substitution (see, e.g., Tikhonov and Sama-

raskii, 1990)

χ =
√

cosh η − cos ξ Φ, (4.5)

the above equation can be made separable, namely

∂2Φ

∂ξ2
+

∂2Φ

∂η2
+ cot ξ

∂Φ

∂ξ
−

(1

4
+

1

sin2 ξ

)
Φ = 0. (4.6)

The solution of Eq. (4.6) can be determined by separation of variables though

stipulating

Φ(ξ, η) = B(ξ)C(η).

Then, the following two independent ordinary differential equations are obtained

d2C

d η2
= λ2C, (4.7)

d2B

d ξ2
+ cot ξ

dB

dξ
+

(
λ2 − 1

4
− 1

sin2 ξ

)
B = 0. (4.8)

Let now B = D(µ) where µ = cos ξ. Then Eq. (4.8) transforms to

d

dµ

[
(1− µ2)

dD

dµ

]
+

[
(λ− 1

2
)(λ +

1

2
)− 1

1− µ2

]
D = 0, (4.9)

which is the associated Legendre equation. Hence, the solution of Eq. (4.9) is in

the form of the associated Legendre polynomials

D = P
(1)
λ−1/2(µ) (4.10)

which are defined for positive integer m = λ− 1
2

> 0. Then, the general solution

for Φ is given by

Φ(η, µ) =
∞∑

m=1

[
L(m)e(m+1/2)η + N (m)e−(m+1/2)η

]
P (1)

m (µ). (4.11)
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Then for the original function χ, it follows that

χ = (cosh η − cos ξ)
1
2

∞∑
m=1

[
L(m)e(m+1/2)η + N (m)e−(m+1/2)η

]
P (1)

m (µ). (4.12)

Consider now Eq. (4.3a) in bi-spherical coordinates, namely

(cosh η − cos ξ

a

)2(∂2ψ

∂ξ2
+

∂2ψ

∂η2

)
−

(cosh η − cos ξ

a sin ξ

)2

ψ

+
(cosh η − cos ξ

a

)[cos ξ cosh η − 1

a sin ξ

∂ψ

∂ξ
− sinh η

a

∂ψ

∂η

]
= χ. (4.13)

In the same manner, we can change the dependent variable

ψ =
√

cosh η − cos ξ ϕ, (4.14)

and to obtain equation with a separable left-hand side, namely

∂2ϕ

∂ξ2
+

∂2ϕ

∂η2
+ cot ξ

∂ϕ

∂ξ
−

(1

4
+

1

sin2 ξ

)
ϕ =

a2

(cosh η − cos ξ)5/2
χ. (4.15)

At this junction we encounter the most important difficulty in applying the

Legendre series, namely the fact that the r.h.s, of Eq. (4.15) is not immediately

expandable in the same Legendre series (with the same coefficients) as the function

χ, because of the presence of the term a2(cosh η − cos ξ)−5/2. In order to identify

the actual form of the series for the r.h.s. of Eq. (4.15), we substitute Eq. (4.12)

into it to obtain

∂2ϕ

∂ξ2
+

∂2ϕ

∂η2
+ cot ξ

∂ϕ

∂ξ
−

(1

4
+

1

sin2 ξ

)
ϕ

=
( a

cosh η − µ

)2
∞∑

m=1

[
L(m)e(m+1/2)η + N (m)e−(m+1/2)η

]
P (1)

m (µ). (4.16)

The key idea here is to make use of the generating function for Chebyshev

polynomials of the second kind, Um(µ), and express the right-hand side of (4.16)

into series with respect to the associated Legendre polynomials. This is one of the

main contributions of the present dissertation.
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The generating function for Chebyshev polynomials of the second kind is

defined as follow

G(t, µ) =
1

1− 2µt + t2
=

∞∑
m=0

tmUm(µ) for |t| < 1, |µ| < 1.

For the derivative of the generating function, we get

∂G

∂µ
=

2t

(1− 2µt + t2)2
=

∞∑
m=1

tmU
′
m(µ); U

′
0(µ) = 0,

and since

a2

(cosh η − µ)2
=

a2

( eη+e−η

2
− µ)2

=
a2(2t)2

(1− 2µt + t2)2
; t = eη,

then we find that

a2

(cosh η − µ)2
= 2a2





∑∞
m=1 e(m+1)ηU

′
m(µ) η ≤ 0,

∑∞
m=1 e−(m+1)ηU

′
m(µ) η > 0.

(4.17)

Another convenient way to write the last equation is

( a

cosh η − µ

)2

= 2a2

∞∑
m=1

e−(m+1)|η|U
′
m(µ). (4.18)

Thus, we get

∂2ϕ

∂ξ2
+

∂2ϕ

∂η2
+ cot ξ

∂ϕ

∂ξ
−

(1

4
+

1

sin2 ξ

)
ϕ

= 2a2
[ ∞∑

l=1

e−(l+1)|η|U
′
l (µ)

] ∞∑
m=1

[
L(m)e(m+1/2)η + N (m)e−(m+1/2)η

]
P (1)

m (µ). (4.19)

At this stage, we need to derive a representation of the products of Cheby-

shev polynomials of the second kind with associated Legendre polynomials into

series with respect to the associated Legendre polynomials. Formally, such a series

can be written as

P (1)
m (µ)U

′
l (µ) =

∞∑

k=1

pml
k P

(1)
k (µ), where pml

k = 0 for k ≥ m + l. (4.20)



35

The coefficients pml
k of the series are obtained by using the orthogonality of the

associated Legendre polynomials, namely

∫ 1

−1

P (1)
m (µ)U

′
l (µ)P (1)

s (µ)dµ =

∫ 1

−1

∞∑

k=1

pml
k P

(1)
k (µ)P (1)

s (µ)dµ

=
∞∑

k=1

pml
k

∫ 1

−1

P
(1)
k (µ)P (1)

s (µ)dµ =

∫ 1

−1

[P
(1)
k (µ)]2dµ

∞∑

k=1

pml
k δks

= pml
s

∫ 1

−1

[P
(1)
k (µ)]2dµ, (4.21)

which gives that

pml
k =

∫ 1

−1
P

(1)
m (µ)U

′
l (µ)P

(1)
k (µ)dµ

∫ 1

−1
[P

(1)
k (µ)]2dµ

=

∫ 1

−1
P

(1)
m (µ)U

′
l (µ)P

(1)
k (µ)dµ

2k(k+1)
2k+1

(4.22)

Now, Eq. (4.16) can be rewritten as follows

∂2ϕ

∂ξ2
+

∂2ϕ

∂η2
+ cot ξ

∂ϕ

∂ξ
−

(1

4
+

1

sin2 ξ

)
ϕ =

∞∑

k=1

Qk(η)P
(1)
k (µ), (4.23)

where the following notation is adopted

Qk(η)
def
= 2a2

∞∑
m=1

∞∑

l=1

pml
k e−(l+1)|η|

(
L(m)e(m+1/2)η + N (m)e−(m+1/2)η

)
. (4.24)

Here, we can make use of the separability of the above equation and seek the

solution in the form of series with respect to associated Legendre polynomials:

ϕ =
∞∑

k=1

fk(η)P
(1)
k (µ). (4.25)

After some tedious but straightforward computations, Eq. (4.23) adopts the fol-

lowing form

∞∑

k=1

f
′′
k (η)P

(1)
k (µ) + (1− µ2)

∞∑

k=1

fk(η)P
(1) ′′
k (µ)− 2µ

∞∑

k=1

fk(η)P
(1) ′
k (µ)

−
(1

4
+

1

1− µ2

) ∞∑

k=1

fk(η)P
(1)
k (µ) =

∞∑

k=1

Qk(η)P
(1)
k (µ), (4.26)



36

which breaks naturally into the two following independent equations

∞∑

k=1

(
(1− µ2)P

(1) ′′
k (µ)− 2µP

(1) ′
k (µ) +

[
k(k + 1)− 1

1− µ2

]
P

(1)
k (µ)

)
= 0, (4.27a)

∞∑

k=1

[
f
′′
k (η)−

(
k +

1

2

)2

fk(η)
]
P

(1)
k (µ) =

∞∑

k=1

Qk(η)P
(1)
k (µ). (4.27b)

Therefore, we can find fk(η) by solving

f
′′
k (η)−

(
k +

1

2

)2

fk(η) = Qk(η). (4.28)

The general solution of the homogeneous equation is

fkc(η) = C
(1)
k e(k+ 1

2
)η + C

(2)
k e−(k+ 1

2
)η. (4.29)

We will find a particular solution fkp(η) of the non-homogeneous equation (4.28)

by using the method of undetermined coefficients. Since, in the definition of the

functions Qk(η) enters the exponent of −|η|, we have to consider two different

cases.

Case 1: η ≤ 0. In this case, Eq. (4.24) can be recast as follows

Qk(η) = 2a2

∞∑
m=1

∞∑

l=1

pml
k

[
L(m)e(l+m+ 3

2
)η + N (m)e(l−m+ 1

2
)η

]
(4.30)

and the particular solution can be sought in the form

Fk(η) =
∞∑

m=1

∞∑

l=1

[
S

(ml)
k e(l+m+ 3

2
)η + T

(ml)
k e(l−m+ 1

2
)η

]
(4.31)

provided that k 6= l + m + 1, k 6= m− l − 1 and k 6= l −m. Then

F
′
k =

∞∑
m=1

∞∑

l=1

[
S

(ml)
k (l + m +

3

2
)e(l+m+ 3

2
)η + T

(ml)
k (l −m +

1

2
)e(l−m+ 1

2
)η

]
,

F
′′
k =

∞∑
m=1

∞∑

l=1

[
S

(ml)
k (l + m +

3

2
)2e(l+m+ 3

2
)η + T

(ml)
k (l −m +

1

2
)2e(l−m+ 1

2
)η

]
.
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Substituting these expressions for f
′′
k , fk in Eq. (4.28), we get

∞∑
m=1

∞∑

l=1

{
S

(ml)
k

[
(l + m +

3

2
)2 − (k +

1

2
)2

]
e(l+m+ 3

2
)η

+ T
(ml)
k

[
(l −m +

1

2
)2 − (k +

1

2
)2

]
e(l−m+ 1

2
)η

}

= 2a2

∞∑
m=1

∞∑

l=1

pml
k

{
L(m)e(l+m+ 3

2
)η + N (m)e(l−m+ 1

2
)η

}
.

By comparing the coefficients, we get

S
(ml)
k =

2a2pml
k L(m)

(l + m + 3
2
)2 − (k + 1

2
)2

, T
(ml)
k =

2a2pml
k N (m)

(l −m + 1
2
)2 − (k + 1

2
)2

.

Note that the two ‘resonant’ cases have to be treated separately, because

for them the right-hand side contains an exponential function with an exponent

equal to one of the eigenvalues λ of the operator of the homogeneous equation of

Eq. (4.28), namely

f
′′
k (η)− (k +

1

2
)2fk(η) = e(l+m+ 3

2
)η. (4.32)

For this equation, the characteristic exponents of the homogeneous equation are

λ = ±(k + 1
2
). Then, if l + m + 3

2
= ±(k + 1

2
) (or what is the same k = l + m + 1),

we have to seek for a particular solution in the form

Fk(η) =
∞∑

m=1

∞∑

l=1

[
S

(ml)
k ηe(l+m+ 3

2
)η + T

(ml)
k e(l−m+ 1

2
)η

]
, (4.33)

and therefore

F
′
k =

∞∑
m=1

∞∑

l=1

[
S

(ml)
k

(
(l + m +

3

2
)η + 1

)
e(l+m+ 3

2
)η + T

(ml)
k (l −m +

1

2
)e(l−m+ 1

2
)η

]
,

F
′′
k =

∞∑
m=1

∞∑

l=1

[
S

(ml)
k

(
(l + m +

3

2
)2η + 2(l + m +

3

2
)
)
e(l+m+ 3

2
)η

+ T
(ml)
k (l −m +

1

2
)2e(l−m+ 1

2
)η

]
.



38

By substituting these expressions for f
′′
k , fk in Eq. (4.28), one obtains

∞∑
m=1

∞∑

l=1

{
S

(ml)
k

[
2(l + m +

3

2
)
]
e(l+m+ 3

2
)η + T

(ml)
k

[
(l −m +

1

2
)2 − (k +

1

2
)2

]

× e(l−m+ 1
2
)η

}
= 2a2

∞∑
m=1

∞∑

l=1

pml
k

[
L(m)e(l+m+ 3

2
)η + N (m)e(l−m+ 1

2
)η

]
.

Comparing the coefficients, we obtain

S
(ml)
k =

a2pml
k L(m)

l + m + 3
2

, T
(ml)
k =

2a2pml
k N (m)

(l −m + 1
2
)2 − (k + 1

2
)2

.

In the same manner we treat the other equation

f
′′
k (η)− (k +

1

2
)2fk(η) = e(l−m+ 1

2
)η. (4.34)

If l −m + 1
2

= ±(k + 1
2
) (or what is the same k = l −m or k = m− l − 1), then

we have to seek for the following particular solution

Fk(η) =
∞∑

m=1

∞∑

l=1

[
S

(ml)
k e(l+m+ 3

2
)η + T

(ml)
k ηe(l−m+ 1

2
)η

]
. (4.35)

It follows that

F
′
k =

∞∑
m=1

∞∑

l=1

[
S

(ml)
k (l + m +

3

2
)e(l+m+ 3

2
)η + T

(ml)
k

[
(l −m +

1

2
)η + 1

]
e(l−m+ 1

2
)η

]

F
′′
k =

∞∑
m=1

∞∑

l=1

[
S

(ml)
k (l + m +

3

2
)2e(l+m+ 3

2
)η

+ T
(ml)
k

[
(l −m +

1

2
)2η + 2(l −m +

1

2
)
]
e(l−m+ 1

2
)η

]

Replacing these expressions for f
′′
k , fk in Eq. (4.28), we obtain

∞∑
m=1

∞∑

l=1

{
S

(ml)
k

[
(l+m+

3

2
)2−(k+

1

2
)2

]
e(l+m+ 3

2
)η +T

(ml)
k

[
2(l−m+

1

2
)
]
e(l−m+ 1

2
)η

}

= 2a2

∞∑
m=1

∞∑

l=1

pml
k

{
L(m)e(l+m+ 3

2
)η + N (m)e(l−m+ 1

2
)η

}
.

Comparing the coefficients, gives us

S
(ml)
k =

2a2pml
k L(m)

(l + m + 3
2
)2 − (k + 1

2
)2

, T
(ml)
k =

a2pml
k N (m)

l −m + 1
2

.
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Hence the particular solution is represented by

fkp(η) =
∞∑

m=1

L(m)εk
m(η) +

∞∑
m=1

N (m)λk
m(η), (4.36)

where

εk
m(η) =

∞∑

l=max{1,k−m+1}
l 6=k−m−1

2a2pml
k e(l+m+ 3

2
)η

(m + l + 3
2
)2 − (k + 1/2)2

+
∞∑

l=max{1,k−m+1}
l=k−m−1

a2pml
k ηe(l+m+ 3

2
)η

m + l + 3
2

,

λk
m(η) =

∞∑

l=max{1,k−m+1}
l 6=m−k−1 or l 6=k+m

2a2pml
k e(l−m+ 1

2
)η

(l −m + 1
2
)2 − (k + 1/2)2

+
∞∑

l=max{1,k−m+1}
l=m−k−1 or l=k+m

a2pml
k ηe(l−m+ 1

2
)η

l −m + 1
2

.

Case 2: η ≥ 0. In this case, (4.24) adopts to

Qk(η) = 2a2

∞∑
m=1

∞∑

l=1

pml
k

[
L(m)e(m−l− 1

2
)η + N (m)e−(l+m+ 3

2
)η

]
, (4.37)

and the particular solution can be determined in the form

Fk(η) =
∞∑

m=1

∞∑

l=1

[
S

(ml)
k e(m−l− 1

2
)η + T

(ml)
k e−(l+m+ 3

2
)η

]
, (4.38)

provided that k 6= m + l + 1, k 6= m− l− 1 and k 6= l−m. Proceeding as in Case

1, one obtains

S
(ml)
k =

2a2pml
k L(m)

(m− l − 1
2
)2 − (k + 1

2
)2

, T
(ml)
k =

2a2pml
k N (m)

(l + m + 3
2
)2 − (k + 1

2
)2

.

By the same reasons as in the case η ≤ 0, we have distinguish two different cases.

If k = l −m or k = m− l − 1, the particular solution is

Fk(η) =
∞∑

m=1

∞∑

l=1

[
S

(ml)
k ηe(m−l− 1

2
)η + T

(ml)
k e−(l+m+ 3

2
)η

]
, (4.39)

where

S
(ml)
k =

a2pml
k L(m)

m− l − 1
2

, T
(ml)
k =

2a2pml
k N (m)

(l + m + 3
2
)2 − (k + 1

2
)2

.

Respectively, if k = l + m + 1, the particular solution is represented as follow

Fk(η) =
∞∑

m=1

∞∑

l=1

[
S

(ml)
k e(m−l− 1

2
)η + T

(ml)
k ηe−(l+m+ 3

2
)η

]
, (4.40)
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where

S
(ml)
k =

2a2pml
k L(m)

(m− l − 1
2
)2 − (k + 1

2
)2

, T
(ml)
k =

a2pml
k N (m)

−(l + m + 3
2
)
.

Hence the particular solution becomes

fkp(η) =
∞∑

m=1

L(m)ωk
m(η) +

∞∑
m=1

N (m)τ k
m(η), (4.41)

where

ωk
m(η) =

∞∑

l=max{1,k−m+1}
l 6=m−k−1 or l 6=k+m

2a2pml
k e(m−l− 1

2
)η

(m− l − 1
2
)2 − (k + 1/2)2

] +
∞∑

l=max{1,k−m+1}
l=m−k−1 or l=k+m

a2pml
k ηe(m−l− 1

2
)η

m− l − 1
2

,

τ k
m(η) =

∞∑

l=max{1,k−m+1}
l 6=k−m−1

2a2pml
k e−(m+l+ 3

2
)η

(m + l + 3
2
)2 − (k + 1/2)2

+
∞∑

l=max{1,k−m+1}
l=k−m−1

a2pml
k ηe−(m+l+ 3

2
)η

−(m + l + 3
2
)

.

The unknown coefficients C
(1)
k , C

(2)
k , L(m) and N (m) are to be determined from

boundary conditions. Thus, the expression for the stream function is obtained by

ψ(η, µ) = (cosh η − µ)
1
2

∞∑

k=1

[fkc(η) + fkp(η)]P
(1)
k (µ). (4.42)

4.2 Expanding the Boundary Conditions into Series with

respect to the Associated Legendre Polynomials

In the previous section, we have obtained the general solution of Eq. (4.42)

for the stream function. To determine the unknown coefficients C
(1)
k , C

(2)
k , L(m)

and N (m), we have to expand the boundary conditions for the stream functions

into series with respect to the associated Legendre polynomials. Since

v(0)
r =

∂ψ

∂z
, v(0)

z = −1

r

∂rψ

∂r
, (4.43)
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then the velocity components can be written in terms of bi-spherical coordinates:

v(0)
r =

∂ψ

∂ξ

∂ξ

∂z
+

∂ψ

∂η

∂η

∂z
= −

(sin ξ sinh η

a

)∂ψ

∂ξ
−

(cos ξ cosh η − 1

a

)∂ψ

∂η
, (4.44a)

v(0)
z = −∂ψ

∂ξ

∂ξ

∂r
− ∂ψ

∂η

∂η

∂r
− 1

r
ψ = −

(cos ξ cosh η − 1

a

)∂ψ

∂ξ
+

(sin ξ sinh η

a

)∂ψ

∂η

−
(cosh η − cos ξ

a sin ξ

)
ψ. (4.44b)

Therefore, the boundary conditions for ψ are the following

∂ψ

∂η

∣∣∣
Γ
− sinh η

cosh η − cos ξ
ψ

∣∣∣
Γ

= −hv
(0)
ξ

∣∣∣
Γ
, (4.45a)

∂ψ

∂ξ

∣∣∣
Γ

+
(cos ξ cosh η − 1)

sin ξ(cosh η − cos ξ)
ψ

∣∣∣
Γ

= hv(0)
η

∣∣∣
Γ
, (4.45b)

where v
(0)
ξ and v

(0)
η are the components of velocity vector with respect to bi-

spherical coordinates and h = a(cosh η − cos ξ)−1. The relations between velocity

components in cylindrical coordinates (3.8), and bi-polar coordinates (3.28), read

v
(0)
ξ =

h

a
(cos ξ cosh η − 1)v(0)

r − h

a
(sin ξ sinh η)v(0)

z , (4.46a)

v(0)
η = −h

a
(sin ξ sinh η)v(0)

r − h

a
(cos ξ cosh η − 1)v(0)

z . (4.46b)

Since we have

v(0)
r |Γ = −(G11 + G22)

r

2
, v(0)

z |Γ = −(U (z) + G33z), (4.47)

then it follows that

v
(0)
ξ |Γ =

h

a
sin ξ sinh ηiU

(z) − h2

2a
(G11 + G22)(cos ξ cosh ηi − 1) sin ξ

+
h2

a
G33 sin ξ sinh2 ηi, i = 1, 2, (4.48a)

v(0)
η |Γ =

h

a
(cos ξ cosh ηi − 1)U (z) +

h2

2a
(G11 + G22) sin2 ξ sinh ηi

+
h2

a
G33(cos ξ cosh ηi − 1) sinh ηi, i = 1, 2. (4.48b)
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Recall that we have introduced a new variable for the stream function

ψ =
√

cosh η − µ ψ̂, where

ψ̂ =
∞∑

k=1

Zk(η)P
(1)
k (µ) , Zk(η) = fkc(η) + fkp(η). (4.49)

Thus we need to derive boundary conditions for ψ̂. To this end, Eqs. (4.45) can

be transformed to the following

(cosh η − µ)
∂ψ̂

∂η

∣∣∣
Γ
− 1

2
sinh η ψ̂

∣∣∣
Γ

= − a

(cosh η − µ)
1
2

v
(0)
ξ

∣∣∣
Γ
, (4.50a)

sin ξ(cosh η − µ)
∂ψ̂

∂ξ

∣∣∣
Γ

+ [(µ cosh η − 1) +
1− µ2

2
] ψ̂

∣∣∣
Γ

=
a sin ξ

(cosh η − µ)
1
2

v(0)
η

∣∣∣
Γ
.

(4.50b)

The stream function given by Eq. (4.42) tends to zero as η → 0 and µ → 0.

The boundary conditions given by (4.50) require the representation of both sides

in the form of a series with respect to the associated Legendre polynomials. Due

to the recursion

µP
(1)
k (µ) =

kP
(1)
k+1(µ) + (k + 1)P

(1)
k−1(µ)

2k + 1
(4.51)

we can show that

(cosh η−µ)
∂ψ̂

∂η
− 1

2
sinh η ψ̂ =

∞∑

k=1

cosh ηZ
′
k(η)P

(1)
k (µ)−

∞∑

k=1

k

2k + 1
Z
′
k(η)P

(1)
k+1(µ)

−
∞∑

k=1

k + 1

2k + 1
Z
′
k(η)P

(1)
k−1(µ)−

∞∑

k=1

sinh η

2
Zk(η)P

(1)
k (µ),

and Eq.(4.50a) adopts the form

∞∑

k=1

[( 1− k

2k − 1

)
Z
′
k−1(η)− sinh η

2
Zk(η)+cosh ηZ

′
k(η)−

( k + 2

2k + 3

)
Z
′
k+1(η)

]
P

(1)
k (µ)

∣∣∣
Γ

= − a

(cosh η − µ)
1
2

v
(0)
ξ

∣∣∣
Γ
. (4.52)
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Next we consider (4.50b). The following relations are used

(µ2 − 1)P
(1)′
k (µ) = kµP

(1)
k (µ)− (k + 1)P

(1)
k−1(µ), (4.53)

µP
(1)
k (µ) =

kP
(1)
k+1(µ) + (k + 1)P

(1)
k−1(µ)

2k + 1
, (4.54)

to obtain that

sin ξ(cosh η − µ)
∂

∂ξ
ψ̂ =

∞∑

k=0

[ (k + 1)2(k − 1)

(2k + 1)(2k − 1)
− k2(k + 2)

(2k + 1)(2k + 3)

]
Zk(η)P

(1)
k (µ)

∞∑

k=0

k(k + 1)2

(2k + 1)(2k − 1)
Zk(η)P

(1)
k−2(µ)−

∞∑

k=0

(k + 1)2

2k + 1
cosh ηZk(η)P

(1)
k−1(µ)

+
∞∑

k=0

k2

2k + 1
cosh ηZk(η)P

(1)
k+1(µ)−

∞∑

k=0

k2(k + 1)

(2k + 1)(2k + 3)
Zk(η)P

(1)
k+2(µ), (4.55)

and

[
(µ cosh η−1)+(

1− µ2

2
)
]
ψ̂ = −

∞∑

k=1

1

2

[
1+

k(k + 2)

(2k + 1)(2k + 3)
+

(k − 1)(k + 1)

(2k − 1)(2k + 1)

]

×Zk(η)P
(1)
k (µ)+

∞∑

k=1

(
k

2k + 1
) cosh ηZk(η)P

(1)
k+1(µ)+

∞∑

k=1

(
k + 1

2k + 1
) cosh ηZk(η)P

(1)
k−1(µ)

−
∞∑

k=1

k(k + 1)

2(2k + 1)(2k − 1)
Zk(η)P

(1)
k−2(µ)−

∞∑

k=1

k(k + 1)

2(2k + 1)(2k + 3)
Zk(η)P

(1)
k+2(µ).

(4.56)

Hence Eq. (4.50b) becomes

∞∑

k=1

[
− (k − 2)(k − 1)

2(2k − 1)
Zk−2(η) + cosh η

(k − 1)k

2k − 1
Zk−1(η)− 2k(k + 1)

(2k − 1)(2k + 3)
Zk(η)

− cosh η
(k + 1)(k + 2)

2k + 3
Zk+1(η) +

(k + 2)(k + 3)

2(2k + 3)
Zk+2(η)

]
P

(1)
k (µ)

∣∣∣
Γ

=
a sin ξ

(cosh η − µ)
1
2

v(0)
η

∣∣∣
Γ
. (4.57)

Consider the right hand side of (4.52),

− a

(cosh η − µ)
1
2

v
(0)
ξ = − a sin ξ sinh ηU (z)

(cosh η − cos ξ)
3
2

+
(G11 + G22)a

2(cos ξ cosh η − 1) sin ξ

2(cosh η − cos ξ)
5
2

− G33a
2 sin ξ sinh2 η

(cosh η − cos ξ)
5
2

. (4.58)
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We need to expand each term of the above equation into a series of associated

Legendre polynomials by using the generating function method. According to the

relations

(1− µ2)
m
2

(1− 2µt + t2)m+1/2
=

(−1)m2mm!

(2m)!

∞∑

k=0

tkP
(m)
k+m(µ), |t| < 1, (4.59a)

µP
(m)
k (µ) =

(k −m + 1)P
(m)
k+1(µ) + (k + m)P

(m)
k−1(µ)

2k + 1
. (4.59b)

Thus∗

−a sin ξ sinh ηU (z)

(cosh η − µ)
3
2

= a23/2U (z) sinh η

∞∑

k=1

e−(k+ 1
2
)|η|P (1)

k (µ), (4.60)

(G11 + G22)a
2(cos ξ cosh η − 1) sin ξ

2(cosh η − cos ξ)
5
2

=
(G11 + G22)a

2
√

2

3

∞∑

k=1

[
(k + 2)e−(k+ 3

2
)|η|

− (k − 1)e−(k− 1
2
)|η|

]
P

(1)
k (µ), (4.61)

and then

−G33a
2 sin ξ sinh2 η

(cosh η − cos ξ)
5
2

= sign[η]
G33a

223/2 sinh η

3

∞∑

k=1

(2k + 1)e(k+ 1
2
)|η|P (1)

k (µ). (4.62)

Consider now the right hand side of Eq. (4.57):

a sin ξ

(cosh η − µ)
1
2

v(0)
η =

a sin ξ(cos ξ cosh η − 1)U (z)

(cosh η − cos ξ)
3
2

+
(G11 + G22)a

2 sin3 ξ sinh η

2(cosh η − cos ξ)
5
2

+
G33a

2(cos ξ cosh η − 1) sinh η sin ξ

(cosh η − cos ξ)
5
2

. (4.63)

Upon using (4.59), we get the following

a sin ξ(cos ξ cosh η − 1)U (z)

(cosh η − cos ξ)
3
2

= −a2
3
2 U (z)

∞∑

k=1

[
cosh η

( k − 1

2k − 1
e−(k− 1

2
)|η|

+
k + 2

2k + 3
e−(k+ 3

2
)|η|

)
− e−(k+ 1

2
)|η|

]
P

(1)
k (µ), (4.64)

∗For detail, see appendix B
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(G11 + G22)a
2 sin3 ξ sinh η

2(cosh η − cos ξ)
5
2

=
(G11 + G22)a

22
3
2 sinh η

3

×
∞∑

k=1

[(k − 2)(k − 1)

2k − 1
e−(k− 1

2
)|η| − (k + 2)(k + 3)

2k + 3
e−(k+ 3

2
)|η|

]
P

(1)
k (µ), (4.65)

and

G33a
2(cos ξ cosh η − 1) sinh η sin ξ

(cosh η − cos ξ)
5
2

=
G33a

2(2)
3
2 sinh η

3

×
∞∑

k=1

[
(k + 2)e−(k+ 3

2
)|η| − (k − 1)e−(k− 1

2
)|η|

]
P

(1)
k (µ). (4.66)

As a result, we obtain the following four boundary conditions

∞∑

k=1

[( 1− k

2k − 1

)
Z
′
k−1(η1)− sinh η1

2
Zk(η1) + cosh η1Z

′
k(η1)−

( k + 2

2k + 3

)
Z
′
k+1(η1)

]

× P
(1)
k (µ) =

∞∑

k=1

(
23/2aU (z) sinh η1e

(k+ 1
2
)η1 +

(G11 + G22)
√

2a2

3
[(k + 2)e(k+ 3

2
)η1

− (k − 1)e(k− 1
2
)η1 ]− G33a

223/2 sinh η1

3
(2k + 1)e(k+ 1

2
)η1

)
P

(1)
k (µ) (4.67a)

∞∑

k=1

[( 1− k

2k − 1

)
Z
′
k−1(η2)− sinh η2

2
Zk(η2) + cosh η2Z

′
k(η2)−

( k + 2

2k + 3

)
Z
′
k+1(η2)

]

× P
(1)
k (µ) =

∞∑

k=1

(
23/2aU (z) sinh η2e

−(k+ 1
2
)η2 +

(G11 + G22)
√

2a2

3
[(k + 2)e−(k+ 3

2
)η2

− (k − 1)e−(k− 1
2
)η2 ] +

G33a
223/2 sinh η2

3
(2k + 1)e−(k+ 1

2
)η2

)
P

(1)
k (µ), (4.67b)

∞∑

k=1

{
− (k−2)(k−1)

2(2k − 1)
Zk−2(η1)+cosh η1

(k−1)k

2k − 1
Zk−1(η1)− 2k(k + 1)

(2k−1)(2k+3)
Zk(η1)

− cosh η1
(k + 1)(k + 2)

2k + 3
Zk+1(η1) +

(k + 2)(k + 3)

2(2k + 3)
Zk+2(η1)

}
P

(1)
k (µ)

=
∞∑

k=1

{
− a2

3
2 U (z)

[
cosh η1

( k − 1

2k − 1
e(k− 1

2
)η1 +

k + 2

2k + 3
e(k+ 3

2
)η1

)
− e(k+ 1

2
)η1

]

+
(G11 + G22)a

22
3
2 sinh η1

3
[
(k − 2)(k − 1)

2k − 1
e(k− 1

2
)η1 − (k + 2)(k + 3)

2k + 3
e(k+ 3

2
)η1 ]

+
G33a

2(2)
3
2 sinh η1

3

[
(k + 2)e(k+ 3

2
)η1 − (k − 1)e(k− 1

2
)η1

]}
P

(1)
k (µ), (4.67c)
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∞∑

k=1

{
− (k−2)(k−1)

2(2k − 1)
Zk−2(η2)+cosh η2

(k − 1)k

2k − 1
Zk−1(η2)− 2k(k + 1)

(2k−1)(2k+3)
Zk(η2)

− cosh η2
(k + 1)(k + 2)

2k + 3
Zk+1(η2) +

(k + 2)(k + 3)

2(2k + 3)
Zk+2(η2)

}
P

(1)
k (µ)

=
∞∑

k=1

{
− a2

3
2 U (z)

[
cosh η2

( k − 1

2k − 1
e−(k− 1

2
)η2 +

k + 2

2k + 3
e−(k+ 3

2
)η2

)
− e−(k+ 1

2
)η2

]

+
(G11 + G22)a

22
3
2 sinh η2

3
[
(k − 2)(k − 1)

2k − 1
e−(k− 1

2
)η2 − (k + 2)(k + 3)

2k + 3
e−(k+ 3

2
)η2 ]

+
G33a

2(2)
3
2 sinh η2

3

[
(k + 2)e−(k+ 3

2
)η2 − (k − 1)e−(k− 1

2
)η2

]}
P

(1)
k (µ). (4.67d)

The equations defined in (4.67) will be used to derive the algebraic system for

finding the unknown coefficients in next chapter.



CHAPTER V

NUMERICAL IMPLEMENTATION AND

CONVERGENCE

5.1 Algebraic system

In this section, we derive the algebraic system for the unknown coefficients

C
(1)
k , C

(2)
k , L(m) and N (m). First we compute the values of the auxiliary function

Zk(ηi), i = 1, 2 and its derivatives Z ′
k(ηi), i = 1, 2 at the sphere boundaries. Ap-

plying the orthogonality of associated Legendre polynomials to equations (4.67a)-

(4.67d), gives us the following four equations

( 1− k

2k − 1

)
Z
′
k−1(η1)− sinh η1

2
Zk(η1) + cosh η1Z

′
k(η1)−

( k + 2

2k + 3

)
Z
′
k+1(η1) =

23/2aU (z) sinh η1e
(k+ 1

2
)η1 +

(G11 + G22)
√

2a2

3
[(k + 2)e(k+ 3

2
)η1 − (k − 1)e(k− 1

2
)η1 ]

− G33a
223/2 sinh η1

3
(2k + 1)e(k+ 1

2
)η1 (5.1)

( 1− k

2k − 1

)
Z
′
k−1(η2)− sinh η2

2
Zk(η2) + cosh η2Z

′
k(η2)−

( k + 2

2k + 3

)
Z
′
k+1(η2) =

23/2aU (z) sinh η2e
−(k+ 1

2
)η2 +

(G11 + G22)
√

2a2

3
[(k + 2)e−(k+ 3

2
)η2 − (k − 1)e−(k− 1

2
)η2 ]

+
G33a

223/2 sinh η2

3
(2k + 1)e−(k+ 1

2
)η2 (5.2)
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− (k − 2)(k − 1)

2(2k − 1)
Zk−2(η1) + cosh η1

(k − 1)k

2k − 1
Zk−1(η1)− 2k(k + 1)

(2k − 1)(2k + 3)
Zk(η1)

− cosh η1
(k + 1)(k + 2)

2k + 3
Zk+1(η1) +

(k + 2)(k + 3)

2(2k + 3)
Zk+2(η1)

= −a2
3
2 U (z)

[
cosh η1

( k − 1

2k − 1
e(k− 1

2
)η1 +

k + 2

2k + 3
e(k+ 3

2
)η1

)
− e(k+ 1

2
)η1

]

+
(G11 + G22)a

22
3
2 sinh η1

3
[
(k − 2)(k − 1)

2k − 1
e(k− 1

2
)η1 − (k + 2)(k + 3)

2k + 3
e(k+ 3

2
)η1 ]

+
G33a

2(2)
3
2 sinh η1

3

[
(k + 2)e(k+ 3

2
)η1 − (k − 1)e(k− 1

2
)η1

]
(5.3)

and

− (k − 2)(k − 1)

2(2k − 1)
Zk−2(η2) + cosh η2

(k − 1)k

2k − 1
Zk−1(η2)− 2k(k + 1)

(2k − 1)(2k + 3)
Zk(η2)

− cosh η2
(k + 1)(k + 2)

2k + 3
Zk+1(η2) +

(k + 2)(k + 3)

2(2k + 3)
Zk+2(η2)

= −a2
3
2 U (z)

[
cosh η2

( k − 1

2k − 1
e−(k− 1

2
)η2 +

k + 2

2k + 3
e−(k+ 3

2
)η2

)
− e−(k+ 1

2
)η2

]

+
(G11 + G22)a

22
3
2 sinh η2

3
[
(k − 2)(k − 1)

2k − 1
e−(k− 1

2
)η2 − (k + 2)(k + 3)

2k + 3
e−(k+ 3

2
)η2 ]

+
G33a

2(2)
3
2 sinh η2

3

[
(k + 2)e−(k+3/2)η2 − (k − 1)e−(k−1/2)η2

]
(5.4)

Since equations (5.3) and (5.4) are uncoupled from each other, we can begin

the computations with just Zk(ηi) by solving (5.3) and (5.4), respectively. For large

k, Zk(ηi) become quite small. Thus the recursion equations for the first K sets
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give K coefficients. The matrix for these equations is a five-diagonal matrix




∗ ∗ ∗ 0 0 0 0 · · · 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 · · · 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ 0 0 · · · 0 0 0 0 0 0

0 ∗ ∗ ∗ ∗ ∗ 0 · · · 0 0 0 0 0 0

... ... ... ... ... ... ... ... ... ... ... ... ... ...

0 0 0 0 0 0 0 · · · ∗ ∗ ∗ ∗ ∗ 0

0 0 0 0 0 0 0 · · · 0 ∗ ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 · · · 0 0 ∗ ∗ ∗ ∗

0 0 0 0 0 0 0 · · · 0 0 0 ∗ ∗ ∗







Z1(ηi)

Z2(ηi)

Z3(ηi)

.

.

.

ZK−2(ηi)

ZK−1(ηi)

ZK(ηi)




= H(ηi),

which make the computations very fast.

The notation ∗ replaces constant multiples of Zk(ηi) which are not zero.

The right-hand-side matrix is given by H(ηi) = (H1(ηi), . . . , Hk(ηi), . . . , HK(ηi))
T ,

where the elements Hk(ηi) are expressed as follows

Hk(ηi) = −a2
3
2 U (z)

[
cosh ηi

( k − 1

2k − 1
e−(k− 1

2
)|ηi| +

k + 2

2k + 3
e−(k+ 3

2
)|ηi|

)
− e−(k+ 1

2
)|ηi|

]

+
(G11 + G22)a

22
3
2 sinh ηi

3

[(k − 2)(k − 1)

2k − 1
e−(k− 1

2
)|ηi| − (k + 2)(k + 3)

2k + 3
e−(k+ 3

2
)|ηi|

]

+
G33a

2(2)
3
2 sinh ηi

3

[
(k + 2)e−(k+ 3

2
)|ηi| − (k − 1)e−(k− 1

2
)|ηi|

]
, k = 1, ..., K. (5.5)

After obtaining the values of Zk(ηi), we substitute them into the equations

(5.1), (5.2) and the latter become the definitive equations for finding Z ′
k(ηi). Be-

cause the equations (5.1) and (5.2) are uncoupled, we can compute Z ′
k(ηi), i = 1, 2

by solving (5.1) and (5.2), respectively. The values Z
′
k(ηi) are also quite small for

large k. Therefore, the recursion equations for the first K set yield K coefficients.
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The matrix for these equations are given by in the following tri-diagonal matrix


∗ ∗ 0 0 0 · · · 0 0 0 0 0 0

∗ ∗ ∗ 0 0 · · · 0 0 0 0 0 0

0 ∗ ∗ ∗ 0 · · · 0 0 0 0 0 0

0 0 ∗ ∗ ∗ · · · 0 0 0 0 0 0

... ... ... ... ... ... ... ... ... ... ... ...

0 0 0 0 0 · · · 0 0 ∗ ∗ ∗ 0

0 0 0 0 0 · · · 0 0 0 ∗ ∗ ∗
0 0 0 0 0 · · · 0 0 0 0 ∗ ∗







Z ′
1(ηi)

Z ′
2(ηi)

.

.

.

Z ′
K−1(ηi)

Z ′
K(ηi)




= G(ηi)

The right hand side matrix G(ηi) = (G1(ηi), . . . , Gk(ηi), . . . , GK(ηi))
T is

given by

Gk(ηi) = 23/2aU (z) sinh ηie
−(k+ 1

2
)|ηi| +

(G11 + G22)
√

2a2

3

[
(k + 2)e−(k+ 3

2
)|ηi|

− (k − 1)e−(k− 1
2
)|ηi|

]
+ sign[ηi]

G33a
223/2 sinh ηi

3
(2k + 1)e−(k+ 1

2
)|ηi|

+
sinh ηi

2
Zk(ηi), k = 1, ..., K (5.6)

Using the definition of Zk(η) and the values of Zk(ηi), Z
′
k(ηi), the following

four linear algebraic recursion formulas can be derived

Zk(η1) = e(k+ 1
2
)η1C

(1)
k + e−(k+ 1

2
)η1C

(2)
k +

∞∑
m=1

L(m)εk
m(η1) +

∞∑
m=1

N (m)λk
m(η1),

(5.7a)

Zk(η2) = e(k+ 1
2
)η2C

(1)
k + e−(k+ 1

2
)η2C

(2)
k +

∞∑
m=1

L(m)ωk
m(η2) +

∞∑
m=1

N (m)τ k
m(η2),

(5.7b)

and

Z ′
k(η1) = (k +

1

2
)e(k+ 1

2
)η1C

(1)
k − (k +

1

2
)e−(k+ 1

2
)η1C

(2)
k +

∞∑
m=1

L(m)ε′km(η1)

+
∞∑

m=1

N (m)λ′km(η1), (5.8a)
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Z ′
k(η2) = (k +

1

2
)e(k+ 1

2
)η2C

(1)
k − (k +

1

2
)e−(k+ 1

2
)η2C

(2)
k +

∞∑
m=1

L(m)ω′km(η2)

+
∞∑

m=1

N (m)τ ′km(η2). (5.8b)

Because the coefficients C
(1)
k , C

(2)
k , L(m) and N (m) become small with large

k, the simultaneous solution of these four recursion equations for the first K sets

yields 4K coefficients. Note that the matrix for these equations is represented as

follows


∗ ∗ 0 0 0 · · · 0 0 0 + × · · · + ×
∗ ∗ 0 0 0 · · · 0 0 0 + × · · · + ×
∗ ∗ 0 0 0 · · · 0 0 0 + × · · · + ×
∗ ∗ 0 0 0 · · · 0 0 0 + × · · · + ×
0 0 ∗ ∗ 0 · · · 0 0 0 + × · · · + ×
0 0 ∗ ∗ 0 · · · 0 0 0 + × · · · + ×
0 0 ∗ ∗ 0 · · · 0 0 0 + × · · · + ×
0 0 ∗ ∗ 0 · · · 0 0 0 + × · · · + ×
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 0 · · · 0 ∗ ∗ + × · · · + ×
0 0 0 0 0 · · · 0 ∗ ∗ + × · · · + ×
0 0 0 0 0 · · · 0 ∗ ∗ + × · · · + ×
0 0 0 0 0 · · · 0 ∗ ∗ + × · · · + ×




· F = B

where

F =

(
C

(1)
1 , C

(2)
1 , ..., C

(1)
K , C

(2)
K , L(1), N (1), ..., L(K), N (K)

)T

,

B =
(

Z1(η1), Z1(η2), Z ′1(η1), Z ′1(η2), ..., ZK(η1), ZK(η2), Z ′K(η1), Z ′K(η2)

)T

.

The notations ∗, +,× denote the constant multiples of C
(i)
k , L(k) and N (k), respec-

tively.
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5.2 Verification of Exponential Convergence

It is important to verify that the results obtained here are compatible with

the theoretical exponential convergence of the Legendre series. The examples that

we consider in this work include four main cases involving equal and unequal

spheres and small and large distances between the spheres. Specifically,

1. Large distance between the spheres:

(a) r1 = 2, r2 = 2, d = 15

(b) r1 = 3, r2 = 2, d = 15

2. Small distance between the spheres:

(a) r1 = 2, r2 = 2, d = 5

(b) r1 = 3, r2 = 2, d = 6

In the figures which follow, we present the computer coefficients C
(1)
k , C

(2)
k ,

L(k), N (k), as functions of their number k, alongside with a best fit approximation

of exponential type.

We begin with the case when the spheres are separated far from each-other.

Fig. 5.1 shows the case of two equal spheres of radii r1 = r2 = 2 when their centers

are separated by a distance of d = 15 calibers. The exponential convergence of the

series is superbly demonstrated in the figure. The best fit produces an exponential

function with exponent λ = −4, which is a very fast decaying function. This tells

us that in this case, a mere 10 terms in the Legendre series produce truncation

error 10−15 which is the round-off error of computations with double precision.

We were able to get result down to 10−35, because Mathematica software can be

used with arbitrary number of significant digits. The results presented in Fig. 5.1
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outline the effective number of terms to be used on computers with finite number

of digits.
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Figure 5.1 Case 1a: r1 = 2, r2 = 2, d = 15

The convergence pattern is rather similar for the case of two unequal spheres

situated far from each other, as in Fig. 5.2. An interesting observation is that

the coefficients related with the smaller sphere decay slightly slower than the

coefficients relevant to the bigger sphere.
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Figure 5.2 Case 1b: r1 = 3, r2 = 2, d = 15

The behavior of the coefficients is rather different when the two spheres are

situated at a distance of one caliber from each other. For the two equal spheres

this means d = 2 + 2 + 1 = 5, which is shown in Fig. 5.3. It is seen now that

the convergence is still exponential, but it is much slower, in the sense that the

exponent is λ = −1.4 which is almost 3 times smaller than for the case of well

separated spheres. Similarly to the case of well separated spheres, the departure

from exponential curve is much stronger for the coefficients L(k) and N (k), rather
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Figure 5.3 Case 2a: r1 = 2, r2 = 2, d = 5

than C
(1)
k , C

(2)
k . This is because they enter the algebraic system multiplied by one

more matrix, and are thus susceptible to more round-off errors.

Finally, we present in Fig. 5.4 the convergence results for two unequal

closely separated spheres. In this case d = 3 + 2 + 1 = 6. Once again, the L(k)

and N (k) coefficients are much more susceptible to errors. As in the case of well

separated spheres, the coefficients relevant to the smaller sphere have a smaller

exponent (converge slower).
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Figure 5.4 Case 2b: r1 = 3, r2 = 2, d = 6

The conclusion of this chapter is that the presented here Legendre-series

method is highly efficient, having a very fast exponential convergence. Even for

the tough cases of closely situated spheres, results with accuracy better than the

rounding-off error of the computer can be obtained with as few as 30 terms in the

series. A similar accuracy can be achieved by a difference method with at least

400 points along the two spatial dimensions. In addition, the spectral method has

a global convergence, i.e. the accuracy is very well controlled.



CHAPTER VI

SOME NUMERICAL RESULTS AND

DISCUSSIONS

Based on the numerical method and algorithm developed in the previous

chapters, we obtained results for the couple of cases already mentioned. One

should be reminded that all these cases are only for a uniform flow with no gradient

at infinity. To include the gradient effects, one has to create similar algorithms

like the one in the previous chapter for the other four systems. This goes beyond

the scope of the present dissertation which focuses on the creation of the new type

of mixed Legendre-Chebyshev spectral method.

When presenting the results, one has to return to the absolute coordinate

system. Our results have been obtained for the relative stream function. While,

for the velocity components, the returning requires merely the addition of the

velocity at infinity, for the stream function, the process requires integration, in

order to find the stream function that is related to the uniform stream. In order

to find the stream function in the absolute coordinate system, we have created an

integration procedure, but it is far from a truly efficient one, and for this reason we

did not treat many different cases. One should understand the results presented

here as merely preliminary computations that are aimed to prove the concept.

In addition, the main results are for the velocity components, while the stream

function is computed only for the reason that people are adapted in discussing

stream lines.

Following the convention from the previous chapter about the cases under
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consideration, we present first the cases of well separated spheres. In Fig. 6.1 we

show the velocity components and the stream lines for r1 = 2, r2 = 2 and distance

between the spheres d = 15. It is well seen that for this case, the flow resembles a

−15 −10 −5 0 5 10 15
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(a) velocity vector
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Figure 6.1 Flow around two equal well separated spheres: r1 = 2, r2 = 2, d = 15.
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Figure 6.2 Flow around two unequal well separated spheres: r1 = 3, r2 = 2,

d = 15.

superposition of flows around single spheres. This is a good piece of evidence about
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the reliability of the proposed technique. The case of two unequal well separated

spheres is depicted in Fig. 6.2. The conclusions are similar as to the previous case.

The above graphs compare very well with the available experimental observations.

In the end, we show for completeness the flow patterns for the two cases

when the spheres are closely situated to each other. In Fig. 6.3 we present the
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Figure 6.3 Flow around two equal closely situated spheres: r1 =2, r2 =2, d=5.
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Figure 6.4 Flow around two unequal closely situated spheres: r1 = 3, r2 = 2,

d = 6.
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case of two equal and closely situated spheres. In this case, it is hard to obtain

a quantitative intuition from the case of a single sphere, because in real flows,

the Reynolds number is never equal to zero. This means that for even small but

nontrivial Reynolds numbers, some kind of separation of the flow will take place

between the spheres, which will change qualitatively the stream lines. If there is no

separation, the presented patterns are the ones that should be expected. The case

of two unequal closed spheres is shown in Fig. 6.4. The conclusions are similar to

the previous case. Because of lack of experiments we should not go deeper at this

stage, and will leave the more detailed investigation of the physical characteristics

for a different specialized work.

The important conclusion is that a very efficient and reliable numerical tool

has been developed in the present dissertation.



CHAPTER VII

CONCLUSIONS

In this thesis, we have studied the problem of Stokes flow around two

nonintersecting, unequal spheres. The flow field at infinity is subject to constant

velocity gradient. The following contribution to the field have been made.

Under the assumption of a constant velocity gradient at infinity, the prob-

lem is three-dimensional and therefore difficult and expensive to solve numerically

or analytically. We make use of the presence of a cyclic variable and propose a

special representation of the solution compatible with the form of the boundary

conditions. As a result, we have succeeded in reducing the original 3D problem to

five partially coupled 2D problems.

The main contribution of the present work is in creating a spectral method

based on Legendre polynomials for solving the boundary-value problems of what

can be called the bi-Stokesian equations which arise for the stream function for

the first of the above described systems. The crucial difference between the second

order equation (Laplace equation) and the fourth order equation (the bi-Stokesian

equation, in our case) is that the separation of variables is not complete. When the

fourth-order equation is rearranged as a system of two second order equations, one

of them is homogeneous, and the other is nonhomogeneous. The method of making

the homogeneous equation separable is similar to that of the Laplace equation, but

for the inhomogeneous one a different approach is needed. We developed here, for

the first time in the literature, a method based on hybrid cross expansion involving

Chebyshev polynomials of the second kind and associated Legendre polynomials
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and derived the necessary formulas for the its application.

The new hybrid expansion is completed with a method based on the gen-

erating function to acknowledge the boundary conditions. Using the generating

function, the boundary conditions that involve the projections of the gradient

field on the spheres are expanded into associated Legendre series and a closed

linear algebraic system for the unknown coefficients is derived, completing thus

the mathematical model of the gradient viscous flow around two unequal spheres.

The Legendre series are known to converge exponentially. We thoroughly

validated the proposed numerical procedure and demonstrated that indeed the

convergence is exponential. We have found the exponent of the convergence for

several important cases: equal and unequal spheres, and short and large distances

between the centers of spheres. We have found that although the convergence is

exponential in all cases, the absolute value of the actual exponent is much smaller

(the series converges slower) for the case of closely situated spheres.

The numerical results for small and large distances between sphere surfaces

are shown and discussed. For the large distance between sphere, the flow patterns

resemble a superposition of flows around single spheres. In case of closely situated

spheres, the computed patterns are the one that have to be expected.
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APPENDIX A

CYLINDRICAL COORDINATES

The cylindrical coordinates (r, φ, z) can be expressed by

x = r cos φ, y = r sin φ, z = z (0 ≤ φ ≤ 2π). (A.1)

Coordinate surface r = const > 0 are circular cylinders (coaxial to z−axis),

φ = const are half-planes passing through z−axis and z = const are planes per-

pendicular to z−axis. Coordinate curves are : l1 (intersection of φ = const and

z = const) are straight rays going from z−axis and perpendicular to it; l2 (in-

tersection of r = const and z = const) are circles (these circles lie on the planes,

which are perpendicular to z−axis with a center in the z−axis with a center in

the z−axis); l3 (intersection of r = const and φ = const) are straight lines that

are parallel to z−axis.

The basis and cobasis of the cylindrical coordinate system are orthogonal

and consist of the vectors

ē1 =
(∂x

∂r
,
∂y

∂r
,
∂z

∂r

)
= (cos φ, sin φ, 0),

ē2 =
(∂x

∂φ
,
∂y

∂φ
,
∂z

∂φ

)
= (−r sin φ, r cos φ, 0),

ē3 =
(∂x

∂z
,
∂y

∂z
,
∂z

∂z

)
= (0, 0, 1),

ē1 =
(∂r

∂x
,
∂r

∂y
,
∂r

∂z

)
= (cos φ, sin φ, 0),

ē2 =
(∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
= (−1

r
sin φ,

1

r
cos φ, 0),

ē3 =
(∂z

∂x
,
∂z

∂y
,
∂z

∂z

)
= (0, 0, 1).
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The fundamental tensor and its inverse are defined by

(gij) = (ēi · ēj) , (gij) = (ēi · ēj), (A.2)

i.e.,

(gij) =




1 0 0

0 r2 0

0 0 1




, (gij) =




1 0 0

0 1
r2 0

0 0 1




, |g| = r2. (A.3)

The Christoffel symbols which are related to the derivatives of the fundamental

tensor are

Γl
ij =

1

2

( ∂gis

∂Kj
+

∂gjs

∂Ki
− ∂gij

∂Ks

)
, =⇒ Γ2

12 = Γ2
21 =

1

r
, Γ1

22 = −r, (A.4)

and all others are equal to zero.

Since cylindrical coordinates are orthogonal, then all physical components of any

type coincide. Let (u, v, w) be physical components of a vector v̄. Then the tensor

components in the covariant and contravariant form of v̄ are

(v1, v2, v3) = (u, rv, w), (v1, v2, v3) = (u,
1

r
v, w).

The coordinates of the gradient of the scalar function p are

(∇p)1 = (∇p)1 =
∂p

∂r
, (∇p)2 =

∂p

∂φ
, (∇p)2 =

1

r2

∂p

∂φ
, (∇p)3 = (∇p)3 =

∂p

∂z
.

The Stokes equations can be written as

∂ui

∂t
= −1

ρ
gij ∂p

∂Kj
+ νgin

[ ∂2ui

∂Kj∂Kn
+ Γi

ln

∂ul

∂Kj
+ Γi

lj

∂ul

∂Kn
− Γl

jn

∂ui

∂K l

+
( ∂Γi

lj

∂Kn
+ Γi

mnΓm
lj − Γi

lmΓm
jn

)
ul

]
. (A.5)

Hence the Stokes equations and continuity equation in cylindrical coordinates read

∂ur

∂t
= −1

ρ

∂p

∂r
+ ν

[ ∂

∂r

1

r

∂

∂r
rur +

1

r2

∂2ur

∂φ2
− 2

r2

∂uφ

∂φ
+

∂2ur

∂z2

]
, (A.6a)
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∂uφ

∂t
= − 1

ρr

∂p

∂φ
+ ν

[ ∂

∂r

1

r

∂

∂r
ruφ +

1

r2

∂2uφ

∂φ2
+

2

r2

∂ur

∂φ
+

∂2uφ

∂z2

]
, (A.6b)

∂uz

∂t
= −1

ρ

∂p

∂z
+ ν

[1

r

∂

∂r
r
∂uz

∂r
+

1

r2

∂2uz

∂φ2
+

∂2uz

∂z2

]
, (A.6c)

1

r

∂

∂r
rur +

1

r

∂uφ

∂φ
+

∂uz

∂z
= 0. (A.6d)



APPENDIX B

MORE CALCULATIONS OF EQUATIONS

(4.60)-(4.66)

We use the following relations to compute (4.60)-(4.66).

(1− µ2)
m
2

(1− 2µt + t2)m+1/2
=

(−1)m2mm!

(2m)!

∞∑

k=0

tkP
(m)
k+m(µ) , |t| < 1 (B.1a)

µP
(m)
k (µ) =

(k −m + 1)P
(m)
k+1(µ) + (k + m)P

(m)
k−1(µ)

2k + 1
(B.1b)

(1− µ2)
1
2 P

(m+1)
k (µ) = (k −m)µP

(m)
k (µ)− (k + m)P

(m)
k−1(µ). (B.1c)

Equation 4.60 Let e−|η| = t.

− a sin ξ sinh ηU (z)

(cosh η − µ)
3
2

= −a sinh η(2t)
3
2 (1− µ2)

1
2 U (z)

(1− 2µt + t2)
3
2

by (B.1a)
= a23/2U (z) sinh ηt3/2

∞∑

k=1

tk−1P
(1)
k (µ) = a23/2U (z) sinh η

∞∑

k=1

tk+1/2P
(1)
k (µ).

Equation 4.61

(G11 + G22)a
2(µ cosh η − 1) sin ξ

2(cosh η − µ)
5
2

=
(G11 + G22)a

22
3
2 t

5
2 (µ cosh η − 1)(1− µ2)

1
2

(1− 2µt + t2)
5
2

.

Let

G1(t, µ) ≡ (1− µ2)
1
2

(1− 2µt + t2)
3
2

= −
∞∑

k=1

tk−1P
(1)
k (µ). (B.2)

Then

∂G1

∂t
=

3(µ− t)(1− µ2)
1
2

(1− 2µt + t2)
5
2

= −
∞∑

k=1

(k − 1)tk−2P
(1)
k (µ). (B.3)

Hence

µ(1− µ2)
1
2

(1− 2µt + t2)
5
2

=
1

3

∂G1

∂t
+

t(1− µ2)
1
2

(1− 2µt + t2)
5
2

.
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It follows that

(µ cosh η − 1)(1− µ2)
1
2

(1− 2µt + t2)
5
2

=
1

2
(t + t−1)

[1

3

∂G1

∂t
+

t(1− µ2)
1
2

(1− 2µt + t2)
5
2

]

− (1− µ2)
1
2

(1− 2µt + t2)
5
2

=
1

6
(t + t−1)

∂G1

∂t
+

(t2 − 1)(1− µ2)
1
2

2(1− 2µt + t2)
5
2

. (B.4)

Consider (B.2) + 2
3
t× (B.3);

(t2 − 1)(1− µ2)
1
2

2(1− 2µt + t2)
5
2

=
∞∑

k=1

[
1

2
+

(k − 1)

3
]tk−1P

(1)
k (µ). (B.5)

Substitute into the above, we see that

(µ cosh η − 1)(1− µ2)
1
2

(1− 2µt + t2)
5
2

= −1

6
(t + t−1)

∞∑

k=1

(k − 1)tk−2P
(1)
k (µ)

+
∞∑

k=1

[
1

2
+

(k − 1)

3
]tk−1P

(1)
k (µ) =

1

6

∞∑

k=1

[
(k + 2)tk−1 − (k − 1)tk−3

]
P

(1)
k (µ).

(B.6)

Therefore,

(G11 + G22)a
2(µ cosh η − 1) sin ξ

2(cosh η − µ)
5
2

=
(G11 + G22)a

2
√

2

3

∞∑

k=1

[
(k + 2)t(k+3/2) − (k − 1)t(k−1/2)

]
P

(1)
k (µ). (B.7)

Equation 4.62

−G33a
2 sin ξ sinh2 η

(cosh η − µ)
5
2

= −G33a
2 sinh2 η(2t)

5
2 (1− µ2)

1
2

(1− 2µt + t2)
5
2

= sign[η]
G33a

2 sinh η(t− t−1)(2t)
5
2 (1− µ2)

1
2

2(1− 2µt + t2)
5
2

= sign[η]
G33a

2 sinh η2
5
2 t

3
2 (t2 − 1)(1− µ2)

1
2

2(1− 2µt + t2)
5
2

by (B.5)
= sign[η]

G33a
223/2 sinh η

3

∞∑

k=1

[3 + 2(k − 1)]tk+1/2P
(1)
k (µ)

= sign[η]
G33a

223/2 sinh η

3

∞∑

k=1

(2k + 1)tk+1/2P
(1)
k (µ). (B.8)
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Equation 4.64

a sin ξ(µ cosh η − 1)U (z)

(cosh η − µ)
3
2

=
a(2t)

3
2 U (z)(µ cosh η − 1)(1− µ2)

1
2

(1− 2µt + t2)
3
2

by (B.1a)
= −a(2t)

3
2 U (z)(µ cosh η − 1)

∞∑

k=1

t(k−1)P
(1)
k (µ)

= −a(2)
3
2 U (z)(µ cosh η − 1)

∞∑

k=1

t(k+1/2)P
(1)
k (µ)

= −a2
3
2 U (z)

[
cosh η

∞∑

k=1

t(k+ 1
2
)µP

(1)
k (µ)−

∞∑

k=1

t(k+ 1
2
)P

(1)
k (µ)

]

= −a2
3
2 U (z)

[
cosh η

∞∑

k=1

t(k+ 1
2
)
(kP

(1)
k+1(µ) + (k + 1)P

(1)
k−1(µ)

2k + 1

)
−

∞∑

k=1

t(k+ 1
2
)P

(1)
k (µ)

]

= −a2
3
2 U (z)

∞∑

k=1

[
cosh η

( k − 1

2k − 1
t(k−

1
2
) +

k + 2

2k + 3
t(k+ 3

2
)
)
− t(k+ 1

2
)
]
P

(1)
k (µ). (B.9)

Equation 4.65

(G11 + G22)a
2 sin3 ξ sinh η

2(cosh η − µ)
5
2

=
(G11 + G22)a

2(2t)
5
2 (1− µ2)

1
2 sinh η(1− µ2)

2(1− 2µt + t2)
5
2

by (B.1a)
=

(G11 + G22)a
2(2t)

5
2 sinh η(1− µ2)

1
2

2

222!

4!

∞∑

k=1

tk−1P
(2)
k+1(µ)

=
(G11 + G22)a

22
3
2 sinh η

3

∞∑

k=1

t(k+ 3
2
)(1− µ2)

1
2 P

(2)
k+1(µ)

by (B.1c)
=

(G11 + G22)a
22

3
2 sinh η

3

∞∑

k=1

[
(k − 2)(k − 1)

2k − 1
t(k−

1
2
)

− (k + 2)(k + 3)

2k + 3
t(k+ 3

2
)]P

(1)
k (µ). (B.10)

Equation 4.66

G33a
2(µ cosh η − 1) sinh η sin ξ

(cosh η − µ)
5
2

=
G33a

2 sinh η(2t)
5
2 (µ cosh η − 1)(1− µ2)

1
2

(1− 2µt + t2)
5
2

by (B.6)
=

G33a
2(2t)

5
2 sinh η

6

∞∑

k=1

[
(k + 2)tk−1 − (k − 1)tk−3

]
P

(1)
k (µ)

=
G33a

2(2)
3
2 sinh η

3

∞∑

k=1

[
(k + 2)t(k+3/2) − (k − 1)t(k−1/2)

]
P

(1)
k (µ). (B.11)
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