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ABSTRACT

Agent is a conceptual entity designed to solve a complex problem. It differs from other software design concepts with its
special capabilities of acting autonomously, adapting to changing circumstances, and communicating with other agents
through high-level interactions. The significance of the agent-based approach in data mining, knowledge discovery, and
Web intelligence has been realized by many researchers over the past decade, Several agent-based data mining tools have
been developed. Most of them were implemented with imperative languages such as C and Java. We propose the agent
model that has been implemented with a2 more powerful programming paradigm using declarative languages such as
Haskell and Prolog. The advantages of these languages are their advancement in program structures, pattern matching
and reasoning features, including higher order computation and meta-level programming. These language features are
essential in developing intelligent agents. Even though the major drawback of most declarative languages is their
computation speed, we have shown via experimental results that the percentage of speed decrease is insignificant
comparing to imperative language implementation.

KEYWORDS

Knowledge mining agents, machine intelligence.

1. INFRODUCTION

Agents are key players in most current intelligent systems. According to Russell and Norvig [1995], agent is
an entity (either a computer or a human) that perceives and acts in a particular environment. It is also defined
[Wooldridge, 1997; Wooldridge and Jennings, 1995] as a computer system designed to work in some
environment and has the capability to act antonomously in order to meet its designed goals. In complex and
dynamic environments, multiagents are often utilized as a collaborative group of performers. A multiagent
system [Weiss, 1999] is a group of entities working together to perform tasks that are beyond the individual
capabilities of each entity. Agents may co-exist on a single processor, or they may be physically separated to
perform: activities on their own and build a community through communication. Intelligent agents
[Wooldridge, 2002] employ additional capabilities of goal-directed task accomplishment, response due to
changes in their environments, ability to interact with other agents, and learning to improve performances as
they perform their assigned tasks.

To achieve intelligence, agents utilize several artificial intelligence techniques such as machine leaming,
inductive and deductive reasoning. On the contrary, intelligent agent technology can play an important role in
the design and development of knowledge discovery, or data mining, systems. Knowledge discovery is the
process of identifying valid, novel, potential useful and understandable patterns in data that may be
distributed and heterogeneous in terms of content and structures [Fayyad et al,, 1995; Han and Kamber,
2006]. This complex discovery process involves several phases including data selection, data preprocessing,
data transformation, data analysis (or mining), interpretation and evaluation. These phases are iterative and
adaptive in their nature, therefore it is a good setting for the application of intelligent agent technology. The
ability of an agent to communicate, cooperate, and coordinate with other agents in multiagent system
benefits the design of knowledge discovery tools to locate and mine potential knowledge in a distributed
environment.




The application of agent technology as a major method to the implementation of data mining techniques
has been studied by many researchers. Kargupta et al. [1997] applied agent technology to design a parallel
and distributed data mining system named PADMA (Parallel Data Mining Agents). The system inferfaces
with users via a Web browser. Bose and Sugumaran [1999] designed an agent-based data mining system
called the Intelligent Data Miner (IDM). They implemented a prototype of IDM using Java language and
Java Agent Template Lite (JATLite available from http://java.stanford.edu) which is a set of Java templates
and agent infrastructure. Some researchers proposed to employ heterogeneous techniques to perform data
mining tasks. Recon [Kerber et al., 1995] is an example of a hybrid system containing inductive, clustering,
case-based reasoning and statistical package for data mining. Zhang and Zhang [2004] also implemented data
mining based hybrid intelligent systems. They demonstrated agent perspectives  through the re-
implementation of Weka system [Witten and Frank, 2005] using the agent communication language KQML
(Knowledge Query and Manipulation Language) [Finin et al, 1997]. Gao et al. [2005] proposed a model
called CoLe (Cooperative Learning) to handle the situation that agents employ different methods to access
different types of information in heterogencous data sets. Ong et al. [2005] also developed a multiagent
system based on the concept of data stream processing to perform a data mining task in distributed dynamic
environments.

An agent-based approach has been widely accepted as an appropriate paradigm to implement an
intelligent system because of its flexibility, modularity and ability to take advantage of distributed resources.
The integration of heterogeneous data source is one major characteristic of practical data mining systems that
have to search for interesting patterns from huge amount of data, possibly locating at remote sites. An agent
technology is thus the promising technique in the knowledge discovery setting that real-world data is
evolving, distributed and non-homogeneous. Pursuing the same direction as other researchers, we also
propose an agent-based model to implement knowledge discovery. We, however, consider a different
paradigm on the agent-based data mining implementation. Instead of implementing with imperative paradigm
using common languages such as C, Java, Visual Basic, we employ the declarative paradigm and implement
the system with Haskell and Prolog languages. The power of declarative programming has paid of as shown
in our experimental results. The rest of this paper is organized as follows. The next section briefly discusses
the concepts of declarative versus imperative programming. We then present our agent model in section 3,
The detail and some excerpts of our implementation are explained in section 4. Section 5 illustrates the
experimental results. Section 6 concludes the paper.

2. DECLARATIVE VERSUS IMPERATIVE PROGRAMMING

In declarative languages such as Haskell and Prolog, programs are sets of definitions and recursion is the
main ¢ontrol stricture of the program computation. In imperative languages such as C and Java, programs are
sequences of instructions and loops are the main control structure. A functional programming language like
Haskell is a declarative language in which programs are sets of fimction definitions. The evaluation of a
program is simply the evaluation of functions. A logic programming language like Prolog is a declarative
language in which programs are sets of predicate definitions. Predicates are truce or false when applied to an
object or set of objects, while functions return a result. A predicate typically has one more argument (o serve
as a returned value) than the equivalent function. Either function or predicate definitions, each definition has
a dual meaning: (1) it describes what is the case, and (2} it describes the way to compute something.

Declarative languages are mathematically sound. It is easy to prove that a declarative program meets its
specification which is a very important requirement in software industry. Declarative style makes a program
better engineered, that is, easier to debug, easier to maintain and modify, and easier for other programimers to
understand. The examples of coding quick sort in C, Haskell and Prolog (figure 1) verify the previous
statement.

One major task in data mining is searching for frequent patterns, A pattern is a set of items co-occurrence
across a database. Given a candidate pattern, the task of pattern matching is to search for its frequency
looking for the patterns that are frequent enough. The outcome of this search is frequent patterns that suggest
strong co-occurrence relationships between jtems in the dataset. The search for patterns of interest can be
efficiently programmed using the Haskell language. Haskell has evolved as a strongly typed, lazy, pure
functional language since 1987 [Hudak et al., 1996],




Haskell C
sort{] =[]} int partition(int y{], int £, int I);
sort {x:xs) = sortly | y<-xs, y<x | void quicksort{int x{], int first, int last) {
++ [x] int pivindex = 0;
++ sort [y | y<-xs, y>=x] if{first < last) {
pivindex = partition{x,first, last);
quicksort{x,first,(pivindex-1}};
Brelog quicksort{x,(pivindex+1},last);
as(f L[ ])- 1!
gs({X§Xs]} :- part(X, Xs, Littles, Bigs), int partition(int y[}, int f, int 1) {
gs( Littles, Ls), int up,down,temp;
gs( Bigs, Bs}, intce;  int piv = y[f};
append(Ls, [X|Bs], Ys). up = f;
part(, [ {] [} down = §;
partX, {Y{Xs]. [Y|Ls}, Bs) - X>Y, do { while {y[up] <= piv && up < I { up++;}
part(X, Xs, Ls, Bs). while (yjdown] > piv ) { down--;}
part(X, [Y]Xs], Ls, [Y|Bs]) :- X=<Y, if (up < down} { temp = y[up];
pa.rt[X, Xs, Ls, BS). yiup] = y[down};
yidown] = temp; }
} while (down > up);
temp = piv;
vlf] = yldown];
y[down] = piv;
return down;}

Figure 1. Quick sort program in Haskell, Prolog, and C languages.

Pattern matching is one of the most powerful features of Haskell. Defining functions by specifying
argument patterns is a common practice in programming with Haskell As an illustration, consider the
following example:

fib :: Int «> Int -- declaring a function that takes one Int and retumns an Int
fiv0o=0 -- pattern 1: argument is 0

fibi=1 -- pattern 2: argument is 1

fib n = fib (n-2) + fib {n-1} -- pattern 3: argument is Int other than O and 1

The function fib returns the n™ number in the Fibonacci sequence. The left hand sides of function
definitions contain patterns such as 0, 1, n. When applying a function these patterns are matched against
actual parameters. If the match succeeds, the right hand side is evaluated to produce a result. If it fails, the
next definition is tried. If all matches fail, an error is returned.

In Prolog, the feature of pattern matching can be defined through the use of arguments. For example, the
following program demonstrates the fib function (in Prolog it is called predicate instead of function) to find
the n™ number in the Fibonacei sequence. Last argument is normally a place holder for an output.

% Fibonacci function in Prolog

fib(0, 0). % pattern 1: input number is 0, then output is 0
fib(1, 1). % pattern 2: input numberis 1, then output is 1
fib(N, F) =~ N> 1, % pattern 3: input number >1, then

NI is N-1, N2 is N-2, % create new variables: N1 and N2

fib(N1, F1), fib(N2, F2), % recursively call fib

Fis F1 + F2. % compute final result F

3. THE AGENT-BASED MODEL

We propose an agent-based knowledge discovery model (as shown in figure 2) to compose of three [ayers:
data source layer, agent layer, and external layer. A community of agents is in the agent layer situated to help
users to access and get only promising knowledge for their discovery tasks. Locating and accessing, filtering,
and mining are three major activities of these agents.




Extemnal layer

Data source layer

Structured data
Heterogeneous data sources

Semi-structured data Multimedia data

Figure 2. Agent-based model in a knowledge discovery systemn.

Locating and accessing. At the lowest level of the proposed framework, multiple heterogeneous data
sources are located in an enterprise environment. These data sources may be distributed across a network
such as intranet or internet. Resource agent is thus responsible for making the underlying data available to the
data transformation agent in the upper filtering sub-layer. The resource agent also monitors changes in data
contents to report any corresponding modification to the data-update agent. To implement the functions of
resource agent, the following modules are required.

- Data source specification. The resource agent must be able to announce its location and the

specification of its contents to other agents in the community.

- Query processor. The agent has to handle the update and the query upon the data contents. The
query processor must also have the ability to reason whether its data contents match the needs
announced by the knowledge mining agent.

- Event-detection module. This module is responsible for detecting the update on the data contents,

- Data access module. The resource agent assigns different access modules for different kinds of data
SOurces.

Filtering. The agents in this class are the most autonomous and sophisticated ones due to the self-

adjusting and specitic functioning of each agent. The agents in this class are composed of:

- Data update agent. The agent communicates with resource agent to probe any changes in the
environment and reflect those changes to data repository.




- Data transformation agent. Its main responsibility is to turn the input data to the right {ormat.

- Cleansing agent. This agent is responstble for getting rid of any noise and handling missing values
in the data contents.

- Feature selection agent. This agent efficiently evaluates and selects the most promising features out
of the available data.

- Data sampling agens. This agent is invoked to obtain representatives appropriate for a specific
mining task.

Mining. The agents in this class are mainly responsible for performing the data mining techniques. Data
obtained from the filtering sub-layer will be turned into valuable and actionable knowledge by these agents:

- Knowledge mining agent. It is actually a group of agents, each agent performs a specific mining
technigue.

- Knowledge processing agent. Mined knowledge could be overwhelming or low accurate. If is thus
the responsibility of this agent to post-process knowledge discovered by the mining agents.

- Knowledge customization agent. Some knowledge might be accurate but uninferested to the user.
This agent s responsible for getting only knowledge pertaining to each user interest and delivers
customized knowledge through the interface agent.

4. IMPLEMENTATION

We implemented association mining to discover frequent patterns with Apriori algorithm {Agrawal et al,
1993; Agrawal and Srikant, 1994]. Some parts of the program are shown in figure 3. In Haskell, each item is
representied by the item identifier which is an integer. Thus, a set of patterns (patternset) is denoted as a set
of Int declared in the first line of the Haskell code. The function sumi is defined to count the number of
gccurrence of each element in patternSet. Functions listC and listC’ perform the task of enumerating
candidate frequent patternSet. Only patternSet that satisfy the minS threshold are reported from the
functions listL and listl' as frequent patternSet. The complete implementation of frequent pattern
discovery using Haskell functional language takes only 37 lines of code.,

Prolog implementation to discover frequent patterns contains around 58 lines of code. In Prolog, data type
definition is not necessary because Prolog is weakly typed. Thus, pattern matching in Prolog is more general
than that of Haskell. We use the set union to construct candidate patterns of length two or more as in Haskell
implementation.

patternSet :: [Set Int]
patternSet =([Set.singleton x | x<-[1..9]]
sumi::Set Int->[Set Int]->Int
sumi s [] =0
sumi s (y:ys)|(Set.isSubsetOf s y)= L+(sumi s ys)
fotherwise = (sumi s ys)
listC ::Int->[{Set Int,Int)]
listC 1=[let n=(sumi s dataB) in (s,n) |
s<- patternSet}
listC n={let n=(sumi s dataB)} in {s,n} |
s<- Set.toList(listC' n)]
listC' :: Int->Set{Set Int)
listC' 2=Set.fromList[(Set.union x y) |x<-(listL’ 1),
y<-(listL' 1},%x/=y]

listC' n=Set.fromList[(Set.union x y) |

x<-(listl! (n-1}}),

y<-(listl’ (n-1}), /=Y,

(Set.size(Set.union x y))==n}
listL ::Int->{(Set Int,Int)]
listL n=[{x,y}|{%,y)<-listC n, y>=minS]
listL': :Int->[Set Int]
listl! n =[x|(x,_)<-listl n]

ri:- n(X), cLi(X).

r2(Xy:« ¢C2(X).

clear:-retractali(i1{_)), retractall{ci(_)),

retractali{c2(_}) , retractall(12{_)).

% Create L1

cL1([]1).

CLI([H|TD) :- findali(X, f({H]1,X),L), length(L, Len},
Len »== 2 |,
cli{T), assert(11{([H], Len}})

cl.i{T).
% Create C2, L2
cC2(X) - IL((X,_)), 1L((X2,_)}, X\==X2,
write(X-X2), union(X, X2, Res),
assert(c2({(Res))), retrack(11{{X,_))), nl
crC2(L) ;- findali{X,c2{X),L).
ck2([1).
cL2([H|TT) :- findal(X, f(H,X}),L), length(L,Len}),
ten >= 2 ,!, cL2(T),
assert(12({H,Len}})) £
f(H, X} :- item({X), subset(H, X).

cl.2(T).

{2) Haskell implementation

(b) Prolog implementation

Figure 3. Frequent pattern discovery implemented with declarative languages.




5. EXPERIMENTATION

We comparatively study the performance of our implementations of frequent pattern discovery using Haskell
and Prolog versus C and Java (source codes of C and Java implementations are taken from [Borgelt, 2003]).
All experimentations have been performed on a 796 MHz AMD Athlon notebook with 512 MB RAM and 40
GB HD. We tested the speed and memory usage of the programs on different datasets obtained from the UCI
Machine Learning Database Repository (htp://www.ics.uci.edu/~mlearn/MLRepository.html). Some results
on four datasets, vote data (13.2 KB, 300 transactions, 17 items), chess data (237 KB, 2130 transactions, 37
items), DNA data (252 KB, 2000 transactions, 61 items), and mushroom data (916 KB, 5416 transactions, 23
iterns) are shown in this section. The frequent pattern discovery implementations have been tested on each
dataset with various min§ (minimum support) values.
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Figure 4. The comparison on computation speed of declarative versus imperative programming.

It can be noticed from the experimental results that on a speed comparison (figure 4), C implementation is
the fastest, Haskell comes at a second fastest following by Prolog and Java. On the memory usage
comparisonr (figure 5), the ordering is the same as those on the speed comparison. However, it can be noticed
from the results that the degree of difference is insignificant and almost negligible. When taking into
consideration the length of the source codes, Haskell: 37 lines, Prolog: 58 lines, C: 352 Hnes, Java: 663 lines,
the declarative style of coding absolutely consumes less effort and development time than the coding with
imperative style.
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Figure 5. Memory usage comparison of declarative versus imperative programming.

6. CONCLUSION

The contribution of this paper is the design and implementation of a knowledge discovery system to provide
an integrated, flexible, and efficient platform supported by a community of agents. This platform provides
mechanisms of data browsing and extracting, data arrangement, data quality evaluation, data mining,
knowledge processing and knowledge customization for the whole process of knowledge discovery. The
agent model is designed with the three-layer architecture. Data source layer is at the back-end responsible for
locating and accessing data from the remote sites, External layer is the user interface part. The core of our
design is the agent layer which is in the middie between the external and the data source layers. Agent layer
is divided inio three sub-layers: locating and accessing, filtering, and mining. These agents work
autonomously and cooperatively to deliver knowledge assets that meets specific interest of each user.

The proposed agent model has been implemented with declarative programming using Haskell and Prolog
languages. We employ this paradigm with the intuitive idea that the problem of knowledge discovery should
be efficiently and concisely implemented with high-level declarative languages. This idea has been tested on
a specific problem of frequent pattem discovery which is 2 major problem in the areas of data mining and
business intelligence. The problem concerns finding frequent patterns hidden in a large database. Frequent
patterns are patterns such as set of items that appear in data frequently,

Coding in declarative style takes less effort because pattern matching is a fundamental feature supported
by functional and logic languages. The implementations of Aprioni algorithm using Haskell and Prolog
confirm our hypothesis about conciseness of the program. The performance studies also support our intuition
on efficiency because our implementations are not significantly less efficient than C or Java implementations
in terms of speed and memory usage.

This preliminary study supports our belief regarding declarative programming paradigm towards a
complex problem of knowledge discovery. We focus our future research on the design of data organization to




optimize the speed and storage requirement, We also consider the extension of implementation in the course
of concurrency to improve its performance.

Agents are designed to be active and intelligent. They are able to react appropriately to unpredictable
situations, evaluate and apply their own problem solving strategies. However, the current design has to be
extensively tested on various application domains. Several areas of extensions are currently being
investigated. The functionalities of filtering agents can be extended to support new techniques of cleansing
and adaptive sampling. Mining agents are also in the course of further improvement.
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Abstract: SUT Miner is a data mining system developed at Suranaree University of Technology as
an intelligent data analysis tool to discover patterns and extract useful information from facts stored in
databases. We present work in progress on the development of the SUT Miner, a complete data
mining system. In addition to the mining engine, our system incorporates the pre-mining and post-
mining parts. In this paper, we describe a framework of SUT Miner and present the implementation
scheme on the mining engine part using a functional programming paradigm, a Haskell language in
particular. A high-level declarative style of Haskell facilitates a clear and concise coding. The
language also supports pattern matching, which is a big advantage for a task of pattern discovery.

Introduction: Data Mining (DM) or Knowledge Discovery in Databases (KDD) has been
defined [3] as the automatic discovery of previously unknown patterns (or models,
relationships) in large and complex datasets. Pattern is an expression describing a subset of
the data, e.g. f(x) = 3x* + 3 is a pattern induced from a given dataset {(0,3), (1,6), (2,15),
(3,30)}, whereas the term mode! refers to a representation of the source generating the data,
eg f(x)= ax’ +b. However, in his paper we use the term pattern and model interchangeably.
The process of DM, thus, involves fitting models to, or determining patterns from, observed
data. Finding patterns has become an important task because those patterns reveal
associations, correlations, and many other interesting relationships hidden in stored data.
Most of the proposed mining algorithms have been implemented with imperative
programming languages such as C, C++, Java.

The imperative paradigm is significantly inefficient when a dataset is large and the
hidden pattern is long. We suggest a high-level declarative style of programming using a
functional language. Qur supposition is that the problem of pattern discovery can be
efficiently and concisely implemented via a functional paradigm since pattern matching is a
fundamental feature supported by most functional languages.

Methodology: At a high level of our framework, we design the SUT-Miner system to be
comprised of three main phases: pre-DM, DM, and post-DM. The pre-DM phase performs
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©data preparation tasks such as to locate and access relevant data set(s), transform the data

format, clean the data if there exists noise and missing values, reduce the data to a reasonable
and sufficient size with only relevant attributes. The DM phase performs mining tasks
including classification, clustering, and association. The post-DM phase involves knowledge
evaluation, based on corresponding measurement metrics, of the mining results. DM is an
iterative process in that some parameters can be adjusted and then restart the whole process to
produce a better result. The post-DM phase is composed of knowledge evaluator, knowledge
reducer, and knowledge integrator. These three components perform major functionalitics
aiming at a feasible knowledge deployment. The overall architecture of our SUT-Miner
system is presented in figure 1.

Figure 1 An architecture of the SUT Miner system

The implementation of SUT-Miner system is mainly based on the functional
programming paradigm using Haskell language [2], [4]. Functional languages (FL) offer a
number of advantages over imperative languages (IL). FL can be used to express
specifications of problems in a more concise form than IL. This results in the creation of
program source codes that are shorter and easier to understand. The example in figure 2
shows C versus Haskell codes to compute a list of fibonacci numbers starting with zero.

C-code Haskell-code
int * fib (int n) fib :: [Int]
{ inta=0,b=1, i, temp; fib=0:1:[atb | (a, b) <- zip fib (tail fib) ]

int * fibsequence;
fibsequence = (int *} malloc ((sizeof int) *n);
for (1 = 0; i<n; i++)

{ fibsequence[i} = a;

temp=a+b;
a=bh;
b =temp;

}

return fibsequence;

}

Figure 2 C versus Haskell codes to compute fibonacci numbers
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Haskell is a pure FL having a polymorphic type system, i.e. a data type can take type
variables as parameters. This feature provides a high level abstraction leading to generic
programming. Haskell is also a lazy FL, i.e. a value is evaluated only when it is needed. This
feature allows infinite structures, such as an infinite sequence of fibonacci numbers, to be
defined.

The search for patterns of interest can be efficiently programmed using the Haskell
language. Haskell has evolved as a strongly typed, lazy, pure functional language since 1987
[5], [7]. The language is named after the mathematician Haskell B. Curry whose work on
lambda calculus provides the basis for most functional languages. A program in functional
languages is made up of a series of function definitions. The evaluation of a program is
simply the evaluation of functions. Haskell is a pure functional language because functions in
Haskell have no side effect, i.e. given the same arguments, the function always produces the
same result. As an example, we can define a simple function to square an integer as follows:

square :: Int -> Int -~ type declaration
square x = X * x -- function definition

The first line of the definition declares the type of the thing being defined; Haskell is a
strongly typed language. This states that square is a function taking one integer argument
(the first Int) and returning an integer value (the second Int). The arrow symbol denotes
mapping from an argument to a result and the symbol “::” can be read “has type”. The
statement or phrase following the symbol “--” is a comment. The second line gives the
definition of function square, i.e. given an integer X, the function returns the value of x*x.
To apply the function, we provide the function an actual argument such as square 5 and the
result 25 can be expected.

Pattern matching is one of the most powerful features of Haskell. Defining functions
by specifying argument patterns is a common practice in programming with Haskell. As an
illustration, consider the following example:

fib :: Int -> Int -- a function takes one Int and retwrns an Int
fib0=0 -- pattern 1: argument is O

fibl =1 -- pattern 2: argument is 1

fib n = fib (n-2) + fib {n-1j -~ pattern 3: argument is Int other than 0 and 1

The function fib returns the n number in the Fibonacci sequence. The left hand sides
of function definitions contain patterns such as 0, 1, n. When applying a function these
patterns are matched against actual parameters. If the match succeeds, the right hand side is
evaluated to produce a result. If it fails, the next definition is tried. If all matches fail, an error
is returned.

Pattern matching is a language feature commonly used with a list data structure. For
instance, [1, 2, 3] is a list containing three integers. It can also be written as 1:2:3:[],where []
represents an empty list and “” is a list constructor. The following example defines length
function to count the number of elements in a list.

length :: [Int] -> Int -- This function takes a list of Int as its argument and
-~ returns the number of elements in the list

length [] =0 -- pattern 1: length of an empty list is 0

length [x:xs) = 1 + length Xs -- pattern 2: length of a list whose first
-- element is called x and remainder is
-- called xs is 1 plus the length of xs
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The pattern [] is defined to match the case of an empty list argument. The pattern
x:x8 will successfully match a list with at least one element, i.e. Xs can be a list of zero or
more elements.

We implement Apriori algorithm [1] and K-means clustering [6] using Haskell
language as shown in figures 3 and 4, respectively. In figure 3, each item is represented by
the item identifier which is an integer. Thus, an itemset is denoted as a set of Int declared in
the first line of our Haskell code. The function sumi is defined to count the number of
occurrence of each itemset. Functions listC and listC’ perform the task of enumerating
candidate frequent itemsets. Only itemsets that satisfy the minSup threshold are reported from
the functions listL and listL’ as frequent itemsets. It can be seen that the discovery of
frequent itemsets in association mining using Haskell functional language takes only 20 lines
of code.

itemSet :: [Set Int]
itemSet =[Set.singleton x | x<-[1..9]]
sumi:Set Int->[Set Int]->Int
sumis [} =0
sumi s {y:ys} |{Set.isSubsetOf s y}= 1+{sumi s ys)

 otherwise = {(sumi s ys)
listC ::Int->[(Set Int,Int)]
listC 1=[let n=(sumi s dataB} in (s,n) |s<-itemSet]
listC n={let n=(sumi s dataB) in (s,n} |s<- Set.toList(listC' n)}
ListC' :: Int->Set(Set Int)
listC' 2=8et.fromlList [(Set.union x y) |x<-{lstL' 1),y<-(listL’ 1),x/=y]
listC' n=Set.fromList {{Set.union x y) |x<-(listL' (n-1)),

y<-{listL' {n-1)}, x/=y, (Set.size(Set.union x y}}==n]

listL :Int->[{Set Int,Int)]
listL n=[{x,y}| {x,y)}<-listC n, y>=minSup]|
listL':Int->[Set Int]
listL' n =[x [ (x,_)<-listL n]

Figure 3 Frequent itemset discovery implemented with Haskell
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cluster::(Center,Center}—>{Point]~>{{Center,Centef},[P.o'irit}“,"{P
cluster (cl,c2) pts = ((newcl newc?),cluster1,cluster?): e
where clusterl=[point| point<-pts, inC1 (c1,c2) point]
newcl={newxl,newyl)
newxl =div (sumx clusterl) 11
newyl =div {sumy clusterlj 11
newc2={newx2,newy2)
cluster2=|point| point<-pts, not {inC1 {c1,c?) point}]
newx2 =div {sumx cluster2} 12
newy?2 =div (sumy cluster2) 12
11=length clusterl
12=length cluster2
sumx pts =sum|[x| {x,y}<-pts]
sumy pts =sumly| (x,y)<-pts]
inC1 ((x1,y1),(x2,72))x,5)
Hen (x1,y1) (x,y) <len (x2,¥2) (x,y) =True
|otherwise =False

where len (x1, y1) {x,y}) = (absx-x1)+ abs(y-y1) )}

Figure 4 K-means clustering on two-dimensional data implemented in Haskell

Results, Discussion and Conclusion: We present work in progress on the development of

the SUT-Miner, a complete data mining system. The system is complete in that the pre-DM
and post-DM phases are also included in the DM process. Most DM packages contain only
the DM modules, while some systems incorporate a pre-DM module as a data preparation
phase.

According to our knowledge, a post-DM phase is omitted in most systems. Post-
processing of DM is very essential to the success of DM utilization. This is due to the fact
that discovered knowledge is sometimes voluminous and redundant. At present, knowledge
evaluation and filtration have to be done by human experts. We thus design our system to
include this knowledge processor as another major component of the mining system.

The implementation of the SUT-Miner system uses a Haskell functional language.
The functional programming is a paradigm of our choice because of its advantages on
modularity, conciseness, polymorphism, and formal specification which supports the proof of
program correctness. We plan to extend our design to produce an approximate model by
means of progressive mining. We currently investigate the feasibility of applying a Markov
Chain Monte Carlo method in our approximate data mining scheme.

33 Congress on Science and Technology of Thailand 5
=]




References:

1. R. Agrawai, T. Imielinski, and A. Swami, “Mining association rules between sets of items in large
databases,” in Proc. ACM SIGMOD Int. Conf. Management of Data, 1993, pp. 207-216.

2. R. Bird, Introduction to Functional Programming using Haskell, Prentice Hall, 1998,

3. U.M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From data mining tc knowledge discovery: An
Overview,” in Advances in Knowledge Discovery and Data Mining, AAAI Press, 1996.

4. P. Hudak, 1. Fasel, and J. Peterson, “A gentle introduction to Haskell,” Yale University, Technical
Report Yale U/DCS/RR-9G1, 1996.

5. P. Jones and J. Hughes (eds.), Standard Libraries for the Haskell 98 Programming Languages.
Available: http://www . haskell.org/library/.

6. J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proc.
5" Berkeley Symposium on Multivariate Statistics and Probability, 1967, pp.281-297.

7. 8. Thompson, Haskell: The Craft of Functional Programming (2™ ed.), Addison Wesley, 1999.

Keywords: data mining, pattern discovery, Haskell, functional programming

Acknowledgements: This work was fully supported by research fund of Suranaree
University of Technology granted to the Data Engineering and Knowledge Discovery
(DEKD) Research Unit, in which Kittisak Kerdprasop is a director and Nittaya Kerdprasop is
a member and researcher. The authors are also partly supported by National Research
Council of Thailand (NRCT) and the Thailand Research Fund (TRF). The authors would like
to thank all the research assistants who participated in the SUT-Miner project.

33" Congress on Science and Technology of Thailand 6




sz Tad 35

< s aw & a o o = ar 7=y .
509PNEAT 19150 a5.eadne Aalszan dusenstnw luszavlTaanenain
Computer Science 910 Nova Southeastern University 11194 Fort Lauderdale %ﬁﬂﬁ'ﬂ?m sziner
ansgonsm WellunsinTiy 2542 (A, 1999) AIENUATFANYIVEINUNNMITNNEY (M58
o o = o o & = L3 o ) ar
ﬁ'!uﬂ@']uﬂmgﬂiﬁﬂﬂ'ﬁﬂ'ﬁ'@‘ﬂﬂﬁﬂyﬂu‘ﬂ‘131!‘1_!'14) IﬂUTﬂ’JﬂUTUWH’ﬁﬁﬁﬂ‘Uﬂ‘iﬂgﬂiﬂ[@ﬂ%ﬂﬂ'}‘ﬂ@
' v . " @ o
[599 “Active database rule set reduction by knowledge discovery” naaduIensAne 1
o wa ° ¥ o o =y = =S d o o & o 4
ﬂgumm“ﬁumsmmmmw ﬂ‘§$‘1}'lfT'E“lﬂ’]‘h"l’}ﬁ'JﬂE‘ilEﬂ@ijW?mﬂi TIUNIBIAINTTUAINAT
=Y ar = = ar o & ] ar 9 t FoN-YOEN - e 3 =
wnmmaamﬂuiaﬁfﬁmi ﬂﬂﬁ}ﬂﬁﬁ?‘i\‘!ﬂ%kﬁﬂ\‘1‘H'J‘}'Yu?ﬂu?ﬂﬂgﬂﬁlﬂ']i’é%ﬂﬂ’iu'ﬁﬁ?ﬂi5‘1.1
%@y)mmxmsﬁ'ummmi’ {(Data Engineering and Knowledge Discovery Research Unit —
o wo e = ¢ o = = o & = s ar
DPEKD) funImIifInIsueIae ﬂ’llui&ﬂ’lﬁ‘]%ﬁl‘ﬂ':wqﬂﬁlLﬁﬂ')ﬂﬂﬂﬁ@@ﬂuﬂﬁuﬂ%ﬁwmu1'53’;'1J3J
] ar ]
miledoyadsz@nimmaeiaunsonuasdoyasuniy  asmIIsoiug et umailn
ar [ - = o 9 159 ey oy ey P=l M A S o
N13ANHIVIYD memuﬂmnmiwmazgpmmwimgmsmsﬁm Tﬂﬂumm‘auaﬁwmww
lunsmsimmstazienasmsszginms w30 Gos lumanssuy

3 @ i 9 <A ] ~ ot 8 =
AN ﬁ’il&%@gﬁu@ﬂﬂﬂ FHIVOYAUTUY MTNIHUBIVBUBLRSDTAUMIA NN

soanEATINgd asiner meszaw  duFemsiamnluszdinlSyaenain
Computer Science 9910 Nova Southeastermn University (1194 Fort Lauderdale gﬂﬂﬁ a3 Usziner
avSgemsm ieTunsfing1y 2542 (A, 1999) AaemumsAnEDINIENTIINERNERT
TaohInniinusssdulSyaenluiatotes  “The applicaion of inductive logic
programming o support semantic query optimization” naed u%’%m’sﬁﬂm‘lﬁ’ﬂﬁﬁﬁs TN 1Y
fumiornsd Usgdienacuiiaeed meadnediemans auzivemans ynansel
uminends  aemnlullymsdnsy 2543 TRunlgideauludumisensdilsefigin
Franssuneuiunes uniInedoms Tuladgsund sufailagiy Mt luvaziifens
Fannszuumioaleyatsz@ndnmeaaiaunsonudedoyasuniu wagMstiiuAI

aunsalumsianisanuivesszuumilosdioya






