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Abstract

i . — 2
let 4 be a fixed invertible nxn matrix. For ke Z, YeR" and wel (R"), set

—k/ —k
W, = (*)=ldet(4)] . w(4d ~ +). We show that there exists a function w such that the family
{Wk ke Z.X e R"} forms a frame for L2 (Rn) if and only if | det(A) |# 1. Furthermore, if A

e 2
is defined for all real numbers ¢, then the family {w ,z lIERXER " } forms a frame for L (R " )

if and only if | det(A) | = 1.
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CHAPTER 1

INTRODUCTION

1.1 Background and Rationale

Continuous wavelet transforms are now widely used to analyze functions, signals and images in
Euclidean space. Often termed “windowed Fourier transform”, the continuous wavelet transform

permits analysis of signals in both spatial and time domains.

In the general mathematical setting one starts with a closed group H of invertible » x # matrices
acting as linear transformations on Euclidean space R', and considers the semi-direct product G of

the two groups. There is a natural representation 7 of G on the space of square integrable functions

Lz(R") given by nfa, z) = D I’ , where D denotes the dilation operator associated with a matrix a

of H, and T, the translation operator determined by a vector z in R". For a given square integrable

. . . . 2 4
function w, the wavelet transform W associated with w maps an element f in L'(R’) to a function

Wf on G by means of the inner product, Wf{a,z) = <f #fa, z)w>.

It is now natural to ask under what conditions the original function can be reconstructed from its
wavelet transform. A frequently used sufficient condition is that W be an isometry with regards to
the L’ norms, in which case we call w a tight frame generator. In this case, fcan be expressed as a
weak integral in L"(R"),

J= L Wf(a,z)m(a,z}w d(a,z).

If the representation z is square-integrable, then the existence of tight frame generators is
guaranteed by a theorem of Dufflo and Moore [4]. This is the approach taken in the initial paper on

the continuous wavelet transform in LB(R) by Grossman, Morlet and Paul [6], where 7 was split into



the sum of two square-integrable representations. The expository paper by Heil and Walnut [7]

hat one actually need not use Dufflo-Moore’s theorem, but can directly obtain conditions

fanction w to be a tight frame generator. This idea was generalized to the multidimensional

ng: (riﬁii) by Bernier and Taylor [1] who showed that if A possesses open, free orbits under its

al action on R, then 7 decomposes into a finite sum of square-integrable representations, so
:ght frame generators exist. This orbit condition requires that the topological dimension of H

i :'\'i_rhich greatly restricts the groups that can be considered. Fuehr [4] could generalize the orbit

ition from a topological to a measure-theoretic one by requiring that orbits be of non-zero

easure and the corresponding stabilizer subgroups be compact.

he simplest and most interesting generalization of the one-dimensional wavelet transform to the n-
;__:c__i_i_"m:énsional setting is by choosing / to be a one-parameter group, H = {At :t€ R} where 4 is a
ﬁxed, invertible matrix. Recall here that 4'is defined in general only if A4 is the exponential of
some matrix B, and is given by 4" =etB. Fuehs’s results do not apply here as all orbits have
E':ﬁieasure zero if #>1. That tight frame generators should exist is suggested by an analogous result
for the discrete wavelet series by Dai, Larson and Speegle [3], who showed that if 4 is equivalent to
.:."an expanding matrix with integer entries, then discrete tight wavelet frames exist, and Calogero [2]

has further given a characterization of generators of discrete tight wavelet frames.

Mallat and Zhong [8] have discussed a semi-discrete wavelet transform in L"(R), where the
translation parameter is still continuous, but the dilation parameter lies in a discrete, cyclic subgroup
of R, The obvious generalization of this construction to L"(R") involves a discrete one-parameter
group of dilations, H = {Ak : k € Z} with A an arbitrary invertible matrix, and has not been studied
yet.

it is thus natural to ask under what conditions on the matrix 4 there exist tight frame generators

associated with either the continuous or the discrete one-parameter subgroup / generated by 4.




1.2 Research Objectives

The objective of this project was as follows: Given a fixed, invertible matrix 4 and either the

continuous or the discrete one-parameter group A generated by 4,
1. give a characterization of tight frame generators w,
2. find necessary and sufficient conditions on A4 so that tight frame generators exist,

3. investigate relationships between the tight frame generators for continuous and discrete H.

1.3 Scope and Limitations

In practical applications one often wishes the tight frame generators w to have special properties, to
be smooth or have compact support, for example. This project did not investigate the existence of

such nicely behaved functions, but focused on the question of existence of tight frame generators.

1.4 Benefits from Research

This project adds to the varicty of methods for continuous wavelet analysis in Euclidean space. Its
results help clarify the theory of the wavelet transform, and may be applied by engineers and

scientists requiring data analysis and compression tools.



CHAPTER 2
METHODOLOGY

~ Constructions

he starting point was to show that the characterization of tight frame generators given in [5]
p;ﬁlies in this situation as well, that is:

. 2 . . : ;

A function we L (R ) is a tight frame generator for the continuous group {4 :1e R} if
i B, - ~ .

and only if Ll»v(yAt)| dt=1 for almost all ¥ € R" where # denotes the Fourier

transform of w.
2 : ; . k .
A function we l, (R”) is a tight frame generator for the discrete group {4 ke Z} if
2
|

and only if Zfﬁ(ff'/{k) =1 for almost all feR".

k

In the case of a discrete group, there is a natural candidate for a tight frame generator: If S is a
Borel cross-section of finite measure for the natural action of {Ak ke Z} on R", then its
characteristic function Jis both square-integrable and satisfies 2. above, that is, the inverse
Fourier transform of y.is a tight frame generator. Thus, we tried to determine under what
conditions on the matrix A there exist cross-sections of finite measure, and construct such cross-

sections explicitly.

Finally, we studied relationships between tight frame generators for the continuous and the discrete

cases in order to apply the results from the discrete case to the continuous case.



CHAPTER 3
RESULTS

Main Results

esi es the characterizations 1. and 2. of tight frame generators above, we have been able to

sta_biish the following results:

If wis a tight frame generator for the discrete group generated by 4, and if 4 is an

exponential, then w is also a tight frame generator for the continuous group generated by 4.

If wis a tight frame generator for the continuous group generated by A, then w can be

modified to a tight frame generator for the discrete group generated by 4.

If 4 is an exponential, then there exists a cross-section for the action of the continuous

group generated by A4 if and only if 4 is not equivalent to an orthogonal matrix.

4. If A is an invertible matrix, then exists a cross-section for the action of the discrete group
generated by A4 if and enly if 4 is not equivalent to an orthogonal matrix.

5. There exists a cross-section of finite measure for the action of the discrete group generated
by A4 if and only if |det(A)|=1.

6. There exists a bounded cross-section for the action of the discrete group generated by A4 if

and only if the eigenvalues of 4 have all either modulus less than one or modulus greater

than one.

Using all the above, we thus could show:

7. There exists a tight frame generator in L"(Rn) for the continuous (respectively the discrete)

one-parameter group generated by 4 if and only if i det(4) 1.

Further details can be found i the preprint in Appendix 1. The major part of the preprint was

incorporated into and published as a research article as shown in Appendix II.



3.2 Discussion
The main results show that most invertible (respectively exponential} matrices 4, namely those
with{ det(4)]|#1, can be used for semi-discrete and continuous wavelet analysis. This is different

from the discrete case as discussed in [3], where the eigenvalues of the matrix 4 were required to all

have modulus greater than one.

Furthermore, these results illustrate that square integrability of the representation 7 or its

subrepresentations is not required for the existence of tight wavelet frames.



CHAPTER 4

AN APPLICATION

4.1 Data Denoising

To illustrate how multidimensional wavelet frames can be practically applied, a data denoising

example is now presented.

Figure 1 shows a 257x257 pixel array of vertical lines overlaid with noise. The origin of the
coordinate system is located at the center, at pixel (129,129). Each pixel is assigned an integer
value in the range of O to 63, representing the values f{x,)} of the signal /. The dark red color

represents large pixel values, while the blue color represent values close to zero. The matrix

20
4=l 0 3
was chosen as dilation matrix, An admissible function w was constructed following the procedure
outlined in the preprint: First, a circle was chosen as cross-section for the action of 4 on the plane.
This curve was enlarged to an annulus, whose characteristic function was then smoothed at the

edges. Averaging the values of this smoothed function over orbits, the Fourier transform w of the

wavelet w was obtained, Figures 2 and 3 show the function w and its inverse Fourier transform w,

respectively. The wavelet coefficients W(z,z)=< [ ,;z(At,z)w > were computed for =/ and

z={z ) in the range of ~128<z ,z, <127. Figure 4 shows the dilated frame generator Djw .

1°%2
The wavelet coefficients obtained for various values of (zl ,22) are shown in Figure 5. While the
noise is still visible, its amphitude 1s decreased. Setting coefficients below some threshold value to

zero, one obtains the wavelet coefficients of Figure 6. All computations were done using Matlab.

For denoising of general data with a wide range of data values f{x,)) one would need to compute the
wavelet coefficients on a fine grid of dilation parameters, and reassemble the denoised set of
coefficients using the inverse wavelet transform. For reasons of computational complexity, we have

not done so.
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Figure 1: Noisy Image

Figure 2: Wavelet in Fourier Space (scaled by a factor of 25)



Figure 3: The Wavelet w

{scaled by a factor of 3.6)

Figure 4 : The Dilated Wavelet

(scaled by a factor of 1.5)
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Figure 5 : The Wavelet Coefficients

(The point (z,,2, ) =(0,0) is at the center)

Figure 6 : The Wavelet Coefficients greater than the threshold vajue
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CHAPTER 5

CONCLUSION

5.1 Summary

The main result of this research project is that there exist tight frame generators for the semi-
discrete and continuous wavelet analysis associated with an invertible matrix 4 if and only if

|det(4)|# 1. Along the way we showed that the two problems, the existence of semi-discrete and

of continuous tight frame generators are essentially equivalent. Furthermore, we constructed explicit
examples of tight frame generators which are the inverse Fourier transforms of characteristic

functions of some measurable sets.

5.2 Recommendations

A couple of further questions which merit attention arise now naturally. One may investigate under
what conditions on 4 there exist tight frame generators with “nice” properties, for example, which
are smooth, have compact support or vanish rapidly. Also, one may try to generalize the above
results to # —parameter abelian matrix group. This is a much more difficult endeavor, because the

generators need not have a common Jordan basis.

After the main investigation of this project was completed, we became aware of a preprint [9] which
discusses the same questions in a more general setting, namely for arbitrary dilation group H.
However, our proofs give a concrete construction of tight frame generators which the proofs in [9]

do not.
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CONTINUOUS AND SEMI-DISCRETE TIGHT FRAMES ON R"

ABSTRACT. Let A € GL,(R). We show that there exists a function w &
L*(R") whose dilates by integer powers of A and translates by elements of
R" form a semi-discrete tight frame on L%(R™) if and only if | det(A)| # 1.
If in addition, A lies in the exponential group of GL,(R) then there exists
w € L*(R™) whose dilates by arbitrary powers of A and translates by elements
of R” form a continuous tight frame on L*(R™) if and only if det(A4) # 1.

1. INTRODUCTION

In multidimensional discrete wavelet analysis the usual approach is to fix a
dilation matrix A. One takes A to be a strictly expanding matrix, that is, a
matrix whose eigenvalues all have modulus greater than one and assumes that A
preserves some lattice ' in R™. It was shown in [2] that under these assumptions
there always exists a function w € L?(R™) whose discrete dilates and translates
we 7(7) = | det(A)| " 2w(A~*F - F), k € Z,4 € T form an orthonormal basis
of L%R™). A complete characterization of such functions, called wavelets, was
given in [1].

The focus of this paper is on the semi-discrete and continuous situation. One
still needs to fix a matrix A to play the role of the basic dilation, but the goal here
is to find the weakest conditions on A that permit the existence of a continuous
or a semi-discrete tight frame, respectively.

To be more precise, let A € GL,(R) and set § = |det(4)|. For w € L*(R"),
define Tzw(y) = w(@@ — &), for all Z,7 € R", and Dpw(f) = §* 2w(A~*F),
for k € Z,§ € R*. Since [p, f(AZ)dT = 6 [ F(Z)dT for f € LY(R™), the
dilations Dy, and translations Ty constitute unitary operators on L2(R"). A
function w € L2(IR™) is called a semi-discrete tight frame generator, if

S [ 1< 8Dtz Pz = I3 1)
ezt

for all f € L3(R™). The collection {DyTw : k € Z, £ € R"} then forms a semi-
discrete tight frame in L?(R™). Such frames were used in the one-dimensional
setting by Mallat and Zhong [4].

In order to consider continuous tight frames one must be be able to define
At for arbitrary t € R. This requires A to be an exponential, A = ef for some
B € Mn(R). Now for w € L2(R™), let Dyw () = § 2 w(A~t)), fort € R, 7 € R™.
A function w € L3(R") is called a continuous tight frame generator, if

/ﬁ;fR </, DTow> Pdidt = ||fI2 @)
for all f € L2(R™).
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2 CONTINUOUS AND SEMI-DISCRETE TIGHT FRAMES ON RY

These notions generalize the continuous wavelet transform as discussed, for
example, in [3] to the multidimensional setting. For if w is a semi-discrete tight
frame generator, then the wavelet transform f —< f, DyTsw > is a partial isom-
etry from L?(R™) onto a subspace of L?(Z x R"), and we have the reconstruction
formula

f= Z/ < f, DpTw > DyTsw di
keZ
which holds weakly in L2(R™). Similarly, for a continuous tight frame generator
w the reconstruction formula

f= / f < f, DiTsw > D Tpw dE dt
IR 7

holds weakly in L*(R™).

Our aim is to determine the class of matrices for which tight frame generators
exist. It turns out that this class is rather large, in fact, we will see that both
kinds of frame generators exist if and only if | det (A)} # 1.

2. TiGHT FRAME GENERATORS IN FOURIER SPACE

It will be more convenient to work with Fourier transforms. As usual, ke
wiil denote the dual group of R™ which can be identified with R™ itself through
the pairing (7,Z) — e #"7%, where elements ¥ of R are written as column
vectors and elements ¥ of R7 as row vectors. The Fourier transform f—f=
Jan F(@)e~ 2772 47 maps LY(R™) into C,(RP), the set of continuous functions
vanishing at infinity, and its restriction to L{R™) N L2(R™) extends to a Hilbert
space isomorphism between L2(R™) and L%(R7), also denoted by f — £, which
takes the translation operator T to the phase shift operator E_z and the dilation
operator Dy to the dilation operator D D_;. Here, E_xw(fy) = 7 (-¥)33(¥) and
D_yin(7) = 8Y20(FAY) for 1 € L2(RA), F€R*, e Ri and t € Z or ¢ € R,
respectively.

There is a simple characterization of tight frame generators through their
Fourier transforms:

Proposition 1. (1) Let A € GL,(R). Then w € L*(R") is a semi-discrete
tight frame generator if and only if

> w(FARE =1 (3)

kel

for almost all ¥ € R7,
(2) Let A = B € GLo(R). Then w € LAR") is a continuous tight frame
generator if and only if

/}; (DAY dt =1 (4)

for almost all ¥ € R#.
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CONTINUOUS AND SEMI-DISCRETE TIGHT FRAMES ON R™ 3
Proof. Note that for all f € L*(R"),
2
5 TR o e
§42 () (T AF) F7TAF gy

| < f,D_yE_pib > |2da‘:'=f di

—
n ]Rn

- fTL /’; 5—k/2 f(,,—};A—k)memw'y-z e

=t [ [ e

where we have set w,(7) = F(FAF)U(F) € Ll{ﬁ?’”). Now the inner integral is
precisely the inverse Fourier transform ¢y of ¢, so that by Plancherel’s formula

Zf |<kaE_xw>|2dm—Zc5_/ e (B dZ

keZ kEZ

=) 6 f k() d7

keZ

=357 [ 1AL

kel

=y f PP 10FAR 47

keZ
where the integrals may possibly be infinite. It follows that w is a semi-discrete
tight frame generator if and only if

1712 = ff{ |f(*f)ﬁ(
kEZ

for all f € L*(R™). As this identity holds if and only if 3., lW(F4F)]? =
almost everywhere, the first assertion follows.
The second assertion is proved in a similar way. O

Proposition 2. Let A € GL,(R) be an exponentiol. If w € L2(R™) is a semi-
discrete light frame generator for A, then w is also a continuous tight frame
generator for A,

Proof. Let & denote the set of all ¥ € R for which (3) does not hold, and 7 the
set of those ¥ € R™ whose stabilizer with respect to the discrete action of A is
infinite. Thus, § has measure zero and 7 C §. Note that if ¥ € S\7, then we
can modify the values of « on the orbit of ¥ so that (3) holds for all elements of
this orbit, and thus we may assume that S = 7.

It is easy to see that ¥ € 7 if and only if ¥4 € T for all ¢ € R. Hence for all
FET,

1
/Iw FAY 2 ] > |B(FAAR)? dt = / ldt = 1.

0 kez 0
That is, (4) holds. O

B’

di

2
dx

wwAk)zZ) &
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4 CONTINUOUS AND SEMI-DISCRETE TIGHT FRAMES ON RV

Every continuous tight frame generator can be modified to a discrete tight
frame generator:

Proposition 3. Let A € GLn(R) be an exponential. Fiz a real number a so

that f;H d7tdt = 1. If w is a continuous tight frame generator for A then the
inverse Fourier transform of the function @ given by

57) = [/:H 'lfl(’?At)|2 dt] 1/2

is a semi-discrete tight frame generalor for A of the same norm as w.

Proof. First we show that ¥ and % have identical norms. In fact,

ol = [ wmPe - L f o(FAY| deds
/a+1 /‘___ iw A/At)| dy dt
= [T [ wer ava = ol

Finally, for almost all ¥ € H/@,

ijwﬂ =3 f \w(»YAkAtE e fR [o(7AY[? dt = 1

keZ keZ

which proves our assertion. d

We note that by modifying the above constant a we can obtain tight frame
generators of arbitrary norm.

Remark 1. The property of existence of tight frame generators is invariant
under similarity transformations. For example, let w € L*(R™) be a semi-discrete
tight frame generator for the matrix A. Given C' € GL,(R), set @(¥) = @(¥C) €

L*(R") and set A = CAC~!. Then
S 1A = Y FCAHE =1 ae.
kel kel

and a similar computation holds for continuous tight frame generators.

3. CROSS-SECTIONS

In order to unify notation, let G = Z or G = R, respectively. Then for fixed
A € GL,(R) (which must be an exponential in the latter case), the map ¥ — FA?

with ¥ € R” and t € G defines a continuous action of the group G on R7. Recall
that a Borel set § C R™ is called a cross-section for this action provided that
(1) Ueg SA* = R7\N for some set N of measure zero,
(2) SAh N SA% = whenever t) #t2 € G.



18

CONTINUOQUS AND SEMI-DISCRETE TIGHT FRAMES ON R® 5

In this section we will discuss the existence of such cross-sections. It is easy to
see that the property of existence of cross-sections is invariant under similarity
transformations so that we can restrict our attention to matrices of particularly
nice form. In fact, in theorems 1 and 2 we will see that cross-sections exist if
and only if A is not similar to an orthogonal matrix.

The next lemma will be used in the case where A is similar to an orthogonal
matrix:

Lemma 1. Let II¥ = {© = (e*,...,¢%) : 0 < §; < 21} be the s-torus, let
© — O -t denote an action of the reals on II° by rotation and let f € L}(II®).
(1) If
S @ k)| <o ae
kel
then f = 0 almost everywhere.

(2) If
f|f(@-t)§dt<oo a.e.
R

then f =0 almost everywhere.

Proof. Note that if @ = (¢, ..., e¥%) € II° then ©-t = (ell®1+51t)  i(0s+0:1))
for some fixed 81, ... 5. This action is measure preserving.

In the first case as [1° has finite measure, Birkhoff’s Ergodic Theorem shows
that the sequence of functions

n—1
Fa(8) = = Y150 K)
k=0

converges almost everywhere to a function f* € LY(II*) with || f*|ly = ||f|l:. Now
by assumption,
. .1
Jim_ fo(0) < lim ~ g If(©-k)=0 ae
>

which shows that ||f*|1 = 0. Thus, f = 0 almost everywhere.
The second assertion is proved in a similar way using the continuous form of
Birkhoff’s theorem. |

To begin with the continuous action, let A = e? € GL,{R) be given. Applying
a similarity transformation, we may assume that B is in real Jordan normal
form, so that B is a block diagonal matrix and a block corresponding to a real
eigenvalue o is of the form

a 1 (0)
By .

©) o
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8 CONTINUQUS AND SEMI-DISCRETE TIGHT FRAMES ON RV

while a block corresponding to a complex pair of eigenvalues o & i with 8 > 0
is of the form

D I (0)

e . .
e T
(0) D

where

D =(fﬁ g) and I =(€1} 2)

In this basis, A? is again a block diagonal matrix, and its blocks are of the form

NE(t) tAXE(E) BEME@E) ... ... Ao ALE(E)
ME()  tALE(t)
etbo — i (5)

INE(t)  LAE(@)

ALE(t) tALE(t)

(0) NE(t)

with A = e® and E(t) = 1 or E(t) = E3(t) = (_Ccs)fnﬁ ét :iggi) depending
on whether this block corresponds to a real eigenvalue or a pair of complex
eigenvalues of B. The eigenvalues of A corresponding to such a block are thus
e or e®e®# | respectively.

In what follows, 7, ..., %, will denote a Jordan basis of B chosen so that the
block of A under discussion is its first block, and (zy,...,z,) will denote the

components of a vector § € R™ in this basis.

Theorem 1. Let A = e®, where B € Mp(R) is in Jordan normal form. There
exists a cross-section for the continuous action ¥ — JA? if and only if A is not
orthogonal.

Proof. Assume that A is not orthogonal. Then at least one of the following four
situations, formulated in terms of the eigenvalues of B, will always apply.

Case 1: B has a real eigenvalue o 3 0. Then a corresponding block of Af,
which we may assume to be its first block, is of form (5) with A # 1 and E(t) = 1.
One easily checks that

82{(581,...,2’:”)6@ : zp € {£1} }.

is a cross-section with | J,cp SA* = {{z1,...,2a) € R a4y =0}
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Chse 2: B has a complex pair of eigenvalues o £ i8 with @ # 0 and 8 > 0.
Then at least one block of A® is of form (5) with A = €® # 1 and E(t) = Eg(t)
a rotation matrix. Then

5= { (ml,...,xn)éﬂ‘@ 1< 3y <)\2"/’g, :t:gm()}
is a cross-section with J,cp SA* = {(z1,...,2,) € RA ;22 + 22 # 0},

Case 8: B has an eigenvalue oo = 0 and at least one of the blocks of B belonging
to this eigenvalue has nontrivial nilpotent part. Then the corresponding block
of A" is of form (5} with A = 1 and E(¢) = 1, and is of at least size 2 x 2. We set

S={(m1,...,azn)el§5 ¢ oy A U 3:2=0}
so that S is a cross-section with J;ep SA* = {(z1,...,2n) € RP:zp # 0}

Case 4: B has a purely imaginary pair of eigenvalues +:3, 8 > 0, and at least
one of the blocks of B belonging to this pair has nontrivial nilpotent part. Then
the corresponding block of A* is of form (5) with A = 1 and E(t) = Eg(t) a
rotation matrix, and is of at least size 4 x 4. Set

- 2
S={(z1,--,za) ER® : 2, >0, 2y =0, 053:3<%r1}.

Since this is the least intuitive case, let us verify in detail that S is a cross-section.
For convenience, we group the first four coordinates of a vector ¥ € R™ into two
pairs, and write

—

Y= ( (33173:2): (3-73:334): E5,%6 - - . ;mn)
so that

FAT = ((z1,22)Ep(t), t(z1,22)Ep(t) + (3, 4) E(t), ... ).
Now Eg(t) acts by rotation through the angle 8¢, so whenever x% + 23 3 0 then
there exists {1 € R such that
(z1,22)Eg(t1} = (p,0)
for some p > 0. Then
A" = (p,0, 10+ Y3, Y4, - -)

where (y3,v4) = (z3,24)E(t1). Now if we set to =11 + & %-373 for some integer k,

then
27p

3 +hp+y3, Ya, .- ).

FA%” = (p,0,k

There exists a k such that

2mp
g

and for this choice of k, §4* ¢ S. We conclude that

U 54t = {(z1,...,20) € R™: 2] + 2F £ 0}
teR

2m
0Sk=g" +0p+ys <
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Suppose now that
’VlAtl — ,—sztg
for some 41,92 € S, t1,t; € R. Equivalently,
F1 = FaAt
for some t. If %1 = (21,0, @3, 24,...) and 2 = (23,0, Z3, T4, ... ) then
( (mla 0)= (933, 3:4)1 vee ) = ( (ila O)Eﬁ(t): t(ila O)Eﬁ(t) = (5337 ié)Eﬂ(t): . )
so that
(21,0} = (£1,0)E5(2)
(3:3: .5‘5'4) = t(mla O)Eﬁ(t) o (£37 534)Eﬁ(t)
The first equality gives 1 = Z; and t = %"rk for some integer k. Then the second
equality reads
27 - -
(zs,24) = (F kxzi + Z3,Z4)
which gives x4 = 4 and because 0 < x5, I3 < ﬁ fx1, also that £ = 0 and 23 = 3.
Thus, S is indeed a cross-section.

Now suppose to the contrary that A is orthogonal, but there exists a cross-
section 5. We may write A? as

I @)
Ep, (t)

(0) Es, (1)
where I, denotes the ¢ x ¢ identity matrix, and the rotations Eg, are nontrivial.
We do a change of coordinates by introducing polar coordinates into the part of
R”™ on which A acts by rotations. If
¥ ={z1,... 1 Tgs Tgh1y Tat2s - -+ Tqr2s—1, Tg+2s)

we set

{wq+2i—1w’ricosgi 0<E; <2m 0<ry<oo,i=1...5. (6)

Tgpos = 1 8inb;

In this way we can identify the Borel space R™ with RY x (0,00)°* x II°* up to a
set of measure zero, and A acts non-trivially only on the s-torus part II* and
in the form of rotations determined by the multi-angle (4,...,8s). Then for

f e LA(R),

Lroa= [T [T 0

(:cl,. B Ty » wony By Oy« oo g PO dﬁ]rlrg credry.drgdey .. dg
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Set T = {SA': 0 < ¢ < 1} so that T is a cross-section for the discrete action
of A on R, For fixed & = (L1 00 Bg) & R? and # = (ri,...,7s) € (0,00)%, we
identify the set {Z'} x {F} x II* with the s-torus IT* and for simplicity, denote the
restriction of the action of 4 to this torus by © — ©AF. Set

Ti-";m {@ e II°: f,ﬁ@) = T}.

Then TE,FA“ 0 Tf,,wAj = Qif k # j, and Tj+ is a cross-section for the discrete
action of A on II° for almost all (£,7). In particular, Tz has finite, positive
measure for almost all (Z,7). Now if x7, . denotes the characteristic function of
the set Tz, then by lemma 1, we have xr, . = 0 a.e. for almost all (Z,7), which
is a contradiction. This shows that there cannot exist a cross-section S in case
A is orthogonal. O

Remark 2. The cross-sections constructed in the proof above allow for a change
of variables to integrate along the orbits.
For example in case 3, each ¥ = (z1,22,...,2,) € R® with z; # 0, can be
written uniquely as
;fz ’?.(t,S,CL_‘;,.. 'aan) = (.S‘,O,CL;;,...,CLR)At

where £, 5, a; are real and s 5% 0. The Jacobian of this transformation is

(s,0,a3,...,a,)B 0 s % ... =
7 100 ... 0
U3 det(4)t = [0 0 1 ... O] get(A) = —s6t 0
Up, 000 ... 1

so that for g € Ll(]@i):

/;_ g(¥)dy = /”"‘f‘ ]g((s,U,a;;,...,an)At)[s|5tdtdsda3...dan.
R R—7 JR\{0} JR

In case 4, each ¥ = (x1,29,...,2,) € R" with z? + 22 # 0 can be written
uniquely as

'Yz ’?(t,pa%svafn---)an) = (p=01Q151a5:‘- -aan)At

where ¢,p,4,5,a; are real, p > 0 and 0 < ¢ < 2mp/B. The Jacobian of this
transformation is

(pao,Qa‘Saaﬁn'--:an)B 0 ﬁp L T *
7 1 0 000 0
U3 det{4)! = (0 0 1 0 0 O det(A)!
Tn 0 0 0 g o k

= —fpd' #0
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since 3 # 0. Thus for g € L}(R),

o 0 2np/f .
/;_ g(’Y) d"T = ‘/__—__/ ﬁ\/ / g( (p101 q,s,ag,,...,an)A )5?53
R® n—4 JQ RJC R

dtdqdsdpdas . ..da,.

Let us now turn to the the discrete action. Any invertible matrix A gives rise
to a discrete action on R™, and can be brought into Jordan normal form through
a similarity transformation.

Theorem 2. Let A € GL,(R) be in Jordan normal form, and consider the
discrete action 5 — AR,
(1) There exists a cross-section if and only if A is not orthogonal.
(2) There exists a cross-section of finite measure if and only if | det(A}| # 1.
(3) There exists a bounded cross-section if and only if the eigenvalues of A
heve all modulus > 1 or all modulus < 1.

Proof. To prove the first assertion, note that A* is a block diagonal matrix whose
blocks are of the form

AeEg(ky ()N1Bplk—1) ... ... (E N Bl — 4 1)

(5)N—1Ep(k — 1)
(0) N Eg(k)

where Fjg = 1 if this block corresponds to a real eigenvalue A and Eg is a rotation
if it belongs to a complex pair Ae**® of eigenvalues of A. By a slight change of
basis we can simplify these blocks to

XNeEg(k) (MAEgk) ... ... (. F N Eg(k)
| - ()
(§) X Bg(k)
(0) NeEg(k)
In the following, ¥y, . . ., Ui, will denote such a basis chosen so that the block of A*
under discussion is its first block, and (z1,...,z,) will denote the components

of a vector ¥ € R7 in this basis. Now if A is not orthogonal then at least one of
the following cases must be true.

Case 1: A has a real eigenvalue A with {A\| # 1. Replacing A by A~! if
necessary we may assume that |A| > 1. A corresponding block of A* is an m xm
upper diagonal matrix of form (7) with Eg = 1, and one easily checks that

S={(z1,..,z) eR* : 1< |ml <A} (8)

is a cross-section.
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Case 2: A has a complex pair of eigenvalues Ae*™ with A £ 1, 0 < 8 < 2=,
We may again assume that A > 1. A corresponding block of AF is a 2m x 2m
upper diagonal matrix of form (7) with Eg a proper rotation so that

S={(a1,....,22) €R® : (1, 22) = (5,00N'Bs(t), 1 <s<X¥/B o<t < 1}
(9)

18 a cross-section.

Case 3: A has a real eigenvalue A = £1 and at least one of the blocks of A
belonging to this eigenvalue has nontrivial nilpotent part. Then the correspond-
ing block of A is of the form (7) with Eg =1 and is of at least size 2 x 2. It
follows that the set

S={(x1,...,z.) €R? : 21 #£0, 0§%<1}
1

is & cross-section.

Case 4: A has a complex pair of eigenvalues e**8, 0 < § < 2, of modulus one
and at least one of the blocks of A belonging to this pair has nontrivial nilpotent
part. Then the corresponding block of A* is of form (7) with A = 1 and Esz a
proper rotation, and is at least of size 4 x 4. It is easy to verify that

S={ (@ wn) €RT ¢ (21,22, 25,20) = (p,0,q,) (E%(t) tEE;((tt))) :

2
p>0,05q<—ﬁ7£p, —0<s<oo, 0<t<l}

is the desired cross-section.

Now suppose to the contrary that A is orthogonal, but there exists a cross-
section S. Then 7' = S U SA will be a cross-section for the discrete action of
A= A% and we may write A* as

I (0)
Ep, (k)

(0) Eg, (k)
Arguing as in the last part of the proof of theorem 1, we arrive at a contradiction.
This proves the first assertion.

The remaining assertions are obvious if n = 1, or if n = 2 and A has complex
eigenvalues. We thus can exclude this situation in what follows, so that the
cross-section 5 constructed above has infinite measure.

Let us now prove the second assertion. In order to show that |det(A)| # 1 is
a suflicient condition, we only need to distinguish between the frst two of the
above cases. In the first case, we take the cross-section (8) constructed above,
partition span{ta, . .., ¥,) into a collection {T%}72, of measurable sets of positive,
finite measure each, and set

Sk:{"}"'ES:(xz,...,xn)ETk}, kml,z,...
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In the second case, we take the cross-section (9) constructed above, partition
span(?s, . .., Up) into a collection {13 }%2,; of measurable subsets of finite, positive
measure each, and set

Sp={5€8 : (z3,...,en} €T} }, k=12

In both cases, {5;}72, is a partition of S into measurable subsets of positive,
finite measure. Pick a collection of positive numbers {dy}{2, so that 3 jo, dp =

1, and pick ny € Z such that §% < ﬂ%k_) where ¢ = | det (A)|. Then
_ oQ
§ = ) Spa™
k=1

is a cross-section for the discrete action such that

p(S) = 5™pu(S) <D dp =1
= P

Thus, we have shown sufficiency.

To prove the necessity implication, suppose there exists a cross-section P of
finite measure for the discrete action while |det(A)| = 1. Let S denote the
cross-section of infinite measure constructed in part 1 above. Then,

WP)= [ xel@) a7 = 3 [ xe(74) &7

B icz /5

=Y [ xn(iA) xs(5) a7
icz ' B"

=3 [ el xsi4™) &7
icz v R"

=Y [ xs7a™ a7
iz’ P

= [ xst)d7 = u(S) = o0

which is impossible. Thus, there cannot exist a cross-section of finite measure.

Finally we will prove the last assertion. For sufficiency, it is enough to assume
that all eigenvalues of A have modulus |A] < 1 so that

lim || A% = 0.
k—oo

Choosing the above sets T} to be bounded we may assume that the sets Sg are
bounded, so that there exist integers ny such that S, A" is contained in the unit
ball. Then § = |32, SpA™ is the desired cross-section.

For necessity, suppose to the contrary that there exists a bounded cross-section
S, but A has an eigenvalue |X;| < 1 and an eigenvalue [Ag| > 1. (The case where
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[A1] <1 and [As] > 1 is treated similarly). Using the block decomposition of A
it is easy to see that for almost all ¥ € R", either
lim [[74%] = oo
|Kf-mo0
or, in the special case where no eigenvalue of A lies outside of the unit circle,
lim ||74%| = o0
k00

while {7A* : k > 0} is bounded below away from zero. Thus, for almost all
7 € R™ there exists a constant M = M() so that

|FA%|| > M vk € Z.
Fix any such 4. Then for sufficiently large scalars ¢, the orbit {(c'ﬂAk 1k eZ}
does not pass through 5, which is a contradiction to the choice of 5. W

We note that in the proof of the second assertion, the sets T}, can be chosen
s0 that the cross-section S has unit measure. For example, if § < 1 we simply
choose the sets T}, so that p(Sg) = (3252, 6%)~! for all k, and set ny, = k.

4. ExX1sTENCE OF TIGHT FRAMES
We are now ready to prove our main theorems.

Theorem 3. Let A € GL,(R}). Then there ezists a semi-discrete tight frame
generator if and only of |det(A)] #£ 1.

Proof. By remark 1, we may assume that A is in Jordan normal form.
Suppose that |det(A)| # 1 so that there exists a bounded cross-section S.
Then the characteristic function yg is square integrable, and

> Ixs(FANP =1
kGZ

for almost all ¥ € Rn. By proposition 1, the inverse Fourier transform w of xg
will be a semi-discrete tight frame generator.

Assume now that w is a semi-discrete tight frame generator, but | det(A)| = 1.
If A is not orthogonal, then as shown in the proof of theorem 2, there exists a
cross-section S of infinite measure, and we have

[0l =3 | W@Par=3 [ xsu@R@Fd
kez /54 kez ¥ R™
=3 | xsw(749) [0abF a5
kez Y R"
= [ Saarar = [ 147 =00
S kez s
which is impossible.
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If on the other hand A is orthogonal, then A2 is of the form

I (@)
Eﬁl

(0) Lg
If the rotation part is trivial, there obviously can not exist tight frame generators.
Otherwise, we introduce polar coordinates into the part of R® on which A acts
by rotations, as shown in (6). For fixed £ =€ R? and 7 € (0, 00)®, let us set
z7(0) = B(Z,7, 0).

Then @y € L*(I1%) for almost all (%,#). Now A? acts non-trivially only on the
torus II¥, and as w is a semi-discrete tight frame generator,

D s (©A%) < Y [((£7,0)4F )P =1 ae.
kEZ keZ

g

for almost all (£,7). Then by lemma 1, @z = 0 for almost all (£,7) which is
impossible. This proves the theorem.
O

Theorem 4. Let A = e® for some B € My(R). Then there ezists a continuous
tight frame generator if and only if det(A4) # 1.

Proof. Suppose that det(4) # 1. Then by the above theorem there exists a
semi-discrete tight frame generator w € L?(R™) which by proposition 2 is also a
continuous tight frame generator.

Now assume to the contrary that there exists a continuous tight frame gener-
ator w, but det(A) == 1. As before, we may assume that B is in Jordan normal
form.

If A is not orthogonal then A is as discussed in cases 3 and 4 of the proof of
theorem 1. In case 3, when a cross-section is chosen as in remark 2, we have

||w[|§=f ﬁ f |5( (5,0, a3, ..., an)A*)[? |5} dt ds das ... dax
B2 JR\{0} JR

:f_____/; lsidsdas...dap, = oo
»=2 JR\{0}

which is impossible. In case 4 we have

I o0 2mp/ B3 X .o
|1E)”2:'/‘._——_./ f_/ / |w((p,0,q,s, a‘5:-'-aa'n)A )l .Bp
B—%J0 JRJo R

dt dgdsdpdas . ..da,
o0
m/;____/ /ﬁ2ﬂp2dsdpda5...dan = 00
nTJo JR

which again is impossible.
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If on the other  hand A is orthogonal, then we again introduce polar coordinates
into the part of R% on which A4 acts by nontrivial rotations, as shown in (6). For
fixed Z € RY and 7 € (0,00)%, let us set again

iz :(0) = (7,7, ©).
Then for almost all (&, 7),

s € L) and f b5 A(OANPdt =1 ae.
R

By Lemma 1 it follows that gz = 0 for almost all (Z,#) which is impossible.
This proves the theorem. (]

Note that by choosing a cross-section S of unit measure in the proof of theorem
3, one can obtain tight frame generators of norm one.
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Summary. We consider two classes of actions on B” - one continuous and one
discrete. For matrices of the form A — e with B € M,.(R), we consider the action
given by v — vA®. We characterize the matrices A for which there is a cross-
section for this action. The discrete action we consider is given by ¥ — vA%, where
A € GLa(R). We characterize the matrices 4 for which there exists a cross-section
for this action as well. We also characterize those A4 for which there exist special types
of cross-sections; namely, bounded cross-sections and finite measure cross-sections.
Explicit examples of cross-sections are provided for each of the cases in which cross-
sections exist. Finally, these explicit cross-sections are used to characterize those
matrices for which there exist MSF wavelets with infinitely many wavelet functions.
Along the way, we generalize a well-known aspect of the theory of shift-invariant
spaces to shift-invariant spaces with infinitely many generators.

1.1 Introduction

In discrete wavelet analysis on the line, the classical approach is to dilate
and translate a single function, or wavelet, so that the resulting system is an
orthonormal basis for L*(R). More precisely, a wavelet is a function ¢ € L*(R)
such that

{29220 + k) - k,j € Z)
forms an orthonormal basis of L2(R).

* Partially supported by NSF grant DMS-0139386
" Supported by a research grant from Suranaree University of Technology
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In multidimensional discrete wavelet analysis, the approach is similar. Fix
a matrix A € GL.(R) and a full rank lattice I". A collection of functions
{4 i =1,...,N} is called an (A, I") orthonormal wavelet of order N if
dilations by A and translations by I,

{|det A2 (Al + k) :i=1,...,N,je 2 ke I},

forms an orthonormal basis for L2(R™). In this generality, there is no charac-
terization (in terms of A and I") of when wavelets exist. It was shown in [10]
that, if A is expansive (that is, a matrix whose eigenvalues all have modulus
greater than 1) then there does exist an orthonormal wavelet. A complete
characterization of such wavelets in terms of the Fourier transform was given
in [13]. The non-expansive case remains problematic.

It is also possible to study the continuous version of wavelet analysis.
Consider the full affine group of motions given by GL,(R) x R® with multi-
plication given by (a, b)(c, d) = (ac,c™ b + d). We are interested in subgroups
of the full affine group of motions of the form

G={{a;b):ae D,beR",

where D is a subgroup of GL,(R). In this case, G is the semi-direct product
D x; R™. Now, if we define the unitary operator T} for g € G by

Tyt = | detal™2(g™ (z)),

then the continuous wavelet transform is given by

(0= | 1T @ s,

which is, of course, a function on G. The function v is a D-continuous wavelet.
If it is possible to reconstruct all functions f in L?*(R™) via the following
reconstruction formula:

f(z) = fG (s oo () dN(g),

where A is Haar measure on G.
There is a simple characterization of continuous wavelets, given in [22].

Theorem 1. [22] Let G be a subgroup of the full affine group of the form
DX R™. A function b € L*(R™) is a D-continuous wavelet if and only if the
Calderdn condition

[ ol du@ =1 ac. ¢ (L.1)

holds, where p is left Haar measure for D.
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In this paper, we will always assume one of the two following cases, which
for the purposes of this paper will be the singly generated subgroups of GL, (R).

1. D= {4% . k € Z} for some A € GL,(R), or
2. D={A!:t € R} for some A = P, where B € M,(R).

We will say that D is generated by the matrix A. Applying Theorem 1 to
these cases gives the following characterizations.

Proposition 1. 1. Let A € GL,(R} and denote the dilation group D =
{A% : k € Z}. Then, 1 € L*(R") is a D-continuous wavelet if and only if

> lEAR)P =1

keZ

Jor almost all £ € R7,
2. Let D = {A' : t € R} for some A = &P, where B € Mn(R). Then
¥ e L2(R™) is a D-continuous wavelet if and only if

f (eAYP dt = 1
R

for almost all £ € Rn.

In the case that D is generated by a single matrix as above, a complete
characterization of matrices for which there exists a continuous wavelet is
given in {17].

Theorem 2. Consider the dilation group D as in case I or 2 above. There
exists a continuous wavelet if and only if | det(A)| # 1.

The wavelets constructed in {17] are of the form ¥ = yx, for some set K.
One drawback to the proof in [17] is that, while the proof is constructive,
the sets K that are constructed are written as the countable union of set
differences of sets consisting of those points whose orbits land in a prescribed
closed ball a positive, finite number of times. Hence, it is not clear whether
the set constructed in the end can be chosen to be “nice” or easily described.

The purpose of this article is two-fold. First, we will give explicitly defined,
easily verified sets K such that yg is the Fourier transform of a continuous
wavelet. Here, we will exploit the fact that we are in the singly generated group
case to a very large extent. We will also obtain a characterization of matrices
such that the set X can be chosen to be bounded as well as a characterization
of matrices such that the only sets K that satisfy (1.1) have infinite measure.

Second, we will show how to use these explicit forms to characterize those
matrices such that there exists a discrete wavelet of order infinity. Note that
this seems to be a true application of the form of the sets K in section 1.2, as
it is not clear to the authors how to use the proof in {17} {or the related proof
in [16]) to achieve the same result.



33

4 David Larson, Eckart Schulz, Darrin Speegle, and Keith F. Taylor
1.2 Cross-sections

Throughout this section, we will use vector notation to denote clements of ]Ii?‘,
and m will denote the Lebesgue measure on R"™. Multiplication of a vector
with a matrix will be given by vA4, and we will reserve the notation A* as “4
raised to the t-power”. In the few places we need the transpose of a matrix,
we will give it a separate name.

Definition 1. A Borel set S C R™ is called a cross-section Sfor the continuous
action v — vA* (t € R) if

Lol )i op SA* = RA\N for some set N of measure zero and
2. 5AY" N SA% = b whenever t, # to € R.

Similarly, a Borel set § C R™ s called a cross-section for the discrele action
y—yA* (ke Z) if

L) e SAE = II@’“\N for some set N of measure zero and
2. SAT N SA* = B whenever § # k € 7.

Note that we have defined cross-sections using left products, which will
eliminate the need for taking transposes in section 1.3.

Note also that if 5 is a cross-section for the continuous action, then {vA® :
v € 8,0 <t <1} is a cross-section for the discrete action. Cross-sections are
sometimes referred to as multiplicative tiling sets.

Remark 1. Let S be a cross-section for the action «y — yA*. Then, SJ-! is a

cross-section for the action v — vJA*J~!, and similarly, for the continuous

action ¥ — ~vA* where A = e, §J-! is a cross-section for the continuous
: At i JBJ~!

action v — vA*, where A =¢ i

To begin with cross-sections for the continuous action, let A = % &
GL(R) be given, where by the preceding remark we may assume that 5 is
in real Jordan normal form. Then, B is a block diagonal matrix, and a block
corresponding to a real eigenvalue ¢y is of the form

o 1 (D)
B o W, @
1
(0 o

while a block corresponding to a complex pair of eigenvalues a; =+ i, with
8; # 0 is of the form

Dy In (U) (O—’i ﬁi)
VB —
! —f; o
B, = with
Iy

o L b= (3 (1})
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In this basis, A' is again a block diagonal matrix, and its blocks are of the
form

tm.—l
m—1}1

NE, (1) tME,(8) SME(t) ...... AE, (£)

NE({t) tAE(t)

INE(t) SAE(t)

NE(8)  NE,(1)

(0) ME. (8)

with )\i = % and Ez(t) =1 or E1(t) = Eﬁi. (t) = ( Czlsnﬁétt i:)r;gli) depend_
S 1 %

ing on whether this block corresponds to a real eigenvalue or a pair of complex
eigenvalues of B. The eigenvalues of A are thus e®* and e e respectively.
For ease of notation, when referring to a specific block A; of A we will

drop the index . Furthermore, v1,..., v, will denote a Jordan basis of &?
chosen so that this block under discussion is the first block, and (zy,...,2,)
will denote the components of a vector +y in this basis.

Theorem 3. Let A = ¥, where B € M, (R) is in Jordan-normal form. There
exists a cross-section for the continuous action v — yA® if and only if A s
not orthogonal.

Proof. Assume that A is not orthogonal. Then at least one of the following
four situations, formulated in terms of the eigenvalues of B, will always apply.

Case I: B has a real eigenvalue o # 0. A corresponding block of A?, which
we may assume to be the first block, is of the form

ALEAE L

. At
(0) At

with A = e® #£ 1. Set
S = {£v1} x spanlva,...,vs).

Then & is a cross-section and ;g SA' = {(x1,...,2,) € R? : 2y 0},

Case 2: B has a complex pair of eigenvalues o £ i3 with a # 0, 8 > 0. At
least one block of At is then of the form
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m—1
NEg(t) tAEp(t) ... A Eslt)
, (1.2)
. tAYER{L)
(0) A Eg(t)

and replacing B with B if necessary, we may assume that A = ¢ > 1. One
easily checks that

§={svy:1<s<A™P) x span(vs,...,vn)

is a cross-section and | J,.p SA* = {(z1,...,2,) € R eiafrni st ),

Case 3: B has an eigenvalue o = 0 and at$ least one of the blocks of B
belonging to this eigenvalue has nontrivial nilpotent part. Then the corre-
sponding block of A is of the form

1t (%)
(1.3)

-

(0) 1

and is of at least size 2 x 2. We set
Se=={svy:58€R\{0}} x span(vs,...,vn)

so that § is a cross-section and | j,cp SA* = {{z1,...,2,) € R @y # 0}

Case 4: B has a purely imaginary pair of eigenvalues i3, 3 > 0, and at
least one of the blocks of B belonging to this pair has nontrivial nilpotent
part. Then the corresponding block of A® is of the form

Ep(t) tEg(t) (%)

(1.4)
- tEp(t)
(0) Ep(t)

and is of at least size 4 % 4. Set

2
S={pvy+gvs+svy:p>0, 0§q<§p, s € R} x span(vs,...,va).

Since this is the least intuitive case, let us verify in detail that S is a cross-
section. For convenience, we group the first four coordinates of a vector v ¢ R7
into two palrs, and write

Y= ((CU]_,IQ), ($3,$4), Ty, L6 .. ':'Tn)s
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so that
YAY = ( (w1, 22)Es(t), {1, 22)Eg(t) + (23, 24)Ep(t).... ).

Now Eg(t) acts by rotation through the angle 8¢, so whenever z7 + x3 # 0
then there exists ¢; € B such that

(z1.22)Eg(t1) = (p,0)

for some p > 0. Then

fYAtl = {ps O: tlp + Y3 Y4, - )

where (ys,y4) = (23,24)E(t;). So if we set tp =11 + k %’T for some integer k,
then
i 2np
vA® = (p,O,k7 +tip+ Ya Y, .- )
Now there exists a k such that
2m

g
and for this choice of k, vA* € §, We conclude that

9
O§k-§3+t1p+y3<

U SAY = {(ml,...,mn)eﬁsz—kﬂf%?&o}-

teER

Suppose now that
YAl = AR
for some v1,v2 € 5, &1, to € R. Equivalently,
Y1 = Y2 A
for some t. If v; = {p1,0,¢1,51,...) and o = (p3,0,42,89,...) then

((22.0), (g1:81).--.) = ((02,0)Ep(2), t(p2, 0)Ep(t) + (a2, 52)Es(t),...)

so that

(p1,0) = (p2, 0)Ep(2t)
{g1,81) = t{(p2, 0)Ep(t) + (g2, 52)Ep(2).

The first equality gives p; = ps and ¢ = ?Bf & for some integer k. Then the
second equality reads

27
(g1,81) = (*"Z;:* kp1 + ga,s2)



37

8 David Larson, Eckart Schulz, Darrin Speegle, and Keith F. Taylor

which gives s; = s» and because 0 < qo,q1 < 2—22, also that £ =0 and ¢1 = g¢2.
Thus, & is indeed a cross-section.

Now suppose to the contrary that 4 is orthogonal, but there exists a cross-
section 5. Then

T={vA':v€ S5 0<t<1}

is a cross-section for the discrete action of A on R7. Note that A maps the
closed unit ball B;(0) onto itself, so if T, = T'N B1(0} then

B1(0) = | T.4%,
keZ

except for a set of measure zero, and this union is disjoint. Then

m(B(0)) = Zm(TaAk) = Zm(Ta) € {0, 00}

keZ keZ
which is impossible.

Remark 2. The cross-sections constructed in the proof above allow for a
change of variables to integrate along the orbits.

For example in case 3), given v = (z1,Za,...,%n) € R™ with z; 5 0, we
set

~ = F(t, 5,03, ,8n) = (8,0,83,...,an)A"

where s # 0. The Jacobian of this transformasion is

(s,0,as,...,an)B Os*... %
V1 100...0
V3 det(A) = (001 ... O geg( Ayt = —s8t £ 0,
Vn 000...1

so that for f € Lg(@“),
_fay = / / ff((s,oaas,-..,an)At)|3!5‘dtd5da3”‘dan-
R gr-2 JE\{0} VR

In case 4), given v = (z1, 22, .., &) € R7 with 22 + 3 # 0, we set
v =F(t,0,a 805 .., 0) = (0,0,0,88s,...,a,)A"

where p > 0, 0 < q < 2wp/B. The Jacobian of this transformation is
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(paoa‘Q"S,aSw--aan)B Oﬁpﬁﬁ***
vi 10000...0
V3 det(A)! = 0 0100...0 det(A)t
Van 000 0...1
= —fps* £0

since B £ 0. Thus,

. %) 2Arp/B N
deay = [ [ [ H@.0.0500s,0 00040 8108

R Tre-d S R JO i3
dtdgdsdpdag ... da,.

Any invertible matrix gives rise to a discrete action on ]1’@, and nearly
always there will exist a cross-section for this action:

Theorem 4. Let A € GL,(R) be in Jordan normeal form, and consider the
discrete action v — yA*.

1. There exists a cross-section if and only if A is not orthogonal.

2. There erists a cross-section of finite measure if and only if | det(A)] # 1.

3. There exzists a bounded cross-section if and only if the (real or complex)
eigenvalues of A have all modulus > 1 or all modulus < 1.

Proof. To prove the first assertion, choose a Jordan basis vq,..., vy so that
the Jordan block of A under discussion is the first block. Each Jordan block
will be an upper diagonal matrix of the form

NeBg(k) F)N—1Eg(k—-1) ... ... (.5 A"t Eg(k — m + 1)

(DM1Eg(k - 1)
(0) A Eg(k)

where Eg = 1 if this block corresponds to a real eigenvalue A and Eg is a
rotation if it belongs to a complex pair Ae*™ of eigenvalues. By a change of
basis, we can always simplify this block to

NeEp(k) (})XBg(k) ... ... (mey) X Eg (k)
(9250 "
{0) A+ Eg(k)
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Now if A is not orthogonal then at least one of the following cases will be
true.

Case 1: A has a real eigenvalue A with |\ # 1. Replacing 4 by A~! if
necessary we may assume that [A| > 1. A corresponding block of A* is an
m x m upper diagonal matrix of the form (1.5) with Eg = 1, and one easily
checks that

S={svi:1< 5] <|A} % span(va,...,vy)

is a cross-section.

Case 2: A has a complex pair of eigenvalues A\e™# with A #£ 1,0 < 8 < 7.
We may again assume that A > 1. A corresponding block of A* is a 2m x 2m
upper diagonal matrix of form (1.5) with Ez a proper rotation. Then

S={sviNEg(t):1<s < P 0<t <1} xspan{vs,...,vn)
is a cross-section, which can be checked by using case 2 in Theorem 3 and
keeping in mind the note immediately following definition 1.

Case §: A has a real eigenvalue A = £1 and at least one of the blocks
of A belonging to this eigenvalue has nontrivial nilpotent part. Then the
corresponding block of A¥ is of the form (1.5) with Eg =1 and is of at least
size 2 x 2. On easily verifies that the set

S={s({vi+1tvy) s R\{0}, 0<¢t <1} xspan(vs,...,v,)

is a cross-section.

Case 4: A has a complex pair of eigenvalues e, 0 < 8 < 7, of modulus
one and at least one of the blocks of A belonging to this pair has nontrivial
nilpotent part. Then the corresponding block of A* is of the form (1.5), with
A =1 and Ej3 a proper rotation, and

B Es(t) tEg(t)
S—{(pvl+q"s+sv4)< % E;f(t))
2r

B

is the desired cross-section, which can be checked by using case 4 in Theorem
3 and keeping in mind the note immediately following definition 1.

p>0,0<qg< p,SEIR,O§t<1}x3pan(v5,...,vn)

The argument at the end of the proof of theorem 3 shows that if A is
orthogonal, then there can not exist a cross-section. This proves the first
assertion.

The remaining assertions are chvious if n = 1, or if n = 2 and A has
complex eigenvalues. We thus can exclude this situation in what follows, so
that the cross-section S constructed above has infinite measure.
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Next let use prove the second assertion. In order to show that | det(A4) # 1
is a sufficient condition, we only need to distinguish between the first two of
the above cases.

We begin by considering the first case, and we may assume that |A| > 1.
Take the cross-section constructed above,

S={svi+v:1< s <]|A, vespan(ve,...,va} },

partition span(vg,...,v,) into a collection {T3}72, of measurable sets of
positive, finite measure each, and set

Se={svi+v:1<is|<N, veTr}, E=1,2,...

Then {Sc}72, is a partition of § into measurable subsets of positive, finite
measure. Pick a collection of positive numbers {d}$2, so that >y dg = 1,
and pick ny, € Z such that §% < 'ﬁa_%ﬁ%ﬁ where 6 = | det(A)]. It follows that

5= D S A"
k=1

is a cross-section for the discrete action such that

m(8) = Zé”"’m(Sk} < de =
k=1 k=1

In the second case, we may assume that A > 1. Start with the above
constructed cross-section,

S={sviNEgt)+v:1<s< "8 o<t <1, vespan(vs,...,vn) s

partition span(vs,...,v,) into a collection {T%}32; of measurable subsets of
finite, positive measure each, and set

Se={sviNEgt)+v:1<s< P 0<t<l,vely}, k=12...

so that {Sk}52, is a partition of S into measurable subsets of positive, finite
measure. Continuing as in the first case we have shown sufficiency.

To prove the necessity implication, suppose there exists a cross-section P
of finite measure for the discrete action and |det(4)] = 1. Let S denote the
cross-section for the discrete action constructed in part 1 above. Then,
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m(P) = f xp(v) d ZfXP (YA") dy

i€Z
—Zf xp(7AY) xs(v) dv
iEZ
—Zf xp(Y) xs(vA™) dv
1EZ
—Z/XS YAT) dvy
ez

= [ xstmdy = m(s) = o

which is impossible. Thus, there can not exist a cross-section of finite measure.

Finally we will prove the last assertion. For sufficiency, it is enough to
assume that all eigenvalues of 4 have modulus |4 < 1 so that

lim A% = 0.
k—oa

Choosing each of the above sets T}, to be bounded we may assume that the sets
S5} are bounded, so that there exist integers ny such that SpA™: is contained
in the unit ball. Then § = [Ji2, SsA™ is the desired bounded cross-section.
For necessity, suppose to the contrary that there exists a bounded cross-
section S, but A has an eigenvalue |A;| < 1 and an eigenvalue |Ap| > 1.
{The case where |A;] < 1 and |Ag| > 1 is treated similarly). Using the block
decomposition of A it is easy to see that for almost all v € Iﬁ?‘, either

lim [yAH] = oo
e[ — o0
or, in the special case where no eigenvalue of A lies outside of the unit circle,
lim [vA"] = o0
k——oo
while {fyA’” k > 0} is bounded below away from zero. Thus, for almost all
e R" there exists a constant M = M () so that
A% > M vk € Z.

Fix any such «. Then for sufficiently large scalars ¢, the orbit of ¢y does not
pass through 5, contradicting the choice of S.

We note that in the proof of the second assertion, the sets T}, can be chosen
so that the cross-section S has unit measure.

Remark 3. In [17], it was obtained as a corollary of their general work that
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1. For A € GL,(R) and D = {A* : k € Z}, there is a continuous wavelet if
and only if |det(4)| # 1.

2. For A =ef and D = {A* : ¢t € R}, there is a continuous wavelet if and
only if | det(A)| # 1.

It is possible to recover these results using the ideas in this section. We mention
only how to do so in the case that continuous wavelets exist. Let A € GL, (R},
and let § be a cross-section of Lebesgue measure 1 for the discrete action
~ — ~A*. Then, the function ¢ whose Fourier transform equals xg is a
continuous wavelet for the group {A* : k € Z}. If in addition, A = ¥, then
1 is also a continuous wavelet for the group {A4* : t € R} since

1 1
/L;IXS('YAt)IZ dt = f 3 Ixs(vAtAR)? dt = /0 Ldt = 1.

O rez

We note here that the method of proof in [17], while ostensibly construc-
tive, does not easily yield cross-sections of a desirable form such as the ones
constructed above.

1.3 Shift-invariant Spaces and Discrete Wavelets

Let A € GL,(R) and I" C R™ be a full-rank lattice. An (A, I') orthonormal
fresp. Parseval, Bessel] wavelet of order IV is a collection of functions {#'}Y,
(where here we allow the possibility of IV = oo) such that

{|det AP/2yH (AT +k):jeZkeli=1,...,N}

is an orthonormal basis [resp. Parseval frame, Bessel system| for L*(R™). There
has been much work done on determining for which pairs (A, I') orthonormal
wavelets of finite order exist, often with extra desired properties such as fast
decay in time or frequency.

This is not necessary for the proofs that we present. Of particular impor-
tance in determining when orthonormal wavelets exist are the MSF (minimally
supported frequency) wavelets, which are intimately related to wavelet sets.
An (A, I} multi-wavelet set K of order L is a set that can be partitioned into
subsets {i}i., such that { grmme X, Hey is the Fourier transform of an
(A, T) orthonormal wavelet, where I' = BZ". (Here and in what follows, B
denotes the transpose of A.) When the order of a multi-wavelet set is 1, we call
it a wavelet set. These have been studied in detail in {1, 2, 3, 10, 14, 15, 19, 21].

The following fundamental question in this area remains open, even in the
case L =1,

Question 1. For which pairs (A, I'} and orders L do there exist (A, I") wavelet
sets of order L7
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It is known that if A4 is expansive and I' is any full-rank lattice, then
there exists an (A, ") wavelet set of order 1 [10]. One can also modify the
construction to obtain (A, I") wavelet sets of any finite order along the lines
in Theorem 10 below. Diagonal matrices A for which there exist (4, Z™) multi-
wavelet sets of finite order were characterized in [20]. Theorem 4, part 2 above
implies that, in order for an (A, I') multi-wavelet set of finite order to exist,
it is necessary that A not have determinant one. There is currently no good
conjecture as to what the condition on {4, I") should be for wavelet sets to
exist. It is known that |det(A)| # 1 is not sufficient and that all eigenvalues
greater than or equal to I in modulus is not necessary.

We begin with the following.

Theorem 5. Let A € GL,(R) and I' C R” be a full-rank lattice with dual
I™. The set K is o multi-wavelet set of order L if and only if

> xx(E+1) =1L ae ek, (1.6)
e
Y xx(EA) =1 ae. £ e RA, (1.7)
JEZ

Proof. 'The forward direction is very similar to the arguments presented in [10],
so we sketch the proof only. Let K be a multi-wavelet set of order L. Partition
K into {K;}32, such that xy, is an (4, ") multi-wavelet of order L. Then,
since x i, {£A7} is orthogonal to x s, (EA‘) for each (4, 7) # (&, 1), it follows that
K A9 0 KA is a null-set when (4, §) # (k,1). Therefore, Yenxr(€A) <1
ae € R Moreover, since every L? function can be written as the combina-
tion of functions supported on U2, K A7, it follows that 3 jez vi(€A) =1
ae e R", proving (1.7). To see (1 6), smce K; is disjoint from K; A* for all
(4, k}  (4,0), it follows that Wc 7H&7) must be an mthonormal basis
for L?(K;). This implies (1.6).

For the reverse direction, it is clear that what is needed is to partition K
into {K;} 2, so that each K satisfies 3" Jer-Xx{€+7)=lae e R7. This
will follow from repeated application of the foilowmg fact. Given a measurable
set K such that 3 r. xx(§+7) 2 lae €€ ]R“, there exists a set U =
U{K) ¢ K such that

Z xv+7)=1, ae EeRn (1.8)
yer

Now, let {V;}32, be a partition of R" consisting of fundamental regions of
I'*; that is, the sets V; satisfy Yer-xvil+v)=1lae £¢ RP. For a set

M C R* we define M? = Uner=(M + 7). Let
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Ly = K.
Let
K1 = (VinLo) U (U(Lo) \ (V1 N Lg)*),

where U{Lg) is the subset of L satisfying (1.8). Let Ly = Lg\ K1, and notice
that Ly satisfies (1.6) with the right hand side reduced by 1. In general, let

Ki=(ViNnLi ) )U(U(Li—a) \ (ViN Lia)Y),
and
L; = Ly W

In the case that L is finite, this procedure will continue for L steps, resulting in
a partition of K with the desired properties. In this case, the initial partition
{V;} was not necessary. In the case L = oo, since the V;’s partition R", the
union of the K;’s will contain K. Since the K;’s were constructed to be disjoint
and o satisfy (1.8), the proof is complete.

There is also a soft proof of the reverse direction of Theorem 5, that yields
slightly less information about wavelets, but provides some interesting facts
about shift-invariant spaces. Before turning to the applications of Theorem 5,
we provide this second proof.

When L is finite, we call an (A, I'} orthonormal wavelet {¢'}, an
(A, T) combined MSF wavelet if Uixlsupp(qﬁ) has minimal Lebesgue mea-
sure. This terminology was introduced in {6}, where it was shown that the
minimal Lebesgue measure is L. It was also shown that if {¢*}%, is a com-
bined MSF wavelet, then there is a multi-wavelet set K of order L such that
K = Ul supp(#*).

When L = co, it is not clear what the significance is for the union of the
supports of 4% to have minimal Lebesgue measure. For this reason, we adopt
the following definition. An (A, I') orthonormal wavelet {y¢}L ;| is an (A, I'}
combined MSF wavelet if K = Uk supp(¢/?) is a multi-wavelet set of order
L. This definition agrees with the previous definition in the case L is finite.

Let us begin by recalling some of the basic notions of shift-invariant spaces.
A closed subspace V' ¢ L?(R") is called shift-invariant if whenever f € V and
ke Z", flx+ k) € V. The shift-invariant space generated by the collection
of functions ¢ C L%(R") is denoted by S(&) and given by

span{p(z + k): ke Z", ¢ € ®}.

Given a shift-invariant space, if there exists a finite set & ¢ L2(R™) such that
V = §(&), then we say V is finitely generated. In the case & can be chosen to
be a single function, we say V is a principal shift-invariant (PSIT} space. For
further basics about shift-invariant spaces, we recommend [7, 11, 12]. We will
follow closely the development in [7].
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Proposition 2. The map T : L*(R™) — L%(T", {*(Z™)) defined by
Tf(@) = (f(z+F)rezr

is an isometric isomorphism between L*(R™) and L*(T", 2(Z")), where T" =
R7™/Z™ is identified with its fundamental domain, e.g. [0, 1)™.

In what follows, as in Proposition 2 we will always assume that T" =
R™/Z™ is identified with [0, 1)™.
A range function is a mapping

J:T" — {E C *(Z") : E is a closed linear subspace}.

The function J is measurable if the associated orthogonal projections P(z} :
2(ZM) — J(z) are weakly operator measurable. With these preliminaries, we
can state an important theorem in the theory of shift-invariant spaces, due to
Helson [7].

Theorem 6. A closed subspace V ¢ L*(R™) 4s shift-invariant if and only if
V ={fe L}R"): T f(x) € J{z) for ae. z € T"},

where J is a measurable range function. The correspondence between V' and
J is one-to-one under the convention that the range functions are identified if
they are equal a.e. Furthermore, if V = S(®) for some countable & ¢ L*(R™),
then

J(z) = span{T ¢(z) : ¢ € &}
Definition 2. The dimension function of a shift-invariant space V' is the map-
ping dimy : T* — N U {0,000} given by
dimy (z) = dim J(x), (1.9)
where J is the range function associated with V. The spectrum of V' is defined
by o(V) = {z € T": J(x} +£ {0}}.

We are now ready to state the main result from [7] that we will need in
this paper.

Theorem 7. Suppose V is a shifi-invariant subspace of L*(R"). Then V can
be decomposed os an orthogonal sum

V=P S(s), {1.10)

icl

where {¢;(x + k) : k € Z*} is a Parseval frame for 8{¢;) and oc(8{¢;31)) C
a(S{¢i)) for all i € N. Moreover, dims(g,y(z) = |T¢i(z)|l € {0,1} forie N,
and

dimy (z) = > [T¢i(z)| for a.e. z €T (1.11)
el
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Finally, there is a folk-lore fact about dimension functions that we recall
here. See Theorem 3.1 in (8] for discussion and references.

Proposition 3. Suppose V' is a shift-invariant space such that there exists a
set & such that

{o(-+ k) : ke Z" ¢ € P}

is a Parseval frame for V.. Then

dimy (&) = D > 8¢ + k)[*. (L.12)

pad keln

The following theorem is a relatively easy application of Theorem 7, which
was certainly known in the case N < oo, and probably known to experts in the
theory of shift-invariant spaces in this full generality. It seems to be missing
from the literature, so we include a proof.

Theorem 8. Let V be a shift-invariant subspace of L*(R™). There exists o
collection & = {¢;}¥, < L2(R™) such that

{pile+k)y:ie{L,.. NL,keZ"}
is an orthonormal basis for V if and only if dimy (z) = N a.e. z € T".

Proof. For the forward direction, it suffices to show that if {¢;(x + k) 1 k €
Z*,i=1,...,N} is an orthonormal basis for the {necessarily shift-invariant)
space V, then dimy (z) = N for a.e. © € T". It is easy to see that if { f(z+k) :
k € Z™} is an orthonormal sequence, then 3, 4. | f(€+ k)? =1 a.e. Thus,
by Proposition 3, dimy (z) = N a.e.

For the reverse direction, assume V' is a shift-invariant space satisfying
dimy(z) = N a.e x € T" Let {¢;}{2, be the collection of functions such
that (1.10) is satisfied. Using the facts that o(S(¢i+1)) C o(S(¢:)) for all 4,
(V) =T" and (1.11), it follows that

™ 1< N,

0 e fL.1)

o(S(e:)) = {
By equation 1.10, we have for 1 <i < N,

dimg (&) = 1= 1T = > 1 + k)?

kezr

Thus, {¢;(z+ k) : k € Z"} is an orthonormal basis for S(¢;). Since the spaces
S(¢;) are orthogonal, {¢{z + k) : i€ {1,... N}, k € Z"} is an orthonormal
basis for V, as desired.

We include a proof of the following proposition for completeness.



47

18 David Larson, Eckart Schulz, Darrin Speegle, and Keith I, Taylor

Proposition 4. Let V = {f € L2(R™) : supp(f) C W}. Then, V is shift-
mvarient and dimy (§) = 3 cn xwl + k) =#{k € Z*: £ + ke W} ace.
Proof. Clearly, V' so defined is shift-invariant. Let {ex : k € Z"} be the
standard basis for £2(Z"), and let v, be defined by ¥, = X(T+knw » again for
ke Z"™. It is easy to see that V = S(¥), where ¥ = {4, : k € Z™}. Therefore,
by Theorem 6, J(£) = span{7Ty«(¢) : k € Z"} = spam{ey : £ + k € W}. The
result then follows from the definition of dimension function in (1.9).

Corollary 1. Let A € GL,(R), and K be a measurable subset of@l. If
> xx(EAY =1 ae ¢ inR7, (1.14)
JEZ
and
Z X}((f-i— k) =N ae £in ]ﬁ;’,
kEZ™

then there is an (A, Z") orthonormal wavelet of order N with UX., supp(¢h) =
K.

Proof. By Proposition 4 and Theorem 8, there exists ¥ = {¢*}}| such that

(Ml kez™ i=1,..., N} is an orthonormal basis for L?(K), where M.
denotes modulation by k. Thus, by (1.14), & is an (A4, Z"} wavelet.

"The main theorem in this section is given in Theorem 10. Before stating
this theorem, we give three results that wili be useful in its proof.

Lemma 1. Let C C R™ be a cone with non-empty interior, I'  RB™ be a
full-rank lattice, and T € N. Then, the cardinality of CN I 0 (R“ \BT(D)) 18
infinity.

Proof. Let I be a line through the origin contained in the interior of C. The
set U = {z € R" : dist(x,1) < €} is a centrally symmetric convex set, and

((C n Br{0))\ U) is bounded. (1.15)

By Minkowski’s theorem (see, for example Theorem 1, Chapter 2, Section 7
in [18] and discussion thereafter), the cardinality of U N I" is infinity. Hence,
by (1.15), the result follows.

The following proposition was proven in the setting of wave packets in
L3(R) in [9]. We sketch the proof here in our setting of wavelets,

Proposition 5. Suppose A € GL,(R) has the following property: for all Z
R™ with positive measure and all ¢ € N, there exist ;... 2y € Z such that

9
m([] Z4™) > 0.
i=1

Then, for every non-zero ¥ € L2(R™), ¥ 4s not an {A,Z™} Bessel wavelet.
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Proof. Let 1 € L?(R™), 1 # 0. Then there exists a set Z ¢ R? of positive
measure such that |1)(£)| > C > 0 for all £ € Z. By reducing to a subset, we
may assume that there exists a constant K > 0 such that, for every function
f € LA(R™) with support in Z, we have

> A M = K| £
keZn
Since the operator Df = | det(A)|!/2f(-A) is unitary, for every j € Z and for
each function f € L%(R") supported in A~7(Z), we obtain
> A DM 2 K512 (1.16)
kezn

By hypothesis, there exist 1 ... ,z, € Z such that for U := (I_, Z24%), we
have m (U} > 0. This implies

S o DM =Y Y

Jj€dkel™ i=1 keZdn

q
> Klixul®

=1

{(xu, D™ My 2

= gK|xul®.
Thus, since g is arbitrary, ¢ is not an {A,Z") Bessel wavelet.

Theorem 9. (Bonferroni’s Inequality) If {4;}Y.| are measurable subsets of
the measurable set B and k is a positive integer such that

N
> | Ail > K| B,

f=1
then there exist 1 < iy <ig < -+« <igyy < N such that

k

mAiJ = 0.

gt

Theorem 10. Let A € GL,(R} with real Jordan form J. The following state-
ments are equivalent.

1. For every full-rank lattice I" C R", there ezists a (J,I") orthonormal
wavelet of order oo.

2. There exists an (A,Z™) orthonormal wavelet of order co.

3. For every full-rank lattice I C R™, there exists an {A,I") orthonormal
wavelet of order oo.
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4. There exists a (non-zero) (A, Z") Bessel wavelet of order 1.
8. J is not orthogonal.
6. The matriz A is not similar (over M,(C)) to a unitary matriz.

Proof. Let us begin by summarizing the known results and obvious impli-
cations. The implication (2) == (6) was proven Theorem 4.2 [16]. The
implications (3) = (2) == (4) are obvious, and (5) <= (6) is standard.
(68) == (1). Let I" be a full-rank lattice with convex fundamental region ¥
for I'*. By Theorem 5, it suffices to show that there is a measurable cross-
section § for the discrete action & — £.J* satisfying (1.7). As in Theorems 3
and 4, we break the analysis into cases.

Case 1: There is an eigenvalue of J not equal to 1 in modulus. WLOG, we
assume there is an eigenvalue of modulus greater than 1. In this case, J can
be written as a block diagonal matrix

(f; i) , (1.17)

where J; is expansive, and we allow the possibility that rank(J;) = rank(.J).
Let S be an open cross-section for the discrete action £ — £JF. Partition S
into disjoint open subsets {5; : ¢ € N}. For each i, choose k; such that there
exists v € I™ such that S;A% x R™"&Uz2) 5 (Y 4+ ;). Then,

USS, (S; AR x RFank(42))

is a cross-section satisfying (1.7).

Case 2: All eigenvalues of J have modulus 1. This means that we are in case 3
or case 4 of Theorem 4. We show that in either of these cases, the cross-section
exhibited in Theorem 4 satisfies (1.7). First, note that S in these cases is a
cone of infinite measure with a dense, open subset 5°. Let B C S5° be an
open bail bounded away from the origin satisfying B < S°. Let § = diam(Y").
Threre exists a 7" such that

Spi={tb:t > T,be B}

satisfies dist{Sr, R™\S) > 6. By Lemma 1, I'* NSt has infinite cardinality, and
by choice of 6, Y 4+~ ¢ § for each v € I"™ NS, Therefore, 5 is a cross-section
satisfying (1.7).

(1) = (2) = (§). This follows from the following two facts. First, I"
is a full-rank lattice if and only if there is an invertible matrix B such that
I' = BZ™. Second, if B € GL,(R), ¥ is an (4, I} orthonormal wavelet if and
only if Up = {W@D(B‘I-) 1) € T} is a (BAB™}, BT") orthonormal
wavelet. Indeed, (1) = (2) is then immediate.

To see (2) == (3), recall that (2) === (6). Thus, if (2) is satisfied,
then J = B~1AB is not orthogonal. Let I” be a full-rank lattice. There ex-
ists a {J, B~1I") orthonormal wavelet of order co, so there exists an (4,1
orthonormal wavelet of order oo.
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(4) = (6). Suppose that the real Jordan form of A is orthogonal. Then,

for any bounded set Z ¢ f@, there exists M such that for every ke Z,z € Z,
we have [[zA*}| < M. Furthermore, if Z has positive measure, then

Z m(ZA* N By (0)) = 0.
keZ

Therefore, by Bonferroni's inequality, for every ¢ € N, there exist ky, ... kq
such that

m (NI, ZA%)> 0.

By Proposition 5, this says that for every non-zero , 1 is not an (4,2Z")
Bessel wavelet.
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